# More notes on the Octonions 

Dietmar Salamon<br>ETH Zürich

15 February 2021

## 1 Cross products

Assume throughout that $V$ is a finite-dimensional real vector space. A skewsymmetric bilinear map

$$
\begin{equation*}
V \times V \rightarrow V:(u, v) \mapsto u \times v \tag{1.1}
\end{equation*}
$$

is called a cross product if it satisfies the following two axioms.
(A) $u \times(u \times v) \in \operatorname{span}\{u, v\}$ for all $u, v \in V$.
(B) If $u, v \in V$ are linearly independent, then so are $u, v, u \times v$.

The next observation is discussed in Donaldson's lecture [1].
Theorem 1.1. Assume $\operatorname{dim}(V)>1$ and let (1.1) be a skew-symmetric bilinear map. Then the map (1.1) satisfies $(A)$ and (B) if and only if there exists an inner product on $V$ that satisfies the equations

$$
\begin{align*}
& \langle u \times v, u\rangle=\langle u \times v, v\rangle=0,  \tag{1.2}\\
& |u \times v|^{2}=|u|^{2}|v|^{2}-\langle u, v\rangle^{2} \tag{1.3}
\end{align*}
$$

for all $u, v \in V$. Morover, if such an inner product exists, it is uniquely determined by the cross product and is given by the formula

$$
\begin{equation*}
\langle u, v\rangle=\frac{\operatorname{trace}\left(A_{u} A_{v}\right)}{1-\operatorname{dim}(V)}, \quad A_{u} v:=u \times v \tag{1.4}
\end{equation*}
$$

for $u, v \in V$.
Proof. See page 2.

Remark 1.2. (i) It follows from Theorem 1.1 and [7, Theorem 2.5] that $V$ admits a cross product if and only if its dimension is either $0,1,3$, or 7 .
(ii) The formula $x \times y:=\left(x_{1} y_{2}-x_{2} y_{1}\right) e_{2}$ defines a skew-symmetric bilinear map on $\mathbb{R}^{2}$ that satisfies (A) and (1.3), but not (B) and (1.2).
(iii) The formula $x \times y:=z_{1} e_{1}+z_{2} e_{2}+\left(z_{3}+z_{2}\right) e_{3}$ with $z_{1}:=x_{2} y_{3}-x_{3} y_{2}$, $z_{2}:=x_{3} y_{1}-x_{1} y_{3}, z_{3}:=x_{1} y_{2}-x_{2} y_{1}$, defines a skew-symmetric bilinear map on $\mathbb{R}^{3}$ that satisfies (B) but not (A).
(iv) Let $(u, v) \mapsto u \times v$ be the skew-symmetric bilinear map on $\mathbb{R}^{4}$ defined by $e_{0} \times e_{i}=e_{i}$ for $i \neq 0$ and $e_{i} \times e_{j}=e_{k}$ for each cyclic permutation $i, j, k$ of $1,2,3$. This map satisfies (1.3) but not (A), (B), and 1.2).

Proof of Theorem 1.1. The proof has five steps.
Step 1. Let $\langle\cdot, \cdot\rangle$ be an inner product that satisfies (1.2) and (1.3). Then

$$
\begin{equation*}
u \times(u \times v)=\langle u, v\rangle u-|u|^{2} v \quad \text { for all } u, v \in V \tag{1.5}
\end{equation*}
$$

the map (1.1) is a cross product, and the inner product is given by (1.4).
Equation (1.5) was established in [7, Lemma 2.9]. It implies that (1.1) satisfies (A) and (B) and that trace $\left(A_{u}^{2}\right)=(1-\operatorname{dim}(V))|u|^{2}$ for all $u \in V$. This proves Step 1. Throughout the remainder of the proof we assume that our skew-symmetric bilinear map (1.1) is a cross product.
Step 2. There exists a map $q: V \rightarrow \mathbb{R}$ and a map $V \rightarrow V^{*}: u \mapsto \Lambda_{u}$ such that $q(0)=0, \Lambda_{0}=0, q(u)>0$ for $0 \neq u \in V$, and for all $u, v \in V$

$$
\begin{equation*}
u \times(u \times v)=\Lambda_{u}(v) u-q(u) v . \tag{1.6}
\end{equation*}
$$

Fix a nonzero vector $u \in V$. Since $A_{u} u=0$ by skew-symmetry, the linear map $A_{u}: V \rightarrow V$ descends to an endomorphism $\bar{A}_{u}: \bar{V}_{u} \rightarrow \bar{V}_{u}$ of the quotient space $\bar{V}_{u}:=V / \mathbb{R} u$. Let $\pi_{u}: V \rightarrow \bar{V}_{u}$ denote the canonical projection and fix a vector $v \in V$ such that $u$ and $v$ are linearly independent. Then by (A) there exists a real number $q(u, v)$ such that $A_{u} A_{u} v \in-q(u, v) v+\mathbb{R} u$. Hence the vector $0 \neq \bar{v}:=\pi_{u}(v) \in \bar{V}_{u}$ satisfies $\bar{A}_{u} \bar{A}_{u} \bar{v}=-q(u, v) \bar{v}$ and so each nonzero vector in $\bar{V}_{u}$ is an eigenvector of $\bar{A}_{u} \bar{A}_{u}$. Thus $q(u):=q(u, v)$ is independent of $v$ and $A_{u} A_{u} v+q(u) v \in \mathbb{R} u$ for every $v \in V$. Hence there exists a linear functional $\Lambda_{u}: V \rightarrow \mathbb{R}$ such that $A_{u} A_{u} v+q(u) v=\Lambda_{u}(v) u$ for all $v \in V$. Since the bases $u, v, A_{u} v$ and $u, A_{u} v, A_{u} A_{u} v$ induce the same orientation on the 3 -dimensional subspace $\Lambda:=\operatorname{span}\left\{u, v, A_{u} v\right\}$ whenever $u$ and $v$ are linearly independent, it follows that $q(u)>0$. This proves Step 2.

Step 3. Let $q: V \rightarrow \mathbb{R}$ and $V \rightarrow V^{*}: u \mapsto \Lambda_{u}$ be as in Step 2. Then the formula (1.4) defines an inner product on $V$ and, for all $u, v \in V$,

$$
\begin{align*}
|u|^{2}=\langle u, u\rangle=q(u), & u \times(u \times v)=\Lambda_{u}(v) u-|u|^{2} v,  \tag{1.7}\\
|u \times v|^{2}=|u|^{2}|v|^{2}-\Lambda_{u}(v)^{2}, & \Lambda_{u}(v)=\Lambda_{v}(u), \quad \Lambda_{u \times v}(u)=0 . \tag{1.8}
\end{align*}
$$

Fix a nonzero vector $u \in V$. Since $A_{u} u=0$, it follows directly from (1.6) that trace $\left(A_{u} A_{u}\right)=(1-\operatorname{dim}(V)) q(u)$. Hence the bilinear map

$$
V \times V \rightarrow \mathbb{R}:(u, v) \mapsto\langle u, v\rangle:=\frac{\operatorname{trace}\left(A_{u} A_{v}\right)}{1-\operatorname{dim}(V)}
$$

satisfies $\langle u, u\rangle=q(u)>0$ for every nonzero vector $u \in V$ and therefore is an inner product satisfying (1.7). Use (1.7) repeatedly to obtain

$$
\begin{aligned}
\Lambda_{u \times v}(u) u \times v & =|u \times v|^{2} u+(u \times v) \times((u \times v) \times u) \\
& =|u \times v|^{2} u+(u \times v) \times\left(|u|^{2} v-\Lambda_{u}(v) u\right) \\
& =|u \times v|^{2} u+|u|^{2}(v \times(v \times u))+\Lambda_{u}(v)(u \times(u \times v)) \\
& =|u \times v|^{2} u+|u|^{2}\left(\Lambda_{v}(u) v-|v|^{2} u\right)+\Lambda_{u}(v)\left(\Lambda_{u}(v) u-|u|^{2} v\right) \\
& =\left(|u \times v|^{2}+\Lambda_{u}(v)^{2}-|u|^{2}|v|^{2}\right) u+|u|^{2}\left(\Lambda_{v}(u)-\Lambda_{u}(v)\right) v .
\end{aligned}
$$

If $u, v$ are linearly independent, this implies (1.8) by (B). Next observe that $\Lambda_{t u}=t \Lambda_{u}$ and $\Lambda_{u}(u)=|u|^{2}$ for $u \in V$ and $t \in \mathbb{R}$ by (1.7). Thus (1.8) continues to hold when $u, v$ are linearly dependent, and this proves Step 3.
Step 4. Let $V \rightarrow V^{*}: u \mapsto \Lambda_{u}$ be as in Step 2 and let $\langle\cdot, \cdot\rangle$ be the inner product in Step 3. Then $\Lambda_{u}(v)=\langle u, v\rangle$ for all $u, v \in V$.
When $u, v$ are linearly dependent, this follows directly from (1.6) and (1.7). Thus assume that $u, v$ are linearly independent. Then $\Lambda:=\operatorname{span}\{u, v, u \times v\}$ is a three-dimensional subspace of $V$ by $(B)$ and is invariant under the cross product by (A). Define the linear maps $A, B: \Lambda \rightarrow \Lambda$ by

$$
A w:=u \times w, \quad B w:=v \times w
$$

for $w \in \Lambda$ and abbreviate $\lambda:=\Lambda_{u}(v)=\Lambda_{v}(u)$ (see 1.8) in Step 3). Then

$$
\begin{align*}
& A B(u \times v)=B A(u \times v)=-\lambda(u \times v)  \tag{1.9}\\
& A B w+B A w+2\langle u, v\rangle w \in \operatorname{span}\{u, v\}
\end{align*}
$$

for all $w \in \Lambda$ by (1.7). Take $w=u \times v$ and use (B) to obtain $\lambda=\langle u, v\rangle$. This proves Step 4.

Step 5. The inner product in Step 3 satisfies (1.2) and (1.3).
By Step 4 and (1.7) the inner product in Step 3 satisfies (1.5), i.e.

$$
u \times(u \times v)=\langle u, v\rangle u-|u|^{2} v
$$

for all $u, v \in V$. This implies

$$
\begin{equation*}
\langle u, u \times(u \times v)\rangle=0 \tag{1.10}
\end{equation*}
$$

for all $u, v \in V$. Now fix a pair of vectors $u, v \in V$ such that $u \neq 0$ and define

$$
w:=-\frac{u \times v}{|u|^{2}} .
$$

Then

$$
u \times w=-\frac{u \times(u \times v)}{|u|^{2}}=v-\frac{\langle u, v\rangle}{|u|^{2}} u
$$

by (1.5), hence $u \times(u \times w)=u \times v$, and hence $\langle u, u \times v\rangle=0$ by (1.10). This shows that the inner product in Step 3 satisfies (1.2). That it also satisfies (1.3) follows from Step 4 and the identity $|u \times v|^{2}=|u|^{2}|v|^{2}-\Lambda_{u}(v)^{2}$ in (1.8) in Step 3. This proves Step 5 and Theorem 1.1.

## 2 Volume forms

Let $V$ be a seven-dimensional real vector space. Recall from [7, Section 3] that a 3 -form $\phi \in \Lambda^{3} V^{*}$ is called nondegenerate if, for every pair of linearly independent vectors $u, v \in V$ there exists a third vector $w \in V$ such that $\phi(u, v, w) \neq 0$. Call an inner product $\langle\cdot, \cdot\rangle$ compatible with a 3-form $\phi$ if the skew-symmetric bilinear map $V \times V \rightarrow V:(u, v) \mapsto u \times v$, defined by

$$
\begin{equation*}
\langle u \times v, w\rangle=\phi(u, v, w) \tag{2.1}
\end{equation*}
$$

for $u, v, w \in V$, is a cross product that satisfies (1.2) and (1.3). Then [7, Theorem 3.2] asserts that a 3 -form $\phi$ is nondegenerate if and only if it admits a compatible inner product, that this inner product is uniquely determined by $\phi$ in the nondegenerate case, and that it is characterized by the equation

$$
\begin{equation*}
6\langle u, v\rangle \mathrm{dvol}=\iota(u) \phi \wedge \iota(v) \phi \wedge \phi \quad \text { for } u, v \in V, \tag{2.2}
\end{equation*}
$$

where the orientation is chosen such that $\langle u, u\rangle>0$ for $u \neq 0$, and the scaling factor is chosen such that dvol $\in \Lambda^{7} V^{*}$ is the volume form associated to the inner product and orientation. Conversely, Theorem 1.1 asserts that every cross product (1.1) on $V$ uniquely determines a nondegenerate 3 -form $\phi$ via (1.4) and (2.1). It is called the associative calibration [3].

Now let $\phi \in \Lambda^{3} V^{*}$ be a nondegenerate 3-form and denote by

$$
*_{\phi}: \Lambda^{k} V^{*} \rightarrow \Lambda^{7-k} V^{*}
$$

the Hodge $*$-operator associated to the inner product and orientation determined by $\phi$. Then the volume form associated to the inner product and orientation determined by $\phi$ is given by

$$
\begin{equation*}
\rho(\phi):=\operatorname{dvol}_{\phi}=\frac{1}{7}\left(*_{\phi} \phi\right) \wedge \phi \tag{2.3}
\end{equation*}
$$

Thus $\rho$ defines a map, equivariant under the action of the general linear group, from the space $\mathcal{P} \subset \Lambda^{3} V^{*}$ of nondegenerate 3 -forms to the space $\mathcal{V} \subset \Lambda^{7} V^{*}$ of volume forms.

Theorem 2.1. The derivative of the map $\rho: \mathcal{P} \rightarrow \mathcal{V}$ in (2.3) at an element $\phi \in \mathcal{P}$ in the direction $\widehat{\phi} \in T_{\phi} \mathcal{P}=\Lambda^{3} V^{*}$ is given by

$$
\begin{equation*}
d \rho(\phi) \widehat{\phi}:=\frac{1}{3}\left(*_{\phi} \phi\right) \wedge \widehat{\phi} \tag{2.4}
\end{equation*}
$$

Proof. Fix an associative calibration $\phi \in \mathcal{P}$ and denote by $\psi:=*_{\phi} \phi \in \Lambda^{4} V^{*}$ the corresponding coassociative calibration. Then there is a natural splitting

$$
\Lambda^{3} V^{*}=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}
$$

where $\Lambda_{1}^{3} \subset \Lambda^{3} V^{*}$ is the 1-dimensional subspace spanned by $\phi$ and the 7dimensional subspace $\Lambda_{7}^{3}$ and the 27 -dimensional subspace $\Lambda_{27}^{3}$ are given by

$$
\Lambda_{7}^{3}:=\{\iota(u) \psi \mid u \in V\}, \quad \Lambda_{27}^{3}:=\left\{\omega \in \Lambda^{3} V^{*} \mid \phi \wedge \omega=0, \psi \wedge \omega=0\right\} .
$$

This splitting is orthogonal for the inner product determined by $\phi$ and

$$
\omega \in \Lambda_{7}^{3} \oplus \Lambda_{27}^{3} \quad \Longleftrightarrow \quad \omega \wedge \psi=0
$$

(see [7, Theorem 8.5]). Hence $\omega \wedge \psi=\pi_{1}(\omega) \wedge \psi$ for all $\phi \in \mathcal{P}$ and $\omega \in \Lambda^{3} V^{*}$. For $k=1,7,27$ denote by $\pi_{k}: \Lambda^{3} V^{*} \rightarrow \Lambda_{k}^{3}$ the $\phi$-orthogonal projection. Then the derivative of the map

$$
\mathcal{P} \rightarrow \Lambda^{4} V^{*}: \phi \mapsto \Theta(\phi):=*_{\phi} \phi
$$

at $\phi \in \mathcal{P}$ in the direction $\widehat{\phi} \in T_{\phi} \mathcal{P}=\Lambda^{3} V^{*}$ is given by

$$
\begin{equation*}
d \Theta(\phi) \widehat{\phi}=*_{\phi}\left(\frac{4}{3} \pi_{1}(\widehat{\phi})+\pi_{7}(\widehat{\phi})+\pi_{27}(\widehat{\phi})\right) \tag{2.5}
\end{equation*}
$$

(see [2] and [7, Theorem 8.18]).

Since $7 \rho(\phi)=\phi \wedge \Theta(\phi)$, it follows from (2.5) that

$$
\begin{aligned}
7 d \rho(\phi) \widehat{\phi} & =\widehat{\phi} \wedge \Theta(\phi)+\phi \wedge d \Theta(\phi) \widehat{\phi} \\
& =\widehat{\phi} \wedge *_{\phi} \phi+\phi \wedge *_{\phi}\left(\frac{4}{3} \pi_{1}(\widehat{\phi})+\pi_{7}(\widehat{\phi})+\pi_{27}(\widehat{\phi})\right) \\
& =\widehat{\phi} \wedge *_{\phi} \phi+\left(\frac{4}{3} \pi_{1}(\widehat{\phi})+\pi_{7}(\widehat{\phi})+\pi_{27}(\widehat{\phi})\right) \wedge *_{\phi} \phi \\
& =\widehat{\phi} \wedge \psi+\left(\frac{4}{3} \pi_{1}(\widehat{\phi})+\pi_{7}(\widehat{\phi})+\pi_{27}(\widehat{\phi})\right) \wedge \psi \\
& =\widehat{\phi} \wedge \psi+\frac{4}{3} \widehat{\phi} \wedge \psi \\
& =\frac{7}{3} \widehat{\phi} \wedge *_{\phi} \phi
\end{aligned}
$$

for all $\phi \in \mathcal{P}$ and all $\widehat{\phi} \in T_{\phi} \mathcal{P}=\Lambda^{3} V^{*}$. This proves Theorem 2.1.

## 3 The Hitchin functional

Let $M$ be a closed oriented 7-manifold, fix a cohomology class $a \in H^{3}(M ; \mathbb{R})$, and denote by $\mathscr{P}_{a} \subset \Omega^{3}(M)$ the space of closed 3-forms $\phi \in \Omega^{3}(M)$ that represent the cohomology class $a$ and are nondegenerate and compatible with the orientation. Then every $\phi \in \mathscr{P}_{a}$ determines a volume form

$$
\operatorname{dvol}_{\phi}=\frac{1}{7}\left(*_{\phi} \phi\right) \wedge \phi \in \Omega^{7}(M)
$$

as in (2.3) and the total volume of $M$ with respect to this volume form defines a functional $\mathscr{V}_{a}: \mathscr{P}_{a} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\mathscr{V}_{a}(\phi):=\int_{M} \operatorname{dvol}_{\phi} \tag{3.1}
\end{equation*}
$$

for $\phi \in \mathscr{P}_{a}$.
Theorem 3.1. An element $\phi \in \mathscr{P}_{a}$ is a critical point of the volume functional $\mathscr{V}_{a}$ if and only if $d *_{\phi} \phi=0$.
Proof. By Theorem 2.1 the differential of the functional $\mathscr{V}_{a}$ at $\phi \in \mathscr{P}_{a}$ in the direction of an exact 3-form $\widehat{\phi} \in T_{\phi} \mathscr{P}_{a}$ is given by

$$
d \mathscr{V}_{a}(\phi) \widehat{\phi}=\frac{1}{3} \int_{M}\left(*_{\phi} \phi\right) \wedge \widehat{\phi}
$$

This expression vanishes for every exact 3 -form $\widehat{\phi}$ if and only if the 4 -form $*_{\phi} \phi$ is closed.

A nondegenerate 3-form $\phi$ on $M$ is called a $G_{2}$-structure if it is closed and coclosed with respect to the Riemannian metric and orientation determined by $\phi$. Thus an element $\phi \in \mathscr{P}_{a}$ is a $G_{2}$-structure if and only if it is a critical point of the volume functional $\mathscr{V}_{a}$. A theorem of Fernández and Gray [2] asserts that a nondegenerate 3 -form $\phi$ is a $G_{2}$-structure if and only if the associated cross product is invariant under parallel transport for the associated Riemannian metric.

## References

[1] Simon K. Donaldson, $G_{2}$-geometry and complex variables. Plenary Lecture, Eighth Pacific Rim Conference in Mathematics, 7 August 2020. https://www.youtube.com/watch?v=vlxeNuJqv2A
[2] Marisa Fernández \& Alfred Gray, Riemannian manifolds with structure group G ${ }_{2}$. Annali di Matematica Pura ed Applicata 132 (1982), 19-45. https://link.springer.com/content/pdf/10.1007/ BF01760975.pdf
[3] Reese Harvey \& H. Blaine Lawson Jr., Calibrated geometries, Acta Mathematica 148 (1982), 47157. https://projecteuclid.org/download/pdf_1/euclid.acta/1485890157
[4] Nigel J. Hitchin, Stable forms and special metrics. Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemporary Mathematics 288, AMS, Providence, RI, 2001, pp 70-89. https://arxiv.org/abs/math/0107101
[5] Dominic D. Joyce, Compact manifolds with special holonomy. Oxford Mathematical Monographs, Oxford University Press, 2000.
[6] Spiro Karigiannis, Introduction to $G_{2}$-geometry. Lectures and Surveys on G2-Manifolds and Related Topics, Fields Institute Communications 84, Springer 2020, pp 3-50. https://cmsa.fas.harvard. edu/wp-content/uploads/2019/11/intro-G2-notes.pdf
[7] Dietmar Salamon \& Thomas Walpuski, Notes on the Octonions. Proceedings of the 23rd Gökova Geometry-Topology Conference 2016, edited by S. Akbulut, D. Auroux, and T. Önder, International Press, Somerville, Massachusetts, 2017, pp 1-85. http://arxiv.org/abs/1005.2820

