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FLOWS ON VECTOR BUNDLES AND HYPERBOLIC SETS

DIETMAR SALAMON AND EDUARD ZEHNDER

Abstract. This note deals with C. Conley's topological approach to hyperbolic

invariant sets for continuous flows. It is based on the notions of isolated invariant

sets and Morse decompositions and it leads to the concept of weak hyperbolicity.

1. Introduction. It is our aim to give an exposition of a small part of C. Conley's

lectures on dynamical systems, which he gave in 1984 in Madison. It deals with a

topological approach to hyperbolic invariant sets of flows.

In order to describe the contents we recall at first that a linear flow (e, t) >-» e ■ t

on a vector bundle it: E -» S over a compact metric space S is called hyperbolic, if

there is a splitting of E into a direct sum Es ffi E" = E of two invariant subbundles

such that for two positive numbers K and e the following exponential estimates

hold:

||e • f||< A"exp(-£i)||e||    if e £ Es and t > 0,

||e -(-/)||< ATexp(-er)||e||    if e £ Eu and t > 0.

Due to the linearity of the flow the zero section Z c E of the bundle E, which is

homeomorphic to S, is an invariant set. Moreover, due to the above estimates every

bounded orbit of the flow on E is contained in Z, such that Z is an isolated

invariant set in the sense of Conley [4].

It is now tempting to start with the latter property as the crucial concept replacing

the hyperbolicity assumption with the topological assumption requiring only the zero

section Z to be our isolated invariant set of the flow. In order to describe this

approach we at first do not assume Z to be isolated and define the stable and

unstable invariant sets of Z as follows:

E"= {e e E\0 =h u(e) c Z},        E" = {ee£|0 * co*(e) c Z)

where cc(e) and u*(e) denote the positive and the negative limit set of a point

e G E. In view of the linearity of the flow one shows easily that Es and E" intersect

every fiber in a linear subspace. However, Es and E" are not necessarily subbundles

of E.
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624 DIETMAR SALAMON AND EDUARD ZEHNDER

In order to apply the theory of flows on compact spaces it is useful to study the

induced flow on the projective bundle PE of E, using again the linearity of the flow.

It turns out (Theorem 2.7) that Z is an isolated invariant set if and only if in the

projective bundle PE the invariant set PE" is an attractor and PES is its

complementary repeller. The exponential estimates for Es and E" are easily

established if Z is isolated.

If one assumes, in addition that the induced flow on Z is chain transitive, then Es

and Eu are not just invariant sets but actually invariant subbundles of E with

E = Es © E", so that in this case the flow is indeed hyperbolic. This result, due to

Selgrade [11], will also be derived in the first part (Theorem 2.13).

In the second part we consider the flow of a ^-vector field on a compact

Riemannian manifold M. Linearizing this flow one can associate with it a flow on

the tangent bundle TM of M and another one on the cotangent bundle T *M of M.

Let now 5 c M be a compact invariant set and assume the vector field to have no

singular points on S, then it defines a one-dimensional invariant subbundle of TSM

which we shall denote by E°.

The invariant set S is then called weakly hyperbolic, if the zero section in the

quotient bundle TSM/E° is an isolated invariant set. Using the results of the first

part it will be proved that S is weakly hyperbolic precisely if the projective bundle

PSM admits a three set Morse decomposition such that the attractor corresponds to

the unstable set E", the repeller to the stable set Es and the third set to the

distinguished bundle E° (Theorem 3.3). The difference to the hyperbolicity in the

classical sense is that the stable and unstable sets are not necessarily subbundles of

TSM.

It also turns out that S c M is hyperbolic precisely if the annihilator of E° in

T*M defines a hyperbolic vector bundle over S.

Finally, a general perturbation result for attractor-repeller pairs for flows will be

used in a natural way to conclude that the above defined weak hyperbolicity is a

stable property, i.e. that nearby invariant sets S' for nearby flows are also weakly

hyperbolic (Theorem 3.9). For Anosov flows on compact manifolds this is, of course,

well known [1, 2, 9] and follows also readily from our considerations.

2. Flows on vector bundles. On the vector bundle w: E —> S over a compact metric

space 5 with finite dimensional fiber V = 7r~1(p) we consider a linear flow. This is a

continuous map from E X R into E, denoted by (e, t) >-* e ■ t, which satisfies

e ■ 0 = e, e ■ (t + s) = (e ■ t) ■ s for all e £ E and for all real numbers t,s £ R.

Moreover, the flow is linear which requires for e, e' £ E with 77(e) = ir(e') g S that

(2.1) ir(e ■ t) = m(e' • t),    e ■ t + e' ■ t = (e + e') ■ t,    X(e ■ t) = (Xe) ■ t

for all t g R and X g R. Therefore the flow on E induces a flow on the zero section

Z c E which is homeomorphic to S. Moreover, it induces also a flow on the

projective bundle PE of E. For our notation we refer to the appendix.

Lemma 2.1. (i) There is a unique flow on S such that

(2.2) ir(e ■ t) = ir(e) ■ t
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FLOWS ON VECTOR BUNDLES AND HYPERBOLIC SETS 625

for every e £ E and every t g R. This flow is given by

(2.3) p ■ t = rr{o(p) ■ t),        p £ S, t g R.

(ii) There exists a unique flow on PE such that

(2.4) P{e -t) = Pe-t

for every e G E\Z and every t G R.

Proof. If a flow on S satisfies (2.2) then (2.3) follows from the fact that

77 o a = ls. Conversely, let p ■ t g S be defined by (2.3) for p g S, t £ R. Then

p ■ 0 = tt(o(p)) = p and

a(p-t) = a{ir{a(p)-t)) = a(p)-t

since a(p) ■ t g Z. This implies p • (i + s) = (p ■ t) ■ s and therefore (2.3) defines a

flow on M. Finally, since 77(e) = 77(a(77(e))), it follows from (2.1) and (2.3) that

'    Tr(e ■ t) = ir(o(Tr(e)) ■ t) = Tr(e) ■ t

for e g E and t £ R. This proves statement (i). Statement (ii) is an immediate

consequence of (2.1).    D

Lemma 2.2. There exist constants K > 1, w > 0 such that the following inequality

holds for e g E, t g R

||e • r||< /Cexp(w|i|)||e||.

Proof. It follows from the continuity of the flow together with the compactness of

S that

K(t) = sup{||e • i|| \e £ E, \\e\\ = 1, -/ < s < /} < 00

for every t > 0. Furthermore the function K(t) is nondecreasing in t and satisfies

#(0) = 1 as well as K(t + s) < K(t)K(s) for t,s > 0. Defining K = K(l) and

u = log K(l) we obtain for «■< í < n + 1,

K(t) < ä:(« + 1) < ÁT(1)" + 1 = Kexp(con) < ^exp(ioi).

This proves the statement of the lemma.   D

Lemma 2.3. (i) 0 =£ 03(e) c Z if and only if lim,^J|e ■ t\\ = 0.

(ii) 0 # w*(e) c Z if and only if lim^.Jle • t\\ = 0.

Proof. If 0 # a>(e) c Z and e > 0 then there exists a T > 0 such that \\e ■ t\\ < e

for all t > T since Ae={eG£'|||e||<e} is a neighborhood of Z. Conversely,

suppose that lim,_00||e • r|| = 0. Then it follows from the continuity of the norm

function that ||e'|| = 0 for every e' g u>(e) and hence 10(e) c Z. This proves

statement (i). Statement (ii) is proved similarly.   D

In the remainder of this section we consider flows on E for which the zero section

Z is an isolated invariant set. This means that there exists a compact (isolating)

neighborhood N of Z in E such that e ■ R o N implies e £ Z.

Lemma 2.4. IfZis an isolated invariant set in E then

(i) sup{||e • r|||/ G R} < 00 » e g Z,

(ii) sup{||e • t\\\t > 0} < 00 ** 0 * w(e) c Z,

(in) sup{||e • /|||i s; 0} < 00 » 0 * cj*(e) c Z.
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626 DIETMAR SALAMON AND EDUARD ZEHNDER

Proof. Let N be an isolated neighborhood for Z and choose e > 0 such that

||e|| < e implies e g N. Now suppose that ||e • ?|| < K for all / g R. Then ce ■ R c N

for c = e/K > 0. This implies ce £ Z and hence e £ Z. Thus we have proved

statement (i).

In order to establish statement (ii) let us first assume that ||e • t\\ < K for all

/ > 0. Then ce ■ [0, oo) c TV for c = e/AT and therefore «(ce) c Z. From this we

conclude that ||ce • i|| = c||e • t\\ converges to zero as t tends to infinity (Lemma 2.3)

and hence «(e) c Z. Conversely, it follows from Lemma 2.3 that the forward orbit

of e is bounded if0 * u(e) c Z. This proves statement (ii).

Statement (iii) follows by reversing the time.   D

Let us now introduce the stable and unstable sets of Z by

(2.5) Es = {e £ E\0 * «(e) c Z},    E" = {e £ E\0 # «*(e) c Z}.

It follows from Lemma 2.3 that these sets intersect each fiber E , p £ S, in a

linear subspace, even if Z is not an isolated invariant set. The following example

shows that these subspaces need not span the whole space, even if Z is an isolated

invariant set. See Figure 1.

(2.6) x = x(l-x),    y=(x-l/2)y,       0 < x < 1.

In the "dual" flow the zero section Z is not an isolated invariant set, the sets E" and

Es are not closed and their intersection is bigger than Z. See Figure 2.

(2.7) x = x(l-x),    i = (1/2 - x)z,       0<x<l.

Lemma 2.5. 7/Z is an isolated invariant set in E, then the sets Es and E" are closed

and E" n E" = Z. Furthermore, there exist constants K > 0, e > 0 such that

(2.8) ||e- i||ss Kexp(-e/)||e||    Ve e Es \/t > 0,

(2.9) \\e- t\\^Kexp(et)\\e\\   Ve g Eu Vr < 0.

Figure 1

Figure 2
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Proof. First note that E" n Es consists of those e g E whose orbits are bounded

and hence it follows from Lemma 2.4 that E" n Es = Z.

Secondly we establish the inequality (2.8) with e = 0. If (2.8) would not hold with

e = 0, then there would exist a sequence ek £ Es such that \\ek\\ = 1 and \\ek ■ tk\\

tends to infinity where tk > 0 is chosen such that \\ek ■ tk\\ > \\ek ■ t\\ for all / > 0.

Now replace ek ■ tk by a subsequence such that \\ek ■ tk\\~1ek • tk converges to

e* g E, ||e*|| = 1. If the sequence tk is bounded then a subsequence converges to

some t* > 0 and we obtain ||e* ■ (-r*)|| = lim^^^lle^H/He^ • tk\\ = 0. This implies

e* ■ (-r*) g Z and hence e* g Z contradicting ||e*|| = 1. But if the sequence tk is

unbounded, then we obtain ||e* • i|| < 1 for all t £ R which again implies e* g Z

(Lemma 2.4). We conclude that (2.8) holds with e = 0. In connection with Lemma

2.4 this implies that Es is closed.

Now we claim that for every a > 0 there exists a T > 0 such that \\e ■ t\\ < a||e||

for all e g Es and all t > T. Otherwise, there would exist a sequence ek g Es such

that \\ek ■ tk\\ > a\\ek\\ for some tk ^ k. But this would imply that any limit point

e* g Es of \\ek • tk\\~lek • tk satisfies ||e*|| = 1 and

H   *    ,n      r       l|gjfc-(^ + 0ll  „   ,.      ¥k\tk+t)\\     K
\\e* ■ t\\=  hm   —-—<  hm-—-sg—

fc->°o       \\ek-tk\\ t-»«       « • IKII «

for all t g R. This contradiction proves the above claim.

Let us now choose a < 1 and T > 0 such that ||e • t\\ < a||e|| for all e £ Es and

all t 3s T and define e = -(\oga)/T > 0. Then a = exp(-er) and hence the follow-

ing inequality holds for kT < / < (k + 1)T and e g Es:

\\e- t\\^K\\e- kT\\^ Kak\\e\\ < Ka~lexp(-et)\\e\\.

This proves inequality (2.8).

The assertions on E" are proved in the same way.   D

In the following we will discuss the properties of the induced flow on the

projective bundle PE (Lemma 2.1(h)).

For this purpose let us first recall that a compact invariant set A in a compact

metric flow M is said to be an attractor if it admits a neighborhood U such that

u(U) = A. In this case A* = (x G Af|«(x) n A = 0} is its complementary re-

peller. This means that there exists a neighborhood U* of A* with «*(£/*) = A*

and that w*(x) c A*, «(x) c A for all x g M\(A U A*)[4, 10].

Lemma 2.6. Let (x, t) >-* x ■ t be a flow on the compact metric space M. Then a pair

A, A* of disjoint compact invariant sets in an attractor-repeller pair in X if and only if

(2.10) x G M \ A* => x ■ [0, oo ) n U + 0 for every neighborhood U of A and

(2.11) x G M\A => x -(-oo,0] ni/** 0 for every neighborhood U * of A*.

Proof. The necessity of the condition is obvious. Conversely, suppose that (2.10)

holds for every neighborhood U of A and (2.11) for every neighborhood U* of A*.

Let W be a compact neighborhood of A with W n A* = 0. Then (2.11) shows that

x • (-oo,0] t W for all x g W\A. By a lemma due to Conley [4, II, 5.1, D; 10,

Lemma 3.1], this implies that A is an attractor. Moreover, it follows from (2.10) that
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628 DIETMAR SALAMON AND EDUARD ZEHNDER

«(x)n A # 0 for all x g M\A*. Hence A* = {x G Af|«(x)n A = 0} is the

complementary repeller of Ain M.    D

Now we are in the position to prove the following characterization of flows in E

for which Z is an isolated invariant set.

Theorem 2.7. The zero section Z is an isolated invariant set in E if and only if there

exist closed subsets Es and E" of E which intersect each fiber in a linear subspace and

satisfy

(i) PE" is an attractor in PE and PES is its complementary repeller,

(ii) 0 ¥= «(e) c Z for every e g Es and 0 J= «*(e) c Z for every e G E".

If these conditions are satisfied then Es and E" are given by (2.5).

Proof. Let us first assume that Z is an isolated invariant set in E and let Es, E"

be given by (2.5). Then Ex" = {e g £"|||e|| = 1} is a compact set with Ex" n Es = 0.

See Figure 3.

We claim that for every neighborhood W of E" there exists an e > 0 such that for

every e £ E\ES with ||e|| < e we have

t(e) = sup{/ > 0|||e • s\\ < 1,0 < s < t) < oo

and e • t(e) g W. First note that t(e) has to be finite by Lemma 2.4(h). Now

suppose that there exists a sequence ek £ E\ES such that ||eA|| tends to zero and

ek ■ t(ek) cjË W. Then the sequence t(ek) tends to infinity. Otherwise there would

exist a subsequence, still denoted by ek, such that ek converges to e* g Z and t(ek)

converges to /*, leading to the contradiction ||e* • r*|| = 1. Now let e* g E be a

limit point of ek • t(ek). Then e* <£ inlW. But on the other hand ||e*|| = 1 and

||e* ■ r|| < 1 for all t < 0 which implies e* g E". This contradiction proves the

claim.

The above claim shows that Pe • [0, oo) n PW i= 0 for every neighborhood PW

of PE" and every Pe £ PE\PES. By duality, we obtain Pe ■ (-oo,0] n PW* ¥= 0

for every neighborhood PW* of PES and every Pe £ PE\PE". Hence it follows

from Lemma 2.6 that PE" is an attractor in PE and PES is its complementary

repeller.

Figure 3
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Conversely, suppose that there exist closed subsets Es and E" of E which

intersect each fiber in a linear subspace and satisfy the conditions (i) and (ii). Then

Es n E" = Z since PES n PE" = 0. We prove in four steps that Z is an isolated

invariant set in E.

Step 1. ini{\\e ■ t\\\t > 0} > 0 Ve £ E"\Z.
Suppose that inf{||e • r|||f > 0} = 0 for some e g E"\Z and choose a sequence

tk tending to infinity such that ||e • tk\\ tends to zero and ||e • i|| > ||e • tk\\ for

0 < / < tk. For example, tk can be chosen to be the largest time at which the

function ||e • r|| achieves its minimum on the interval 0 < t < k. Now choose a

subsequence, still denoted by tk, such that ||e • tk\\~le • tk converges to e* £ E".

Then ||e*|| == 1 and ||e* • i|| = lim^Jle • tk\\'l\\e ■ (tk + t)\\ > 1 for every t < 0.

But this implies «*(e*) C\Z = 0, contradicting condition (ii).

Step 2. sup(||e- t\\\t > 0} = oo VeG£"\Z.

Suppose that there exists an e £ E"\Z such that e < ||e • /|| < e"1 for all r > 0

and some e > 0. Then 0 ¥= «(e) c E" and e < ||e* • r|| < e~l for every e* g «(e)

and every r G R. Again, this contradicts condition (ii).

Step 3. E" and E" are given by (2.5).

Let e G E\ES and suppose that 0 =£ «(e) c Z. Choose a sequence tk tending

to infinity such that ||e • r|| < ||e • tk\\ for all t > tk and such that ||e • tk\\~le ■ tk

converges to e* g E, \\e*\\ = 1. Then Pe* = lim^.,^ Pe ■ tk g PE" and hence

e* g E". Furthermore, it follows from the choice of tk that ||e* • /|| < 1 for all

t > 0. This contradicts Step 2.

Step 4. Z is an isolated invariant set.

If ||e ■ i|| < 1 for all r G R and e £ Z, then it follows from Step 2 that e £ £".

Since «*(e) * 0 it follows from Step 3 that «*(e) <£ Z. Choose e* g «*(e)\Z.

Then Pe* g «*(Pe) c PES and hence e* £ Es. Furthermore ||e* ■ /|| < 1 for all

t g R, contradicting the dual result of Step 2. This proves Step 4 and the statement

of the theorem.    D

Lemma 2.8. Suppose that Z is an isolated invariant set in E and let Es and E" be

defined by (2.5). Then there exists an e > 0 such that

(2.12) lim exp(-eí)||e • r||= oo    Ve g E\Es,
r->oo

(2.13) lim   exp(e/)||e • r||= oo    VeG£\£".
i-«-oo

Proof. We show first that ||e • r|| tends to infinity as t goes to infinity for

e g E\ES. Otherwise there would exist a sequence tk (tending to infinity) such that

||e ■ iA.|| is bounded and ||e • rk\\ tends to infinity where rk g [tk,tk + x] is chosen such

that

ll«"»*||>||e-/||,       tk<t<tk+v

Now let us choose a subsequence kn such that ||e • rk ||_1e ■ ta converges to e* £ E,

\\e*\\ = 1. If the sequence rk  - tk  does not go to infinity then it has a limit point

t * > 0 leading to the contradiction

||e* •(-/*) ||=  lim ||e-r,J/||e-T,J = 0
M-+O0
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630 DIETMAR SALAMON AND EDUARD ZEHNDER

for a suitably chosen subsequence. In the same manner one can show that the

sequence tk +1 - rk^ goes to infinity. But this implies ||e* • i|| < 1 for all t £ R, and

it follows from Lemma 2.4 that e* g Z, once again contradicting ||e*|| = 1. Thus we

have established statement (2.12) for e = 0.

Now it follows from Lemma 2.5 that Es and E" satisfy conditions (i) and (ii) of

Theorem 2.7 with respect to the perturbed flow (e,/) >-» exp(-ei)e • / if e > 0 is

sufficiently small. This proves (2.12) for some e > 0.

Statement (2.13) follows by duality.   D

The statement of Theorem 2.7 is illustrated by Figure 4, a diagram of a flow on a

vector bundle over the one point space (antipodal points are to be identified).

The next result shows that this situation is in a sense typical for attractors in PE.

It has first been established by Selgrade [11]. We present a simplified proof.

Proposition 2.9. Let A be an attractor in PE and let e,e' £ E\Z be given such

that 77(e) = 77(e') andPe £ A, Pe' £ A. Then

(2.14) lim  ||e-/||/||e'-r|| = 0.

Furthermore A intersects each fiber in a projective linear subspace.

Proof. Let us introduce the two-dimensional subspace L = {ce + c'e'\c,c' £ R}

in E and suppose that Pe g A is a boundary point of A n PL relative to PL.

Moreover choose £ < d(A,A*) and note that, by Lemma A3, there exists a 8 > 0

such that the implication

<e0.«i>Vlkoll2lkill2 > 1 - * =» d(Pe0, Pex) < e
holds for all e0,ex £ E\Z. Now suppose that (2.14) would not hold. Then there

would exist a sequence tk tending to -oo and a constant K > 0 such that

\\e'-tk\\/\\e-tk\\<K,        keN.

For c £ R with |c| sufficiently small this implies that

(ce'-tk + e-tk,e-tk)2

\\ce'-tk + e-tk\\2\\e-tk\\2

c\e'-tk,e-tk)2 + 2c\\e-tk\\2(e'-tk,e-tk) + \\e-tk\\4   ^     $

" c2||e' • i,||2||e • tk\\2 + 2c||e • i,||2<e' ■ tk,e ■ tk) + \\e ■ tk\\4 "

Figure 4
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



FLOWS ON VECTOR BUNDLES AND HYPERBOLIC SETS 631

O         backward
_. explosion_a

points

Figure 5

for all k g N. But this would imply that d(P(ce' + e) ■ tk, A) < e for all k G N,

hence u*(P(ce' + e)) <£ A* and therefore P(ce' + e) £ A for |c| sufficiently small.

This would contradict the fact that Pe is a boundary point of A n PL in PL and

thus we have established (2.14) in this case.

It remains to show that A n PL consists of a single point. For this purpose note

that any point in PL \ ( Pe} is given by P(e' + ce) for some c £ R. It follows from

(2.14) that

(e' ■ t + ce ■ t,e' ■ t)2
hm   —-—-

»--oo ||e' ■ t + ce- t\\2\\e' ■ t\\2

Um     He- • 11|4 + 2c[|e' ■ t\\2(e ■ t, e' ■ t) + c\e ■ t, e' ■ t)2   _ 1

»—«o ||e' • »||4 + 2c\\e' • i||2<e • t,e' ■ t) + c2\\e ■ t\\2\\e' ■ t\\2

By Lemma A3, this implies

lim   d(P{e' + ce)-t,Pe' ■ t) = 0
/-»-co

and hence P(e' + ce) £ A. Therefore A n PL consists of a single point.

In particular, we have shown that, for any two-dimensional subspace L in E,

A n PL is either empty or consists of a single point or equals PL. This implies that

A intersects each fiber in a projective linear subspace.   D

The proof of the previous proposition shows that, if A is an attractor in PE and

L is a two-dimensional subspace in E with A n PL = {Pe}, then Pe is a backward

explosion point in PL. This means that the diameter of PW ■ t tends to zero as t

goes to -oo for any closed subset PW £ PL\{Pe}. Two typical examples are

illustrated in Figure 5. The concept of a backward (forward) explosion point has

been introduced by Charles Conley. It has also been discussed by Selgrade [11].

Assume that M is a compact metric flow. An (e, P)-chain from x £ M to y £ M

consists of a sequence x0, ...,xk in M and a sequence t0,..., tk_x in R such that

x0 = x, xk = y, tj ^ T and d(xj ■ t}, xj+x) si e fear j = 0,..., k — 1. Let X £ M be

any subset. Then S2( X) denotes the set of all points y £ M such that for every e > 0

and every T > 0 there exists an (e, P)-chain from some point in X to y. Likewise,

fi*(A) denotes the set of all points y g M such that for every e > 0 and every

T > 0 there exists an (e, P)-chain from y to some point in X. In [4, II, 6.1, C] C.
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Conley has shown that

Q(X) = Di A c M\A is an attractor, u(X) c A),
(2.15) ,  ;'     ; ' '\

Sl*(X) = f){A* cM|A*isarepeller, u*(X)<z A*}.

The flow on M is said to be chain recurrent if x G fi(x) for all x £ M or

equivalently M = A U A* for every attractor-repeller pair A, A* in M. The flow on

M is said to be chain transitive if y g ü(x) for all x, j G M or equivalen tly A = M

and A = 0 are the only attractors in M. Note that the flow on M is chain

transitive if and only if it is chain recurrent and M is connected.

With these preparations we are in the position to state a very useful lemma which

is due to Selgrade [11]. For the sake of completeness we include the proof.

Lemma 2.10. If L   c Ep is a linear subspace and q £ ß(p), then

Lq= [e £ Eq\e £ Z => Pe £tt{PLp)}

is a linear subspace of Eq and dim Lq > dim Lp.

Proof. Since Q(PLp) is the intersection of attractors, it intersects each fiber in a

projective linear subspace (Proposition 2.9). Therefore, Lq is a linear subspace of E .

Now let us define the set Lq(e, T) to be the closure of all points e £ Eq such that

there exists an (e, P)-chain from some point in Lp to e • (-T). Then for every

e g Lq(e,T)\Z there exists an (e, T)-chain from some point in PLp to Pe. This

implies f\ e N Lq(\/n, n) c L . Now the following construction shows that Lq(e, T)

contains a linear subspace of dimension at least that of Lp. First note that, by (2.15),

fi(p) is an invariant set and hence q • (-T) £ &(p). Secondly, choose 8 > 0 such

that da(e,e')^ 8 implies d(e,e')^ e whenever e, e' g Ua. Then there exists a

(8, P)-chain p0,..., pk, t0,..., tk_x from p to q ■ (-T) such that pj_1 ■ tj_x and p,

lie in the same set Ua for j' = 1,..., k. Given any e g Lp define the sequence

e0,...,ek in E such that e0 = e, 77(e7) = py and that <pa (ey) coincides with

cpa(ej_x • tj_x) in the K-component for j = l,...,k. Then it follows from

the choice of 8 that this sequence defines an (e, P)-chain from e £ Lp to ek g

77-1(<7 • (-T)), and therefore e' = ek ■ T £ Lq(e, T). Furthermore, the points e' g

7T~l(q) obtained this way form a linear subspace of the same dimension as Lp.

We conclude that the set Qq(e,T) of w-dimensional linear subspaces of Eq

contained in Lq(e, T) is nonempty for m = dim Lp. Therefore the intersection of the

decreasing sequence £ (1/w, n) of nonempty compact sets is nonempty. This proves

the statement of the lemma.   G

Note that the statement of Lemma 2.10 remains valid if fi(p) and ü(PLp) are

replaced by «(p) and u(PL ), respectively. In that case the proof becomes much

simpler.

The main difference between the previous results of this section (Lemma 2.5,

Theorem 2.7 and Lemma 2.8) and those by Selgrade [11] is that we do not assume

the flow on S to be chain transitive. Using Lemma 2.10 we shall recover some of

Selgrade's results.
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Corollary 2.11. Let A be an attractor in PE. Then

Ap= (e £ Ep\e <£ Z => Pe £ A}

is a linear subspace of Ep for every p £ S and dim Aq > dim Ap, q £ £2(p).

Proof. It follows from Proposition 2.9 that A is a linear subspace of E .

Furthermore, since A is an attractor containing co(PAp), it follows from (2.15) that

ti(PAp) c A and hence {e £ Eq\e £ Z => Pe £ &(PAp)} c Aq. Therefore we ob-

tain from Lemma 2.10 that dim Aq > dim A .   □

Corollary 2.12. IfZ is an isolated invariant set in E and E" is a subbundle then so

is Es and

(2.16) £ = £*©£".

Proof. Suppose that the dimension of Ep = Es n Ep is less than dim E - dim E"

for some p g S and define

Lp= {eG£|77(e)=p,e±£;}.

Then dim Lp > dim£". Furthermore, PLp n PES = 0 and therefore u(PLp) C

PE" (Theorem 2.7). By (2.15) this implies that ti(PLp) c PE" and hence, by

Lemma 2.10, dim £" > dim Lp which is a contradiction. Therefore dim Ep = dim £

— dim £ " for all p £ S and thus the statement of the corollary follows from Lemma

A2.    D

Theorem 2.13. We consider a continuous linear flow on the vector bundle it: E -> S

over a compact metric space S. Then the zero-section, Z c £, is an invariant set and

the stable and unstable invariant sets of Z are defined by

Es = (eG£|0 *«(e)cZ},    £"= (eG£|0 =¿ «*(e) c Z}.

If the flow on S is chain transitive, then Z £ E is an isolated invariant set if and only if

(i) Es andE" are subbundles of E with E = Es © £" and,

(ii) there are positive constants K and e such that

||e- r||< Ä"exp(-c/)||e||    if e £ Es and t ^ 0,

II*-(-O II < A"exp(-£/)||e||    ife£ £" and t > 0.

Proof. If Z is an isolated invariant set in £ then £" is closed (Lemma 2.5) and

PE " is an attractor in PE (Theorem 2.7). Since the flow in S is chain transitive this

implies that the dimension of Ep = E" n E is independent of p £ S (Corollary

2.11). Therefore E" is a subbundle of £ (Lemma A2) and so is Es and (2.16) holds

(Corollary 2.12). Conversely, it is a trivial consequence of (2.8), (2.9) and (2.16) that

every bounded orbit in £ lies in Z.   D

As a special case of Corollary 2.13 consider the almost periodic differential

equation

(2.17) x = A(6)x,        èj-aj,        j=l,...,m,

on Tm X R" where x g R" and 6 £ Rm represents the component in Tm = Rm/Zm.

We assume that A(0 + ef) = A(6) for j = 1,..., m where e} £ Rm denotes the jlh

unit vector. Then the flow on the base Tm is chain transitive and hence (2.17)
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defines a hyperbolic flow if and only if every solution (x(t),0(t)), t £ R, of (2.17)

with a bounded x-component satisfies x(t) = 0. This corresponds to a finitely

generated frequency module for the almost periodic matrix function, £(0 =

A(uxt,..., «OTr). If £(») is an arbitrary almost periodic matrix then the differential

equation x(t) = F(t)x(t) can also be formulated in the framework of this section

but the base space becomes more complicated. The interested reader is referred to

Johnson and Moser [8].

As a side remark we point out that the spectrum of a flow on £ mav be defined

by

a ( £ ) = ( X £ R | Z is not an isolated invariant set

for the flow (e,t) -» exp(-A»)e • i}.

The spectrum has been discussed in some detail by Sacker and Sell [13] and by

Selgrade [11]. It depends on £ as well as on the flow but there should not arise any

confusion since in this section we consider only one flow on £.

It follows from Lemma 2.2 that a(E) is bounded and from Lemma 2.8 that a(E)

is closed. If S consists of a single point then a(E) corresponds to the real parts of

the eigenvalues of the induced linear flow on V. Of course, Z is an isolated invariant

set if and only if 0 £ o(E). Furthermore, the spectrum of the invariant subsets £"

and Es can be defined analogously and we obtain a(E) = a(Es) U a(E"), a(Es) c

(-oo,0) and a(E") c (0, oo). In general, the spectrum of an attractor in PE need

not be disjoint from the spectrum of its complementary repeller. An example can be

constructed as follows with a chain recurrent flow in the base space.

Example 2.14. Consider the differential equation

(2.18) x = sin2277x,    y = (cos2irx)y,    i = (2 + cos2ttx)z

as a flow on the vector bundle £ = Sl X R2, S1 = R/Z, where x G R represents the

S^component. See Figure 6. Define the subbundles Ey = Sl X R X 0 and Ez

= S1 X 0 X R. Then the projectivized equation

(2.19) sin2277x,    Ti = -2f27,,    f = 2r)2f,    v2 + f2 = 1,

shows that P£z is an attractor in PE and PEy is its complementary repeller.

Furthermore, it follows from (2.18) that a(Ey) = [-1,1] and a(Ez) = [1,3].

Figure 6
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At the end of this section we indicate how similar ideas can be applied to

Hamiltonian systems on R2". Let the function H: R2n — R be twice differentiable

and denote its arguments by z = (x, y) £ R2" where x £ R" and y £ R". Consider

the differential equation

(2.20) z = JHz(z),

(2.21) t = JH„(z)S

on R4"  where { = (í,i))eR2"  is to be understood as a tangent vector and

J g R2"x2" denotes the symplectic matrix

A Lagrangian plane L c R2" is an «-dimensional subspace with the property

(fo> ^£1) = 0 f°r au £o>fi G £• Note that any subspace L with this property is at

most of dimension n since 7f is orthogonal to L for every I £ L. Furthermore, the

flow defined by (2.20), (2.21) maps Lagrangian planes into itself since the expression

(f0(/), JÇx(t)) is constant for any two solutions Ç0(t), Çx(t) of (2.21) over the same

solution z(t) of (2.20). Now let £ c Gr„(R2") denote the space of Lagrangian

planes. Then the differential equation (2.20), (2.21) induces a flow on the bundle

R2" X £ and one can study how isolated invariant sets, attractors, repellers, explo-

sion points in this flow can be characterized. Of course, the same question can be

posed in the context of a Hamiltonian system on an arbitrary symplectic manifold.

In particular, one might consider the case that the function H is periodic with period

1 in all variables and study the differential equation (2.20) on the torus T2" =

R2yz2".

3. Hyperbolic invariant sets. Let M be an «-dimensional, smooth, compact

manifold without boundary and let X: M -> TM be a smooth vector field. Whenever

necessary, we will assume that M is equipped with a Riemannian metric.

Let 77: TM -* M and 77*: T*M -» M be the canonical projection maps and let

(v*,v) stand for the duality pairing between v* e T*M and v e T M. For any

subset N c M we denote by TNM and T£M, respectively, the (co)tangent bundle of

M restricted to N. The corresponding projectivized bundles will be denoted by PNM

and P*M. In particular, PM = PMM can be obtained from the sphere bundle

2M= {(JG TM\(v,v) = 1}

by identifying v with -v. Note that in this case the inner product (v0,vx) for

v0,vx G T M is induced by the Riemannian metric.

We will always denote the local coordinates of v g TpM and v* £ T*M by

(x, £) g R" x R" and (x, £*) g R" x R"*, respectively, where x g R" denotes the

local coordinates of p = 77(1») = 77*(v*) £ M. A tangent vector w £ TV*T*M will in

local coordinates be represented by {x, £*, y, if) g R" x R"* X R" X R"*. Finally,

let (x, /(x)) denote the local coordinates of X(p) £ TM.

On M, TM and T *M, respectively, we consider the differential equations

(3.1) x=/(x),

(3.2) x=/(x),        i = df(x)t,
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(3.3) *-/(*),       k* =-ü*df{x),

and denote the corresponding flows by p ■ t, v ■ t and v* ■ t for p £ M, v £ TM,

v* g T*M and t £ R. The fundamental duality relation between (3.2) and (3.3) can

be expressed by the identity

(3.4) (v* ■ t,v ■ t) = (v*,v)

for all v £ TM, v* £ T*M with tt(v) = tt*(v*) and all t £ R.

Equation (3.3) can be understood as a Hamiltonian system in the following way.

There exists a unique 1-form \: TT*M -* R such that a*X = a for every 1-form a:

M —> T*M. The 2-form « = dX defines the standard symplectic structure on T*M.

Given any Hamiltonian function h: T*M -> R a Hamiltonian vector field Xh:

T *M -* TT *M can be defined by

(3.5) u(w,Xh(v*)) = Th(v*)w,       w£TL,,T*M.

The corresponding flow on T*M has the property that the energy h remains

constant along its orbits.

Note that, in local coordinates, X and « are given by X(w) = £*y and u(w0,wx)

= -q*,yx - tj*j>0. Therefore the right-hand side of (3.3) defines a Hamiltonian vector

field on T*M. In this case the Hamiltonian function «: T*M -> R is given by

(3.6) h(v*) = (v*,X(p)),       v*eT*M,

or in local coordinates h(v*) = £*/(x).

We will now introduce the topological concept of a weakly hyperbolic invariant

set.

Definition 3.1. Let S c M be a compact invariant set (not necessarily isolated)

and suppose that X(p) # 0 for all p £ S. Let £° c TSM and £0* c T*M be

defined by

(3.7)

£°= {cX(p)\p£S, cgR},    £0* = {v* G T*M\(v*,X(tt*(v*))) = O}

and note that both subbundles are invariant under the respective flow. Then S is

said to be weakly hyperbolic for equation (3.2) if the zero section in the quotient

bundle TSM/E° is an isolated invariant set. 5 is said to be weakly hyperbolic for

equation (3.3) if the zero section in the subbundle £0* is an isolated invariant set.

Note that the projection of a vector u £ TpM on the orthogonal complement of

X(p) is given by v - \\X(p)\\~2(v, X(p))X(p) and the norm of this vector is the

square root or \\v\\2 - \\X(p)\\~2(v, X(p))2. Therefore a compact invariant set

S c M is weakly hyperbolic for equation (3.2) if and only if

(3.8)    £° = {íjg PsM|3ä:> OVíg R||íj-/||2

-\\X(p ■ t)f2(v -t,X(p- t))2 ^K,p = tt(v)).

This implies that every bounded orbit in TS lies in £°. But the following example

shows that the latter condition is not enough to guarantee weak hyperbolicity.
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Example 3.2. Consider the differential equation

x = sin277>',        £ = 27T(cos2rry)i}

y = 0, rj = 0

for [x, y] £ T2 = R2/Z2 = M and (£,r,) £ R2 and define S = {[x, y]\y = 1/8}.

Then sin 277_y = cos27rj = 1/ y2~ for [x, y]£ S and therefore the bounded orbits in

TSM = S X R2 lie in £° = S X R X (0}. But the induced flow on TS/E° is

constant so that the zero section is not an isolated invariant set.

Recall from [4] that a Morse decomposition of a compact flow M is an ordered

collection A,,..., Am of isolated compact invariant sets such that for every x g

M\U Aj there exist indices i <j with «(x) c A,-, «*(x) C Ay. Equivalently, the

sets

Aj = [x £ M|«*(x) c A, U ••• UA7},        j = 0,...,m,

define a filtration of attractors in M with A0= 0, Am = M and A._x c Ay for

7 = l,...,m. Note that A- is the complementary repeller of A}_x in Ay- for

j = 1,..., m.

Theorem 3.3. Let S ci M be a compact invariant set such that X(p)J= 0 for all

p £ S and let £° C TSM be defined by (3.7). Then S is weakly hyperbolic for equation

(3.2) // and only if there exist closed subsets Es and E" of TSM which intersect each

fiber in a linear subspace and satisfy

(i) the ordered triple PE", PE°, PES is a Morse decomposition of PSM,

(ii) lim,^„ ||t; • i|| = 0 Vt; g Es, \im,^_J\v ■ t\\ = 0 Vv £ £".

// these conditions are satisfied then

(3.9) Es = lv£ TSM\ lim \\vt\\ = o),

(3.10) E"=[v£TsM\   lim   ||tw|| = o)
v l->-ao I

and there exist constants K > 0, e > 0 such that

(3.11) ||i; ■ r||< tfexp(-er)||(;||    Vu g Es, t ^ 0,

(3.12) ||i;-/||<Ä'exp(8/)||ü||    Vü g E", t < 0.

Proof. Let us first assume that £* and £" are closed subsets of TSM which

intersect each fiber in a linear subspace and satisfy the conditions (i) and (ii).

Moreover, define the subsets

£J = {v G rsM|||t;||* 0 => co(Pv) n PE" = 0},

£"= {v £ TsM\\\v\\* 0 => «*(P/j) nP£J =0),

of PSM. Then PES is the complementary repeller of PE" in PSM and PE" is the

complementary attractor of PES. Hence it follows from Proposition 2.9 that Es and

£ " intersect each fiber in a linear subspace. Furthermore, we obtain from condition

(i) that Ês n Ë" = £° and that P(£"/£°) is an attractor in the projectivized

quotient bundle P(TSM/E°) and that P(ES/E°) is its complementary repeller.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



638 DIETMAR SALAMON AND EDUARD ZEHNDER

Now we will show that

(3.13) Ë* = E'®E°,        £"=£"©£°.

Assume first that v £ Es © £° and ||t;|| # 0. Then Pv ■ R c P(ES © £°) and hence

u(Pv) n PE" = 0. This implies t; g £J and thus £s © £° c £s. Now let L c TpM

be the orthogonal complement oî Es n TpM in Ê~s n TpM. Then PL n PES = 0

and hence cc(PL) c P£°. Now the remark following Lemma 2.10 shows that

dim L < 1. This proves Es = Es ® £° and the second assertion in (3.13) follows by

duality.

Equation (3.13) and condition (ii) imply that

lim [||íj-»||2-|| A(p-í) |f 2<tJ- t,X(p-t))2\ =0
/-»oo

for every v £ Es Pi TpM and an analogous statement holds for v £ £". Hence the

subsets Es/E° and £"/£° of the quotient bundle TSM/E° satisfy all the require-

ments of Theorem 2.7. Therefore the zero section in  TSM/E°  is an isolated

invariant set and

(3.14)

Es = {v £ TSM\ lim

(3.15)

E" = lu g TSM\ lim
I (-»-OO

|t; ■ if - \\X(tt(v) ■ t) \\~2(v ■ t, X(ir(v) ■ t))2\ = 0\,

\v t\\   -\\X(ir{v)-t)\\~ (vt,X(<TT(v)-t))2\ =0

Furthermore, it follows from Lemma 2.5 that there exist constants K0 > 0, e > 0

such that

\\vtf-\\x(P-t)\\-2(vt,x(p-t)y

(3.16) <^2exP(-2e0[lkl|2-|l^(p)ir<^^(p)>2],

v G Es n TpM, t ^ 0,

and

\\vtÍ-\\X(p-t)\\2(vt,X(p-t))2

(3.17) <^02exp(2£r)[||t;||2-||A'(p)|r2<t;,A'(p)>2],

v g £" n r^M, r < o.

We will use these inequalities for proving (3.11) and (3.12). For this purpose note

that

a = sup{||A-(p)|f2<i;, A(p))2|t; G E\ \\v\\= 1, p = tt(v)} < 1

and hence

(1 - «)H|2 <H|2 -||A-(p)|f2(t;, X(p))2,        p = 77(t;),

for all v £ Es. Therefore (3.11) follows from (3.16) with K = K0/ A - a. In the

same way (3.12) follows from (3.17).
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In order to establish (3.9), suppose that hm,_>00||i; • r|| = 0. Then it follows from

(3.14) that v £ Es. Now we obtain from (3.13) that v = vs + cX(p) for some

vs g Es and some c g R. But this implies lim,^00|c|||A'(p ■ i)|| = 0 and hence

c = 0. We conclude that v = vs £ Es and therefore Es is given by (3.9). Equation

(3.10) can be established analogously.

It remains to prove that the conditions (i) and (ii) are necessary for weak

hyperbolicity. For this purpose let us assume that the zero section in TSM/E° is an

isolated invariant set and let Es, E" and Es, E" be defined by (3.9), (3.10) and

(3.14), (3.15), respectively. Then it follows from (3.8) that £J n £" = £°. Further-

more, it follows from Lemma 2.5 and Lemma 2.8, applied to the quotient bundle

TSM/E°, that there exist constants K0 > 0, e > 0 such that (3.16) and (3.17) are

satisfied as well as

hm exp(-2er)[||t; • tf -\\X(p ■ t)\\'\v ■ t, X(p ■ t))2} = oo,

v g TSM\ES, p = tt(v),

and

lim   exp(2cf) ||i> • HI   -^(p-i)!!   (v ■ t, X(p ■ t))2\ = oo,
(3.19)      '--°o L J

v£ TSM\E", p = tt(v).

We will now prove that the zero section in TSM is an isolated invariant set with

respect to the perturbed flow which maps v £ TSM and t £ R into exp(p»)t; ■ »,

provided that 0 < |p| < e. In fact, if exp(p/)||t; • r|| < 1 and -e < ¡x < s then it

follows from (3.18) and (3.19) that v £ Ë~s n E" = £°. If in addition p * 0, then

this implies ||tj|| = 0.

Defining

Es = (v g PSM| lim exp(pr)||i; • t\\= o),

£;={t;GrsM| lim   exp(pí)lk • t\\ = o),

we obtain from Theorem 2.7 that PE" is an attractor in P<.M and P£,f is its

complementary repeller, provided that 0 < |p| < e.

Our next aim is to establish that E£ = £", E¿ = Es, 0 < ¡u < e. First of all it

follows directly from the definitions along with (3.18) and (3.19) that £° c E¡¡ c E"

and £; c Es c E~s for 0 < p < e. Now let v £ TSM\E¿ be given. Then

||t; • f||_1i; • t converges to £^ as ' goes to -oo. From this we conclude that

P(£¿ © E°/E°) is a repeller in the projectivized quotient bundle P(TSM/E°)

whose complementary attractor is contained in P(£"/£°). Taking into account that

P(£y£°) is also a repeller in P(TSM/E°) containing P(£¿ © E°/E°) and whose

complementary attractor P(£"/£°) contains P(E^/E°) we obtain E" = £" and

£s = £; © £° = E" © £°. Since £; c £* we conclude that £; = £s. This proves

the desired equations.
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Figure 7

Hence PE" is an attractor in PSM and PES is its complementary repeller. With

the same methods one can show that PE " is an attractor in PSM with complemen-

tary repeller PES. Since PE" n PES = P£° we conclude that the ordered triple

PE", P£°, PE5 is a Morse decomposition of PSM. This finishes the proof of

Theorem 3.3.    D

In fact, we have proven a little more than what is stated in Theorem 3.3, namely

Corollary 3.4. Let S c M be a weakly hyperbolic invariant set for equation (3.2)

and let the subsets E°, Es, E" of TSM be defined by (3.7), (3.9), (3.10). Then

E~s = Es © £° is given by (3.14) and £" = E" © £° by (3.15). Furthermore,

P(ES © £°) is the complementary repeller of PE" and P(E" © £°) is the comple-

mentary attractor of PES in PSM.

Proof. Proof of Theorem 3.3.   □

The Morse decomposition PE", PE°, PES of PSM is illustrated in Figure 7, a

diagram of the induced flow on the sphere bundle 2M. Since the imagination of the

authors is unfortunately restricted to three dimensions, the reader will have to

content himself with the diagram of a single fiber.

Theorem 3.3 shows that the only difference between weak hyperbolicity and the

classical concept of a hyperbohc invariant set (see below) is the bundle property of

the stable and unstable manifolds Es and E" of the zero section in TSM.

Lemma 3.5. Let S £ M be a compact invariant set such that X(p) =h 0 for allp £ S

and let E° c TSM and E* C T*M be defined by (3.7). Then the following statements

are equivalent.

(i) TS decomposes into three invariant subbundles Es, £° and E" such that the

inequalities (3.11) and (3.12) are satisfied for some constants K > 0 and e > 0.
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(ii)  £0*  decomposes into two invariant subbundles E^s and £0*" such that the

following inequalities hold for some constants K > 0 and e > 0

(3.20) \\D*-t\\£Kexp(-et)\\o*\\    Vi;* g £** V? > 0,

(3.21) \\v* -/||< Jfexp(e/)||i>*||    Vt;* g E*u V» < 0.

If these conditions"are satisfied then S is said to be a hyperbolic invariant set.

Proof. Let us first assume that statement (i) is satisfied. Then £0* decomposes

into the subbundles

£<?*= [v* g£*|i;* ± Es n TpM, p = tt*(v*)},

E*"= [v* G£0*|t;* ±E"C\ TpM, p = <rr*(v*)},

and it remains to establish (3.20) and (3.21). For this purpose let us first show that

there exists a constant 8 > 0 such that

8||u*||< sup{(i;*,i;>|u g Es, \\v\\= 1, 77(1;) = 77*(t;*)}

for all v* g £0*". Otherwise, there would exist a sequence vf £ £0*" such that

\\v^\\ = 1 and sup((t;^, f)|t; g Es, \\v\\ = 1, 77(1») = tt*(v*)} tends to zero. Any

limit point v* £ £0*" of v*k would then annihilate (Es + £° + £") n TpM - TpM,

p = ir*(v*), and therefore be in the zero section of TS*M, contradicting ||ir*|| = 1.

Now let v* £ £0*" and KO be given and choose v g Es such that vr(v) =

tt*(v* ■ t), \\v\\ = 1 and 5||t;* ■ i|| < (v* ■ t, v). Then it follows from (3.4) and (3.11)

that

||v* ■ r||< 8~\v* ■ t,v) = 8-\v*,v{-t)) < /sTÔ"1 exp(ei)||t;*||.

This proves (3.21) and (3.20) can be established analogously.

Conversely, suppose that statement (ii) is satisfied and define the invariant

subbundles

Es = [v G PsM|t; 1 £0*s n T*M, p = tt(v)},

E"= [v£ TsM\v ± £0*M n T*M, p = 77(1;)}

of TSM. Then Es n E" = £° and Es + E" = TpM. Furthermore, one can show as

above that there exists a constant 8 > 0 such that the following inequality holds for

every v £ E" and p = ir(v)

s2[HI2-||*(p)lfV.*(p)>2l

< sup{(t;*,t;)2|t;* G E*s, tt(v*) = p, \\v*\\= l}.

Now let v g £" and / < 0 be given and choose v* g £0*j such that 7r*(t;*) =

tt(v ■ t) = p • t, \\v*\\ = 1 and

52[||t; • tf -\\X(p ■ t)\\~2(v ■ t,X(p ■ t))2\ < (v*,v t).
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Then it follows from (3.4) and (3.20) that

||t; • tf -\\X(p ■ t)\\~\v ■ t,X(p ■ t))2 < 5"2(t;* -(-t),v)2

<r2||t;*-(-/)||2[||t;||2-||Ar(p)ir2<t;,A'(p))]2

<^2r2exp(2£0[||t;||2-|!A(p)!r2<t;,X(p)>2].

This proves (3.17) with K0 = K8'1. The inequality (3.16) can be established analo-

gously.

Now let v £ TSM be given, define p = tt(v) and suppose that

sup (||t; ■ ?||2 -\\X(p ■ t)f2(v ■ t, X(p ■ t))2\t g Rj < oo.

Furthermore, note that v = vs + vu for some vs £ Es and vu£ E". Then it follows

from (3.16) that

sup{|k ■ if - \X(p ■ t) f2(vu -t,X(p- t))2\t > 0} < oo

and hence we obtain from (3.17) that vu £ £°. This implies v £ Es and it follows

again from (3.16) (negative time) that v g £°.

We conclude that the zero section in the quotient bundle TSM/E° is an isolated

invariant set. Analogous arguments show that £s is given by (3.14) and £" by

(3.15). Now let Es and E" be defined by (3.9) and (3.10), respectively. Then it

follows from Theorem 3.3 that the inequalities (3.11) and (3.12) are satisfied.

Furthermore, Corollary 3.4 shows that £s = £° © Es and £" = £° © £". There-

fore Es and E" are subbundles of TSM (Lemma A2) and satisfy TSM = Es © £°

© E". This proves Lemma 3.5.   □

The proof of Lemma 3.5 shows that every hyperbolic invariant set S £ M is

weakly hyperbolic with respect to both equations (3.2) and (3.3). In this context it

would be interesting to know whether a compact, connected invariant set S c M is

hyperbolic if it is weakly hyperbolic with respect to both equations (3.2) and (3.3).

The next result shows that all three notions of hyperbolicity are equivalent if the

flow on S is chain transitive.

Corollary 3.6. Let S £ M be a chain transitive, compact invariant set such that

X(p) # 0 for all p £ S. Then the following statements are equivalent,

(i) S is hyperbolic.

(ii) S is weakly hyperbolic for equation (3.2).

(iii) 5 is weakly hyperbolic for equation (3.3).

Proof. It follows from Lemma 3.5 that (i) implies (ii) and (iii). Furthermore, it

follows from Theorem 2.13 that (iii) implies (i). Finally, it follows from Theorem 3.3,

Corollary 2.11 and Corollary 2.12 that (ii) implies (i).   D

Our next aim is to prove a topological perturbation theorem for hyperbolic

invariant sets. For this purpose we consider the parametrized differential equations

(3.22) x=f(x,X),

(3.23) x=f(x,X),       è = dJ(x,X)L

(3.24) x=/(x,A),        t = -è*dxf(x,X),
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on M, TM and T*M, respectively, corresponding to a continuous family Xx:

M -* TM, À g A, of smooth vector fields on M. The corresponding flows will be

denoted by (p, X) ■ t g M, (v, X) ■ t £ TM and (v*, X) ■ t £ T*M for p £ M, v £

TM, v* g T*M, r g R and À g A. We assume that the parameter space A is a

compact metric space.

Theorem 3.7. Suppose that S0£ M is a weakly hyperbolic invariant set for the

equation (3.24) at X = A0. Then there exist neighborhoods U of S0 in M and W of X0

in A such that every compact set S £ U which is invariant under (3.22) with X £ W is

again weakly hyperbolic for equation (3.24).

Proof. Suppose that the statement of the theorem were false, then there would

exist sequences v* £ T*M and Xk£ A such that Xk converges to X0, (vf, X(pk))

= Oand

d((pk,Xk)-t,SQ)^l/k    ViGRV/cGN,

sup{|(t;*,A,)-í||íGR} =1    V/cGN

where pk = tt*(v*.) £ M. Now choose any ¿3*. £ c\{(v^, Xk) ■ R) such that ||ôj|| = 1.

Then the inequalities (3.25) are still satisfied with t;* replaced by v% and pk = tt*(v*).

Moreover, (v*, X(pk)) = 0. Therefore any limit point v* £ T*M of /)*. satisfies

||(u*, X0) • i|| < ||ir*|| = 1, p = it*(v*) £ S0 and (v*, X(p)) = 0. This contradicts

the assumption that S0 is a weakly hyperbolic invariant set for equation (3.24) at

X = XQ.    D

An analogous perturbation theorem for invariant sets which are weakly hyperbolic

with respect to equation (3.23) can be proved in exactly the same manner as

Theorem 3.7. We will however give a completely different proof using a perturbation

result for attractor-repeller pairs which is due to Conley [4]. This proof shows that

the stable and unstable sets Es and E" of the perturbed invariant set lie close to

those of the unperturbed invariant set. We will first formulate Conley's perturbation

result for attractor-repeller pairs.

Lemma 3.8 [4, II.5.3.C]. Let S be a compact invariant set in a compact flow M, let

A, A* be an attractor-repeller pair in S and let U and U* be disjoint compact

neighborhoods of A and A*, respectively, in M. Then there exists a neighborhood W of

S in M such that, if S is any compact invariant set in W then A = u>(S C\U) c U is an

attractor in S and A* = u*(S nil*) £ U* is its complementary repeller. See Figure

8.

We point out that the statement of Lemma 3.8 in [4] is formulated without the

requirement A £ U. However, there exists a T > 0 such that (U n S) ■ T c intU

and therefore (U n 5) • T £ int U if W is chosen small enough. By [4, II.5.1.C], this

shows that A = u(U C\ S) £ U. The inclusion A* £ U* follows from similar

arguments.
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Figure 8

For any compact set S £ M which is invariant under (3.22) with X £ A we define

the subsets

(3.26) E°(S,X)= {cXx(p)\p£S, c£R),

(3.27) ES(S,X)= (v£TsM\ lim  \\(v, X) ■ t\\ = o),
v /->oo I

(3.28) E"(S,X) = lv£TsM\ lim   \\(v, X) ■ 11| = o)
v /-»-oo /

of TSM. Moreover, a subset U £ TM is said to be a cone if v £ U implies cv £ U

for all c £ R.

Theorem 3.9. Suppose that S0 £ M is a weakly hyperbolic invariant set for equation

(3.23) at X = A0. Moreover, let U°, Us and U" be closed cones in TM such that PU°,

PUS and PU" are disjoint compact neighborhoods of PE°(S0, X0), PES(S0, X0) and

PE"(S0, A0), respectively, in PM. Then there exist neighborhoods UofS0 in M and W

of X0 in A such that every compact set S £ U which is invariant under (3.22) with

A g Wis weakly hyperbolic for equation (3.23) and satisfies E°(S, X) c U°, ES(S, A)

c UsandE"(S,X)£ U".

Proof. Let us first choose closed cones Us and U" in TM such that PUS is a

neighborhood of P(ES(S0, A0) © £°(S0, A0)), PÜ" is a neighborhood of

P(E"(S0, A0)ffi£°(S0,A0)) and PÜS n PU" = 0, PÜ" D PUS = 0, PÜS n

PU" c PU°. Moreover, it follows from Theorem 3.3 that there exist constants

a < 1, T > 0 such that ||(u, A0) • P|| < a||u|| for all v £ ES(S0, A0) and ||(i;, A0) •

(-P)H < a||t;|| for all v £ E"(S0, A0). Hence we can assume without loss of general-

ity that

||(t;,A0)-r||<a||i;||   We[/',        \\(v, A0) •(-£) || < a||t;||    Vv £ Uu.
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Finally, we assume that U° is chosen small enough such that every linear subspace

of a fiber TpM contained in U° is at most one dimensional.

Now we can apply Lemma 3.8 to the compact invariant set PS(¡M X A0 in the flow

PM X A. We conclude that there exist neighborhoods U of S0 in M and W of A0

in A such that, if PSM X A is any compact invariant set in PVM X W, then

o)(PsM n PÜ" X X) = Äc PÜ" X X is an attractor in PSM X X with complemen-

tary repeller

u*(PsM n PUS X A) = A* c PUS X X

and likewise u>(PsM n PU" X X) = A c PU" X X is an attractor in PSM X X with

complementary repeller u*(PsM n PUS X A) = A* c PUS X X. Furthermore, we

assume that U is chosen small enough such that 0 ¥= X(p) £ U" (~\ Us for all

p £ U and W is chosen small enough such that

(3.29) ||(i7,X) ■ P||<a||/j||    Vi> g Us VA g W,

(3.30) ||(ü,X)-(-r)||<aH|    Vtj g U" VA g W.

Then A C\A* intersects each fiber in a projective linear subspace (Proposition 2.9)

and  contains   PE°(S,X)xX.   Since  ADA* £ PU° X X we  obtain   ÄDÄ* =

PE°(S, X) X A. Hence it follows from (3.29) and (3.30) that the subsets

Es = {v£ TsM\u± 0 => (Pu, A) £A} £ Us,

E" = ( v £ TsM\v # 0 => (Pv, X) g A* } c U".

Satisfy all the requirements of Theorem 3.3- Therefore it follows from Theorem 3.3

that S is weakly hyperbolic for equation (3.23) and that ES(S, X) = Es £ Us as well

as£"(S,A) = £"c U".   □

The refined perturbation Theorem 3.9 will be used to derive a perturbation result

for hyperbolic invariant sets.

Theorem 3.10. Suppose that S0£ M is a hyperbolic invariant set for equation (3.22)

at X = A0. Then there exist neighborhoods U of S0 in M and W of A0 in A such that

every compact set S c U which is invariant under (3.22) with A G W is hyperbolic.

Proof. Define m = dim ES(S0, A0) and k = dim £"(S0, A0) and note that m + k

+ 1 = n. Now choose closed cones U°, Us, U" in TM as in Theorem 3.9. These

cones can be chosen small enough such that dim L ^ m for every linear subspace L

of a fiber TpM with L £ Us and analogously dim L ^ k if L £ U" and dim L < 1

if L £ U°. Now choose neighborhoods U of S0 in M and W of A0 in A such that

the statement of Theorem 3.9 is satisfied and let S c U be a compact set which is

invariant under (3.22) with X £ W. Then S is weakly hyperbolic with respect to

equation (3.23) (Theorem 3.9) and it remains to show that £^5, A) and £"(5, A)

are subbundles of TSM (Theorem 3.3). First note that ES(S, A) c Us and £"(S, A)

c [/"and therefore dim(£f(5, A) n TpM) < m and dim(£"(S, A) n TpM) < k for

every p £ S. Now suppose that dim(Es(S, X) n T M) < m for some p £ S and let

L£ TpM be the orthogonal complement of (ES(S,X) ® E°(S,X)) n TpM. Then it

follows from Corollary 3.4 that w(PL) c PE"(S, X) and therefore fi(PL)c

PE"(S, A). Hence it follows from Lemma 2.10 that

dim(£"(S,A)n T M) > dim£> n - m - 1 = k
License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



646 DIETMAR SALAMON AND EDUARD ZEHNDER

for q g Q(p) £ S. This contradiction shows that dim(£s(S, A) n TpM) = m for ail

p £ S and therefore ES(S, X) is a subbundle of PSM (Lemma 1.4). In the same way

one can prove that E"(S, X) is a subbundle of TSM and therefore S is a hyperbolic

invariant set.    D

A special case of Theorem 3.10 is that M itself is a hyperbolic invariant set for the

vector field X: M — TM. In this situation the vector field X is said to be Anosov. In

this situation Theorem 3.10 states that the set of Anosov vector fields is open in the

set of all vector fields with respect to the C "-topology which is, of course, well-known.

Note that our proof of this result is, however, based on topological methods.

Finally, we point out that related results have been discussed by Fenichel [5] and

Floer [6, 7], as well as Churchill, Franke and Selgrade [12].

Appendix.

Vector bundles. Let V be a finite dimensional Hilbert space over the reals R. Let S

be a compact metric space and 77: £ -> S be a vector bundle over S with fiber V.

This means that there exists a finite open cover {Ua\a £ A} of M and homeomor-

phisms <pa: 77_1([/a) — Ua X V such that the diagrams

»-1(I>«)      *      UaXV

commute and the maps Lßa(p): V -» K defined by <Pß<p~1(p, v) = (p, Lßa(p)v) are

linear for p £ UaC\ Uß. Without loss of generality we can assume that <pQ extends to

a homeomorphism of cl(77_1([/a)) onto cl([/a) X V for all a. At some places we use

the notation E  = tt~1(p) for p £ S.

The zero section of £ is defined by

Z = (e G £|(pQ(e) = (77(e),0) whenever 77(e) g Ua)

and is the homeomorphic image of S under the map a: S -> £ defined by

°(p) = <p:1(p,o),      P^Ua.

Note that the fiber Ep can be given a vector space structure by defining

ce = cp'1(p,cv),        e + e' = <p_1(p, v + v')

for e = <pl\p,v) £ Ep and e' = <p-\p,v') £ E.

A continuous, positive definite bilinear form on £ is given by

<*,*') = Zd(v(e),S\ Ua)(e,e')a,        77(e) = ir(e'),
a

where (e, e')a = (v, v') for e = <p«1( />, u), e' = ep~l(p,v') and (e,e')a = 0 for

77(e) = 77(e') G Ua. Since <jpq extends to a homeomorphism on cl(77_1([/a)) there

exists a S > 0 such that

«iklL < Ikll = vV^) < fi_1lkL.     »(«)e ^-

In particular, this implies that the compact sets {e £ £|||e|| < e} define a neighbor-

hood basis for the zero section Z £ E.
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Lemma Al. £ is metrizable.

Proof. Define

da{e,e') = max{d{Tr{e),TT{e')),\\v - v'\\)

for e = <pll(p, v), e' = q>~al(p', v') with p, p' £ Ua. For any sequence e0,..., em £ E

we define

p(e0,...,ej = max   £ dafej_x,e])\tr{ej_x),m(e¡) £ Uaj,a}£A

where the maximum over the empty set is by definition +00. Then the distance

function

d(e,e') = inf{p(e0,...,ej|m G N, e¡ £ E, e0 = e, em = e'}

defines a metric on £ which is compatible with the original topology.   D

A subbundle of £ is a closed subset F c £ which intersects each fiber in a linear

subspace and—with the induced topology—is again a vector bundle.

Lemma A2. Let F £ E be a closed subset of E which intersects each fiber in a linear

subspace F, p £ S. Then F is a subbundle if and only if dim F = dimP^ for all

p,q£S.

Proof. Suppose that m = dim F is independent of p £ S. For p £ Ua define

n„(p): V -» F to be the orthogonal projection of F onto the subspace

Wp= {v£ V\(p,v)£cpa(Fp)}.

In order to establish the continuity of n„ as a map from Ua into ¿?(V) it is

enough to show that every sequence pk £ Ua converging to p £ Ua has a subse-

quence (still denoted by pk) such that Yla(pk) converges to na(p). For this purpose

let Vj(pk), j = 1,...,«, be an orthonormal basis of V such that vx(pk),..., vm(pk)

is an orthonormal basis of WPk and choose a subsequence in such a way that Vj(pk)

converge to v¡; for j = 1,...,«. Then vx,...,vn form an orthonormal basis of V.

Furthermore, it follows from the closedness of F that vx,...,vm form an orthonor-

mal basis of Wp. Therefore the following inequality holds for v = T.CjVj £ V

\\na(Pk)o-ua(p)o\\< 11cj11|na(Pk)||||vj-v+p,)||
7=1

m

+ L MIM/»*)-«,-!-j-i
This proves the continuity of n„.

Now let p0 g Ua be given and choose a neighborhood i/0 of p0 in Ua such that

the restriction of Yla(p) to W = Wp¡¡ remains injective for p £ U0. Then the map

4*ol: U0X W -> F given by

4'o1(p,w) = ep-l(p,Ua(p)w),        p£Ua,w£W,

defines the desired bundle structure on F in a neighborhood of p0.   □
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Let us now introduce the projectivized line bundle PE = E\Z/~ where e ~ e'

if and only if 77(e) = 77(e') and there exists a constant cgR\(0} such that

e' = ce. The canonical projection map will be denoted by P: £\Z —> PE. For

L c £ we define PL = {Pe\e £ L\Z). In particular PL = 0 if L c Z. Of

course, there exists a projection P77: PE -* S such that the following diagram

commutes:

E\Z ^ PE

■n \ t/ Pit

S

This map is a fibration whose fibers are isomorphic to the projective space PV. More

precisely, there exist (unique) homeomorphisms P<pa: Pir~l(Ua) -> UaX PV such

that the following diagram commutes:

tf-Ki/JXZ - í/„xf\{o)

Pi il X P

Ptr-l{Ua) *% Ua x PV

Pn\ ,/

Note that PE is a compact metric space. A metric can be defined by

d(Pe,Pe') = minld\-^-, —  , d\ r^r, - —
I 111*11  Ik'llj    \lHI    Ik'll//

for e, e' g £\ Z.

Lemma A3. There exists a constant 8 > 0 ímc« ¿«a»

6¿(Pe, Pe') < 1 -   ^1^ , < 8~xd(Pe, Pe')
\\e\\2\\e'\\2

for all e,e' £ E\Z with 77(e) = 77(e').

This result follows from the strict convexity of the finite dimensional Hubert space

V along with the compactness of 5.
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