Observability of nontrivial small solutions for neutral systems

Dietmar SALAMON

Forschungsschwerpunkt Dynamische Systeme, Universität Bremen, 2800 Bremen 33, West Germany
Received 1 February 1983
Revised 17 April 1983

In this paper we introduce the concept of observability of nontrivial small solutions for neutral functional differential equations with a single point delay and prove a matrix type criterion.

Keywords: Neutral functional differential equations, Small solutions, Observability.

1. Introduction

We consider the neutral functional differential equation (NFDE)

$$
\begin{equation*}
\dot{x}(t)=A_{0} x(t)+A_{1} x(t-h)-A_{-1} \dot{x}(t-h) \tag{1}
\end{equation*}
$$

with output

$$
\begin{equation*}
y(t)=C_{0} x(t)+C_{1} x(t-h)+C_{-0} \dot{x}(t)+C_{-1} \dot{x}(t-h) \tag{2}
\end{equation*}
$$

where $\boldsymbol{x}(t) \in \mathbb{R}^{n}, \boldsymbol{y}(t) \in \mathbb{R}^{m}$ and $A_{0}, A_{1}, A_{-1}, C_{0}, C_{1}, C_{-0}, C_{-1}$ are real matrices of the appropriate size. It is easy to see that the NFDE (1) admits a unique solution $x \in W_{\text {loc }}^{1, p}\left([-h, \infty) ; \mathbb{R}^{n}\right)$ for every initial condition of the form

$$
x(\tau)=\varphi(\tau), \quad-h \leqslant \tau \leqslant 0,
$$

where $\varphi \in W^{1 . p}=W^{1 . p}\left([-h, 0] ; \mathbb{R}^{\prime \prime}\right)$ and $1<p<\infty$.

Small solutions

We say that $\boldsymbol{x}(t), t \geqslant-h$, is a small solution of (1) if

$$
\lim _{t \rightarrow \infty} e^{\omega t} x(t)=0
$$

for every $\omega \geqslant 0$. This means that $\boldsymbol{x}(t)$ tends to zero more rapidly than any exponential or equivalently its Laplace transform is an entire function. An important fact is that every small solution of (1) vanishes after a finite time $T \leqslant(n-1) h-\alpha$ where $\alpha \geqslant 0$ is the exponential type of the entire function $\operatorname{det}\left(s I-A_{0}-\right.$ $\left.\mathrm{e}^{-s h} A_{1}-s \mathrm{e}^{-s h} A_{-1}\right), s \in \mathbb{C}$. This has first been shown by Henry [1] in the retarded case and later on by Kappel [2] for general neutral systems.

Observability of nontrivial small solutions

A small solution of (1) is said to be trivial if it vanishes for $t \geqslant 0$. We introduce the following important concept.

Definition (observability of nontrivial small solutions). The nontrivial small solutions of system (1), (2) are said to be observable if every nontrivial small solution has a nonzero output for some $t \geqslant 0$. This means that the solutions of (1), (2) have the following property for any $T \geqslant 0$:

$$
(x(t)=0 \forall t \geqslant T, y(t)=0 \quad \forall t \geqslant 0) \quad \Rightarrow \quad(x(t)=0 \quad \forall t \geqslant 0)
$$

Such a concept has previously not been considered in the literature on control systems with delays except in Salamon [11]. However, it has turned out to provide a crucial tool for the study of controllability and observability properties of neutral systems as well as for the derivation of matrix type criteria for completeness and F-completeness of eigenfunctions (Salamon [11]). In particular, the above property is precisely the 'gap' between final observability (i.e. $\boldsymbol{y}(t)=0$ implies $\boldsymbol{x}(t)=0 \forall t \geqslant T$) and the stronger concept of observability in the sense

$$
(y(t)=0 \forall t \geqslant 0) \quad \Rightarrow \quad(x(t)=0 \forall t \geqslant 0) .
$$

The latter concept plays an important role in the control theory of functional differential systems (see e.g. Lee [4], Kwong [3], Lee-Olbrot [5]. Olbrot [8,9], Manitius [7]). However, a satisfactory characterization of this property has only recently been given by Manitius [7] for retarded systems with undelayed output variables. Our result below allows a generalization of his criterion to neutral systems with output delays. This generalization will not be worked out here since it needs a lot of state space theory and would lead too far for this paper. The interested reader is refered to Salamon [11].

Note that Olbrot [9] has a different concept of final observability namely that $\boldsymbol{y}(t)=0$ for $0 \leqslant t \leqslant T$ implies $\boldsymbol{x}(T)=0$. However, in the retarded case it has been shown in [9] that these two definitions coincide if T is sufficiently large. For neutral systems, this equivalence is a consequence of Salamon [11, Lemma IV.1.10]. Again in the case that T is sufficiently large, it has been shown in Salamon [11, Theorem IV.1.11] that final observability is equivalent to spectral observability and hence can be characterized by the matrix type condition

$$
\operatorname{rank}\left[\begin{array}{l}
\lambda I-A_{0}-\mathrm{e}^{-\lambda h} A_{1}-\lambda \mathrm{e}^{-\lambda h} A_{-1} \tag{3}\\
C_{0}+\mathrm{e}^{-\lambda h} C_{1}+\lambda C_{-0}+\lambda \mathrm{e}^{-\lambda h} C_{-1}
\end{array}\right]=n \quad \forall \lambda \in \mathbb{C} .
$$

2. The main result

Theorem. The nontrivial small solutions of system (1), (2) are observable if and only if

$$
\max _{\lambda \in \mathrm{C}} \operatorname{rank}\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}+\lambda A_{-1} \tag{4}\\
A_{1}+\lambda A_{-1} & 0 \\
C_{0}+\lambda C_{-0} & C_{1}+\lambda C_{-1} \\
C_{1}+\lambda C_{-1} & 0
\end{array}\right]=n+\max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[\begin{array}{l}
A_{1}+\lambda A_{-1} \\
C_{1}+\lambda C_{-1}
\end{array}\right]
$$

Proof. Let us introduce the matrices

$$
A(\lambda)=\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}+\lambda A_{-1} \\
A_{1}+\lambda A_{-1} & 0
\end{array}\right], \quad C(\lambda)=\left[\begin{array}{cc}
C_{0}+\lambda C_{-0} & C_{1}+\lambda C_{-1} \\
C_{1}+\lambda C_{-1} & 0
\end{array}\right]
$$

and define

$$
K=\max _{\lambda \in \mathrm{C}} \operatorname{rank}\left[\begin{array}{l}
A(\lambda) \\
C(\lambda)
\end{array}\right], \quad k=\max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[\begin{array}{c}
A_{1}+\lambda A_{-1} \\
C_{1}+\lambda C_{-1}
\end{array}\right]
$$

Then K is always less than or equal to $n+k$.

Necessity

Suppose that $K<n+k$. Then we prove in three steps that there exists a nontrivial small solution of (1), (2) with zero output.

Step 1. The exist polynomials

$$
p(\lambda)=\sum_{j=0}^{l} p_{j} \lambda^{j}, \quad q(\lambda)=\sum_{j=0}^{l} q_{j} \lambda^{j}
$$

in $\mathbb{R}^{\prime \prime}[\lambda]$ such that $p(\lambda) \not \equiv 0$ and

$$
\begin{equation*}
A(\lambda)\binom{p(\lambda)}{q(\lambda)}=0, \quad C(\lambda)\binom{p(\lambda)}{q(\lambda)}=0 \quad \forall \lambda \in \mathbb{C} . \tag{5}
\end{equation*}
$$

Proof. Let $M(\lambda)$ and $N(\lambda)$ be unimodular matrices of appropriate size such that

$$
M(\lambda)\left[\begin{array}{l}
A(\lambda) \\
C(\lambda)
\end{array}\right] N(\lambda)=\left[\begin{array}{llllll}
\alpha_{1}(\lambda) & & & 0 & \ldots & 0 \\
& \ddots & & \vdots & & \vdots \\
& & \alpha_{K}(\lambda) & 0 & \ldots & 0 \\
0 & \ldots & 0 & 0 & \ldots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \ldots & 0 & 0 & \ldots & 0
\end{array}\right]
$$

is in Smith-form. Then the last $2 n-K$ columns

$$
\binom{p^{j}(\lambda)}{q^{j}(\lambda)}, \quad j=K+1, \ldots, 2 n
$$

of $N(\lambda)$ satisfy (5). Now suppose that the polynomials $p^{j}(\lambda)$ vanish identically. Then the $q^{j}(\lambda)$ are linearly independent (for every $\lambda \in \mathbb{C}$) and satisfy $\left[A_{1}+\lambda A_{-1}\right] q^{j}(\lambda) \equiv 0$ as well as $\left[C_{1}+\lambda C_{-1}\right] q^{j}(\lambda) \equiv 0$. This implies that

$$
\max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[\begin{array}{l}
A_{1}+\lambda A_{-1} \\
C_{1}+\lambda C_{-1}
\end{array}\right] \leqslant n-(2 n-K)=K-n<k
$$

which is a contradiction.

Step 2. Let us define $p_{j}=q_{j}=0$ for $j \in \mathbb{Z}$ and $j \notin\{0, \ldots, l\}$. Then the following equations hold for all $j \in \mathbb{Z}$:

$$
\begin{align*}
& A_{0} p_{j+1}-p_{j}+A_{1} q_{j+1}+A_{-1} q_{j}=0 \tag{6.1}\\
& A_{1} p_{j+1}-A_{-1} p_{j}=0 \tag{6.2}\\
& C_{0} p_{j+1}+C_{-0} p_{j}+C_{1} q_{j+1}+C_{-1} q_{j}=0 \tag{6.3}\\
& C_{1} p_{j+1}+C_{-1} p_{j}=0 \tag{6.4}
\end{align*}
$$

Proof. These equations follow from (5) by comparison of the coefficients. In particular, the following
equation holds:

$$
\begin{aligned}
0 & =\left[A_{0}-\lambda I\right] p(\lambda)+\left[A_{1}+\lambda A_{-1}\right] q(\lambda) \\
& =\sum_{j=0}^{l}\left(A_{0} p_{j}+A_{1} q_{j}\right) \lambda^{j}+\sum_{j=0}^{l}\left(A_{-1} q_{j}-p_{j}\right) \lambda^{j+1} \\
& =\sum_{j=0}^{1+1}\left(A_{0} p_{j}-p_{j-1}+A_{1} q_{j}+A_{-1} q_{j-1}\right) \lambda^{\prime} .
\end{aligned}
$$

This proves (6.1). The equations (6.2-6.4) can be established analogously.
Step 3. The function

$$
\boldsymbol{x}(t)= \begin{cases}\sum_{j=1}^{t+1}\left(q_{l+1-j} \frac{t^{j}}{j!}+p_{t+1-j} \frac{(t-h)^{j}}{j!}\right), & -h \leqslant t<0 \\ \sum_{j=1}^{+1} p_{l+1-j} \frac{(t-h)^{\prime}}{j!}, & 0 \leqslant t<h \\ 0, & h \leqslant t<\infty\end{cases}
$$

defines a nontrivial small solution of (1), (2) with zero output.
Proof. First note that $\boldsymbol{x}(t)$ does not vanish identically for $0 \leqslant t \leqslant h$ since $p(\lambda)$ is a nonzero polynomial. Secondly, it is easy to see that $\boldsymbol{x}(t)$ is absolutely continuous for $t \geqslant-h$. Finally, it can be proved straightforwardly - by the use of (6) - that $\boldsymbol{x}(t)$ satisfies the NFDE (1) for almost every $t \geqslant 0$ and that the output $y(t)$ - given by (2) - vanishes for $t \geqslant 0$. We will only show that (1) holds for $0<t<h$.

$$
\begin{aligned}
\dot{x}(t) & =\sum_{j=0}^{t+1} p_{l-j} \frac{(t-h)^{\prime}}{j!} \\
& =\sum_{j=0}^{t+1}\left(A_{0} p_{t+1-j}+A_{1} q_{l+1-j}+A_{-1} q_{l-j}\right) \frac{(t-h)^{j}}{j!}+\sum_{j=0}^{t+1}\left(A_{1} p_{t+1-j}+A_{-1} p_{t-j}\right) \frac{(t-2 h)^{j}}{j!} \\
& =A_{0} x(t)+A_{1} x(t-h)+A_{-1} \dot{x}(t-h), \quad 0<t<h .
\end{aligned}
$$

Sufficiency

Suppose that $K=n+k$ and let $\boldsymbol{x}(t), t \geqslant-h$, be a solution of (1), (2) such that $\boldsymbol{x}(t)=0$ for $t \geqslant h$ and $\boldsymbol{y}(t)=0$ for $t \geqslant 0$. Then we prove in four steps that $\boldsymbol{x}(t)=0$ for $t \geqslant 0$.

Making use of this fact one can easily show by induction that the nontrivial small solutions of system (1), (2) are observable.

Step 1. The complex functions

$$
\hat{\boldsymbol{x}}(\lambda)=\int_{0}^{h} \mathrm{e}^{-\lambda t} \boldsymbol{x}(t) \mathrm{d} t, \quad \hat{\boldsymbol{x}}(\lambda)=\int_{0}^{2 h} \mathrm{e}^{-\lambda t} \boldsymbol{x}(t-h) \mathrm{d} t, \quad \lambda \in \mathbb{C},
$$

satisfy the equation

$$
\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}+\lambda A_{-1} \tag{7}\\
A_{1}+\lambda A_{-1} & 0 \\
C_{0}+\lambda C_{-0} & C_{1}+\lambda C_{-1} \\
C_{1}+\lambda C_{-1} & 0
\end{array}\right]\binom{\hat{\boldsymbol{x}}(\lambda)}{\hat{\boldsymbol{x}}(\lambda)}=\left(\begin{array}{c}
A_{-1} x(-h)-x(0) \\
A_{-1} x(0) \\
C_{-0} x(0)+C_{-1} x(-h) \\
C_{-1} x(0)
\end{array}\right)=: x .
$$

Proof. For every $\lambda \in \mathbb{C}$ we have

$$
\begin{aligned}
& {\left[A_{1}+\lambda A_{-1}\right] \hat{x}(\lambda)=\int_{0}^{h} \mathrm{e}^{-\lambda t} A_{1} x(t) \mathrm{d} t+\int_{0}^{h} \lambda \mathrm{e}^{-} \lambda^{t} A_{-1} x(t) \mathrm{d} t} \\
& =\int_{0}^{h} \mathrm{e}^{-\lambda t}\left(A_{1} \cdot \boldsymbol{x}(t)+A_{-1} \dot{x}(t)\right) \mathrm{d} t+A_{-1} \boldsymbol{x}(0) \\
& =\int_{0}^{h} \mathrm{e}^{-\lambda t}\left(\dot{x}(t+h)-A_{0} x(t+h)\right) \mathrm{d} t+A_{-1} x(0) \\
& =A_{-1} x(0) \text {, } \\
& {\left[A_{0}-\lambda I\right] \hat{\boldsymbol{x}}(\lambda)+\left[A_{1}+\lambda A_{-1}\right] \hat{\boldsymbol{x}}(\lambda)} \\
& =\int_{0}^{h} \mathrm{e}^{-\lambda t}\left(A_{0} x(t)+A_{1} x(t-h)\right) \mathrm{d} t+\int_{0}^{h} \lambda \mathrm{e}^{-\lambda t}\left(A_{-1} x(t-h)-x(t)\right) \mathrm{d} t \\
& +\left[A_{1}+\lambda A_{-1}\right] \int_{h}^{2 h} \mathrm{e}^{-\lambda t} x(t-h) \mathrm{d} t \\
& =\int_{0}^{h} \mathrm{e}^{-\lambda t}\left(A_{0} \boldsymbol{x}(t)+A_{1} \boldsymbol{x}(t-h)+A_{-1} \dot{x}(t-h)-\dot{x}(t)\right) \mathrm{d} t \\
& -\mathrm{e}^{-\lambda h_{-1}} \boldsymbol{A}_{-1}(0)+A_{-1} \boldsymbol{x}(-h)-\boldsymbol{x}(0)+\left[A_{1}+\lambda A_{-1}\right] \mathrm{e}^{-\lambda h} \hat{\boldsymbol{x}}(\lambda) \\
& =A_{-1} x(-h)-x(0) .
\end{aligned}
$$

The remaining equations in (7) can be proved analogously.
Step 2. There exist matrices $A_{1}(\lambda) \in \mathbb{R}^{n \times k}[\lambda]$ and $C_{1}(\lambda) \in \mathbb{R}^{m \times k}[\lambda]$ such that

$$
\begin{align*}
& \max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}(\lambda) \\
A_{1}+\lambda A_{-1} & 0 \\
C_{0}+\lambda C_{-0} & C_{1}(\lambda) \\
C_{1}+\lambda C_{-1} & 0
\end{array}\right]=n+k \tag{8}\\
& \max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[\begin{array}{l}
A_{1}(\lambda) \\
C_{1}(\lambda)
\end{array}\right]=k \tag{9}
\end{align*}
$$

and for almost every $\lambda \in \mathbb{C}$

$$
\operatorname{range}\left[\begin{array}{l}
A_{1}+\lambda A_{-1} \tag{10}\\
C_{1}+\lambda C_{-1}
\end{array}\right]=\operatorname{range}\left[\begin{array}{l}
A_{1}(\lambda) \\
C_{1}(\lambda)
\end{array}\right] .
$$

Proof. By assumption the rank of the matrix $\left[\begin{array}{c}A\left(\lambda_{0}\right) \\ C\left(\lambda_{0}\right)\end{array}\right]$ is equal to $n+k$ for some $\lambda_{0} \in \mathbb{C}$. Hence this matrix has $n+k$ linearly independent columns. Precisely k of these are contained in the right $(2 n+2 m) \times n$-block of this matrix which is given by

$$
\left[\begin{array}{c}
A_{1}+\lambda_{0} A_{-1} \\
0 \\
C_{1}+\lambda_{0} C_{-1} \\
0
\end{array}\right] .
$$

Now let the matrices $A_{1}(\lambda), C_{1}(\lambda)$ consist of the corresponding columns of $A_{1}+\lambda A_{-1}, C_{1}+\lambda C_{-1}$. Then $A_{1}(\lambda)$ and $C_{1}(\lambda)$ have the desired properties.

Step 3. There exists a rational matrix $T(\lambda) \in \mathbb{R}^{k \times n}(\lambda)$ such that

$$
\begin{equation*}
A_{1}+\lambda A_{-1}=A_{1}(\lambda) T(\lambda), \quad C_{1}+\lambda C_{-1}=C_{1}(\lambda) T(\lambda) \tag{11}
\end{equation*}
$$

for almost every $\lambda \in \mathbb{C}$.
Proof. By (9), there exist matrices $A_{2} \in \mathbb{R}^{n \times(n+m-k)}$ and $C_{2} \in \mathbb{R}^{m \times(n+m-k)}$ such that

$$
\operatorname{det}\left[\begin{array}{ll}
A_{1}(\lambda) & A_{2} \tag{12}\\
C_{1}(\lambda) & C_{2}
\end{array}\right] \not \equiv 0
$$

Now let $T(\lambda) \in \mathbb{R}^{k \times n}(\lambda), R(\lambda) \in \mathbb{R}^{(n+m-k) \times n}(\lambda)$ be defined by

$$
\left[\begin{array}{l}
T(\lambda) \\
R(\lambda)
\end{array}\right]=\left[\begin{array}{ll}
A_{1}(\lambda) & A_{2} \\
C_{1}(\lambda) & C_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
A_{1}+\lambda A_{-1} \\
C_{1}+\lambda C_{-1}
\end{array}\right]
$$

Then

$$
\left[\begin{array}{l}
A_{1}(\lambda) \\
C_{1}(\lambda)
\end{array}\right] T(\lambda)+\left[\begin{array}{l}
A_{2} \\
C_{2}
\end{array}\right] R(\lambda)=\left[\begin{array}{l}
A_{1}+\lambda A_{-1} \\
C_{1}+\lambda C_{-1}
\end{array}\right]
$$

By (10), this implies

$$
\text { range }\left[\begin{array}{l}
A_{2} \\
C_{2}
\end{array}\right] R(\lambda) \subset \text { range }\left[\begin{array}{l}
A_{1}(\lambda) \\
C_{1}(\lambda)
\end{array}\right] \cap \text { range }\left[\begin{array}{l}
A_{2} \\
C_{2}
\end{array}\right]
$$

for almost every $\lambda \in \mathbb{C}$. Hence it follows from (12) that $A_{2} R(\lambda) \equiv 0$ and $C_{2} R(\lambda) \equiv 0$.
Step 4. $x(t)=0$ for $t \geqslant 0$.
Proof. By (8), there exist unimodular matrices $M(\lambda), N(\lambda)$ of appropriate size such that

$$
M(\lambda)\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}(\lambda) \\
A_{1}+\lambda A_{-1} & 0 \\
C_{0}+\lambda C_{-0} & C_{1}(\lambda) \\
C_{1}+\lambda C_{-1} & 0
\end{array}\right] N(\lambda)=\left[\begin{array}{lll}
\alpha_{1}(\lambda) & & \\
& \ddots & \\
& & \alpha_{n+k}(\lambda) \\
0 & \ldots & 0 \\
\vdots & & \vdots \\
0 & \ldots & 0
\end{array}\right]
$$

is in Smith-form where all the $\alpha_{j}(\lambda)$ are nonzero polynomials. Now let $\tilde{M}(\lambda)$ consist of the upper $n+k$ rows of $M(\lambda)$. Then we have

$$
N(\lambda)\left[\begin{array}{ccc}
\alpha_{1}(\lambda)^{-1} & & \\
& \ddots & \\
& & \alpha_{n+k}(\lambda)^{-1}
\end{array}\right] \tilde{M}(\lambda)\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}(\lambda) \\
A_{1}+\lambda A_{-1} & 0 \\
C_{0}+\lambda C_{-0} & C_{1}(\lambda) \\
C_{1}+\lambda C_{-1} & 0
\end{array}\right]=I_{n+k}
$$

By (7) and (11), this implies

$$
N(\lambda)\left[\begin{array}{lll}
\alpha_{1}(\lambda)^{-1} & & \\
& \ddots & \\
& & \alpha_{n+k}(\lambda)^{-1}
\end{array}\right] \tilde{M}(\lambda) x=\binom{\hat{\boldsymbol{x}}(\lambda)}{T(\lambda) \hat{\hat{x}}(\lambda)}
$$

Now recall that by definition $\hat{\boldsymbol{x}}(\lambda)$ is an entire function which is square integrable on the imaginary axis.

Moreover, the left-hand side of the above equation shows that $\hat{x}(\lambda)$ is a rational function and thus of exponential growth zero. This means that for any $\varepsilon>0$ there exists an $M>0$ such that $|\hat{x}(\lambda)| \leqslant M \mathrm{e}^{\varepsilon|\lambda|}$ for every $\lambda \in \mathbb{C}$. Hence it follows from a theorem of Paley and Wiener (see e.g. Rudin [10, Theorem 19.3]) that $\boldsymbol{x}(t)$ vanishes for $t \geqslant 0$.

Remarks. (i) The criterion of the previous theorem can be generalized to systems with commensurable delays, but we will not do this here. In a more general situation the derivation of an analogous result seems to be a hard problem.
(ii) For retarded systems with undelayed output variables (i.e. $A_{-1}=0$ and $C_{-0}=C_{1}=C_{-1}$) $=0$) the criterion of the theorem above reduces to

$$
\operatorname{rank}\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1} \tag{13}\\
A_{1} & 0 \\
C_{0} & 0
\end{array}\right]=n+\operatorname{rank} A_{1}
$$

for some $\lambda \in \mathbb{C}$. This is precisely the transposed version of a necessary condition for F-controllability which has been derived by Manitius [7].
(iii) System (1) has only trivial small solutions iff

$$
\max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[\begin{array}{cc}
A_{0}-\lambda I & A_{1}+\lambda A_{-1} \tag{14}\\
A_{1}+\lambda A_{-1} & 0
\end{array}\right]=n+\max _{\lambda \in \mathbb{C}} \operatorname{rank}\left[A_{1}+\lambda A_{-1}\right] .
$$

This follows from the theorem above in the case $C_{0}=C_{1}=C_{-0}=C_{-1}=0$.
(iv) Note that (14) is a generalization of the necessary and sufficient condition for F-completeness which has been derived by Manitius [6] in the retarded case ($A_{-1}=0$).

Examples. (i) The scalar n-th order differential-difference equation

$$
\begin{equation*}
z^{(n)}(t)=\sum_{j=0}^{n-1} \alpha_{j} z^{(j)}(t)+\sum_{j=0}^{n} \beta_{j} z^{(j)}(t-h) \tag{15}
\end{equation*}
$$

can be rewritten as an n-dimensional system of the form (1). It is easy to see that the corresponding matrices A_{0}, A_{1}, A_{-1} satisfy condition (14). Hence the solutions of (15) have the property

$$
(z(t)=0 \forall t \geqslant T) \quad \Rightarrow \quad(z(t)=0 \forall t \geqslant 0) .
$$

(ii) The two-dimensional system

$$
\begin{equation*}
\dot{x}(t)=x_{1}(t-h)-\dot{x}_{2}(t-h), \quad \dot{x}_{2}(t)=x_{1}(t) \tag{16}
\end{equation*}
$$

is described by the matrices

$$
A_{0}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \quad A_{-1}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

These matrices do not satisfy (14) since

$$
\operatorname{rank}\left[\begin{array}{rrrr}
\lambda & 0 & 1 & -\lambda \\
-1 & \lambda & 0 & 0 \\
1 & -\lambda & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=2 \quad \forall \lambda \in \mathbb{C} .
$$

Hence system (16) has nontrivial small solutions. These are not observable through the output

$$
\begin{equation*}
y(t)=x_{1}(t)-\dot{x}_{2}(t) \tag{17}
\end{equation*}
$$

Fig. 1

However, they are observable if the output is given by

$$
\begin{equation*}
y(t)=x_{1}(t-h)-\dot{x}_{2}(t-h) \tag{18}
\end{equation*}
$$

(iii) For the transposed system

$$
\begin{equation*}
\dot{x}_{1}(t)=x_{1}(t-h)+x_{2}(t), \quad \dot{x}_{2}(t)=-\dot{x}_{1}(t-h) \tag{19}
\end{equation*}
$$

condition (14) fails too. The nontrivial small solutions of (19) are observable through the output

$$
\begin{equation*}
y(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t) \tag{20}
\end{equation*}
$$

whenever $c_{2} \neq 0$. In fact, in this case we have

$$
\operatorname{rank}\left[\begin{array}{rrrr}
\lambda & -1 & 1 & 0 \\
0 & \lambda & -\lambda & 0 \\
1 & 0 & 0 & 0 \\
-\lambda & 0 & 0 & 0 \\
c_{1} & c_{2} & 0 & 0
\end{array}\right]=3 \quad \forall \lambda \in \mathbb{C} .
$$

(iv) The lossless transmission line shown in Figure 1 can be described by the hyperbolic PDE

$$
\begin{equation*}
\frac{\partial U}{\partial x}=-L \frac{\partial L}{\partial t}, \quad \frac{\partial I}{\partial x}=-C \frac{\partial U}{\partial t}, \tag{21}
\end{equation*}
$$

with boundary conditions

$$
\begin{align*}
& U(t, 0)=U_{0}(t)-R_{0} I(t, 0), \quad U(t, 1)=U_{1}(t)+R_{1} I(t, 1) \tag{22.1}\\
& U_{0}(t)=-L_{0} \dot{I}_{0}(t), \quad U_{1}(t)=L_{1} \dot{I}_{1}(t) \tag{22.2}\\
& I(t, 0)-I_{0}(t)=-C_{0} \dot{U}_{0}(t), \quad I(t, 1)-I_{1}(t)=C_{1} \dot{U}_{1}(t) \tag{22.3}
\end{align*}
$$

Integrating the PDE (21) we obtain

$$
\begin{aligned}
& x_{1}(t)=\sqrt{C} U(t, 0)+\sqrt{L} I(t, 0)=\sqrt{C} U(t+h, 1)+\sqrt{L} I(t+h, 1) \\
& x_{2}(t)=\sqrt{C} U(t, 1)-\sqrt{L} I(t, 1)=\sqrt{C} U(t+h, 0)-\sqrt{L} I(t+h, 0)
\end{aligned}
$$

where $h=\sqrt{C L}$. Now let us introduce the variables $x_{3}(t)=2 \sqrt{L} I_{0}(t), x_{4}(t)=2 \sqrt{L} I_{1}(t)$. Then the boundary
conditions (22) lead to an NFDE of the form (1). The corresponding matrices are given by

$$
A_{0}=\left[\begin{array}{cccc}
-\alpha_{0} & 0 & \alpha_{0} & 0 \\
0 & -\alpha_{1} & 0 & -\alpha_{1} \\
-\alpha_{2} & 0 & 0 & 0 \\
0 & \alpha_{3} & 0 & 0
\end{array}\right], \quad A_{1}=\left[\begin{array}{clll}
0 & \alpha_{0} & 0 & 0 \\
\alpha_{1} & 0 & 0 & 0 \\
0 & \alpha_{2} \alpha_{4} & 0 & 0 \\
-\alpha_{3} \alpha_{5} & 0 & 0 & 0
\end{array}\right], \quad A_{-1}=\left[\begin{array}{llll}
0 & \alpha_{4} & 0 & 0 \\
\alpha_{5} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where

$$
\begin{array}{lll}
\alpha_{2}=\frac{\sqrt{C}}{C_{0}} \frac{1}{R_{0} \sqrt{C}+\sqrt{L}}, & \alpha_{2}=\frac{R_{0} \sqrt{C}+\sqrt{L}}{L_{0} \sqrt{C}}, & \alpha_{4}=\frac{R_{0} \sqrt{C}-\sqrt{L}}{R_{0} \sqrt{C}+\sqrt{L}}, \\
\alpha_{1}=\frac{\sqrt{C}}{C_{1}} \frac{1}{R_{1} \sqrt{C}+\sqrt{L}}, & \alpha_{3}=\frac{R_{1} \sqrt{C}+\sqrt{L}}{L_{1} \sqrt{C}}, & \alpha_{5}=\frac{R_{1} \sqrt{C}-\sqrt{L}}{R_{1} \sqrt{C}+\sqrt{L}} .
\end{array}
$$

In general, these matrices satisfy condition (14) and hence the corresponding neutral system has only trivial small solutions.

Acknowledgement

This work has been supported by the Forschungsschwerpunkt Dynamische Systeme.

References

[1] D. Henry, Small solutions of linear autonomous functional differential equations, J. Diff. Equations 8 (1970) 494-501.
[2] F. Kappel, Laplace transform methods and linear autonomous functional differential equations, Math. Institut, University of Graz, Bericht Nr. 64 (1976).
[3] R.K. Kwong. Structural properties and estimation of delay systems, Electronic Systems Laboratory, M.I.T., Report ESL-R-614 (1975).
[4] E.B. Lee, Linear hereditary control systems, in: Calculus of Variations and Control Theory (Academic Press, New York, 1976), pp. 47-72.
[5] E.B. Lee and A.W. Olbrot, Observability and related structural results for linear hereditary systems, Int. Conf. Systems Engineering, University of Warwick, Coventry (1980).
[6] A. Manitius, Completeness and F-completeness of eigenfunctions associated with retarded functional differential equations. J. Diff. Equations 35 (1980) l-29.
[7] A. Manitius, F-controllability and observability of linear retarded systems, Appl. Math. Optim. 9 (1982) 73-95.
[8] A.W. Olbrot, Observability tests for constant time lag systems, Control \& Cybernetics 4 (1975) 71-84.
[9] A.W. Olbrot, Observability and observers for a class of linear systems with delays, IEEE Trans. Automat. Control (to appear).
[10] W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1970).
[11] D. Salamon, Control and Observation of Neutral Systems, Research Notes in Mathematics (Pitman, Boston-London-Melbourne, to appear).

