Removable singularities and a vanishing theorem for Seiberg-Witten invariants

> Dietmar Salamon^{*} University of Warwick

> > December 1995

1 Introduction

This is an expository paper. The goal is to give a proof of the following vanishing theorem for the Seiberg-Witten invariants of connected sums of smooth 4-manifolds.

Theorem 1.1 Suppose that X is a compact oriented smooth 4-manifold diffeomorphic to a connected sum $X_1 \# X_2$ where

$$b^+(X_1) \ge 1, \qquad b^+(X_2) \ge 1,$$

and $b^+(X) - b_1(X)$ is odd. Then the Seiberg-Witten invariants of X are all zero.

This result is the Seiberg-Witten analogue of Donaldson's original theorem about the vanishing of the instanton invariants [2] for connected sums. An outline of the proof of Theorem 1.1 was given by Donaldson in [1]. The key ingredient of the proof is a removable singularity theorem for the Seiberg-Witten equations on flat Euclidean 4-space. A proof of Theorem 1.1 was also indicated by Witten in his lecture on 6 December 1994 at the Isaac Newton Institute in Cambridge. The result was used by Kotschick in his proof that (simply connected) symplectic 4-manifolds are irreducible [4].

^{*}Thanks to Mario Micallef for helpful discussions

Seiberg-Witten equations on \mathbb{R}^4

Identify \mathbb{R}^4 with the quaternions \mathbb{H} via $x = x_0 + ix_1 + jx_2 + kx_3$ and consider the standard spin^c structure $\Gamma : \mathbb{H} = T_x \mathbb{H} \to \mathbb{C}^{4 \times 4}$ given by

$$\Gamma(\xi) = \begin{pmatrix} 0 & \gamma(\xi) \\ -\gamma(\xi)^* & 0 \end{pmatrix}, \qquad \gamma(\xi) = \begin{pmatrix} \xi_0 + i\xi_1 & \xi_2 + i\xi_3 \\ -\xi_2 + i\xi_3 & \xi_0 - i\xi_1 \end{pmatrix}.$$

Thus $\gamma(e_0) = 1$, $\gamma(e_1) = I$, $\gamma(e_2) = J$, and $\gamma(e_3) = K$ with

$$I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

Given a connection 1-form $A = \sum_j A_j dx_j$ with $A_j : \mathbb{H} \to i\mathbb{R}$ and a spinor $\Phi : \mathbb{H} \to \mathbb{C}^2$ denote

$$abla_A \Phi = \sum_{j=0}^3 \nabla_j \Phi \, dx_j, \qquad \nabla_j \Phi = \frac{\partial \Phi}{\partial x_j} + A_j \Phi$$

The Seiberg-Witten equations have the form

$$D_A \Phi = 0, \quad \rho^+(F_A) = (\Phi \Phi^*)_0$$
 (1)

where $D_A = -\nabla_0 + I\nabla_1 + J\nabla_2 + K\nabla_3$ is the Dirac operator associated to the connection A, $F_A = dA = \sum_{i < j} F_{ij} dx_i \wedge dx_j$ is the curvature, and $\rho^+(F_A) \in \mathbb{C}^{2 \times 2}$ is given by

$$\rho^+(F_A) = (F_{01} + F_{23})I + (F_{02} + F_{31})J + (F_{03} + F_{12})K.$$

Moreover, $(\Phi\Phi^*)_0$ denotes the traceless part of the matrix $\Phi\Phi^* \in \mathbb{C}^{2\times 2}$ and hence the second equation in (1) is equivalent to $F_{01} + F_{23} = -2^{-1}\Phi^*I\Phi$, $F_{02} + F_{31} = -2^{-1}\Phi^*J\Phi$, and $F_{03} + F_{12} = -2^{-1}\Phi^*K\Phi$. The energy of a pair (A, Φ) on an open set $\Omega \subset \mathbb{R}^4$ is given by

$$E(A, \Phi; \Omega) = \int_{\Omega} \left(\sum_{i=0}^{3} |\nabla_i \Phi|^2 + \frac{1}{4} |\Phi|^4 + \sum_{i < j} |F_{ij}|^2 \right).$$

It is invariant under the action of the gauge group $\operatorname{Map}(\Omega, S^1)$ by $(A, \Phi) \mapsto (u^*A, u^{-1}\Phi)$ where $u^*A = u^{-1}du + A$. The proof of Theorem 1.1 relies on the following removable singularity theorem for the finite energy solutions of (1). Denote the unit ball in \mathbb{R}^4 by $B = B^4 = \{x \in \mathbb{R}^4 \mid |x| \leq 1\}$. If $\Phi = 0$ then the result reduces to Uhlenbeck's removable singularity theorem for ASD instantons in the case of the gauge group $G = S^1$ (cf. Uhlenbeck [10] and Donaldson–Kronheimer [2], pp 58–72 and 166-170).

Theorem 1.2 (Removable singularities) Let $A \in \Omega^1(B - \{0\}, i\mathbb{R})$ and $\Phi \in C^{\infty}(B - \{0\}, \mathbb{C}^2)$ satisfy (1) with

$$E(A, \Phi; B) < \infty.$$

Then there exists a gauge transformation $u: B - \{0\} \to S^1$ such that u(x) = 1 for |x| = 1 and u^*A and $u^{-1}\Phi$ extend to a smooth solution of (1) over B.

The following three fundamental identities will play a crucial role in the proof of Theorem 1.2. The first is the Weitzenböck formula

$$D_A^* D_A \Phi + \sum_{i=0}^3 \nabla_i \nabla_i \Phi = \rho^+(F_A) \Phi$$
⁽²⁾

where $D_A^* = \nabla_0 + I\nabla_1 + J\nabla_2 + K\nabla_3$. The second is the energy identity

$$E(A, \Phi; \Omega) = \int_{\Omega} \left(|D_A \Phi|^2 + \left| \rho^+(F_A) - (\Phi \Phi^*)_0 \right|^2 \right)$$

$$+ \int_{\partial \Omega} A \wedge dA + \int_{\partial \Omega} \langle \Phi, \nabla_{A,\nu} \Phi + \Gamma(\nu) D_A \Phi \rangle \operatorname{dvol}_{\partial \Omega}$$
(3)

for $A \in \Omega^1(\mathbb{R}^4, i\mathbb{R})$ and $\Phi \in C^{\infty}(\mathbb{R}^4, \mathbb{C}^2)$. Here we use the norm $|T|^2 = \frac{1}{2} \operatorname{trace}(T^*T)$ for complex 2×2 -matrices so that 1, I, J, K form an orthonormal basis of $\mathbb{C}^{2 \times 2}$. Moreover, $\nu : \partial \Omega \to \mathbb{R}^4$ denotes the outward unit normal vector field, $\nabla_{A,\nu} \Phi = \sum_i \nu_i \nabla_i \Phi$, and $\Gamma(\nu) = -\nu_0 1 + \nu_1 I + \nu_2 J + \nu_3 K$. The third equation is

$$\Delta |\Phi|^2 = -2|\nabla_A \Phi|^2 - |\Phi|^4 \tag{4}$$

for solutions of (1) where $\Delta = -\sum_i \partial^2 / \partial x_i^2$. It is proved by direct computation using (2) and $\rho^+(F_A)\Phi = (\Phi\Phi^*)_0\Phi = |\Phi|^2\Phi/2$. Equation (4) was first noted by Kronheimer and Mrowka in [5] and lies at the heart of their compactness proof for the solutions of (1).

Proof of the energy identity: The proof relies on the familiar equation

$$\int_{\Omega} \left(|F_A|^2 - 2|F_A^+|^2 \right) = \int_{\Omega} F_A \wedge F_A = \int_{\partial \Omega} A \wedge dA,$$

and on the formula

$$\int_{\Omega} \left(|\nabla_A \Phi|^2 - |D_A \Phi|^2 \right) = \int_{\partial \Omega} \langle \Phi, \nabla_{A,\nu} \Phi + \Gamma(\nu) D_A \Phi \rangle - \int_{\Omega} \langle \Phi, \rho^+(F_A) \Phi \rangle.$$

This last equation follows from Stokes' theorem and (2). With $|\rho^+(F_A)|^2 = 2|F_A^+|^2$ and $\langle \Phi, \rho^+(F_A)\Phi \rangle = 2\langle \rho^+(F_A), (\Phi\Phi^*)_0 \rangle$ the rest of the proof is an easy exercise.

2 Removable singularities for 1-forms

The first step in the proof of Theorem 1.2 is the following weak removable singularity theorem for 1-forms on \mathbb{R}^n . The theorem asserts that if α is a 1-form on the punctured ball $B^n - \{0\}$ such that $d\alpha$ is of class L^2 then there exists a function $\xi : B^n - \{0\} \to \mathbb{R}$ such that $\alpha - d\xi$ is of class $W^{1,2}$ (and $d^*(\alpha - d\xi) = 0$). If n = 4 and α is anti-self-dual then it follows easily that $\alpha - d\xi$ extends to a smooth 1-form on B^4 . This is Uhlenbeck's removable singularity theorem for ASD instantons in the case $G = S^1$. Note also that this is the special case $\Phi = 0$ in Theorem 1.2. Even though this result is simply a special case of Uhlenbeck's theorem we give a proof below which is is specific to the abelian case and is considerably simpler than both Ulenbeck's original proof in [10] and the proof given by Donaldson and Kronheimer in [2]. Throughout denote by $B^n(r) = \{x \in \mathbb{R}^n \mid |x| \le r\}$ the closed ball in \mathbb{R}^n of radius r and abbreviate $B^n = B^n(1)$ and $A(r_0, r_1) = A^n(r_0, r_1) = \{x \in \mathbb{R}^n \mid r_0 \le |x| \le r_1\}$ for $r_0 < r_1$.

Proposition 2.1 (Uhlenbeck) Assume $n \ge 4$ and let $\alpha \in \Omega^1(B^n - \{0\})$ be a smooth real valued 1-form which satisfies

$$\int_{B^n} |d\alpha|^2 < \infty.$$

Then there exists a smooth function $\xi : B^n - \{0\} \to \mathbb{R}$ such that $\alpha - d\xi$ is of class $W^{1,2}$ on the (unpunctured) unit ball and satisfies

$$\int_{B^n} \left(|\nabla(\alpha - d\xi)|^2 + \frac{|\alpha - d\xi|^2}{|x|^2} \right) \le 4 \int_{B^n} |d\alpha|^2$$

as well as

$$d^*(\alpha - d\xi) = 0, \qquad \frac{\partial \xi}{\partial \nu} = \alpha(\nu).$$

Here $d\xi/\partial\nu$ denotes the normal derivative on ∂B^n and $\alpha(\nu) = \sum_i \alpha_i(x)x_i$ for |x| = 1.

Note that addition of any exact 1-form on $B^n - \{0\}$ does not alter the L^2 norm of $d\alpha$. Thus the behaviour of α near zero may be extremely singular. The proposition asserts that there exists an exact 1-form $d\xi$ on $B^n - \{0\}$ which tames the singularity at 0 in the sense that $\alpha - d\xi$ is of class $W^{1,2}$ on B^n . The function ξ will be constructed as a limit of functions $\xi_{\varepsilon} : B^n(1) - B^n(\varepsilon) \to \mathbb{R}$ which satisfy $d^*(\alpha - d\xi_{\varepsilon}) = 0$ with boundary condition $\partial \xi_{\varepsilon} / \partial \nu = \alpha(\nu)$ on $\partial(B_1 - B_{\varepsilon})$. The convergence proof relies on the following three lemmata.

Lemma 2.2 Assume $n \ge 4$. Then every smooth 1-form $\alpha \in \Omega^1(A^n(\varepsilon, 1))$ with $\alpha(\nu) = 0$ on $\partial A^n(\varepsilon, 1)$ satisfies the inequality

$$\int_{A(\varepsilon,1)} \left(|\nabla \alpha|^2 + \frac{|\alpha|^2}{|x|^2} \right) \le 4 \int_{A(\varepsilon,1)} \left(|d\alpha|^2 + |d^*\alpha|^2 \right).$$

Proof: Let $\alpha = \sum_{i} \alpha_i dx_i$ be a smooth 1-form on a domain $\Omega \subset \mathbb{R}^n$ with smooth boundary. Suppose that $\langle \alpha, \nu \rangle = \sum_{i=1}^n \alpha_i \nu_i = 0$ on $\partial \Omega$. This condition is equivalent to $*\alpha|_{\partial\Omega} = 0$. Integration by parts shows that

$$\|\nabla \alpha\|^{2} - \|d\alpha\|^{2} - \|d^{*}\alpha\|^{2} = \int_{\partial \Omega} \left\langle \alpha, \frac{\partial \alpha}{\partial \nu} \right\rangle \operatorname{dvol}_{\partial \Omega} - \int_{\partial \Omega} \alpha \wedge *d\alpha.$$

Here all norms on the left are L^2 -norms on $A(\varepsilon, 1)$. Now use the formulae $*dx_i|_{\partial\Omega} = \nu_i dvol_{\partial\Omega}$ and $dx_i \wedge *(dx_i \wedge dx_j) = -*dx_j$ for i < j to obtain

$$\int_{\partial\Omega} \alpha \wedge *d\alpha - \int_{\partial\Omega} \left\langle \alpha, \frac{\partial\alpha}{\partial\nu} \right\rangle \, \mathrm{dvol}_{\partial\Omega} = \int_{\partial\Omega} \sum_{i,j} \alpha_i \alpha_j \frac{\partial\nu_j}{\partial x_i} \, \mathrm{dvol}_{\partial\Omega}.$$

This equation uses the fact that $\sum_i \alpha_i \nu_i = 0$ on $\partial \Omega$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$ is tangent to $\partial \Omega$. In the case $\Omega = A(\varepsilon, 1)$ the last two identities combine to

$$\|\nabla \alpha\|^{2} = \|d\alpha\|^{2} + \|d^{*}\alpha\|^{2} + \frac{1}{\varepsilon} \int_{|x|=\varepsilon} |\alpha|^{2} - \int_{|x|=1} |\alpha|^{2}$$
(5)

for 1-forms on $A(\varepsilon, 1)$ which satisfy $\langle \alpha, \nu \rangle = 0$ on the boundary. Now consider the function $f(x) = x/|x|^2$ with $\operatorname{div}(f) = (n-2)/|x|^2$. Then for every smooth function $u : A(\varepsilon, 1) \to \mathbb{R}$

$$\begin{split} \frac{1}{\varepsilon} \int_{|x|=\varepsilon} |u|^2 &- \int_{|x|=1} |u|^2 &= -\int_{\partial A(\varepsilon,1)} \langle \nu, f \rangle |u|^2 \operatorname{dvol} \\ &= -\int_{A(\varepsilon,1)} \sum_{i=1}^n \frac{\partial}{\partial x_i} (f_i |u|^2) \\ &= -\int_{A(\varepsilon,1)} \sum_{i=1}^n \left(2f_i u \frac{\partial u}{\partial x_i} + |u|^2 \frac{\partial f_i}{\partial x_i} \right) \\ &\leq 2\int_{A(\varepsilon,1)} \frac{|u| |\nabla u|}{|x|} - \int_{A(\varepsilon,1)} \operatorname{div}(f) |u|^2 \\ &= 2\int_{A(\varepsilon,1)} \frac{|u| |\nabla u|}{|x|} - (n-2) \int_{A(\varepsilon,1)} \frac{|u|^2}{|x|^2} \\ &\leq \delta \int_{A(\varepsilon,1)} |\nabla u|^2 - \left(n-2 - \frac{1}{\delta}\right) \int_{A(\varepsilon,1)} \frac{|u|^2}{|x|^2}. \end{split}$$

The last inequality holds for any constant $\delta > 0$. If $n \ge 4$ we can choose $1/(n-2) < \delta < 1$. For example, with $\delta = 3/4$ we obtain from (5)

$$\|\nabla \alpha\|^{2} \leq \|d\alpha\|^{2} + \|d^{*}\alpha\|^{2} + \frac{3}{4}\|\nabla \alpha\|^{2} - \left(n - 2 - \frac{4}{3}\right) \int_{A(\varepsilon, 1)} \frac{|\alpha|^{2}}{|x|^{2}}$$

This holds for all n. But for $n \ge 4$ the last term on the right is negative and the desired inequality follows.

Lemma 2.3 (Poincaré's inequality) There is a constant c = c(n) > 0 such that every smooth function $\xi : A^n(1/2, 1) \to \mathbb{R}$ with mean value zero satisfies the inequality

$$\int_{A(1/2,1)} |\xi|^2 \le c \int_{A(1/2,1)} |d\xi|^2.$$

Lemma 2.4 Every smooth function $\xi : A^n(r_0, r_1 + t) \rightarrow \mathbb{R}$ satisfies

$$\int_{A(r_0,r_1)} |\xi|^2 \le 2 \int_{A(r_0+t,r_1+t)} |\xi|^2 + \int_{A(r_0,r_1+t)} |d\xi|^2$$

for $0 < r_0 < r_1 \le 1$ and $0 \le t \le 1$.

Proof: Consider the identity

$$\xi(rx) = \xi((t+r)x) - \int_0^t \langle \nabla \xi((r+s)x), x \rangle \, ds$$

and use the Cauchy-Schwartz inequality to obtain

$$|\xi(rx)|^2 \le 2 |\xi((t+r)x)|^2 + \frac{2}{(n-2)r^{n-2}} \int_r^{r+t} s^{n-1} |d\xi(sx)|^2 \, ds$$

for |x| = 1 and $n \ge 3$. In the case n = 2 there is a similar inequality with $1/(n-2)r^{n-2}$ replaced by $\log(r+t) - \log r \le r - \log r$. Now multiply by r^{n-1} and integrate over S^{n-1} and over $r_0 \le r \le r_1$.

Lemma 2.5 Let $u: B^n - \{0\} \to \mathbb{R}$ be a smooth function such that

$$\int_{B^n} |\nabla u(x)|^2 < \infty.$$

Then u is of class $W^{1,2}$ on B^n , i.e. its distributional derivatives exist and agree with the ordinary derivatives.

Proof: For any compactly supported test function $\varphi : B^n \to \mathbb{R}$ integrate the function $u\partial_i \varphi + \varphi \partial_i u$ over the annulus $\varepsilon \leq |x| \leq 1$ and show that the boundary integral over $|x| = \varepsilon$ converges to zero as $\varepsilon \to 0$.

Proof of Proposition 2.1: For every $\varepsilon > 0$ there exists a smooth function $\xi_{\varepsilon} : A^n(\varepsilon, 1) \to \mathbb{R}$ which satisfies

$$d^*(\alpha - d\xi_{\varepsilon}) = 0, \qquad \frac{\partial \xi_{\varepsilon}}{\partial \nu} = \langle \alpha, \nu \rangle$$

where the last equation holds on the boundary. The function ξ_{ε} is only determined up to a constant which can be fixed by the normalization condition

$$\int_{1/2 \le |x| \le 1} \xi_{\varepsilon}(x) \, dx = 0.$$

It follows from Lemma 2.2 that

$$\left\|\nabla(\alpha - d\xi_{\varepsilon})\right\|_{L^{2}(A(\varepsilon, 1))}^{2} + \int_{\varepsilon \le |x| \le 1} \frac{|\alpha - d\xi_{\varepsilon}|^{2}}{|x|^{2}} \le 4 \left\|d\alpha\right\|_{L^{2}(A(\varepsilon, 1))}^{2}.$$

Fix some number $\delta > 0$. Then for $\varepsilon < \delta$

$$\begin{aligned} \|\nabla d\xi_{\varepsilon}\|_{L^{2}(A(\delta,1))} &\leq 2 \|d\alpha\|_{L^{2}} + \|\nabla \alpha\|_{L^{2}(A(\delta,1))} \\ \|d\xi_{\varepsilon}\|_{L^{2}(A(\delta,1))} &\leq 2 \|d\alpha\|_{L^{2}} + \|\alpha\|_{L^{2}(A(\delta,1))} \,. \end{aligned}$$

Now use Lemma 2.3 and the mean value condition to control the L^2 -norm of ξ_{ε} on A(1/2, 1) and Lemma 2.4 to control this norm on $A(\delta, 1/2)$. This shows that for every $\delta > 0$ there exists a constant $c_{\delta} > 0$ such that

$$\|\xi_{\varepsilon}\|_{W^{2,2}(A(\delta,1))} \le c_{\delta}$$

for every $\varepsilon \in (0, \delta)$. Now the usual diagonal sequence argument shows that there exists a sequence $\varepsilon_i \to 0$ such that ξ_{ε_i} converges strongly in $W^{1,2}(K)$ and weakly in $W^{2,2}(K)$ for every compact subset $K \subset B^n - \{0\}$. The limit function $\xi : B^n - \{0\} \to \mathbb{R}$ is of class $W^{2,2}$ on every compact subset away from 0 and satisfies $d^*(\alpha - d\xi) = 0$ and $\langle \alpha - d\xi, \nu \rangle = 0$. Hence Lemma 2.2 shows that

$$\int_{K} \left(|\nabla(\alpha - d\xi)|^2 + \frac{|\alpha - d\xi|^2}{|x|^2} \right) \le 4 \int_{B^n} |d\alpha|^2$$

for every compact subset $K \subset B^n - \{0\}$. By Lemma 2.5, $\alpha - d\xi$ is of class $W^{1,2}$ on B^n . This proves the proposition.

3 Proof of the removable singularity theorem

By Proposition 2.1 there exists a smooth function $\xi : B^4 - \{0\} \to i\mathbb{R}$ such that $A - d\xi$ is of class $W^{1,2}$ on the closed ball B^4 and $d^*(A - d\xi) = 0$. Hence we may assume from now on that $A \in W^{1,2}$ and $d^*A = 0$. Moreover, by the finite energy condition, we have $\Phi \in L^4$ and $\nabla_i \Phi \in L^2$. The Sobolev embedding theorem shows that $A \in L^4$ and hence

$$\partial_i \Phi = \nabla_i \Phi - A_i \Phi \in L^2$$

for i = 0, 1, 2, 3. By Lemma 2.5, this shows that $\Phi \in W^{1,2}$. Thus we have a solution (A, Φ) of (1) which is smooth on the punctured ball $B^4 - \{0\}$ and on the closed ball satisfies

$$A \in W^{1,2}, \quad \Phi \in W^{1,2}, \quad d^*A = 0.$$

We shall prove in three steps that there exists a constant c > 0 such that

$$E_0(A,\Phi;B_r) = \int_{|x| \le r} \left(|\nabla_A \Phi|^2 + \frac{1}{2} |\Phi|^4 \right) \le cr^2.$$
(6)

Step 1: For every $r \in (0, 1]$

$$E_0(A,\Phi;B_r) = \int_{|x|=r} \sum_i \langle \Phi, \nabla_i \Phi \rangle \frac{x_i}{r}$$

Let $\Omega \subset \mathbb{R}^4$ be any open domain with smooth boundary such that A and Φ are defined on its closure. (Thus $0 \notin \overline{\Omega}$.) Consider the energy

$$E_0(A,\Phi;\Omega) = \int_{\Omega} \left(|\nabla_A \Phi|^2 + \frac{1}{4} |\Phi|^4 + 2|F_A^+|^2 \right) = \int_{\partial\Omega} \langle \Phi, \nabla_{A,\nu} \Phi \rangle.$$

The first equality follows from the fact that $|\Phi|^4 = 8|F_A^+|^2$ for solutions of (1) and the second equality follows from the energy identity (3). Abbreviate

$$f(r) = \int_{|x|=r} \sum_{i} \langle \Phi, \nabla_{i} \Phi \rangle \frac{x_{i}}{r}$$

Then $f:(0,1] \to \mathbb{R}$ is a smooth function and the previous identity shows that

$$E_0(A, \Phi; B_r - B_{\varepsilon}) = f(r) - f(\varepsilon).$$

Hence f is monotonically increasing and bounded below. This shows that the limit $f(0) := \lim_{\varepsilon \to 0} f(\varepsilon)$ exists. Now it follows from the finiteness of the energy that $\Phi \in L^4$ and $\nabla_i \Phi \in L^2$ and hence $\langle \Phi, \nabla_i \Phi \rangle \in L^{4/3}$ for all i. Moreover, by Hölder's inequality,

$$|f(r)|^{4/3} \le (2\pi^2)^{1/3} r \int_{|x|=r} \left(|\Phi| |\nabla_A \Phi| \right)^{4/3}$$

and hence

$$\int_0^1 \frac{|f(r)|^{4/3}}{r} \, dr < \infty.$$

This shows that there must be a sequence $\varepsilon_i \to 0$ with $f(\varepsilon_i) \to 0$ and it follows that f(0) = 0. This implies $f(r) = E_0(A, \Phi; B_r)$ as claimed.

Step 2: Every smooth function $u : \mathbb{R}^4 - \{0\} \to \mathbb{R}$ satisfies the identity

$$-\int_{\rho \le |x| \le r} \frac{\Delta u}{|x|^2} = \int_{|x|=r} \frac{2u + \langle \nabla u, x \rangle}{r^3} - \int_{|x|=\rho} \frac{2u + \langle \nabla u, x \rangle}{\rho^3}.$$

This is Stokes' theorem on the annulus $\rho \leq |x| \leq r$ with $\Delta v = -\sum_i \partial^2 v / \partial x_i^2 = 0$ for $v(x) = 1/|x|^2$.

Step 3: Proof of (6).

Recall from (4) that $\Delta |\Phi|^2 = -2|\nabla_A \Phi|^2 - |\Phi|^4$. Moreover, note that

$$\int_{|x|=r} \langle \nabla |\Phi|^2, x \rangle = 2 \int_{|x|=r} \sum_i \langle \Phi, \nabla_i \Phi \rangle x_i = 2rf(r).$$

Hence it follows from Step 2 with $u = |\Phi|^2$ that

$$\int_{\rho \le |x| \le r} \frac{2|\nabla_A \Phi|^2 + |\Phi|^4}{|x|^2} \, dx = \int_{|x|=r} \frac{2|\Phi|^2}{r^3} + \frac{2f(r)}{r^2} - \int_{|x|=\rho} \frac{2|\Phi|^2}{\rho^3} - \frac{2f(\rho)}{\rho^2} \, dx = \int_{|x|=r} \frac{2|\Phi|^2}{r^3} + \frac{2f(r)}{r^2} - \frac{2}{r^2} \int_{|x|=\rho} \frac{2|\Phi|^2}{\rho^3} \, dx = \int_{|x|=r} \frac{2|\Phi|^2}{r^3} + \frac{2f(r)}{r^2} - \frac{2}{r^2} \int_{|x|=\rho} \frac{2|\Phi|^2}{\rho^3} \, dx = \int_{|x|=r} \frac{2}{r^3} \, dx = \int_{|x|=r} \frac{2}{r^3} + \frac{2}{r^2} \int_{|x|=\rho} \frac{2}{\rho^3} \, dx = \int_{|x|=r} \frac{2}{r^3} \, dx$$

This implies

$$\frac{f(\rho)}{\rho^2} \le \frac{f(r)}{r^2} + \frac{1}{r^3} \int_{|x|=r} |\Phi|^2$$

for $0 < \rho \leq r$ and (6) follows.

By (4), the function $x \mapsto |\Phi(x)|^4$ is subharmonic and hence

$$|\Phi(x)|^4 \le \frac{2}{\pi^2 r^4} \int_{B_r(x)} |\Phi|^4 \le \frac{2}{\pi^2 r^4} E_0(A, \Phi; B_{2r}) \le \frac{8c}{\pi^2 r^2}$$

for r = |x|. The first inequality is the mean value inequality for subharmonic functions, the second follows from the definition of E_0 , and the last follows from (6). Thus

$$|\Phi(x)|^4 \le \frac{8c}{\pi^2 |x|^2}$$

and, since the function $x \mapsto 1/|x|^{\alpha}$ is integrable in a neighbourhood of zero whenever $\alpha < 4$, it follows that $|\Phi|^p$ is integrable for every p < 8. Thus we have proved that $|\Phi|^2 \in L^p$ for any p < 4. Since $d^+A = \sigma^+((\Phi\Phi^*)_0)$ this shows that $d^+A \in L^p$ for any p < 4. Now recall that $d^*A = 0$ and hence

$$\Delta A = d^* dA = 2d^* d^+ A = 2d^* \sigma^+ ((\Phi \Phi^*)_0).$$

Note that A is a weak solution of this equation on the closed (unpunctured) ball and hence it follows that $A \in W^{1,p}$ for any p < 4. Thus $A \in L^q$ for any $q < \infty$. The formula

$$0 = D_A \Phi = D\Phi - \Gamma(A)\Phi$$

with $\Gamma(A)\Phi \in L^p$ now shows that $\Phi \in W^{1,p}$ for any p < 4. Thus $\Phi \in L^q$ for some q > 4 and using the last equation again with $\Gamma(A)\Phi \in L^q$ we find that $\Phi \in W^{1,q}$ for some q > 4. This implies $d^*\sigma^+((\Phi\Phi^*)_0) \in L^q$ and, by the previous equation $A \in W^{2,q}$. Using the two equations alternatingly we conclude that Aand Φ are smooth on B_1 . This is a standard elliptic bootstrapping argument and completes the proof of Theorem 1.2.

4 Proof of the vanishing theorem

The goal of this section is to prove Theorem 1.1. The proof given here was outlined by Donaldson in [1]. It is based on choosing a sequence of metrics g_{ν} on the connected sum $X_1 \# X_2$ which *pinches* the neck to a point and has the property that the scalar curvature s_{ν} is bounded below by a constant independent of ν . Note, however, that the scalar curvature will diverge to $+\infty$ near the *pinched* neck. More precisely, the following remark shows how to construct a metric on the unit disc in \mathbb{R}^4 which agrees with the standard metric outside a ball of radius δ and with the pullback metric from $\mathbb{R} \times \varepsilon S^3$ under the diffeomorphism $x \mapsto (\varepsilon \log |x|, \varepsilon x/|x|)$ inside a punctured ball of radius δ^{m+1} for some integer m.

Remark 4.1 Consider the diffeomorphism

$$f: \mathbb{R}^4 - \{0\} \to \mathbb{R} \times \varepsilon S^3, \qquad f(x) = \left(\varepsilon \log |x|, \varepsilon \frac{x}{|x|}\right).$$

It is easy to see that the pullback of the standard product metric g_{ε} on $\mathbb{R} \times \varepsilon S^3$ under this diffeomorphism is given by

$$f^*g_{\varepsilon}(\xi,\eta) = \frac{\varepsilon^2}{|x|^2} \langle \xi,\eta \rangle$$

for $|x| \leq \varepsilon^2$. Now choose a function $\lambda : (0,1] \to [1,\infty)$ which satisfies

$$\lambda(r) = \begin{cases} \varepsilon/r & \text{if } r \le \delta^{m+1}, \\ 1 & \text{if } r \ge \delta. \end{cases}$$
(7)

and consider the metric

$$g_{\lambda}(\xi,\eta) = \lambda(|x|)^2 \langle \xi,\eta \rangle.$$

Note that for $|x| \leq \delta^{m+1}$ this metric agrees with the above pullback metric f^*g_{ε} . The scalar curvature of g_{λ} is given by

$$s_{\lambda} = 6 \frac{\Delta \lambda}{\lambda^3} = -6 \frac{\lambda'' + 3\lambda'/r}{\lambda^3}$$

One can choose λ decreasing and thus $\lambda'(r) \leq 0$ for all r. It remains to prove that λ can be chosen such that (7) is satisfied and, say,

$$\frac{\lambda''(r)}{\lambda(r)} + 3\frac{\lambda'(r)}{r\lambda(r)} \le 1.$$
(8)

Here the constant 1 is an arbitrary choice and can be replaced by any positive number. We must prove that for every $\delta > 0$ there exists a function $\lambda : [0, 1] \rightarrow 0$

 $[0\infty)$ which satisfies (7) and (8) for some constant $\varepsilon > 0$. Following Micallef and Wang [7] we introduce a function $\alpha = \alpha(r)$ by

$$\frac{\lambda'}{\lambda} = -\frac{\alpha}{r}, \qquad \frac{\lambda''}{\lambda} = -\frac{\alpha'}{r} + \frac{\alpha + \alpha^2}{r^2}.$$

Then the conditions (7) and (8) take the form

$$\alpha(r) = \begin{cases} 1, & \text{for } r \le \delta^{m+1}, \\ 0, & \text{for } r \ge \delta, \end{cases}$$
(9)

$$\frac{\alpha'}{r} + \frac{\alpha(2-\alpha)}{r^2} \ge -1. \tag{10}$$

Consider the curve $\gamma(t) = \alpha(\delta e^{-t})$. Then (10) translates into

$$\dot{\gamma} \le (2 - \gamma)\gamma + \delta^2 e^{-2t}$$

and (9) reads $\gamma(t) = 1$ for $t \ge T = \log(\delta^{-m})$ and $\gamma(t) = 0$ for $t \le 0$. A solution of the differential equation $\dot{\gamma} = (2 - \gamma)\gamma$ is given by the explicit formula

$$\gamma(t) = \frac{2\delta^{2m}e^{2t}}{1+\delta^{2m}e^{2t}}.$$

This solution satisfies $\gamma(0) = 2\delta^{2m}/(1+2\delta^{2m}) \ll 1$ and $\gamma(T) = \gamma(\log(\delta^{-m})) = 1$. Perturbing this function slightly near t = 0 and t = T gives a smooth solution of the required differential inequality provided that m is sufficiently large. Note that essentially the same argument can be used to prove the theorem of Gromov and Lawson about positive scalar curvature for connected sums [3].

Recall that the solutions of the Seiberg-Witten equations for a spin^c structure $\Gamma: TX \to \text{End}(W)$ form a moduli space space $\mathcal{M}(X, \Gamma, g, \eta)$ which, for a generic perturbation η , is a finite dimensional compact manifold of dimension

dim
$$\mathcal{M}(X,\Gamma,g,\eta) = \frac{c \cdot c}{4} - \frac{2\chi + 3\sigma}{4}$$

where $\chi = \chi(X)$ and $\sigma = \sigma(X)$ denote the Euler characteristic and signature of X and $c = c_1(L_{\Gamma}) \in H^2(X, \mathbb{Z})$ is the characteristic class of the spin^c structure. It is convenient to think of the connected sum as follows. Fix two points $x_1 \in X_1$ and $x_2 \in X_2$ and choose a metric g_i on X_i which is flat in a neighbourhood of x_i . Now construct a sequence of manifolds $X_{\nu} = X_1 \#_{\nu} X_2$ by removing arbitrarily small discs from X_1 and X_2 , centered at x_1 and x_2 respectively, modifying the metrics g_i as in Remark 4.1 above, and then identifying two annuli which are isometric to $[0,1] \times \varepsilon_{\nu} S^3$. Given two spin^c structures Γ_1 over X_1 and Γ_2 over X_2 one obtains a corresponding sequence of spin^c structures Γ_{ν} over X_{ν} by identifying Γ_1 and Γ_2 in suitable trivializations over the two annuli. Let us

choose a sequence of perturbations η_{ν} on X_{ν} which vanish near the *neck* and are independent of ν on the complement of the neck. Any such sequence determines two fixed perturbations η_1 and η_2 on X_1 and X_2 , respectively, which vanish in the given neighbourhoods of x_1 and x_2 . In [8], Chapter 9, it is proved that the perturbation can be chosen such that the moduli spaces $\mathcal{M}(X_1, \Gamma_1, g_1, \eta_1)$ and $\mathcal{M}(X_2, \Gamma_2, g_2, \eta_2)$ are regular.

Assume first that the moduli space $\mathcal{M}(X_{\nu}, \Gamma_{\nu}, g_{\nu}, \eta_{\nu})$ is zero dimensional. We prove that this space must be empty for ν sufficiently large. Suppose otherwise that for every ν there exists a solution (A_{ν}, Φ_{ν}) of the Seiberg-Witten equations for the metric g_{ν} and the perturbation η_{ν} . In [5] Kronheimer and Mrowka proved that the spinors Φ_{ν} satisfy the inequality

$$\sup_{X} |\Phi_{\nu}| \le -\frac{1}{2} \inf_{X} s_{\nu}.$$

where s_{ν} denotes the scalar curvature of g_{ν} (see also [8]). The previous exercise shows that there exists a constant c > 0 such that $s_{\nu}(x) \ge -c$ for all $x \in X$ and all ν . Hence the Φ_{ν} are uniformly bounded. Now A_{ν} and Φ_{ν} restrict to solutions of the Seiberg-Witten equations on X_1 (for the metric g_1 and the perturbation η_1) outside any neighbourhood of x_1 . Hence it follows from the compactness theorem in [5] (see also [8], Chapter 9) that there exists a subsequence which converges in the C^{∞} -topology on every compact subset of $X_1 - \{x_1\}$ to a solution (A_1, Φ_1) of the Seiberg-Witten equations which is defined on $X_1 - \{x_1\}$ and has finite energy. Since g_1 is flat and η_1 vanishes near x_1 the removable singularity theorem 1.2 asserts that A_1 and Φ_1 extend to a smooth solution over all of X_1 . This shows that the moduli space $\mathcal{M}_1 = \mathcal{M}(X_1, \Gamma_1, g_1, \eta_1)$ is nonempty. Obviously, the same argument applies to X_2 . Now the perturbation η was chosen such that η_1 and η_2 are regular for g_1 and g_2 . But the dimension formula shows that

$$0 = \dim \mathcal{M} = \dim \mathcal{M}_1 + \dim \mathcal{M}_2 + 1.$$

Hence one of the moduli spaces must have negative dimension. Since both moduli spaces are regular it follows that one of them must be empty, a contradiction. This shows that the assumption that $\mathcal{M}(X_{\nu}, \Gamma_{\nu}, g_{\nu}, \eta_{\nu})$ was nonempty for all ν must have been false. But if there is a metric for which the moduli space is empty then the Seiberg-Witten inveriant is zero. Thus we have proved that the Seiberg-Witten invariant must vanish whenever the moduli space is zero dimensional.

A similar argument applies to the cut-down moduli spaces when dim $\mathcal{M} > 0$. For this case it is useful to intersect the moduli space \mathcal{M}_1 , say, with suitable submanifolds of the form

$$\mathcal{N}_{h} = \left\{ [A, \Phi] \, \Big| \, \int_{X_{1}} \langle h(A), \Phi \rangle \mathrm{dvol} = 0 \right\} \subset \mathcal{C}(\Gamma_{1}) = \frac{\mathcal{A}(\Gamma_{1}) \times C^{\infty}(X, W_{1}^{+})^{*}}{\mathrm{Map}(X, S^{1})}$$

where $h: \mathcal{A}(\Gamma_1) \to C^{\infty}(X, W_1^+)^*$ satisfies

$$h(u^*A) = u(y)u^{-1}h(A)$$

for every gauge transformation $u : X_1 \to S^1$ and some $y \in X_1$. The map h can be localized near y as follows. For every 1-form $\alpha \in \Omega^1(X, i\mathbb{R})$ and every smooth path $\gamma : [0, 1] \to X$ consider the holonomy $\rho_{\alpha}(\gamma) \in S^1$ defined by

$$\rho_{\alpha}(\gamma) = \exp\left(\int_{\gamma} \alpha\right).$$

For each point $x \in X_1$ near y let $\gamma_x : [0,1] \to X_1$ denote the path running from x to y in a straight line in a local chart. Fix a reference connection A_0 and a nonzero section $\Psi \in C^{\infty}(X_1, W_1^+)$ with support in the given neighbourhood of y. Then the map

$$h(A)(x) = \rho_{A-A_0}(\gamma_x)\Psi(x)$$

has the required properties. Now, as before, dim $\mathcal{M} = \dim \mathcal{M}_1 + \dim \mathcal{M}_2 + 1$ and hence one of the moduli spaces must have dimension strictly smaller than \mathcal{M} . Suppose without loss of generality that

$$\dim \mathcal{M}_1 < \dim \mathcal{M} = 2d$$

and choose d functions $h_1, \ldots, h_d : \mathcal{A}(\Gamma_1) \to C^{\infty}(X, W_1^+)^*$ as above which are localized somewhere on X_1 away from x_1 . Then, for a generic perturbation η_1 ,

$$\mathcal{M}(X_1,\Gamma_1,g_1,\eta_1)\cap\mathcal{N}_{h_1}\cap\cdots\cap\mathcal{N}_{h_d}=\emptyset.$$

On the other hand the h_i determine functions

$$h_{i,\nu}: \mathcal{A}(\Gamma_{\nu}) \to C^{\infty}(X, W_{\nu}^{+})^{*}$$

(defined by the same formula) and one can examine the moduli spaces

$$\mathcal{M}(X_{\nu},\Gamma_{\nu},g_{\nu},\eta_{\nu})\cap\mathcal{N}_{h_{1,\nu}}\cap\cdots\cap\mathcal{N}_{h_{d,\nu}}$$

If these are nonempty for all ν then it follows as above that the space $\mathcal{M}_1 \cap \mathcal{N}_{h_1} \cap \cdots \cap \mathcal{N}_{h_d}$ is nonempty contradicting the choice of the perturbation η_1 . Hence these moduli spaces are empty for large ν and thus the Seiberg-Witten invariants are zero.

References

 S.K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Preprint, June 1995.

- [2] S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, 1990.
- [3] M. Gromov and H.B. Lawson, The classification of simply connected manifolds of positive scalar curvature, *Ann. of Math.* **111** (1980), 423–434.
- [4] D. Kotschick, On irreducible 4-manifolds, Preprint, 1995.
- [5] P. Kronheimer and T.S. Mrowka, The genus of embedded surfaces in the projective plane, *Math. Res. Letters* 1 (1994), 797–808.
- [6] D. McDuff and D. Salamon, *Introduction To Symplectic Topology*, to appear in Oxford University Press, 1995.
- [7] M. Micallef and M.Y. Wang, Metrics with nonnegative isotropic curvature, Duke Mathematics Journal 72 (1993), 649–672.
- [8] D. Salamon, Spin geometry and Seiberg-Witten invariants, in preparation.
- [9] C.H. Taubes, The Seiberg-Witten invariants and symplectic forms, *Math. Res. Letters* 1 (1994), 809–822.
- [10] K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11–29.
- [11] K. Uhlenbeck, Connections with L^p bounds on curvature, Commun. Math. Phys. 83 (1982), 31–42.
- [12] E. Witten, Monopoles and 4-manifolds, Preprint, hep-th/9411102, November, 1994.