Erratum for the paper "Transversality in elliptic Morse theory for the symplectic action" by Andreas Floer, Helmut Hofer, Dietmar Salamon Duke Mathematical Journal 80 (1996), 251–292.

10 December 2024

In the proof of Lemma 6.5 on page 277, line 9, the equation should read

$$(SJ_0 - J_0 S - a - bJ_0)\xi - (\hat{\alpha} + \hat{\beta}J_0)\zeta = \eta_2 - (\hat{S}_1 J_0 - J_0 \hat{S}_1)\zeta - (SJ_0 - J_0 S - a - bJ_0)\hat{S}_1\zeta.$$
 (1)

(See also https://people.math.ethz.ch/~salamond/PREPRINTS/trans.pdf, page 25.) Here $S = S^T \in \mathbb{R}^{2n \times 2n}$, $a, b \in \mathbb{R}$, and $\zeta \in \mathbb{R}^{2n} \setminus \{0\}$ satisfy

$$(SJ_0 - J_0S - a - bJ_0)\zeta = 0, (2)$$

the linear map

$$\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{2n} \to \mathbb{R}^{2n} : (\widehat{\alpha}, \widehat{\beta}, \xi) \mapsto (SJ_0 - J_0S - a - bJ_0)\xi - (\widehat{\alpha} + \widehat{\beta}J_0)\zeta \quad (3)$$

is surjective, and $\widehat{S}_1 = \widehat{S}_1^T \in \mathbb{R}^{2n \times 2n}$ was chosen such that $(\widehat{S}_1 J_0 - J_0 \widehat{S}_1)\zeta = \eta_1$. By surjectivity of the map (3) there exists a solution $(\widehat{\alpha}, \widehat{\beta}, \xi) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{2n}$ of (1), and it follows from (2) that, if the triple $(\widehat{\alpha}, \widehat{\beta}, \xi)$ satisfies (1), then so does the triple $(\widehat{\alpha} - 2tb, \widehat{\beta} + 2ta, \xi - tJ_0\zeta)$ for every $t \in \mathbb{R}$. Hence the solution $(\widehat{\alpha}, \widehat{\beta}, \xi)$ of (1) can be chosen such that

$$\langle \xi, J_0 \zeta \rangle = 0. \tag{4}$$

This implies that there exists a matrix $A \in \mathbb{R}^{2n \times 2n}$ such that

$$A\zeta = \xi, \qquad A^T = A, \qquad AJ_0 = J_0 A. \tag{5}$$

(See line 11 on page 277; if (4) does not hold, then the matrix A on page 277, line 13/14, is not symmetric.) By (1) and (5) the matrix $\hat{S} := \hat{S}_1 + A = \hat{S}^T$ satisfies the equations $(\hat{S}J_0 - J_0\hat{S})\zeta = \eta_1$ and

$$(\widehat{S}J_0 - J_0\widehat{S})\zeta + (SJ_0 - J_0S - a - bJ_0)\widehat{S}\zeta - (\widehat{\alpha} + \widehat{\beta}J_0)\zeta = \eta_2$$
(6)

as claimed.