More notes on the Octonions

Dietmar Salamon ETH Zürich

15 February 2021

1 Cross products

Assume throughout that V is a finite-dimensional real vector space. A skew-symmetric bilinear map

$$V \times V \to V : (u, v) \mapsto u \times v \tag{1.1}$$

is called a **cross product** if it satisfies the following two axioms.

(A) $u \times (u \times v) \in \operatorname{span}\{u, v\}$ for all $u, v \in V$.

(B) If $u, v \in V$ are linearly independent, then so are $u, v, u \times v$.

The next observation is discussed in Donaldson's lecture [1].

Theorem 1.1. Assume $\dim(V) > 1$ and let (1.1) be a skew-symmetric bilinear map. Then the map (1.1) satisfies (A) and (B) if and only if there exists an inner product on V that satisfies the equations

$$\langle u \times v, u \rangle = \langle u \times v, v \rangle = 0,$$
 (1.2)

$$|u \times v|^{2} = |u|^{2}|v|^{2} - \langle u, v \rangle^{2}$$
(1.3)

for all $u, v \in V$. Morover, if such an inner product exists, it is uniquely determined by the cross product and is given by the formula

1

$$\langle u, v \rangle = \frac{\operatorname{trace}\left(A_u A_v\right)}{1 - \dim(V)}, \qquad A_u v := u \times v,$$

$$(1.4)$$

for $u, v \in V$.

Proof. See page 2.

Remark 1.2. (i) It follows from Theorem 1.1 and [7, Theorem 2.5] that V admits a cross product if and only if its dimension is either 0, 1, 3, or 7.

(ii) The formula $x \times y := (x_1y_2 - x_2y_1)e_2$ defines a skew-symmetric bilinear map on \mathbb{R}^2 that satisfies (A) and (1.3), but not (B) and (1.2).

(iii) The formula $x \times y := z_1e_1 + z_2e_2 + (z_3 + z_2)e_3$ with $z_1 := x_2y_3 - x_3y_2$, $z_2 := x_3y_1 - x_1y_3$, $z_3 := x_1y_2 - x_2y_1$, defines a skew-symmetric bilinear map on \mathbb{R}^3 that satisfies (B) but not (A).

(iv) Let $(u, v) \mapsto u \times v$ be the skew-symmetric bilinear map on \mathbb{R}^4 defined by $e_0 \times e_i = e_i$ for $i \neq 0$ and $e_i \times e_j = e_k$ for each cyclic permutation i, j, kof 1, 2, 3. This map satisfies (1.3) but not (A), (B), and (1.2).

Proof of Theorem 1.1. The proof has five steps.

Step 1. Let $\langle \cdot, \cdot \rangle$ be an inner product that satisfies (1.2) and (1.3). Then

$$u \times (u \times v) = \langle u, v \rangle u - |u|^2 v \quad \text{for all } u, v \in V, \tag{1.5}$$

the map (1.1) is a cross product, and the inner product is given by (1.4).

Equation (1.5) was established in [7, Lemma 2.9]. It implies that (1.1) satisfies (A) and (B) and that $\operatorname{trace}(A_u^2) = (1 - \dim(V))|u|^2$ for all $u \in V$. This proves Step 1. Throughout the remainder of the proof we assume that our skew-symmetric bilinear map (1.1) is a cross product.

Step 2. There exists a map $q: V \to \mathbb{R}$ and a map $V \to V^*: u \mapsto \Lambda_u$ such that $q(0) = 0, \Lambda_0 = 0, q(u) > 0$ for $0 \neq u \in V$, and for all $u, v \in V$

$$u \times (u \times v) = \Lambda_u(v)u - q(u)v.$$
(1.6)

Fix a nonzero vector $u \in V$. Since $A_u u = 0$ by skew-symmetry, the linear map $A_u : V \to V$ descends to an endomorphism $\overline{A}_u : \overline{V}_u \to \overline{V}_u$ of the quotient space $\overline{V}_u := V/\mathbb{R}u$. Let $\pi_u : V \to \overline{V}_u$ denote the canonical projection and fix a vector $v \in V$ such that u and v are linearly independent. Then by (A) there exists a real number q(u, v) such that $A_u A_u v \in -q(u, v)v + \mathbb{R}u$. Hence the vector $0 \neq \overline{v} := \pi_u(v) \in \overline{V}_u$ satisfies $\overline{A}_u \overline{A}_u \overline{v} = -q(u, v)\overline{v}$ and so each nonzero vector in \overline{V}_u is an eigenvector of $\overline{A}_u \overline{A}_u$. Thus q(u) := q(u, v)is independent of v and $A_u A_u v + q(u)v \in \mathbb{R}u$ for every $v \in V$. Hence there exists a linear functional $\Lambda_u : V \to \mathbb{R}$ such that $A_u A_u v + q(u)v = \Lambda_u(v)u$ for all $v \in V$. Since the bases $u, v, A_u v$ and $u, A_u v, A_u A_u v$ induce the same orientation on the 3-dimensional subspace $\Lambda := \operatorname{span}\{u, v, A_u v\}$ whenever u and vare linearly independent, it follows that q(u) > 0. This proves Step 2. **Step 3.** Let $q: V \to \mathbb{R}$ and $V \to V^*: u \mapsto \Lambda_u$ be as in Step 2. Then the formula (1.4) defines an inner product on V and, for all $u, v \in V$,

$$|u|^{2} = \langle u, u \rangle = q(u), \qquad u \times (u \times v) = \Lambda_{u}(v)u - |u|^{2}v, \qquad (1.7)$$

$$|u \times v|^2 = |u|^2 |v|^2 - \Lambda_u(v)^2, \qquad \Lambda_u(v) = \Lambda_v(u), \qquad \Lambda_{u \times v}(u) = 0.$$
 (1.8)

Fix a nonzero vector $u \in V$. Since $A_u u = 0$, it follows directly from (1.6) that $\operatorname{trace}(A_u A_u) = (1 - \dim(V))q(u)$. Hence the bilinear map

$$V \times V \to \mathbb{R} : (u, v) \mapsto \langle u, v \rangle := \frac{\operatorname{trace}(A_u A_v)}{1 - \operatorname{dim}(V)}$$

satisfies $\langle u, u \rangle = q(u) > 0$ for every nonzero vector $u \in V$ and therefore is an inner product satisfying (1.7). Use (1.7) repeatedly to obtain

$$\begin{split} \Lambda_{u \times v}(u)u \times v &= |u \times v|^2 u + (u \times v) \times ((u \times v) \times u) \\ &= |u \times v|^2 u + (u \times v) \times (|u|^2 v - \Lambda_u(v)u) \\ &= |u \times v|^2 u + |u|^2 (v \times (v \times u)) + \Lambda_u(v) (u \times (u \times v)) \\ &= |u \times v|^2 u + |u|^2 (\Lambda_v(u)v - |v|^2 u) + \Lambda_u(v) (\Lambda_u(v)u - |u|^2 v) \\ &= (|u \times v|^2 + \Lambda_u(v)^2 - |u|^2 |v|^2) u + |u|^2 (\Lambda_v(u) - \Lambda_u(v)) v. \end{split}$$

If u, v are linearly independent, this implies (1.8) by (B). Next observe that $\Lambda_{tu} = t\Lambda_u$ and $\Lambda_u(u) = |u|^2$ for $u \in V$ and $t \in \mathbb{R}$ by (1.7). Thus (1.8) continues to hold when u, v are linearly dependent, and this proves Step 3.

Step 4. Let $V \to V^* : u \mapsto \Lambda_u$ be as in Step 2 and let $\langle \cdot, \cdot \rangle$ be the inner product in Step 3. Then $\Lambda_u(v) = \langle u, v \rangle$ for all $u, v \in V$.

When u, v are linearly dependent, this follows directly from (1.6) and (1.7). Thus assume that u, v are linearly independent. Then $\Lambda := \operatorname{span}\{u, v, u \times v\}$ is a three-dimensional subspace of V by (B) and is invariant under the cross product by (A). Define the linear maps $A, B : \Lambda \to \Lambda$ by

$$Aw := u \times w, \qquad Bw := v \times w$$

for $w \in \Lambda$ and abbreviate $\lambda := \Lambda_u(v) = \Lambda_v(u)$ (see (1.8) in Step 3). Then

$$AB(u \times v) = BA(u \times v) = -\lambda(u \times v),$$

$$ABw + BAw + 2\langle u, v \rangle w \in \operatorname{span}\{u, v\}$$
(1.9)

for all $w \in \Lambda$ by (1.7). Take $w = u \times v$ and use (B) to obtain $\lambda = \langle u, v \rangle$. This proves Step 4.

Step 5. The inner product in Step 3 satisfies (1.2) and (1.3).

By Step 4 and (1.7) the inner product in Step 3 satisfies (1.5), i.e.

$$u \times (u \times v) = \langle u, v \rangle u - |u|^2 u$$

for all $u, v \in V$. This implies

$$\langle u, u \times (u \times v) \rangle = 0 \tag{1.10}$$

for all $u, v \in V$. Now fix a pair of vectors $u, v \in V$ such that $u \neq 0$ and define

$$w:=-\frac{u\times v}{|u|^2}$$

Then

$$u\times w = -\frac{u\times (u\times v)}{|u|^2} = v - \frac{\langle u,v\rangle}{|u|^2}u$$

by (1.5), hence $u \times (u \times w) = u \times v$, and hence $\langle u, u \times v \rangle = 0$ by (1.10). This shows that the inner product in Step 3 satisfies (1.2). That it also satisfies (1.3) follows from Step 4 and the identity $|u \times v|^2 = |u|^2 |v|^2 - \Lambda_u(v)^2$ in (1.8) in Step 3. This proves Step 5 and Theorem 1.1.

2 Volume forms

Let V be a seven-dimensional real vector space. Recall from [7, Section 3] that a 3-form $\phi \in \Lambda^3 V^*$ is called **nondegenerate** if, for every pair of linearly independent vectors $u, v \in V$ there exists a third vector $w \in V$ such that $\phi(u, v, w) \neq 0$. Call an inner product $\langle \cdot, \cdot \rangle$ compatible with a 3-form ϕ if the skew-symmetric bilinear map $V \times V \to V : (u, v) \mapsto u \times v$, defined by

$$\langle u \times v, w \rangle = \phi(u, v, w) \tag{2.1}$$

for $u, v, w \in V$, is a cross product that satisfies (1.2) and (1.3). Then [7, Theorem 3.2] asserts that a 3-form ϕ is nondegenerate if and only if it admits a compatible inner product, that this inner product is uniquely determined by ϕ in the nondegenerate case, and that it is characterized by the equation

$$6\langle u, v \rangle dvol = \iota(u)\phi \land \iota(v)\phi \land \phi \quad \text{for } u, v \in V,$$
(2.2)

where the orientation is chosen such that $\langle u, u \rangle > 0$ for $u \neq 0$, and the scaling factor is chosen such that $dvol \in \Lambda^7 V^*$ is the volume form associated to the inner product and orientation. Conversely, Theorem 1.1 asserts that every cross product (1.1) on V uniquely determines a nondegenerate 3-form ϕ via (1.4) and (2.1). It is called the **associative calibration** [3]. Now let $\phi \in \Lambda^3 V^*$ be a nondegenerate 3-form and denote by

$$*_{\phi}: \Lambda^k V^* \to \Lambda^{7-k} V^*$$

the Hodge *-operator associated to the inner product and orientation determined by ϕ . Then the volume form associated to the inner product and orientation determined by ϕ is given by

$$\rho(\phi) := \operatorname{dvol}_{\phi} = \frac{1}{7} (*_{\phi} \phi) \wedge \phi$$
(2.3)

Thus ρ defines a map, equivariant under the action of the general linear group, from the space $\mathcal{P} \subset \Lambda^3 V^*$ of nondegenerate 3-forms to the space $\mathcal{V} \subset \Lambda^7 V^*$ of volume forms.

Theorem 2.1. The derivative of the map $\rho : \mathcal{P} \to \mathcal{V}$ in (2.3) at an element $\phi \in \mathcal{P}$ in the direction $\widehat{\phi} \in T_{\phi}\mathcal{P} = \Lambda^{3}V^{*}$ is given by

$$d\rho(\phi)\widehat{\phi} := \frac{1}{3} (*_{\phi}\phi) \wedge \widehat{\phi}$$
(2.4)

Proof. Fix an associative calibration $\phi \in \mathcal{P}$ and denote by $\psi := *_{\phi} \phi \in \Lambda^4 V^*$ the corresponding coassociative calibration. Then there is a natural splitting

$$\Lambda^3 V^* = \Lambda^3_1 \oplus \Lambda^3_7 \oplus \Lambda^3_{27},$$

where $\Lambda_1^3 \subset \Lambda^3 V^*$ is the 1-dimensional subspace spanned by ϕ and the 7-dimensional subspace Λ_7^3 and the 27-dimensional subspace Λ_{27}^3 are given by

$$\Lambda_7^3 := \left\{ \iota(u)\psi \, \big| \, u \in V \right\}, \qquad \Lambda_{27}^3 := \left\{ \omega \in \Lambda^3 V^* \, \big| \, \phi \wedge \omega = 0, \, \psi \wedge \omega = 0 \right\}.$$

This splitting is orthogonal for the inner product determined by ϕ and

$$\omega \in \Lambda_7^3 \oplus \Lambda_{27}^3 \qquad \Longleftrightarrow \qquad \omega \wedge \psi = 0$$

(see [7, Theorem 8.5]). Hence $\omega \wedge \psi = \pi_1(\omega) \wedge \psi$ for all $\phi \in \mathcal{P}$ and $\omega \in \Lambda^3 V^*$. For k = 1, 7, 27 denote by $\pi_k : \Lambda^3 V^* \to \Lambda_k^3$ the ϕ -orthogonal projection. Then the derivative of the map

$$\mathcal{P} \to \Lambda^4 V^* : \phi \mapsto \Theta(\phi) := *_\phi \phi$$

at $\phi \in \mathcal{P}$ in the direction $\widehat{\phi} \in T_{\phi}\mathcal{P} = \Lambda^3 V^*$ is given by

$$d\Theta(\phi)\widehat{\phi} = *_{\phi} \left(\frac{4}{3}\pi_1(\widehat{\phi}) + \pi_7(\widehat{\phi}) + \pi_{27}(\widehat{\phi}) \right)$$
(2.5)

(see [2] and [7, Theorem 8.18]).

Since $7\rho(\phi) = \phi \wedge \Theta(\phi)$, it follows from (2.5) that

$$7d\rho(\phi)\widehat{\phi} = \widehat{\phi} \wedge \Theta(\phi) + \phi \wedge d\Theta(\phi)\widehat{\phi}$$

$$= \widehat{\phi} \wedge *_{\phi}\phi + \phi \wedge *_{\phi} \left(\frac{4}{3}\pi_{1}(\widehat{\phi}) + \pi_{7}(\widehat{\phi}) + \pi_{27}(\widehat{\phi})\right)$$

$$= \widehat{\phi} \wedge *_{\phi}\phi + \left(\frac{4}{3}\pi_{1}(\widehat{\phi}) + \pi_{7}(\widehat{\phi}) + \pi_{27}(\widehat{\phi})\right) \wedge *_{\phi}\phi$$

$$= \widehat{\phi} \wedge \psi + \left(\frac{4}{3}\pi_{1}(\widehat{\phi}) + \pi_{7}(\widehat{\phi}) + \pi_{27}(\widehat{\phi})\right) \wedge \psi$$

$$= \widehat{\phi} \wedge \psi + \frac{4}{3}\widehat{\phi} \wedge \psi$$

$$= \frac{7}{3}\widehat{\phi} \wedge *_{\phi}\phi$$

for all $\phi \in \mathcal{P}$ and all $\hat{\phi} \in T_{\phi}\mathcal{P} = \Lambda^3 V^*$. This proves Theorem 2.1.

3 The Hitchin functional

Let M be a closed oriented 7-manifold, fix a cohomology class $a \in H^3(M; \mathbb{R})$, and denote by $\mathscr{P}_a \subset \Omega^3(M)$ the space of closed 3-forms $\phi \in \Omega^3(M)$ that represent the cohomology class a and are nondegenerate and compatible with the orientation. Then every $\phi \in \mathscr{P}_a$ determines a volume form

$$\operatorname{dvol}_{\phi} = \frac{1}{7}(*_{\phi}\phi) \land \phi \in \Omega^{7}(M)$$

as in (2.3) and the total volume of M with respect to this volume form defines a functional $\mathscr{V}_a: \mathscr{P}_a \to \mathbb{R}$ given by

$$\mathscr{V}_{a}(\phi) := \int_{M} \operatorname{dvol}_{\phi} \tag{3.1}$$

for $\phi \in \mathscr{P}_a$.

Theorem 3.1. An element $\phi \in \mathscr{P}_a$ is a critical point of the volume functional \mathscr{V}_a if and only if $d*_{\phi}\phi = 0$.

Proof. By Theorem 2.1 the differential of the functional \mathscr{V}_a at $\phi \in \mathscr{P}_a$ in the direction of an exact 3-form $\widehat{\phi} \in T_{\phi} \mathscr{P}_a$ is given by

$$d\mathscr{V}_a(\phi)\widehat{\phi} = \frac{1}{3}\int_M (*_\phi \phi) \wedge \widehat{\phi}$$

This expression vanishes for every exact 3-form $\hat{\phi}$ if and only if the 4-form $*_{\phi}\phi$ is closed.

A nondegenerate 3-form ϕ on M is called a G_2 -structure if it is closed and coclosed with respect to the Riemannian metric and orientation determined by ϕ . Thus an element $\phi \in \mathscr{P}_a$ is a G_2 -structure if and only if it is a critical point of the volume functional \mathscr{V}_a . A theorem of Fernández and Gray [2] asserts that a nondegenerate 3-form ϕ is a G_2 -structure if and only if the associated cross product is invariant under parallel transport for the associated Riemannian metric.

References

- Simon K. Donaldson, G₂-geometry and complex variables. Plenary Lecture, Eighth Pacific Rim Conference in Mathematics, 7 August 2020. https://www.youtube.com/watch?v=vlxeNuJqv2A
- Marisa Fernández & Alfred Gray, Riemannian manifolds with structure group G₂. Annali di Matematica Pura ed Applicata 132 (1982), 19-45. https://link.springer.com/content/pdf/10.1007/BF01760975.pdf
- Reese Harvey & H. Blaine Lawson Jr., Calibrated geometries, Acta Mathematica 148 (1982), 47– 157. https://projecteuclid.org/download/pdf_1/euclid.acta/1485890157
- [4] Nigel J. Hitchin, Stable forms and special metrics. Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), Contemporary Mathematics 288, AMS, Providence, RI, 2001, pp 70-89. https://arxiv.org/abs/math/0107101
- [5] Dominic D. Joyce, Compact manifolds with special holonomy. Oxford Mathematical Monographs, Oxford University Press, 2000.
- Spiro Karigiannis, Introduction to G₂-geometry. Lectures and Surveys on G2-Manifolds and Related Topics, Fields Institute Communications 84, Springer 2020, pp 3-50. https://cmsa.fas.harvard. edu/wp-content/uploads/2019/11/intro-G2-notes.pdf
- [7] Dietmar Salamon & Thomas Walpuski, Notes on the Octonions. Proceedings of the 23rd Gökova Geometry-Topology Conference 2016, edited by S. Akbulut, D. Auroux, and T. Önder, International Press, Somerville, Massachusetts, 2017, pp 1-85. http://arxiv.org/abs/1005.2820