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Abstract

Let f : Σ → Σ be an orientation preserving diffeomorphism of a com-
pact oriented Riemann surface. This paper relates the Seiberg-Witten
invariants of the mapping torus Yf to the Lefschetz invariants of f .

1 Introduction

Let Y be a compact oriented smooth 3-manifold with nonzero first Betti number.
Two nonzero vector fields on Y are called homologous if they are homotopic
over the complement of a ball in Y . An Euler structure on Y is an equivalence
class of homologous vector fields (see Turaev [33]). Let E(Y ) denote the space of
Euler structures on Y . If Y carries a Riemannian metric then an Euler structure
can also be defined as a cohomology class e ∈ H2(SY ; Z) on the unit sphere
bundle SY in TY which restricts to a positive generator on each fiber (with the
orientation given by the complex structure η 7→ v × η). The correspondence
assigns to each unit vector field v : Y → SY the Euler structure

ev = PD(v∗[Y ]) ∈ H2(SY ; Z).

With the second description it follows that there is a free and transitive action
of H2(Y ; Z) on the space of Euler structures, given by

H2(Y ; Z) × E(Y ) → E(Y ) : (h, e) 7→ h · e = e+ π∗h.

Moreover there is a natural map

E(Y ) → H2(Y ; Z) : e 7→ c(e)

which assigne to e = PD([v]) the Euler class of the normal bundle v⊥. These
maps are related by c(h · e) = c(e) + 2h. Turaev introduces a torsion invariant

T : E(Y ) → Z

which is a kind of refinement of the Reidemeister-Milnor torsion. In the case
b1(Y ) = 1 this function depends on a choice of orientation of H1(Y ).
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A unit vector field v : Y → SY also determines a spinc structure γv on
Y (see Example 3.1 below). Turaev [33] observes that two such spinc struc-
tures γv0 and γv1 are isomorphic if and only if the vector fields v0 and v1 are
homologous, and hence there is a natural bijection between E(Y ) and the set
Sc(Y ) of isomorphism classes of spinc structures on Y (see also [26]). Now the
Seiberg-Witten invariants of Y take the form of a function

SW : Sc(Y ) → Z

As above, this function depends on a choice of orientation of H1(Y ) whenever
b1(Y ) = 1. In [33] Turaev conjectures that the Seiberg-Witten invariants and
the torsion invariants of Y should agree under the natural identification of E(Y )
with Sc(Y ). The purpose of this paper is to outline a proof of this conjecture
for mapping tori.1

Theorem 1.1. Let Σ be a compact oriented Riemann surface and f : Σ → Σ
be an orientation preserving diffeomorphism. Denote by Yf the mapping torus
of f . Then

SW(Yf , γv) = T (Yf , ev)

for every nonzero vector field v on Yf .

The horizontal vector field ∂/∂t determines a canonical Euler structure
ef ∈ E(Yf ). Likewise, there is a canonical spinc structure γf ∈ Sc(Yf ) which
corresponds to ef under the isomorphism E(Yf ) ∼= Sc(Yf ). Hence both E(Yf )
and Sc(Yf ) can be naturally identified with H2(Yf ; Z). A cohomology class in
H2(Yf ; Z) can be represented as the first Chern class of a complex line bundle
over Yf . Every such line bundle is isomorphic to the mapping torus of a lift

f̃ : E → E of f to a unitary bundle automorphism of a Hermitian line bundle
over Σ:

E
f̃−→ E

↓ ↓
Σ

f−→ Σ

.

Let d = deg(E) := 〈c1(E), [Σ]〉 and denote by ed,f̃ ∈ E(Yf ) and γd,f̃ ∈ Sc(Yf )
the Euler and spinc structures induced by f̃ . Then the assertion of Theorem 1.1
can be restated in the form

SW(Yf , γd,f̃ ) = T (Yf , ed,f̃ )

for every Hermitian line bundle E → Σ and every automorphism f̃ : E → E
that descends to f .

1While this paper was written the author received a message that Turaev had proved
the conjecture for general 3-manifolds [34]. Turaev’s proof is based on the work by Meng-
Taubes [20].
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2 Lefschetz numbers

Let M be a compact smooth manifold and φ : M → M be a continuous map.
Denote by Ωφ the space of continuous paths x : R → M such that x(t + 1) =
φ(x(t)). For x ∈ Ωφ denote by [x] ∈ π0(Ωφ) the homotopy class of the path.
Two pairs (φ0,P0) and (φ1,P1) with Pi ∈ π0(Ωφi

) are called conjugate if
there exists a homeomorphism ψ : M → M such that φ1 = ψ−1 ◦ φ0 ◦ ψ and
P1 = ψ∗P0. They are called homotopic if there exist a homotopy s 7→ φs from
φ0 to φ1 and a continuous map [0, 1]×R →M : (s, t) 7→ xs(t) such that xs ∈ Ωφs

for all s and [x0] = P0, [x1] = P1. Every fixed point x = φ(x) determines a
constant path in Ωφ. For P ∈ π0(Ωφ) let Fix(φ,P) denote the set of all fixed
points x ∈ Fix(φ) with [x] = P . If φ is smooth then a fixed point x ∈ Fix(φ) is
called nondegenerate if det(1l− dφ(x)) 6= 0. In this case the number

ind(x, φ) = sign det(1l − dφ(x))

is called the fixed point index of x.
The Lefschetz invariant assigns an integer to every pair (φ,P) where φ :

M → M is a continuous map and P ∈ π0(Ωφ). It is characterized by the
following axioms.

(Fixed point index) If φ is smooth and the fixed points in Fix(φ,P) are all
nondegenerate then

L(φ,P) =
∑

x∈Fix(φ,P)

ind(x, φ).

(Homotopy) Homotopic pairs have the same Lefschetz invariant.

(Naturality) Conjugate pairs have the same Lefschetz invariant.

(Trace formula) The Lefschetz number of φ is given by

L(φ) :=
∑

P∈π0(Ωφ)

L(φ,P) =
∑

i

(−1)itrace(φ∗ : Hi(M) → Hi(M)).

(Zeta function) The zeta function of φ is given by

ζφ(t) := exp

(
∞∑

k=1

tk

k
L(φk)

)

=

dimM∏

i=0

det(1l − tHi(φ))(−1)i+1

(1)

=

∞∑

d=0

tdL(Sdφ).

Here φk denotes the k-th iterate of φ and Sdφ : SdM → SdM denotes the
homeomorphism of the d-fold symmetric product SdM induced by φ.
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(Product formula) If the periodic points of φ are all nondegenerate then

ζφ(t) =
∞∏

k=1

∏

x̄∈P(φ,k)/Zk

(1 − ε(x, φk)tk)−ε(x,φ
k)ind(x,φk).

Here ε(x, φk) = sign det(1l+dφk(x)) and P(φ, k) denotes the set of periodic
points of minimal period k.

The Lefschetz invariant is uniquely determined by the “homotopy” and “fixed
point index” axioms. The “trace formula” is the Lefschetz fixed point theorem.
The “product formula” is due to Ionel–Parker [16] and also plays a crucial role
in the work of Hutchings–Lee [14, 15].

Proof of (1) and the product formula. The second equation in (1) follows from
the trace formula and the identity

det(1l −A)−1 = exp


∑

k≥1

Ak

k


 .

The third equation follows from the identities

L(Sdφ) =

d∑

j=0

(−1)jtrace(ΛjHodd(φ))trace(Sd−jHev(φ)),

det(1l −A) =
∑

j≥0

(−1)jtrace(ΛjA), det(1l −A)−1 =
∑

k≥0

(−1)ktrace(SkA).

To prove the product formula note that the indices of the iterated periodic
points are given by

ind(x, φk`) = ind(x, φk)ε(x, φk)`−1.

Let p±(φ, k) denote the sum of the fixed point indices of the periodic orbits in
P(φ, k)/Zk which satisfy ε(x, φk) = ±1. Then

L(φk) =
∑

n|k

k

n

(
p+(φ, k/n) + (−1)n−1p−(φ, k/n)

)
.

This implies

∞∑

k=1

tkL(φk) =

∞∑

k=1

(
p+(φ, k)

ktk

1 − tk
+ p−(φ, k)

ktk

1 + tk

)
.

Divide by t, integrate, and exponentiate to obtain the product formula.

Let us now return to the case of a diffeomorphism f : Σ → Σ of a Riemann
surface and a lift f̃ : E → E to an automorphism of a line bundle of degree d.
For d ≥ 2 such a lift determines a homotopy class Pd,f̃ ∈ π0(ΩSdf ) (Lemma 7.1).
If d = 1 then P1,f̃ denotes a union of connected components of ΩSdf .

4



Theorem 2.1. Let Σ be a compact oriented Riemann surface, E → Σ be a
Hermitian line bundle of degree d, f : Σ → Σ be an orientation preserving
diffeomorphism and f̃ : E → E be an automorphism that descends to f . Then

SW(Yf , γd,f̃ ) = L(Sdf,Pd,f̃ ).
The proof of Theorem 2.1 is outlined below. Full details will appear else-

where.

Theorem 2.1 implies Theorem 1.1. In [14, 15] Hutchings and Lee proved that

T (Yf , ed,f̃ ) = L(Sdf,Pd,f̃ ).
Their proof is based on a comparison between the topological torsion and the
torsion of the Morse complex of a closed 1-form α, twisted by a suitable Novikov
ring. The quotient is the zeta function given by counting the periodic solutions
of the gradient flow of α. In the case of mapping tori the proof can be thought
of as an interpolation between a representative of α without periodic solutions
(giving the torsion invariant) and one without critical points (giving the Lef-
schetz invariant).

Corollary 2.2. Let Σ be a compact oriented Riemann surface of genus g and
f : Σ → Σ be an orientation preserving diffeomorphism. Then

∑

γ∈Sc(Yf )

SW(Yf , γ)t
c(γ)·Σ/2 = t1−gζf (t),

Proof. The characteristic class of the spinc structure γd,f̃ satisfies c(γd,f̃ ) · Σ =
2d+ 2 − 2g. Hence the result follows from Theorem 2.1 and (1).

Note that ζf is a polynomial if and only if 1 is an eigenvalue of the auto-
morphism f∗ : H1(Σ) → H1(Σ) or, equivalently, b1(Yf ) ≥ 2.

3 Seiberg-Witten invariants

Fix a Riemannian metric on Y . A spinc structure on Y is a pair (W,γ) where
W → Y is a Hermitian rank-2 bundle and γ : TY → End(W ) is a bundle
homomorphism which satisfies

γ(v)γ(w) = γ(v × w) − 〈v, w〉1l
for v, w ∈ TyY . The characteristic class of γ is defined by c(γ) = c1(W ) ∈
H2(Y ; Z).

Example 3.1. A unit vector field v : Y → TY determines a spinc structure
(Wv , γv) where Wv = C ⊕ v⊥ and

γv(η)

(
θ0
θ1

)
=

(
−i〈η, v〉θ0 + 〈η, θ1〉 + i〈v × η, θ1〉

〈η, v〉v × θ1 − (Re θ0)(η − 〈η, v〉v) − (Im θ0)v × η

)

for θ0 ∈ C, θ1 ∈ v⊥, and η ∈ TY . The characteristic class of this structure is
c(γv) = c1(v

⊥).
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Let A(γ) denote the space of connections on the square root det(W )1/2 of
the determinant bundle of W . Every connection A ∈ A(γ) determines a spinc

connection ∇A on W which is compatible with the Levi-Civita connection on
TY . The Seiberg-Witten equations on Y take the form

DAΘ = 0, γ(∗FA + ∗η) = (ΘΘ∗)0, (2)

for A ∈ A(γ) and Θ ∈ C∞(Y,W ). Here DA : C∞(Y,W ) → C∞(Y,W ) denotes
the Dirac operator induced by ∇A, FA ∈ Ω2(Y, iR) denotes the curvature form
of A, and (ΘΘ∗)0 ∈ C∞(Y,End(W )) is defined by (ΘΘ∗)0θ = 〈Θ, θ〉Θ−|Θ|2θ/2
for θ ∈ C∞(Y,W ). The metric identifies TY with T ∗Y and so γ induces a
bundle isomorphism between T ∗Y ⊗ C and the bundle End0(W ) of traceless
endomorphisms of W . This isomorphism identifies the imaginary valued 1-forms
with the traceless Hermitian endomorphisms of W . The 2-form η ∈ Ω2(Y, iR)
represents a perturbation. Since d∗γ−1((ΘΘ∗)0) = iIm 〈DAΘ,Θ〉 equation (2)
has no solutions unless η is closed.

Remark 3.2. (i) The solutions of (2) are the critical points of the Chern-Simons-
Dirac functional CSDη : A(γ) × C∞(Y,W ) → R given by

CSDη(A,Θ) = −1

2

∫

Y

(A−A0) ∧ (FA + FA0
+ 2η) − 1

2

∫

Y

Re 〈DAΘ,Θ〉dvol.

(ii) Every solution (A,Θ) of (2) with Θ 6≡ 0 satisfies

sup
Y

|Θ|2 ≤ sup
Y

(
2|η| − s

2

)
,

where s : Y → R denotes the scalar curvature [17]. This implies that the space
of gauge equivalence classes of solutions of (2) is compact.

(iii) The augmented Hessian of the Chern-Simons-Dirac functional is the self-
adjoint operator HA,Θ on the space Ω0(Y, iR) ⊕ Ω1(Y, iR) ⊕ C∞(Y,W ) given
by

HA,Θ




ψ
α
θ


 =




d∗α− iIm 〈Θ, θ〉
dψ + ∗dα− γ−1((θΘ∗ + Θθ∗)0)

−DAθ − γ(α)Θ − ψΘ


 .

If (A,Θ) is a solution of (2) with Θ 6= 0 then

HA,ΘHA,Θ




ψ
α
θ


 =




∆ψ + |Φ|2ψ
∆α+ |Θ|2α− 2iIm 〈∇AΘ, θ〉
DADAθ + |Θ|2θ − 2∇A,αΘ




(see [26]). Hence every triple (ψ, α, θ) ∈ ker HA,Θ satisfies ψ = 0. It follows
that the kernel of the augmented Hessian agrees with the kernel of the actual
Hessian d2CSDη(A,Θ) on the quotient Ω1(Y, iR) × C∞(Y,W )/{(dξ,−ξΘ) | ξ ∈
Ω0(Y, iR)}.
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A solution (A,Θ) of (2) with Θ 6= 0 is called nondegenerate if HA,Θ is bijec-
tive. In [9] Froyshov proved that for a generic closed perturbation η the solutions
of (2) are all nondegenerate, and hence form a finite set of gauge equivalence
classes (see also [26]). Perturbations with this property are called regular. Let
(A,Θ) be a nondegenerate solution of (2). Then the index µSW(A,Θ) is defined
as the spectral flow of the operator family [−1, 1] 3 s 7→ Hs where Hs = HA,sΘ

for 0 ≤ s ≤ 1 and

Hs =




sπ0 d∗ 0
d ∗d+ sπ1 0
0 0 DA


 , −1 ≤ s ≤ 0.

This operator is injective for s < 0. (See [23] for an exposition of the spec-
tral flow.) The index µSW(A,Θ) is well defined whenever the Hessian HA,Θ is
injective. It satisfies

µSW(u∗A, u−1Θ) − µSW(A,Θ) =

[
u−1du

2πi

]
· c1(W )

for every gauge transformation u : Y → S1. This number is always even. The
Seiberg-Witten invariant of (Y, γ) is defined by

SW(Y, γ) =
∑

[A,Θ]∈Crit(CSDη)

(−1)µ
SW(A,Θ) (3)

for every regular perturbation η, where the sum runs over all gauge equivalence
classes of solutions of (2). If b1(Y ) > 1 then the right hand side of (3) is
independent of η and the metric and depends only on the isomorphism class of
the spinc structure γ (see [26] for details).

Remark 3.3. Care must be taken when b1(Y ) = 1. In this case the right hand
side of (3) is not independent of η but may change when η passes through the
codimension-1 subspace for which there are solutions of (2) with Θ = 0. This is
the case whenever [

iη

π

]
+ c1(W ) = 0

(in deRham cohomology). To avoid this it is convenient to fix an orientation of
H1(Y ) and, for each metric g on Y , denote by αg ∈ Ω1(Y ) the unique harmonic
1-form which has norm 1 and represents the given orientation of H1(Y ). Then
we impose the condition

εγ(g, η) := −
∫

Y

iη

π
∧ αg − c1(W ) · [αg ] < 0

in the definition (3) of the Seiberg-Witten invariant.
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4 Vortex equations

Let Σ be a compact oriented 2-manifold of genus g. Fix a volume form ω ∈
Ω2(Σ) and denote by J (Σ) the space of complex structures on Σ that are
compatible with the orientation. Let E → Σ be a Hermitian line bundle of
degree

d = 〈c1(E), [Σ]〉
and denote by A(E) the space of Hermitian connections on E. For every J ∈
J (Σ) there is a natural bijection from A(E) to the space of Cauchy-Riemann
operators on E. The Cauchy-Riemann operator associated to A ∈ A(E) and
J ∈ J (Σ) will be denoted by ∂̄J,A : C∞(Σ, E) → Ω0,1

J (Σ, E). When the complex
structure is understood from the context we shall drop the subscript J . The
vortex equations take the form

∂̄J,AΘ0 = 0, ∗iFA +
|Θ0|2

2
= τ (4)

for A ∈ A(E) and Θ0 ∈ C∞(Σ, E). Here τ : Σ → R is a smooth function such
that ∫

Σ

τω > 2πd.

The space of gauge equivalence classes of solutions of (4) will be denoted by

M(J, τ) = MΣ,d(J, τ) =
{(A,Θ0) ∈ A(E) × C∞(Σ, E) | (4)}

Map(Σ, S1)
.

This space can be interpreted as a symplectic quotient as follows. The space
A(E) × C∞(Σ, E) carries a symplectic form Ω given by

Ω((α, θ0), (α
′, θ′0)) = −

∫

Σ

α ∧ α′ +

∫

Σ

Im 〈θ0, θ′0〉ω (5)

and a compatible complex structure (α, θ0) 7→ (∗α, iθ0). The gauge group G =
Map(Σ, S1) acts by Hamiltonian symplectomorphisms and it is a simple matter
to check that the moment map is given by

A(E) × C∞(Σ, E) → C∞(Σ) : (A,Θ0) 7→ ∗iFB + |Θ0|2/2.

Now the space
XJ =

{
(A,Θ0) | ∂̄AΘ0 = 0, Θ0 6≡ 0

}

is a complex submanifold of A(E)×C∞(Σ, E) and is invariant under the action
of G. Hence the moduli space M(J, τ) of solutions of (4) can be interpreted as
the Marsden-Weinstein quotient XJ//G(τ).

Remark 4.1. The tangent space of MΣ,d(J, τ) at (A,Θ0) consists of all pairs
(θ0, α1) ∈ C∞(Σ, E) × Ω0,1(Σ) that satisfy

∂̄J,Aθ0 + α1Θ0 = 0, ∂̄J
∗
α1 −

1

2
〈Θ0, θ0〉 = 0. (6)
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Here α1 is the (0, 1)-part of an infinitesimal connection α ∈ Ω1(Σ, iR). Since
2∂̄∗α0,1 = d∗α − ∗idα (cf. [26, Corollary 3.28]) the second equation in (6) de-
composes into ∗idα + Re 〈Θ0, θ0〉 = 0 and d∗α − iIm 〈Θ0, θ0〉 = 0. The first of
these equations is the infinitesimal version of the second equation in (4) and the
second is the local slice condition for the action of the gauge group. Now the
left hand sides of the equations (6) determine an operator DA,Θ0

which satis-
fies DA,Θ0

∗DA,Θ0
= ∆∂̄ + |Θ0|2/2 and hence is surjective. This shows that the

moduli space M(J, τ) is smooth.

Remark 4.2. The Jacobian torus of E is the quotient

JacΣ,d(J) :=
Aω(E)

G
∼= A(E)

Gc , Aω(E) =

{
A | ∗ iFA =

2πd

Vol(Σ)

}
.

Here the complexified gauge group Gc = Map(Σ,C∗) acts on A(E) by

u∗A = A+ u−1∂̄u− ū−1∂ū.

With u = e−f : Σ → R we obtain u∗A = A + ∗idf and ∗iFu∗A − ∗iFA = d∗df .
Hence u∗A ∈ Aω(E) if and only if d∗df = 2πd/Vol(Σ) − ∗iFA. This equation
has a unique solution f with mean value zero. Hence each complex gauge orbit
of A(E) intersects Aω(E) in precisely one unitary gauge orbit.

Remark 4.3. The moduli space MΣ,d(J, τ) can be identified with the GIT quo-

tient XJ/Gc (see Garćia-Prada [11]). To see this let u = e−f : Σ → R. Then,
by Remark 4.2, ∗iFu∗A−∗iFA = d∗df and hence the pair (u∗A, u−1Θ0) satisfies
the second equation in (4) if and only if

d∗df + e2f
|Θ0|2

2
= τ − ∗iFA.

This is the Kazdan–Warner equation and, since the right hand side has posi-
tive mean value, it has a unique solution f : Σ → R [26, Appendix D]. This
establishes the bijection

MΣ,d(J, τ) = XJ//G(τ) ∼= XJ/Gc.
There is a holomorphic projection

MΣ,d(J, τ) → JacΣ,d(J)

given by [A,Θ0]
c 7→ [A]c. This is an embedding whenever dim ker ∂̄A ≤ 1 for

every A ∈ A(E).

Remark 4.4. The complex quotient MΣ,d(J, τ) ∼= XJ/Gc is the set of effective
divisors on Σ and can be identified with the symmetric product

MΣ,d(J, τ) ∼= SdΣ =
Σ × · · · × Σ

Sd
.

The projection XJ → SdΣ assigns to a pair (A,Θ0) the set of zeros of Θ0. Thus
every complex structure J ∈ J (Σ) determines a smooth atlas on SdΣ. For
different choices of J the coordinate charts are not compatible but have only
Lipschitz continuous transition maps.
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5 The universal connection

The next theorem shows that the moduli spaces MΣ,d(J, τ) can be identified
as symplectic manifolds, and that the symplectic structure depends only on the
mean value of τ .

Theorem 5.1. Let [0, 1] → J (Σ) × C∞(Σ) : t 7→ (Jt, τt) be a smooth function
such that

∫
Σ τ̇tω = 0 and choose [0, 1] → Ω1(Σ) : t 7→ σt such that τ̇t+∗dσt = 0.

Then there is a symplectomorphism

ψ = ψ{Jt,τt,σt} : M(J0, τ0) → M(J1, τ1)

defined by [A(0),Θ0(0)] 7→ [A(1),Θ0(1)], where

iȦ = Re 〈Θ0,Θ1〉 − σ, iΘ̇0 = ∂̄J,A
∗
Θ1, (7)

and Θ1 = Θ1(t) ∈ Ω0,1
Jt

(Σ, E) is the unique solution of the elliptic equation

∂̄J,A ∂̄J,A
∗
Θ1 +

|Θ0|2
2

Θ1 =
1

2
(∂J,AΘ0) ◦ J̇ + σ0,1Θ0. (8)

If J0 = J1, τ0 = τ1, and
∫ 1

0 σs ds = 0 then ψ is Hamiltonian.

Choose σt = ∗tdft where ft : Σ → R is the unique function of mean value
zero which satisfies τ̇t = d∗tdft. The resulting symplectomorphisms ψ{Jt,τt} :
M(J0, τ0) → M(J1, τ1) determine a universal Hamiltonian connection on
the fibre bundle over J (Σ)×C∞

m (Σ) with fibres M(J, τ). Here C∞
m (Σ) denotes

the space of functions with fixed mean value m > 2πd.

Remark 5.1. Suppose that A(t), Θ0(t), and Θ1(t) satisfy

i(Ȧ− dΨ) = Re 〈Θ0,Θ1〉 − σ, i(Θ̇0 + ΨΘ0) = ∂̄J,A
∗
Θ1, (9)

and (8). Let [0, 1] → G : t 7→ u(t) be a solution of the ordinary differential
equation u−1u̇+ Ψ = 0. Then the functions

Ã = A+ u−1du, Θ̃0 = u−1Θ0, Θ̃1 = u−1Θ1

satisfy (7) and (8).

Exercise 5.2. Suppose Jt ≡ J and τt ≡ τ . Let ψt : M(J, τ) → M(J, τ) be
defined by the solutions of (7) and (8). If σt = dht prove that the ψt are
generated by the Hamiltonian functions Ht([A,Θ0]) = −

∫
Σ
ihtFA. In general,

prove that Flux({ψt}) ∈ H1(M(J, τ)) is the cohomology class of the 1-form

T[A,Θ0]M(J, τ) → R : (α, θ0) 7→
∫

Σ

iσ ∧ α, σ =

∫ 1

0

σs ds.

Prove that the flux is zero if and only if σ is exact.
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To prove Theorem 5.1 it is useful to examine the spaces

XJ,σ =
{
(A,Θ0) ∈ A(E) × C∞(X,E) | ∂̄J,A+iσΘ0 = 0, Θ0 6≡ 0

}

for J ∈ J (Σ) and σ ∈ Ω1(Σ). Suitable Sobolev completions of these spaces are
Banach manifolds.

Lemma 5.2. For every J ∈ J (Σ) and every α ∈ Ω1(Σ) the space XJ,σ is a
complex submanifold of A(E)×C∞(X,E) with respect to the complex structure
(α, θ0) 7→ (∗Jα, iθ0).
Proof. The tangent space of XJ,σ at the point (A,Θ0) is the kernel of the oper-
ator DJ,A+iσ,Θ0

: Ω1(Σ, iR) × C∞(Σ, E) → Ω0,1(Σ, E) given by

DJ,A+iσ,Θ0
(α, θ0) = ∂̄J,A+iσθ0 + α0,1Θ0.

The identity (∗Jα)0,1 = iα0,1 shows that this operator is complex linear. Its
L2-adjoint DJ,A+iσ,Θ0

∗ : Ω0,1(Σ, E) → Ω1(Σ, iR) × C∞(Σ, E) is given by

DJ,A+iσ,Θ0

∗θ1 = (iIm 〈Θ0, θ1〉, ∂̄J,A+iσ
∗
θ1).

Since (iIm 〈Θ0, θ1〉)0,1 = 〈Θ0, θ1〉/2 we obtain

DJ,A+iσ,Θ0
DJ,A+iσ,Θ0

∗θ1 = ∂̄J,A+iσ ∂̄J,A+iσ
∗
θ1 +

1

2
|Θ0|2 θ1.

It follows from elliptic regularity that DJ,A+iσ,Θ0
is surjective and hence XJ,σ is

an infinite dimensional manifold.

The required identification of the moduli spaces M(J, τ) arises from a sym-
plectic connection on the universal bundle

E =
⋃

J,σ

{(J, σ)} × XJ,σ −→ J (Σ) × Ω1(Σ).

Think of E as a submanifold of the space J (Σ)×Ω1(Σ)×A(E)×C∞(Σ, E). The
formula (5) defines a closed 2-form on E which restricts to the given symplectic
form on each fibre. Hence it determines a symplectic connection on E , where the
horizontal subspace at (J, σ,A,Θ0) is the Ω-complement of the vertical space
T(A,Θ0)XJ . We call this the universal symplectic connection on E . The
next proposition gives an explicit formula for this connection.

Proposition 5.3. A smooth path [0, 1] → E : t 7→ (J(t), σ(t), B(t),Θ0(t)) is
horizontal with respect to the universal connection on E if and only if

iȦ = Re 〈Θ0,Θ1〉, iΘ̇0 = ∂̄J,A+iσ
∗
Θ1, (10)

∂̄J,A+iσ ∂̄J,A+iσ
∗
Θ1 +

|Θ0|2
2

Θ1 =
1

2
(∂J,A+iσΘ0) ◦ J̇ + σ̇0,1Θ0. (11)

Every horizontal path satisfies

d

dt

(
∗iFA +

|Θ0|2
2

)
= 0. (12)
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Proof. A path t 7→ (J(t), σ(t), A(t),Θ0(t)) in E is horizontal with respect to the
universal connection if and only if

(∗J Ȧ, iΘ̇0) ⊥ ker DJ,A+iσ,Θ0

for every t. By the proof of Lemma 5.2, this holds if and only if

(∗JȦ, iΘ̇0) ∈ imDJ,A+iσ,Θ0

∗.

The formula for this operator in the proof of Lemma 5.2 shows that this means

∗JȦ = iIm 〈Θ0,Θ1〉, iΘ̇0 = ∂̄J,A+iσ
∗
Θ1

for some Θ1 ∈ Ω0,1(Σ, E). Since ∗J Im 〈Θ0,Θ1〉 = Im 〈Θ0, iΘ1〉 = Re 〈Θ0,Θ1〉,
this is equivalent to (10). Since (A,Θ0) ∈ XJ,σ for every t we obtain

0 =
d

dt
∂̄J,A+iσΘ0

= ∂̄J,A+iσΘ̇0 + Ȧ0,1Θ0 + iσ̇0,1Θ0 +
i

2
(dA+iσΘ0) ◦ J̇

= −i∂̄J,A+iσ ∂̄J,A+iσ
∗
Θ1 − i

|Θ0|2
2

Θ1 +
i

2
(∂J,A+iσΘ0) ◦ J̇ + iσ̇0,1Θ0

Hence Θ1 is given by (11).
Conversely, suppose that the path t 7→ (J(t), σ(t), A(t),Θ0(t)) satisfies (10)

and (11) as well as (A(0),Θ0(0)) ∈ XJ(0),σ(0). Then the same argument as above
shows that

d

dt
∂̄J,A+iσΘ0 =

i

2
(∂̄J,A+iσΘ0) ◦ J̇

and hence ∂̄J,A+iσΘ0 = 0 for all t. We prove directly that the path is horizontal.

If ∂̄J,A+iσθ0 + α0,1Θ0 = 0 then, since ∗JȦ = iRe 〈iΘ0,Θ1〉,

Ω((Ȧ, Θ̇0), (α, θ0)) =

∫

Σ

(
Re 〈∗JȦ, α〉 + Re 〈iΘ̇0, θ0〉

)
ω

=

∫

Σ

(
Re 〈iRe 〈iΘ0,Θ1〉, α〉 + Re 〈∂̄∗J,A+iσΘ1, θ0〉

)
ω

=

∫

Σ

Re 〈Θ1, ∂̄J,A+iσθ0 + α0,1Θ0〉ω

= 0.

To prove (12) note that d∗〈Θ0,Θ1〉 = 〈Θ0, ∂̄J,A+iσ
∗
Θ1〉−〈∂̄J,A+iσΘ0,Θ1〉. Using

∗idȦ = d∗ ∗J iȦ = d∗Re 〈Θ0, iΘ1〉 we obtain

d

dt

(
∗iFA +

|Θ0|2
2

)
= ∗idȦ+ Re 〈Θ0, Θ̇0〉

= d∗Re 〈Θ0, iΘ1〉 − Re 〈Θ0, i ∂̄J,A+iσ
∗
Θ1〉

= −Re 〈∂̄J,A+iσΘ0, iΘ1〉
= 0.

This proves the proposition.
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Proof of Theorem 5.1. Define A′(t) ∈ A(E) and σ′(t) ∈ Ω1(Σ, E) by

A′(t) = A(t) − iσ′(t), σ′(t) =

∫ t

0

σs ds.

Then the map XJ(t) → XJ(t),σ′(t) : (A(t),Θ0(t)) 7→ (A′(t),Θ0(t)) is a Kähler
isomorphism. Now equations (7) and (8) show that

iȦ′ = iȦ+ σ = Re 〈Θ0,Θ1〉, iΘ̇0 = ∂̄J,A
∗
Θ1 = ∂̄J,A′+iσ′

∗
Θ1

and Θ1 satisfies (11) with A and σ replaced by A′ and σ′. Hence, by Propo-
sition 5.3, the map XJ(0),σ′(0) → XJ(1),σ′(1) : (A′(0),Θ0(0)) 7→ (A′(1),Θ0(1))
defines a symplectomorphism which is Hamiltonian if the loop is closed (cf.
McDuff–Salamon [19, Chapter 6]). Now use the identification of XJ(t),σ′(t) with
XJ(t) to deduce that there is a well defined symplectorphism

XJ(0)
ψ̃−→ XJ(1) : (A(0),Θ0(0)) 7→ (A(1),Θ0(1))

that is Hamiltonian whenever J(0) = J(1) and σ′(0) = σ′(1). Since

d

dt

(
∗iFA′ +

|Θ0|2
2

)
= 0

we have

d

dt

(
τt − ∗iFA − |Θ0|2

2

)
=

d

dt
(τt + ∗id(A′ −A)) =

d

dt
τt + ∗dσt = 0,

and hence the symplectomorphism ψ̃ maps the solutions of (4) with (J, τ) =
(J0, τ0) to those with (J, τ) = (J1, τ1). Let ψ : M(J0, τ0) → M(J1, τ1) denote

the symplectomorphism induced by ψ̃. If J(0) = J(1) and
∫ 1

0
σs ds = 0 then

σ′(0) = σ′(1) = 0. In this case ψ̃ is a Hamiltonian symplectomorphism and
hence, so is ψ. This proves the theorem.

6 Symmetric products

The rational cohomology of the symmetric product is well understood and can
be computed in terms of symmetric differential forms on Σd. For j ≤ d one
obtains

Hj(SdΣ) ∼= Λj ⊕ Λj−2 ⊕ · · · ,
where Λj = ΛjH1(Σ). Hence

χ(SdΣ) =

d∑

j=0

(−1)j(d+ 1 − j)

(
2g

j

)
= (−1)d

(
2g − 2

d

)
.
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This description of the cohomology is functorial with respect to the action of
the mapping class group of Σ. Hence

L(Sdf) =

d∑

j=0

(−1)j(d+ 1 − j)trace(Λjf∗)

where Sdf denotes the induced map on SdΣ and f∗ denotes the induced endo-
morphism of H1(Σ).

For d = deg(E) > 2g−2 the Riemann–Roch theorem asserts that the space of
holomorphic 1-forms with values in any holomorphic line bundle E of degree d is
zero. Hence the space H0(Σ, E) of holomorphic sections has complex dimension
d + 1 − g. It follows that SdΣ is a fiber bundle over the Jacobian with fiber
PH0(Σ, E) ∼= CP d−g:

CP d−g ↪→ SdΣ −→ JacΣ,d.

In particular, this shows that the first Chern class c1 = c1(TS
dΣ) evaluates on

the positive generator A ∈ π2(S
dΣ) by

c1(A) = d+ 1 − g

whenever d ≥ 2g − 1. (This continues to hold for all d ≥ 2.)

Proposition 6.1. The space

M̃Σ,d = M̃Σ,d(J, τ) = {(A,Θ0) ∈ A(E) × C∞(Σ, E) | (4)}

is connected. If d ≥ 2 then M̃Σ,d is simply connected and

π1(MΣ,d) = π0(G) = Z
2g .

If d = 1 then MΣ,1
∼= Σ and π1(M̃Σ,1/S

1) is the Torelli group.

Proof. We prove that M̃Σ,d is connected. To see this note that there is a
fibration

G ↪→ M̃Σ,d → MΣ,d. (13)

Fix a point (A,Θ0) ∈ M̃Σ,d such that Θ0 has d distinct zeros. Since MΣ,d

is connected it suffices to prove that, for every u ∈ G, the points (A,Θ0) and

(u∗A, u−1Θ0) can be connected by a path in M̃Σ,d. Moreover, it suffices to
consider one gauge transformation from each of 2g components that generate
π0(G). Choose a circle C ⊂ Σ that contains precisely one zero of Θ0 and choose
a gauge transformation u : Σ → S1 such that u = 1 in the complement of a
small neighbourhood of C and

[
u−1du

2πi

]
= PD([C]).
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Then the required path from (A,Θ0) to (u∗A, u−1Θ0) can be obtained by sliding

the zero of Θ0 once around C. This shows that M̃Σ,d is connected.
We prove that, for d ≥ 2,

π1(S
dΣ) ∼= H1(Σ; Z) ∼= Z

2g .

(This is well known and the first identity extends to symmetric products of any
compact manifold. We include a proof for the sake of completeness.) Fix a base
point c ∈ Σ and note that every loop in SdΣ has the form [γ1, . . . , γd] : S1 → SdΣ
for d based loops γi : S1 → Σ. Moreover,

[γ1, . . . , γd] ∼ [c, . . . , c, γ1 · · · γd].

Since the ordering of the γi is immaterial it follows that π1(S
dΣ) is abelian.

If γ : S1 → Σ is not homologous to zero then there is a cohomology class
α ∈ H1(Σ; Z) such that 〈α, [γ]〉 = 1. This gives rise to a cohomology class on
SdΣ which pairs nontrivially with [c, . . . , c, γ]. Hence π1(S

dΣ) = H1(Σ; Z).
We prove that, for d ≥ 2, there exists a pair (J,A) ∈ J (Σ)×A(E) such that

dimc ker ∂̄J,A ≥ 2.

(This is also well known.) Think of CP 1 as the space of complex lines in C2 and
denote by H → CP 1 the tautological bundle whose fibre over a line ` ∈ CP 1 is
the dual space `∗ = Hom(`,C). Then a holomorphic section of H has the form
s(`) = φ|` where φ ∈ Hom(C2,C). This space has evidently dimension 2. Now
choose a branched covering u : Σ → CP 1 of degree d ≥ 2. Then the pullback
bundle E = u∗H → Σ has degree d. Choose A ∈ A(E) to be the pullback of the
tautological connection on H and J ∈ J (Σ) to be the pullback of the standard
complex structure on CP 1. Then the kernel of ∂̄J,A has dimension at least 2.

Suppose that d ≥ 2. We prove that M̃J,d is simply connected for every J
and every τ . By Theorem 5.1 it suffices to prove this for some J . Consider the
homotopy exact sequence of the fibration (13). It has the form

π1(G) → π1(M̃Σ,d) → π1(MΣ,d) → π0(G) → 0. (14)

We have proved that π1(MΣ,d) ∼= Z2g whenever d ≥ 2. Since π0(G) ∼= Z2g

and the homomorphism π1(MΣ,d) → π0(G) is surjective it follows that this

homomorphism is injective. Hence the homomorphism π1(M̃Σ,d) → π1(MΣ,d)

is zero. Now π1(G) = Z and the image of the homomorphism π1(G) → π1(M̃Σ,d)
is generated by the loop

S1 → M̃Σ,d(J, τ) : eit 7→ (A, eitΘ0).

We have proved that, for d ≥ 2, there exists a complex structure J ∈ J (Σ)
and a connection A ∈ A(E) such that dimc ker ∂̄J,A ≥ 2. For this choice
the aforementioned loop is obviously contractible. Hence the homomorphism
π1(G) → π1(M̃Σ,d) is zero for some J and, by Theorem 5.1 it is zero for every

J . Hence the exact sequence (14) shows that M̃Σ,d is simply connected.
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7 Symplectic fixed points

Theorem 5.1 shows how to construct a homomorphism of symplectic mapping
class groups

Diff(Σ, ω)/Ham(Σ, ω) −→ Diff(M(J, τ),Ω)/Ham(M(J, τ),Ω).

Here Diff(Σ, ω) denotes the group of orientation and area preserving diffeomor-
phisms of Σ and Ham(Σ, ω) denotes the subgroup of Hamiltonian symplectomor-
phisms. Let f ∈ Diff(Σ, ω) and choose a lift f̃ of f to a unitary automorpohism
of E. Any two such lifts f̃ , f̃ ′ : E → E are related by

f̃ ′ = m(u) ◦ f̃ = f̃ ◦m(u ◦ f)

for some u ∈ G, where m(u) : E → E denotes the obvious action of u. Let
R → J (Σ) : t 7→ Jt be a smooth family of complex structures such that

Jt+1 = f∗Jt.

Denote by ψt : M(J0, τ) → M(Jt, τ) the symplectomorphisms induced by the
solutions of (7) and (8) with τt = τ and σt = 0. Then the symplectomorphism

φd,f = φd,f,{Jt} := ψ1
−1 ◦ f̃∗ : M(J0, τ) → M(J0, τ)

is independent of the choice of the lift f̃ and, by Theorem 5.1, its Hamiltonian
isotopy class is independent of the path {Jt}.

We examine the components of the path space Ωφd,f
. Denote by P̃d,f̃ the

space of all smooth paths R → A(E)×C∞(Σ, E) : t 7→ (A(t),Θ0(t)) that satisfy
[A(t),Θ0(t)] ∈ M(Jt, τ) and the periodicity condition

A(t+ 1) = f̃∗A(t), Θ0(t+ 1) = f̃∗Θ0(t).

The group Gf of gauge transformations R → G : t 7→ u(t) that satisfy

u(t+ t) = u(t) ◦ f

acts on this space and the quotient will be denoted by

Pd,f̃ = P̃d,f̃/Gf .

This space can be naturally identified with a subset of Ωφd,f
via the map that

assigns to every path t 7→ [A(t),Θ0(t)] in Pd,f̃ the path γ : R → M(J0, τ) given

by γ(t) = ψt
−1([A(t),Θ0(t)]). Evidently the set Ωφd,f

is the union of the sets
Pd,f̃ over all unitary lifts of f . The next lemma shows that each set Pd,f̃ is a
component of Ωφd,f

and that

π0(Ωφd,f
) ∼= H1(Σ; Z)

im(1l − f∗)
.

This identification is not canonical.
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Lemma 7.1. Suppose that d ≥ 2. Then, for every unitary lift f̃ : E → E of
f , the space Pd,f̃ is a connected component of Ωφd,f

. Two such lifts f̃ and f̃ ′

determine the same component if and only if there exists a u ∈ G such that
f̃ ′ = f̃ ◦m(u) and

[
u−1du

2πi

]
∈ im(1l − f∗) ⊂ H1(Σ; Z). (15)

Proof. By Proposition 6.1, the space of all solutions of the vortex equations (4)

is simply connected. Hence P̃d,f̃ is connected and hence, so is Pd,f̃ . Now let f̃

and f̃ ′ be two unitary lifts of f . Then the following are equivalent.

(i) Pd,f̃ = Pd,f̃ ′ .

(ii) Pd,f̃ ∩ Pd,f̃ ′ 6= ∅.

(iii) There exists a u ∈ G that satisfies f̃ ′ = f̃ ◦m(u) and (15)

We prove that (iii) implies (i). Suppose that u : Σ → S1 satisfies (15) and
choose a closed 1-form σ ∈ Ω1(Σ) with integer periods such that the 1-form
u−1du/2πi − σ + f∗σ is exact. Choose v : Σ → S1 such that v−1dv/2πi = σ.
Then (v ◦ f)u : Σ → S1 is homotopic to v. Hence there exists a path R → G :
t 7→ v(t) such that v(0) = v and

v(t+ 1) = (v(t) ◦ f)u.

Let t 7→ (A(t),Θ0(t)) be a path in P̃d,f̃ and denote

A′(t) = v(t)∗A(t), Θ′
0(t) = v(t)−1Θ0(t), f̃ ′ = f̃ ◦m(u).

Then

A′(t+ 1) = v(t+ 1)∗A(t+ 1)

= v(t+ 1)∗f̃∗A(t)

= u∗(v(t) ◦ f)∗f̃∗A(t)

= u∗f̃∗v(t)∗A(t)

= f̃ ′∗A′(t).

A similar identity holds with A(t) replaced by Θ0(t). This shows that the path

t 7→ (A′(t),Θ′
0(t)) lies in P̃d,f̃ ′ . Thus we have proved that there is a bijection

P̃d,f̃ → P̃d,f̃ ′ : {A(t),Θ0(t)}t 7→ {v(t)∗A(t), v(t)−1Θ0(t)}t.

This proves (i). That (i) implies (ii) is obvious since Pd,f̃ 6= ∅. That (ii)
implies (iii) follows by reversing the arguments in the proof that (iii) implies (i).
This step is left as an exercise to the reader.
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A fixed point of φd,f in the class Pd,f̃ can be represented by a path

R → A(E) × C∞(Σ, iR) × C∞(Σ, E) × Ω0,1(Σ, E)

t 7→ (A(t),Ψ(t),Θ0(t),Θ1(t))

that satisfies the equations

∂̄Jt,AΘ0 = 0, ∗iFA +
|Θ0|2

2
= τ, (16)

∗t(Ȧ− dΨ) = iIm 〈Θ0,Θ1〉, i(Θ̇0 + ΨΘ0) = ∂̄J,A
∗
Θ1, (17)

∂̄Jt,A ∂̄Jt,A
∗
Θ1 +

|Θ0|2
2

Θ1 =
1

2
(∂Jt,AΘ0) ◦ J̇t, (18)

and the periodicity condition

A(t+ 1) = f̃∗A(t), Ψ(t+ 1) = Ψ(t) ◦ f,
Θ0(t+ 1) = f̃∗Θ0(t), Θ1(t+ 1) = f̃∗Θ1(t).

(19)

Here (16) asserts that [A(t),Θ0(t)] ∈ M(Jt, τ) for every t, (17) and (18) assert
that the path t 7→ [A(t),Θ0(t)] is horizontal with respect to the universal con-
nection, and (19) asserts that the path t 7→ [A(t),Θ0(t)] belongs to Pd,f̃ . Two
such paths represent the same fixed point if and only if they are related by

(A,Ψ,Θ0,Θ1) 7→ (B + u−1du,Ψ + u−1u̇, u−1Θ0, u
−1Θ1)

for some u ∈ Gf .

8 Mapping tori

We examine the Seiberg-Witten equations on a mapping torus. As before, let
Σ be a compact oriented smooth 2-manifold of genus g equipped with a volume
form ω. Let f ∈ Diff(Σ, ω) and denote by

Yf = R × Σ/ ∼

the mapping torus. The equivalence relation is given by

(t+ 1, z) ∼ (t, f(z)).

Choose a smooth function R → J (Σ) such that Jt+1 = f∗Jt and denote by

〈·, ·〉t = ω(·, Jt·) + iω(·, ·)

the Hermitian form on TΣ induced by Jt and ω. Such a family of complex
structures determines a metric on Yf and a spinc structure.
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The canonical spinc structure

The canonical spinc structure on Yf , determined by the family {Jt} of almost
complex structures, will be denoted by γf : TYf → End(Wf ). The Hermitian
rank-2 bundle Wf → Yf is given by

Wf =
{

(t, z,Θ0,Θ1) | t ∈ R, z ∈ Σ, Θ0 ∈ C, Θ1 ∈ Λ0,1
Jt
T ∗
zΣ
}/

∼ .

The equivalence relation is (t+ 1, z,Θ0,Θ1) ∼ (t, f(z),Θ0,Θ1 ◦ df(z)−1) and γf
has the form

γf (t, z; τ, ζ)

(
Θ0

Θ1

)
=

(
−iτΘ0 −

√
2Θ1(ζ)

iτΘ1 + 〈·, ζ〉tΘ0/
√

2

)

for t, τ ∈ R and ζ ∈ TzΣ. This structure is isomorphic to γv in Example 3.1 for
the vector field v = ∂/∂t. To see this identify TΣ with the bundle Λ0,1T ∗Σ via
θ1 7→ Θ1 = −〈·, θ1〉/

√
2.

Lemma 8.1. Let η = η2 − η1 ∧ dt ∈ Ω2(Yf , iR), i.e. η2(t) ∈ Ω2(Σ, iR) and
η1(t) ∈ Ω1(Σ, iR) satisfy ηi(t+ 1) = f∗ηi(t). Then

γf (∗3(η2 − η1 ∧ dt)) = (ΘΘ∗)0

if and only if

∗iη2 +
|Θ0|2 − |Θ1|2

2
= 0, ∗η1 − i

√
2Im 〈Θ0,Θ1〉 = 0.

Proof. The Hodge ∗-operator on 2-forms on Yf is given by

∗3(η2 − η1 ∧ dt) = (∗2η2)dt+ ∗2η1,

where ∗2 denotes the Hodge ∗-operator on Σ. Let v : Σ → TΣ be the vector
field dual to Im η1. Then Jv is dual to ∗Im η1 = −Im η1 ◦ J and

θ1(Jv) = 〈η0,1
1 , θ1〉, 〈·, Jv〉 = 2η0,1

1

Hence

γf (∗3(η2 − η1 ∧ dt))
(
θ0
θ1

)
= γf ((∗2η2)dt+ ∗2η1)

(
θ0
θ1

)

=

(
−i(∗2η2)θ0 − i

√
2θ1(Jv)

i(∗2η2)θ1 + i〈·, Jv〉θ0/
√

2

)

=

(
−(∗2iη2)θ0 − i

√
2〈η0,1

1 , θ1〉
(∗2iη2)θ1 + i

√
2η0,1

1 θ0

)
.

Compare this with the formula

(ΘΘ∗)0θ =

(
λθ0 + 〈Θ1, θ1〉Θ0

−λθ1 + 〈Θ0, θ0〉Θ1

)
, λ =

|Θ0|2 − |Θ1|2
2
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to obtain ∗iη2 + λ = 0 and

〈Θ0,Θ1〉 = i
√

2η0,1
1 = iη1/

√
2 − η1 ◦ J/

√
2 = iη1/

√
2 + ∗η1/

√
2

Since η1 is an imaginary valued 1-form, this is equivalent to iIm 〈Θ0,Θ1〉 =
∗η1/

√
2. This proves the lemma.

The canonical spinc connection

Computation in local coordinates shows that the vertical tangent bundle of the
fibration Yf → S1 is invariant under the Levi-Civita connection. The direct
sum of this bundle with C is isomorphic to Wf and this gives rise to a spinc-
connection ∇ = ∇f on Wf . In explicit terms ∇f agrees with the Levi-Civita
connection of the metric ω(·, Jt·) over each slice {t} × Σ and the covariant
derivative in the direction ∂/∂t is given by

∇tΘ1 = Θ̇1 +
1

2
Θ1 ◦ JJ̇.

If Θ1 is of type (0, 1) then so is ∇tΘ1. Let Af denote the Hermitian connection
on det(Wf )

1/2 induced by ∇f . The curvature of Af is the 2-form

FAf
= − iKt

2
ω − αt

2
∧ dt,

where Kt : Σ → R denotes the Gauss curvature of the metric ω(·, Jt·) and
αt ∈ Ω1(Σ, iR) is defined by

(Imαt)J = ∇̇ +
1

2
J∇J̇ .

The Seiberg-Witten equations

Let E → Σ be a Hermitian line bundle and choose a lift f̃ : E → E of f to a
unitary automorphism of E:

E
f̃−→ E

↓ ↓
Σ

f−→ Σ

.

Such a lift determines a Hermitian line bundle Ef̃ = R ×Ef/ ∼ over Yf where

(t+ 1, z, θ0) ∼ (t, f(z), f̃(z)θ0). A connection on Ef̃ has the form A(t) + Ψ(t) dt

where A(t) ∈ A(E) and Ψ(t) ∈ Ω0(Σ, iR) satisfy (19). The curvature of this
connection is given by

FA+Ψ dt = FA − (Ȧ− dΨ) ∧ dt.

Now consider the twisted spinc structure

γd,f̃ : TYf → End(Wd,f̃ ), Wd,f̃ = Wf ⊗Ef̃ .
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The Dirac operator on the Riemann surface with the standard spinc structure
is equal to the Cauchy-Riemann operator determined by J and multiplied by a
factor

√
2 (cf. [26, Theorem 6.17]). Abbreviate

∇tΘ0 = Θ̇0 + ΨΘ0, ∇tΘ1 = Θ̇1 + ΨΘ1 +
1

2
Θ1 ◦ JJ̇

for Θ0 = Θ0(t) ∈ C∞(Σ, E) and Θ1 = Θ1(t) ∈ Ω0,1(Σ, E). Then the Dirac
equations for the twisted spinc structure have the form

−i∇tΘ0 +
√

2 ∂̄J,A
∗
Θ1 = 0, i∇tΘ1 +

√
2∂̄J,AΘ0 = 0. (20)

By Lemma 8.1, the second equation in (2) decomposes as

∗i(FA + η2) +
Kt

2
+

|Θ0|2 − |Θ1|2
2

= 0, (21)

∗t
(
Ȧ− dΨ +

αt
2

+ η1

)
= i

√
2Im 〈Θ0,Θ1〉. (22)

Here η = η2 − η1 ∧ dt ∈ Ω2(Yf , iR) is the perturbation. Together with the
periodicity conditions (19) these are the Seiberg-Witten equations on Yf for the
spinc structure γd,f̃ . The goal is now to relate the solutions of these equations
to those of (16), (17), (18), and (19) which correspond to the fixed points of
φd,f in the class Pd,f̃ .

As a first step we choose a perturbation

η = η2 − η1 ∧ dt, η2 = i

(
τ

2
+
Kt

2

)
ω, η1 = −αt

2
.

If τ is independent of t then this form is closed. Next we would like to get rid
of the various factors

√
2. For this it is convenient to rename Θ0 and the metric

on Σ by:

Θ0
new =

√
2Θ0

old, ωnew =
1

2
ωold, Kt

new = 2Kt
old.

Then the Hodge ∗-operator on 1-forms (on Σ) remains unchanged, the Hodge
∗-operators on 2-forms are related by ∗new = 2∗old, and the norm of a 1-form
in the new metric is by a factor

√
2 bigger. Moreover, the product Ktω and the

1-form αt are invariant under this scaling. All this is just change in notation
and the Seiberg-Witten equations now have the following form.

i∇tΘ0 = ∂̄J,A
∗
Θ1, −i∇tΘ1 = ∂̄J,AΘ0, (23)

∗iFA +
|Θ0|2 − |Θ1|2

2
= τ, (24)

∗t
(
Ȧ− dΨ

)
= iIm 〈Θ0,Θ1〉. (25)

The comparison between (23), (24), (25) and (16), (17), (18) involves an adia-
batic limit argument.
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The Chern-Simons-Dirac functional

Fix a path of connections A0(t) ∈ A(E) such that A0(t+1) = f̃∗A0(t). Consider
the Chern-Simons-Dirac functional on Yf with the spinc structure γd,f̃ , the
basepoint Af +A0, the perturbation η = iτω/2−FAf

, and the above renaming
of ω and Θ0. This functional has the form

CSDτ (A,Ψ,Θ) =
1

2

∫ 1

0

∫

Σ

(A−A0) ∧ (Ȧ+ Ȧ0) dt

−
∫ 1

0

∫

Σ

(
Ψ(FA + iτω) + Re 〈Θ1, ∂̄Jt,AΘ0〉ω

)
dt

+
1

2

∫ 1

0

∫

Σ

(
Re 〈i∇tΘ0,Θ0〉 − Re 〈i∇tΘ1,Θ1〉

)
ω dt

If Θ1 = 0 and (A(t),Θ0(t)) ∈ M̃(Jt, τ) then

CSDτ (A,Ψ,Θ) =
1

2

∫ 1

0

∫

Σ

(
(A−A0) ∧ (Ȧ+ Ȧ0) + Re 〈iΘ̇0,Θ0〉ω

)
dt.

This is the symplectic action of the path t 7→ [A(t),Θ0(t)].

9 Adiabatic limits

The main idea is to change the parameters in the equations (23), (24), and (25).
We multiply the metric on Σ by a small constant ε2 and simultaneously divide
τ by the the same constant:

ωε = ε2ω, τε = ε−2τ.

This does not affect the product τω and hence the original perturbation η re-
mains unchanged. The new equations have the form

i∇tΘ0 = ε−2 ∂̄J,A
∗
Θ1, −i∇tΘ1 = ∂̄J,AΘ0, (26)

ε−2 ∗ iFA +
|Θ0|2 − ε−2|Θ1|2

2
= ε−2τ, (27)

∗t
(
Ȧ− dΨ

)
= iIm 〈Θ0,Θ1〉. (28)

Here the Hodge ∗-operators are to be understood with respect to the old metric
and the dependence of ε is made explicit. Now it is convenient to rename the
variables Θ0 and Θ1 by

Θ0
new = εΘ0

old, Θ1
new = ε−1Θ1

old.
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Then the Seiberg-Witten equations (26), (27), and (28) translate into the form

i∇tΘ0 = ∂̄Jt,A
∗
Θ1, −i∇tΘ1 = ε−2∂̄Jt,AΘ0, (29)

ε−2

(
∗iFA +

|Θ0|2
2

− τ

)
=

|Θ1|2
2

, (30)

∗t
(
Ȧ− dΨ

)
= iIm 〈Θ0,Θ1〉. (31)

This already looks promising. The first equation in (29) and (31) are reminiscent
of the equations for parallel transport in (17) and the other two equations give
the vortex equations in the limit ε → 0. The crucial point is to control the
bevaviour of Θ1 and its derivatives in the small ε limit. The first step in this
direction is the following observation, which relates the section Θ1 in the Seiberg-
Witten equations to the variable Θ1 in (18).

Lemma 9.1. Every solution of (29), (30), and (31) satisfies

∂̄Jt,A ∂̄Jt,A
∗
Θ1 +

|Θ0|2
2

Θ1 −
1

2
(∂Jt,AΘ0) ◦ J̇t = ε2∇t∇tΘ1. (32)

Proof. First recall that

∇t∂̄Jt,AΘ0 =
d

dt
(∂̄Jt,AΘ0) + Ψ∂̄Jt,AΘ0 +

1

2
(∂̄Jt,AΘ0) ◦ JJ̇.

Since
idAΘ0 = (∂J,AΘ0) ◦ J − (∂̄J,AΘ0) ◦ J

this gives the commutator identity

∇t∂̄Jt,AΘ0 − ∂̄Jt,A∇tΘ0 = (Ȧ− dΨ)0,1Θ0 +
1

2
(∂Jt,AΘ0) ◦ JtJ̇t. (33)

Moreover, (31) is equivalent to

i(Ȧ− dΨ)0,1 =
1

2
〈Θ0,Θ1〉.

Hence

∂̄Jt,A ∂̄Jt,A
∗
Θ1 = i∂̄Jt,A∇tΘ0

= i∇t∂̄Jt,AΘ0 − i(Ȧ− dΨ)0,1Θ0 −
i

2
(∂Jt,AΘ0) ◦ JtJ̇t

= ε2∇t∇tΘ1 −
1

2
〈Θ0,Θ1〉Θ0 +

1

2
(∂Jt,AΘ0) ◦ J̇t.

This proves the lemma.
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Remark 9.1. It is interesting to consider the special case of the product

Y = S1 × Σ

with the product metric and the product spinc structure

γd : TY → End(Wd),

where Wd = S1 × (E ⊕Λ0,1T ∗Σ⊗E) and E → Σ is a Hermitian line bundle of
degree d. In this case J can be chosen independent of t, the adiabatic limit is
not required, and (32) with ε = 1 takes the form

∂̄Jt,A ∂̄Jt,A
∗
Θ1 −∇t∇tΘ1 +

|Θ0|2
2

Θ1 = 0.

Take the inner product with Θ1 and integrate to obtain

∫ 1

0

∫

Σ

(
| ∂̄A∗

Θ1|2 + |∇tΘ1|2 +
1

2
|Θ0|2 |Θ1|2

)
ω dt = 0.

This implies that either Θ0 ≡ 0 or Θ1 ≡ 0. Since the mean value of τ − ∗iFA
is positive it follows that Θ1 ≡ 0. Moreover, by choosing an appropriate gauge
transformation, we may assume without loss of generality that Ψ(t) = 0 for all
t. Then it follows that A(t) = A and Θ0(t) = Θ0 are independent of t and
satisfy the vortex equations. In other words, the moduli space of solutions of
the Seiberg-Witten equations over S1 ×Σ can be identified with the symmetric
product and a standard perturbation argument now shows that

SW(S1 × Σ, γd) = χ(SdΣ) = T (S1 × Σ, ed). (34)

All the other invariants are zero and this proves Theorem 1.1 in the product
case. A similar argument works whenever some iterate of f is the identity.

The proof of Theorem 1.1 in the general case is considerably deeper. It is
obvious from (30) that the square of the L2-norm of Θ0 is bounded below by
twice the mean value of τ − ∗iFA. Hence one can introduce Θ′

1(t) ∈ Ω0,1
Jt

(Σ, E)
as the unique solution of (18). In particular, one has to prove that the difference
Θ1 − Θ′

1 converges to zero as ε → 0. This requires some pointwise estimates
on the functions Θ0, Θ1, Θ′

1 and their derivatives that are remiscent of some of
the estimates that appear in the work of Taubes [29, 30]. This is related to the
convergence question. From the other side one needs a singular perturbation
result which asserts that near every nondegenerate solution of (16), (17), (18),
and (19) (corresponding to a fixed point of φd,f in the class Pd,f̃ ) there is, for
ε > 0 sufficiently small, a solution of the Seiberg-Witten equations (29), (30),
and (31) that satisfies the same periodicity condition (19) (contributing to the
Seiberg-Witten invariant SW(Yf , γd,f̃ )). Once the one-to-one correspondence
between gauge equivalence classes of solutions has been established, one needs
to compare the fixed point index with µSW. This amounts to a comparison of
the spectral flows. The full details of the proof will appear elsewhere.
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10 Floer homology

There is a 4-dimensional version of the adiabatic limit argument. After the ap-
propriate choices of perturbation, change in parameters, and scaling the Seiberg-
Witten equations over the tube R × Yf take the form

∇sΘ0 + i∇tΘ0 = ∂̄Jt,A
∗
Θ1, ∇sΘ1 − i∇tΘ1 = ε−2∂̄Jt,AΘ0. (35)

ε−2

(
∗iFA +

|Θ0|2
2

− τ

)
=

|Θ1|2
2

+ i(∂tΦ − ∂sΨ), (36)

(∂sA− dΦ) + ∗t (∂tA− dΨ) = iIm 〈Θ0,Θ1〉. (37)

Here s is the real parameter and A + Φ ds + Ψ dt is the connection on the
bundle R × Ef̃ → R × Yf . In the adiabatic limit ε → 0 the solutions of these
equations degenerate to holomorphic curves in the moduli space MΣ,d(J, τ) ∼=
SdΣ. Explicitly, the limit equations have the form

∂̄Jt,AΘ0 = 0, ∗iFA + |Θ0|2/2 = τ, (38)

(∂sA− dΦ) + ∗t (∂tA− dΨ) = iIm 〈Θ0,Θ1〉, (39)

∇sΘ0 + i∇tΘ0 = ∂̄Jt,A
∗
Θ1, (40)

∂̄Jt,A ∂̄Jt,A
∗
Θ1 +

|Θ0|2
2

Θ1 =
1

2
(∂Jt,AΘ0) ◦ J̇t. (41)

The small ε analysis should now give rise to a proof of the following analogue
of the Atiyah-Floer conjecture [1, 3, 4, 5].

Conjecture 10.1. For every f ∈ Diff(Σ, ω) and every lift f̃ of f to a unitary
automorphism of a line bundle E → Σ of degree d there is a natural isomorphism
between Seiberg-Witten and symplectic Floer homologies

HFSW(Yf , γd,f̃ ) → HFsymp(φd,f ,Pd,f̃ ).

These isomorphisms intertwine the natural product structures:

HFSW(Yf , γd,f̃ ) ⊗ HFSW(Yg , γd,g̃) → HFSW(Yfg , γd,f̃ g̃)

↓ ↓ ↓
HFsymp(φd,f ,Pd,f̃ ) ⊗ HFsymp(φd,g ,Pd,g̃) → HFsymp(φd,fg,Pd,f̃ g̃)

.
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Theorem 2.1 asserts that the Seiberg-Witten and the symplectic Floer ho-
mology groups have the same Euler characteristic. The comparison of the spec-
tral flows shows in fact that they can be modelled on the same chain complex.
The adiabatic limit argument should prove that the boundary operators agree
for ε sufficiently small.

One of the difficulties in the proof of Conjecture 10.1 lies in the presence of
holomorphic spheres with negative Chern number. Such spheres exist in MΣ,d

whenever the genus g and the degree d satisfy

g

2
+ 1 < d < g − 1. (42)

In this case the new approaches to Floer homology in the presence of holomor-
phic spheres with negative Chern number are required (cf. Fukaya–Ono [10],
Liu–Tian [18], Ruan [24], and Hofer–Salamon [13, 25]). If (42) does not hold
then the standard theory applies (cf. [6, 7, 8, 12, 21, 22, 28, 25, 27]). In this
case the proof of Conjecture 10.1 should be quite analogous to the proof of the
Atiyah-Floer conjecture for mapping tori in Dostoglou–Salamon [3, 4, 5].
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