Removable singularities and a vanishing theorem for Seiberg-Witten invariants

Dietmar Salamon*
University of Warwick

December 1995

1 Introduction

This is an expository paper. The goal is to give a proof of the following vanishing theorem for the Seiberg-Witten invariants of connected sums of smooth 4-manifolds.

Theorem 1.1 Suppose that X is a compact oriented smooth 4-manifold diffeomorphic to a connected sum $X_{1} \# X_{2}$ where

$$
b^{+}\left(X_{1}\right) \geq 1, \quad b^{+}\left(X_{2}\right) \geq 1
$$

and $b^{+}(X)-b_{1}(X)$ is odd. Then the Seiberg-Witten invariants of X are all zero.

This result is the Seiberg-Witten analogue of Donaldson's original theorem about the vanishing of the instanton invariants [2] for connected sums. An outline of the proof of Theorem 1.1 was given by Donaldson in [1]. The key ingredient of the proof is a removable singularity theorem for the Seiberg-Witten equations on flat Euclidean 4-space. A proof of Theorem 1.1 was also indicated by Witten in his lecture on 6 December 1994 at the Isaac Newton Institute in Cambridge. The result was used by Kotschick in his proof that (simply connected) symplectic 4-manifolds are irreducible [4].

[^0]
Seiberg-Witten equations on \mathbb{R}^{4}

Identify \mathbb{R}^{4} with the quaternions \mathbb{H} via $x=x_{0}+i x_{1}+j x_{2}+k x_{3}$ and consider the standard spin^{c} structure $\Gamma: \mathbb{H}=T_{x} \mathbb{H} \rightarrow \mathbb{C}^{4 \times 4}$ given by

$$
\Gamma(\xi)=\left(\begin{array}{cc}
0 & \gamma(\xi) \\
-\gamma(\xi)^{*} & 0
\end{array}\right), \quad \gamma(\xi)=\left(\begin{array}{rr}
\xi_{0}+i \xi_{1} & \xi_{2}+i \xi_{3} \\
-\xi_{2}+i \xi_{3} & \xi_{0}-i \xi_{1}
\end{array}\right)
$$

Thus $\gamma\left(e_{0}\right)=\mathbb{1}, \gamma\left(e_{1}\right)=I, \gamma\left(e_{2}\right)=J$, and $\gamma\left(e_{3}\right)=K$ with

$$
I=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \quad J=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad K=\left(\begin{array}{rr}
0 & i \\
i & 0
\end{array}\right)
$$

Given a connection 1-form $A=\sum_{j} A_{j} d x_{j}$ with $A_{j}: \mathbb{H} \rightarrow i \mathbb{R}$ and a spinor $\Phi: \mathbb{H} \rightarrow \mathbb{C}^{2}$ denote

$$
\nabla_{A} \Phi=\sum_{j=0}^{3} \nabla_{j} \Phi d x_{j}, \quad \nabla_{j} \Phi=\frac{\partial \Phi}{\partial x_{j}}+A_{j} \Phi
$$

The Seiberg-Witten equations have the form

$$
\begin{equation*}
D_{A} \Phi=0, \quad \rho^{+}\left(F_{A}\right)=\left(\Phi \Phi^{*}\right)_{0} \tag{1}
\end{equation*}
$$

where $D_{A}=-\nabla_{0}+I \nabla_{1}+J \nabla_{2}+K \nabla_{3}$ is the Dirac operator associated to the connection $A, F_{A}=d A=\sum_{i<j} F_{i j} d x_{i} \wedge d x_{j}$ is the curvature, and $\rho^{+}\left(F_{A}\right) \in$ $\mathbb{C}^{2 \times 2}$ is given by

$$
\rho^{+}\left(F_{A}\right)=\left(F_{01}+F_{23}\right) I+\left(F_{02}+F_{31}\right) J+\left(F_{03}+F_{12}\right) K .
$$

Moreover, $\left(\Phi \Phi^{*}\right)_{0}$ denotes the traceless part of the matrix $\Phi \Phi^{*} \in \mathbb{C}^{2 \times 2}$ and hence the second equation in (1) is equivalent to $F_{01}+F_{23}=-2^{-1} \Phi^{*} I \Phi, F_{02}+$ $F_{31}=-2^{-1} \Phi^{*} J \Phi$, and $F_{03}+F_{12}=-2^{-1} \Phi^{*} K \Phi$. The energy of a pair (A, Φ) on an open set $\Omega \subset \mathbb{R}^{4}$ is given by

$$
E(A, \Phi ; \Omega)=\int_{\Omega}\left(\sum_{i=0}^{3}\left|\nabla_{i} \Phi\right|^{2}+\frac{1}{4}|\Phi|^{4}+\sum_{i<j}\left|F_{i j}\right|^{2}\right)
$$

It is invariant under the action of the gauge $\operatorname{group} \operatorname{Map}\left(\Omega, S^{1}\right)$ by $(A, \Phi) \mapsto$ $\left(u^{*} A, u^{-1} \Phi\right)$ where $u^{*} A=u^{-1} d u+A$. The proof of Theorem 1.1 relies on the following removable singularity theorem for the finite energy solutions of (1). Denote the unit ball in \mathbb{R}^{4} by $B=B^{4}=\left\{x \in \mathbb{R}^{4}| | x \mid \leq 1\right\}$. If $\Phi=0$ then the result reduces to Uhlenbeck's removable singularity theorem for ASD instantons in the case of the gauge group $\mathrm{G}=S^{1}$ (cf. Uhlenbeck [10] and DonaldsonKronheimer [2], pp 58-72 and 166-170).

Theorem 1.2 (Removable singularities) Let $A \in \Omega^{1}(B-\{0\}, i \mathbb{R})$ and $\Phi \in$ $C^{\infty}\left(B-\{0\}, \mathbb{C}^{2}\right)$ satisfy (1) with

$$
E(A, \Phi ; B)<\infty
$$

Then there exists a gauge transformation $u: B-\{0\} \rightarrow S^{1}$ such that $u(x)=1$ for $|x|=1$ and $u^{*} A$ and $u^{-1} \Phi$ extend to a smooth solution of (1) over B.

The following three fundamental identities will play a crucial role in the proof of Theorem 1.2. The first is the Weitzenböck formula

$$
\begin{equation*}
D_{A}{ }^{*} D_{A} \Phi+\sum_{i=0}^{3} \nabla_{i} \nabla_{i} \Phi=\rho^{+}\left(F_{A}\right) \Phi \tag{2}
\end{equation*}
$$

where $D_{A}{ }^{*}=\nabla_{0}+I \nabla_{1}+J \nabla_{2}+K \nabla_{3}$. The second is the energy identity

$$
\begin{align*}
E(A, \Phi ; \Omega)= & \int_{\Omega}\left(\left|D_{A} \Phi\right|^{2}+\left|\rho^{+}\left(F_{A}\right)-\left(\Phi \Phi^{*}\right)_{0}\right|^{2}\right) \tag{3}\\
& +\int_{\partial \Omega} A \wedge d A+\int_{\partial \Omega}\left\langle\Phi, \nabla_{A, \nu} \Phi+\Gamma(\nu) D_{A} \Phi\right\rangle \mathrm{dvol}_{\partial \Omega}
\end{align*}
$$

for $A \in \Omega^{1}\left(\mathbb{R}^{4}, i \mathbb{R}\right)$ and $\Phi \in C^{\infty}\left(\mathbb{R}^{4}, \mathbb{C}^{2}\right)$. Here we use the norm $|T|^{2}=$ $\frac{1}{2} \operatorname{trace}\left(T^{*} T\right)$ for complex 2×2-matrices so that $\mathbb{1}, I, J, K$ form an orthonormal basis of $\mathbb{C}^{2 \times 2}$. Moreover, $\nu: \partial \Omega \rightarrow \mathbb{R}^{4}$ denotes the outward unit normal vector field, $\nabla_{A, \nu} \Phi=\sum_{i} \nu_{i} \nabla_{i} \Phi$, and $\Gamma(\nu)=-\nu_{0} \mathbb{1}+\nu_{1} I+\nu_{2} J+\nu_{3} K$. The third equation is

$$
\begin{equation*}
\Delta|\Phi|^{2}=-2\left|\nabla_{A} \Phi\right|^{2}-|\Phi|^{4} \tag{4}
\end{equation*}
$$

for solutions of (1) where $\Delta=-\sum_{i} \partial^{2} / \partial x_{i}{ }^{2}$. It is proved by direct computation using (2) and $\rho^{+}\left(F_{A}\right) \Phi=\left(\Phi \Phi^{*}\right)_{0} \Phi=|\Phi|^{2} \Phi / 2$. Equation (4) was first noted by Kronheimer and Mrowka in [5] and lies at the heart of their compactness proof for the solutions of (1).

Proof of the energy identity: The proof relies on the familiar equation

$$
\int_{\Omega}\left(\left|F_{A}\right|^{2}-2\left|F_{A}^{+}\right|^{2}\right)=\int_{\Omega} F_{A} \wedge F_{A}=\int_{\partial \Omega} A \wedge d A
$$

and on the formula

$$
\int_{\Omega}\left(\left|\nabla_{A} \Phi\right|^{2}-\left|D_{A} \Phi\right|^{2}\right)=\int_{\partial \Omega}\left\langle\Phi, \nabla_{A, \nu} \Phi+\Gamma(\nu) D_{A} \Phi\right\rangle-\int_{\Omega}\left\langle\Phi, \rho^{+}\left(F_{A}\right) \Phi\right\rangle
$$

This last equation follows from Stokes' theorem and (2). With $\left|\rho^{+}\left(F_{A}\right)\right|^{2}=$ $2\left|F_{A}^{+}\right|^{2}$ and $\left\langle\Phi, \rho^{+}\left(F_{A}\right) \Phi\right\rangle=2\left\langle\rho^{+}\left(F_{A}\right),\left(\Phi \Phi^{*}\right)_{0}\right\rangle$ the rest of the proof is an easy exercise.

2 Removable singularities for 1-forms

The first step in the proof of Theorem 1.2 is the following weak removable singularity theorem for 1 -forms on \mathbb{R}^{n}. The theorem asserts that if α is a 1 form on the punctured ball $B^{n}-\{0\}$ such that $d \alpha$ is of class L^{2} then there exists a function $\xi: B^{n}-\{0\} \rightarrow \mathbb{R}$ such that $\alpha-d \xi$ is of class $W^{1,2}\left(\right.$ and $\left.d^{*}(\alpha-d \xi)=0\right)$. If $n=4$ and α is anti-self-dual then it follows easily that $\alpha-d \xi$ extends to a smooth 1-form on B^{4}. This is Uhlenbeck's removable singularity theorem for ASD instantons in the case $\mathrm{G}=S^{1}$. Note also that this is the special case $\Phi=0$ in Theorem 1.2. Even though this result is simply a special case of Uhlenbeck's theorem we give a proof below which is is specific to the abelian case and is considerably simpler than both Ulenbeck's original proof in [10] and the proof given by Donaldson and Kronheimer in [2]. Throughout denote by $B^{n}(r)=\left\{x \in \mathbb{R}^{n}| | x \mid \leq r\right\}$ the closed ball in \mathbb{R}^{n} of radius r and abbreviate $B^{n}=B^{n}(1)$ and $A\left(r_{0}, r_{1}\right)=A^{n}\left(r_{0}, r_{1}\right)=\left\{x \in \mathbb{R}^{n}\left|r_{0} \leq|x| \leq r_{1}\right\}\right.$ for $r_{0}<r_{1}$.

Proposition 2.1 (Uhlenbeck) Assume $n \geq 4$ and let $\alpha \in \Omega^{1}\left(B^{n}-\{0\}\right)$ be a smooth real valued 1 -form which satisfies

$$
\int_{B^{n}}|d \alpha|^{2}<\infty
$$

Then there exists a smooth function $\xi: B^{n}-\{0\} \rightarrow \mathbb{R}$ such that $\alpha-d \xi$ is of class $W^{1,2}$ on the (unpunctured) unit ball and satisfies

$$
\int_{B^{n}}\left(|\nabla(\alpha-d \xi)|^{2}+\frac{|\alpha-d \xi|^{2}}{|x|^{2}}\right) \leq 4 \int_{B^{n}}|d \alpha|^{2}
$$

as well as

$$
d^{*}(\alpha-d \xi)=0, \quad \frac{\partial \xi}{\partial \nu}=\alpha(\nu)
$$

Here $d \xi / \partial \nu$ denotes the normal derivative on ∂B^{n} and $\alpha(\nu)=\sum_{i} \alpha_{i}(x) x_{i}$ for $|x|=1$.

Note that addition of any exact 1 -form on $B^{n}-\{0\}$ does not alter the L^{2} norm of $d \alpha$. Thus the behaviour of α near zero may be extremely singular. The proposition asserts that there exists an exact 1-form $d \xi$ on $B^{n}-\{0\}$ which tames the singularity at 0 in the sense that $\alpha-d \xi$ is of class $W^{1,2}$ on B^{n}. The function ξ will be constructed as a limit of functions $\xi_{\varepsilon}: B^{n}(1)-B^{n}(\varepsilon) \rightarrow \mathbb{R}$ which satisfy $d^{*}\left(\alpha-d \xi_{\varepsilon}\right)=0$ with boundary condition $\partial \xi_{\varepsilon} / \partial \nu=\alpha(\nu)$ on $\partial\left(B_{1}-B_{\varepsilon}\right)$. The convergence proof relies on the following three lemmata.
Lemma 2.2 Assume $n \geq 4$. Then every smooth 1 -form $\alpha \in \Omega^{1}\left(A^{n}(\varepsilon, 1)\right)$ with $\alpha(\nu)=0$ on $\partial A^{n}(\varepsilon, 1)$ satisfies the inequality

$$
\int_{A(\varepsilon, 1)}\left(|\nabla \alpha|^{2}+\frac{|\alpha|^{2}}{|x|^{2}}\right) \leq 4 \int_{A(\varepsilon, 1)}\left(|d \alpha|^{2}+\left|d^{*} \alpha\right|^{2}\right)
$$

Proof: Let $\alpha=\sum_{i} \alpha_{i} d x_{i}$ be a smooth 1 -form on a domain $\Omega \subset \mathbb{R}^{n}$ with smooth boundary. Suppose that $\langle\alpha, \nu\rangle=\sum_{i=1}^{n} \alpha_{i} \nu_{i}=0$ on $\partial \Omega$. This condition is equivalent to $\left.* \alpha\right|_{\partial \Omega}=0$. Integration by parts shows that

$$
\|\nabla \alpha\|^{2}-\|d \alpha\|^{2}-\left\|d^{*} \alpha\right\|^{2}=\int_{\partial \Omega}\left\langle\alpha, \frac{\partial \alpha}{\partial \nu}\right\rangle \operatorname{dvol}_{\partial \Omega}-\int_{\partial \Omega} \alpha \wedge * d \alpha
$$

Here all norms on the left are L^{2}-norms on $A(\varepsilon, 1)$. Now use the formulae $\left.* d x_{i}\right|_{\partial \Omega}=\nu_{i} \mathrm{dvol}_{\partial \Omega}$ and $d x_{i} \wedge *\left(d x_{i} \wedge d x_{j}\right)=-* d x_{j}$ for $i<j$ to obtain

$$
\int_{\partial \Omega} \alpha \wedge * d \alpha-\int_{\partial \Omega}\left\langle\alpha, \frac{\partial \alpha}{\partial \nu}\right\rangle \operatorname{dvol}_{\partial \Omega}=\int_{\partial \Omega} \sum_{i, j} \alpha_{i} \alpha_{j} \frac{\partial \nu_{j}}{\partial x_{i}} \operatorname{dvol}_{\partial \Omega}
$$

This equation uses the fact that $\sum_{i} \alpha_{i} \nu_{i}=0$ on $\partial \Omega$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is tangent to $\partial \Omega$. In the case $\Omega=A(\varepsilon, 1)$ the last two identities combine to

$$
\begin{equation*}
\|\nabla \alpha\|^{2}=\|d \alpha\|^{2}+\left\|d^{*} \alpha\right\|^{2}+\frac{1}{\varepsilon} \int_{|x|=\varepsilon}|\alpha|^{2}-\int_{|x|=1}|\alpha|^{2} \tag{5}
\end{equation*}
$$

for 1 -forms on $A(\varepsilon, 1)$ which satisfy $\langle\alpha, \nu\rangle=0$ on the boundary. Now consider the function $f(x)=x /|x|^{2}$ with $\operatorname{div}(f)=(n-2) /|x|^{2}$. Then for every smooth function $u: A(\varepsilon, 1) \rightarrow \mathbb{R}$

$$
\begin{aligned}
\frac{1}{\varepsilon} \int_{|x|=\varepsilon}|u|^{2}-\int_{|x|=1}|u|^{2} & =-\int_{\partial A(\varepsilon, 1)}\langle\nu, f\rangle|u|^{2} \mathrm{dvol} \\
& =-\int_{A(\varepsilon, 1)} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(f_{i}|u|^{2}\right) \\
& =-\int_{A(\varepsilon, 1)} \sum_{i=1}^{n}\left(2 f_{i} u \frac{\partial u}{\partial x_{i}}+|u|^{2} \frac{\partial f_{i}}{\partial x_{i}}\right) \\
& \leq 2 \int_{A(\varepsilon, 1)} \frac{|u||\nabla u|}{|x|}-\int_{A(\varepsilon, 1)} \operatorname{div}(f)|u|^{2} \\
& =2 \int_{A(\varepsilon, 1)} \frac{|u||\nabla u|}{|x|}-(n-2) \int_{A(\varepsilon, 1)} \frac{|u|^{2}}{|x|^{2}} \\
& \leq \delta \int_{A(\varepsilon, 1)}|\nabla u|^{2}-\left(n-2-\frac{1}{\delta}\right) \int_{A(\varepsilon, 1)} \frac{|u|^{2}}{|x|^{2}}
\end{aligned}
$$

The last inequality holds for any constant $\delta>0$. If $n \geq 4$ we can choose $1 /(n-2)<\delta<1$. For example, with $\delta=3 / 4$ we obtain from (5)

$$
\|\nabla \alpha\|^{2} \leq\|d \alpha\|^{2}+\left\|d^{*} \alpha\right\|^{2}+\frac{3}{4}\|\nabla \alpha\|^{2}-\left(n-2-\frac{4}{3}\right) \int_{A(\varepsilon, 1)} \frac{|\alpha|^{2}}{|x|^{2}} .
$$

This holds for all n. But for $n \geq 4$ the last term on the right is negative and the desired inequality follows.

Lemma 2.3 (Poincaré's inequality) There is a constant $c=c(n)>0$ such that every smooth function $\xi: A^{n}(1 / 2,1) \rightarrow \mathbb{R}$ with mean value zero satisfies the inequality

$$
\int_{A(1 / 2,1)}|\xi|^{2} \leq c \int_{A(1 / 2,1)}|d \xi|^{2}
$$

Lemma 2.4 Every smooth function $\xi: A^{n}\left(r_{0}, r_{1}+t\right) \rightarrow \mathbb{R}$ satisfies

$$
\int_{A\left(r_{0}, r_{1}\right)}|\xi|^{2} \leq 2 \int_{A\left(r_{0}+t, r_{1}+t\right)}|\xi|^{2}+\int_{A\left(r_{0}, r_{1}+t\right)}|d \xi|^{2}
$$

for $0<r_{0}<r_{1} \leq 1$ and $0 \leq t \leq 1$.
Proof: Consider the identity

$$
\xi(r x)=\xi((t+r) x)-\int_{0}^{t}\langle\nabla \xi((r+s) x), x\rangle d s
$$

and use the Cauchy-Schwartz inequality to obtain

$$
|\xi(r x)|^{2} \leq 2|\xi((t+r) x)|^{2}+\frac{2}{(n-2) r^{n-2}} \int_{r}^{r+t} s^{n-1}|d \xi(s x)|^{2} d s
$$

for $|x|=1$ and $n \geq 3$. In the case $n=2$ there is a similar inequality with $1 /(n-2) r^{n-2}$ replaced by $\log (r+t)-\log r \leq r-\log r$. Now multiply by r^{n-1} and integrate over S^{n-1} and over $r_{0} \leq r \leq r_{1}$.

Lemma 2.5 Let $u: B^{n}-\{0\} \rightarrow \mathbb{R}$ be a smooth function such that

$$
\int_{B^{n}}|\nabla u(x)|^{2}<\infty
$$

Then u is of class $W^{1,2}$ on B^{n}, i.e. its distributional derivatives exist and agree with the ordinary derivatives.

Proof: For any compactly supported test function $\varphi: B^{n} \rightarrow \mathbb{R}$ integrate the function $u \partial_{i} \varphi+\varphi \partial_{i} u$ over the annulus $\varepsilon \leq|x| \leq 1$ and show that the boundary integral over $|x|=\varepsilon$ converges to zero as $\varepsilon \rightarrow 0$.
Proof of Proposition 2.1: For every $\varepsilon>0$ there exists a smooth function $\xi_{\varepsilon}: A^{n}(\varepsilon, 1) \rightarrow \mathbb{R}$ which satisfies

$$
d^{*}\left(\alpha-d \xi_{\varepsilon}\right)=0, \quad \frac{\partial \xi_{\varepsilon}}{\partial \nu}=\langle\alpha, \nu\rangle
$$

where the last equation holds on the boundary. The function ξ_{ε} is only determined up to a constant which can be fixed by the normalization condition

$$
\int_{1 / 2 \leq|x| \leq 1} \xi_{\varepsilon}(x) d x=0
$$

It follows from Lemma 2.2 that

$$
\left\|\nabla\left(\alpha-d \xi_{\varepsilon}\right)\right\|_{L^{2}(A(\varepsilon, 1))}^{2}+\int_{\varepsilon \leq|x| \leq 1} \frac{\left|\alpha-d \xi_{\varepsilon}\right|^{2}}{|x|^{2}} \leq 4\|d \alpha\|_{L^{2}(A(\varepsilon, 1))}^{2}
$$

Fix some number $\delta>0$. Then for $\varepsilon<\delta$

$$
\begin{aligned}
\left\|\nabla d \xi_{\varepsilon}\right\|_{L^{2}(A(\delta, 1))} & \leq 2\|d \alpha\|_{L^{2}}+\|\nabla \alpha\|_{L^{2}(A(\delta, 1))} \\
\left\|d \xi_{\varepsilon}\right\|_{L^{2}(A(\delta, 1))} & \leq 2\|d \alpha\|_{L^{2}}+\|\alpha\|_{L^{2}(A(\delta, 1))}
\end{aligned}
$$

Now use Lemma 2.3 and the mean value condition to control the L^{2}-norm of ξ_{ε} on $A(1 / 2,1)$ and Lemma 2.4 to control this norm on $A(\delta, 1 / 2)$. This shows that for every $\delta>0$ there exists a constant $c_{\delta}>0$ such that

$$
\left\|\xi_{\varepsilon}\right\|_{W^{2,2}(A(\delta, 1))} \leq c_{\delta}
$$

for every $\varepsilon \in(0, \delta)$. Now the usual diagonal sequence argument shows that there exists a sequence $\varepsilon_{i} \rightarrow 0$ such that $\xi_{\varepsilon_{i}}$ converges strongly in $W^{1,2}(K)$ and weakly in $W^{2,2}(K)$ for every compact subset $K \subset B^{n}-\{0\}$. The limit function $\xi: B^{n}-\{0\} \rightarrow \mathbb{R}$ is of class $W^{2,2}$ on every compact subset away from 0 and satisfies $d^{*}(\alpha-d \xi)=0$ and $\langle\alpha-d \xi, \nu\rangle=0$. Hence Lemma 2.2 shows that

$$
\int_{K}\left(|\nabla(\alpha-d \xi)|^{2}+\frac{|\alpha-d \xi|^{2}}{|x|^{2}}\right) \leq 4 \int_{B^{n}}|d \alpha|^{2}
$$

for every compact subset $K \subset B^{n}-\{0\}$. By Lemma $2.5, \alpha-d \xi$ is of class $W^{1,2}$ on B^{n}. This proves the proposition.

3 Proof of the removable singularity theorem

By Proposition 2.1 there exists a smooth function $\xi: B^{4}-\{0\} \rightarrow i \mathbb{R}$ such that $A-d \xi$ is of class $W^{1,2}$ on the closed ball B^{4} and $d^{*}(A-d \xi)=0$. Hence we may assume from now on that $A \in W^{1,2}$ and $d^{*} A=0$. Moreover, by the finite energy condition, we have $\Phi \in L^{4}$ and $\nabla_{i} \Phi \in L^{2}$. The Sobolev embedding theorem shows that $A \in L^{4}$ and hence

$$
\partial_{i} \Phi=\nabla_{i} \Phi-A_{i} \Phi \in L^{2}
$$

for $i=0,1,2,3$. By Lemma 2.5, this shows that $\Phi \in W^{1,2}$. Thus we have a solution (A, Φ) of (1) which is smooth on the punctured ball $B^{4}-\{0\}$ and on the closed ball satisfies

$$
A \in W^{1,2}, \quad \Phi \in W^{1,2}, \quad d^{*} A=0
$$

We shall prove in three steps that there exists a constant $c>0$ such that

$$
\begin{equation*}
E_{0}\left(A, \Phi ; B_{r}\right)=\int_{|x| \leq r}\left(\left|\nabla_{A} \Phi\right|^{2}+\frac{1}{2}|\Phi|^{4}\right) \leq c r^{2} \tag{6}
\end{equation*}
$$

Step 1: For every $r \in(0,1]$

$$
E_{0}\left(A, \Phi ; B_{r}\right)=\int_{|x|=r} \sum_{i}\left\langle\Phi, \nabla_{i} \Phi\right\rangle \frac{x_{i}}{r} .
$$

Let $\Omega \subset \mathbb{R}^{4}$ be any open domain with smooth boundary such that A and Φ are defined on its closure. (Thus $0 \notin \bar{\Omega}$.) Consider the energy

$$
E_{0}(A, \Phi ; \Omega)=\int_{\Omega}\left(\left|\nabla_{A} \Phi\right|^{2}+\frac{1}{4}|\Phi|^{4}+2\left|F_{A}^{+}\right|^{2}\right)=\int_{\partial \Omega}\left\langle\Phi, \nabla_{A, \nu} \Phi\right\rangle
$$

The first equality follows from the fact that $|\Phi|^{4}=8\left|F_{A}^{+}\right|^{2}$ for solutions of (1) and the second equality follows from the energy identity (3). Abbreviate

$$
f(r)=\int_{|x|=r} \sum_{i}\left\langle\Phi, \nabla_{i} \Phi\right\rangle \frac{x_{i}}{r} .
$$

Then $f:(0,1] \rightarrow \mathbb{R}$ is a smooth function and the previous identity shows that

$$
E_{0}\left(A, \Phi ; B_{r}-B_{\varepsilon}\right)=f(r)-f(\varepsilon)
$$

Hence f is monotonically increasing and bounded below. This shows that the limit $f(0):=\lim _{\varepsilon \rightarrow 0} f(\varepsilon)$ exists. Now it follows from the finiteness of the energy that $\Phi \in L^{4}$ and $\nabla_{i} \Phi \in L^{2}$ and hence $\left\langle\Phi, \nabla_{i} \Phi\right\rangle \in L^{4 / 3}$ for all i. Moreover, by Hölder's inequality,

$$
|f(r)|^{4 / 3} \leq\left(2 \pi^{2}\right)^{1 / 3} r \int_{|x|=r}\left(|\Phi|\left|\nabla_{A} \Phi\right|\right)^{4 / 3}
$$

and hence

$$
\int_{0}^{1} \frac{|f(r)|^{4 / 3}}{r} d r<\infty
$$

This shows that there must be a sequence $\varepsilon_{i} \rightarrow 0$ with $f\left(\varepsilon_{i}\right) \rightarrow 0$ and it follows that $f(0)=0$. This implies $f(r)=E_{0}\left(A, \Phi ; B_{r}\right)$ as claimed.

Step 2: Every smooth function $u: \mathbb{R}^{4}-\{0\} \rightarrow \mathbb{R}$ satisfies the identity

$$
-\int_{\rho \leq|x| \leq r} \frac{\Delta u}{|x|^{2}}=\int_{|x|=r} \frac{2 u+\langle\nabla u, x\rangle}{r^{3}}-\int_{|x|=\rho} \frac{2 u+\langle\nabla u, x\rangle}{\rho^{3}} .
$$

This is Stokes' theorem on the annulus $\rho \leq|x| \leq r$ with $\Delta v=-\sum_{i} \partial^{2} v / \partial x_{i}{ }^{2}=$ 0 for $v(x)=1 /|x|^{2}$.

Step 3: Proof of (6).
Recall from (4) that $\Delta|\Phi|^{2}=-2\left|\nabla_{A} \Phi\right|^{2}-|\Phi|^{4}$. Moreover, note that

$$
\left.\left.\int_{|x|=r}\langle\nabla| \Phi\right|^{2}, x\right\rangle=2 \int_{|x|=r} \sum_{i}\left\langle\Phi, \nabla_{i} \Phi\right\rangle x_{i}=2 r f(r) .
$$

Hence it follows from Step 2 with $u=|\Phi|^{2}$ that

$$
\int_{\rho \leq|x| \leq r} \frac{2\left|\nabla_{A} \Phi\right|^{2}+|\Phi|^{4}}{|x|^{2}} d x=\int_{|x|=r} \frac{2|\Phi|^{2}}{r^{3}}+\frac{2 f(r)}{r^{2}}-\int_{|x|=\rho} \frac{2|\Phi|^{2}}{\rho^{3}}-\frac{2 f(\rho)}{\rho^{2}} .
$$

This implies

$$
\frac{f(\rho)}{\rho^{2}} \leq \frac{f(r)}{r^{2}}+\frac{1}{r^{3}} \int_{|x|=r}|\Phi|^{2}
$$

for $0<\rho \leq r$ and (6) follows.
By (4), the function $x \mapsto|\Phi(x)|^{4}$ is subharmonic and hence

$$
|\Phi(x)|^{4} \leq \frac{2}{\pi^{2} r^{4}} \int_{B_{r}(x)}|\Phi|^{4} \leq \frac{2}{\pi^{2} r^{4}} E_{0}\left(A, \Phi ; B_{2 r}\right) \leq \frac{8 c}{\pi^{2} r^{2}}
$$

for $r=|x|$. The first inequality is the mean value inequality for subharmonic functions, the second follows from the definition of E_{0}, and the last follows from (6). Thus

$$
|\Phi(x)|^{4} \leq \frac{8 c}{\pi^{2}|x|^{2}}
$$

and, since the function $x \mapsto 1 /|x|^{\alpha}$ is integrable in a neighbourhood of zero whenever $\alpha<4$, it follows that $|\Phi|^{p}$ is integrable for every $p<8$. Thus we have proved that $|\Phi|^{2} \in L^{p}$ for any $p<4$. Since $d^{+} A=\sigma^{+}\left(\left(\Phi \Phi^{*}\right)_{0}\right)$ this shows that $d^{+} A \in L^{p}$ for any $p<4$. Now recall that $d^{*} A=0$ and hence

$$
\Delta A=d^{*} d A=2 d^{*} d^{+} A=2 d^{*} \sigma^{+}\left(\left(\Phi \Phi^{*}\right)_{0}\right)
$$

Note that A is a weak solution of this equation on the closed (unpunctured) ball and hence it follows that $A \in W^{1, p}$ for any $p<4$. Thus $A \in L^{q}$ for any $q<\infty$. The formula

$$
0=D_{A} \Phi=D \Phi-\Gamma(A) \Phi
$$

with $\Gamma(A) \Phi \in L^{p}$ now shows that $\Phi \in W^{1, p}$ for any $p<4$. Thus $\Phi \in L^{q}$ for some $q>4$ and using the last equation again with $\Gamma(A) \Phi \in L^{q}$ we find that $\Phi \in W^{1, q}$ for some $q>4$. This implies $d^{*} \sigma^{+}\left(\left(\Phi \Phi^{*}\right)_{0}\right) \in L^{q}$ and, by the previous equation $A \in W^{2, q}$. Using the two equations alternatingly we conclude that A and Φ are smooth on B_{1}. This is a standard elliptic bootstrapping argument and completes the proof of Theorem 1.2.

4 Proof of the vanishing theorem

The goal of this section is to prove Theorem 1.1. The proof given here was outlined by Donaldson in [1]. It is based on choosing a sequence of metrics g_{ν} on the connected sum $X_{1} \# X_{2}$ which pinches the neck to a point and has the property that the scalar curvature s_{ν} is bounded below by a constant independent of ν. Note, however, that the scalar curvature will diverge to $+\infty$ near the pinched neck. More precisely, the following remark shows how to construct a metric on the unit disc in \mathbb{R}^{4} which agrees with the standard metric outside a ball of radius δ and with the pullback metric from $\mathbb{R} \times \varepsilon S^{3}$ under the diffeomorphism $x \mapsto(\varepsilon \log |x|, \varepsilon x /|x|)$ inside a punctured ball of radius δ^{m+1} for some integer m.

Remark 4.1 Consider the diffeomorphism

$$
f: \mathbb{R}^{4}-\{0\} \rightarrow \mathbb{R} \times \varepsilon S^{3}, \quad f(x)=\left(\varepsilon \log |x|, \varepsilon \frac{x}{|x|}\right)
$$

It is easy to see that the pullback of the standard product metric g_{ε} on $\mathbb{R} \times \varepsilon S^{3}$ under this diffeomorphism is given by

$$
f^{*} g_{\varepsilon}(\xi, \eta)=\frac{\varepsilon^{2}}{|x|^{2}}\langle\xi, \eta\rangle
$$

for $|x| \leq \varepsilon^{2}$. Now choose a function $\lambda:(0,1] \rightarrow[1, \infty)$ which satisfies

$$
\lambda(r)=\left\{\begin{align*}
\varepsilon / r & \text { if } r \leq \delta^{m+1} \tag{7}\\
1 & \text { if } r \geq \delta
\end{align*}\right.
$$

and consider the metric

$$
g_{\lambda}(\xi, \eta)=\lambda(|x|)^{2}\langle\xi, \eta\rangle .
$$

Note that for $|x| \leq \delta^{m+1}$ this metric agrees with the above pullback metric $f^{*} g_{\varepsilon}$. The scalar curvature of g_{λ} is given by

$$
s_{\lambda}=6 \frac{\Delta \lambda}{\lambda^{3}}=-6 \frac{\lambda^{\prime \prime}+3 \lambda^{\prime} / r}{\lambda^{3}} .
$$

One can choose λ decreasing and thus $\lambda^{\prime}(r) \leq 0$ for all r. It remains to prove that λ can be chosen such that (7) is satisfied and, say,

$$
\begin{equation*}
\frac{\lambda^{\prime \prime}(r)}{\lambda(r)}+3 \frac{\lambda^{\prime}(r)}{r \lambda(r)} \leq 1 . \tag{8}
\end{equation*}
$$

Here the constant 1 is an arbitrary choice and can be replaced by any positive number. We must prove that for every $\delta>0$ there exists a function $\lambda:[0,1] \rightarrow$
$[0 \infty$) which satisfies (7) and (8) for some constant $\varepsilon>0$. Following Micallef and Wang [7] we introduce a function $\alpha=\alpha(r)$ by

$$
\frac{\lambda^{\prime}}{\lambda}=-\frac{\alpha}{r}, \quad \frac{\lambda^{\prime \prime}}{\lambda}=-\frac{\alpha^{\prime}}{r}+\frac{\alpha+\alpha^{2}}{r^{2}} .
$$

Then the conditions (7) and (8) take the form

$$
\begin{gather*}
\alpha(r)= \begin{cases}1, & \text { for } r \leq \delta^{m+1} \\
0, & \text { for } r \geq \delta,\end{cases} \tag{9}\\
\frac{\alpha^{\prime}}{r}+\frac{\alpha(2-\alpha)}{r^{2}} \geq-1 \tag{10}
\end{gather*}
$$

Consider the curve $\gamma(t)=\alpha\left(\delta e^{-t}\right)$. Then (10) translates into

$$
\dot{\gamma} \leq(2-\gamma) \gamma+\delta^{2} e^{-2 t}
$$

and (9) reads $\gamma(t)=1$ for $t \geq T=\log \left(\delta^{-m}\right)$ and $\gamma(t)=0$ for $t \leq 0$. A solution of the differential equation $\dot{\gamma}=(2-\gamma) \gamma$ is given by the explicit formula

$$
\gamma(t)=\frac{2 \delta^{2 m} e^{2 t}}{1+\delta^{2 m} e^{2 t}}
$$

This solution satisfies $\gamma(0)=2 \delta^{2 m} /\left(1+2 \delta^{2 m}\right) \ll 1$ and $\gamma(T)=\gamma\left(\log \left(\delta^{-m}\right)\right)=1$. Perturbing this function slightly near $t=0$ and $t=T$ gives a smooth solution of the required differential inequality provided that m is sufficiently large. Note that essentially the same argument can be used to prove the theorem of Gromov and Lawson about positive scalar curvature for connected sums [3].

Recall that the solutions of the Seiberg-Witten equations for a spin ${ }^{c}$ structure $\Gamma: T X \rightarrow \operatorname{End}(W)$ form a moduli space space $\mathcal{M}(X, \Gamma, g, \eta)$ which, for a generic perturbation η, is a finite dimensional compact manifold of dimension

$$
\operatorname{dim} \mathcal{M}(X, \Gamma, g, \eta)=\frac{c \cdot c}{4}-\frac{2 \chi+3 \sigma}{4}
$$

where $\chi=\chi(X)$ and $\sigma=\sigma(X)$ denote the Euler characteristic and signature of X and $c=c_{1}\left(L_{\Gamma}\right) \in H^{2}(X, \mathbb{Z})$ is the characteristic class of the spin^{c} structure. It is convenient to think of the connected sum as follows. Fix two points $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ and choose a metric g_{i} on X_{i} which is flat in a neighbourhood of x_{i}. Now construct a sequence of manifolds $X_{\nu}=X_{1} \#_{\nu} X_{2}$ by removing arbitrarily small discs from X_{1} and X_{2}, centered at x_{1} and x_{2} respectively, modifying the metrics g_{i} as in Remark 4.1 above, and then identifying two annuli which are isometric to $[0,1] \times \varepsilon_{\nu} S^{3}$. Given two spin ${ }^{c}$ structures Γ_{1} over X_{1} and Γ_{2} over X_{2} one obtains a corresponding sequence of spin^{c} structures Γ_{ν} over X_{ν} by identifying Γ_{1} and Γ_{2} in suitable trivializations over the two annuli. Let us
choose a sequence of perturbations η_{ν} on X_{ν} which vanish near the neck and are independent of ν on the complement of the neck. Any such sequence determines two fixed perturbations η_{1} and η_{2} on X_{1} and X_{2}, respectively, which vanish in the given neighbourhoods of x_{1} and x_{2}. In [8], Chapter 9, it is proved that the perturbation can be chosen such that the moduli spaces $\mathcal{M}\left(X_{1}, \Gamma_{1}, g_{1}, \eta_{1}\right)$ and $\mathcal{M}\left(X_{2}, \Gamma_{2}, g_{2}, \eta_{2}\right)$ are regular.

Assume first that the moduli space $\mathcal{M}\left(X_{\nu}, \Gamma_{\nu}, g_{\nu}, \eta_{\nu}\right)$ is zero dimensional. We prove that this space must be empty for ν sufficiently large. Suppose otherwise that for every ν there exists a solution $\left(A_{\nu}, \Phi_{\nu}\right)$ of the Seiberg-Witten equations for the metric g_{ν} and the perturbation η_{ν}. In [5] Kronheimer and Mrowka proved that the spinors Φ_{ν} satisfy the inequality

$$
\sup _{X}\left|\Phi_{\nu}\right| \leq-\frac{1}{2} \inf _{X} s_{\nu}
$$

where s_{ν} denotes the scalar curvature of g_{ν} (see also [8]). The previous exercise shows that there exists a constant $c>0$ such that $s_{\nu}(x) \geq-c$ for all $x \in X$ and all ν. Hence the Φ_{ν} are uniformly bounded. Now A_{ν} and Φ_{ν} restrict to solutions of the Seiberg-Witten equations on X_{1} (for the metric g_{1} and the perturbation η_{1}) outside any neighbourhood of x_{1}. Hence it follows from the compactness theorem in [5] (see also [8], Chapter 9) that there exists a subsequence which converges in the C^{∞}-topology on every compact subset of $X_{1}-\left\{x_{1}\right\}$ to a solution $\left(A_{1}, \Phi_{1}\right)$ of the Seiberg-Witten equations which is defined on $X_{1}-\left\{x_{1}\right\}$ and has finite energy. Since g_{1} is flat and η_{1} vanishes near x_{1} the removable singularity theorem 1.2 asserts that A_{1} and Φ_{1} extend to a smooth solution over all of X_{1}. This shows that the moduli space $\mathcal{M}_{1}=\mathcal{M}\left(X_{1}, \Gamma_{1}, g_{1}, \eta_{1}\right)$ is nonempty. Obviously, the same argument applies to X_{2}. Now the perturbation η was chosen such that η_{1} and η_{2} are regular for g_{1} and g_{2}. But the dimension formula shows that

$$
0=\operatorname{dim} \mathcal{M}=\operatorname{dim} \mathcal{M}_{1}+\operatorname{dim} \mathcal{M}_{2}+1
$$

Hence one of the moduli spaces must have negative dimension. Since both moduli spaces are regular it follows that one of them must be empty, a contradiction. This shows that the assumption that $\mathcal{M}\left(X_{\nu}, \Gamma_{\nu}, g_{\nu}, \eta_{\nu}\right)$ was nonempty for all ν must have been false. But if there is a metric for which the moduli space is empty then the Seiberg-Witten inveriant is zero. Thus we have proved that the Seiberg-Witten invariant must vanish whenever the moduli space is zero dimensional.

A similar argument applies to the cut-down moduli spaces when $\operatorname{dim} \mathcal{M}>0$. For this case it is useful to intersect the moduli space \mathcal{M}_{1}, say, with suitable submanifolds of the form

$$
\mathcal{N}_{h}=\left\{[A, \Phi] \mid \int_{X_{1}}\langle h(A), \Phi\rangle \mathrm{dvol}=0\right\} \subset \mathcal{C}\left(\Gamma_{1}\right)=\frac{\mathcal{A}\left(\Gamma_{1}\right) \times C^{\infty}\left(X, W_{1}^{+}\right)^{*}}{\operatorname{Map}\left(X, S^{1}\right)}
$$

where $h: \mathcal{A}\left(\Gamma_{1}\right) \rightarrow C^{\infty}\left(X, W_{1}^{+}\right)^{*}$ satisfies

$$
h\left(u^{*} A\right)=u(y) u^{-1} h(A)
$$

for every gauge transformation $u: X_{1} \rightarrow S^{1}$ and some $y \in X_{1}$. The map h can be localized near y as follows. For every 1-form $\alpha \in \Omega^{1}(X, i \mathbb{R})$ and every smooth path $\gamma:[0,1] \rightarrow X$ consider the holonomy $\rho_{\alpha}(\gamma) \in S^{1}$ defined by

$$
\rho_{\alpha}(\gamma)=\exp \left(\int_{\gamma} \alpha\right)
$$

For each point $x \in X_{1}$ near y let $\gamma_{x}:[0,1] \rightarrow X_{1}$ denote the path running from x to y in a straight line in a local chart. Fix a reference connection A_{0} and a nonzero section $\Psi \in C^{\infty}\left(X_{1}, W_{1}^{+}\right)$with support in the given neighbourhood of y. Then the map

$$
h(A)(x)=\rho_{A-A_{0}}\left(\gamma_{x}\right) \Psi(x)
$$

has the required properties. Now, as before, $\operatorname{dim} \mathcal{M}=\operatorname{dim} \mathcal{M}_{1}+\operatorname{dim} \mathcal{M}_{2}+1$ and hence one of the moduli spaces must have dimension strictly smaller than \mathcal{M}. Suppose without loss of generality that

$$
\operatorname{dim} \mathcal{M}_{1}<\operatorname{dim} \mathcal{M}=2 d
$$

and choose d functions $h_{1}, \ldots, h_{d}: \mathcal{A}\left(\Gamma_{1}\right) \rightarrow C^{\infty}\left(X, W_{1}^{+}\right)^{*}$ as above which are localized somewhere on X_{1} away from x_{1}. Then, for a generic perturbation η_{1},

$$
\mathcal{M}\left(X_{1}, \Gamma_{1}, g_{1}, \eta_{1}\right) \cap \mathcal{N}_{h_{1}} \cap \cdots \cap \mathcal{N}_{h_{d}}=\emptyset
$$

On the other hand the h_{i} determine functions

$$
h_{i, \nu}: \mathcal{A}\left(\Gamma_{\nu}\right) \rightarrow C^{\infty}\left(X, W_{\nu}^{+}\right)^{*}
$$

(defined by the same formula) and one can examine the moduli spaces

$$
\mathcal{M}\left(X_{\nu}, \Gamma_{\nu}, g_{\nu}, \eta_{\nu}\right) \cap \mathcal{N}_{h_{1, \nu}} \cap \cdots \cap \mathcal{N}_{h_{d, \nu}}
$$

If these are nonempty for all ν then it follows as above that the space $\mathcal{M}_{1} \cap$ $\mathcal{N}_{h_{1}} \cap \cdots \cap \mathcal{N}_{h_{d}}$ is nonempty contradicting the choice of the perturbation η_{1}. Hence these moduli spaces are empty for large ν and thus the Seiberg-Witten invariants are zero.

References

[1] S.K. Donaldson, The Seiberg-Witten equations and 4-manifold topology, Preprint, June 1995.
[2] S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Oxford University Press, 1990.
[3] M. Gromov and H.B. Lawson, The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980), 423-434.
[4] D. Kotschick, On irreducible 4-manifolds, Preprint, 1995.
[5] P. Kronheimer and T.S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Letters 1 (1994), 797-808.
[6] D. McDuff and D. Salamon, Introduction To Symplectic Topology, to appear in Oxford University Press, 1995.
[7] M. Micallef and M.Y. Wang, Metrics with nonnegative isotropic curvature, Duke Mathematics Journal 72 (1993), 649-672.
[8] D. Salamon, Spin geometry and Seiberg-Witten invariants, in preparation.
[9] C.H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1 (1994), 809-822.
[10] K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-29.
[11] K. Uhlenbeck, Connections with L^{p} bounds on curvature, Commun. Math. Phys. 83 (1982), 31-42.
[12] E. Witten, Monopoles and 4-manifolds, Preprint, hep-th/9411102, November, 1994.

[^0]: *Thanks to Mario Micallef for helpful discussions

