The Exponential Vandermonde Matrix

Joel W. Robbin
University of Wisconsin

Dietmar A. Salamon
ETH Zürich

2 March 2005

Fix real numbers $a_{0}<a_{1}<a_{2}<\cdots<a_{n}$. Given positive numbers $x_{0}, x_{1}, \ldots, x_{n}$ define the $(n+1) \times(n+1)$ matrix

$$
W(x)=\left[\begin{array}{rrrrr}
x_{0}^{a_{0}} & -x_{0}^{a_{1}} & -x_{0}^{a_{2}} & \cdots & -x_{0}^{a_{n}} \\
x_{1}^{a_{0}} & x_{1}^{a_{1}} & -x_{1}^{a_{2}} & \cdots & -x_{1}^{a_{n}} \\
x_{2}^{a_{0}} & x_{2}^{a_{1}} & x_{2}^{a_{2}} & \cdots & -x_{2}^{a_{n}} \\
& & & \ddots & \\
x_{n}^{a_{0}} & x_{n}^{a_{1}} & x_{n}^{a_{2}} & \cdots & x_{n}^{a_{n}} ;
\end{array}\right] ;
$$

the entries above the diagonal are negative, those on or below the diagonal are positive.

Theorem. The signed exponential Vandermonde determinant

$$
w\left(x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{det}(W(x))
$$

is positive for $0<x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
Proof: If we divide each row of the matrix $W(x)$ by its leading entry we get another matrix of the same form with a_{i} replaced by $a_{i}-a_{0}$. Hence we assume w.l.o.g. that $a_{0}=0$. We prove the following stronger statement by induction on n : The function

$$
w_{m}(x):=\frac{\partial^{m} w\left(x_{0}, x_{1}, \ldots, x_{n}\right)}{\partial x_{n} \partial x_{n-1} \cdots \partial x_{n-m+1}}
$$

is positive for $m=0,1,2, \ldots, n$ and $0<x_{0} \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.

Since the determinant of a matrix is linear in each row and the i th row of the matrix $W(x)$ depends only on x_{i} we have that

$$
w_{m}(x)=\operatorname{det}\left(W_{m}(x)\right)
$$

where the matrix $W_{m}(x)$ results from $W(x)$ by replacing the i th row by its derivative with respect to x_{i} for $i=n-m+1, \ldots, n$. Note that $W(x)=W_{0}(x)$ and
(1) for $i=0,1, \ldots, n-m$ the i th row of $W_{m}(x)$ is the same as the i th row of $W(x)$ and begins with 1 , and
(2) for $i=n-m+1, \ldots, n$ the i th row of $W_{m}(x)$ begins with 0 .

Lemma. If $0<k \leq n-m$ and $x_{k-1}=x_{k}$ then

$$
w_{m}(x)=2 x_{k}^{a_{k}} w_{m}\left(x_{0}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right)
$$

The term on the right in (\#) is the determinant of the $n \times n$ matrix which results by deleting the k th row and column from $W_{m}(x)$. Prove the lemma as follows: Subtract the $(k-1)$ st row of $W_{m}(x)$ from the k th row. The result has the same determinant, its k th row vanishes off the diagonal, and its (k, k) entry is $2 x_{k}^{a_{k}}$. The formula (\#) now follows by expansion by minors on the k th row.

We now prove that $w_{m}(x)>0$ by backwards induction on m. First consider the case $m=n$. The off diagonal entries in the 0 th column of $W_{n}(x)$ vanish and for $i, j>0$ the (i, j) entry is $\pm a_{j} x_{i}^{a_{j}-1}$. Hence

$$
w_{n}(x)=a_{1} a_{2} \cdots a_{n} w_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

by expansion by minors in the top row and then factoring out a_{j} from the j th column. The term $w_{0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ on the right is of the same type as $w(x)$ but it is the determinant of an $n \times n$ matrix and the exponents are $a_{i}-1$. Hence by the induction hypothesis (on n) $w_{n}(x)$ is positive. Now assume by the induction hypothesis (on m) that $w_{m+1}=\partial w_{m} / \partial x_{n-m}$ is positive. By the lemma and the induction hypothesis (on n) w_{m} is positive when $x_{n-m}=x_{n-m-1}$. Hence w_{m} is positive by integration with respect to x_{n-m}.
Remark. The unsigned exponential Vandermonde determinant is the same but without the minus signs above the diagonal. A slight simplification of our argument shows that it is positive for $0<x_{0}<x_{1}<x_{2}<\cdots<x_{n}$: the lemma is not needed since the analogue of w_{m} is zero when $x_{n-m}=x_{n-m-1}$.

