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Abstract 

In this paper we prove Morse type inequalities for the contractible 1-periodic solutions of 
time dependent Hamiltonian differential equations on those compact symplectic manifolds M 
for which the symplectic form and the first Chern class of the tangent bundle vanish over q ( M ) .  
The proof is based on a version of infinite dimensional Morse theory which is due to Floer. The 
key point is an index theorem for the Fredholm operator which plays a central role in Floer 
homology. The index formula involves the Maslov index of nondegenerate contractible periodic 
solutions. This Maslov index plays the same role as the Morse index of a nondegenerate critical 
point does in finite dimensional Morse theory. We shall use this connection between Floer 
homology and Maslov index to establish the existence of infinitely many periodic solutions 
having integer periods provided that every I-periodic solution has at least one Floquet multiplier 
which is not equal to 1. 

1. Introduction 

Let ( M ,  o) be a compact symplectic manifold of dimension 2n. Here o is 
a closed 2-form on M which is nondegenerate and therefore induces an iso- 
morphism T'M + T M .  Thus every smooth, time-dependent Hamiltonian 
function H : R x A4 + W gives rise to a time-dependent Hamiltonian vector 
field XH : W x M + T M  defined by 

for < E T,M. Assume that H (and hence X,) is periodic in time 

H ( t  + 1,x) = H ( t , x )  

and consider the time-dependent Hamiltonian differential equation 
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on M .  The solutions x ( t )  of (1.1) determine a 1-parameter family of diffeo- 
morphisms tyf E Diff(M) satisfying tyt(x(0)) = x ( t ) .  These diffeomorphisms 
are symplectic, that is they preserve the symplectic form w = ty;w. Every 
symplectic diffeomorphism ty which can be represented as the time- 1 -map of 
such a time-dependent Hamiltonian flow is called a Hamiltonian map. If M 
is simply connected then the component of the identity in the space of sym- 
plectic diffeomorphisms consists of Hamiltonian maps. Our assumptions on 
the second homotopy group, however, exclude the simply connected case. 

The fixed points of the time-1-map ty are the periodic solutions of (1.1) 
with period 1. Such a periodic solution 

x( t )  = x ( t  + 1) 

is called nondegenerate if 1 is not a Floquet multiplier or equivalently 

It is called weakly nondegenerate if at least one Floquet multiplier is not equal 
to 1, that is 

4 d t y ( x ( O ) ) )  # (11 . 
Denote by [w]  E H2(M;W)  the cohomology class of o. Also note that 

T M ,  with a suitable almost complex structure, can be viewed as a d3"-bundle 
and therefore has Chern classes c, E H2J ( M ;  Z). 

THEOREM A. Assume that [w]  and cI vanish over nz(M) .  Let H : W/Z x 
M -+ R be a smooth Hamiltonian function such that the contractible 1-periodic 
solutions of ( 1.1) are weakly nondegenerate. Then there are infinitely many 
contractible periodic solutions having integer periods. 

Theorem A extends an earlier result in [35]. It can be rephrased in terms of 
Hamiltonian mappings. If [w]  and cI vanish over n2(M) then every Hamilto- 
nian map with weakly nondegenerate fixed points has infinitely many periodic 
points. 

Such an existence theorem cannot be expected for general symplectic dif- 
feomorphisms as is shown by the example of an irrational translation on the 
torus M = T 2 .  This is a symplectic but not a Hamiltonian map and it has 
no periodic points at all. Also the condition on n2(M) cannot be removed as 
is shown by the example of a rotation on M = S2 with irrational frequency. 
This is a Hamiltonian map but has only two periodic points, namely the two 
nondegenerate fixed points at the north and south pole. 

For the 2n-torus Theorem A was proved in [9] under the assumption 
that the 1-periodic solutions have no root of unity as a Floquet multiplier 
or, equivalently, the fixed points of the time-1-map ty are nondegenerate 
with respect to all iterates of ty. In 1984 in [6] Conley conjectured that the 
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nondegeneracy assumption can be removed. Even in the case M = T2" this 
remains an open question. 

The global nature of Theorem A is in sharp contrast to well-known local 
results. For example assume that the Hamiltonian system ( 1.1) possesses a 1- 
periodic solution which is elliptic in the sense that all its Floquet multipliers 
lie on the unit circle. If these satisfy a finite nonresonance condition and in 
addition the nonlinear Birkhoff invariants of this solution are nondegenerate 
then the local Birkhoff-Lewis theorem guarantees infinitely many periodic 
solutions with large integer period nearby; see [31]. If, moreover, the system 
is sufficiently smooth, then it follows from K.A.M. theory that the closure of 
the set of these periodic solutions nearby is of large Lebesgue measure; see [9]. 
Similar arguments still work if there is at least one Floquet multiplier on the 
unit circle. It is not known, however, whether such a nonhyperbolic periodic 
orbit always exists. 

Note that the assumptions of Theorem A are formulated in terms of the 
1-periodic solutions. The existence of these is related to a conjecture by V. 
I. Arnold which states that every Hamiltonian map v/ : M ---f M possesses 
at least as many fixed points as a function on M has critical points; see [ 11 
and [2]. In view of Morse theory and Ljusternik-Schnirelman theory this 
conjecture can be reformulated as 

#Fix v/ 2 sum of the Betti numbers of M 

provided that the fixed points are all nondegenerate. Moreover, dropping the 
nondegeneracy assumption 

# Fix cup-length of M + 1 . 

In our case in which [o] and c1 vanish over n2(M) this conjecture has re- 
cently been proved by Floer in [ l l ]  and [16] and by Hofer in [23]. The 
statement about nondegenerate fixed points remains valid if [o]  and c1 agree 
over n2(M); see [16]. As for the history of this conjecture we refer to [42]. 
It originated in old questions of celestial mechanics and is related to the 
Poincare-Birkhoff fixed point theorem which states that an area and orien- 
tation preserving homeomorphism of the annulus in the plane twisting the 
two boundary components in opposite directions possesses at least two fixed 
points. This theorem also guarantees the existence of infinitely many peri- 
odic points distinguished by rotation numbers. Theorem A can be viewed as 
generalizing the Poincare-Birkhoff theorem to higher dimensions. 

Our proof of Theorem A is based on a well-known variational principle 
on the loop space of M for which the critical points are the required periodic 
solutions. This variational principle has also been used by Floer in his proof 
of the Arnold conjecture which lead to the concept of Floer homology. The 
main point of his proof is to construct a chain complex from the 1-periodic 
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solutions of ( 1. I )  and to show that the homology of this chain complex agrees 
with the singular homology of the underlying manifold M .  

Another central ingredient in the proof of Theorem A is the Maslov index 
p r ( x ;  H )  of a nondegenerate contractible periodic solution x ( t )  = x ( t  + 7) of 
( 1 . 1 )  with integer period 7. This index can roughly be described as a mean 
winding number for the linearized flow along x ( t )  or the number of times an 
eigenvalue crosses 1. The Maslov index is a well defined integer provided that 
the first Chern class c1 of the tangent bundle vanishes over 7t2(M). Postponing 
the precise definition of the Maslov index we assume that every contractible 
t-periodic solution of ( 1.1) is nondegenerate and denote by 

the number of contractible 7-periodic solutions of ( 1.1) with Maslov index 
k. We shall prove that these numbers are related to the Betti numbers 

via the following Morse type inequalities. 

THEOREM B. Assume that [o] and cI vanish over n2(M). Let H : R/TZ x 
M + R be a smooth Hamiltonian function such that the contractible 7-periodic 
solutions of ( 1.1) are nondegenerate. Then 

for every integer k. 

In particular Theorem B shows that 

Pk(H, 7) 2 bn+k 

and this refines the estimate conjectured by V. I. Arnold. 
As a special case consider a Hamiltonian 

H ( t , x )  = H ( x )  

which is time independent and is a Morse function on M .  Then every crit- 
ical point of H is a stationary solution of (1.1). If, moreover, the second 
derivatives of H are sufficiently small then every nonconstant periodic solu- 
tion of ( 1 . 1 )  is of period larger than 7. Also the Maslov index p r ( x ;  H )  of a 
constant periodic orbit x ( t )  = x is related to the Morse index indH(x) when 
regarded as a critical point of H via the formula 

(1.3) p,(x;  H )  = inds(x) - n . 

So in this case Theorem B reduces to the classical Morse inequalities. 
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Theorem B also implies the Lefschetz fixed point formula. To see this we 
observe that the Maslov index of a contractible z-periodic solution x ( t )  = 
x ( t + z )  of( l .1)  satisfies 

( 1.4) signdet(1 - d v T ( x ( 0 ) )  = (-l)p7(x;H)-n . 

So the Lefschetz fixed point formula can be written in the form 

and this identity follows from (1.2). 
In contrast to finite dimensional Morse theory one cannot expect the num- 

bers pk(H,  T) to be zero for Ikl > n even though the associated (Floer) ho- 
mology groups are zero in these dimensions. We do, however, know that in 
the nondegenerate case there are only finitely many contractible z-periodic 
solutions and hence the sum on the left-hand side of (1.2) is finite. 

We sketch the proof of Theorem A. The key observation is that under the 
assumptions of Theorem B there must be contractible z-periodic solutions 
having Maslov indices +n and -n. We shall use an iterated index formula 
to show that if there are only finitely many 1-periodic solutions of (1.1) and 
these are all weakly nondegenerate then the iterated I-periodic solutions have 
Maslov index Ip,(x;H)I # n for every sufficiently large prime z E Z. This 
shows that there must be a periodic solution of minimal period T provided 
that no root of unity occurs as a Floquet multiplier of the 1-periodic solutions. 
The general case requires a perturbation argument. 

In the following we shall outline the main ideas of Floer homology (Sec- 
tion 2) and give an exposition of the Maslov index for paths of symplectic 
matrices (Section 3). We prove an index formula for a suitable Fredholm 
operator involving the Maslov index (Section 4). This leads to a natural 
grading of the Floer homology groups which is invariant under continuation 
(Sections 5 and 6). The relation between the Maslov index and the Morse 
index gives rise to a proof of Theorem B (Sections 7 and 8) .  We shall then 
carry out the perturbation argument and the proof of Theorem A (Section 9). 

2. The Variational Approach and Floer Homology 

Fix z > 0 and assume that H ( t , x )  = H ( t  + z,x). Let L = L,M denote 
the space of contractible loops in M which are represented by smooth curves 
y : R -, M satisfying y ( t  + 7) = y ( t ) .  Then the contractible z-periodic 
solutions of ( 1.1) can be characterized as the critical points of the functional 
f = : L -+ R defined by 
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Here D c 43 denotes the closed unit disc and u : D -+ M is a smooth function 
which on the boundary agrees with y ,  that is u(exp(2niO)) = y(zO).  Such 
a function u exists whenever y is a contractible loop. Since [w]  vanishes 
over every sphere f(y) is independent of the choice of u. To compute the 
differential o f f  note that the tangent space T,L is the space of vector fields r E Cm(y*TM) along y satisfying<(t+s) = <(t) .  For the 1-form df : TL -+ R 
one finds 

df5(Y)< = s' (w(it, <) + d H ( 4  r )<)  dt 
0 

and therefore the critical points of f are contractible loops in L which in 
addition satisfy the Hamiltonian equation (1.1). Thus the critical points 
are precisely the required 7-periodic solution of (1.1). We denote the set of 
contractible 7-periodic solutions by 

LFT = LFT(H) = {x : R -+ M ;  ( l . l ) ,  x ( t  + 7 )  = x ( t ) ,  x N c ) .  

If all 7-periodic solutions of (1.1) are nondegenerate then they are isolated 
and it follows that LFT is a finite set. 

To describe the gradient of f  we choose an almost complex structure on M 
which is compatible with w. This is an endomorphism J E Cm(End(TM)) 
satisfying J 2  = -I such that 

defines a Riemannian metric on M .  The Hamiltonian vector field is then 
represented by X ~ ( t , x )  = J ( x ) V H ( t , x )  where V denotes the gradient with 
respect to the x-variable using the metric (2.1). Moreover, the gradient o f f  
with respect to the induced metric on L is given by 

In studying the critical points o f f  one is confronted with the well-known 
difficulty that the variational principle is neither bounded from below nor 
from above. Moreover, at every possible critical point the Hessian of f  has an 
infinite dimensional positive and an infinite dimensional negative subspace 
so that standard Morse theory is not applicable. In addition, the gradient 
vector field on the loop space L 

does not define a well posed Cauchy problem. 
In the special case of the torus M = T2" these obstacles have first been 

overcome in [7]. The idea is to reduce the gradient flow to a finite dimensional 
submanifold of the loop space L. Then one can study the space of bounded 
solutions consisting of the critical points together with their connecting orbits. 
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This space turns out to be a compact isolated invariant set and hence possesses 
a Conley index h ( A ) .  The index homology agrees with that of the underlying 
manifold Ttn up to a shift in dimension and this proves the Arnold conjecture 
for the torus. 

For general symplectic manifolds M such a finite dimensional reduction 
has not been found. Recently, however, Floer found a beautiful way to 
analyse the space A of bounded solutions directly; see [ 1 11, [ 121, and [ 131. 
Combining the variational approach of [ 71 with Gromov’s elliptic techniques 
in [22] he defined a relative Morse index for a pair of critical points and 
then used the structure of the space A to extract an invariant which is now 
called Floer homology. This represents a new approach to infinite dimen- 
sional Morse theory which does not require a finite dimensional reduction. 

A beautiful exposition of Floer homology in the context of global sym- 
plectic geometry and elliptic regularity can be found in [27]. We describe the 
main points of this approach. A gradient flow line of f is, by definition, a 
smooth solution u : R2 ---f M of the partial differential equation 

dU 824 
as at  - + J(u) -  + V H ( t ,  u )  = 0 

which satisfies u(s,t + T )  = u(s,t). The key point is to think of (2.2) not 
as a flow on the loop space but as an elliptic boundary value problem. As a 
matter of fact, in the case H = 0 the solutions of (2.2) are precisely Gromov’s 
pseudoholomorphic curves and these have been studied extensively in [22], 
[32], and [41]. It turns out that the fundamental regularity and compactness 
results remain valid in the presence of a nonzero Hamiltonian term; see [34]. 

We denote by AT = A T ( H , J )  the space of bounded solutions of (2.2). 
That is the space of smooth functions u : C/ i rZ  -+ M which are contractible, 
solve the partial differential equation (2.2), and have finite flow energy 

Since M is compact and [o] vanishes over n2(M) the space AT is compact 
in the topology of uniform convergence with all derivatives on compact sets; 
see [13], [16], and [34]. Moreover, for every u E AT there exists a pair 
x,y E LPT such that u is a connecting orbit from y to x meaning that 

lim u(s, t )  = y ( t )  , lim u(s, t )  = x( t )  . 
S-+--Oo S’+oO 

Here convergence is to be understood uniformly in t and in addition with 
a u / a s  converging to zero, again uniformly in t as Is1 tends to 00. As a matter 
of fact, every u E AT converges exponentially with all derivatives as s tends 
to f c c  provided that all r-periodic solutions of (1.1) are nondegenerate. 
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Given two periodic solutions x, y E PT(H) we denote by 

the space of all u E AT which satisfy (2.3). This is the space of absolute min- 
ima of the energy functional QT subject to the asymptotic boundary condition 
(2.3) and we have 

For a generic choice of the Hamiltonian H the space A T ( y , x )  is a finite 
dimensional manifold. To see this linearize equation (2.2) in the direction 
of a vector field < E Coo( u' T M )  along u. This leads to the linear first-order 
differential operator 

824 
(2.4) FT(u)< = OS< + J(u)vf< + v < J ( u ) z  + V<VH(l ,  u )  

where Vs, 0, and Vt denote the covariant derivative with respect to the met- 
ric (2.1). If u satisfies (2.3) and x , y  E PT are nondegenerate then F,(u) is 
a Fredholm operator between appropriate Sobolev spaces. The pair ( H ,  J) 
with J satisfying (2.1) is called regular if every contractible 7-periodic solu- 
tion of (1.1) is nondegenerate and F,(u) is onto for u E AT. In Section 8 we 
prove that the set 

of regular pairs is dense with respect to the C"-topology. For regular pairs 
it follows from an implicit function theorem that A T ( y ,  x) is indeed a finite 
dimensional manifold whose local dimension near u is the Fredholm index 

In the regular case the dimension of the manifold A T ( y , x )  was used by 
Floer to define a relative Morse index for a pair of critical points x,y E gT. 
More precisely, if the first Chern class c1 E H 2 ( M ; Z )  of the tangent bundle 
vanishes over n*(M)  then the Fredholm index of FT(u)  depends only on 
the boundary conditions (2.3) and we denote this index by m , ( y , x ) .  These 
numbers are additive in the sense that 

of FT(u). 

for periodic solutions x , y ,  z E LFT. Thus there exists a function m, : PT -, Z, 
defined only up to an additive integer, such that for every smooth function 
u : C/iTZ -+ M which satisfies (2.3) the index of the operator (2.4) is given by 
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Denote by C = C ( M ; H , 7 )  the vector space over 7/22 generated by the 
finitely many elements of 9,. This vector space is graded by m,  so that 

k 

It follows from Gromov’s compactness combined with the manifold structure 
that A, ( y ,  x )  consists of finitely many orbits (modulo time shift) whenever 
m , ( y )  - m , ( x )  = 1 (see, for example, [34]). This observation can be used 
to construct a boundary operator dk  = dk(M;  H ,  J , z )  : ck+, + C, via the 
formula 

m,(x)=k 

for y E 9, with m , ( y )  = k + 1. The matrix element ( d y , x )  is defined to 
be the number of components of A , ( y ,  x )  counted modulo 2. In [ 161 Floer 
proves that this operator satisfies 3 o d = 0 so that 
complex. Its homology 

(C,d)  defines a chain 

ker 13 
im d 

HF,(M; H ,  J ,  7) = - 

is called the Floer homology of the pair ( H ,  J ) .  
This chain complex is determined by the one-dimensional components of 

the space A, of bounded solutions of (2.2). It is constructed in analogy with 
with the Morse complex for Morse-Smale gradient flows on finite dimensional 
manifolds; see [ 151, [28], [34], and [40]. The transversality condition corre- 
sponds to the assumption on the Fredholm operator F,(u) to be onto which 
as in finite dimensional situation is satisfied generically. 

Now, a priori, the Floer homology groups might be trivial and so far we 
have not even shown that the space A, of bounded solutions is nonempty. As 
a matter of fact, it is precisely the point of the above construction to estimate 
the minimal number of 7-periodic solutions (from below) by proving the 
nontriviality of the Floer homology groups. For this we recall that a crucial 
property of the Conley index for finite dimensional flows lies in the fact that it 
is invariant under continuation. An analogous homotopy invariance property 
for the Floer homology groups can be used to show that they are independent 
of H and J and, indeed, nontrivial. More precisely, in [ 161 Floer proved the 
following theorem. 

THEOREM 2.1. 

(i) I f  ( H ,  J )  and (H’, J’ )  are regular pairs with respect to the periods 7 and 
T‘, respectively, then there exists a natural chain homomorphism which induces 
an isomorphism of Floer homology 

HF,(M; H ,  J ,  7) 2 HF,(M; H’, J’,  7’) . 
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(ii) There is a natural isomorphism between the Floer homology of the loop 
space and the singular homology of M 

HF,(M; H ,  J ,  z) Z H,(M; 2 /22)  . 

Theorem 2.1 shows that the periodic solutions of the Hamiltonian system 
(1.1) and the bounded solutions of (2.2) can be used to construct a model 
for the homology of the underlying manifold M .  This proves the Arnold 
conjecture under the assumption that [w] and CI vanish over n2(M). Note, 
however, that the grading of the Floer homology groups is so far only well 
defined up to an additive constant and Theorem 2.1 states, more precisely, 
that with a suitable choice of this grading HFk(M; H ,  J ,  z) is isomorphic to 
Hk(M;Z/22). This ambiguity of the grading will be removed by a Maslov 
type index 

PT :pT * 2 

which associates an integer to every nondegenerate contractible periodic solu- 
tion x E gT of (1.1). This integer is a symplectic invariant obtained from the 
linearized Hamiltonian flow along x ( t ) .  We shall prove that for u E L T ( y ,  x )  
the Fredholm index of the operator FT(u)  can be characterized in terms of 
the Maslov indices of x and y 

It follows that the Maslov index defines a natural grading of the Floer ho- 
mology groups. With this grading the proof of Theorem 2.1 will yield an 
isomorphism 

This implies the Morse inequalities of Theorem B. It also confirms the inter- 
pretation of HF, as the ‘middle dimensional’ homology groups of the loop 
space of M ;  see [4]. 

Remarks. 
(i) In [16] Floer proved the Arnold conjecture under the more general 

assumption that the cohomology classes [w] and c1 are proportional over 
n2(M) with a positive factor. If [w] does not vanish over n2(M) then A 
takes values in S ’ .  If c1 does not vanish over n z ( M )  then the Maslov index 
pT is only defined modulo an integer N .  So in this case the Floer homology 
groups are graded modulo N .  

(ii) It is an open question whether there is any compact symplectic man- 
ifold M such that [a] vanishes over n z ( M )  but n2(M) # { 1 }. There are, 
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however, examples of symplectic manifolds with nontrivial second homo- 
topy group and c1 = 0. 

(iii) The Floer homology groups HF, can be defined with integer coef- 
ficients and hence coefficients in any abelian group G; see [16] and [34]. 
For this one has to assign an integer +1 or -1 to every connecting orbit 
u E d 7 ( y , x )  whenever p 7 ( y )  - p 7 ( x )  = 1. The determination of this sign 
is a subtle story and requires a consistent orientation of the moduli spaces 
d7(y, x ) .  The details have been carried out by Floer and Hofer in [ 181. This 
refinement is not needed for the proof of Theorem A. It does, however, lead 
to a sharper estimate in Theorem B with coefficients in any principal ideal 
domain. 

(iv) In [ 141 Floer developed a similar theory as the one described above 
for the Chern-Simons functional on the space of SU(2)-connections on a 
homology-3-sphere Y .  In that context the connecting orbits can be interpreted 
as self-dual Yang-Mills connections on the 4-manifold Y x R with finite Yang- 
Mills action. The associated Floer homology groups define new invariants 
of the underlying homology-3-sphere, refining the Casson invariant. This is 
beautifully explained in [4]. 

3. The Maslov Index for Symplectic Arcs 

The standard Maslov index associates an integer to every loop in Sp(2n; R). 
In contrast, we shall need a modified version of the Maslov index which is 
not defined for loops but for every path in 

Y P * ( z )  = {Y: [0, z] + Sp(2n;R); "(0) = I ,  det(Z - "(1)) # 0) 

This modified index was introduced in [8]. An alternative description can be 
found in [26] and we present a third exposition in this section. 

First note that a matrix A E W 2 n x 2 n  is both symplectic and orthogonal if 
and only if 

(3.1) 
x -Y 

A = ( .  x )  
where X T Y  - Y T X  = 0 and X T X  + Y T Y  = Z or equivalently 

x + iY E U ( n )  . 
Now the determinant mapping 

det : U ( n )  -, S' 

induces an isomorphism of fundamental groups as can be seen from the ho- 
motopy exact sequence associated to the fibration S U ( n )  - U ( n )  ---$ S' .  Since 
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the quotient Sp(2n;R) / U ( n )  is contractible it follows that nI(Sp(2n;R)) N 

Z. This isomorphism can be represented by a natural continuous map 

p : ~ p ( 2 n ; ~ )  + S' 

which restricts to the determinant map on Sp(2n;R) n O(2n) N U ( n ) .  This 
map p was introduced in [35]. It is no longer a homomorphism. 

More generally, let V be a symplectic vector space that is a finite dimen- 
sional real vector space with a nondegenerate skew-symmetric bilinear form 
w = wv : V x V --$ R. Let Sp( V )  = Sp( V, o) denote the group of automor- 
phisms of V that is linear transformations A : V + V such that A ' o  = o. 
In particular, 

~ p ( 2 n ;  R) = s ~ ( R ~ " ,  wg) 

where 

THEOREM 3.1. There is a unique collection of continuous mappings 

p : Sp( V, 0) -+ S' 

(one for every symplectic vector space) satisfying the following conditions: 

is T f o 2  = W I ,  then 
Naturality : If T : (V,,  0 1 )  --+ (V,, 012) is a symplectic isomorphism, that 

 TAT-^) = p ( ~ )  

f o r A  E SP(V,,Ol).  

Product: If ( V , o )  = (V, x V2,01  x oz), then 

P ( 4  = P(Al)P(A2) 

for A E Sp(V,o) of theform A(z l , z2)  = ( A l z l , A 2 ~ 2 )  where Aj E Sp(V,,oi). 

Determinant: If A E Sp(2n;R) n O(2n) is of the form (3.1), then 

p ( A )  = det(X + iY) . 
Normalization : If A has no eigenvalue on the unit circle then 

p ( A )  = f l  . 

It follows from the determinant property that p induces an isomorphism 
of fundamental groups nl(Sp(2n;R)) --$ nl(S1).  Also note that 

P(AT)  = m-') = po 
for A E Sp(2n; R). 
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Proof of Theorem 3.1: We construct the map p : Sp(2n;R) + S1 explic- 
itly. For this we first recall that the eigenvalues of a real symplectic matrix 
A occur in quadruples of the form 1,&,l-1,2-1 unless I I  is real or on the 
unit circle. Now every pair of simple eigenvalues on the unit circle 1,X E S1 
can be ordered in a unique way due to the symplectic structure. To see this 
observe that 0 # wo(1, () E iR whenever ( is an eigenvector corresponding to 
a simple eigenvalue 1 E S'.  So the sign of Im coo((, [) is independent of the 
choice of the eigenvector and we call 1 E S' an eigenvalue of the first kind if 

Note that either A or is an eigenvalue of the first kind whenever 1 # f l  
is a simple eigenvalue on the unit circle. If + 1 or - 1 is an eigenvalue of a 
symplectic matrix then it occurs with even multiplicity. If 1 E a(A)  is not on 
the unit circle we call it an eigenvalue of the first kind if 111 < 1. This shows 
that if the matrix A E Sp(2n;R) has distinct eigenvalues then these can be 
ordered in the form 

such that the eigenvalues 11, . . . ,An are of the first kind. Following Gelfand 
and Lidskii (see [21]), we define the number 

n 

Arg(A) = x a r g ( 1 j )  E 88/27rZ 
j= 1 

for symplectic matrices with distinct eigenvalues and 

(3.3) p ( A )  = exp{iArg(A)} = n .. - A j  . 
j = 1  IRj I 

This function is continuous. To see this note that only the eigenvalues on 
the unit circle and on the negative real axis contribute to Arg(A). Moreover, 
as has been observed by Gelfand and Lidskii in [21], two pairs on the unit 
circle can only move off the unit circle if they join and if the two eigenvalues 
of the first kind cancel each other. Thus the function (3.3) extends uniquely 

To construct this extension explicitly let 1 E a ( A )  be an eigenvalue of 
to Sp(2n; R). 

multiplicity m(2) and denote the generalized eigenspace by 
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This space is of real dimension 2m(L) and a simple computation shows that 

If A E S1 \ ( 4 ~ 1 )  then it follows that the symmetric bilinear form 

(3.5) 

is nondegenerate on El .  The identity Q(iC1, iC2) = Q(C1, C2) shows that the 
positive part of Q on En is of even dimension 2m+(L). Let mo denote the 
number of pairs 2,L-l of negative real eigenvalues and define 

This number agrees with (3.3) provided that we count eigenvalues with their 
multiplicity. The eigenvalues of the first kind are all those with 121 < 1 
and if L E S1 is a multiple eigenvalue on the unit circle then it counts with 
multiplicity m+(L) as an eigenvalue of the first kind. By construction this 
function p satisfies the naturality, product, and normalization conditions. 

We prove that p is continuous. First note that, by (3.4), the bilinear form 
Q vanishes on En for every eigenvalue d $! S' . It follows that Q is of signature 
zero on En CB EA-,  for A $! S'. Thus the continuity of p follows from the lower 
semicontinuity of the eigenspaces as functions of A. 

We prove that p satisfies the determinant condition. Let A E Sp(2n; R) r l  
O(2n) be of the form (3.1) and define U = X + iY E U ( n ) .  Then AJo = JoA 
and since the eigenvalues of JO are f i  it follows that 

En = E l  @ E L  , EF = En n ker(riZ - Jo) 

Now ker(-il - Jo) = { ( r ,  -i t) ;  < E C"} is a maximal positive subspace for 
Q, and therefore the eigenvalues of the first kind correspond to eigenvectors 
in E J .  Since [ = ( r ,  -i t)  E En(A) if and only if r E En( U )  we conclude that 
p ( A )  = det U as claimed. 

The Maslov index of a path Y E Y P *  (z) is based on the next lemma which 
was proved in [8]. We present an alternative proof. We use the notation 

Sp(2n;W)* = {A E G; det(Z - A) # 0 )  . 

LEMMA 3.2. Sp(2n; W)' has two connected components 

Sp(2n;R)* = {A E Sp(2n;R); kdet(1 - A )  > 0 )  

Moreover, every loop in Sp(2n; R)* is contractible in Sp(2n; R). 



MORSE THEORY 1317 

Proof: We prove that Sp(2n; W)+ and Sp(2n; W)- are path connected with 

w+ = -I E Sp(2n;R)+ 

and 

W -  = diag(2,-1, ..., -1,1/2,-l, . . . ,  -1) E Sp(2n;R)- . 

Let A E Sp(2n; R)* be given and let A E a(A) .  Choose a basis [I,.  . . Cm of 
EA such that 

Consider the case I $ S1 U R and choose a basis V I ,  . . . , q m  of El-, such that 

( I I - A ) C j  E s~an{Cl7**-7Cj-1}. 

Define B = B ( s )  E Sp(2n;R) so that B acts as the identity on El for p # 
I , A , I - * , A - ’  and on span{[,, r,q, { j ,  q j ;  2 5 j 5 m}  and 

Then dimEA(B(s)A) = m - 1 and (1 + s ) I  is a new eigenvalue. Using a 
similar argument in the cases A E S’ and I E R we can connect A to a matrix 
with distinct eigenvalues. Now choose a suitable path s : [0,1] + a3 such that 
s(0) = 0, s( 1) = -1-’ - 1, and (1 + s ( t ) ) I  # 1 to move all eigenvalues to 
- 1 except for the positive real pairs. A similar argument shows that an even 
number of positive real pairs can be removed from the real axis. This way 
A E Sp(2n; R)+ can be connected to a matrix A1 all of whose eigenvalues are 
-1. Now there exists a Hamiltonian matrix JoS = log(-Al) with S = ST 
such that exp{JoS} = - A l .  So the path t H -exp{tJoS} connects A1 to 
-I = W+. This shows that Sp(2n;W)+ is connected. A similar argument 
works for Sp(2n; R)-. 

We prove that every loop y ( t )  E Sp(2n;R)+ with y ( 0 )  = y ( 1 )  is con- 
tractible in Sp(2n;R). To see this we shall construct continuous functions 
a” : Sp(2n; R)+ + [0,2n] for v = 1, .  . . , n such that 

Then the functions au( t )  = av(y ( t ) )  are periodic and continuous. Hence 
the loop p(y ( t ) )  = exp{iC, aYy(t)}  E S’ is contractible and it follows from 
Lemma 3.1 that y ( t )  is contractible in Sp(2n; R). 
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We construct the a,  as follows. Given A E Sp(2n, R)+ choose real numbers 

such that 
AlJ exp{ia,(A)} = - 
lL I 

where A l ,  . . . , Af l  are the eigenvalues of the first kind. If there are no positive 
real eigenvalues then this determines the numbers a , ( A )  uniquely. Since A E 
Sp(2n; R)+  the total multiplicity of real eigenvalues larger than 1 is even and 
we choose the &,,(A) such that there is the same number of v's with a , ( A )  = 0 
and with a , ( A )  = 2n. For this choice the functions a,  : Sp(2n, R)+ --$ [0,2n] 
are continuous. 

The same construction works for A E Sp(2n;R)- except that the total 
multiplicity of real eigenvalues larger than 1 is odd. 

For any path y : [0, T] -+ Sp(2n; R) choose a function a : [0, t] -+ R such 
that p(y(t)) = ern(f) and define 

For A E Sp(2n;R)* choose a path yA( t )  E Sp(2n;R): such that y ~ ( 0 )  = A 
and y A (  1) E { W+, W - } .  Then it follows from Lemma 3.2 that A l ( y ~ )  is 
independent of the choice of this path. Define 

r ( A )  = A l ( y A )  , A E Sp('2n;R)* 

The Maslov index of a path Y E ~ P * ( T )  is defined by 

This index can be interpreted as the mean winding number of the eigenvalues 
of the first kind or equivalently the number of such eigenvalues crossing 1. 

THEOREM 3 . 3 .  

(i) 

(ii) 

(iii) I fY E ~ P * ( T )  then 

The Maslov index is an integer. 

Two paths YO, "1 are homotopic in Y P ' ( r )  ifand only if they have 
the same Maslov index. 

signdet(Z - "(7)) = (-l)pr(y)-n . 
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(iv) Let Y(t) = exp{JoSt) where S = ST E R2nx2" is a nonsingular 
svmmetric matrix such that 

Then Y E 9 P * ( 7 )  and 

where p - ( S )  denotes the number of negative eigenvalues of S counted with 
mu Itiplicity. 

pT(y)  = p - ( s )  - 

Proof: We extend E 9 P * ( z )  to a smooth path y : [0, r+ 11 -+ Sp(2n; Ow) 
which agrees with Y on [0, 71 and satisfies y ( t )  E Sp(2n; R)* for 7 2 t 2 7 + 1 
and y(7 + 1) = W*. By Lemma 3.2 such an extension exists and p 7 ( Y )  = 
AT+l(y)  E Z. It also follows from Lemma 3.2 that two paths YO and "1 are 
homotopic in Y P * ( z )  if and only if any two such extensions yo and y1 are 
homotopic with fixed end points. Since the map p induces an isomorphism 
of fundamental groups, this is equivalent to AT+1(y0) = AT+l(yl). Thus we 
have proved statements (i) and (ii). 

Now let Y E 9 P * ( z )  and let y be an extension as above. If det(I-Y(.c)) > 
0 then y ( z  + 1 )  = W+ = -I  and hence p(y(z + 1)) = (-1)". So in this case 
p7(Y) - n is even. If det(I - "(7)) < 0 then y ( z  + 1 )  = W -  and hence 
p ( y ( ~ +  I ) )  = (-l)"-l. So in this case pT(Y)-n is odd. This proves statement 
(iii) . 

To prove statement (iv) we choose a path of orthogonal matrices PA E 
O(2n) such that Po = I and S1 = PITSPl is a diagonal matrix. Define 

S, = P ~ ~ S P ,  , YA(t) = exp{JoSAt) . 
Then S, is a path of symmetric matrices connecting S = SO to a diagonal 
matrix such that p- (S , )  is independent of 1. The condition IS1 < 2 ~ / 7  
guarantees that 1 4 c~(Y1(7)) and hence Yn E 9 P * ( r )  for every 1. This 
reduces statement (iv) to the case where S is a diagonal matrix. Without loss 
of generality we may assume that 

S = diag(e,. . . , E ,  - 8 , .  . . , - E )  

where 0 < E < 2 ~ / 7  and the number of negative terms is k = p - ( S ) .  Now 
decompose R2" into n symplectic planes and consider the matrices 

s o = ( o  E O  & ) ,  s1=(; !&). s2=(;& !&) 
in the case n = 1. The identity 
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combined with the determinant property of the map p shows that 

p(exp {JoSot}) = exp{-iet) 

Since 0 < E < ~ R / T  it follows that p T ( Y )  = -1 in the case S = So. The case 
S = S, is similar with p T ( Y )  = 1 while exp{JoSlt} has real eigenvalues so 
that p T ( Y )  = 0 in the case S = S, .  We conclude that in all three cases 

and this proves statement (iv). 

The following iterated index formula will play a crucial role in the proof 
of Theorem A. 

LEMMA 3.4. Let Y(t) E Sp(2n; €3) be any path such that 

Y(kT + t) = y ( t ) y ( T ) k  

for t 2 0 and k E N. Then 

for every k E N. Moreover, Ir(A)I < n for every A E Sp(2n; R)*. 

Proof: By construction of the map p, we have p ( A k )  = P ( A ) ~  for every 
A E Sp(2n;R). (This is obvious for matrices with distinct eigenvalues.) It 
follows that 

A k r ( Y ) -  kAT(Y) E 22 

for every path Y(t) E Sp(2n;R) which satisfies Y ( k 7  + t )  = Y(t)Y(z)k for 
t 2 0. Now let YA(t) E Sp(2n;R) be any homotopy of Y = YO to a path 
in Sp(2n;R) n O(2n) such that each path YA satisfies the requirements of 
Lemma 3.4. Since the restriction of p to Sp(2n;R) n O(2n) is a homomor- 
phism we obtain 

The bound on r ( A )  follows immediately from the construction of the maps 

a, : Sp(2n; R)* + [0,2n] 

in the proof of Lemma 3.2. 
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4. The Fredholm Index 

Let 7 > 0 and consider the operator F : W1s2(W x R/7Z;R2") + L 2 ( R  x 
W/7Z; W2") defined by 

(4.1) 

Note that in the case S = 0 this is the Cauchy-Riemann operator. In general 
we assume that S(s, t) E R 2 n x 2 n  is a continuous matrix valued function on R2 
such that 

S(s, t y  = S(s, t )  = S(s, t + 7) 

We also assume that S(s, t) converges, uniformly in t ,  as s tends to fcc and 
denote the limits by 

S*(t)  = lim S(s,t) . 
S + f C C  

Associated to S is the symplectic matrix function Y(s, t) E Sp(2n; R) defined 
by 

Note that both Y and d Y / d t  are continuous. There is a one-to-one corre- 
spondence between Y and S since S = -J0(aY/at)Y1 is symmetric when- 
ever Y(s,t) E Sp(2n;R). The periodicity condition for S corresponds to 
Y(s, t + k7) = Y(s, t)Y(s, 7fk  for k E Z. Moreover, both Y and d Y / d t  con- 
verge, uniformly in t ,  as s tends to f m  and we define 

THEOREM 4.1. Suppose that S(s ,  t )  = S(s, c ) ~  satisfies (4.2) with Y* E 
9 P * ( 7 ) .  Then F is a Fredholm operator and 

index F = pr(Y-) - pT(Y+) . 

Proof: We prove that F is a Fredholm operator. Even though this is a 
standard argument (see [ l l ] ,  [25], and [34]), we shall carry out the details in 
our special case. We abbreviate X = R x Y ,  X r  = [-T, TI x Y and Y = R/7Z. 
We shall prove the estimate 

(4.3) 
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for T > 0 sufficiently large. Since the injection W 1 v 2 ( X ~ )  4 L2(Xr )  is 
compact it follows that F has a closed range and a finite dimensional kernel. 
A similar inequality holds for the adjoint operator 

d d F * =  -- + Jo- + S  as at 

and shows that the cokernel of F is finite dimensional as well. 
By partial integration we have 

for functions with compact support and hence 

(4.4) llcllw1.2(x) 5 Cl (llFrllL(x) + IlillL2(X)) 

where cI = 1 + sup IS(s, t) l .  This proves (4.3) for functions c supported in 
X T .  

Now we specialize to the case where S(s, t )  = S ( t )  and Y(s, t )  = Y(t) are 
independent of s. We prove that if Y E 9 P  then F is invertible. To see this 
consider the operator A : W',*( Y ;  R2n) -, L2( Y ;  defined by 

This operator is invertible if and only if 1 $ a(Y(r ) )  or equivalently Y E 
9 P * ( 7 ) .  If this is the case then there exists a constant co > 0 such that 

Since A is self adjoint there is an inequality 

for w E W. This implies 

Now let [(s, t) E R2" be a smooth compactly supported function and denote 
its Fourier transform by 
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Then it follows from Plancherel's theorem that 

This shows that the operator F is invertible whenever S(s, t )  = S ( t )  is inde- 
pendent of s and Y E Y P * ( z ) .  

Returning to the general case we obtain that the limit operators F' with 
S replaced by Sf are invertible. Thus there exist constants T > 0 and c2 > 0 
such that 

for every ( which vanishes in XT- 1 .  

To prove that (4.4) and (4.5) imply (4.3) we choose a cutoff function p ( s )  
such that p ( s )  = 1 for Is1 5 T - 1 and p ( s )  = 0 for Is1 2 T.  Given r we use 
(4.4) to estimate the term p (  and (4.5) to estimate ( 1  - p ) r .  This gives 

Here we have used the fact that a vanished outside the interval [- T, TI. This 
proves the estimate (4.3) and therefore F is a Fredholm operator under the 
assumptions of Theorem 4.1. 

To prove the index formula we consider the family of self adjoint operator 

A ( s )  : w1,2 (R/sZ;RZ") + L2 (R/zZ;IW2") 

for s E R defined by 

These operators have a compact resolvent and hence a discrete spectrum 
consisting of real eigenvalues with finite multiplicity. The eigenvalues of 
A ( s )  occur in continuous families Aj(s). These can be chosen such that each 
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L E g ( A ( s ) )  with multiplicity m occurs m times asL,(s). With this understood 
the Fredholm index of the operator (4.1) is given by the spectral flow (see [5]) 

(4.6) indexF = #{j;L,(-m) < 0 < L, (+cc ) ) } -#{ j ;A j ( - co )  > 0 > L,(+m)} . 

In particular, if A ( s )  is independent of s and nonsingular then F is invertible 
as we have proved above and so (4.6) is obviously satisfied. 

We prove that the spectral flow agrees with the index difference p 7 ( Y - )  - 
p T ( Y + ) .  The argument rests on the fact that 0 E a(A(s)) if and only if 
Y(s, . )  $! Y P * ( z ) .  We first simplify the operator by choosing a continuous 
family of functions YA(s, t )  E Sp(2n; W )  such that 

Y I * ( Z )  E Sp(2n;R)' . 

Then both the Fredholm index of the operator (4. 
of YI* are independent of 1. 

The key point is that in the case n 2 2 each h 

) and the Maslov indices 

motopy class of Y P *  (7) 
contains a path of the form Y(t )  = exp{JoSt} with Y(z) = W* (see [26]). 
More precisely, recall from Theorem 3.3 that each homotopy class in Y P *  (5) 
is characterized by the Maslov index p T ( Y )  = k E Z. If k - n is odd we use 
a symplectic decomposition W2" = ( W 2 ) "  and choose 

where the ml = n - 2 - k  and mj = -1 for j > 1. If k -  n is even we choose 

where the ml = n - 1 - k and m, = -1 for j > 1. Then the path Y(t )  = 
exp{JoSt} has Maslov index p T ( Y )  = k and satisfies Y(z) = W* as we shall 
see below. Therefore every path in Y P *  (t) with Maslov index k is homotopic 
to Y. We point out that the condition n 2 2 does not pose any restriction on 
the argument; 'ust consider the operator F @ F .  

Now let SO be given by the above formulae with k = k* = p 7 ( Y * )  and 
define 

1 

Sob) = r(s)Sof + ( 1  - y(s))So- 

where y(s) is a smooth nondecreasing function satisfying y ( s )  = 0 for s 2 - 1 
and y(s )  = 1 for s 2 1. Then the associated symplectic matrix function 
Yo(s , t )  = exp{JoSop)t} is homotopic to the original function Y via a ho- 
motopy YA with YA E Y P * ( t ) .  It is therefore enough to consider the case 
where the symmetric matrix S(s )  is independent o f t  and can be decomposed 
into 2 x 2 blocks. So we may assume n = 1. 
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We examine the spectral flow of the operators A ( s )  for n = 1 and S(s) 
independent of t .  There are three cases. First suppose that 

where k+ and k -  are odd. Then 

cos k*nt / z  - sin k*nt / r  
sin k*lrt/z cos k*nt / z  

Y*(t)  = exp { J , S * t }  = 

and it follows from the determinant property of the map p that p ( Y * ( t ) )  = 
exp{ik*at/z}. This shows that p7(Y* )  = k*. Moreover, 

and thus 

cos(o(s) + A ) t  - sin(o(s) + A)t 
sin(o(s) + A)t cos(w(s) + A)t 

exp {Jo(S(s)  - A Z ) t }  = 

Now A E g ( A ( s ) )  if and only if 1 E a(exp{Jo(S(s) - AZ)z}) or equivalently 
(w(s) + A)z E 2x2. So the eigenvalues of A ( s )  are 

and each eigenvalue occurs with multiplicity 2. Also note that the eigenfunc- 
tions are independent of s. Since w(s) varies monotonically from k - ~ / z  to 
k + n / z  with k* odd it follows that there are precisely N = Ik- - k+1/2 values 
of s where 0 E o ( A ( s ) ) .  Also note that the A, increase if k -  > k+ and they 
decrease if k -  < k+ .  This shows that the spectral flow of the operator family 
A ( s )  is k -  - k+ as claimed. 

Secondly consider the case where 

Then p T ( Y - )  = 0 and p7(Y+)  = 1. Moreover, 

and a simple calculation shows that the eigenvalues of A ( s )  are given by 



1326 D. SALAMON AND E. ZEHNDER 

All eigenvalues are of multiplicity 2 except where j = 0 and Q(S) # 0. Since 
p ( s )  increases from 0 to K I T  the only eigenvalue crossing zero is A(s) = 
a(s)  - p ( s )  with the constant eigenfunction ( ( t )  = ( 1 ,  1). So the spectral flow 
of A ( s )  in this case is - 1. The third case is where the roles of S+ and S- are 
interchanged. So it follows from the second case by reversing time. 

In all three cases it turns out that the eigenfunctions of A ( s )  which cor- 
respond to those eigenvalues which cross zero are independent of s. We can 
therefore decompose the Hilbert space H = L2(R/rZ;R2") into orthogonal 
invariant subspaces H = HO CB H1 such that HO is finite dimensional and the 
eigenvalues of A l ( s )  are uniformly bounded away from zero. In the associ- 
ated decomposition of the Fredholm operator F = FO @ FI the operator F1 has 
Fredholm index zero and FO is given by 

where ((s) E RN and Ao(s)  is a diagonal N x N-matrix. So the index of FO is 
obviously given by the spectral flow of Ao(s)  with 

dimkerFo = fl{j;Aj(-l) < 0 < A,(l)} , 
dimcokerFo = f l{j;Aj(- l )  > 0 > A , ( l ) }  . 

(Note that in the finite dimensional case the Fredholm index of FO is the 
difference of the Morse indices corresponding to s = --oo and s = +m; 
see [34].) This proves Theorem 4.1. 

We shall now consider the more general operator 

(4.7) 

where S = ST is symmetric as before and A ( s , t )  E R 2 n x 2 n  is a continuous 
matrix valued function on R2 such that 

We also assume that A ( s ,  t )  converges to zero, uniformly in t, as s tends to 
infinity 

lim A ( s ,  t) = 0 
S+&C 

Under this assumption the operator (4.7) is a compact perturbation of (4.1) 
and is therefore a Fredholm operator of the same index. 
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If both S and A are independent of t and the limit matrices Sk are non- 
singular then the operator FO : W'y2(R; R2n) + L2(R; R2n)  defined by 

dC (4.9) FOC = & + ( S  + A)C 

is Fredholm and in [34] it is shown that 

(4.10) indexFo = p - ( S - )  - p-(S+) . 
If, moreover, S and A are sufficiently small then we shall prove that the kernel 
of (4.7) is naturally isomorphic to the kernel of (4.9). 

PROPOSITION 4.2.  Suppose that S(s) = S ( S ) ~  satisfies (4.2) and A ( s )  = 
-A(sfT satisfies (4.8) and that 

1 
lIS(S)lI + IIA(s)ll 2 c < - 7 

for every s E R. Then every function C E ker F is independent o f t .  

Proof: Let C E W'>2(W x BB/7Z;R2") be in the kernel of F .  Then 

is in the kernel of Fo. We shall show that C(s, t )  = Co(s) for all s and t. Since 
C - c0 E ker F we may assume CO = 0. We integrate the identity 

with respect to t 

We integrate the square of this inequality with respect to T and s 
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As in the proof of Theorem 4.1 we obtain 

Since FC = 0 and c7 < 1 it follows that C = 0. This proves Proposition 4.2. 

COROLLARY 4.3. Let S and A be as in Proposition 4.2 and assume that 
the matrices S* are nonsingular. Then the operator F is onto i fand only if 
FO is onto. 

Proof: Let Y* E Y P * ( z )  denote the path Y*(t) = exp{JoS&t}. Then 

index F = p(Y-) - p(Y') 

= p - ( s - )  - p - ( S + )  

= index FO . 

The first identity follows from Theorem 4.1, the second from Theorem 3.3, 
and the third is (4.10). By Proposition 4.2 the kernel of F is isomorphic to 
the kernel of Fo and hence the cokernel of F is of the same dimension as the 
cokernel of Fo. 

The proof of Proposition 4.2 actually shows that the restriction Fl of the 
operator F to the subspace of those functions C which for every s have mean 
value zero has a bounded inverse. In other words, if S and A are independent 
o f t  then the operator F decomposes as 

If, moreover, S and A are sufficiently small then Fl is an isomorphism and 
does not contribute to the kernel and the cokernel. This can also be shown 
by a Fourier series decomposition of C with respect to which FO corresponds 
to the constant part. 

5. The Maslov Index for Periodic Orbits 

The Maslov index can be defined for nondegenerate periodic solutions x 
of ( 1.1) which are contractible loops on the symplectic manifold M provided 
that the first Chern class c1 of the tangent bundle vanishes over K Z ( M ) .  To 
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see this choose a fixed almost complex structure J on M and denote by 
g ( < ,  q )  = o(<, Jq) the induced Riemannian metric on M with the associated 
Levi-Civita connection V. Thus the tangent TM is a complex vector bundle 
with a Hermitian structure 

(In our convention (<, q) is complex anti-linear in < and complex linear in 
q.) It is well known that for any smooth disc 4 : D + M the vector bundle 
4* T M  admits a unitary trivialization. 

LEMMA 5.1. For any smooth map 4 : D --+ M there exists a trivialization 

D x R2" + 4*TM : ( z ,  () H @(z)[  

such that 

Any two such trivializations are homotopic. 

Proof: To prove existence choose any complex trivialization, for exam- 
ple with parallel transport of a complex frame 21, . . . , 2, along a curve y such 
that VZj = J V , J p ,  and use Gram-Schmidt over 43. 

If @ ( z )  and Y ( z )  are two unitary trivializations then Y ( z ) - ' @ ( z )  is a 
unitary matrix for every z E D. Every smooth map D --+ U ( n )  is smoothly 
homotopic to the constant map z H 1. 

To define the Maslov index for a nondegenerate contractible z-periodic so- 
lution x of ( l .  l )  choose a smooth function 4 : D + M such that $(exp{2niO}) 
= x(zO). By Lemma 5.1 there exists a unitary trivialization of 4*TM.  This 
gives rise to a unitary trivialization 

of x* T M  such that 

In general the homotopy class of ax may depend on the choice of the exten- 
sion 4 : D + M with @(exp{2xit/z}) = x ( t )  unless the first Chern class of 
T M  vanishes over n2(M). 

LEMMA 5.2. If thejrst Chern class c1 ( T M )  vanishes over nz (M)  then the 
homotopy class of ax is independent of the choice of the extension 4 : D + M .  
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Proof: Let 4 : D + M and 4' : D -+ M be any two smooth maps such 
that d(exp(2nit/r}) = @(exp(2nit/z}) = x ( t )  with associated orthogonal 
symplectic trivializations Q, and @' of the pullback tangent bundle. Assume 
without loss of generality that 

# ( z )  = + ( z / l z l )  , ~ ( z )  = @ ( z / l z l )  for 1 - E 2 Iz/ 2 1 

and likewise for @ and W. Then the map u : S2 = 43 u {co} -+ M defined by 

u ( z )  = +(z )  for / z /  2 1 

and 
u ( z )  = 4 ' (1 /~)  for IzI > 1 

is smooth. If U * C ~  vanishes then the unitary Cn-bundle u*TM is trivial. 
Hence there exists an orthogonal symplectic trivialization 8 : S2 x R2" + 

u* T M .  It follows from Lemma 5.1 that (D,y(t) and @k(t)  are homotopic to 
8(exp{ 2nitl.r)). 

Given a trivialization ax of x * T M  as above we consider the linearized 
flow along x ( t )  and define the path 

Then Yx(t)  E Sp(2n;R) for every t and YX(7) is similar to d y T ( x ( 0 ) ) .  This 
shows that the mean winding number 

is independent of the choice of the trivialization. Moreover, the periodic 
solution x E PT is nondegenerate if and only if Yx E Y P * ( z ) .  In this case 
the Maslov index of the periodic solution x(t)  of (1.1) is defined as 

In view of Lemma 5.3 this index is uniquely determined by the requirement 
that the trivialization QX extends over a disc which bounds x. 

be a pair of nondegenerate periodic solutions of (1.1) 
and let u : R2 + M be a smooth function which satisfies u(s, t + T )  = u(s, t )  
and 

Let x+,x- E 

lim u(s, t )  = x - ( t )  , lim u ( s , t )  = x + ( t )  
S - - W  s++'X (5.3) 

The convergence is to be understood as uniform in t and with d u / d t  con- 
verging to x* and d u / d s  converging to zero, again uniformly in t ,  as s tends 
to foo .  For any such u we introduce the Hilbert space L: ( u )  as the completion 
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of the space of smooth compactly supported vector fields <(s,t) E Tu(s,t)M 
satisfying c(s, t + 7 )  = <(s, t) with respect to the norm 

Also define W,"2(u) = {< E L:(u); Vs<,0,< E L:(u)} and consider 

as a bounded linear operator from W$'2(u) to L:(u). This is a Fredholm 
operator and its index can be characterized in terms of the Maslov index of 
the periodic solutions X* of (1.1). 

THEOREM 5.3. If u : R x R/TZ -+ M is a smooth function satisfying (5.3) 
for two nondegenerate periodic solutions xf E 9 r  then F,(u) is a Fredholm 
operator and 

indexF,(u) = p,(x-) - pr(X+) . 

Proof: Altering u if necessary (without changing the Fredholm index) we 
may assume that u(s, t) = x-(t) for s 5 - 1 and u(s, t) = x+(t)  for s 5 +l .  
Under this assumption Lemma 5.1 shows that there exists an orthogonal 
symplectic trivialization 

of u'TM which is independent of s for Is1 2 1. In the new coordinates 
[ = W1< the operator F,(u) is of the form 

( 5 . 5 )  

where the 2n x 2n-matrices S(s,t) and A(s,t)  are the symmetric and skew- 
symmetric part of the matrix (Zj, Fr(u)Zk). 

A simple calculation shows that 
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This implies that A ( s ,  t )  = 0 for (sI 5 1. Allowing for a compact perturbation 
we may therefore assume that A ( s ,  t )  = 0 for all s and t .  

Now define S*(t)  = S(&l , t )  and @*(t) = @ ( & l , t )  and let Y*(t) E 
Sp(2n; R) be given by (5.1) with x = x* that is 

@*(t)Y*(t) = dwt (X*(O)) @*(O) . 

Differentiating this identity with respect to t we obtain 

@*(t!)Y*(t) + (vl@*) y* = (v@*xH) y* . 

Since @Jo = J @  this implies 

@* ( t )  JOY* ( t )  = J@* ( t  )Y* ( t )  

= J (v@*xH - or@*) y* 

= J (JVQI V H  + (V,* J) V H  - Vl@*) Y* 

= - (V@* V H  + (V@* J) X H  + JV,@*) Y* 

= -@*(t)s*(t)Y*(t) . 

Hence 
Y* ( t )  = JOS* (t)Y* ( t )  

and it follows from Theorem 4.1 that 

This proves Theorem 5.3. 

In the context of Morse theory for Lagrangian intersections Floer proved a 
similar result (see [ 121) relating the corresponding Fredholm index to 
Viterbo's relative Maslov index (see [38]). In that case, however, the Maslov 
index does not single out a natural grading for the Floer homology groups. 

6. Continuation of Floer Homology 

In this section we show how the Maslov index removes the ambiguity of 
the grading of the Floer homology groups. This means that the isomorphism 
of Theorem 2.1 is of degree 0 if the grading is provided by the Maslov index. 
In the proof we follow closely the line of argument in [ 161 which has also been 
described in [27]. We combine this with the index theorem of the previous 
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section. In order to simplify the notation we consider only the 1-periodic 
solutions and drop the subscript 7.  

Recall that a pair ( H ,  J) consisting of a Hamiltonian function H : S' x 
M -+ R and an almost complex structure J on M is called regular if every 
contractible 1-periodic solution x E 9 ( H )  is nondegenerate and if the Fred- 
holm operator F ( u )  defined by (2.4) is onto for every u E M ( H ,  J ) .  The 
space 

of regular pairs is dense in &" x f with respect to the C"-topology (see [ 171 
and Section 8). For any such regular pair we denote by 

the chain complex of Section 2 graded by the Maslov index of Sections 3 
and 5 .  Let d = O(M;  H ,  J )  denote the associated boundary operator so that 
the Floer homology groups of the pair ( H ,  J) are given by 

We shall prove that these homology groups are independent of the Hamilto- 
nian function H and the almost complex structure J used to construct them. 

THEOREM 6.1. For any two regular pairs ( H a ,  J") and (HB, JP) there 
exists a natural isomorphism 

HF!" : HFk ( M ; H " ,  J") -+ HFk ( M ; H B ,  J B )  . 

If (HY, JY) is another regular pair then 

(6- 1) HFJB o HF,B" = HFJ" , HF:" = id 

Theorem 6.1 shows that there is a category whose objects are the Floer 
homology groups associated to regular pairs ( H a ,  Ja) and whose morphisms 
are the natural isomorphisms H F P  which are induced by regular homotopies 
as we shall see below. In the terminology of Conley such a category with 
unique morphisms is called a connected simple system. 

The proof of Theorem 6.1 occu ies the remainder of this section. To 
construct the homomorphisms H F F  we consider a smooth homotopy from 
( H a ,  J") to (HB, JB). By this we mean a smooth homotopy of Hamiltonians 
Hap : W x S1 x M --$ R and a smooth homotopy of almost complex structures 
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J"p : R x M -+ End( T M )  such that H"p(s, t ,  x) and Jab(,, x) are independent 
of s for Is( sufficiently large and satisfy 

and 
lim J " @ ( s , x )  = P ( X )  , lim J " ~ ( s , x )  = J ~ ( x )  . 

S-+--Oo S-++CC 

(It follows from the contractibility of the space of almost complex struc- 
tures at x E M which are compatible with ox that any two almost complex 
structures on M which are compatible with o can be connected by a smooth 
homotopy; see [22].) Given such a pair of homotopies ( H ,  J )  = (Hap,  . l a p )  
we consider the solutions u : R2 + M of the elliptic partial differential equa- 
tion 

82.4 82.4 - + J ( s ,  u)- + V H ( s ,  t ,  u )  = 0 as at 

which satisfy u(s, t + 1) = u(s, t )  and the boundary condition 

where xa E P ( H a )  and xp E LP(Hp).  This equation can be thought of as the 
time dependent version of (2.2) or the gradient flow of the time dependent 
action functional fs = fH8 on the loop space with respect to the time depen- 
dent metric determined by the almost complex structure Js. As before every 
solution of (6.2) and (6.3) has bounded energy. Conversely, if a solution of 
(6.2) has bounded energy then the limits (6.3) exist. Denote by 

the space of (smooth) solutions u : C/iZ -+ M of (6.2) and (6.3). As in 
Section 2, this space can be analysed locally by linearizing equation (6.2) in 
the direction of a vector field ( E C"(u*TM) along u. This leads to the 
differential operator F ( u )  : W1t2(u) -+ L2(u)  given by 

All the results of Section 5 remain valid in the time dependent case. In 
particular (6.4) defines a Fredholm operator whenever u satisfies (6.3) and 
the periodic solutions xa E 9 ( H a )  and xb E 9 ' ( H p )  are nondegenerate. The 
proof of Theorem 5.3 shows that the Fredholm index is given by 

(6.5) indexF(u) = p ( x a ;  H") - p ( x B ;  H p )  . 
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Moreover, for a generic homotopy from ( H a ,  J " )  to ( H p ,  J B ) ,  this operator 
is onto. More precisely, the pair (Hap, J"B) is called a regular homotopy 
if both pairs ( H a ,  J") and (HB, Jp) are regular and if the operator (6.4) is 
onto for every solution u of (6.2) and (6.3) and every pair xa E 9 ( H " ) ,  
xB E S ( H p ) .  If ( H " , J " )  and ( H B , J p )  are regular pairs then the space 
of regular homotopies is dense in the space of all smooth homotopies from 
( H a ,  J " )  to (Hp,  JB)  with respect to the topology of uniform convergence 
with all derivatives on compact sets (see [17] and Section 8). 

It follows from (6.5) and the surjectivity of the operator (6.4) that for 
every regular homotopy (H"p, J"B) and every pair of contractible I-periodic 
solutions x" E S ( H " ) ,  xp E 9 ( H p )  the space A(xa,xB;Hap, J"p)  of con- 
necting orbits is a manifold of dimension 

The proof relies on a Newton type iteration in an infinite dimensional setting 
combined with elliptic regularity. We shall not carry out the details here. We 
use these spaces to construct a chain homomorphism 

More precisely, it follows from the compactness of the space of bounded 
solutions of (6.2) that A ( x " ,  xb; Hap,  J"p) is a finite set whenever 

p(x"; H") = p(xB; HB) . 

In this case the matrix element (q58"xff,xfi) is defined to be the number of 
elements in A ( x " ,  xp; Hap, J@) modulo 2 and @" is given by 

for p(x";H*) = k .  

LEMMA 6.2. For every regular homotopy (Hap,  J"B) from (H",J")  to 
(HB, JB) the above map @" = q5(H"p, J"B) is a chain homomorphism. 

Proof: We sketch the main idea. We have to show that as@" = @"a" 
or equivalently 

= c (@"y " , yp ) (dpyp ,x~ )  (modulo2) 
p(yb;HB)=k+l  
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for any pair of contractible periodic solutions y" E 9 ( H a )  and xp E . 9 ( H b )  
with p ( x p ; H p )  = k and p ( y " ; H " )  = k + 1. This follows from a gluing 
argument (see [ 161). Namely, any pair of connecting orbits 

24" E A (y" ,  x"; H", J D )  , uap E L (x", d ;  H a p ,  J a b )  

with p ( x " ; H " )  = k can be glued together at xa producing a 1-parameter 
family C R ( S ,  t )  of approximate solutions of (6.2) such that 

For R > 0 sufficiently large there exists a solution W R  E L ( y * ,  xp; HOP, J O B )  
of (6.2) near C R .  This follows again from a Newton type iteration using the 
linearized solution operator (6.4) and quadratic estimates on the higher order 
terms. The key point is that since the homotopy (H"p,J"p)  is regular the 
operators FR = F(CR)  are onto with a uniformly bounded inverse of FRFR* 
for R sufficiently large. 

The solutions U R  converge to the pair ( u", u"p) as R tends to infinity. More 
precisely, V R ( S  - 2R, t )  converges to u"(s, t )  and W R ( S ,  t )  converges to u"~(s, t ) ,  
the convergence being, with all derivatives, uniform on compact sets. This 
is obviously the case for C R  and 'UR is exponentially close to C R .  Moreover, 
any connecting orbit 'u E A ( y a ,  xp; Hap, J"p )  which is sufficiently close to 
the pair ( u f x ,  u"p) must be one of the V R ' S .  So up to a reparametrization the 
1 -parameter family U R  is uniquely determined by the pair ( u", u*p). 

It is this analysis near the ends together with the compactness away from 
the ends which shows that the one-dimensional manifold L ( y * ,  xb; Hap, 
J"p) is paracompact and has finitely many components. By the classification 
theorem for compact I-manifolds, each component which is not a circle must 
have two ends. Each end can be identified either with a pair (u", uap) as above 
or with a pair ( P p ,  u p )  where 'uap E L ( y " ,  y p ;  Hop,  J"p)  and up E A ( y S ,  
xp; H p ,  Jp) with p ( y p ; H p )  = k + 1 .  

X" * x p  
UP u 

Thus there is an even number of pairs of connecting orbits between y" and xp. 

Lemma 6.2 shows that every regular homotopy (H"p, J"p) from (H",  J " )  
to ( H p , J p )  induces a natural homomorphism of Floer homology. This ho- 
momorphism turns out to be independent of the choice of the homotopy 
(Hap,  J a b ) .  
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LEMMA 6 . 3 .  Let (H;B, J;B) and (HpB,  J r B )  be two regular homotopies 
from ( H a ,  J " )  to (HB, JB) .  Then the associated chain homomorphisms ,[" = 

+ ( H t B ,  J t B )  and &" = 4(HPB, J?) are chain homotopy equivalent. 

Proof: To construct a chain homotopy from 4;" to &" we choose a 
J:B) to ( H r B ,  .IFp). smooth homotopy of homotopies (H,uB, J:B) from 

For any pair xa E 9 ( H " ) ,  yfl E 9 ( H B )  we introduce the space 

As before one uses Fredholm theory to show that for a generic homotopy of 
homotopies this space is a finite dimensional manifold with boundary and 

d imL(x" ,yB)  = p ( x a ; H " )  - p ( y B ; H B )  + 1 . 

Now suppose that 

p (ys; Hb)  = p (x"; H")  + 1 . 

Then L ( x " ,  y p )  is a finite set of pairs 

Assume otherwise that there exists an infinite sequence (1j,u,) of distinct 
points in L ( x a ,  y s ) .  By Gromov's compactness theorem for pseudoholo- 
morphic curves (see [22] and [34]) we can extract a converging subsequence 
still denoted by (Aj, U j ) .  Let 

1 = lim A j  , u = lim u, . 
J-CQ j-cc 

Then u is a bounded solution of (6.2) with ( H ,  J )  = (H;'a, Jfa). Thus there 
exist w" E 9 ( H " )  and z@ E 9 ( H B )  such that u E AY(wa, ZB;H:~ ,  .IfB). 
If w a  # x" then p ( w a ; H a )  < p ( x " ; H * )  and likewise, if zB # yB then 
p(zB;HB)  > p ( y f l ; H B ) .  In either case it would follow that p ( w a ; H a )  - 
p(zb; HB)+ 1 < 0 and our choice of a regular homotopy of homotopies would 
imply that L ( w " ,  zp) = 0. This contradiction shows that (A, u )  E AY(x", yp) .  
But this violates the manifold structure of AY(xa, y p )  and hence there are only 
finitely many pairs as claimed. 

Since p(x"; H a )  - p(yb;  HB) = - 1 and the homotopies ( H t B ,  J t P )  and 
JFB) are regular it follows that L ( x a ,  yB; H;'B, J,"p) = 0 for A = 0 and 

A = 1. This shows that 0 < A, < 1 for every j .  Intuitively speaking, connect- 
ing orbits are not allowed generically if the index difference is negative. But 
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if the index difference is - 1 then in a generic 1-parameter family connecting 
orbits may occur for isolated parameter values. It is these isolated connecting 
orbits which determine the required chain homotopy equivalence. 

We define the homomorphism 

where the matrix entry (@p"x",ys) is given by the number of elements in 
d ( x " ,  y p )  modulo 2 whenever the index difference is - 1, We claim that 

+ @,s"(j" = @" - p (6.6) I 0 

or equivalently 

p ( y f l ; H @ ) = k + l  p(wn;Hc1)=k- I 

= (4{axa,xp > (  - @f"Xa,xp) (modulo2) 

for every pair xa E 9 ( H a ) ,  xp E 9 ( H p )  with p(xa ;H" )  = p(xp;Hp) = 
k .  As in the proof of Lemma 6.2 this will follow from a gluing argument 
involving the ends of the paracompact 1-manifold &(xa, xp). 

There are four cases. If (0, u) E &(x*, xb) then u is one of the isolated 
points in .M(x*, xp; H t B ,  J t p )  contributing to the matrix entry xp). 
Similarly a boundary point of the form (1, u) corresponds to (q5faxa, xp) .  

Now the manifold d(P, xp) will in general not be compact. There may 
be a sequence (A,, u,) E d ( x a , x p )  converging to a pair (A, u) 4 &(x",xp). 
In this case the pair J:B) cannot be a regular homotopy since oth- 
erwise it would follow as before that the limit u = limu, would be in 
d ( x " ,  x B ;  HFB, J f B ) .  

So in particular 0 < A < 1 and u is a bounded solution of (6.2) with 
( H ,  J )  = ( H i B ,  J;'p). Since p(xa;Ha) = p(xb; HB) = k there are only two 
possibilities. Either 

u E JT (Xa,yp; H$ J ; S )  

for some yp E 9 ( H B )  with Maslov index p ( y p ; H p )  = k + 1 or 

u E & ( w a , x p ;  H r p ,  J f ' )  

for some wa E 9 ( H a )  with Maslov index p ( w " ; H " )  = k - 1. In the first 
case there exists a sequence sv tending to +oo such that u,(s + s y ,  t )  converges 
to a solution up E .M(yB,xp;Hf, J!) and the pair (u, u B )  contributes to the 
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first term in (6.6). In the second case there exists a sequence s, tending to 
--XI such that u,(s + s,, t )  converges to a solution u" E A ( x " ,  w"; H,", 1;) 
and the pair (ua,  u )  contributes to the second term in (6.6).  

It follows from a gluing argument as outlined in the proof of Lemma 6.2 
that each such pair ( u", u )  or (u ,  up)  occurs as a unique end of the 1 -manifold 
M(x",xB). Since the total number of ends and boundary points is even we 
have proved (6.6).  

The previous result shows that for any two regular pairs ( H c y , J c y )  and 
(Hp ,  J p )  there is a unique homomorphism of Floer homology which we de- 
note by 

These homomorphisms satisfy (6.1). 

LEMMA 6.4. Let ( H a ,  .Icx), ( H p ,  Jfi) ,  and (HY, JY)  be regular pairs. Then 

HFJp o HF!" = HFJ" , HFP" = id . 

Proof: That HF;" = id follows by choosing the constant homotopy. 
Now suppose that (Hap,  J"p)  is a regular homotopy from ( H a ,  J " )  to ( H p ,  
J p )  and (HPY, J p r )  is a regular homotopy from ( H p ,  J p )  to (HY, JY) .  Given 
R > 0 sufficiently large we define 

J"f i (s  + R , x ) ,  s 2 0, 
J p r ( s  - R,x) ,  s 2 0. 

H Q p ( s  + R, t , x ) ,  s 5 0, 
HpY(s  - R ,  t ,x ) ,  s 2 0, 

J,"'(s,x) = H,"'(s, t , ~ )  = 

Then ( H i Y ,  J;") is a regular homotopy from ( H a ,  J " )  to (HY, JY).  Let @", 
qYp, and &? denote the associated chain homomorphisms. We must prove 
that o $pa = 4 r  for R sufficiently large. 

It follows from a gluing argument as in Lemma 6.2 that every pair 

with p ( x " ;  H")  = p(xp; H b )  = p(xY; HY) gives rise to a unique connecting 
orbit 

u:? E M (xa,xY; H i Y ,  1:') . 

Conversely, it follows from Gromov's compactness that for R sufficiently 
large there is no other connecting orbit in M ( x a ,  xY; H i Y ,  J,"'). This implies 
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for p(x*; H a )  = p(xY; HY) = k .  

It follows from Lemma 6.4 with y = a that the morphisms of Floer ho- 
mology are isomorphisms. This proves Theorem 6.1. 

7. The Maslov Index and the Morse Index 

In this section we shall prove that the Floer homology groups of a regular 
pair ( H ,  J )  E (X x /)reg are isomorphic to the singular homology of M .  

THEOREM 7.1. For every regular pair ( H a ,  J " )  there exists a natural iso- 
morphism 

HF," : HF'(M;H", J") -+ Hk+, , (M;2/22)  , k E 7 , 

between the Floer homology of the pair (H" ,  J " )  and the singular homology 
of M .  I f ( H P ,  J B )  is another regular pair then 

HF: = HF,B o HF,BQ . 
In particular, the Floer homology groups vanish for Ikl > n 

To prove Theorem 7.1 we consider the case where 

H ( t , x )  = H ( x )  

is a Morse function on M which is independent o f t .  Then there is a constant 
E > 0 such that every nonconstant periodic solution of H is of period greater 
than E and hence 

9 T ( H )  = { X ( t )  E X  E M ;  d H ( x )  = 0) 

for z < E .  In this situation it turns out that the Maslov index of a constant 
periodic orbit x ( t )  3 x of (1.1) is related to its Morse index indH(x) when 
regarded as a critical point of H .  To be more precise we fix a Riemannian 
metric on M associated to some almost complex structure which is compat- 
ible with o. 

LEMMA 7 .2 .  There exists a constant E > 0 such that i f H  : M -+ R is a 
Morse function with IIHllc2 < E / z  then 

pT(x ;  H )  = indH(x) - n 

for every critical point x.  
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Proof: Let 211,. . . , v2,, be a symplectic orthonormal basis of T,M with 
respect to which J(x)  is represented by the matrix JO E R 2 n x 2 n .  Also let 
S = ST E R 2 n x 2 n  represent the Hessian of H in the same basis. Then 

0 5 t 5 1 . p(x;H)  = p(uI,) , Yx(t )  = exp{JoSt} , 
Moreover, S is nonsingular and indH(x) is the number of negative eigenvalues 
of S. Hence Lemma 7.2 follows from statement (iv) of Theorem 3.3. 

In the context of closed geodesics an analogous relationship between the 
Maslov index and the Morse index was described by Duistermaat in [ lo]. We 
also point out that Lemma 7.2 was independently proved by Viterbo in [39]. 

The proof of Theorem 7.1 relies on the observation that if H ( t , x )  = 
H(x) is independent of t then every solution u(s, t )  of (2.2) which is also 
independent of t satisfies 

du(s)  = -VH(u(s))  
ds 

and is therefore a gradient flow line of H. This brings us into the realm of 
finite dimensional Morse theory. The gradient flow (7.1) is called a Morse- 
Smale flow if for any two critical points x and y of H the stable and unstable 
manifold Ws(x) and Wu(y) intersect transversally. In the next section we 
shall prove that this condition is satisfied for an open and dense set of almost 
complex structures J. If (7.1) is a Morse-Smale flow then there is a finite 
number n(y,x) of solutions u(s)  of (7.1) (modulo time shift) such that 

lim u(s)  = y  , lim u(s)  = x 
S-+-CC S + f W  

(7.2) 

provided that 
inde(y) - indH(x) = 1 . 

These solutions can be used to build a chain complex in which Ck(H) is the 
Z / 2 E  vector space generated by the critical points x of H with indH(x) = k 
and the (y, x)-entry of the boundary operator 

8, = &(H, J )  : c k + ,  + c k  

is the above number n(y,x) modulo 2. This chain complex is called the 
Morse complex of the pair (H, J) and its homology groups are denoted by 

This is a special case of the Conley-Franzosa connection matrix in [ 191 and 
[20]. In [15], [28], [34], [36], and [40] it was proved that the homology groups 
of the Morse complex agree with the singular homology of M: 
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To relate the Floer homology groups to the homology of the above Morse 
complex we must find for a given Morse-function H : A4 -P R an almost 
complex structure J such that both (7.1) is a Morse-Smale flow and the pair 
( H ,  J) is regular in the sense of Section 2. This is possible for a sufficiently 
small period 7. 

THEOREM 7.3 0.1. Let H : M + R be a Morse function and let J be an 
almost complex structure compatible with o such that (7.1) is a Morse-Smale 
flow. Then the following holds for 7 > 0 sujiciently small. 

(1) The operator F,(u) defined by (2.4) is onto for every solution u : R -P 

M of (7.1). 
(2) Every bounded solution u(s, t )  = u(s, t + 7) of (2.2) is independent of 

Proof: We prove statement (1). Let Zj(s) E TU(sp14 be a symplectic 
orthonormal basis as in the proof of Lemma 5.1 and let the matrices A = -AT 
and S = ST be defined as in the proof of Theorem 5.4. Then the operator 
F,(u) is in local coordinates given by 

Since u(s, t )  is independent of t  so are the matrices A and S. Hence it follows 
from Corollary 4.3 that this operator is onto if and only if the operator 

is onto provided that 7 is sufficiently small. But FO is the local coordinate 
representation of the operator < H V< + VcVH(u) .  So FO is onto for every 
gradient flow line u(s) if and only if (7.1) is a Morse-Smale flow; see [34]. 

We prove statement (2). Assume by contradiction that there is a sequence 
of periods t,, > 0 converging to zero and a sequence of bounded solutions u,, 
of (2.2) such that 

and u,,(s, t )  is not independent oft .  Without loss of generality we may assume 
that the functions u,, satisfy (2.3) for two critical points x ,  y of H .  Then the 
flow energy of these solutions is uniformly bounded 

uu(s, t + 7,) = uu(s, t )  

By Gromov's compactness there exists a subsequence (still denoted by u,,) 
and sequences of times s; E R, j = 1 , .  . . , m, such that uU(s + s!, t )  converges 



MORSE THEORY 1343 

with its derivatives uniformly on compact sets to a gradient flow line uj(s) 
of (7.1) running from xj-l to xi with xo = y and x” = x (for details 
see [34]). Moreover, the sequence uv(s,  t )  lies entirely in a neighborhood of 
this collection of gradient flow lines in the sense that 

lim supinfd(u,(s, t ) ,  u J ( s ’ ) )  = 0 . 
Y-+oO S,I sl,j 

We prove that u,(s, t )  must be independent of t for v sufficiently large. 
For this we restrict ourselves to the relevant case for Floer homology where 
the index difference is 1 

indH(y) - inds(x) = 1 . 

Then rn = 1 and with a suitable choice of time shift the sequence uv(s,  t )  
converges to a gradient flow line u(s)  of (7.1) running from y to x. Assume 
first that z, = 70/k, for some sequence of integers k, where zo > 0 is within 
the range of validity of statement (1). Then the solutions u, of (2.2) are all 
of period 70. By statement (1) the operator F7,(u) is onto. Hence it follows 
from the uniqueness part of the implicit function theorem that the orbit u 
is isolated in the space L7,(y,x). This means that every 70-periodic solution 
of (2.2) and (2.3) which is sufficiently close to u must agree with u up to a 
time shift. Hence u,(s, t )  = u(s + s,) for large v and this contradicts our 
assumption that u, was not independent of t. 

If 7, is an arbitrary sequence converging to zero we choose integers k, E N 
such that kv7, converges to TO. Then the same argument works uniformly in 
a neighborhood of TO. 

In the general case where the index difference is larger than 1 we shall not 
carry out the details of this argument. It involves a quantitative version of 
the uniqueness part of the gluing construction for the solutions of (2.2) and 
(2.3) with the relevant constants independent of the parameter z. For details 
of this gluing construction see [ 131. 

Proof of Theorem 7.1: Let H : M + R be a Morse function and let 
J E A e s ( H ) .  Then it follows from Theorem 7.3 that the pair ( H ,  J )  is regular 
in the sense of Section 2 provided that T > 0 is sufficiently small. Moreover, 
all solutions of (2.2) and (2.3) are independent of t. Hence it follows from 
Lemma 7.2 that in this case Floer’s chain complex agrees with the Morse 
complex of the gradient flow (7.1) with the grading shifted by n and hence 

for t sufficiently small. 
Finally we observe that the Floer homology groups are independent of the 

choice of the period t. Indeed, if u(s, t )  = u(s, t + t) is any solution of (2.2) 
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and (2.3) with a z-periodic Hamiltonian H(t ,x)  = H(t + 7,x) then ~ ( s ,  t )  = 
u(zs, 7t) satisfies (2.2) with H replaced by the 1-periodic Hamiltonian 

Hl(t ,x) = tH(7t,x) . 

Moreover, the corresponding periodic solutions have the same Maslov index. 
Hence 

This proves Theorem 7.1. 

HFk(M;H,J,T) 21 HFk(M;Hl,J, 1 ) .  

Proof of Theorem B: Assume that the contractible z-periodic solutions 
of (1.1) are nondegenerate and choose any regular pair (K, J) E (2' x &)reg 

such that the Hamiltonian K : R/zZ x M + R is sufficiently close to H. 
Then the number of contractible 7-periodic solutions x for K with Maslov 
index pT(x; K) = k agrees with the corresponding number for H. Denote by 
a k  = &(K, J, z)  : ck+,(M; K, z) -, Ck(M; K, 7) the boundary homomorphism 
of Floer homology and define 

dk = rankak . 
Note that the dimension of Ck(M; K, 7) agrees with the number of con- 
tractible 7-periodic solutions of ( 1.1) with Maslov index k 

Pk =Pk(H,7) =dimCk(M;K,z) . 
So the isomorphism HFk(M; K ,  J, z) N Hn+k(M; 2/22?) of Theorem 7.1 shows 
that 

This is equivalent to the Morse inequalities (1.2). 

bn+k = dimkerak-1 -rankak =Pk - dk-1 - dk . 

8. Transversality 

THEOREM 8.1. Let H : M -+ R be a Morse function. Then there exists a 
dense set Aeg(H) of smooth almost complex structures on M taming w such 
that the gradient flow (7.1) is of Morse-Smale type. 

Proof: Let 3 denote the space of all smooth almost complex structures 
on M which are compatible with w and denote by 

Z(Y>x;H) 

the space of all pairs (u, J) where J E and u E A ( y ,  x; H, J) is a gradient 
flow line of (7.1) running from y to x. The key point is to prove that with 
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a suitable topology this space is an infinite dimensional manifold. We may 
assume x # y.  

To be more precise we observe that the tangent space T J ~  to / is the 
vector space of smooth sections X E C - ( S J )  where SJ c End(TM) is the 
bundle over M whose fiber at x E M is the space ( S J ) ,  of linear endomor- 
phisms X : TxM + TxM which satisfy 

J X + X J = O ,  o x ( X ~ , q ) + o ~ ( < , X q ) = o .  

Indeed, for any section X E C - ( S J )  the one-parameter family 

Jt = J exp{ - J X t }  E C"(End( TM)) 

consists of almost complex structures compatible with o for t sufficiently 
small. 

The Sard-Smale theorem requires a Banach manifold structure on the 
space f of complex structures. Hence we shall not work with the usual C"- 
topology but instead introduce a stronger norm-topology. Following Floer 
(see [ 111) we choose a sufficiently rapidly decreasing sequence &k > 0 and 
denote by C ~ ( S J )  the subspace of those smooth sections X E C - ( S J )  for 
which 

M 

< 0 0 .  

k=O 

This defines a separable Banach space of smooth sections which for a suitable 
choice of the sequence ek  is dense in L2 ( S J )  ; see [ 1 11. Now fix an almost 
complex structure J1 E 3 and a sufficiently small constant 6 > 0. Denote by 
4; the space of all almost complex structures of the form J = J I  exp{ - J1 X }  
where X E C,"(SJ,) with llXlle < 6. This space is diffeomorphic to an open 
set in a separable Banach space. Denote by Zl(y,x) the subspace of all 
(u, J) E Z ( y ,  x) with J E 4;. We prove that 31 ( y ,  x) is a Banach manifold. 

Denote by 2 the space of W1,2-maps u : R + M which satisfy the limit 
condition (7.2) in the W'bense;  see [13]. Let 8 denote the bundle over 
2 x x1 whose fibers are L2-vector fields along u. The formula 

du  F ( u ,  J )  = -& + V H ( u )  

defines a smooth section of this bundle 

9 : 2 x A + 8 .  

Z ( y , x )  = 9- ' (0)  . 
and 
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So we have to show that 9 is transversal to the zero section. Equivalently, 
we must show that the linearized map 

) d F ( u ,  JXt, X) = F ( u ) t  + X ( u )  dt - XH(U) ( d u  

is onto where the operator F ( u )  : W1y2 + L2 is defined by 

F(u)<  = V r  + V t ; V H ( u )  . 

We know already that this is a Fredholm operator (see [34]) and therefore 
has a closed range. Hence it remains to prove that the range of the operator 
d F ( u ,  J )  is dense. 

Suppose that F ( u , J )  = 0 and that the L2 vector field q along u is or- 
thogonal to the range of d Y ( u ,  J ) .  Then q satisfies the ordinary differential 
equation 

and 

for every X E T J ~ .  Since x # y and 9 ( u ,  J )  = 0 we have 

d u  - # O .  d s  

We claim that q ( s )  = 0 for all s. Suppose otherwise that q(s0) # 0 for 
some SO and let xo = u(s0). Consider an orthogonal symplectic trivialization 
of T M  near xo as in Lemma 5.1. With respect to this trivialization the 
transformation J is represented by the matrix JO and the symplectic form 
is given by o(<l,to) = ( J o C ~ ) ~ C O  where C0,Cl E R2" denote the coordinate 
vectors of &-,,<l E T M .  Represent X as a 2n x 2n-matrix XO with respect to 
these coordinates and observe that X E ( S J ) ~  if and only if 

XoT = Xo = JOXOJO . 

For any two nonzero vectors (0 and Cl we show that there exists a matrix XO 
as above with ( C l ,  X d o )  # 0. If ( C l ,  (0) # 0 choose 

Xo = CoCoT + JoCoroTJo 
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If is orthogonal to both TO and JoCo choose 

Xo = Cl COT + roc1 + Jo (Cl COT + r o l l  *) Jo 

Now consider the case 

and let Ti  E R2” denote the coordinates of E T, M for i = 0, l .  Choose the 
matrix XO as above. Since C ~ ( S J , )  is dense in L ( S J , )  there exists a smooth 
section X E T J ~  which at the point xo is represented by the matrix XO and 
which is supported in an arbitrarily small neighborhood of XO. Then 

4 

and it follows that the integral on the left-hand side of (8.2) must be nonzero. 
This contradiction shows that q vanishes at SO and hence everywhere. Thus 
we have proved that the operator d Y ( u ,  J )  is onto as claimed. 

Since d Y ( u ,  J )  is onto it follows that 2; ( y ,  x) is a Banach manifold. The 
tangent space of -2;(y,x)  at (u ,  J )  consists of all pairs (t, X) E W1,2 x T J ~  
such that 

Define A e g ( y ,  x; H )  as the set of regular values of the projection 

: Z l ( Y , x ; H )  42i, ( u , J )  J 

Then the differential of K is onto if and only if for every X there exists a < such that (8.3) is satisfied. Hence ( u , J )  is a regular point of K if and 
only if F ( u )  is onto. We conclude that the space A ( y ,  x; H ,  J) is a smooth 
manifold for every J E freg(y, x ;  H ) .  Since K is a smooth Fredholm mapping 
it follows from the Sard-Smale theorem (see [37]) that the set freg(Y,x;H) 
has a nowhere dense complement in 3 and so has the intersection 

This proves Theorem 8.1 

We shall use a similar argument as in the proof of Theorem 8.1 to show 
that the set of regular pairs ( H ,  J )  in the sense of Section 2 is dense in the set 
of all pairs of 7-periodic Hamiltonians H and almost complex structures J. 
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This requires an analysis of the local behavior of the solutions u E d T ( y ,  X )  
of (2.2) and (2.3). 

A point (s, t )  E R2 is called a critical point of u if either du/ds(s,  t) = 0 or 
u(s, t )  = x ( t )  or u(s, t )  = y ( t ) .  A point (SO, to) E R2 is called a regular point 
of u if it is not a critical point and u(s, to) # u(s0, to) for every s # SO. We 
denote the set of critical points by C ( u )  and the set of regular points by R(u) .  
In [ 171 Floer and Hofer proved the following theorem. 

THEOREM 8.2. Assume x # y and u E d T ( y , x ) .  Then the set C(u) is 
discrete and the set R(u)  is open and dense in W2. 

We also need a unique continuation theorem due to Aronszajn; see [3]. 

THEOREM 8.3. Let R c W2 be a connected open set. Suppose that u E 
C"(R, Wm) satisjies the pointwise estimate 

and that all the partial derivatives of u vanish at a point (SO, to) E R. Then 
u = 0. 

THEOREM 8.4. Let J : T M  -+ T M  be an almost complex structure com- 
patible with o. Then there exists a dense set %&g = 2&( J ,  7) of smooth 
7-periodic Hamiltonian functions H ( x ,  t )  = H ( x ,  t + 7) such that ( H ,  J )  is a 
regular pair for every H E 

Proof: Let Ho(x,  t )  = Ho(x, t + 7) be a Hamiltonian function such that 
every 7-periodic solution of (1.1) is nondegenerate. We denote by Ctm(M; Ho) 
the set of smooth functions h : M x R/7Z -+ R whose support is bounded 
away from the 7-periodic solutions of (1.1). This means that h ( x ,  t )  = 0 for 
x in some fixed neighborhood of xo(t) for xo E ~ ( H o ) .  Here the norm llhllt 
is a Cem-norm as in the proof of Theorem 8.1. Note that if llhlle is sufficiently 
small then PT ( HO + h )  = 9T ( Ho). 

Now let x , y  E PT(H0). We denote by 

the set of all pairs (u,  H )  where H - HO E Ce"(M; Ho) and u E M ( y ,  x;  H,  J). 
We must prove that for x # y this space is an infinite dimensional manifold. 
For this we proceed as in the proof of Theorem 8.1. Let % denote the space 
of W1@-maps u : W x R/rZ + M which satisfy the limit condition (2.3) in 
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the WIJ' sense where p > 2. Let 8 denote the bundle over 2.l x Cr(M;Ho) 
whose fiber at u is the space of LP vector fields along u. Then the formula 

defines a smooth section F : 2.l x Cem(M; Ho) + 8. We must prove that 9 
is transversal to the zero section. This means that the linearized map 

is onto whenever F ( u ,  H) = 0. 
Suppose that q is a nonzero Lq-vector field along u orthogonal to the range 

of d F ( u , H )  where l/p + l /q  = 1. Then it follows from elliptic regularity 
that q is smooth and 

a u  
at (8.4) F~(U)*V = -Vsq + J ( u ) V , ~  + V q J ( u ) -  + VqVH( t ,u )  = 0 . 

Moreover, it follows that 

for every h E C r ( M ;  Ho).  
We prove that q ( s y t )  # 0 for almost every pair ( s , t )  E W2. Suppose 

otherwise that q vanishes on an open subset of R2. Let @(s, t )  = @(s, t + z) : 
W2" + Tu(,,tlM be an orthogonal symplectic trivialization as in Lemma 5.1 
and denote by [ = W 1 q  the new coordinates of q. Then 

and hence 

0 = - + Jo- F * [  = -A[ + lower order terms . (a", :t) 

Hence it follows from Aronszajn's theorem that ( = 0. 
We prove that du /ds  and q are linearly dependent for all ( s , t )  E R2. 

Suppose otherwise that du /ds  and q are linearly independent at some point 
(SO, to) E R2. Assume without loss of generality that ( S O ,  to) E R(u).  Then 
there exists a small neighborhood UO c M x R/zZ of the point  SO, to), t o )  
such that the open set 
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is a small neighborhood of the pair (s0, to) .  Otherwise there would exist a 
sequence (sv, tv) such that t, -+ to, u(sv, tv) + u(s0, to )  and Is, - SO( > 6. 
Since x(t0) # u(s0,to) # y( t0)  the sequence s, must be bounded. Assume 
without loss of generality that s, converges to s*. Then Is* - sol > 6 and 
u(s*, to )  = u(s0, to )  and this contradicts the definition of R(u).  Thus we have 
proved that the above set is a small neighborhood of (so, to) for some VO. 
Note that the map 

v, + uo : H (u (s , t ) , t )  

is a diffeomorphism. Shrinking VO if necessary we may assume that q and 
d u / d s  are linearly independent in V,. Hence we may choose coordinates 

: M .--) R2" in a neighborhood of (u(s0, t o ) ,  t o )  E UO such that 

Now define g, : R2" + R by 

where P : R + [0,1] is a cutoff function such that B(r)  = 1 for Irl 5 6 and 
B ( r )  = 0 for Irl 2 26. Then the function 

vanishes outside UO and satisfies 

for (s, t )  E VO . Hence the integral (8 .5)  is nonzero . It remains nonzero 
when we approximate h by a function in C p ( M ; H o ) .  This contradicts our 
assumption on q. 

Thus we have shown that the vectors q ( s , t )  and d u / a s ( s , t )  must be 
linearly dependent for all ( s , t )  E R2. So there exists a smooth function 
A : R2 \ C(u) --+ R such that 

We prove that a A / d s  5 0. Assume otherwise that dA/as(so,  t o )  # 0 for some 
point (so, to )  E R~ \ C(u) .  Since ~ ( s ,  t )  # o for almost every (s, t )  E R~ we may 
assume without loss of generality that A(so,to) # 0. By Lemma 8.2 we may 
also assume without loss of generality that (so, to)  E R ( u ) .  Choose a small 
neighborhood VO of ( s0 , to )  as above such that A # 0 and dA/as  # 0 in V,. 
Since d A / d s  # 0 there exists a compactly supported function cy : V, -+ R such 
that 
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As above we construct a function h, = h,,, : A4 -+ R such that 

h,(u(s, t))  = a(s , t )  for ( s , t )  E V, . 

Then we obtain 

and the integral (8.5) is nonzero again. 
Thus we have shown that 

dd -(s,t) = 0 as 
for all (s, t) E R2\C(u). Since C ( u )  is a discrete set it follows that d(s, t) = d ( t )  
is independent of s. In particular 3, is a smooth function on all of R2. Now 
we observe that 

d ( t >  # 0 
for all t E R. Otherwise there would exist a number to E R such that q(s, t o )  = 
0 for all s E W. Since q is a solution of (8.4) it would follow that all derivatives 
of rl vanish on the line t = to. By Aronszajn's theorem this would imply q = 0 
in contradiction to our assumption. 

Assume without loss of generality that A( t )  > 0. Then we have 

for every s E R. On the other hand, it follows from the identities 

that 

= o .  

This contradiction shows that the operator d F ( u ,  H) is onto whenever F ( u ,  
H) = 0 and therefore Z ( y ,  x ,  J) is an infinite dimensional manifold. The 
rest of the proof is as in Theorem 8.1. 
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If we consider a fixed Hamiltonian H (for example a time-independent 
one) we have to allow a perturbation of J in the class of time dependent 
almost complex structures to make the previous transversality theorem work. 
This means that we leave the class of finite dimensional gradient flows re- 
quired to prove that the Floer homology groups agree with the homology 
of the underlying manifold. In Section 7 we circumvented this difficulty by 
choosing a small period 7. 

9. Perturbation of Isolated Periodic Orbits 

We prove a perturbation theorem for periodic solutions of a time depen- 
dent Hamiltonian differential equation on a (paracompact) symplectic man- 
ifold ( M ,  w ) .  More precisely, we assume that H : R/Z x M + R is a smooth 
(C") Hamiltonian function and xo(t)  = xo(t + 1) is a 1-periodic solution of 
( 1 . 1 )  which is isolated. Given any almost complex structure J we denote by 
d = dJ the induced metric on M defined by (2.1). Choose 6 > 0 such that 
d ( x ( t ) ,  xo(t))  > 6 for every t and every 1-periodic solution of (1.1) other than 
xo(t). Let 

No = { ( t , x )  E R x M ;  d ( x , x o ( t ) )  < 6) 
be the tubular &neighborhood of xo(t). 

THEOREM 9.1. For every E > 0 there exists a smooth Hamiltonian func- 
tion H' : S' x M + R which satisfies 

llH' - Hllc2 I & , 

and agrees with H outside NO such that every I-periodic solution of 

k ( t )  = XHI(t,X(t)) 

which enters NO is nondegenerate. 

To prove Theorem 9.1 we choose local Darboux coordinates on the man- 
ifold M near the periodic solution xo(t). We denote by 00 the standard 
symplectic form on R2" given by coo( ( ,  C ' )  = ( J O T ) ~ ~ ' .  

LEMMA 9.2 . Let ( M ,  w )  be a paracompact 2n-dimensional symplectic 
manifold and let x ( t )  = x ( t  + 1) be a smooth curve in M.  Then there exists 
an open set U c R2" containing 0 and a smooth map 

R x u + M , ( t , x )  - $ t ( X )  , 

such that $f is a difeomorphism from U onto an open neighborhood of x ( t )  
satisfying 

$ f + l  = $ I  > M O )  = x ( t )  , 4tw = 0 0  . 
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Proof: We first construct a symplectic trivialization 

(9.1) @(t)  : R2" + T,(,)M , @(t + 1) = @(t)  , 

so that 

If x( t )  is a contractible loop then such a trivialization exists by Lemma 5.1. 
In the general case we first construct a symplectic trivialization @(t)  which is 
not necessarily periodic. More precisely, let @( t ,  s) : T,(,)M + T,(,)M denote 
the solution operator of the differential equation 

vy + V p I ( x ) J ( x ) X  = 0 

for vector fields c(t)  along x ( t )  so that T ( t )  = @ ( t , s ) c ( s ) .  Then @(t,s) is a 
symplectic transformation and @(t + 1, s + 1) = @(t, s). Choose any linear 
symplectic transformation @(O) : R2" + Tx(o)M and define 

@(t) = @(t, O)@(O) : R2" + T,(t)M . 

This function satisfies (9.2) but will in general not be periodic in t. It there- 
fore remains to construct a symplectic matrix Y(t )  E Sp(2n;R) such that 
@(t)Y(t) is of period 1 or equivalently 

(9.3) Y(t + 1) = A Y ( t )  

where A = @(t + l)-'@(t) = @(O)-'@(O, 1)@(0) E Sp(2n;R). It is enough to 
construct Y(t )  for 0 5 t 5 1 such that Y(t)  = Z for 0 5 t 5 E and Y(t )  = A 
for 1 - E 5 t 5 1. Then Y(t) extends uniquely to a smooth function from W 
to Sp(2n;W) via (9.3). Since Sp(2n;W) is connected such a path " ( 8 )  exists. 

Now suppose that @(t) : W2" + 7&M satisfies both (9.1) and (9.2) and 
define 

4r : w2" + M , 4t(z) = exp,(r){@(t)z) 
Then 4f = +,+, is a local diffeomorphism near z = 0 and satisfies the condi- 
tion 4 ; ~  = coo at z = 0. So Moser's proof of Darboux's theorem (see [30]) 
can be camed over word by word to prove that there exists a smooth 1- 
parameter family of local diffeomorphisms Vf : U ---* W2" such that 

Thus the composition o tyf satisfies the requirements of the lemma. 
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Proof of Theorem 9.1: In view of Lemma 9.2 it is enough to consider 
the case where z ( t )  = 0 is an isolated 1-periodic solution of the Hamiltonian 
differential equation 

(9.4) Z ( t )  = JoVH(t, z ( t ) )  

in R2". Assume without loss of generality that the Hamiltonian function 

H ( t ,  z )  = H ( t  + 1, z) 

is defined on all of R2" and that its gradient is uniformly bounded. Denote 
by 

the 1 -parameter family of symplectic diffeomorphisms determined by the 
solutions of (9.4), that is y t ( z (0 ) )  = z ( t ) .  Then z = 0 is an isolated fixed 
point of y1. 

Let z = ( x , y )  and [ = ( r ,  q )  where x, y ,  5 ,  and q are n-vectors. So the 
canonical transformation z = w1 ([) can be written in the form 

yt : R2" + R2" 

Assume without loss of generality that 

det ( g )  # 0 

near [ = 0. Then there exists a generating function Q(5, y )  such that equation 
(9.5) in a neighborhood of zero is equivalent to 

aQ  aQ 
x = - ( S , Y )  aY , q = -(<,y) ar . 

With W(5,  y )  = (5 ,  y )  - Q(5, y )  this becomes 

So the fixed points of yl are the critical points of W .  Moreover z = ( x , y )  = ( r ,  y )  is nondegenerate as a fixed point of v/1 if and only if z is nondegenerate 
as a critical point of W .  

Choose 6 > 0 such that there is no critical point of W in &(O) \ ( 0 )  and 
define 
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Choose a smooth cutoff function P which is I in Bd/2 and vanishes outside 
Bd and define c = sup IVPI. Let (a, b)  E R2" be a regular value of OW such 
that 

P I4 + Ibl < * 

Then the function 

has only nondegenerate critical points in Bd and no critical points at all in 
Bd \ B6/2. Moreover a and b can be chosen such that 

for any given positive number E I .  Let v/' be the symplectic diffeomorphism 
generated by W' meaning that z = w'(  [) if and only if 

Then v/' has only nondegenerate fixed points in BS and no fixed points in 
B6 \ B6/2. Moreover v/' is C1-close to v/ = v / 1  and agrees with v/ outside Bd. 
Define 

Then 4 is C'-close to the identity map and agrees with the identity outside 
Bd. Hence there exists a generating function S = S(<,  y )  which is C2-small 
and vanishes outside Ba such that z = 4([) if and only if 

4 = y-10 v / l .  

as as 
dY 84; 

x - 4; = --(4;,Y) > Y - YI = -(4;,y) . 

Choose a smooth cutoff function a : [0, I] + [0,1] such that a ( t )  = 0 for 0 5 
t 5 E and a( t )  = 1 for 1 - E  5 t 5 1 and define the symplectic diffeomorphism 
z = +f ([) by the implicit formula 

Then 4f = id for t 5 E ,  @t = 4 for t 2 1 - E and + f ( z )  = z for all 
So the vector field 

is Cl-small and vanishes for z 4 Bd and for t 4 [ E ,  1 - E ] .  Since 
it follows that i,, wo is a closed and hence exact 1 -form on R2". We conclude 
that there exists a C2-small Hamiltonian function F : [0, I] x R2" + R such 
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that v l ( z )  = JoVF(t ,z) .  So +I is the solution operator of the Hamiltonian 
differential equation 

This function F ( t ,  z )  can be chosen to vanish for z $ Ba and for t $ [ E ,  1 - E ]  

and therefore extends uniquely to a smooth 1-periodic Hamiltonian F : S1 x 
R2” .-+ W. Let for t E W be the corresponding extended 1-parameter family 
of solution operators and define 

Z = JoVF( t , z )  . 

w: = w1 O 4t * 

Then iy; = ty’ and therefore its fixed points in Ba are nondegenerate. More- 
over, ty: is the solution operator of the Hamiltonian differential equation 
Z = JoVH’(t, z )  where 

H’(t, Z )  = H ( t ,  Z )  + F ( I ,  W ; ’ ( Z ) )  

In particular, H’(t, z )  is 1-periodic in t and agrees with H ( t ,  z )  for z $ Ba. 
This proves Theorem 9.1 

The above perturbation argument has also been carried out in [43]. It 
shows that it is enough to assume that the unperturbed Hamiltonian function 
H is of class C2. This will guarantee v/t to be of class C’ and therefore H’ 
to be of class C2. 

Proof of Theorem A: Let v/t denote the time-t-map of the Hamiltonian 
system (1.1). 

Suppose that there are only finitely many contractible 1 -periodic solutions 
of (1.1) and that these are all weakly nondegenerate. Then we shall prove 
that there exists a number zo > 0 such that for every prime 7 > TO there 
is a contractible periodic solution x E P T ( H )  of minimal period z. By this 
we mean that iyk(x(0))  # x(0) for every integer 1 2 k < z. To prove this 
we introduce the number zo(x) for x E 9 1 ( H )  as follows. If A l ( x ; H )  # 0 
we define zo(x) = 2 n / l A l ( x ;  H)I.  If A l ( x ;  H) = 0 we make use of the fact 
that there is a Floquet multiplier 1 # 1. If 1 is not a root of unity we define 
zg(x) = 1. If 1 is a root of unity we define zo(x) = min{k E N; Ak = 1). 

Now suppose that z E N is a prime number such that 

and that there is no contractible periodic solution of (1.1) with minimal 
period z. Then every contractible z-periodic solution of (1.1) must be of 
period 1. So it follows from the iterated index formula in Lemma 3.4 that 
every contractible 7-periodic solution of (1.1) satisfies either 

IAT(x;H)I = T ~ A ~ ( x ; H ) I  > 2n 
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or 

In the latter case the definition of zg(x) shows that 1 # A’ E a(dy/,(x(O))) 
with A as above. Choose p > 0 such that every contractible 7-periodic solution 
of (1.1) with A 7 ( x ; H )  = 0 has at least one Floquet multiplier outside the ball 
B3np( 1). Then there exists a constant E > 0 such that if H’ : S1 x M -, R 
is any Hamiltonian function with llH’ - Hllc2 < E then every contractible 
z-periodic solution x’ E 9 , ( H ’ )  satisfies either 

A,(x; H )  = 0. 

or 

and in the latter case there is a Floquet multiplier outside Bzxp( 1). By The- 
orem 9.1 there exists such a Hamiltonian function close to H whose con- 
tractible 7-periodic solutions are nondegenerate. If lAr (x‘; H ‘ )  1 > 2n then 

IAr(x’;~’)l 2 p 

Mx’;H’)I 2 lAr(x’;H’)l - l ~ ( ~ x ~ ( 7 ) ) l  > n * 

lPr(x’;H’)l 5 l&(x’;H’)I + Ir(Yxr(7))l < n . 

If IAr(x‘;H‘)I 5 p then lr(Yxt(7))1 < n - 2p  and therefore 

Thus there is no x’ E P,(H’) whose Maslov index is n or -n. This contradicts 
the Morse inequalities of Theorem B. 

10. Some Concluding Remarks 

In the special case of a constant Hamiltonian there are of course infinitely 
many integer periodic solutions, however they are all of period 1. In contrast 
the proof of Theorem A leads to a more refined statement which guarantees 
periodic solutions of arbitrarily large integer periods z which are minimal in 
the sense that the solution is not of integer period less than 7. More precisely, 
if there are only finitely many contractible 1-periodic solutions of (1.1) and 
these are all weakly nondegenerate then for every sufficiently large prime 
7 E N there exists a contractible periodic solution with minimal period 7. 

In Section 5 we have introduced the mean winding number A1(x) asso- 
ciated to every contractible 1-periodic solution x of (1.1). This number is 
invariant under symplectic diffeomorphisms but is of course not invariant 
under perturbation. It is an even integer whenever all Floquet multipliers 
are equal to 1. The weak nondegeneracy condition of Theorem A is only 
needed for those 1-periodic solutions for which this mean winding number 
is zero. So we have proved the following existence result. If the Hamiltonian 
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system (1.1) possesses only finitely many 1-periodic solutions and all of these 
have a nonzero mean winding number A1 then for every sufficiently large 
prime T E N there exists a contractible periodic solution with minimal period 
T. This phenomenon is related to a recent result due to J. Franks; see [20]. 
It states that if an area and orientation preserving homeomorphism of the 
2-dimensional plane possesses 2 fixed points with different mean rotation 
numbers then there are infinitely many periodic points. 

We have not addressed the question as to how much smoothness is needed 
for the Hamiltonian function H in order for Theorems A and B to remain 
valid. It should be enough to assume that H has Lipschitz continuous deriva- 
tives. The details, however, have yet to be fully worked out. Also, we have 
not considered the existence of periodic solutions which are not contractible. 
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