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1 Introduction

Atiyah, Patodi and Singer [3] studied operators of form

DA =
d

dt
− A(t)

when A(t) is a first order elliptic operator on a closed odd-dimensional manifold
and the limits

A± = lim
t→±∞

A±(t)

exist and have no zero eigenvalue. A typical example for A(t) is the div-grad-curl
operator on a 3-manifold twisted by a connection which depends on t. Atiyah et
al proved that the Fredholm index of such an operator DA is equal to minus the
“spectral flow” of the family {A(t)}t∈R. This spectral flow represents the net
change in the number of negative eigenvalues of A(t) as t runs from −∞ to ∞.
This “Fredholm index = spectral flow” theorem holds for rather general families
{A(t)}t∈R of self-adjoint operators on Hilbert spaces. This is a folk theorem that
has been used many times in the literature, but no adequate exposition has yet
appeared. We give such an exposition here as well as several applications. More
precisely, we shall prove the following theorem.

∗This research has been partially supported by the SERC.
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Theorem A Assume that, for each t, A(t) is an unbeounded, self-adjoint op-
erator on a Hilbert space H with time independent domain W = dom(A(t)).
Assume, moreover, that W is a Hilbert space in its own right with a compact
dense injection W ↪→ H and that the norm of W is equivalent to the graph norm
of A(t) for every t. Assume further that the map R → L(W, H) : t 7→ A(t)
is continuously differentiable with respect to the weak operator topology. As-
sume finally that A(t) converges in the norm topology to invertible operators
A± ∈ L(W, H) as t tends to ±∞. Then the operator

DA : W 1,2(R, H) ∩ L2(R, W ) → L2(R, H)

is Fredholm and its index is given by the spectral flow of the operator family
A(t).

The assumptions of Theorem A imply that the spectrum of A(t) is discrete
and consists only of eigenvalues. Hence the “spectral flow” is well defined and
we shall give the precise definition in Section 4. We shall also prove that Theo-
rem A remains valid if A(t) is perturbed by a family of compact linear operators
C(t) : W → H which is continuous in t with respect to the norm topology and
converges to zero as t tends to ±∞. The operators C(t) in this perturbation are
not required to be self-adjoint when regarded as unbounded operators on H .

A drawback of Theorem A is the assumption that the domain of A(t) be
independent of t. This assumption will in general exclude the case of differential
operators on manifolds with boundary. Theorem A will remain valid for a
suitable class of operator families with time dependent domains but the precise
conditions on how the domain is required to vary with time will be a topic for
future research.

The “Fredholm index = spectral flow” theorem is used in a generalization
of Morse theory known as “Floer Homology”. Both Morse theory and Floer’s
theory are used to prove the existence of critical points of a nonlinear functional
f via topological arguments. In either case the operators A± appear as the
Hessian of f at critical points x± and the operators A(t) represent the covariant
Hessian of f along a gradient flow line x(t), i.e. a solution of

ẋ = ∇f(x),

which connects x− = limt→−∞ x(t) with x+ = limt→+∞ x(t). Here both the
gradient ∇f(x) and the Hessian A = ∇2f(x) are taken with respect to a suitable
metric on the underlying (finite or infinite dimensional) manifold. The operator
DA arises from linearizing the gradient flow equation.

In the case of Morse Theory, the function f is bounded below and each
operator A(t) has only finitely many negative eigenvalues and hence has a well
defined index, namely the dimension of the negative eigenspace. In this case the
spectral flow can be expressed as the index difference so the “Fredholm index
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= spectral flow” formula is

index DA = ν−(A+) − ν−(A−) (∗)

where ν− denotes the number of negative eigenvalues counted with multiplicity.
In the finite dimensional case it turns out that the operator DA is onto (for
each connecting orbit) if and only if the unstable manifold of x− intersects
the stable manifold of x+ transversally (cf. [24]). So in this case the space
M(x−, x+) = W u(x−) ∩ W s(x+) of connecting orbits is a finite dimensional
manifold whose dimension is the difference of the Morse indices. On the one
hand this follows from finite dimensional transversality arguments. On the
other hand this can be proved by using an infinite dimensional implicit function
theorem in a suitable path space where DA appears as the linearized operator
and its kernel as the tangent space to the manifold of connecting orbits. Full
details of this second approach can be found in [26].

In Floer’s theory (see [10] and [11] for example) the operators A± can have
both infinite index and infinite coindex so the right hand side of equation (∗) is
undefined. The spectral flow can still be defined as the number of eigenvalues
of A(t) which cross zero as t runs from −∞ to +∞. The counting is done
so that each negative eigenvalue which becomes positive contributes +1 and
each positive eigenvalue which becomes negative contributes −1. We make this
precise in section 4.

In Floer’s theory the initial value problem for the gradient flow equation is
not wellposed and hence there are no stable or unstable manifolds. However, one
can still prove that the operator DA is onto for suitable “generic perturbations”
of the function f . It then follows from an infinite dimensional implicit function
theorem that the space of connecting orbits is a manifold. Its dimension is the
Fredhom index of DA and hence, by Theorem A, agrees with the spectral flow
of the 1-parameter family of the Hessians A(t). Even in cases where the index
and coindex of A± are both infinite, this spectral flow can still be viewed as
an index difference and this leads to Floer’s “relative Morse index”. Floer then
proceeds to analyse the properties of these manifolds of connecting orbits to
construct a chain complex generated by the critical points of f and graded by
the relative Morse index. The boundary operator is defined by counting the
connecting orbits (with appropriate signs) when the index difference is 1. The
homology groups of this chain complex are called “Floer homology”. Details
of this construction can be found in [10], [11], [24], [25], and, for the finite
dimensional analogue, in [26].

For example, Floer homology can be used to study closed orbits of Hamil-
tonian systems. These closed orbits are critical points of the symplectic action.
Like Morse theory, Floer’s theory constructs a gradient flow for this action and
studies orbits connecting critical points. A connecting orbit joining two crit-
ical points in this infinite dimensional gradient flow is a cylinder joining two
closed orbits in a finite dimensional symplectic manifold. The cylinder satis-
fies a certain nonlinear partial differential equation. Linearization along such a
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connecting orbit gives an operator DA. In this case the spectral flow along the
connecting orbit is the difference of the Maslov indices of the two critical points
at the ends. See [24] and [25], for example. This linearization is an example of
the Cauchy-Riemann operators studied in section 7.

The fact that the spectral flow is sometimes the difference of two Maslov
indices is not surprising, since the spectral flow can be thought of as an infinite
dimensional analogue of the Maslov index for Lagrangian paths. The graph of
a path of symmetric matrices A : [−T, T ] → Rn×n is a path of Lagrangian sub-
spaces in R2n. Its endpoints are transverse to Rn × 0 if and only if the matrices
A± = A(±T ) are nonsingular. In this case the Maslov index µ is the intersec-
tion number of the path Gr(A) with the Maslov cycle Σ of those Lagrangian
subspaces which intersect the horizontal Rn × 0 in a nonzero subspace. The
Maslov index can be expressed in the form

µ(Gr(A)) = 1
2 sign(A+) − 1

2 sign(A−)

and agrees with the spectral flow of the matrix family A(t).
Our main application is an index theorem for the Cauchy-Riemann operator

∂̄S,Λζ =
∂ζ

∂t
− J0

∂ζ

∂t
+ Sζ

on the infinite cylinder [0, 1]× R with general non-local boundary conditions

(ζ(0, t), ζ(1, t)) ∈ Λ(t)

where S(s, t) = S(s, t)T ∈ R2n×2n is symmetric and Λ(t) is a Lagrangian path
in (R2n ×R

2n, (−ω0)×ω0). We prove that ∂̄S,Λ is a Fredholm operator between
suitable Sobolev spaces and express the Fredholm index in terms of the relative
Maslov index for a pair of Lagrangian paths.

Theorem B index ∂̄S,Λ = −µ(Gr(Ψ1), Λ).

Here Ψ1(t) = Ψ(1, t) is a path of symplectic matrices determined by S via
J0∂sΨ = SΨ with Ψ(0, t) = 1l. This generalizes a theorem of Floer [8] for S = 0
and local boundary conditions Λ = Λ0 ⊕ Λ1 and a theorem in [25] for periodic
boundary conditions. Both theorems play an important role in Floer homology
for Lagrangian intersections [9] and for symplectic fixed points [11].

In section 2 we discuss the finite dimensional case as a warm-up. In section 3
we prove that DA is a Fredholm operator. In section 4 we characterize the
spectral flow axiomatically and prove that the Fredholm index satisfies these
axioms. In section 5 we review the properties of the Maslov index. In section 6
we use the spectral flow and the Maslov index to give a proof of the Morse index
theorem. A special case of this is Sturm oscillation. Finally, in section 7 we
discuss the aforementionned Cauchy-Riemann operators.
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2 The finite dimensional case

Linearization along a connecting orbit of a gradient flow of a Morse function
leads to a differential operator

(DAξ)(t) = ξ̇(t) − A(t)ξ(t). (1)

The index of this operator is the difference of the Morse indices of the critical
points at the two ends. In this example the matrices A(t) may be chosen to be
symmetric. In this section we shall prove a more general fact. The hypothesis
that the vector field is a gradient field is dropped. We linearize along an orbit
connecting two hyperbolic critical points. As a result the matrices A(t) will no
longer be symmetric but the limit matrices

A± = lim
t→±∞

A(t)

exist and are hyperbolic (no eigenvalues on the imaginary axis). For any matrix
B ∈ Rn×n we define

Es(B) =
{
v ∈ R

n : lim
t→∞

eBtv = 0
}

,

Eu(B) =

{
v ∈ R

n : lim
t→−∞

eBtv = 0

}
.

Then Es(B) is the direct sum of the generalized eigenspaces corresponding to
eigenvalues with negative real parts and similarly for Eu(B) with positive real
parts. Hence the matrix B is hyperbolic if and only if

R
n = Es(B) ⊕ Eu(B).

Theorem 2.1 Assume that A : R → R
n×n is continuous and that the limit

matrices A± exist and are hyperbolic. Then formula (1) defines a Fredholm
operator

DA : W 1,2(R, Rn) → L2(R, Rn)

with index
index DA = dim Eu(A−) − dim Eu(A+).

Proof: That the operator is Fredholm follows from the inequality

‖ξ‖W 1,2(R) ≤ c
(
‖ξ‖L2(I) + ‖DAξ‖L2(R)

)
(2)

for a sufficiently large interval I = [−T, T ]. This estimate is proved in three
steps. Firstly, since ξ̇ = DAξ + Aξ, the estimate is obvious for I = R:

‖ξ‖W 1,2(R) ≤ c
(
‖ξ‖L2(R) + ‖DAξ‖L2(R)

)
. (3)
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Secondly, if A(t) ≡ A0 is a constant hyperbolic matrix, then the associated
operator DA0 satisfies

‖ξ‖W 1,2(R) ≤ c‖DA0ξ‖L2(R). (4)

To see this decompose Rn as a direct sum where each of the summands has all
its eigenvalues in one of the two halfplanes. Hence it suffices to treat the special
case where all the eigenvalues of A0 have negative real part. For η ∈ L2(R, Rn)
the unique solution of ξ̇ − A0ξ = η with ξ ∈ L2(R, Rn) is given by

ξ(t) =

∫ t

−∞

eA0(t−s)η(s) ds = Φ ∗ η(t)

where Φ(t) = eA0t for t ≥ 0 and Φ(t) = 0 for t < 0. By Young’s inequality,

‖ξ‖L2 ≤ ‖Φ‖L1‖η‖L2 .

Since ξ̇ = A0ξ + η we also have

‖ξ̇‖L2 ≤ ‖A0ξ‖L2 + ‖η‖L2 ≤ (‖A0‖ ‖Φ‖L1 + 1) ‖η‖L2 .

Note in fact that the operator DA0 is bijective since any function in its kernel is
an exponential and can lie in L2 only if it vanishes identically. This proves (4).
Alternatively, (4) can be proved with Fourier transforms as in Lemma 3.7 below.

Finally, the estimate is proved by a patching argument. It follows from (4)
that there exist constants T > 0 and c > 0 such that for every ξ ∈ W 1,2(R, Rn)

ξ(t) = 0 for |t| ≤ T − 1 =⇒ ‖ξ‖W 1,2(R) ≤ c‖DAξ‖L2(R). (5)

Now choose a smooth cutoff function β : R → [0, 1] such that β(t) = 0 for
|t| ≥ T and β(t) = 1 for |t| ≤ T − 1. Using the estimate (3) for βξ and (5) for
(1 − β)ξ we obtain

‖ξ‖W 1,2 ≤ ‖βξ‖W 1,2 + ‖(1− β)ξ‖W 1,2

≤ c1 (‖βξ‖L2 + ‖DA(βξ)‖L2 + ‖DA((1 − β)ξ)‖L2)

≤ c2

(
‖ξ‖L2[−T,T ] + ‖DAξ‖L2

)
.

This proves (2). Since the restriction operator W 1,2(R, Rn) → L2([−T, T ], Rn)
is compact it follows from Lemma 3.5 below that DA has a finite dimensional
kernel and a closed range.

We examine the kernel of DA. It consists of those solutions of the differential
equation ξ̇ = Aξ which converge to zero as t tends to +∞ and −∞. Consider
the fundamental solution Φ(t, s) ∈ Rn×n defined by

∂

∂t
Φ(t, s) = A(t)Φ(t, s), Φ(s, s) = 1l,
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and note that Φ(t, s)Φ(s, r) = Φ(t, r). Define the stable and unstable subspaces

Es(t0) =

{
ξ0 ∈ R

n : lim
t→+∞

Φ(t, t0)ξ0 = 0

}
,

Eu(t0) =

{
ξ0 ∈ R

n : lim
t→−∞

Φ(t, t0)ξ0 = 0

}
.

Both subspaces define invariant vector bundles over R. This means that Es(t) =
Φ(t, s)Es(s) and Eu(t) = Φ(t, s)Eu(s). Moreover, limt→+∞ Es(t) = Es(A+)
and limt→−∞ Eu(t) = Eu(A−). Hence

dim Es(t) = n − dim Eu(A+), dim Eu(t) = dim Eu(A−).

Now let ξ(t) be any solution of the differential equation ξ̇ = Aξ. Then ξ(t) =
Φ(t, s)ξ(s) for all t and s. Moreover, |ξ(t)| converges to 0 exponentially for
t → +∞ whenever ξ(t) ∈ Es(t) and |ξ(t)| converges to ∞ exponentially for
t → +∞ whenever ξ(t) /∈ Es(t). Similarly for t → −∞. Hence

ξ ∈ kerDA ⇐⇒ ξ(t) = Φ(t, s)ξ(s) and ξ(t) ∈ Es(t) ∩ Eu(t).

We examine the cokernel of DA. Assume that η ∈ L2(R, Rn) is orthogonal
to the range of DA. Then

∫ ∞

−∞

〈η(t), ξ̇(t)〉 dt −

∫ ∞

−∞

〈η(t), A(t)ξ(t)〉 dt = 0

for every ξ ∈ W 1,2(R, Rn). If ξ(t) = 0 for |t| ≥ T then this implies

∫ T

−T

〈η(t) −

∫ T

t

A(s)T η(s) ds, ξ̇(s)〉 ds = 0

and hence
η̇(t) + A(t)T η(t) = 0.

The fundamental solution of this equation is Φ̃(t, s) = Φ(s, t)T and it is easy to

see that the associated stable and unstable bundles are given by Ẽs(t) = Es(t)⊥

and Ẽu(t) = Eu(t)⊥. Hence

η ⊥ rangeDA ⇐⇒ η(t) = Φ(s, t)T η(s) and η(t) ⊥ Es(t) + Eu(t).

In particular the cokernel of DA is finite dimensional. Moreover,

index DA = dim(Es ∩ Eu) − dim(Es + Eu)⊥

= dim(Es ∩ Eu) + dim(Es + Eu) − n

= dim Es + dim Eu − n

= dim Eu(A−) − dim Eu(A+).

This proves the theorem. 2
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Remark 2.2 Assume that the matrices A± are symmetric. Then the index
formula of Theorem 2.1 can be expressed in terms of the signature as

index DA = 1
2 sign A− − 1

2 signA+.

3 Fredholm theory

Assume that W and H are separable real Hilbert spaces with

W ⊂ H = H∗ ⊂ W ∗.

Here the inclusion W ↪→ H is compact with a dense range. Throughout we
identify H with its dual space. We shall not use the inner product on W but
only the norm. Hence we distinguish W from its dual space W ∗. The notation
〈η, ξ〉 will denote the inner product in H when ξ, η ∈ H and the pairing of W
with W ∗ when ξ ∈ W and η ∈ W ∗.

Fix a family of bounded linear operators

A(t) : W → H

indexed by t ∈ R. Given a differentiable curve ξ : R → W , define DAξ : R → H
by

(DAξ)(t) = ξ̇(t) − A(t)ξ(t) (6)

for t ∈ R. In the intended application W = W 1,2 and H = L2 and A(t) is a first
order linear elliptic differential operator whose coefficients depend smoothly on
t. We impose the following conditions:

(A-1) The map A : R → L(W, H) is BC1. This means that it is continuously
differentiable in the weak operator topology and there exists a constant
c0 > 0 such that

‖A(t)ξ‖H + ‖Ȧ(t)ξ‖H ≤ c0‖ξ‖W .

for every t ∈ R and every ξ ∈ W .

(A-2) The operators A(t) are uniformly self-adjoint. This means that for each
t the operator A(t) when considered as an unbounded operator on H with
domA(t) = W is self-adjoint and that there is a constant c1 such that

‖ξ‖2
W ≤ c1

(
‖A(t)ξ‖2

H + ‖ξ‖2
H

)
. (7)

for every t ∈ R and every ξ ∈ W .

(A-3) There are invertible operators A± ∈ L(W, H) such that

lim
t→±∞

‖A(t) − A±‖L(W,H) = 0.
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Remark 3.1 Condition (A-1) implies that the map t 7→ A(t) is continuous in
the norm topology but t 7→ Ȧ(t) is only weakly continuous. We shall use the
fact that ξ ∈ L2(R, W ) implies Ȧξ ∈ L2(R, H).

Remark 3.2 Let A be a self-adjoint operator on H with dense domain W =
dom A. Then W is a Hilbert space in its own right with respect to the graph
norm of A and the estimate (7) holds trivially. The inclusion W ↪→ H is
compact if and only if the resolvent operator (λ1l − A)−1 : H → H is compact
for every λ /∈ σ(A). In this case the spectrum of A is discrete and consists of
real eigenvalues of finite multiplicity.

Remark 3.3 Let A be a closed symmetric operator on H with dense domain
W = domA. When A is regarded as a bounded operator from W to H its adjoint
is a bounded operator from H to W ∗. Since A is symmetric the restriction of
this adjoint to W agrees with A. Thus the adjoint is an extension of A which
we still denote by A. With this notation we have

A ∈ L(W, H) ∩ L(H, W ∗).

The condition that A be self-adjoint now means that Aξ ∈ H implies ξ ∈ W .

Remark 3.4 A symmetric operator A : W → H which satisfies (7) is neces-
sarily closed but need not be self-adjoint.

We define Hilbert spaces H and W by

H = L2(R, H),

W = L2(R, W ) ∩ W 1,2(R, H)

with norms

‖ξ‖2
H =

∫ ∞

−∞

‖ξ(t)‖2
Hdt,

‖ξ‖2
W =

∫ ∞

−∞

(
‖ξ(t)‖2

W + ‖ξ̇(t)‖2
H

)
dt.

The inclusion W ↪→ H is a bounded linear injection with a dense range since
C∞

0 (R, W ) is dense in both spaces. The uniform bound on A(t) from condi-
tion (A-1) means that ξ 7→ DAξ defines a a bounded linear operator

DA : W → H.

Our first aim is to show that it is Fredholm. The proof relies on the following

Lemma 3.5 (Abstract Closed Range Lemma) Suppose that X, Y , and Z
are Banach spaces, that D : X → Y is a bounded linear operator, and that
K : X → Z is a compact linear operator. Assume that

‖x‖X ≤ c (‖Dx‖Y + ‖Kx‖Z)

for x ∈ X. Then D has a closed range and a finite dimesional kernel.
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For each T > 0 define Hilbert spaces W(T ) and H(T ) by

H(T ) = L2([−T, T ], H),

W(T ) = L2([−T, T ], W )∩ W 1,2([−T, T ], H)

with norms as above.

Lemma 3.6 For every T > 0 the inclusion W(T ) ↪→ H(T ) is a compact oper-
ator.

Proof: Choose an orthonormal basis for H and denote by πn : H → Rn the
orthogonal projection determined by the first n elements. Since π∗

nπn ∈ L(H)
converges strongly to the identity of H and the inclusion W → H is compact,
the operator

π∗
nπn|W : W → H

converges to the inclusion W ↪→ H in the norm topology. The induced operator
W(T ) → H(T ) : ξ 7→ π∗

nπnξ can be decomposed as

W(T ) → W 1,2([−T, T ], Rn) → C([−T, T ], Rn) → H(T ).

Here the first operator is induced by πn, the second is compact by the Arzela-
Ascoli theorem, and the last is induced by π∗

n. Now

‖ξ − π∗
nπnξ‖H(T ) ≤ ‖1l− π∗

nπn‖L(W,H)‖ξ‖W(T ).

Hence the inclusion W(T ) ↪→ H(T ) is a uniform limit of compact operators and
is therefore compact. 2

Lemma 3.7 There exist constants c > 0 and T > 0 such that

‖ξ‖W ≤ c
(
‖ξ‖H(T ) + ‖DAξ‖H

)

for every ξ ∈ W.

Proof: The proof is analogous to the proof of (2). The first step is to prove
the estimate with T = ∞. For every ξ ∈ C∞

0 (R, W )

‖DAξ‖2
H = ‖ξ̇‖2

H + ‖Aξ‖2
H − 2

∫ ∞

−∞

〈ξ̇, Aξ〉 dt

= ‖ξ̇‖2
H + ‖Aξ‖2

H +

∫ ∞

−∞

〈ξ, Ȧξ〉 dt

≥ ‖ξ̇‖2
H + ‖Aξ‖2

H − c0‖ξ‖H ‖ξ‖L2(R,W )

≥ ‖ξ̇‖2
H +

1

c1
‖ξ‖2

L2(R,W ) − ‖ξ‖2
H − c0‖ξ‖H ‖ξ‖L2(R,W )

≥ ‖ξ̇‖2
H +

1

2c1
‖ξ‖2

L2(R,W ) −
(
1 +

c0c1

2

)
‖ξ‖2

H

≥
1

2c1
‖ξ‖2

W − c‖ξ‖2
H.
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The second step is to prove the estimate with A replaced by a constant
bijective operator A(t) ≡ A0. The associated operator DA0 satisfies

‖ξ‖W ≤ c ‖DA0ξ‖H (8)

In terms of the Fourier transform the equation DA0ξ = η can be rewritten as

iωξ̂(iω) − A0ξ̂(iω) = η̂(iω).

Since the operator A0 is symmetric we have

|ω| ‖ξ‖2
H ≤ |〈iωξ − A0ξ, ξ〉| ≤ ‖iωξ − A0ξ‖H ‖ξ‖H

and hence
|ω| ‖ξ‖H ≤ ‖iωξ − A0ξ‖H .

With c = ‖A0
−1‖L(H,W ) we obtain

‖ξ‖W ≤ c‖A0ξ‖H

≤ c‖iωξ − A0ξ‖H + c|ω| ‖ξ‖H

≤ 2c‖iωξ − A0ξ‖H .

Hence it follows from the Fourier-Plancherel theorem that for every ξ ∈ W

‖ξ‖2
W =

∫ ∞

−∞

(
‖ξ̂(iω)‖2

W + ω2‖ξ̂(iω)‖2
H

)
dω

≤ (1 + 4c2)

∫ ∞

−∞

‖iωξ̂(iω) − A0ξ̂(iω)‖2
H dω

= (1 + 4c2)‖DA0ξ‖
2
H.

This proves (8).
The final step uses a patching argument and is analogous to the patching

argument in the proof of (2). 2

Assume A : W → H is self-adjoint and ξ, η ∈ H such that

〈Aφ, ξ〉 = 〈φ, η〉

for every φ ∈ W . Then ξ ∈ W (see Remark 3.3). In other words every ‘weak
solution’ ξ ∈ H of Aξ = η with η ∈ H is a ‘strong solution’. The following
theorem says that a similar result holds for the operator DA. Since DA is not
not self-adjoint we must use the formal adjoint operator of DA to define the
notion of a weak solution. The formula

〈φ̇ + Aφ, ξ〉H + 〈φ, DAξ〉H = 0

for φ, ξ ∈ W shows that −D−A is the formal adjoint operator of DA.
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Theorem 3.8 (Elliptic regularity) Assume ξ, η ∈ H satisfy

〈φ̇ + Aφ, ξ〉H + 〈φ, η〉H = 0

for every φ ∈ C∞
0 (R, W ). Then ξ ∈ W and DAξ = η.

Proof: We first prove (in four steps) that the theorem holds under the as-
sumption that ξ and η are supported in an interval I such that A(t) : W → H
is bijective with

‖A(t)−1‖L(H,W ) ≤ c

for t ∈ I .

Step 1: ξ ∈ W 1,2(R, W ∗) and

ξ̇(t) = A(t)ξ(t) + η(t) (9)

where A(t) ∈ L(H, W ∗) as in Remark 3.3.

For φ ∈ C∞
0 (R, W )

∫ ∞

−∞

〈
φ̇(t), ξ(t)

〉

H
dt = −

∫ ∞

−∞

〈φ(s), A(s)ξ(s) + η(s)〉W,W∗ ds

= −

∫ ∞

−∞

〈
φ̇(t),

∫ ∞

t

(
A(s)ξ(s) + η(s)

)
ds

〉

W,W∗

dt.

Since the derivatives of test functions φ are dense in L2(R, W ) this implies
Step 1.

Now choose a smooth cutoff function ρ : R → R such that ρ(t) = 0 for
|t| ≥ 1, ρ(t) ≥ 0 and

∫
ρ = 1. For δ > 0 define ρδ(t) = δ−1ρ(δ−1t).

Step 2: For δ > 0 sufficiently small we have ξδ = ρδ ∗ ξ ∈ W.

Multiply equation (9) by A−1 to obtain ξ = A−1ξ̇−A−1η and convolve with
ρδ:

ξδ = ρδ ∗
(
A−1ξ̇

)
− ρδ ∗

(
A−1η

)

= ρ̇δ ∗
(
A−1ξ

)
+ ρδ ∗

(
A−1ȦA−1ξ

)
− ρδ ∗

(
A−1η

)

= ρ̇δ ∗
(
A−1ξ

)
+ ρδ ∗

(
A−1ζ

)

where ζ = ȦA−1ξ − η ∈ H. We have used ρ ∗ (uv̇) = ρ̇ ∗ (uv) − ρ ∗ (u̇v).

Step 3: There exists a constant c > 0 such that

‖DA(ρδ ∗ ξ)‖H ≤ c

for every sufficiently small δ.
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Use step 2 and the identity ξ̇δ = ρ̇δ ∗ ξ to obtain

DAξδ = ξ̇δ − Aξδ

= ρ̇δ ∗ ξ − Aρ̇δ ∗ (A−1ξ) + Aρδ ∗
(
A−1ζ

)

= A
(
A−1ρ̇δ ∗ ξ − ρ̇δ ∗ (A−1ξ)

)
+ Aρδ ∗

(
A−1ζ

)
.

The second term on the right is bounded in H, uniformly in δ. For the other
term we have

∥∥(
A−1ρ̇δ ∗ ξ(t) − ρ̇δ ∗ (A−1ξ)

)
(t)

∥∥
W

=

∥∥∥∥∥

∫ t+δ

t−δ

1

δ
ρ̇

(
t − s

δ

)
A−1(t) − A−1(s)

δ
ξ(s) ds

∥∥∥∥∥
W

≤ c

∫ ∞

−∞

∣∣∣∣
1

δ
ρ̇

(
t − s

δ

)∣∣∣∣ ‖ξ(s)‖H ds.

Here c is a uniform bound for the derivative of A−1 on I . By Young’s inequality

∥∥A−1ρ̇δ ∗ ξ − ρ̇δ ∗ (A−1ξ)
∥∥

L2(R,W )
≤ c‖ρ̇‖L1(R)‖ξ‖H.

This proves Step 3.

Step 4: ξ ∈ W and DAξ = η.

It follows from Step 2 and Lemma 3.7 that ‖ξδ‖W ≤ c for some constant c
independent of δ. Choose a sequence δν → 0 such that ξδν

converges weakly
in W . Let ξ0 ∈ W denote the weak limit. Then ξδν

converges weakly to ξ0 in
H. On the other hand ξδν

= ρδν
∗ ξ converges strongly to ξ in H and hence

ξ = ξ0 ∈ W . Now it follows from (9) that DAξ = ξ̇ − Aξ = η.

This proves the theorem under the assumption that ξ and η are supported
in an interval on which A is bijective. Cover the real axis by finitely many open
intervals Ij such that λj1l− A(t) : W → H is bijective with

‖(λj1l − A(t))−1‖L(H,W ) ≤ cj

for t ∈ Ij . Now choose a partition of unity βj subordinate to the cover. Then
the function ξj = βjξ is a weak solution of

ξ̇j − Ajξj = ηj

where
Aj = A − λj1l, ηj = βjη + (β̇j + λjβj)ξ.

By the special case ξj ∈ W and hence ξ =
∑

j ξj ∈ W . 2
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Remark 3.9 The previous theorem only requires the estimate of Lemma 3.7
with I = R. Hence it continues to hold if the limits A± do not exist. Moreover,
local regularity does not require bounds on the function A : R → Lsym(W, H).
However, we cannot dispense with the assumption that A(t) be self-adjoint.

Theorem 3.10 The operator DA is Fredholm.

Proof: By Lemma 3.7 and Lemma 3.6 the operator DA has a finite dimensional
kernel and a closed range. By Theorem 3.8 the cokernel of DA is the kernel of
the operator D−A : W → H. Hence the cokernel of DA is finite dimensional. 2

Theorem 3.11 Assume A : R → L(W, H) is of class Ck−1 with dkA/dtk

weakly continuous and djA/dtj uniformly bounded for 0 ≤ j ≤ k. If ξ ∈ W
and

DAξ = η ∈ W k,2(R, H)

then
ξ ∈ W k,2(R, W ) ∩ W k+1,2(R, H).

Proof: The proof is by induction on k. Assume k = 1. Then ξ1 = ξ̇ is a ‘weak
solution’ of DAξ1 = η1 with η1 = Ȧξ + η̇ ∈ L2(R, H). To see this note that

ξ1 = Aξ + η ∈ W 1,2(R, W ∗)

with
ξ̇1 = Ȧξ + Aξ̇ + η̇ = Aξ1 + η1.

By Theorem 3.8 this implies that ξ1 ∈ W and hence hence ξ ∈ W 1,2(R, W ) ∩
W 2,2(R, H).

Suppose by induction that the statement has been proved for k ≥ 1. Let
η ∈ W k+1,2(R, H) and ξ ∈ W with DAξ = η. By what we just proved ξ̇ ∈ W
and

DAξ̇ = Ȧξ + η̇ ∈ W k,2(R, H).

Hence it follows from the induction hypothesis that

ξ̇ ∈ W k,2(R, W ) ∩ W k+1,2(R, H).

This proves the theorem. 2

Proposition 3.12 Suppose A(t) is bijective for all t and

‖A(t)−1‖L(H,W )‖Ȧ(t)‖L(W,H)‖A(t)−1‖L(H,H) < 2. (10)

Then DA is bijective.
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Proof: Let ξ ∈ kerDA. Then it follows from Theorem 3.11 that

ξ ∈ W 1,2(R, W ) ∩ W 2,2(R, H).

Hence
d2

dt2
‖ξ‖2

H = 4‖Aξ‖2
H + 2〈ξ, Ȧξ〉. (11)

The right hand side is continuous and hence the function t 7→ ‖ξ(t)‖2
H is C2.

By (10) this function is convex. Since it is integrable on R it must vanish. Hence
DA is injective. The same argument with A replaced by −A shows that DA is
onto. 2

Corollary 3.13 If A(t) is bijective for all t then DA has Fredholm index 0.

Proof: The operator family A(εt) satisfies the hypotheses of Proposition 3.12
for small ε. 2

Example 3.14 If we drop the hypothesis that each A(t) is self-adjoint then
DA need not be Fredholm. For example, let H = W 1,2(S1) × L2(S1), W =
W 2,2(S1) × W 1,2(S1), and let A0 : W → H be defined by

A0(u, v) = (v, u′′).

This operator A0 : W → H has a compact resolvent and is the infinitesimal
generator of a strongly continuous one parameter group U(t) ∈ L(H) of unitary
operators on H . Define

A(t) = A0 − b(t)1l

where b(t) = 1 for t ≤ −1 and b(t) = −1 for t ≥ 1. Then the Cauchy problem

ξ̇(t) = A(t)ξ(t), ξ(0) = ξ0 ∈ W,

is well-posed and all solutions converge to zero exponentially as t tends to ±∞.
Hence the kernel of DA is infinite dimensional. Hence the operator DA is not
Fredholm.

In contrast to the previous example ‘lower order perturbations’ of A always
produce Fredholm operators. The perturbation is a multiplication operator
induced by C(t) : W → H . We assume that the function C : R → L(W, H) is
continuous in the norm topology such that C(t) : W → H is a compact operator
for every t and

lim
|t|→∞

‖C(t)‖L(W,H) = 0.

Remark 3.15 If B : R → L(H, H) is strongly continuous and converges to 0
in the norm topology as t tends to ±∞ then the operator family C(t) = B(t)|W
satisfies the above requirements.
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Lemma 3.16 The operator

W → H : ξ 7→ Cξ

is compact.

Proof: First assume that C is compactly supported in an interval I . Choose
projection operators πn : H → R

n as in Lemma 3.6. Then the operator

Cn(t) = π∗
nπnC(t) : W → H

converges in the norm topology to the operator C(t) ∈ L(W, H) and the conver-
gence is uniform in t since C : R → L(W, H) is continuous in the norm topology.
The multiplication operator induced by Cn can be decomposed as

W → W 1,2(I, Rn) → L2(I, Rn) → H.

Here the first operator is induced by πn ◦C, the second is compact, and the last
is induced by π∗

n. Since the operator Cn : W → H converges to C : W → H
in the norm topology it follows that the operator C is compact. In the general
case use a cutoff function to approximate C in the norm topology by operators
with compact support. 2

Corollary 3.17 The operator DA+C : W → H defined by

DA+Cξ = ξ̇ − Aξ − Cξ

is Fredholm. It has the same index as DA:

index DA+C = index DA.

Remark 3.18 Assume that the curve A : R → L(W, H) is continuous in the
norm topology and satisfies (A-2) and (A-3). We were not able to prove under
these assumptions that DA is Fredholm.

4 The spectral flow

We continue the notation of the previous section. For A : R → L(W, H) and
t ∈ R we define the crossing operator by

Γ(A, t) = PȦ(t)P |ker A

where P : H → H denotes the orthogonal projection onto the kernel of A. A
crossing for A is a number t ∈ R for which A(t) is not injective. The set
of crossings is compact. A crossing t is called regular if the crossing opera-
tor Γ(A, t) is nonsingular. It is called simple if it is regular and in addition
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dim kerA = 1. If t0 is a simple crossing then there is a unique real valued
C1 function λ = λ(t) defined near t0 such that λ(t) is an eigenvalue of A(t)
and λ(t0) = 0. This function is called the crossing eigenvalue. For a simple
crossing the crossing operator Γ(A, t0) is given by multiplication with λ̇(t0) and
hence λ̇(t0) 6= 0.

Theorem 4.1 Assume A satisfies (A-1), (A-2), (A-3) and has only regular
crossings. Let DA be defined by (6). Then the set of crossings is finite and

index DA = −
∑

t

sign Γ(A, t) (12)

where the sum is over all crossings t and sign denotes the signature (the number
of positive eigenvalues minus the number of negative eigenvalues). Hence for a
curve having only simple crossings

index DA = −
∑

t

sign λ̇(t) (13)

where λ denotes the crossing eigenvalue at t.

Note that the direct sum of two curves having only regular crossings again
has only regular crossings. The analogous result fails for simple crossings. In-
deed A⊕A has no simple crossings. We will see in this section that the property
of having only simple crossings is generic so that (13) suffices. On the other hand
the following theorem shows how to use formula (12) without perturbing A.

Theorem 4.2 The curve A − δ1l has only regular crossings for almost every
δ ∈ R.

To prove these results we characterize the Fredholm index axiomatically and
show that the right hand sides of the formulae (12) and (13) satisfy these axioms.
It is convenient to introduce some notation.

Denote the Banach space of bounded symmetric operators from W to H by

Lsym(W, H) = {A ∈ L(W, H) : A∗|W = A}

and let S(W, H) ⊂ Lsym(W, H) be the open subset consisting of those operators
with nonempty resolvent set, i.e. the operator

λ1l − A : W → H

is bijective for some real number λ. This means that the operator A, when
regarded as an unbounded operator on H with dense domain W = dom A is
self-adjoint with compact resolvent. (See remark 3.2.)
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Denote by B = B(R, W, H) the Banach space of all continuous1 maps A :
R → Lsym(W, H) which have limits

A± = lim
t→±∞

A(t)

in the norm topology. Denote by B1 = B1(R, W, H) ⊂ B the Banach space of
those A ∈ B which are continuously differentiable in the norm topology and
satisfy

‖A‖B1 = sup
t∈R

(
‖A(t)‖ + ‖Ȧ(t)‖

)
< ∞.

Define an open subset

A = A(R, W, H) ⊂ B(R, W, H)

consisting of those A ∈ B for which the limit operators A± : W → H are
bijective and A(t) ∈ S(W, H) for each t ∈ R. The set

A1 = A1(R, W, H) = A ∩ B1

is open in B1. The set A consists of all maps A : R → L(W, H) which are
continuous in the norm topology and satisfy (A-2), and (A-3). The set A1

consists of all maps A : R → L(W, H) which satisfy (A-1), (A-2), (A-3) and
in addition are continuously differentiable in the norm topology. Theorem 3.10
implies that DA is a Fredholm operator for every A ∈ A1.

Given Ai ∈ A(R, Wi, Hi), i = 1, 2, the direct sum

A1 ⊕ A2 ∈ A(R, W1 ⊕ W2, H1 ⊕ H2)

is defined pointwise. Given A, A`, Ar ∈ A(R, W, H) we say that A is the cate-
nation of A` and Ar if

A(t) =

{
A`(t) for t ≤ 0
Ar(t) for t ≥ 0

and A`(t) = A(0) = Ar(−t) for t > 0. In this case we write

A = A`#Ar.

Note that the operation (A`, Ar) 7→ A`#Ar is only partially defined.

Theorem 4.3 There exist unique maps µ : A(R, W, H) → Z, one for every
compact dense injection of Hilbert spaces W ↪→ H, satisfying the following
axioms.

(homotopy) µ is constant on the connected components of A(R, W, H).

1Continuous means continuous in the norm topology unless otherwise mentioned.
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(constant) If A is constant, then µ(A) = 0.

(direct sum) µ(A1 ⊕ A2) = µ(A1) + µ(A2).

(catenation) If A = A`#Ar, then µ(A) = µ(A`) + µ(Ar).

(normalization) For W = H = R and A(t) = arctan(t), we have µ(A) = 1.

The number µ(A) is called the spectral flow of A.

Remark 4.4 Choose A ∈ A(R, W, H). Then there exists a constant ε > 0 such
that if A0, A1 ∈ A1(R, W, H) satisfy

sup
t∈R

‖A(t) − Aj(t)‖L(W,H) ≤ ε

then the path Aτ = (1 − τ)A0 + τA1 lies in A1(R, W, H) for 0 ≤ τ ≤ 1.
Moreover, if A0, A1 ∈ A1(R, W, H) are homotopic by a continuous homotopy
in A(R, W, H) then they are homotopic by a C1-homotopy in A1(R, W, H).
Hence any homotopy invariant on A1(R, W, H) extends uniquely to a homotopy
invariant on A(R, W, H).

We may write the set S = S(W, H) as an infinite disjoint union

S(W, H) =

∞⋃

k=0

Sk(W, H)

where Sk = Sk(W, H) denotes the set of operators L ∈ S(W, H) with k-
dimensional kernel. The set Sk is a submanifold of S of codimension k(k+1)/2.
The tangent space to Sk at a point L ∈ Sk is given by

TLSk =
{
L̂ ∈ Lsym(W, H) : PL̂P = 0

}

where P : H → H denotes the orthogonal projection onto the kernel of L. In
other words a curve A ∈ A is tangent to Sk at t = 0 if and only if A(0) ∈ Sk

and the crossing operator Γ(A, 0) = 0. Since S1 has codimension 1 a curve has
only simple crossings if and only it is transverse to Sk for every k. (Recall that
Sk has codimension greater than 1 for k ≥ 2 and hence a curve is transverse to
Sk if and only if it does not intersect Sk.)

Proof of Theorem 4.3: For A ∈ A1(R, W, H) the number µ(A) can be defined
as the intersection number of the curve A with the cycle S1 (appropriately
oriented) as in [18]. This requires showing that the set of curves transverse
to all Sk is open and dense in A1 and that the set of homotopies which are
transverse to all Sk is dense. The assertion about curves can be proved using
the transversality theory in [1]. In the notation of [1] ne uses the representation
of maps ρ : A → C1(X, Y ) with A = A1(R, W, H), X = R, Y = S(W, H),

19



W = Sk(W, H) and ρ the inclusion. Homotopies are handled similarly but a
preliminary smoothing argument is required. By Remark 4.4 the definition of
µ(A) as the intersection number with S1 extends to A ∈ A(R, W, H).

If the curve A ∈ A1(R, W, H) is transverse to each Sk then the intersection
number of A with S1 is given by the explicit formula

µ(A) =
∑

t

sign λ̇(t)

where the right hand side is as in (13). The transversality argument shows that
this intersection number satisfies the homotopy axiom. The other axioms are
obvious. The proof that the axioms characterize the spectral flow requires the
following

Theorem 4.5 For every A ∈ A(R, W, H) there exists an integer m and a path
of matrices B ∈ A(R, Rm, Rm) such that A⊕B is homotopic to a constant path.

Proof: We prove the theorem in three steps.

Step 1: If A(t) is bijective for every t then the theorem holds with m = 0.

Homotop A to a constant A(0) using the formula Aτ (t) = A(tan(τ arctan t)).

Step 2: If A ∈ A1(R, W, H) has m simple crossings then there exists a curve
b ∈ A1(R, R, R) such that A ⊕ b is homotopic to a curve with m − 1 simple
crossings.

Assume A has a simple crossing at t = t0 and let λ(t) ∈ σ(A(t)) be the
crossing eigenvalue for t near t0. For ε > 0 sufficiently small choose a C1-
curve of eigenvectors ζ : (t0 − ε, t0 + ε) → H such that λ(t)ζ(t) = A(t)ζ(t) and
‖ζ(t)‖H = 1. Define π(t) : H → R by

π(t)ξ = 〈ζ(t), ξ〉.

Moreover, choose a smooth cutoff function β : R → [0, 1] such that β(t) = 1
for |t − t0| ≤ ε/2 and β(t) = 0 for |t − t0| ≥ ε. Finally, choose a C1-function
b : R → R such that

b(t) = −λ(t) for |t − t0| ≤ ε/2,

b(t) 6= 0 for t 6= t0, and b(t) is constant for |t| ≥ ε. Consider the curve Ã ∈
A1(R, W ⊕ R, H ⊕ R) defined by

Ãδ(t) =

(
A(t) δβ(t)π(t)∗

δβ(t)π(t) b(t)

)
.

Then Ã0 = A ⊕ b and for δ > 0 the curve Ãδ has no crossing at t = t0.

Step 3: The general case.
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By transversality homotop A to a curve in A1(R, W, H) with only simple
crossings. Now use step 2 inductively to construct a curve B ∈ A1(R, Rm, Rm)
such that A ⊕ B is homotopic to a curve without crossings. Finally use step 1.
2

Proof of Theorem 4.3 continued: Denote by µ(A) the spectral flow as
defined by intersection numbers. Let µ̃ : A(R, W, H) → Z be any putative
spectral flow which satisfies the axioms of Theorem 4.3. We prove that µ̃ = µ.
To see this note that a curve of matrices B ∈ A(R, Rm, Rm) is homotopic to
a curve of diagonal matrices. Hence it follows from the homotopy, direct sum,
and normalization axioms that

µ̃(B) = µ(B) = 1
2 sign B+ − 1

2 signB−.

Now let A ∈ A(R, W, H) be any curve and choose B ∈ A(R, Rm, Rm) as in
Theorem 4.5. Then it follows from the homotopy and constant axioms that
µ̃(A ⊕ B) = 0. Hence µ̃(A) = −µ̃(B) = −µ(B) = µ(A). This proves the
theorem. 2

We have not used the catenation axiom to prove uniqueness of the spectral
flow. Hence the catenation axiom follows from the other axioms. Here is a
direct proof of this observation.

Proposition 4.6 The catenation axiom follows from the homotopy, direct sum,
and constant axioms.

Proof: Let A`, Ar ∈ A(R, W, H) such that A`(t) = Ar(−t) for t ≥ −1. Call
this constant operator L. We construct a homotopy Aτ ∈ A(R, W ⊕W, H ⊕H)
such that

A0 = A` ⊕ Ar, A1 = A`#Ar ⊕ L.

This homotopy is given by Aτ (t) = A`(t) ⊕ Ar(t) for t ≤ 0 and

Aτ (t) = R
(
−

πτ

2

) (
A`(t) 0

0 Ar(t)

)
R

(πτ

2

)

for t ≥ 0. Here R(θ) is the Hilbert space isomorphism of H ⊕ H defined by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Note in particular that R(θ) commutes with L ⊕ L. Thus we have proved that
A0 = A` ⊕ Ar and A1 = A`#Ar ⊕ L are homotopic. Hence

µ(A`) + µ(Ar) = µ(A` ⊕ Ar)

= µ(A`#Ar ⊕ L)

= µ(A`#Ar) + µ(L)

= µ(A`#Ar).
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The first equality follows from the direct sum axiom, the second from the ho-
motopy axiom, and the last from the constant axiom. 2

Lemma 4.7 Assume A : R → L(W, H) satisfies (A-1),(A-2), (A-3) and has
only regular crossings. Then the number of crossings is finite and the spectral
flow of A is given by

µ(A) =
∑

t

sign Γ(A, t)

where the right hand side is as in (12).

To prove this result we require Kato’s selection theorem for the eigenvalues
of a one parameter family of self-adjoint operators.

Theorem 4.8 (Kato Selection Theorem) For A ∈ A1(R, Rn, Rn) there ex-
ists a C1 curve of diagonal matrices

R → R
n×n : t 7→ Λ(t) = diag(λ1(t), . . . , λn(t))

such that Λ(t) ∼ A(t) for every t. Here the sign ∼ denotes similarity. Moreover,

Γ(Λ − λ, t) ∼ Γ(A − λ, t)

for all t and λ.

This is a reformulation of Theorem II.5.4 and Theorem II.6.8 in [14]. The
existence of a continuous family Λ(t) which is pointwise similar to A(t) is easy
to prove. Simply use the ordering of the real line to select the diagonal entries.
In general one cannot choose the similarity continuously. There might not exist
a continuous family of bijective matrices Q(t) with A(t) = Q(t)Λ(t)Q(t)−1. To
find a differentiable function Λ(t) is much harder.

The functions λj(t) are the eigenvalues of A(t) counted with multiplicity.

The theorem also asserts that the derivatives λ̇j(t) for those j with λj(t) = λ
are the eigenvalues of the crossing operator Γ(A − λ, t), again counted with
multiplicity.

Corollary 4.9 Assume A : R → L(W, H) satisfies (A-1) and (A-2). Let t0 ∈ R

and c > 0 such that ±c /∈ σ(A(t0)). Then there exists a constant ε > 0 and a
C1 function Λ(t) of diagonal matrices defined for t0 − ε < t < t0 + ε such that

Γ(Λ − λ, t) ∼ Γ(A − λ, t)

for t0 − ε < t < t0 + ε and −c < λ < c. (This implies that the diagonal entries
of Λ(t) are the eigenvalues of A(t) between −c and c, counted with multiplicity.)
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Proof: We prove this by reducing it to the finite dimensional situation. First
choose ε > 0 such that ±c /∈ σ(A(t)) for t0 − ε < t < t0 + ε. Let E(t) denote
the sum of the eigenspace of A(t) corresponding to eigenvalues between −c
and c. Choose C1-functions ξj : (t0 − ε, t0 + ε) → H such that the vectors
ξ1(t), . . . , ξN (t) form an orthonormal basis of E(t) for every t. Define π(t) :
H → RN by the formula

π(t)∗x =

N∑

j=1

xjξj(t).

By the finite dimensional case the theorem holds for the symmetric matrix

B(t) = π(t)A(t)π(t)∗ .

Differentiating the definition of B gives

Ḃ = πȦπ∗ + π̇Aπ∗ + πAπ̇∗

and hence
QḂQ = πP ȦPπ∗

where P and Q denote the spectral projections for A and B corresponding to
the same eigenvalue λ. 2

Proof of Lemma 4.7: A curve A : R → L(W, H) which satisfies (A-1), (A-2),
and (A-3) has only regular crossings if and only if it is transverse to

S̄1 =
⋃

k≥1

Sk.

in the sense that its derivative Ȧ(t) at a crossing t does not lie in the tangent
cone at L = A(t)

TLS̄1 =
{

L̂ ∈ Lsym(W, H) : 0 ∈ σ(P L̂P |ker L)
}

.

Choose t0 ∈ R with A(t0) ∈ S̄1. Then 0 is an eigenvalue of A(t0) with finite
multiplicity m. Choose c > 0 such that there is no other eigenvalue of A(t0)
in the interval −c ≤ λ ≤ c. Now choose ε > 0 such that ±c /∈ σ(A(t)) for
t0 − ε ≤ t ≤ t0 + ε. By Corollary 4.9 there exist m continuously differentiable
curves

λ1, . . . , λm : [t0 − ε, t0 + ε] → (−c, c)

representing the eigenvalues of A(t) in (−c, c). Since t0 is a regular crossing
of A it follows that λ̇j(t0) 6= 0 for every j. This proves that the crossings are
isolated.

Shrinking ε if necessary we may assume that λj(t) 6= 0 for 0 < |t − t0| ≤ ε.
This proves that

signλj(t0 + ε) = −signλj(t0 − ε) = sign λ̇j(t0).
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Hence

sign (Γ(A, t0)) = # {j : 0 < λj(t0 + ε) < δ} − # {j : 0 < λj(t0 − ε) < δ} .

The right hand side is unchanged by small perturbation and agrees with the
spectral flow across the interval [t0 − ε, t0 + ε] for a nearby curve in A with
simple crossings. This proves that the intersection number of A with S̄1 at t0
is the signature of the crossing operator. 2

Proof of Theorem 4.2: By Corollary 4.9 cover the set {(t, λ) : λ ∈ σ(A(t))}
by countably many graphs of smooth curves t 7→ λj(t) each defined on an
interval [aj , bj ]. By Sard’s theorem the complement of the set of common regular
values has measure zero. By Corollary 4.9 δ ∈ R is a common regular value of
the functions λj if an only if A − δ1l has only regular crossings. 2

Proof of Theorem 4.1: We prove that minus the Fredholm index satisfies
the axioms of Theorem 4.3:

A1(R, W, H) → Z : A 7→ −index DA.

The homotopy and direct sum axioms are obvious. The constant axiom fol-
lows from Corollary 3.13, the normalization axiom from Theorem 2.1, and the
catenation axiom from Proposition 4.6. Hence

index DA = −µ(A)

for A ∈ A1(R, W, H). To prove this formula in general approximate a curve
which satisfy (A-1), (A-2), and (A-3) (but is only continuously differentiable in
the weak operator topology) by a curve in A1(R, W, H). Finally use Lemma 4.7.
2

We include here some observations about catenation. Assume A`, Ar ∈ A
such that A`(t) = Ar(−t) for t ≥ 0. Form the shifted catenation

A = A`#τAr

by A(t) = A`(t + τ) for t ≤ 0 and A(t) = Ar(t − τ) for t ≥ 0.

Proposition 4.10 If the operators DA`
and DAr

are onto (resp injective), then
the operator DA is onto (resp injective) for τ sufficiently large.

Proof: We consider the injective case; the onto case follows by duality. By
assumption there exist constants c` > 0 and cr > 0 such that

‖ξ‖W ≤ c` ‖DA`
ξ‖H , ‖ξ‖W ≤ cr ‖DAr

ξ‖H ,
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for every ξ ∈ W . Choose a nondecreasing cutoff function β : R → R such that
β(t) = 1 for t ≥ T , β(t) = 0 for t ≤ −T and β̇(t) ≤ 1/T . Then for τ ≥ T

‖ξ‖W ≤ ‖(1 − β)ξ‖W + ‖βξ‖W

≤ c` ‖DA`
((1 − β)ξ)‖H + cr ‖DAr

(βξ)‖H

≤ c` ‖(1 − β)DA`
ξ‖H + cr ‖βDAr

ξ‖H + (c` + cr)
1

T
‖ξ‖H

≤ (c` + cr)

(
‖DAξ‖H +

1

T
‖ξ‖H

)
.

This estimate shows that DA is injective for T sufficiently large. Note that in
the estimate

‖ξ‖W ≤ c‖DAξ‖H

the constant c is independent of τ > T . 2

The operator A = A`#τAr is constant and bijective on the time interval
−τ ≤ t ≤ τ . The proof of Proposition 3.12 shows that every ξ in the kernel of
DA satisfies an estimate

d2

dt2
‖ξ‖2

H ≥ δ2‖ξ‖2
H

on this interval. Hence for large τ , ξ(0) must be small. This shows that elements
of the kernel of DA are roughly of the form ξ = ξ`#τ ξr where ξ` ∈ kerDA`

and ξr ∈ kerDAr
. Conversely the catenation of two such elements ξ` and ξr

can be approximated by an element in the kernel of DA. The argument uses
Proposition 4.10. This provides an alternative proof for the catenation axiom.

5 The Maslov index

Let (E, ω) be a symplectic vector space and denote by L = L(E, ω) the manifold
of Lagrangian subspaces of E. The Maslov index as defined in [21] assigns to
every pair of Lagrangian paths Λ, Λ′ : [a, b] → L(E, ω) a half integer µ(Λ, Λ′).
In this section we enumerate the properties of the Maslov index that will be
needed in the sequel.

Any two symplectic vector spaces of the same dimension are symplectomor-
phic. The Maslov satisfies the naturality property

µ(ΨΛ, ΨΛ′) = µ(Λ, Λ′) (14)

for a symplectomorphism Ψ : (E, ω) → (E ′, ω′). Hence we will give our defini-
tions for the standard symplectic vector space

E = R
2n, ω = ω0 =

n∑

j=1

dxj ∧ dyj .
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The only other example which we need is

E = R
2n × R

2n, ω = (−ω0) × ω0.

In the latter case the graph of a symplectomorphism of (R2n, ω0) is an element
of L. The Maslov index has the following properties.

(naturality) Equation (14) holds when Ψ is time dependent.

(homotopy) The Maslov index is invariant under fixed endpoint homotopies

(zero) If Λ(t) ∩ Λ′(t) is of constant dimension then µ(Λ, Λ′) = 0.

(direct sum) If E = E1 ⊕ E2 then

µ(Λ1 ⊕ Λ2, Λ
′
1 ⊕ Λ′

2) = µ(Λ1, Λ
′
1) + µ(Λ2, Λ

′
2).

(catenation) For a < c < b

µ(Λ, Λ′) = µ(Λ|[a,c], Λ
′|[a,c]) + µ(Λ|[c,b], Λ

′|[c,b]).

(localization) If (E, ω) = (R2n, ω0), Λ′(t) = Rn × 0 and Λ(t) = Gr(A(t)) for a
path A : [a, b] → Rn×n of symmetric matrices then the Maslov index of Λ
is given by the spectral flow

µ(Λ, Λ′) = 1
2 signA(b) − 1

2 signA(a). (15)

Remark 5.1 These axioms characterize the Maslov index (see [21]). By the
localization property the spectral flow of a path of finite dimensional symmetric
matrices is a special case of the Maslov index. However, we only define the
spectral flow in the case where the matrices A(a) and A(b) are invertible whereas
the Maslov index is defined for any path. The reason for the former is that the
operator DA is not Fredholm unless A± are invertible. The reason for the latter
is that it is often necessary to consider Lagrangian pairs with Λ(a) = Λ′(a).

For t ∈ [a, b] and Λ′(t) = V constant the crossing form Γ(Λ, V, t) is a
quadratic form on Λ(t) ∩ V defined as follows. Let W be a fixed Lagrangian
complement of Λ(t). For v ∈ Λ(t) ∩ V and s − t small define w(s) ∈ W by
v + w(s) ∈ Λ(s). The form

Γ(Λ, V, t)(v) =
d

ds

∣∣∣∣
s=t

ω(v, w(s))

is independent of the choice of W . In general the crossing form Γ(Λ, Λ′, t) is
defined on Λ(t) ∩ Λ′(t) and is given by

Γ(Λ, Λ′, t) = Γ(Λ, Λ′(t), t) − Γ(Λ′, Λ(t), t).
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A crossing is a time t ∈ [a, b] such that Λ(t) ∩ Λ′(t) 6= {0}. A crossing is
called regular if Γ(Λ, Λ′, t) is nondegenerate. It is called simple if in addition
Λ(t) ∩ Λ′(t) is one dimensional. For a pair with only regular crossings the
Maslov index is defined by

µ(Λ, Λ′) = 1
2 signΓ(Λ, Λ′, a) +

∑

a<t<b

signΓ(Λ, Λ′, t) + 1
2 signΓ(Λ, Λ′, b).

Since regular crossings are isolated this is a finite sum.

Remark 5.2 If V = 0 × Rn and Z(t) = (X(t), Y (t)) is a frame for Λ(t) then

Γ(Λ, V, t)(v) = −〈Y (t)u, Ẋ(t)u〉, X(t)u = 0,

where v = (0, Y (t)u).

Remark 5.3 Consider the symplectic vector space E = R2n × R2n with ω =
(−ω0) × ω0. For a path of a symplectomorphisms Ψ : [a, b] → Sp(2n) we have

µ(ΨΛ, Λ′) = µ(Gr(Ψ), Λ × Λ′).

When Ψ(t) = 1l this means

µ(Λ, Λ′) = µ(∆, Λ × Λ′)

where ∆ ⊂ R2n × R2n denotes the diagonal.

Remark 5.4 Let V = 0 × Rn denote the vertical. The Maslov index of a
symplectic path Ψ : [a, b] → Sp(2n) is defined by

µ(Ψ) = µ(ΨV, V ) = µ(Gr(Ψ), V × V ).

If Ψ(a) = 1l and Ψ(b)V ∩V = 0 then µ(Ψ)+n/2 ∈ Z. The condition Ψ(t)V ∩V =
0 holds if and only if Ψ(t) admits a generating function as in [23]. If Ψ is written
in block matrix form

Ψ =

(
A B
C D

)
. (16)

then this is equivalent to det B(t) 6= 0. By Remark 5.2 the crossing form Γ(Ψ, t)
is given by

Γ(Ψ, t)(y) = −〈D(t)y, Ḃ(t)y〉.

for y ∈ Rn with B(t)y = 0.

Remark 5.5 The Conley-Zehnder index of a symplectic path is defined by

µCZ(Ψ) = µ(Gr(Ψ), ∆).

This index was introduced in [5] for paths Ψ : [a, b] → Sp(2n) such that Ψ(a) = 1l
and 1l−Ψ(b) is invertible. For such paths the Conley-Zehnder index is an integer.
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6 The Morse index

6.1 Sturm oscillation

Consider the operator family A(t) : W → H defined by

A(t) = −
d2

ds2
− q(s, t)

with
H = L2([0, 1]), W = W 2,2([0, 1]) ∩ W 1,2

0 ([0, 1]).

Here s is the coordinate on [0, 1]. Assume that q is C1 on the closed strip
[0, 1]×R and independent of t for |t| ≥ T . Let φ = φ(s, t) be the solution of the
initial value problem

∂2φ

∂s2
+ qφ = 0, φ(0, t) = 0,

∂φ

∂s
(0, t) = 1.

Define q±(s) = q(s,±T ) and φ±(s) = φ(s,±T ) and assume that

φ±(1) 6= 0.

This means that 0 is not in the spectrum of A±.

Proposition 6.1 The spectral flow of A(t) is given by

µ(A) = ν(φ−) − ν(φ+)

where ν(φ±) denotes the number of zeros of the function φ±(s) in the interval
0 < s ≤ 1.

Proof: First note that all eigenvalues of A(t) have multiplicity 1. By The-
orem 4.2 we may assume that all crossings are simple. We investigate the
behaviour of the quotient φ/∂sφ along the boundary s = 1. Differentiating the
identity ∫ 1

0

(
(∂sφ)2 − qφ2

)
ds = φ(1, t)∂sφ(1, t)

with respect to t and integrating by parts we obtain

∫ 1

0

(∂tq)φ
2 ds = ∂tφ(1, t)∂sφ(1, t) − φ(1, t)∂t∂sφ(1, t).

At a crossing t the left hand side is the crossing operator (up to a scalar multiple):

−

∫ 1

0
(∂tq)φ

2 ds
∫ 1

0
φ2 ds

= tr(PȦP ) = λ̇(t).
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Here λ(t) is the crossing eigenvalue. Hence

sign λ̇(t) = −sign
d

dt

φ(1, t)

∂sφ(1, t)
.

Since s 7→ φ(s, t) solves a second order equation φ and ∂sφ cannot vanish si-
multaneously. Hence the loop of lines R(φ(s, t), ∂sφ(s, t)) ⊂ R2 around the
boundary of [−T, T ]× [0, 1] is contractible. Set t = ±T and let s run from 0 to
1: The intersections of the line R(φ(s,±T ), ∂sφ(s,±T )) with the vertical R(0, 1)
count the zeros of φ±

ν(φ±) =
∑

φ(s,±T )=0

sign
d

ds

φ(s,±T )

∂sφ(s,±T )
=

∑

φ(s,±T )=0

1.

The intersections of the line R(φ(1, t), ∂sφ(1, t)) with the vertical R(0, 1) count
the crossings of A(t)

µ(A) =
∑

φ(1,t)=0

sign λ̇(t)

= −
∑

φ(1,t)=0

sign
d

dt

φ(1, t)

∂sφ(1, t)

=
∑

φ(s,−T )=0

sign
d

ds

φ(s,−T )

∂sφ(s,−T )
−

∑

φ(s,T )=0

sign
d

ds

φ(s, T )

∂sφ(s, T )

= ν(φ−) − ν(φ+).

2

Corollary 6.2 (The Sturm oscillation theorem) The n-th eigenfunction of
the problem

∂2u

∂s2
+ qu + λu = 0, u(0) = u(1) = 0

has n − 1 interior zeros.

Proof: Consider the spectral flow for the operator family

A(t) = −
d2

ds2
− q − b(t)

where b : R → R is a smooth function such that b(t) = b− < λ1 for t ≤ −1 and
λn−1 < b(t) = b+ < λn for t ≥ 1. 2

This proof also shows that if the operator A : W → H defined by Au =
−d2u/ds2 − qu is invertible then its Morse index (the number of negative eigen-
values) is the number of zeros of the fundamental solution φ(s) in the interval
0 < s < 1. This is a special case of the Morse index theorem proved below.
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6.2 The Morse index theorem

In suitable coordinates the Jacobi equation in differential geometry has the form

Au = −
d2u

ds2
− Q(s)u = 0. (17)

Here s ∈ [0, 1], u(s) ∈ Rn, and Q(s) is a symmetric matrix representiong the
curvature. This generalizes the previous example from 1 dimension to n. We
call s0 ∈ (0, 1] a conjugate point of A iff there is a non-trivial solution u of
equation (17) satisfying u(0) = u(s0) = 0. The dimension of the vector space
of all solutions u of (17) satisfying u(0) = u(s0) = 0 is called the multiplicity
of the conjugate point. Denote by ν(A) the number of conjugate points of A
in the interval 0 < s ≤ 1 counted with multiplicity. Let Φ(s) ∈ Rn×n be the
fundamental solution of (17) defined by

d2Φ

ds2
+ QΦ = 0, Φ(0) = 0,

dΦ

ds
(0) = 1l,

for 0 ≤ s ≤ 1. Then

Λ(s) = range

(
Φ(s)

Φ̇(s)

)

is a Lagrangian plane for every s.

Proposition 6.3 Assume det Ψ(1) 6= 0. Then the number ν(A) of conjugate
points is related to the Maslov index of Λ by

µ(Λ, V ) = −ν(A) −
n

2

where V = 0 × Rn.

Proof: Suppose s0 is a crossing of multiplicity m0. By Remark 5.2 the crossing
form is given by

Γ(Λ, V, s0)(v) = −〈Φ̇(s0)u0, Φ̇(s0)u0〉, v = (0, Φ̇(s0)u0), Φ(s0)u0 = 0.

Since Φ̇(s0) is injective on the kernel of Φ(s0) the crossing form is negative
definite and of rank m0. This shows that all crossings are regular. Moreover,
s0 = 0 is a crossing with crossing index m0 = n. The Proposition is proved by
summing over the crossings:

µ(Λ, V ) = −
1

2
dim kerΦ(0) −

∑

0<s<1
det Φ(s)=0

dim kerΦ(s)

= −
n

2
− ν(A).

2
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Let H and W be as before but tensored with Rn:

H = L2([0, 1], Rn), W = W 2,2([0, 1], Rn) ∩ W 1,2
0 ([0, 1], Rn),

and replace the operator of (17) by a one-parameter family

A(t) = −
d2

ds2
− Q(s, t).

Assume that Q is C1 on the closed strip [0, 1] × R and independent of t for
|t| ≥ T . Assume that 1 is not a conjugate point for either of the operators A±.
This says that these operators are invertible.

Proposition 6.4 The spectral flow of A(t) is given by

µ(A) = ν(A−) − ν(A+).

Proof: Let Φ = Φ(s, t) ∈ R
n×n be the fundamental solution defined by

∂2Φ

∂s2
+ QΦ = 0, Φ(0, t) = 0,

∂Φ

∂s
(0, t) = 1l.

Then the operator A(t) is injective if and only if det Φ(1, t) 6= 0. The kernel of
A(t) consists of all functions of the form

u(s) = Φ(s, t)u0, Φ(1, t)u0 = 0.

Think of the crossing operator Γ(A, t) as a quadratic form on the kernel of A(t):

Γ(A, t)(u) = −

∫ 1

0

〈u(s), ∂tQ(s, t)u(s)〉 ds.

The next lemma shows that that this agrees with the crossing form of the
Lagrangian path t 7→ Λ(1, t) with the vertical V = 0×Rn evaluated at u0 where

Λ(s, t) = range

(
Φ(s, t)

∂sΦ(s, t)

)
.

Hence

µ(A) = µ(Λ(1, ·), V )

= µ(Λ+, V ) − µ(Λ−, V )

= ν(A−) − ν(A+).

The second equality follows from the fact that the loop of Lagrangian subspaces
Λ(s, t) around the boundary of the square [0, 1] × [−T, T ] is contractible. The
last equality follows from Proposition 6.3. 2
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Lemma 6.5 Let V = 0 × Rn. Then

Γ(A, t)(u) = Γ(Λ(1, ·), V, t)(v)

for u(s) = Φ(s, t)u0 and v = (0, ∂sΦ(1, t)u0) with Φ(1, t)u0 = 0.

Proof: Differentiate the identity

∫ 1

0

(
(∂sΦ)T ∂sΦ − ΦT QΦ

)
dx = Φ(1, t)T ∂sΦ(1, t)

with respect to t and integrate by parts to obtain

∫ 1

0

ΦT (∂tQ)Φ ds = ∂tΦ(1, t)T ∂sΦ(1, t) − ∂t∂sΦ(1, t)T Φ(1, t).

Now multiply on the left an right with u0 where Φ(1, t)u0 = 0. The result is

∫ 1

0

〈u(s), ∂tQ(s, t)u(s)〉 ds = 〈∂sΦ(1, t)u0, ∂tΦ(1, t)u0〉.

The left hand side is −Γ(A, t)(u) and the right hand side is −Γ(Λ(1, ·), V, t)(v).
2

Corollary 6.6 (The Morse index theorem) Assume that the operator A :
W → H defined by (17) is invertible. Then its Morse index (the number of
negative eigenvalues) is the number ν(A) of conjugate points.

Proof: Consider the spectral flow for the operator family

A(t) = −
d2

ds2
− Q − b(t)

where b : R → R is a smooth function such that b(t) = b− < λ1 for t ≤ −1 and
b(t) = 0 for t ≥ 1. 2

7 Cauchy-Riemann operators

Denote by

J0 =

(
0 −1l
1l 0

)
.

the standard complex structure on R2n = Cn. Consider the perturbed Cauchy
Riemann operator

∂̄S,Λζ =
∂ζ

∂t
− J0

∂ζ

∂s
+ Sζ (18)
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where ζ : [0, 1]× R → R2n satisfies the non-local boundary condition

(ζ(0, t), ζ(1, t)) ∈ Λ(t). (19)

Here Λ(t) ⊂ R2n ×R2n is a path of Lagrangian subspaces and S(s, t) ∈ R2n×2n

is a family of matrices. We impose the following conditions:

(CR-1) The function Λ : R → L(R2n × R2n, (−ω0) × ω0) is of class C1. More-
over, there exist Lagrangian subspaces Λ± and a constant T > 0 with
Λ(t) = Λ+ for t ≥ T and Λ(t) = Λ− for t ≤ −T .

(CR-2) The function S : [0, 1] × R → R2n×2n is continuous. Moreover, there
exist symmetric matrix valued functions S± : [0, 1] → R

2n×2n such that

lim
t→±∞

sup
0≤s≤1

‖S(s, t) − S±(s)‖ = 0.

(CR-3) Let Ψ± : [0, 1] → Sp(2n) be defined by

∂Ψ±

∂s
+ J0S

±Ψ± = 0, Ψ±(0) = 1l.

Then the graph of Ψ±(1) is transverse to Λ±.

The operator ∂̄S,Λ has the form DA = d/dt − A(t) but in contrast to section 3
the domain of the operator A(t) : W (t) → H depends on t so Theorem 3.10 does
not apply directly. We overcome this difficulty below by changing coordinates.
Condition (CR-1) asserts that the domain of the operator A(t) is independent
of t for |t| ≥ T . The Lagrangian boundary condition and the symmetry of S±

imply that the limit operators A± are self-adjoint. Condition (CR-3) asserts
that these operators are invertible. Abbreviate

L2 = L2([0, 1] × R, R2n),

W 1,2
Λ =

{
ζ ∈ W 1,2([0, 1] × R, R2n) : (ζ(0, t), ζ(1, t)) ∈ Λ(t)

}
.

In the case Λ(t) ≡ Λ of constant boundary conditions these are the spaces
H = L2 and W = W 1,2

Λ of section 3.

Theorem 7.1 The operator ∂̄S,Λ : W 1,2
Λ → L2 is Fredholm. Its index is given

by
index ∂̄S,Λ = µ(Gr(Ψ−), Λ−) − µ(Gr(Ψ+), Λ+) − µ(∆, Λ) (20)

Proof: We prove the theorem in five steps.

Step 1: Let Ψ(s, t) ∈ Sp(2n) be defined by

∂Ψ

∂s
+ J0

S + ST

2
Ψ = 0, Ψ(0, t) = 1l. (21)
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Then

µ(Gr(Ψ(1, ·)), Λ) = µ(∆, Λ) + µ(Gr(Ψ+), Λ+) − µ(Gr(Ψ−), Λ−). (22)

By condition (CR-2) we have

Ψ±(s) = lim
t→±∞

Ψ(s, t).

By condition (CR-3) the path s 7→ Ψ(s,±T ) has the same Maslov index as
Ψ± for T sufficiently large. Hence step 1 follows by considering the loops of
Lagrangrangian subspaces Λ(s, t) = Λ(t) and Λ′(s, t) = Gr(Ψ(s, t)) around the
boundary of the rectangle [0, 1] × [−T, T ]. In view of step 1 it suffices to prove
that

index ∂̄S,Λ = −µ(Gr(Ψ(1, ·)), Λ). (23)

Step 2: The theorem holds when Λ(t) = V ⊕ V , S(s, t) = S(s, t)T is sym-
metric and continuouly differentiable, and the path t 7→ Ψ(1, t) has only simple
crossings.

By Theorem 3.10 the operator is Fredholm and by Theorem 4.1 the Fredholm
index is given by the spectral flow for the self-adjoint operator family

A(t) = J0
d

ds
− S(s, t)

on H = L2([0, 1], R2n) with dense domain

W = W 1,2
0 ([0, 1], Rn) × W 1,2([0, 1], Rn).

We examine the crossing operator Γ(A, t) at acrossing t. The operator A(t) is
injective if and only if Ψ(1, t)V ∩ V = 0 where Ψ(s, t) ∈ Sp(2n) is defined as in
step 1. The kernel of A(t) consists of all functions of the form

ζ(s) = Ψ(s, t)v, v = (0, y), B(1, t)y = 0.

Here B(1, t) is the right upper block in the block decomposition (16) of Ψ(1, t).
Think of the crossing operator Γ(A, t) as a quadratic form on the kernel of A:

Γ(A, t)(ζ) = −

∫ 1

0

〈ζ(s), ∂tS(s, t)ζ(s)〉 ds.

We shall prove in the lemma below that this form agrees with Γ(Ψ(1, ·), t).
Hence the operator family A(t) has only regular crossings and

index ∂̄S,V ⊕V = −µ(A) = −µ(Ψ(1, ·)) = −µ(Gr(Ψ(1, ·)), V ⊕ V ).

The last equality follows from Remark 5.4. Now use step 1.
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Lemma 7.2 We have

Γ(A, t)(ζ) = Γ(Ψ(1, ·), t)(y)

for ζ(s) = Ψ(s, t)v with v = (0, y) ∈ V and B(1, t)y = 0.

Proof: Differentiate the identity

SΨ = J0∂sΨ

with respect to t, multiply on the left by ΨT and integrate by parts to obtain

∫ 1

0

ΨT (∂tS)Ψ ds =

∫ 1

0

ΨT J0∂s∂tΨ ds −

∫ 1

0

ΨT S∂tΨ ds

=

∫ 1

0

ΨT J0∂s∂tΨ ds +

∫ 1

0

(∂sΨ)T J0∂tΨ ds

= Ψ(1, t)T J0∂tΨ(1, t).

Now multiply on the left and right by v = (0, y) with B(1, t)y = 0 to obtain

Γ(A, t)(ζ) = −〈Ψ(1, t)v, J0∂tΨ(1, t)v〉

= −〈D(1, t)y, ∂tB(1, t)y〉

= Γ(Ψ(1, ·), t)(y).

Here D(1, t) denote the lower right block in the decomposition (16) of Ψ(1, t).
The last equality follows from Remark 5.4. This proves the lemma.

Step 3: The theorem holds when Λ(t) = V ⊕ V .

Choose any smooth cutoff function β : R → [0, 1] such that β(t) = 0 for
t ≤ −T and β(t) = 1 for t ≥ T and replace S by

S′(s, t) = β(t)S+(s) + (1 − β(t))S−(s).

Then the right hand side of (18) is unchanged. Moreover, the multiplication
operator induced by S − S ′ satisfies the assumptions of Lemma 3.16. Hence,
by Corollary 3.17, the operator ∂̄S,V ⊕V is Fredholm and has the same index as
∂̄S′,V ⊕V . Now choose a small perturbation to obtain a symmetric C1-function
S′′ such that the associated symplectic path t 7→ Ψ′′(1, t) has only simple cross-
ings. Finally use step 2.

Step 4: The theorem holds in the case of local boundary conditions

Λ(t) = Λ0(t) ⊕ Λ1(t)

with Λj(t) ∈ L(R2n, ω0).
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Identify R2n = Cn and choose a unitary transformation Φ(s, t) ∈ U(n) =
O(2n) ∩ GL(n, C) of class C1 such that Φ(s, t) is independent of t for |t| ≥ T .
Then

∂̄S,Λ ◦ Φ = Φ ◦ ∂̄S′,Λ′

where

S′ = Φ−1 ∂Φ

∂t
− Φ−1J0

∂Φ

∂s
+ Φ−1SΦ

and Λ′ = Λ′
0 ⊕ Λ′

1 with

Λ′
0(t) = Φ(0, t)−1Λ0(t), Λ′

1(t) = Φ(1, t)−1Λ1(t).

Since Φ−1 = ΦT the matrix S′(s, t) is symmetric for |t| ≥ T . The corresponding
symplectic matrices Ψ′(s, t) ∈ Sp(2n) defined by (21) with S replace by S ′ are
given by

Ψ′(s, t) = Φ(s, t)−1Ψ(s, t)Φ(0, t).

Now denote Φ(t) = Φ(0, t) ⊕ Φ(1, t) ∈ Sp(R2n × R2n, (−ω0) × ω0). Then

Gr(Ψ′(1, t)) = Φ(t)−1Gr(Ψ(1, t)), Λ′(t) = Φ(t)−1Λ(t).

and, by the naturality axiom for the Maslov index,

µ(Gr(Ψ(1, ·)), Λ) = µ(Gr(Ψ′(1, ·)), Λ′).

Now choose Φ such that Λ′(t) = V × V and use step 3.

Step 5: The general case.

Define the operator T : L2([0, 1]×R, R2n) → L2([0, 1]×R, R2n×R2n) which
sends ζ to the pair T ζ = η = (η0, η1) where

η0(s, t) = ζ((1 − s)/2, t/2), η1(s, t) = ζ((1 + s)/2, t/2).

If ζ ∈ W 1,2
Λ then η satisfies the local boundary conditions

η(0, t) ∈ ∆ = Λ0(t), η(1, t) ∈ Λ(t) = Λ1(t).

Moreover, the operator T ◦ ∂̄S,Λ ◦ T −1 is given by

(η0, η1) 7→ (∂tη0 + J0∂t + S0η0, ∂tη1 − J0∂t + S1η1)

where S0(s, t) = S((1− s)/2, t/2)/2 and S1(s, t) = S((1+ s)/2, t/2)/2. This is a
Cauchy-Riemann operator with respect to the complex structure J = (−J0)⊕J0

which is compatible with ω̄ = (−ω0) ⊕ ω0. The corresponding fundamental
solution Ψ(s, t) = Ψ0(s, t) ⊕ Ψ1(s, t) is given by

Ψ0(s, t) = Ψ((1 − s)/2, t/2)Ψ(1/2, t/2)−1,
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Ψ1(s, t) = Ψ((1 + s)/2, t/2)Ψ(1/2, t/2)−1.

Hence Ψ(1, t)∆ = Gr(Ψ(1, t/2)) and it follows that

µ(Gr(Ψ(1, ·)), Λ) = µ(Ψ(1, ·)Λ0, Λ1)

By step 4 the operator T ◦ ∂̄S,Λ ◦ T −1 is Fredholm and its index is given by

index T ◦ ∂̄S,Λ ◦ T −1 = −µ(Ψ(1, ·)Λ0, Λ1).

Hence ∂̄S,Λ is a Fredholm operator and

index ∂̄S,Λ = −µ(Gr(Ψ(1, ·)), Λ).

By step 1 this proves the theorem. 2

Remark 7.3 (Periodic boundary conditions) Assume Λ(t) = ∆ for all t.
Then condition (5) above means that

det(1l − Ψ±(1)) 6= 0.

In this case the Fredholm index is related to the Conley-Zehnder index by

index ∂̄S,∆ = µCZ(Ψ−) − µCZ(Ψ+).

This result was proved in [25]. With these boundary conditions the operator
∂̄S plays a central role in Floer homology for symplectomorphisms. The mod 2
index is the relative fixed point index ε(Ψ) = sign det(1l−Ψ+(1))·signdet(1l−
Ψ−(1)):

(−1)index ∂̄S = ε(Ψ).

As a result the Euler characteristic of Floer homology for a symplectomorphism
is the Lefschetz number [11], [6].

Remark 7.4 (Local boundary conditions) Assume S = 0 and

Λ(t) = Λ0(t) ⊕ Λ1(t)

where Λ0(t), Λ1(t) ∈ L(R2n, ω0). Then condition (5) above means that

Λ0(±T ) ∩ Λ1(±T ) = 0.

By Remark 5.3 the Fredholm index is given by

index ∂̄Λ = −µ(Λ0, Λ1).

This was proved by Floer [8] using results by Viterbo [28]. With these bound-
ary conditions the operator ∂̄Λ plays a central role in Floer homology for La-
grangian intersections. The mod 2 index is the relative intersection number
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ε(Λ0, Λ1). Choose orientations of Λ0 and Λ1 and define ε(Λ0, Λ1) = ±1 ac-
cording to whether the induced orientations on R2n = Λ0(±T )⊕Λ1(±T ) agree.
Then

(−1)index ∂̄Λ = ε(Λ0, Λ1).

As a result the Euler characteristic of Floer homology for a pair of Lagrangian
submanifolds is the intersection number [9].

Remark 7.5 (Dirichlet boundary conditions) Assume S = ST is symmet-
ric and Λ(t) = V ⊕ V where V = 0 × Rn is the vertical. Then condition (5)
above means that Ψ±(1)V ∩V = 0. By Remark 5.4 the Fredholm index is given
by

index ∂̄S,Λ = µ(Ψ−) − µ(Ψ+).

In this case the results of section 3 apply and the operator A = A(t) is given by

Aζ = J0ζ̇ − Sζ

for ζ = (ξ, η) with boundary condition ξ(0) = ξ(1) = 0. This operator appears
as the second variation of the symplectic action on phase space. The signature
of A is undefined since the index and the coindex are both infinite. In [23] we
interpret the Maslov index as the signature of A via finite dimensional approx-
imation:

signA± = 2µ(Ψ±).

Hence the index theorem can be written in the form

index ∂̄S,Λ = 1
2 signA− − 1

2 signA+.

This is consistent with the finite dimensional formula in Remark 2.2.

Remark 7.6 (Totally real boundary conditions) The operator ∂̄S,Λ con-
tinues to be Fredholm when Λ(t) is only totally real with respect to the complex
structure (−J0) ⊕ J0 on R2n × R2n. To see this in the case of local boundary
conditions Λ = Λ0⊕Λ1 choose a family of symplectic forms ω(s, t) on R2n which
are compatible with J0 and satisfy

Λ0(t) ∈ L(R2n, ω(0, t)), Λ1(t) ∈ L(R2n, ω(1, t)).

Now choose a unitary frame

Φ(s, t) : (R2n, J0, ω0) → (R2n, J0, ω(s, t))

and consider the operator ∂̄S,Λ in the new coordinates ζ ′ = Φ−1ζ. Then the
operator has the above form with Lagrangian boundary conditions. Its index is
independent of the choice of Φ since the space of all symplectic forms on R2n

which are compatible with J0 is contractible. The general case can be reduced
to that of local boundary conditions as in Step 5 of the proof of Theorem 7.1.
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