A NOTE ON HILBERT SPACE BUNDLES

DIETMAR SALAMON AND KATRIN WEHRHEIM

This note provides an example of an infinite rank Hilbert space bundle $E \rightarrow M$ and two finite rank subbundles $E_{1}, E_{2} \subset E$ such that no proper subbundle of E contains E_{1} and E_{2}.

Let H be an infinite dimensional separable Hilbert space, let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal basis of H, and denote by $\mathcal{L}(H)$ the space of bounded linear operators from H to itself.
Theorem. There exists a smooth map $x: \mathbb{R} \rightarrow H \backslash\{0\}$ such that the following holds. Assume that $\Pi: \mathbb{R} \rightarrow \mathcal{L}(H)$ is continuous in the norm topology and satisfies

$$
\begin{equation*}
\Pi(s)^{2}=\Pi(s), \quad \Pi(s) e_{1}=e_{1}, \quad \Pi(s) x(s)=x(s) \tag{1}
\end{equation*}
$$

for every $s \in \mathbb{R}$. Then $\Pi(s)=\mathbb{1}$ is the identity for every $s \in \mathbb{R}$.
Every topological subbundle of $\mathbb{R} \times H \rightarrow \mathbb{R}$ can be represented by a continuous family of projections Π as a family of images $\bigcup_{s \in \mathbb{R}}\{s\} \times \operatorname{im} \Pi(s)$. So the theorem shows that $E_{1}=\mathbb{R} \times \mathbb{R} e_{1}$ and $E_{2}=\bigcup_{s \in \mathbb{R}}\{s\} \times \mathbb{R} x(s)$ are smooth rank one subbundles of $\mathbb{R} \times H$ such that every topological subbundle that contains E_{1} and E_{2} is given by $\Pi(s)=\mathbb{1}$, and hence is equal to $\mathbb{R} \times H$.
Proof. Step 1. Construction of the map $x: \mathbb{R} \rightarrow H \backslash\{0\}$.
Define a sequence $\left(e_{k_{n}}\right)_{n \geq 2}$ of unit vectors by setting $k_{2^{i}+\ell}:=2+\ell$ for $i \in \mathbb{N}$ and $0 \leq \ell<2^{i}$. Choose a smooth cutoff function $\beta: \mathbb{R} \rightarrow[0,1]$ so that $\beta(0)=1$ and $\operatorname{supp} \beta \subset\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then define

$$
x(s):=e_{1}+\sum_{n=2}^{\infty} \beta_{n}(s) e_{k_{n}} \quad \text { with } \quad \beta_{n}(s):= \begin{cases}2^{-n} \beta\left(s^{-1}-n\right), & \text { for } s>0 \\ 0, & \text { for } s \leq 0\end{cases}
$$

The functions $\beta_{n}: \mathbb{R} \rightarrow[0,1]$ for $n \geq 2$ satisfy $0 \leq \beta_{n} \leq 2^{-n}=\beta_{n}\left(\frac{1}{n}\right)$ and are supported in the pairwise disjoint intervals $\left(\frac{2}{2 n+1}, \frac{2}{2 n-1}\right)$. Hence $x(s) \in H \backslash\{0\}$ for all $s \in \mathbb{R}$ and $x\left(\frac{1}{n}\right)=e_{1}+2^{-n} e_{k_{n}}$. Step 2. The map $x: \mathbb{R} \rightarrow H$ in Step 1 is smooth.
That x is smooth on $\mathbb{R} \backslash\{0\}$ is obvious from the definition. It remains to check that all right-sided derivatives of x at $s=0$ vanish. Given $\frac{2}{3} \geq s>0$, denote by $n(s) \geq 2$ the unique integer with $n(s)-\frac{1}{2} \leq \frac{1}{s}<n(s)+\frac{1}{2}$. Then

$$
\|x(s)-x(0)\|=\beta_{n(s)}(s) \leq 2^{-n(s)} \leq \sqrt{2} 2^{-1 / s} \quad \text { for } \quad 0<s \leq \frac{2}{3} .
$$

This shows that $x: \mathbb{R} \rightarrow H$ is differentiable with $x^{\prime}(0)=0$. Now let $k \geq 1$ and assume, by induction, that x is k times differentiable with $x^{(k)}(0)=0$. Similar to the previous estimate, there is a constant $c_{k}>0$, depending on the \mathcal{C}^{k}-norm of β, such that $\left\|x^{(k)}(s)\right\| \leq c_{k} s^{-k-1} 2^{-1 / s}$ for $0<s \leq \frac{2}{3}$. This shows that x is $k+1$ times differentiable and $x^{(k+1)}(0)=0$. Hence x is smooth.
Step 3. Let $x: \mathbb{R} \rightarrow H$ be the map in Step 1 and assume $\Pi: \mathbb{R} \rightarrow \mathcal{L}(H)$ satisfies (1) and is strongly continuous at $s=0$. Then $\Pi(0)=\mathbb{1}$.
By construction $e_{k_{n}}=2^{n}\left(x\left(\frac{1}{n}\right)-e_{1}\right)$ and hence, by (1), $\Pi\left(\frac{1}{n}\right) e_{k_{n}}=e_{k_{n}}$ for every integer $n \geq 2$. Given any integer $\ell \geq 0$ we have $e_{2+\ell}=e_{k_{n_{i}}}$ for a sequence $n_{i}=2^{i}+\ell$ that diverges to infinity. Thus strong continuity implies $\Pi(0) e_{2+\ell}=\lim _{i \rightarrow \infty} \Pi\left(\frac{1}{n_{i}}\right) e_{2+\ell}=\lim _{i \rightarrow \infty} \Pi\left(\frac{1}{n_{i}}\right) e_{k_{n_{i}}}=\lim _{i \rightarrow \infty} e_{k_{n_{i}}}=e_{2+\ell}$. This shows that $\Pi(0) e_{n}=e_{n}$ for all $n \geq 2$. Since $\Pi(0) e_{1}=e_{1}$ it follows that $\Pi(0)=\mathbb{1}$.
Step 4. We prove the theorem.
Let $x: \mathbb{R} \rightarrow H$ be the map in Step 1 and assume $\Pi: \mathbb{R} \rightarrow \mathcal{L}(H)$ satisfies (1) and is continuous in the norm topology. Then the set $U:=\{s \in \mathbb{R} \mid \Pi(s)$ is bijective $\}$ is open and $0 \in U$, by Step 3 . Since $\Pi(s)$ is a projection, $\Pi(s)=\mathbb{1}$ for every $s \in U$. Hence U is closed and hence $U=\mathbb{R}$.

Date: 8 November 2012.

