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On Controllability and Observability of 
Time Delay  Systems 

DIETMAR SALAMON 

Abstruct --This paper  deals  with  contronabfity  and obsenability proper- 
ties of time delay  systems  in  the  state  space W" X Lp.  In particular,  we 
prove  the  equivalence of spectral controllability  and  approximate null-con- 
trollability.  Moreover,  it  is  shown  that  the  necessary condition for  ap- 
proximate F-controllability-obtained recentiy by Manitius-is  also  suffi- 
cient, and a  verifiable  and  matrhx type criterion for F-controllability is 
derived for systems with commensurate  delays.  Finally,  we  introduce  the 
dual obsenability notion of approximate  controllability  and  prove  that  the 
control system X is exactly  null-controllable if and  only if the transposed 
delay  system 2' is  continuously  finally  observable. 

INTRODUCTTON 

C ONTROLLABILITY and observability of systems  with 
delays in the state variables has become an area of active 

research in the last few years. On one  hand, the algebraic systems 
theory, in particular that of linear systems over rings, has led to a 
clear connection between controllability over a ring and a spec- 
trum assignability via feedback [12], [20], [28]. On the other hand, 
the functional  analytic theory of infinite dimensional linear sys- 
tems led to criteria for approximate controllability and observ- 
ability in a function space [16]-[18], which are related to the 
ideas of state feedback and observers [4], [22], [24], [25]. In spite 
of this progress, there are still several gaps in the relations 
between the various concepts of controllability, stabilizability, 
and observability. In particular, some duality relations have not 
yet been clarified. 
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In this paper we study linear control systems with delays in  the 
state variables within the framework of the state space R" X LP 
(1 < p < 30). The aim is to establish relationships between the 
exact and approximate null-controllability and certain notions of 
observability and to generalize and extend recent results of 
Manitius [17] on approximate F-controllability. This latter  effort 
is motivated in part by the fact that the F-controllability provides 
via duality a clear criterion for observability of retarded systems. 
For more motivation of the F-controllability concept the reader is 
referred to [14] and [17]. 

One of the key features of this paper is the use of the structural 
operators F and G [2], [15] associated nith retarded systems. 
These operators give a clear characterization of the structure of 
the semigroup operator  and eliminate the burden of cumbersome 
notation often encountered in some work on functional differen- 
tial equations. As will  be  seen in this paper. the use of these 
operators allows us to obtain very  concise proofs of all the 
results. 

Function space controllability of retarded systems has been 
studied via several approaches. Banks et al. [ l ]  considered the 
exact controllability in W'.2 and showed that it led to a very 
restrictive condition on system matrices. Pandolfi [22] has proved 
a criterion for feedback stabilization in the state space V. Analo- 
gous results on spectral observability have been derived by Bhat 
and Koivo [3]. The null-controllability has been investigated by 
several Soviet authors (see, e.g., [19]) and also in [ l l ] .  Manitius 
and Triggiani [18] and Manitius [14], [16],  [17] have characterized 
the approximate controllability and F-controllability in the prod- 
uct space R X L', and a dual concept of observability. Dynamic 
observers for retarded systems have been investigated by Bhat 
and Koivo [4], Olbrot [21], and Salmon [24], [25]. 

The main results of this paper are as follows. In Section I1 it is 
shown that a general retarded functional differential system is 
spectrally controllable if and only if it is approximately null-con- 
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trollable; the latter  property is dual to the final observability of a 
transposed system. In Section I11 the two necessary conditions 
for approximate F-controllability obtained recently by Manitius 
[17] are shown to be also sufficient. A verifiable matrix condition 
for F-controllability is then given for systems with commensurate 
delays. Finally, it is proved in Section IV that a retarded system 
is exactly null-controllable if and only if the transposed system is 
continuously finally observable. In Section I some preliminary 
results are given. In particular, it is shown that the reachable 
subspace of a time delay system is related to the unobsemable 
subspace of the transposed system by means of the structural 
operators F and G. 

I. PRELIMINARIES 

A .  S y s t e d e , ~ e r i ~ ~ m  and  Notation 

We consider the linear control system 

i( t )  = Lx, + Bou( t )  Z 

wherex( t )ER" ,u ( t )ERm,andx , (T)=x( t+~) fo r  - h < ~ < 0  
(0 < h < 00). Correspondingly, Bo E R"x"  and L is a (general) 
bounded linear operator from V = V([- h,O]; R") into R", 
described by 

where q is an n X n-matrix valued function of bounded variation 
on R.  Without loss of generality we can assume that q( T )  = 0 for 
T 2 0, V ( T )  = q(-  h )  for T < - h ,  and  that q ( ~ )  is left continu- 
ous for - h < T < 0. In particular, we consider systems with 
commensurate delays which means that L is given by 

3' 

L q =  A,cp(-ja), cpEV9 ( 1 )  
j = O  

where a = h / N > 0. 
Along with Z we also consider the observed delay system 

r ( t ) = L T z , ,  - v ( t ) = B i ~ ( t ) ,  z7 
where the bounded linear functional LT: V + R" is represented 
by the transposed matrix function qT(7) in an obvious manner. 

It is well known [5], [6], [29] that system Z admits a unique 
solution x([), t > - h l  for every input u ( - )  E LP,,([O, co); R ") 
and every initial condition of the form 

x ( o ) = q o ,  x ( T ) = ~ ~ ' ( T ) ,  - h < T < O ,  ( 2 )  

where q = ( q o , q l ) ~ M P = R " X L P ( [ - h , O ] ;  W"), l < p < x .  
The fundamental matrix solution of system B will be denoted by 
X ( t )  E RnX", t 2 - h ,  and corresponds to the initial condition 
X ( 0 )  = I ,  X (  T )  = 0, - h < T < 0, and the input u ( t )  = 0. The 
state space I M P  of system Z will be endowed with the norm 

for q E MP where 1 .  I denotes the p-norm on R ' I .  Associated with 
system Z we consider the C,-semigroup S(  t ) :  MP + M P  which 
maps every cp E M P  into the corresponding state (x( r ) ,  x ~ )  E MP 
of Z, (2) yith u ( t )  = 0. Then the evolution of system Z can be 
described by the variation-of-constants formula 

( x ( t ) , x , ) = S ( t ) q + / ' ( t - s ) B u ( s ) d s ,  0 t > O ,  

where the input operator B:  R " + M P  is defined by Bu = 

( Bou,O) E MP for u E R m. Correspondingly, we may define the 
reachable subspaces 

9= u 9,. 
rzO 

We study the transposed system ZT in the state space Mq, 
l/p + l / q  = 1, and denote  the corresponding semigroup by ST( t ) :  
1Mq + Mq. The output operator of system ZT is given by B*: 
M q  + R"' which maps $ E M q  into B*# = B;$O. Correspond- 
ingly, we may define the unobsemable subspaces 

.U;'= {II/EMqlB*ST(s)$=OforOdSdt},  

X T =  n 4'. 
r > O  

Sometimes we denote by 9, A"', MP, or W'.P = W',P([ - h,O]; 
R") the obvious complex extension of the respective (sub)space. 

The infinitesimal generators of S( t )  and ST( t )  will be denoted 
by A and AT, respectively. The spectrum of these operators can 
be characterized by the complex matrix function 

~ ( X ) = h l - L ( e " ) = A l - I o h e " T d q ( T ) ,  - X E C .  

The (finite dimensional) generalized complex eigenspaces of A 
and AT associated with the eigenvalue h E a( A )  = u ( A T )  will be 
denoted by X ,  and X: and the corres onding canonical projec- 
tion operators by P : MP + X ,  and P f  M q  + X:. Moreover, we 
denote by ZA and ZA the finite dimensional subsystems which are 
obtained by projecting the systems Z and 2' on the subspaces X ,  
and X:, respectively. 

Finally, note  that M q  can be identified with the dual space of 
MP via the duality pairing 

3- 

( $ 9 9 , ) = $ o T q o + / o  - h  $"(.>(d(.)dT 

for q E MP and $ E Mq. However, S T ( t )  is not the adjoint 
semigroup of S(  t ) .  A duality relation between S( t )  and ST( t )  can 
be given by means of the hereditary product 

( ( ~ , ( P ) ) = I I / ~ ~ ~ ~ + ~ ~  - h  / o I I / " (T -u )dq(T)q l (a )du  T 

(compare [9, p. 1691). Note  that this expression is well-defined for 
all q E MP and $ E Mq since the convolution of an LP with an 
Lq - function is continuous. 

B. The Structural  Operators 

In the literature on delay systems [2], [6],  [15] the structural 
operators F and G on M P  have been introduced as follows.' 

Given q E MP, then Fq E MP is defined by the relation 

( $ 9  Fq) = ( ( $ 9  CP)) w E M 4  (3) 

and Gcp E MP by 

[ G q ] l ( ~ ) = X ( h + ~ ) q ' + / @   X ( h + T + u ) c p ' ( u ) d u ,  
- h  

[Gql' = [Gql ' (O) .  (4) 

These operators have turned out to be a very  useful tool for the 
study of the delay systems Z and ZT. The main reason for this is 

'The results in [2], [6]. [15] are all in the M2-space but can easily be 
extended to M P ,  1 < p < co. 
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that F and G satisfy the following interesting relations: 

F * S T ( t ) = S * ( t ) F ,   S T ( t ) G * = G * S * ( t )  ( 5 )  

and 

S ( h )  = GF, ST( h )  = G*F*, 

S T * ( h )  = FG, S * ( h )  = FIG*.  (6) 

Moreover, [ Gp]' is in W'.P for all p E M P ,  and G (interpreted as 
an operator from MP into W',P) is one-to-one, onto, and con- 
tinuous (see  [15] or [26]). Finally, F* and G* are operators of the 
same type as F and G. They are associated with the transposed 
equation i ( t )  = L'z, in the same manner as F and G are associ- 
ated with the original equation x ( t )  = Lx,  (see [6] and [15]). 

In [16] and [17] Manitius has introduced a third operator D: 
LP([ - h ,O]; R "') 4 MP in order to study controllability proper- 
ties of Z. D t  is defined by 

[D[ ] ' (T )=&[(~) ,  - h Q T Q O ,  

[ D[]' = 0 (7) 

for 6 E LP([ - h,O]; R m ) .  It is easy to see that the dual operator 
D*: M q +  Lq([-  h,0]; W") is given by 

D*+(T)=B&'(T), - ~ < T < O ,  (8) 

for 4 E Mq. 

C. Preliminaly Results 

The following result is analogous to the relations (6) and 

Lemma 1.1: For 6 E LP([- h,O]; W") we have 
follows directly from (4) and (7). 

G D [ = ~ ( ~ - S ) B C ( - S ) ~ ~ .  (9) 

Proof: 

= f X ( h + T - S ) $ [ ( - S ) d s  

= f + T X ( h + T - S ) & [ ( - S ) d s  

= x ( h + T ) ,  - h < T < o ,  

where x( t ) ,  - h < t Q h ,  is the unique solution of Z with control 
u ( t )  = [( - t ) ,  0 < t < h ,  and zero initial condition. Hence, the 
statement follows from the variation-of-constants formula for the 
solutions of Z in M P .  Q.E.D. 

For every u ( - )  E Lp([O, t ] ;  Ut"'), t > h ,  we have 

= S ( h ) j ' - h S ( t - h - S ) B u ( s ) d s  0 

+ j o h S ( h - s ) B u ( r - h t s ) d F .  

Hence, by (6)  and Lemma 1.1, the following equation holds for 
every t > h:  

9 f=GF9, -h   +ImGD.  - (10) 

This leads to the following relations between and 4'. 
Lemma 1.2: Let + E Mq.  Then 

i) F*+LW, * + E 4T, 
ii) for every  t > h 

4~5%'~ G * + E 4 T h n  kerD*. 

Proof: 
i) By Fattorini [7], F*+ is orthogonal to 9, if and only if 

B*S*(s)F*+ = 0 ,  0 i s < t ,  

which, by (5 ) ,  is equivalent to 

B*F*ST(s)J ,  = 0 ,  0 Q s Q t .  

Now we obtain from (3) that B*F* = B * ,  and hence i) follows 
from the definition of JV;T. 

ii) It follows from (10) that + is orthogonal to 9Pr if and 
only if 

+lGFSP,-, and + I I m G D  

or equivalently 

F*G*+ I % , - h  and D*G*+ = 0. 

Now ii) follows from i). Q.E.D. 
The following corollary is an immediate consequence of the 

previous lemma 
Corollagl 1.3: For  every I E M q  we have 

i)  F*+L5%'@ + E N ,  Y 
ii) + I .4? G*+ E N T  n ker D+.  

We close this section with a result concerning the relation 

Lemma 1.4: Let + E  Mq. Then z ( t ) =  [ S * ( t  + h)+]O, t 2 - h ,  
between S*( t )  and ST( t ) .  

solves 2' for t 2 0 with  initial  condition 

( z (0) , zO)=G*+.  

Proof: For - h Q T < 0 we have, by a result of Bernier and 
Manitius [2], 

Z ( T ) =  [ S * ( h  + .)$lo 
= X 7 ( h + 7 ) $ ' + / '  X T ( h + T + G ) $ J ' ( 0 ) d U  

- h  

= [ G v ] ' (  T). 

Moreover, from (5) and (6) we obtain  that 

z(t)=[S*(t)F*G*+]O=  [F*ST(t)G*+]'=  [ST(t)G*+]' 

holds for t 2 0. This proves the lemma. Q.E.D. 

11. &'PROXIMATE NULL-CONTROLLABILITY 

The delay system Z is said to be approximately null-controll- 
able in time r if for any E > 0 there exists a control input 
u( .) E LP([O, t]; W m )  such that the state (x( t ) ,  x,) E MP at time t 
is E close to zero. System Z T  is said to be finally observable in 
time t if 

Y ( s ) = o ,  o < s < t  =) x ( s ) = O ,   t - h g s i t .  

We restate this as follows. 
Definition 2.1: 

Im S( t )  c cI(9,) .  
i) Z is  said to be  approximately  null-controllable in time t ,  if 
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iz I:' is said to be finally observable in the  time t ,  if 4' c 
kerS ( t ) .  I 

Definition 2.2: 
i) Z is said to be spectral&  controllable if Z, is  controllable for 

ii) Z T  is said to be spectralb observable if ZT is  observable for 
every X E o(A). 

every A E u ( A ~ ) .  
Remarks 2.3: 

i) It is  well known that each of the following conditions is 
equivalent  to  spectral  controllability of Z 

rank [A(A) Bo] = n VA E U ( A )  (see [3] and [22]), 

x, c c l ( 9 )  VA € u(A) .  

Indeed,  the second property follows simply from the facts  that 
the  reachable  subspace gh of Z, is  given  by 9, = P i g  and  that 

ii) Analogously spectral  observability of Z r  is equivalent to 
PAC1(2) c c l ( 9 ) .  

each of the following conditions: 

x;nJ'= (0) V A  E u(A'). 

Throughout this section  let To denote the exponential growth of 
the  entire  matrix  function 

adjA(s)Bo, s E C .  

Note  that To is  always  less than  or  equal  to ( n  - 1) h .  Then  Olbrot 
[21, Lemma 11 has shown  by  the  use of Laplace  transform 
methods  that 

This result can be  slightly improved. 
Lemma 2.4: For evety t > To we have 

J ' n  k e r D * = 4 ' n  kerD*. 

Proof: Let t ,  > To be  fixed and let z (   t ) ,  t 2 - 11, be a  solu- 
tion of ET a7ith initial  condition 

( z ( 0 ) , z o ) = $ E 4 T n  kerD*. 

Then the corresponding  output  function 

w ( t ) = B T z ( t - h )  

vanishes for 0 6 t < tl + h .  Moreover, some straightforward 
manipulations show that  the Laplace transform G(s) of w ( t )  
satisfies 

detA(s).CV(s)=B$adjAT(s)q(s) (12) 

where 

\k (s) = + s/:;-'('+')$l ( T )  dr 

- /Ohd$"( T ) / I h e - s ( h + a - T )  Y 11 (0) do (13) 
- 

(compare [13, eq. (3.4)] and [lo, eq. (6)]) .  Since \k(s) is an  entire 
function of exponential growth less than  or equal to h ,  we can 
now proceed as in the proof of Olbrot [21, Lemma 11 and obtain 

that w( t )  vanishes identically. Hence, $ E JT n ker D* and the 
lemma is proved. Q.E.D. 

Combining  Lemma 1.2 and Lemma 2.4, we obtain the  follow- 
ing corollary. 

Corollary 2.5: For  every  t > To + h we have 

c I ( 9 )  = cl(W,) ,  J T = J q T .  

In particular this holh for every  t > nh. 

known [l, Corollary 5.11 that 9, = 9 for t > nh. 
Note  that  for systems with single point delays it is already 

Now let us define Tl 2 0 to be the minimal time satisfying 

kerST(T,) = kerST(t) V t  2 T,. 

Such a time T, exists  by Henry [lo] and is  always  less than  or 
equal  to nh (see also  Kappel [13, Theorem 3.11). 

Lemma 2.6: For evey t 2 T, the  following  statements are  equiv- 
alent : 

i) J T c  kerST(t), 
ii) Im S( t )  c cl( 9). 
Proof: First  let N T c  kerST(t). Then, by Corollary 1.3 ii), 

$ I Wimplies G*$ E NT, and hence S'(t)G*+ = 0. Now, by (5) ,  
we have G*S*(t)$ = 0, and  thus S * ( t ) $  = 0, since G* is injec- 
tive. This shows that $ is orthogonal  to Im S(  t ) ,  and ii) holds. 

Conversely, let Im S ( t )  c c I ( 9 ) .  Then, by Corollary 1.3 i), 
$ E J T  implies F*$ I W and  thus F*$ I Im S ( t ) .  Applying ( 5 )  
and (6), we obtain 

S T ( t + h ) $ = G * F * S T ( t ) $ = G * S * ( t ) F * I C / = O .  

We conclude  that ST( t ) $  = 0, since t 2 T,. This proves i). Q.E.D 
Remark 2.7: Note  that  the  assumption t 2 T, was not needed 

for the implication i) - ii). 
Now we are  in  the  position  to prove the main result of this 

section. 
Theorem 2.8: Let t > To + h and  t 2 Tl. Then  the  following 

statements are equivalent: 
i) I: is spectrally  controllable, 
ii) Z is approximately null-controllable in time t ,  
iii) ZT is spectrally  observable, 
iv) Z T  is finally observable in time t .  

Proof: Clearly,  i) and iii) are equivalent by the  well-known 

The equivalence of ii) and iv)  follows from  Lemma 2.6 ( t  2 Tl)  

Hence,  it remains to prove that  i)  and ii) are  equivalent. In fact, 

In particular  the above  equivalence hold  for every  t > nh. 

rank  conditions  for  spectral  controllability  and observability. 

together with Corollary 2.5 ( t  > To + h ) .  

Zis spectrally  controllable if and  only if 

x, c c l ( 9 )  VA € a ( A ) .  (14) 

Now it  has been shown in [15, Lemma 4.31 that,  for t 2 T,, we 
have 

c r ( I m S ( t ) )  = c[(span{ X,~A E o ( ~ ) } ) .  

Hence, (14) holds if and only if 

Im S (  t )  c cZ( 9). 

Since t > T,  + h , this is equivalent to  approximate  null-controlla- 
bility of Z in time t (Corollary 2.5). Q.E.D. 

i)  Note  that  the equivalence of spectral  observability  and 
final  observability  has  already been proved by Olbrot [21, Pro- 
position 21. 

Remarks 2.9: 
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ii) The equivalence of spectral controllability and approxi- 
mate null-controllability has been proved in [23] for the special 
case of a single point delay. 

111. A ~ P R O X I ~ C ~ T E  CONTROLLABILITY AND 
OBSERVABILITY 

In the beginning of h s  section let us recall some definitions. 
Definition 3.1: Z is said to be: 

i) approximately  controllable, i f c l ( 9 )  = M P ,  
ii) approximately  F-controllable, if cl( F9) = cl(Im F). 

The following definition gives the corresponding dual observ- 

Definition 3.2: Z' is said to be 
ability notions for Z'. 

i) strictly  observable, if N r  n ker D* = ( O } ,  i.e.+ 

y ( t ) = o  V r a - h  r=) z ( r ) = O   V t a - h ,  

ii) obseruable, if.&"'= kerF*, i.e., 

y ( t ) = O  V r a O  * Z ( t ) = o   v t b o .  

Manitius has proved in [17] that Z is approximately F-control- 
lable if and only if ZT is observable in the sense of Definition 3.2 
ii). Note that this equivalence also follows directly from Corollary 
1.3 i). Moreover, Manitius has given  two necessaq conditions for 
approximate F-controllability. In the following we  show that 
these conditions together are also sufficient. 

Theorem 3.3: The following  statements  are  equioalent: 
i) cl( F9) = cl(1m F ) ,  
ii) Z is spectrally  controllable  and 

kerF*G* n kerD*G* n Im F* = { 0 } ,  (15) 

iii) NT= kerF*. 
Proof: 
i)  iii): First note that in any case we have 

ker F* C N T  

Hence iii) holds if and only if 

$ C N T - F * + = O  

which, by Corollary 1.3 i), is equivalent to the implication 

F*+ 19 3 F*+ = 0. 

Finally, this is equivalent to i). 
i )  = ii): This has been proved in [17]. Here we present an 

alternative proof. 
First let + I.%'. Then, since G F 9  = S ( h ) 9  c 2, it follows that 

F*G*+ 1 9. By i), this implies F*G*+ = 0 or equivalently, + 1 
Im GF = Im S(  h ) .  We conclude that Z is approximately null-con- 
trollable, and hence, by Theorem 2.8, spectrally controllable. 

Second, let F*G*F*+ = 0 and D*G*F*+ = 0 for some 4 E W .  

Then F*+ I ImGF and F*+ 1 Im GD.  By (10). this implies F*# 
19, and hence F*+ = 0. This proves (15). 

ii) =) i): First of all ii) implies approximate null-controlla- 
bility of Z in time t = ( n  + l ) h  (Theorem 2.8), i.e., 

Im(GF)"+1-ImS((n+l)h)~cl(9). 

Now let F*+ 19. Then F*+ is orthogonal to  Im(GF)"-', and 

Define 
hence (F*G*)"+'F*+ = 0. 

+ k = ( ~ * ~ * ) k ~ v ,  k = o , l , . . - , n + ~ .  

then, by induction, we show that qk = 0 for k = n + 1,. . . , 0. In 

fact +,+ = 0. Moreover, + k  = 0, 1 < k d n + 1, implies 

# k - l  E kerF*G* 

+k-l E Im F* 

+ k - l  E kerD*G* 

where the latter statement follows from the fact that qk-' is 
orthogonal to 9 and that ImGD c 9 (Lemma 1.1). Hence, by 
(15), # A  = 0. This shows that F*+ = +o = 0. Q.E.D. 

i) A solution of system Z' is said to be small [lo] if it 
vanishes after some finite time T a - h. A small solution is called 
triuial[15] if it vanishes for t >, 0. 

ii) Since S'(h) = G*F*, condition (15) is equivalent to the 
property 

Remarks 3.4: 

y (  f )  = 0 Vt>,O 
x ( t ) = O   V t a h  * x ( t ) = O   V t d O  

for the solutions of system 2'. This property is called obsenlabil- 
iry of the nontriuial small solutiorts [26],  [27], since it means that 
every small solution of Z' nith zero output is trivial. 

The following  theorem-which is strictly analogous to Theo- 
rem  3.3-contains a duality result for approximate controllability 
(namely the equivalence of conditions i) and iii) below)  which  is 
apparently new. Ther remainder of the theorem is a generaliza- 
tion of a result in [16]. 

Theorem 3.5: The following  statements  are  equiualent: 
i) 9 is dense in MP, 
ii) Z is  spectrally  controllable  and 

kerF*  nkerD* = ( O } ,  (16) 

iii) N r n k e r D *  = { O } .  
Proof: 
i)  =) ii): i) implies F-controllability, and hence, by Theorem 

3.3, spectral controllability of Z. 
For (16) see [16, Theorem 11. 

ii) =) iii): Since (16) is stronger than (15), it follows from 
Theorem 3.3 that ii) implies observability of Z', i.e., NT= 
ker F *. Now iii) follows directly from (16). 

iii) * i): Let N r n k e r D *  = ( 0 )  and $ 19. Then, by 
Corollary 1.3 ii), G * + ~ N ~ n k e r D * ,  and thus G*+=O. Since 
G* is injective, it follows that 4 = 0. Hence, 9 is dense in MP. 

Q.E.D. 

i) The respect in which Theorem 3.5 generalizes the result in 
[16] is that Manitius considers only functions V ( T )  of bounded 
variation containing no singular part  and having only finitely 
many jumps. We mention also that our proof is simpler and more 
direct than  that appearing in [16]. 

Remarks 3.6: 

ii) Condition (16) is equivalent to the property 

y(t)=O V t > - h  

x ( t ) = O  V t > O  
=) x ( t ) = O  V t > - h  

for  the solutions of system 2'. This property is called obsemabil- 
in? of the small  solutions [26] since it means that every nonzero 
small solution of Z T  has a nonzero output. 
iii) If q ( T ) = q ( - h ) + A 1  on the interval ( - h , r - h ]  for 

some z > 0, then condition (16) is equivalent to 

rank[d, Bo]  = n (17) 

(see [16] or [26]). 
We have shown in Theorem 3.3 that approximate F-controlla- 

bility is equivalent to a) spectral controllability and b) observabil- 
ity of the nontrivial small solutions of the transposed system. In 
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Remark 2.3 we have mentioned a matrix type criterion for 
spectral controllability. We conclude this section by  stating a 
verifiable matrix criterion for observability of the nontrivial small 
solutions for systems with commensurate delays. 

Theorem 3.7: Let L: %? 4 R "  be  given by (1). Then the nontriv- 
ial small solutions of system ZT are observable if and on@ if the 
following equation holdr for some A E C 

. . .  A ,  Bo 
... A,V 0 0 

rank . .  

0 ... 
O 0  1 

Proof: First  note that the nontrivial small solutions of  sys- 
tem Z T  are observable if and only if 

y ( t ) = O  V t > O  
x ( t ) = O  V t Z a  

x ( t ) = O   V t 2 0 .  (19) 

This follows easily by induction. 
Second, let us define 

f , ( t ) : = x ( t - j a ) ,  O < l < a ,  j= I , . . .  , N ,  

for  any function x ( t ) ,  t 2 - h = - Na. 

only if the equations 
Then x ( t )  is a solution of Z T  which vanishes for t 2 a if and 

h' 

k ( t ) = A i x ( t ) +  A,Tf,( t ) ,  
j = l  

N 
O = A i x ( t ) +  AT&k(t) 

j = k + l  

hold for k = 1,. . . , N and 0 < t < a. Hence, (19) is satisfied if and 
only if the finite dimensional system 

N 
k ( t ) = A i x ( t ) +   A ? j ( t ) ,  

j = 1  

N 
y k ( t ) = A , $ ( t ) +   A , A P k ( t ) ,  k = l , . . -  , N ,  

j = k + l  

Y o ( [ )  = B & ( t )  (20) 

has the  property  that y k ( t )  = 0 for 0 < t < a,  k = 0,. . . , N ,  and 
x(.) = 0 imply x ( t )  = 0 for 0 < t < a for  any control input 
f,(.)ELP([O,a]; B B " ) , j = l ; - . , N .  This means that system (20) 
IS input-obseruable in the sense of [26, Appendix]. By [26, Theo- 
rem A6], this is equivalent to condition (18).  Q.E.D. 

In the special case of a single point delay ( N  = 1) condition 
(18) reduces to 

for some A E C. This is precisely the criterion which has been 
derived by Manitius [17]. A generalization to neutral systems can 
be found in the authors  paper [27]. 

IV. EXACT NULL-CONTROLLABILITY AND CONTINUOUS 
FINAL OBSERVABILITY 

Throughout this section we denote  by z ( t )  = z ( t ,  +), t 2 - h ,  
the unique solution of Z T  corresponding to the initial condition 
z (0)  = +', Z(T) 7 #(T), - h d T < 0, where rC, E Mq. This means 
that z (  t ,  rC,) 1s gwen by 

Again we start with definitions. System Z is said to be exactly 
null-controllable if there exists a time T > 0 such that for every 
initial  state cp E MP there exists a control u( .) E LP([O, TI; W ") 
such that the corresponding solution x ( t ) ,  t 2 - h ,  satisfies x ( t )  
= 0 for T - h < t < T. Alternatively, we can state this as follows. 

Definition 4.1: System Z is said to be exacth null-controllable if 
there exists some T > 0 such that Im S( T) c BT. 

Remarks 4.2: 
i) If Z is exactly null-controllable, then  the time T in the 

above definition must be greatear than h. 
ii) In [l] a criterion has been given for exact null-controlla- 

bility in  an arbitrary  short time ( T  > h).  In [ l l ]  it has been shown 
that exact null-controllability in the sense of the above definition 
(in an arbitrary large time) is equivalent to spectral controllability 
if Z is a two-dimensional system with a single point delay. In 
general, this problem is, we judge, still open (we mention that this 
equivalence is claimed by Marchenko [19];  however, the argu- 
ments in [19]  seem incomplete). 

In this paper we show that the exact null-controllability of Z is 
dual to the following observability notion for 2'. 

Definition 4.3: System ZT is said to be continmush  finalb 
observable if there exists some T > 0 and K > 0 such that the 
following inequality holds for every J ,  E Mq: 

Remark 4.4: If system Z T  is continuously finally observable, 
then from the fact  that the output y( .) is small in the sense of the 
Lq-norm on [0, T ]  one can conclude that  the system state at time 
T i s  small in the Mq-norm. This means that the final state  can  be 
reconstructed from the  output on the interval [0, T] by means of 
a continuous, linear operator. Such a property is of particular 
interest for the design of an exact observer. 

The main step towards our  duality result is given by the 
following lemma. 

Lemma 4.5: The following statements are equiwlent: 
i) Im S( T )  c B,-. 
ii) There exists some K > 0 such that for every rC, E Mq 

Proof: i) holds if and only if there exists some K > 0 such 
that  for all rC, E M4 the following inequality holds 

(see Dolecki and Russell 17, Theorem 2.3n. Now, by Lemma 1.4, 
we have for every t E [0, TI 

and moreover, by (5 )  and (6), 

S * ( T ) t j = S * ( T -  h)F*G*#=F*ST(T-   h )G*#.  
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Note that this is nothing else than (23) with + replaced by G*+. 
Since ImG* = { + E M41+’ E Wl.4, Go = $‘(O)) is dense in M q ,  
the lemma is proved. Q.E.D. 

Now we are able to prove the desired duality result. 
Theorem 4.6: Z is exact4 null-controllable if and on4 if Z T  is 

continuously finalb observable. 
Proof: Let Z be exactly null-controllable in time T. Then 

T > h and, by Lemma 4.5, there exists some K > 0 such that (23) 
holds for all + E M4.  Hence, we have for every + E M4 

IIST(T+ h)+ll,wv 

G I I G * I I ~ I I ~ * ~ ~ ~ ~ - h ) ~ T ( h ) + l I , u ~  
IIG*ll,~,II~orZ(.,ST(h)+)IIL~([-h.T-h]:R”) 

l l ~ * l I ~ ~ ~ I I ~ O T Z ~ ~ 7 I C / ~ l I L ~ ( [ O , T ~ h ] : R ~ )  

= I I G * I I - ~ . I I ~ ~ z ( . ~ + ) I I L ~ ( ~ O , T ] : R m )  

and 2’ is continuously finally observable at time T + h. 
Conversely continuous final observability of 2’ at time T 

implies the existence of a K > 0 such that (22) holds for all + E Mq. Hence, we have for every + E Mq 

llF*~T(T)IC/ll,u~ 
G IlF*lI. l l ~ T ( T ) + l l M q  

c I I ~ * I I . ~ . I I ~ ~ ~ ( . ~ + ) l l r ~ ~ [ o . T ] : R “ )  

G I I ~ * I I . ~ . I I ~ ~ ~ ( . ~ + ) l l u ( ~ - h , T ~ ; a ~ ) .  

By Lemma 4.5 this implies that Z is exactly null-controllable at 
time T i -  h .  Q.E.D. 

In fact, we have proved a slightly more refined result than the 
assertions of Theorem 4.6, namely exact null-controllability of B 
in time T implies continuous final observability of ET in time 
T +  h and continuous final observability of Z T  in time T implies 
exact null-controllability of Z in time T + h .  

V. CONCLUSIONS 

In th~s paper we have filled several gaps in the existing litera- 
ture on retarded functional differential systems concerning the 
relations between the various notions of controllability and 
observability in the product space R “  X L p .  In particular, we 
have shown that spectral controllability is equivalent to ap- 
proximate null-controllability respectively final observability of 
the transposed system. The significance of this result follows 
from the fact that spectral controllability implies feedback stabi- 
lizability with an arbitrary exponential decay rate  and can be 
characterized by a matrix type condition. Moreover, we have 
shown that approximate F-controllability is equivalent to a) 
spectral controllability and  b) observability of the nontrivial 
small solutions for the transposed system, and we have  derived a 
verifiable matrix type criterion for  b)  in the case of com- 
mensurate delays. Ths generalizes and extends recent results of 
Manitius [17]. 

Finally, we have shown that a retarded functional differential 
system is exactly null-controllable if and only if the transposed 
system is continuously finally observable. There remains the open 
question if spectral controllability is equivalent to exact null-con- 
trollability for general linear, retarded systems. 
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Technical Notes and  Correspondence 

Root Locus Near  Isolated  Pole-Zero  Dipoles and  a 
Counterintuitive Case of Digital  Control 

Compensation 

D. A. PIERRE 

Abstract -A convenient  characterization i s  given for  root loci associated 
with open-loop  pole-zero  dipoles. A particular dipolelocus  effect is shown 
to  influence  the  design of a  digital PID controller for an oscillatory pJant; 
the  design is a  counterintuitire  one in which zeros of the  compensator  are 
placed  outside  the  unit  circle in the  neighborhood of the plant poles. 

I. INTRODUCTION 

When open-loop transfer functions contain complex conjugate poles 
near the stability boundary, it is common ([l], for example) to have 
controller zeros specified in the neighborhood of the poles. Pole-zero pairs 
or dipoles invariably result in such cases because of plant uncertainty and 
drift.  The question of plant uncertainty is one  that must be addressed in 
all designs, but is especially important in those cases where plant poles 
occur near the stability boundary. When dipoles occur inside the stable 
region, the effects of dipole “hidden modes” approach zero as the 
separation between the pole and zero in question approaches zero [2]. 
When dipoles occur on  or very near the stability boundary, however, the 
“hidden modes” may cause stability problems if not properly anticipated. 

Given is a pole-zero pair (Fig. 1) which is assumed to be part of an 
open-loop transfer function KG( z) where K is a real value and G ( z )  is a 
rational fraction in the complex variable z .  We are interested in the m e  
where other poles and zeros of G ( z )  are far removed from the pole-zero 
pair, in which  case the distance 2e of Fig. 1 is much smaller than  the 
distance between the pole-zero pair and any other pole or zero of C(z). 
Such an isolated pole-zero pair is called a dipole. 

When the net phase angle contributed by other open-loop poles and 
zeros is assumed constant in the neighborhood of a pole-zero pair, the 
resulting dipole root-locus branch is an arc of a circle. Horowitz [3] 
constructs the arc-of-circle dipole locus by using calculated angles of 
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locus  point  
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Fig. 1. Pole-zero dipole 

departure and arrival in a particular case where the  dipole is on the j w  
axis of the s plane. In the following, Section 11, a convenient characteriza- 
tion is given for general arc-of-circle loci [4]  of ideal dipoles. 

In Section 111, a compensator is developed for a particular oscillatory 
plant [5]. The resulting compensator is counterintuitive in the sense that 
the placement of compensator zeros for good performance is opposite to 
what generally would be expected, but is consistent with pole-zero dipole 
locus theory. 

11. DIPOLE NEIGHBORH~OD Locus 

Closed-loop poles are characterized by 

l + K G ( z ) = O  (1) 

and the locus of points which satisfy (1) when K > 0 are governed by 

/ G ( z )  =- (1+2~1)180O,  integerrn. 
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