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1 Cross products

Assume throughout that V is a finite-dimensional real vector space. A skew-
symmetric bilinear map

V × V → V : (u, v) 7→ u× v (1.1)

is called a cross product if it satisfies the following two axioms.

(A) u× (u× v) ∈ span{u, v} for all u, v ∈ V .

(B) If u, v ∈ V are linearly independent, then so are u, v, u× v.

The next observation is discussed in Donaldson’s lecture [1].

Theorem 1.1. Assume dim(V ) > 1 and let (1.1) be a skew-symmetric bilin-
ear map. Then the map (1.1) satisfies (A) and (B) if and only if there exists
an inner product on V that satisfies the equations

〈u× v, u〉 = 〈u× v, v〉 = 0, (1.2)

|u× v|2 = |u|2|v|2 − 〈u, v〉2 (1.3)

for all u, v ∈ V . Morover, if such an inner product exists, it is uniquely
determined by the cross product and is given by the formula

〈u, v〉 =
trace (AuAv)

1− dim(V )
, Auv := u× v, (1.4)

for u, v ∈ V .

Proof. See page 2.
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Remark 1.2. (i) It follows from Theorem 1.1 and [7, Theorem 2.5] that V
admits a cross product if and only if its dimension is either 0, 1, 3, or 7.

(ii) The formula x× y := (x1y2 − x2y1)e2 defines a skew-symmetric bilinear
map on R2 that satisfies (A) and (1.3), but not (B) and (1.2).

(iii) The formula x× y := z1e1 + z2e2 + (z3 + z2)e3 with z1 := x2y3 − x3y2,
z2 := x3y1 − x1y3, z3 := x1y2 − x2y1, defines a skew-symmetric bilinear map
on R3 that satisfies (B) but not (A).

(iv) Let (u, v) 7→ u× v be the skew-symmetric bilinear map on R4 defined
by e0 × ei = ei for i 6= 0 and ei × ej = ek for each cyclic permutation i, j, k
of 1, 2, 3. This map satisfies (1.3) but not (A), (B), and (1.2).

Proof of Theorem 1.1. The proof has five steps.

Step 1. Let 〈·, ·〉 be an inner product that satisfies (1.2) and (1.3). Then

u× (u× v) = 〈u, v〉u− |u|2v for all u, v ∈ V, (1.5)

the map (1.1) is a cross product, and the inner product is given by (1.4).

Equation (1.5) was established in [7, Lemma 2.9]. It implies that (1.1) satis-
fies (A) and (B) and that trace(A2

u) = (1− dim(V ))|u|2 for all u ∈ V . This
proves Step 1. Throughout the remainder of the proof we assume that our
skew-symmetric bilinear map (1.1) is a cross product.

Step 2. There exists a map q : V → R and a map V → V ∗ : u 7→ Λu such
that q(0) = 0, Λ0 = 0, q(u) > 0 for 0 6= u ∈ V , and for all u, v ∈ V

u× (u× v) = Λu(v)u− q(u)v. (1.6)

Fix a nonzero vector u ∈ V . Since Auu = 0 by skew-symmetry, the linear
map Au : V → V descends to an endomorphism Au : V u → V u of the quo-
tient space V u := V/Ru. Let πu : V → V u denote the canonical projection
and fix a vector v ∈ V such that u and v are linearly independent. Then
by (A) there exists a real number q(u, v) such that AuAuv ∈ −q(u, v)v + Ru.
Hence the vector 0 6= v := πu(v) ∈ V u satisfies AuAuv = −q(u, v)v and so
each nonzero vector in V u is an eigenvector of AuAu. Thus q(u) := q(u, v)
is independent of v and AuAuv + q(u)v ∈ Ru for every v ∈ V . Hence there
exists a linear functional Λu : V → R such that AuAuv + q(u)v = Λu(v)u for
all v ∈ V . Since the bases u, v, Auv and u,Auv, AuAuv induce the same orien-
tation on the 3-dimensional subspace Λ := span{u, v, Auv} whenever u and v
are linearly independent, it follows that q(u) > 0. This proves Step 2.
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Step 3. Let q : V → R and V → V ∗ : u 7→ Λu be as in Step 2. Then the
formula (1.4) defines an inner product on V and, for all u, v ∈ V ,

|u|2 = 〈u, u〉 = q(u), u× (u× v) = Λu(v)u− |u|2v, (1.7)

|u× v|2 = |u|2|v|2 − Λu(v)2, Λu(v) = Λv(u), Λu×v(u) = 0. (1.8)

Fix a nonzero vector u ∈ V . Since Auu = 0, it follows directly from (1.6)
that trace(AuAu) = (1− dim(V ))q(u). Hence the bilinear map

V × V → R : (u, v) 7→ 〈u, v〉 :=
trace(AuAv)

1− dim(V )

satisfies 〈u, u〉 = q(u) > 0 for every nonzero vector u ∈ V and therefore is an
inner product satisfying (1.7). Use (1.7) repeatedly to obtain

Λu×v(u)u× v = |u× v|2u+ (u× v)×
(
(u× v)× u

)
= |u× v|2u+ (u× v)×

(
|u|2v − Λu(v)u

)
= |u× v|2u+ |u|2

(
v × (v × u)

)
+ Λu(v)

(
u× (u× v)

)
= |u× v|2u+ |u|2

(
Λv(u)v − |v|2u

)
+ Λu(v)

(
Λu(v)u− |u|2v

)
=
(
|u× v|2 + Λu(v)2 − |u|2|v|2

)
u+ |u|2

(
Λv(u)− Λu(v)

)
v.

If u, v are linearly independent, this implies (1.8) by (B). Next observe
that Λtu = tΛu and Λu(u) = |u|2 for u ∈ V and t ∈ R by (1.7). Thus (1.8)
continues to hold when u, v are linearly dependent, and this proves Step 3.

Step 4. Let V → V ∗ : u 7→ Λu be as in Step 2 and let 〈·, ·〉 be the inner
product in Step 3. Then Λu(v) = 〈u, v〉 for all u, v ∈ V .

When u, v are linearly dependent, this follows directly from (1.6) and (1.7).
Thus assume that u, v are linearly independent. Then Λ := span{u, v, u× v}
is a three-dimensional subspace of V by (B) and is invariant under the cross
product by (A). Define the linear maps A,B : Λ→ Λ by

Aw := u× w, Bw := v × w

for w ∈ Λ and abbreviate λ := Λu(v) = Λv(u) (see (1.8) in Step 3). Then

AB(u× v) = BA(u× v) = −λ(u× v),

ABw +BAw + 2〈u, v〉w ∈ span{u, v}
(1.9)

for all w ∈ Λ by (1.7). Take w = u× v and use (B) to obtain λ = 〈u, v〉. This
proves Step 4.
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Step 5. The inner product in Step 3 satisfies (1.2) and (1.3).

By Step 4 and (1.7) the inner product in Step 3 satisfies (1.5), i.e.

u× (u× v) = 〈u, v〉u− |u|2v
for all u, v ∈ V . This implies

〈u, u× (u× v)〉 = 0 (1.10)

for all u, v ∈ V . Now fix a pair of vectors u, v ∈ V such that u 6= 0 and define

w := −u× v
|u|2

.

Then

u× w = −u× (u× v)

|u|2
= v − 〈u, v〉

|u|2
u

by (1.5), hence u × (u × w) = u × v, and hence 〈u, u× v〉 = 0 by (1.10).
This shows that the inner product in Step 3 satisfies (1.2). That it also
satisfies (1.3) follows from Step 4 and the identity |u× v|2 = |u|2|v|2 − Λu(v)2

in (1.8) in Step 3. This proves Step 5 and Theorem 1.1.

2 Volume forms

Let V be a seven-dimensional real vector space. Recall from [7, Section 3]
that a 3-form φ ∈ Λ3V ∗ is called nondegenerate if, for every pair of lin-
early independent vectors u, v ∈ V there exists a third vector w ∈ V such
that φ(u, v, w) 6= 0. Call an inner product 〈·, ·〉 compatible with a 3-form φ
if the skew-symmetric bilinear map V × V → V : (u, v) 7→ u× v, defined by

〈u× v, w〉 = φ(u, v, w) (2.1)

for u, v, w ∈ V , is a cross product that satisfies (1.2) and (1.3). Then [7,
Theorem 3.2] asserts that a 3-form φ is nondegenerate if and only if it admits
a compatible inner product, that this inner product is uniquely determined
by φ in the nondegenerate case, and that it is characterized by the equation

6〈u, v〉dvol = ι(u)φ ∧ ι(v)φ ∧ φ for u, v ∈ V, (2.2)

where the orientation is chosen such that 〈u, u〉 > 0 for u 6= 0, and the scaling
factor is chosen such that dvol ∈ Λ7V ∗ is the volume form associated to
the inner product and orientation. Conversely, Theorem 1.1 asserts that
every cross product (1.1) on V uniquely determines a nondegenerate 3-form φ
via (1.4) and (2.1). It is called the associative calibration [3].
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Now let φ ∈ Λ3V ∗ be a nondegenerate 3-form and denote by

∗φ : ΛkV ∗ → Λ7−kV ∗

the Hodge ∗-operator associated to the inner product and orientation de-
termined by φ. Then the volume form associated to the inner product and
orientation determined by φ is given by

ρ(φ) := dvolφ =
1

7
(∗φφ) ∧ φ (2.3)

Thus ρ defines a map, equivariant under the action of the general linear group,
from the space P ⊂ Λ3V ∗ of nondegenerate 3-forms to the space V ⊂ Λ7V ∗

of volume forms.

Theorem 2.1. The derivative of the map ρ : P → V in (2.3) at an ele-

ment φ ∈ P in the direction φ̂ ∈ TφP = Λ3V ∗ is given by

dρ(φ)φ̂ :=
1

3

(
∗φφ
)
∧ φ̂ (2.4)

Proof. Fix an associative calibration φ ∈ P and denote by ψ := ∗φφ ∈ Λ4V ∗

the corresponding coassociative calibration. Then there is a natural splitting

Λ3V ∗ = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27,

where Λ3
1 ⊂ Λ3V ∗ is the 1-dimensional subspace spanned by φ and the 7-

dimensional subspace Λ3
7 and the 27-dimensional subspace Λ3

27 are given by

Λ3
7 :=

{
ι(u)ψ

∣∣u ∈ V } , Λ3
27 :=

{
ω ∈ Λ3V ∗ ∣∣φ ∧ ω = 0, ψ ∧ ω = 0

}
.

This splitting is orthogonal for the inner product determined by φ and

ω ∈ Λ3
7 ⊕ Λ3

27 ⇐⇒ ω ∧ ψ = 0

(see [7, Theorem 8.5]). Hence ω∧ψ = π1(ω)∧ψ for all φ ∈ P and ω ∈ Λ3V ∗.
For k = 1, 7, 27 denote by πk : Λ3V ∗ → Λ3

k the φ-orthogonal projection.
Then the derivative of the map

P → Λ4V ∗ : φ 7→ Θ(φ) := ∗φφ

at φ ∈ P in the direction φ̂ ∈ TφP = Λ3V ∗ is given by

dΘ(φ)φ̂ = ∗φ
(

4
3
π1(φ̂) + π7(φ̂) + π27(φ̂)

)
(2.5)

(see [2] and [7, Theorem 8.18]).
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Since 7ρ(φ) = φ ∧Θ(φ), it follows from (2.5) that

7dρ(φ)φ̂ = φ̂ ∧Θ(φ) + φ ∧ dΘ(φ)φ̂

= φ̂ ∧ ∗φφ+ φ ∧ ∗φ
(

4
3
π1(φ̂) + π7(φ̂) + π27(φ̂)

)
= φ̂ ∧ ∗φφ+

(
4
3
π1(φ̂) + π7(φ̂) + π27(φ̂)

)
∧ ∗φφ

= φ̂ ∧ ψ +
(

4
3
π1(φ̂) + π7(φ̂) + π27(φ̂)

)
∧ ψ

= φ̂ ∧ ψ + 4
3
φ̂ ∧ ψ

=
7

3
φ̂ ∧ ∗φφ

for all φ ∈ P and all φ̂ ∈ TφP = Λ3V ∗. This proves Theorem 2.1.

3 The Hitchin functional

Let M be a closed oriented 7-manifold, fix a cohomology class a ∈ H3(M ;R),
and denote by Pa ⊂ Ω3(M) the space of closed 3-forms φ ∈ Ω3(M) that
represent the cohomology class a and are nondegenerate and compatible with
the orientation. Then every φ ∈Pa determines a volume form

dvolφ =
1

7
(∗φφ) ∧ φ ∈ Ω7(M)

as in (2.3) and the total volume of M with respect to this volume form defines
a functional Va : Pa → R given by

Va(φ) :=

∫
M

dvolφ (3.1)

for φ ∈Pa.

Theorem 3.1. An element φ ∈Pa is a critical point of the volume func-
tional Va if and only if d∗φφ = 0.

Proof. By Theorem 2.1 the differential of the functional Va at φ ∈Pa in the
direction of an exact 3-form φ̂ ∈ TφPa is given by

dVa(φ)φ̂ =
1

3

∫
M

(∗φφ) ∧ φ̂.

This expression vanishes for every exact 3-form φ̂ if and only if the 4-form ∗φφ
is closed.
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A nondegenerate 3-form φ on M is called a G2-structure if it is closed
and coclosed with respect to the Riemannian metric and orientation deter-
mined by φ. Thus an element φ ∈Pa is a G2-structure if and only if it is
a critical point of the volume functional Va. A theorem of Fernández and
Gray [2] asserts that a nondegenerate 3-form φ is a G2-structure if and only
if the associated cross product is invariant under parallel transport for the
associated Riemannian metric.
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