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PREFACE

Over the last year remarkable new developments have no less than rev-
olutionized the subject of 4-manifold topology. When Seiberg and Witten
discovered their monopole equations in October 1994 it was soon realized
by Kronheimer, Mrowka, Taubes, and others that these new invariants led
to remarkably simpler proofs of many of Donaldson’s theorems and gave
rise to new interconnections between Riemannian geometry, 4-manifolds,
and symplectic topology. For example, manifolds with nontrivial invariants
do not admit metrics of positive scalar curvature, Kronheimer and Mrowka
finally settled the Thom conjecture, and Taubes proved that symplectic
4-manifolds have nontrivial invariants, thus settling a longstanding conjec-
ture related to the existence of symplectic structures. One of the deepest
and most striking new results in this circle of ideas is Taubes’ theorem
about the relation between the Seiberg-Witten and the Gromov invariants
in the symplectic case. This can be interpreted as an existence theorem for
J-holomorphic curves and it gave rise to a number of new theorems about
symplectic 4-manifolds which extend known results from Kähler geome-
try. There were also new theorems about Kähler surfaces such as minimal
Kähler surfaces which admit a metric of positive scalar curvature are ra-
tional or ruled, and for minimal surfaces of general type the canonical class
is, up to sign, a differentiable invariant. Witten conjectured that the new
invariants should, in the case of 4-manifolds of simple type, be equivalent
to the Donaldson invariants. A geometric approach for proving this conjec-
ture was developed by Pidstrigach and Tyurin and was first announced by
Pidstrigach in his lectures at the Newton Institute in December 1994.

The purpose of this book is to give a comprehensive and largely self-
contained introduction to the Seiberg-Witten invariants, including the nec-
essary background material from geometry and analysis and many of the
applications to 4-manifold topology and symplectic and Kähler geometry.
A notable exception is that the book says nothing about the physics and
quantum field theory background from which these new ideas originated.
Although this is a subject of great importance which will undoubtedly lead
to many more fruitful interactions with geometry and other branches of
mathematics, the author lacks the expertise required for an exposition of
these ideas. Two other omissions are that the Pidstrigach-Tyurin approach
to the proof of Witten’s conjecture will not be discussed and the proof of
Taubes’ theorem about the Seiberg-Witten and the Gromov invariants will
only be briefly sketched. Moreover, the book does not contain an exposition
of classical material from 4-manifold topology. An excellent reference for



iv

this is the first chapter of [21], for example.
The book has four parts. The first part is devoted to background mate-

rial from gauge theory (Chapter 1), Riemannian geometry (Chapter 2) and
complex geometry (Chapter 3). In particular, the latter chapter contains
an extensive discussion of Hermitian connections on the tangent bundle of
symplectic manifolds and their relation with Cauchy-Riemann operators,
and of the Dolbeault cohomology of Kähler manifolds and the Hirzebruch-
Riemann-Roch theorem (without proof).

The reader who is primarily interested in the Seiberg-Witten invariants
is advised to begin with Part II and refer back to the earlier chapters as
necessary. Chapter 4 gives an exposition of foundational material about
spin geometry and Clifford algebras. This chapter lays the foundation for
the classification of spin and spinc structures on vector bundles in Chap-
ter 5. Chapter 6 is devoted to Dirac operators. In particular, the relation
of the Dirac operator to the Cauchy-Riemann operator is examined in the
symplectic case, the Weitzenböck formula is proved, and applications to
manifolds with positive scalar curvature are discussed.

The heart of the book is Part III which begins the introduction to the
Seiberg-Witten invariants. Chapter 7 discusses the fundamental properties
of the solutions of the Seiberg-Witten monopole equations and shows how
they can be used to construct 4-manifold invariants. In the case b+(X) ≥ 2
these have the form of a map

SW : Sc(X)→ Z

which assigns to every spinc structure Γ on TX an integer SW(X,Γ).∗

Denote by c = c1(LΓ) ∈ H2(X,Z) the characteristic class of the spinc

structure Γ. This is an integral lift of w2(TX) ∈ H2(X,Z2). c is called a
basic class if SW(X,Γ) 6= 0 for some spinc structure Γ with c1(LΓ) = c.
The Seiberg-Witten invariants satisfy the following axioms.

(Naturality) If X and Y are compact oriented smooth 4-manifolds with
b+ ≥ 2, f : X → Y is an orientation preserving diffeomorphism, and
Γ ∈ Sc(Y ) then†

SW(X, f∗Γ) = SW(Y,Γ).

(Dimension) Every basic class of X satisfies

c · c ≥ 2χ(X) + 3σ(X).

∗The map is only defined up to a sign which depends on a choice of orientation of

H1(X) ⊕H2,+(X). Moreover, the invariant is only defined under the assumption that
b+− b1 is odd and we shall use the convention SW(X,Γ) = 0 when this condition is not

satisfied.
†Here the orientation of H1(X)⊕H2,+(X) is understood to be induced by f .
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(Symmetry) The invariants of Γ and its dual structure Γ̄ are related by‡

SW(X, Γ̄) = (−1)
χ(X)+σ(X)

4 SW(X,Γ).

(Finiteness) Every compact oriented smooth 4-manifold with b+ ≥ 2 has
only finitely many basic classes.

(Scalar curvature) If X has a metric of positive scalar curvature then
all the Seiberg-Witten invariants of X are zero.

(Connected sum) If X1 and X2 are compact oriented smooth 4-mani-
folds with b+ > 0, then the Seiberg-Witten invariants of X1#X2 are
all zero.

(Blowup) If X and N are compact oriented smooth 4-manifolds with
b+(X) ≥ 2, b1(N) = b+(N) = 0, and ΓN ∈ Sc(N), Γ ∈ Sc(X) are
spinc structures whose characteristic classes c = c1(LΓ) ∈ H2(X,Z)
and e = c1(LΓN ) ∈ H2(N,Z) satisfy

c · c− 2χ(X)− 3σ(X) + e · e+ b2(N) ≥ 0

then

SW(X#N,Γ#ΓN ) = SW(X,Γ).

In particular, the basic classes of X#N have the form c′ = c + e
where c ∈ H2(X,Z) is a basic class of X and e ∈ H2(N,Z) is a
characteristic vector.

(Genus) Let X be a compact oriented smooth 4-manifold with b+ ≥ 2 and
Σ ⊂ X be a compact connected oriented embedded 2-manifold which
represents a nontorsion homology class [Σ] ∈ H2(X,Z). Suppose that
Σ · Σ ≥ 0. Then the genus of Σ satisfies

2g(Σ)− 2 ≥ Σ · Σ + |c · Σ|

for every basic class c of X.

(Symplectic) Let (X,ω) be a compact symplectic 4-manifold with b+ ≥ 1
and Γcan ∈ Sc(X) be the canonical spinc structure of an almost
complex structure on TX which is compatible with ω. Then∗

SW(X,Γcan) = 1.

The proofs of the naturality, dimension, symmetry, finiteness and scalar
curvature axioms are given in Chapter 7 while the remaining axioms are

‡Note that χ+ σ = 2(1 + b+ − b1) is divisible by 4 if and only if b+ − b1 is odd.
∗On a symplectic manifold the space H1(X,R)⊕H2,+(X,R) has a natural orienta-

tion which is explained in Remark 13.35.
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deeper theorems whose proofs are deferred to the later chapters. The genus
axiom is due to Kronheimer and Mrowka and the normalization axiom
in the stated form is due to Taubes. The existence of an invariant with all
these properties has some immediate nontrivial consequences. For example,
the genus and normalization axioms together imply the Thom conjecture
for the case b+ ≥ 2 and for holomorphic curves with nonnegative self-
intersection. The scalar curvature and normalization axioms imply that
symplectic 4-manifolds with b+ ≥ 2 do not admit metrics of positive scalar
curvature. This can be used to prove nonexistence results for symplectic
structures on certain 4-manifolds (Taubes) and to give a new proof of Don-
aldson’s theorem that Kähler surfaces of general type cannot be diffeomor-
phic to connected sums of several copies of the projective plane (with both
orientations) even though, by Freedman’s theorem, every simply connected
nonspin Kähler surface is homeomorphic to such a connected sum.

Chapter 8 deals with some of the more technical aspects of the the-
ory such as the proof of the compactness, regularity, and transversality
theorems as well as a removable singularity theorem for the solutions of
the Seiberg-Witten equations on Euclidean space. In a first section it also
contains an explicit discussion of the Seiberg-Witten equations on flat R4

and this might be a good starting point for the reader to get a feel for the
equations.

Chapter 9 contains several applications, new and old, of the Seiberg-
Witten invariants in general 4-manifold topology, including a proof of Don-
aldson’s classical theorem about the diagonalizability of definite intersec-
tion forms, an account of Furuta’s proof of the 10/8-conjecture, and a proof
of the general wall-crossing formula of Li-Liu and Ohta-Ono in the case
b+ = 1. In this case there are two invariants SW±(X,Γ) depending on the
choice of the metric and the wall-crossing formula is an expression for the
difference of these invariants.

The subject of Chapter 10 are the connected sum and blowup axioms.
The proof of the vanishing theorem for connected sums is based on the lim-
iting behavious of solutions of the Seiberg-Witten equations for a sequence
of metrics which pinch the neck. This result only uses compactness theo-
rems and the removable singularity theorem (both proved in Chapter 8).
The proof of the blowup formula is considerably harder and requires glu-
ing techniques for solutions of the Seiberg-Witten equations on 4-manifolds
with cylindrical ends. Geometrically this corresponds to stretching the neck
rather than pinching it. The analysis in the proof is also needed for the con-
struction of Seiberg-Witten Floer homology (which will not be carried out
in this book).

Part IV introduces applications of the Seiberg-Witten invariants in
Kähler geometry (Chapter 11), gives a proof of the Thom conjecture and
other vanishing theorems (Chapter 12), and discusses applications to sym-
plectic 4-manifolds (Chapter 13). In Chapter 11 it is proved that Kähler
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surfaces have nontrivial Seiberg-Witten invariants and that for minimal
surfaces plus and minus the canonical class are the only basic classes. As
a result the canonical class is, up to sign, a diffeomorphism invariant. An-
other new theorem is that Kähler surfaces are irreducible (at least in the
simply connected case) and that the only minimal Kähler surfaces with
positive scalar curvature are blowups of rational and ruled surfaces. An-
other interesting observation is that the moduli space of Seiberg-Witten
monopoles can in the Kähler case be naturally identified with the set of
divisors (in the class e where c1(LΓ) = 2e− c1(K)). The chapter also con-
tains a computation by Mrowka of the Seiberg-Witten invariants for elliptic
surfaces.

Chapter 12 gives a proof of the Thom conjecture which asserts that
embedded complex curves in Kähler surfaces minimize the genus among all
embedded surfaces representing the same homology class. This conjecture
has now been confirmed for all Kähler surfaces under the assumption of
nonnegative self-intersection number.

Chapter 13 deals with applications to symplectic 4-manifolds. It begins
with a brief introduction to the existence question for symplectic structures
and then discusses the basic theorems of Taubes about the nontriviality of
the invariants. Some of the immediate consequences include, for example,
the result that all almost complex structures on the 4-torus which are com-
patible with some symplectic form must have Chern classes zero, and that
the manifold CP 2#CP 2#CP 2, for example, does not admit a symplectic
structure. Much more interesting consequences can be derived from Taubes’
existence theorem for J-holomorphic curves which can then be combined
with the work of Gromov and McDuff. Some of the corollaries are that min-
imal symplectic 4-manifolds with positive scalar curvature or K · [ω] < 0
or K · K < 0 are rational or ruled (Ohta-Ono, Li-Liu), that symplectic
structures on rational and ruled surfaces are unique up to diffeomorphism
and deformation (Taubes, Li-Liu, Lalonde-McDuff), that smooth blowup
is equivalent to symplectic blowup (Taubes), and that simply connected
symplectic 4-manifolds are irreducible (Kotschick). Many of these results
are symplectic versions of known theorems in Kähler geometry. A notable
exception is the result that for minimal Kähler surfaces of general type
plus and minus the canonical class are the only basic classes. There is no
symplectic analogue of this theorem and Kähler and symplectic geometry
appear to diverge here. The chapter closes with a brief sketch of the proof
of Taubes’ theorem about the Seiberg-Witten and the Gromov invariants.

The book includes an appendix about various topics in analysis which
form essential background material for the construction of moduli spaces
in geometry. Appendix A is devoted to linear Fredholm theory and de-
terminant line bundles and Appendix B deals with the implicit function
theorem, the Sard-Smale theorem, and applications to transversality prob-
lems. Sobolev spaces and elliptic operators are discussed in Appendix C.
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Appendix D gives a proof of an existence and uniqueness theorem for
solutions of the Kazdan-Warner equation. Appendix E contains a proof
of a unique continuation theorem for first order operators, based on the
Agmon-Nirenberg technique, and with applications to Dirac operators. Fi-
nally, Appendix F discusses line bundles and divisors and includes a brief
introduction to several complex variables.

I include here some remarks about the relation between 4-manifolds,
Yang-Mills equations, and Seiberg-Witten invariants which arose out of
a conversation with Simon Donaldson. His original work on 4-manifold
invariants from Yang-Mills moduli spaces can be viewed in two ways. Either
the topology of these moduli spaces would be described in terms of known
invariants of 4-manifolds or the Yang-Mills equations would give rise to new
4-manifold invariants. Of course, we know now that the outcome of his work
was the second alternative. However, both possibilities would have been
interesting. The new Seiberg-Witten invariants can in some sense be viewed
as an intermediate answer to the above dichotomy. They give information
about 4-manifolds and, if Witten’s conjecture is true, then Donaldson’s
invariants can be expressed in terms of these. From this point of view the 4-
manifold invariants of Seiberg-Witten would then give us information about
the Yang-Mills moduli spaces. That Donaldson’s invariants were discovered
earlier is an accident of history and it might as well have been the other
way round, as one could imagine from the work of Gromov and Lawson
in [48] on manifolds of positive scalar curvature which also involves the
Dirac operator in a crucial way. To put it in different terms “mathematical
discoveries are not necessarily made in the logical order”. (Quotation from
Rebecca Earle.)

This book had its starting point in two lectures given by Peter Kron-
heimer in Oxford in the beginning of November 1994 about the Seiberg-
Witten invariants which at the time had just been discovered for a few
weeks. In the following spring I gave a lecture course about this subject
at Warwick and proceeded with writing this manuscript alongside. I am
indebted to many people who made helpful comments and suggestions at
various stages and others whose lectures on new developments were a source
of inspiration and influenced the contents of this book. I would like to thank
them all. In particular, I would like to thank Miguel Abreu, Stefan Bauer,
Simon Donaldson, Peter Kronheimer, John Jones, Dusa McDuff, Mario
Micallef, Tom Mrowka, John Rawnsley, Miles Reid, and Joel Robbin for
numerous discussions about various aspects of the theory which greatly
aided my understanding.

Warwick D.S.
1995
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IV KÄHLER SURFACES AND
SYMPLECTIC MANIFOLDS

12 Kähler surfaces 363
12.1 The Enriques-Kodaira classification 363
12.2 The monopole equations in the Kähler case 367
12.3 Duality 369
12.4 The linearized operator 371
12.5 Nontriviality of the invariants 378
12.6 Positive scalar curvature 384
12.7 Minimal surfaces of general type 387
12.8 Monopoles and divisors 389
12.9 Elliptic surfaces 392
12.10 Factorization 403

13 Symplectic four-manifolds 406
13.1 Existence of symplectic structures 407
13.2 New results from the Seiberg-Witten invariants 411
13.3 Existence of J-holomorphic curves 416
13.4 Irreducibility 421
13.5 Rational and ruled surfaces 422
13.6 Proofs of Taubes’ theorems 430
13.7 Relation with the Gromov invariants 436

14 Embedded surfaces 448
14.1 The generalized adjunction formula 448
14.2 Proof of the Thom conjecture 453

15 Vortex equations over Riemann surfaces 463
15.1 Vortex pairs 463



xii

15.2 Symmetric products 468
15.3 A symplectic connection 468
15.4 Holomorphic curves and Seiberg-Witten monopoles 468
15.5 Boundary value problems 468

V APPENDIX

A Fredholm Theory 473
A.1 Linear Fredholm operators 473
A.2 Determinant line bundles 477
A.3 Crossing numbers 481

B Transversality 487
B.1 Implicit function theorem 487
B.2 The Kuranishi model 493
B.3 Sard-Smale theorem 497
B.4 Thom-Smale transversality 499

C Elliptic regularity 504
C.1 Sobolev spaces 504
C.2 Elliptic regularity: L2-theory 519
C.3 The Calderón-Zygmund inequality 524
C.4 Elliptic regularity: Lp-theory 530

D The Kazdan-Warner equation 533

E Unique continuation 541
E.1 The Agmon-Nirenberg theorem 541
E.2 Time-dependent inner products 545
E.3 Application to Dirac operators 548

F Line bundles and divisors 556
F.1 Several complex variables 556
F.2 Unique factorization 558
F.3 Nullstellensatz 560
F.4 Analytic varieties 562
F.5 Multiplicity 569
F.6 Divisors 571
F.7 Line bundles 575

References 578

Index 583



Part I

FOUNDATIONS





1

CONNECTIONS AND CURVATURE

The purpose of this chapter is to give an exposition of background
material about vector bundles, connections, characteristic classes, and an
application in K-theory. The first section is devoted to connections and
curvature from the principal bundle and vector bundle point of view. Sec-
tion 1.4 gives a brief introduction to the Chern classes via Chern-Weil
theory. Section 1.7 gives an application which expresses the integral of a
characteristic class over the projectivized kernel manifold of a regular fam-
ily of Fredholm operators in terms of the topological index. This result
will play a crucial role in the proof of the wall-crossing formula for the
Seiberg-Witten invariants.

1.1 Fiber bundles

A smooth map π : E → X between smooth manifolds is called a locally
trivial fibration if there exists an open cover {Uα}α of X, a smooth
manifold F , and a collection of diffeomorphisms ϕα : π−1(Uα) → Uα × F
such that the following diagrams commute

π−1(Uα)
ϕα−→ Uα × F

π ↘ ↙pr

Uα

.

The maps ϕα are called local trivializations. Let Ex = π−1(x) denote
the fiber over x and ϕα(x) : Ex → F the restriction of ϕα to Ex followed
by the projection onto F . The transition maps uβα : Uα ∩Uβ → Diff(F )
are defined by

uβα(x) = ϕβ(x) ◦ ϕα(x)−1.

Thus
ϕβ ◦ ϕα−1(x, v) = (x, uβα(x)v)

for x ∈ Uα∩Uβ and v ∈ F . The transition maps satisfy the cocycle condition

uγβuβα = uγα, uαα = 1. (1.1)

The bundle E can be recovered from the uβα as the set of equivalence
classes [α, x, v] with x ∈ Uα and v ∈ F under the equivalence relation
[α, x, v] ≡ [β, x, uβα(x)v]. A section s : X → E is in local coordinates
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represented by functions sα : Uα → F defined by sα(x) = ϕα(x)s(x).
The sα satisfy sβ(x) = uβα(x)sα(x) for x ∈ Uα ∩ Uβ . Conversely, any
such collection {sα}α determines a section s. The space of sections will be
denoted by C∞(X,E) or sometimes, in the vector bundle case, by Ω0(X,E).

Exercise 1.1 Let M be a compact smooth manifold with boundary and
f : M → [0, 1] be a smooth surjection without critical points such that

∂M = f−1(0) ∪ f−1(1).

Prove that there is a diffeomorphism

ϕ : f−1(0)× [0, 1]→M.

Hint: Choose a Riemannian metric on M and, for every x ∈ M let
Hx ⊂ TxM be the orthogonal complement of the vertical subspace Vx =
ker df(x). For x0 ∈ f−1(0) there is a unique path x : [0, 1]→M such that
x(0) = x0, f(x(t)) = t, and ẋ(t) ∈ Hx(t) for every t. Prove that x(t) is the
solution of the differential equation

ẋ =
∇f(x)

|∇f(x)|2
, x(0) = x0.

Use the solutions to define ϕ. 2

Exercise 1.2 Suppose that E and X are compact connected manifolds
and π : E → X is a surjective submersion. Prove that E admits the struc-
ture of a locally trivial fibration. Hint: Choose a splitting TX = V ⊕ H
where Vη = ker dπ(η) for η ∈ E. 2

Let G ⊂ Diff(F ) be a Lie group acting on F via

G× F → F : (g, v) 7→ gv.

This is to be understood as a left action, i.e. g(hv) = (gh)v for g, h ∈ G and
v ∈ F . The bundle E is said to have structure group G if there exists a
system {Uα, ϕα}α of local trivializations such that all the transition maps
take values in G. In this case E is called a G-bundle and {Uα, ϕα}α a
G-atlas. An automorphism or gauge transformation of a G-bundle
E → X is a smooth map u : E → E such that π ◦ u = π and the maps
uα : Uα → Diff(F ) defined by uα(x) = ϕα(x) ◦u ◦ϕα(x)−1 for x ∈ Uα take
values in G. The maps uα : Uα → G satisfy

uβuβα = uβαuα

and, conversely, any such collection {uα}α determines an automorphism
u : E → E. The group of such automorphisms is called the gauge group
and will be denoted by G(E).
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There are a number of interesting structure groups related to additional
structures on the bundle E. For example, if F = Rn and G = GL(n) then
E is a vector bundle (of rank n). If in addition the bundle is oriented, then
the structure group reduces to G = SL(n,R) and the frame bundle (see
below) consists of oriented bases. If an oriented vector bundle is equipped
with a Riemannian metric then the structure group reduces to SO(n) and
the frame bundle consists of oriented orthonormal frames. If E is a real
vector bundle of rank 2n and is equipped with a complex structure J ∈
Aut(E) with J2 = −1l then the structure group reduces to GL(n,C) and
the frame bundle consists of complex bases. If in addition E is equipped
with a Hermitian structure then the structure group reduces to U(n) and
the frame bundle consists of unitary bases.

Frame bundles

Note that the group G acts on the model fiber F but not on the actual
fibers Ex of the bundle E. An action of G on Ex depends on the choice of
the identification of F with Ex, i.e. on a choice of frame. More precisely, a
G-frame at x is a diffeomorphism e : F → Ex such that ϕα(x) ◦ e ∈ G for
any α with x ∈ Uα. They form the G-frame bundle

F(E) = {(x, e) |x ∈ X, e : F → Ex is a G-frame}

with right G-action (x, e) 7→ (x, e ◦ g) for g ∈ G ⊂ Diff(F ). More generally,
a principal G-bundle is a locally trivial fiber bundle

π : P → X

with fiber F = G which is equipped with a smooth right G-action

P ×G→ P : (p, g) 7→ pg

which preserves the fibers (i.e. π(pg) = π(p)) and an atlas of equivariant
local trivializations ϕα : π−1(Uα) → Uα × G. In this case the transition
maps have the form ϕβ ◦ ϕα−1(x, g) = (x, uβα(x)g) for x ∈ Uα ∩ Uβ and
g ∈ G. The bundle P can be recovered from the transition maps as the set
of equivalence classes [α, x, g] with x ∈ Uα and g ∈ G under the equivalence
relation [α, x, g] ≡ [β, x, uβα(x)g]. Denote by

TP ×G→ TP : (v, g) 7→ vg

the action of G on the tangent bundle and by

P × g→ TP : (p, ξ) 7→ pξ =
d

dt

∣∣∣∣
t=0

p exp(tξ)

the infinitesimal action of the Lie algebra g = Lie(G).
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Remark 1.3 If the uβα are the transition maps of a fiber bundle E → X
with structure group G ⊂ Diff(F ) and P = F(E) is the principal G-frame
bundle then the two descriptions of P (as pairs (x, e) and as equivalence
classes [α, x, g]) are related by

p = (x, e) = [α, x, g], g = ϕα(x) ◦ e

for x ∈ Uα and g ∈ G. 2

Exercise 1.4 Let P be a compact smooth manifold and G be a com-
pact Lie group acting smoothly and freely on P . Prove that the quotient
X = P/G admits the structure of a smooth manifold and that the natural
projection π : P → X is a principal G-bundle. Hint: Prove the existence
of local slices. 2

Remark 1.5. (Associated bundles) Given any principal G-bundle π :
P → X and a representation

ρ : G→ Diff(F )

there is a locally trivial G-bundle

E = P ×ρ F.

This bundle is defined as the set of equivalence classes of pairs [p, v] in
P × F under the equivalence relation

[p, v] ≡ [pg, ρ(g)−1v]

for g ∈ G. The reader may check that if ρ : G → Diff(F ) is injective
then the frame bundle F(P ×ρ F ) is isomorphic to P and, conversely, the
associated bundle F(E)×GF is isomorphic to E. The reader may also check
that the sections of P ×ρ F can be identified with smooth maps s : P → F
which satisfy

s(pg) = ρ(g)−1s(p)

for p ∈ P and g ∈ G. An important special case is the adjoint representation
of G on its Lie algebra g = Lie(G). The corresponding associated bundle
is denoted by

gP = P ×ad g.

The sections of this bundle are maps ξ : P → g which satisfy

ξ(pg) = g−1ξ(p)g.

They form a Lie algebra denoted by Ω0(X, gP ) = Ω0
ad(P, g). 2
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Remark 1.6. (Gauge transformations) A gauge transformation of
a principal bundle π : P → X is an equivariant diffeomorphism ϕ : P → P
such that

π ◦ ϕ = π.

Any such gauge transformation has the form

ϕ(p) = pu(p)

where u : P → G satisfies

u(pg) = g−1u(p)g.

These maps u form the gauge group G(P ). Its Lie algebra is

Lie(G(P )) = Ω0
ad(P, g).

In the case of the G-frame bundle P = F(E) there is a one-to-one corre-
spondence between automorphisms of E and gauge transformations of P .
Namely, if u : E → E is an automorphism then the corresponding gauge
transformation of F(E) is given by

F(E)→ G : (x, e) 7→ e−1 ◦ u|Ex ◦ e. 2

Remark 1.7 For any vector bundle E → X denote by Ωk(X,E) the space
of differential k-forms τ on X with values in E. In local trivializations such
a form can be represented by a collection of vector valued forms

τα ∈ Ωk(Uα,Rn)

which satisfy τβ = uβατα. If

E = P ×ρ V

for some principal G-bundle, some vector space V , and some representation
ρ : G→ Aut(V ), then the k-forms with values in E can be identified with
forms τ ∈ Ωk(P, V ) which satisfy

τpg(v1g, . . . , vkg) = ρ(g)−1τp(v1, . . . , vk)

for g ∈ G and
τp(pξ, v2, . . . , vk) = 0

for ξ ∈ g and vj ∈ TpP . This means that τ is equivariant and horizontal.
The space of such forms will be denoted by

Ωkρ(P, V ) ∼= Ωk(X,P ×ρ V ). 2
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1.2 Connections

Let E → X be a smooth vector bundle. A connection on E is a linear
operator ∇ : C∞(X,E)→ Ω1(X,E) such that

∇(fs) = f∇s+ df ⊗ s

for f : X → R and s ∈ C∞(X,E). The difference of any two con-
nections on E is an operator a = ∇2 − ∇1 : C∞(X,E) → Ω1(X,E)
which is linear over the functions, i.e. a(fs) = fa(s) for f : X → R
and s ∈ C∞(X,E). Any such operator is given by multiplication with an
endomorphism valued 1-form which we also denote by a ∈ Ω1(X,End(E)).
Thus the space of connections on E is an affine space with associated vector
space Ω1(X,End(E)).

In a vector bundle atlas {Uα, ϕα}α a connection can be represented by
a collection of matrix valued 1-forms Aα ∈ Ω1(Uα,Rn×n) via

(∇s)α = dsα +Aαsα.

The Aα are called the connection potentials of ∇. They satisfy the
condition

Aα = uβα
∗Aβ = uβα

−1duβα + uβα
−1Aβuβα. (1.2)

Conversely, any such collection A = {Aα}α determines a connection ∇.
Sometimes it is convenient to write ∇ = ∇A.

Suppose that the bundle E has structure group G ⊂ GL(n,R) and that
{Uα, ϕα}α is a vector bundle atlas with transition maps uβα : Uα∩Uβ → G.
A connection ∇ is called a G-connection if all its connection potentials
take values in the Lie algebra g = Lie(G) ⊂ Rn×n, i.e.

Aα ∈ Ω1(Uα, g).

The important structure groups for this book are SO(n), U(n), Spinc(2n).
The space of connections on E will be denoted by A(E). If E has structure
group G then A(E) is understood to be the space of G-connections unless
otherwise mentioned.

Exercise 1.8. (Existence of a connection) Prove that on any vector
bundle E → X with any structure group G there exists a G-connection.
Hint: Choose a partition of unity {ρα}α, subordinate to the cover {Uα}α
and define

Aα =
∑
γ

ργ(uγα
−1duγα).

Prove that these 1-forms satisfy (1.2). 2
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Exercise 1.9. (Action of the gauge group) The group G(E) of auto-
morphisms of E acts on the space A(E) via

∇ 7→ u∗∇ = u−1 ◦ ∇ ◦ u.

If ∇ = ∇A with connection potentials Aα ∈ Ω1(Uα, g) and u is represented
by uα : Uα → G prove that u−1 ◦ ∇A ◦ u = ∇u∗A is represented by

uα
∗Aα = uα

−1duα + uα
−1Aαuα. 2

Exercise 1.10. (Pullback connection) Let E → X be a vector bundle
with G-connection ∇ and f : Y → X be a smooth map. Prove that there
is a natural connection f∗∇ on the pullback bundle

f∗E = {(x, η) ∈ Y × E |π(η) = f(y)}

such that (f∗∇)(f∗s) = f∗(∇s) for s ∈ C∞(X,E). An important case is
that of a curve γ : R → X. A section of γ∗E is a smooth map η : R → E
with η(t) ∈ Eγ(t) and we abbreviate ∇η(t) = (γ∗∇)∂/∂tη(t). In the case
η(t) = s(γ(t)) for a section s : X → E we have

∇(s ◦ γ)(t) = ∇γ̇(t)s(γ(t)).

Hint: Given a vector bundle atlas {Uα, ϕα}α for E with transition maps
uβα : Uα ∩ Uβ → G construct a vector bundle atlas {Vα, ψα}α for f∗E
with Vα = f−1(Uα) and transition maps vβα = uβα ◦ f . If Aα ∈ Ω1(Uα, g)
are the connection potentials for ∇ show that f∗Aα ∈ Ω1(f−1(Uα), g) are
connection potentials for f∗∇. 2

Exercise 1.11. (Riemannian connection) Let E → X be a real Rie-
mannian vector bundle of rank n. A connection ∇ : C∞(X,E)→ Ω1(X,E)
is called Riemannian if

∂v〈s1, s2〉 = 〈∇vs1, s2〉+ 〈s1,∇vs2〉 (1.3)

for two sections s1, s2 ∈ C∞(X,E) and a vector field v ∈ Vect(X). Prove
that ∇ is a Riemannian connection if and only if it is an O(n)-connection
in the above sense. 2

Exercise 1.12. (Hermitian connection) Let E → X be an complex
vector bundle of rank n with a Hermitian form 〈·, ·〉. Our convention is
that the Hermitian form be complex anti-linear in the first argument and
complex linear in the second. A connection ∇ : C∞(X,E) → Ω1(X,E) is
called Hermitian if it satisfies 1.3. In (non-unitary) local trivializations
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a Hermitian structure on E is given by a collection of matrix functions
Hα : Uα → Cn×n such that Hα(x)∗ = Hα(x) is positive definite for x ∈ Uα
and

Hα(x) = uβα(x)∗Hβ(x)uβα(x).

for x ∈ Uα ∩ Uβ . Prove that a connection with connection potentials Aα ∈
Ω1(Uα,Cr×r) is Hermitian if and only if

dHα = Aα
∗Hα +HαAα

for every α. Note that in the case of local unitary frames with Hα(x) = 1l
this means that Aα takes values in the Lie algebra u(n) = Lie(U(n)) of
skew-Hermitian matrices and hence is a U(n)-connection as above. 2

Parallel transport

Let E → X be a vector bundle with structure group G ⊂ GL(n,R) and
connection ∇. Given a path γ : R→ X there are linear isomorphisms

Φ∇(γ; t1, t0) = Φ(γ; t1, t0) : Eγ(t0) → Eγ(t1)

defined by Φ(γ; t1, t0)η0 = η(t1) where η : R → E is the unique parallel
section of γ∗E with η(t0) = η0. This means that η(t) ∈ Eγ(t) for all t
and ∇η = 0 (see Exercise 1.10). Note that the function t 7→ Φ(γ; t, t0)η0

is smooth for every smooth path γ and every η0 ∈ Eγ(t0). The maps
Φ(γ; t1, t0) satisfy

Φ(γ; t2, t1) ◦ Φ(γ; t1, t0) = Φ(γ; t2, t0), Φ(γ; t0, t0) = id.

Moreover, they are independent of the parametrization of γ in the sense
that for every diffeomorphism β : R→ R

Φ(γ ◦ β; t1, t0) = Φ(γ;β(t1), β(t0)).

A collection of isomorphisms Φ(γ; t1, t0) with these properties is called a
parallel transport structure. There is a one-to-one correspondence be-
tween such parallel transport structures and connections.

Exercise 1.13 Let E → X be a Riemannian vector bundle with connec-
tion ∇. Prove that ∇ is a Riemannian connection (as in Exercise 1.11) if
and only if the parallel transport maps are orthogonal, i.e.

Φ(γ; t1, t0)∗ = Φ(γ; t0, t1) = Φ(γ; t1, t0)−1.

Prove a similar assertion for Hermitian connections. More generally, sup-
pose that E has structure group G ⊂ GL(n,R) and show that ∇ is a G-
connection if and only if e−1

1 ◦ Φ∇(γ; t1, t0) ◦ e0 ∈ G for any two G-frames
e0 : Rn → Eγ(t0) and e1 : Rn → Eγ(t1). 2
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Exercise 1.14 If ∇ is a connection and u ∈ G(E) is an automorphism
show that

Φu
∗∇(γ; t1, t0) = u(γ(t1))−1Φ∇(γ; t1, t0)u(γ(t0)).

for γ : R→ X and t0, t1 ∈ R. 2

Connections on principal bundles

Let E → X be a vector bundle with structure group G ⊂ GL(n,R) and
P = F(E) be the corresponding principal G-frame bundle. A G-connection
∇ on E determines a splitting of the tangent bundle TP into horizontal
and vertical subbundles, namely

TP = V ⊕H

where Vp = {pξ | ξ ∈ g} = ker dπ(p) and

H(x,e) =

{
d

dt

∣∣∣∣
t=0

(γ(t),Φ∇(γ; t, 0)e)
∣∣∣ γ : R→ X, γ(0) = x

}
.

The horizontal subbundle is equivariant under the right action of G in the
sense that Hpg = Hpg for p ∈ P and g ∈ G. Of course, this also holds for
the vertical bundle. Conversely, any horizontal distribution H ⊂ TP with
this property determines a G-connection on E.

Exercise 1.15 Prove that TpP = Hp ⊕ Vp, where p = (x, e) and Vp and
Hp are defined as above. Hint: Recall the identification of P with the set
of equivalence classes of triples [α, x, g] with x ∈ Uα and g ∈ G under
the equivalence relation [α, x, g] ≡ [β, x, uβα(x)g]. Deduce that the tangent
space TpP with p = [α, x, g] is the set of equivalence classes [α, v, gξ] with
v ∈ TxX and ξ ∈ g under the equivalence relation

[α, v, gξ] ≡ [β, v, uβα(x)gξ + (duβα(x)v)ξ].

Show that with this identification

Vp = {[α, 0, gξ] | ξ ∈ g} , Hp = {[α, v,−Aα(v)g] | v ∈ TxX}

where the Aα ∈ Ω1(Uα, g) are the connection potentials of ∇. 2

A connection on a principal G-bundle P → X is an equivariant hori-
zontal distribution H ⊂ TP . Any such distribution can be uniquely repre-
sented as the kernel of a 1-form A ∈ Ω1(P, g) which satisfies

Apg(vg) = g−1Ap(v)g, Ap(pξ) = ξ

for v ∈ TpP , g ∈ G, and ξ ∈ g. The second condition guaranties that Hp =
kerAp is a complement of Vp and the first condition guarantees that H is
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equivariant. A 1-form with these properties is called a connection-1-form
and the set of such 1-forms is denoted by A(P ). Note that the difference of
two connections a = A1−A2 is an equivariant and horizontal 1-form on P
and hence, by Remark 1.7, can be identified with a 1-form on X with values
in gP = P ×ad g. Conversely, if A ∈ A(P ) and a ∈ Ω1(X, gP ) = Ω1

ad(P, g)
then A + a ∈ A(P ). Thus A(P ) is an affine space with associated vector
space Ω1(X, gP ). The group G(P ) of gauge transformations acts on A(P )
via

u∗A = u−1du+ u−1Au

for A ∈ A(P ) and u ∈ G(P ) (see Remark 1.6). Note that this action is
contravariant.

Exercise 1.16 Show that connections on a principal bundle can in local
trivializations be described by Lie algebra valued 1-forms Aα ∈ Ω1(Uα, g)
which satisfy (1.2). Deduce that A(P ) is nonempty (Exercise 1.8). 2

Exercise 1.17 Recall from Remark 1.6 that an automorphism ϕ : P → P
has the form ϕ(p) = pu(p) where u ∈ G(P ). Show that the pullback of a
1-form A ∈ Ω1(P, g) under ϕ is given by ϕ∗A = u∗A = u−1du + u−1Au.
Show that if A is a connection 1-form then so is u∗A. (Compare with
Exercise 1.9.) 2

Exercise 1.18 Let E → X be a vector bundle with structure group
G ⊂ GL(n,R). Prove that there is a one-to-one correspondence between
G-connections on E and G-connections on P = F(E). 2

Exercise 1.19 Let P → X be a principal G-bundle and ρ : G → Aut(V )
be a representation. Define ρ̇ : g→ End(V ) by

ρ̇(ξ) =
d

dt

∣∣∣∣
t=0

ρ(exp(tξ))

for ξ ∈ g. Prove that there is a one-to-one correspondence between G-
connections on the associated bundle E = P ×ρ V and 1-forms B ∈
Ω1(P,End(V )) which satisfy

Bpg(vg) = ρ(g)−1Bp(v)ρ(g), Bp(pξ) = ρ̇(ξ) (1.4)

for v ∈ TpP , g ∈ G, and ξ ∈ g. Hint: A 1-form B ∈ Ω1(P,End(V )) which
satisfies (1.4) induces a collection of covariant derivative operators

dB : Ωk(X,E) = Ωkρ(P, V )→ Ωk+1(X,E) = Ωk+1
ρ (P, V )

defined by dBτ = dτ +B ∧ τ. Show that if τ is equivariant and horizontal
then so is dBτ . If A ∈ A(P ) then B = ρ̇(A) satisfies (1.4) and we shall also
use the notation dAτ = dτ + ρ̇(A) ∧ τ . 2
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1.3 Curvature

Let E → X be a vector bundle with connection ∇. The curvature of ∇ is
the endomorphism valued 2-form F∇ ∈ Ω2(X,End(E)) defined by

F∇(v, w)s = ∇v∇ws−∇w∇vs+∇[v,w]s.

for v, w ∈ Vect(X) and s ∈ C∞(X,E). (See the footnote on page 35 for
the sign conventions in the definition of the Lie bracket.) The reader may
check that F∇ is well defined. If u ∈ G(E) is an automorphism then the
curvature of the connection

u∗∇ = u−1 ◦ ∇ ◦ u

is given by
Fu
∗∇ = u−1F∇u.

Exercise 1.20 A connection ∇ : C∞(X,E) → Ω1(X,E) extends to an
operator d∇ : Ωk(X,E)→ Ωk+1(X,E) defined by

d∇(τ ⊗ s) = (dτ)⊗ s+ (−1)deg(τ)τ ∧∇s

for τ ∈ Ωk(X) and s ∈ C∞(X,E). Prove that this operator is well defined.
Prove that for every 1-form α ∈ Ω1(X,E) and any two vector fields v, w ∈
Vect(X)

d∇α(v, w) = ∇v(α(w))−∇w(α(v)) + α([v, w]).

(See the footnote on page 35.) Deduce that the curvature satisfies

d∇d∇τ = F∇ ∧ τ. 2

Exercise 1.21 Prove the Bianchi identity

d∇F∇ = 0.

Hint: Use the formula

d∇ω(u, v, w) = ∇u(ω(v, w)) +∇v(ω(w, u)) +∇w(ω(u, v))

+ω([u, v], w) + ω([v, w], u) + ω([w, u], v)

for ω ∈ Ω2(X,E). (See the footnote on page 35.) 2

Exercise 1.22 Prove that the curvature is in local trivializations given by

Fα = dAα +Aα ∧Aα ∈ Ω2(Uα,Rn×n)

or, more explicitly, by
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Fα(u, v) = dAα(u, v) + [Aα(u), Aα(v)]

for u, v ∈ TxX. Show that

Fα = uβα
−1Fβuβα.

If α : Uα → Rm is a chart on X show that

α∗Fα =
∑
i<j

Fijdx
i ∧ dxj , Fij =

∂Aj
∂xi
− ∂Ai
∂xj

+ [Ai, Aj ] ,

where α∗Aα =
∑
iAidx

i. 2

Exercise 1.23 Given a connection ∇ and a 1-form a ∈ Ω1(X,End(E))
prove that

F∇+a = F∇ + d∇a+ a ∧ a,

where d∇a ∈ Ω2(X,End(E)) is defined by

(d∇a)s = d∇(as)− a ∧ d∇s. 2

Flat connections

Assume now that the bundle E has structure group G ⊂ GL(n,R). De-
note by Endg(E) the bundle of those endomorphisms A : Ex → Ex which
satisfy e−1 ◦ A ◦ e ∈ g for some (and hence every) G-frame e : Rn → Ex.
It is an easy consequence of Exercise 1.22 that if ∇ is a G-connection
then F∇ ∈ Ω2(X,Endg(E)). For example, if E is a Riemannian vector
bundle with G = O(n) or G = SO(n) then Endg(E) is the bundle of skew-
symmetric endomorphisms and the curvature of a Riemannian connection
∇ thus satisfies

F∇(u, v)∗ + F∇(u, v) = 0

for u, v ∈ TxX. Similarly for Hermitian connections in the complex case.
The next lemma shows that the curvature is the obstruction to integrability
of the horizontal subbundle H ⊂ TP of the frame bundle P = TF(E)
determined by ∇. Given a vector field v ∈ Vect(X) denote by v] ∈ Vect(P )
the horizontal lift.

Proposition 1.24 Let E → X be a vector bundle with structure group
G and G-frame bundle P = F(E). Let ∇ be a G-connection on E with
corresponding horizontal distribution H ⊂ TP and connection 1-form A ∈
A(P ). Then

F∇(u(x), v(x)) = eAp([u
], v]](p))e−1

for p = (x, e) ∈ F(E) and u, v ∈ Vect(X).
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Proof: In the notation of Exercise 1.15 the horizontal lift of v is given by

v](p) = [α, v(x),−Aα(v(x))g]

for p = [α, x, g] ≡ (x, e) with g = ϕα(x) ◦ e. (See also Remark 1.3.) The Lie
bracket of two such horizontal lifts is given by

[u], v]](p) = [u, v]](p) + [α, 0, Fα(u(x), v(x))g].

Since Ap([u, v]](p)) = 0 it follows that

Ap([u
], v]](p)) = g−1Fα(u(x), v(x))g = e−1F∇(u(x), v(x))e

as claimed. 2

This shows that the horizontal distribution H ⊂ TP is integrable if
and only if the curvature F∇ vanishes. In this case ∇ is called a flat
connection. Now the integral curves of the horizontal distribution have
the form t 7→ (γ(t),Φ∇(γ; t, 0)e) where γ : [0, 1] → X and it follows from
integrability that the endpoint of this curve depends only on the homotopy
class of γ. Thus every flat connection ∇ gives rise to a representation

ρ∇ : π1(X,x0)→ G

defined by

ρ∇(γ) = e0
−1Φ∇(γ; 1, 0)e0

for every loop γ : [0, 1]→ X with γ(0) = γ(1) = x0. Here e0 : Rn → Ex0
is a

fixed G-frame. This representation is called the holonomy of∇. Obviously,
only the conjugacy class of ρ∇ is determined by ∇ and the representative
depends on the choice of frame. Moreover, using Exercise 1.14, one can
show that two flat G-connections ∇ and ∇′ are gauge equivalent if and
only if ρ∇

′
and ρ∇ are conjugate. Furthermore, for every homomorphism

ρ : π1(X,x0) → G there exists a flat G-connection (on some G-bundle
E → X) with holonomy ρ∇ = ρ. This shows that there is a natural bijection

{flat G-connections}
gauge equivalence

∼=
Hom(π1(X),G)

conjugacy
.

The details of the proof will not be carried out. In the case G = S1 two
homomorphisms are conjugate if and only if they are equal and hence the
space of gauge equivalence classes of flat S1-connections can be identified
with Hom(π1(X), S1).
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Remark 1.25 If H1(X;Z) has no torsion, then

Hom(π1(X), S1) ∼=
H1(X; iR)

H1(X; 2πiZ)
=: T.

In general, Hom(π1(X), S1) is a principal space which carries a free ac-
tion of T . Each component of Hom(π1(X), S1) is diffeomorphic to T and
corresponds to the isomorphism class of a line bundle whose first Chern
class descends to zero in H2(X;R). (See Section 1.4.) For example, if
π1(X) = Z2 then there are precisely two homomorphisms π1(X) → S1

corresponding to the two isomorphism classes of line bundles E → X with
c1(E) = 0 ∈ H2(X;R). 2

Curvature on principal bundles

The above discussion suggests that the curvature of a connection 1-form
A ∈ Ω1(P, g) on a principal bundle P → X should be the 2-form FA ∈
Ω2

ad(P, g) defined by

FA(u, v) =

{
dAp(u, v), if u, v ∈ Hp,

0, if u ∈ Vp or v ∈ Vp.

Since dA(u, v) = A([u, v]) for horizontal vector fields this agrees with the
formula in Proposition 1.24. The reader may check that this 2-form is
indeed equivariant and horizontal and can be expressed in the form

FA = dA+
1

2
[A ∧A].

This curvature 2-form satisfies Fu∗A = u−1FAu for u ∈ G(P ) and the
Bianchi identity

dAFA = 0,

where dA : Ω2(X, gP )→ Ω3(X, gP ).

Exercise 1.26 Prove that the infinitesimal action of the gauge group is
given by the covariant derivative

dAξ =
d

dt

∣∣∣∣
t=0

exp(tξ)∗A

for A ∈ A(P ) and ξ ∈ Ω0(X, gP ). (See Exercise 1.19.) 2

Exercise 1.27 Consider any associated bundle E = P ×ρ V . Prove that

dAdAτ = ρ̇(FA) ∧ τ

for every τ ∈ Ωk(X,E). Prove that du∗Aτ = ρ(u)−1dA(ρ(u)τ) for u ∈ G(P ),
A ∈ A(P ), and τ ∈ Ωk(X,E). 2
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1.4 Chern classes

From an axiomatic point of view the Chern classes can be defined as a
functor c which assigns to every every complex vector bundle E → X of
rank k over a finite dimensional compact manifold X the total Chern
class

c(E) = 1 + c1(E) + · · ·+ ck(E).

Here cj(E) ∈ H2(X;Z) is an integral cohomology class on X, called the j-
th Chern class, and 1 ∈ H0(X;Z) is the Poincaré dual of the fundamental
class [X] ∈ H2n(X;Z). It is the generator whenever X is connected.

Theorem 1.28 There is a unique functor c, called the Chern class, which
assigns to every complex vector bundle E over a compact manifold X an
integral cohomology class c(E) ∈ Hev(X;Z) and satisfies the following ax-
ioms.

(Naturality) Isomorphic vector bundles have the same Chern classes.

(Functoriality) For every smooth map f : Y → X and every complex
vector bundle E → X, c(f∗E) = f∗c(E).

(Direct sum) If E1 and E2 are complex vector bundles over X then

c(E1 ⊕ E2) = c(E1)c(E2).

(Zero) If E is the trivial bundle then c(E) = 1.

(Normalization) The first Chern class of the canonical bundle H → CPn
with fiber H` = `∗ = Hom(`,C) over a point ` ∈ CPn is the canonical
generator∗

c1(H) = h = PD([CPn−1]) ∈ H2(CPn;Z)

and ck(H) = 0 for k > 1.

Proof: We only sketch the main idea. The proof is based on the following
three observations.

(i) For every complex vector bundle E → X there exists a bundle F → X
such that the direct sum E⊕F ∼= X×Cn is isomorphic to the trivial bundle.
Equivalently, there exists an embedding of E into the trivial bundle X×Cn.
This embedding can be thought of as a smooth map f : X → Gr(k, n) to the
complex Grassmannian such that E is isomorphic to the pullback under f
of the tautological bundle E(k, n)→ Gr(k, n), whose fiber over a subspace
Λ ⊂ Cn is the subspace itself.

(ii) Two pullback bundles E0 = f0
∗E(k, n) and E1 = f1

∗E(k, n) over
X are isomorphic if and only if the functions f0 : X → Gr(k, n) and
f1 : X → Gr(k, n) are homotopic (for n sufficiently large).

∗Think of ` ∈ CPn as a one-dimensional complex linear subspace of Cn+1.
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(iii) There are cohomology classes

c(k, n) =

k∑
i=1

ci(k, n)

with ci(k, n) ∈ H2i(Gr(k, n);Z) which satisfy

c0(k, n) = 1, c1(1, n) = h ∈ H2(CPn−1;Z),

and the relation

π1
∗c(k1, n1) ∪ π2

∗c(k2, n2) = ι∗c(k1 + k2, n1 + n2) (1.5)

where
πj : Gr(k1, n1)×Gr(k2, n2)→ Gr(kj , nj)

is the obvious projection and

ι : Gr(k1, n1)×Gr(k2, n2)→ Gr(k1 + k2, n1 + n2)

is the obvious inclusion. The class ci(k, n) will serve as the ith Chern class
of the tautological bundle. It is defined as (−1)i times the Poincaré dual of
the Schubert cycle ξi ⊂ Gr(k, n). Given any flag

V0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn

in Cn, this Schubert cycle can be defined as the set of all k-dimensional
subspaces Λ ⊂ Cn which satisfy the following, for k − n ≤ j ≤ k,

dim (Λ ∩ Vn−k+j) =

 0, if j < 0,
j + 1, if 0 ≤ j ≤ i− 1,

j, if i ≤ j ≤ k.

The Chern class of a complex vector bundle E → X of rank n can now
be defined as follows. Choose a sufficiently large integer n and a smooth
map f : X → Gr(k, n) such that E is isomorphic to f∗E(k, n) and define

c(E) = f∗c(k, n).

That such a map f exists follows from (i), and that the cohomology class
f∗c(k, n) is independent of the choice of f follows from (ii). Using (ii) one
checks easily that these classes satisfy “Naturality”, “Functoriality”, and
“Zero” axioms. The “Normalization” axiom follows from the definition of
the Schubert cycles in (iii) above, and the “Direct sum” axiom follows
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from (1.5). That the axioms uniquely determine the Chern classes follows
from the fact that the obvious map π : F (n) → Gr(k, n) from the flag
manifold to the Grassmannian induces an injective map in cohomology
and that the pullback π∗E(k, n) of the tautological bundle is a direct sum
of line bundles. For more details see [45] or [93]. 2

Exercise 1.29 Use the axioms to prove that the first Chern class of a
complex line bundle L → X is Poincaré dual to the zero set of a generic
section. Hint: Let s0 : X → L and s1 : X → L be two transverse sections.
Prove that the zero sets of s0 and s1 represent the same homology class.
Find a transverse section of the canonical bundle s : CPn → H whose zero
set is equal to CPn−1. Given a line bundle L → X find a smooth map
f : X → CPn such that the pullback bundle f∗H is isomorphic to L and
f is transverse to CPn−1. Consider the pullback section f∗s. 2

Remark 1.30 The axioms imply, in particular, that c0(E) = 1 for every
bundle E. To see this choose a bundle F with E ⊕ F = CN and note
that c0(E)c0(F ) = 1. The axioms also imply that cj(E) = 0 whenever
j > rankE. For line bundles this follows from the functoriality and nor-
malization axioms, for the tautological bundle over G(k, n) from the fact
that the pullback π∗E(k, n) over the flag manifold F (n) is a direct sum of
line bundles, and for general bundles from the functoriality axiom and (i)
above. 2

Consider the natural homomorphism Hk(X;Z) → Hk
DR(X). Its image

is the set of deRham cohomology classes whose integral over every smooth
cycle is an integer. Its kernel is the torsion subgroup of all cohomology
classes a ∈ Hk(X;Z) such that ma = 0 for some integer m. Chern-Weil
theory gives a construction of the image of the Chern classes in H∗DR(X)
which we shall still denote by ck(E). The Chern classes as integral classes
are only determined by this construction if the cohomology of X is torsion
free.

1.5 Chern-Weil theory

The goal of this section is to explain the construction of the Chern classes
via Chern Weil theory. We follow the discussion in Milnor-Stasheff [93],
Appendix C. Let E → X be a vector bundle with structure group G ⊂
GL(n,R) and

p : g→ R

be a homogeneous polynomial of degree k on the Lie algebra g = Lie(G).
Assume that p is invariant under the adjoint action of G, i.e.

p(ξ) = p(g−1ξg)
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for ξ ∈ g and g ∈ G. The strategy is to define a differential form p(F∇) ∈
Ω2k(X) for every connection ∇ on E, then show that this form is closed,
and deduce that the resulting cohomology class

[p(F∇)] ∈ H2k
DR(X)

is independent of the choice of ∇.

Example 1.31. (Chern classes) Consider the polynomials ck : u(n) →
R defined as the k-th symmetric function in the eigenvalues of iξ/2π. Thus

ck(ξ) =
∑

j1<···<jk

xj1 · · ·xjk

where x1, . . . , xn are the eigenvalues of iξ/2π. Note that

det

(
λ1l +

iξ

2π

)
=

n∑
k=0

λn−kck(ξ).

For example c0(ξ) = 1, c1(ξ) =
∑
i xi, and c2(ξ) =

∑
i<j xixj . It is also

interesting to consider the Chern character

ch(ξ) =

n∑
i=1

exi = trace

(
exp

(
iξ

2π

))
=

∞∑
k=0

1

k!
trace

((
iξ

2π

)k)
.

It is easy to see that

ch(ξ ⊕ ξ′) = ch(ξ) + ch(ξ′), ch(ξ ⊗ ξ′) = ch(ξ)ch(ξ′)

for ξ ∈ u(n) and ξ′ ∈ u(n′). 2

Let E1, . . . , EN be a basis of g ⊂ Rn×n. Then any polynomial on g can
be expressed in the form

p(ξ) =
∑
|ν|=k

aνξ
ν , ξ =

∑
i

ξiEi

where ν = (ν1, . . . , νN ) is a multi-index. Now recall that in a local trivial-
ization ϕα : π−1(Uα)→ Uα ×Rn the curvature form F∇ ∈ Ω2(X,End(E))
is given by a 2-form Fα ∈ Ω2(Uα, g) which in the basis E1, . . . , EN can be
written in the form

Fα =
∑
i

ωiEi

where ωi ∈ Ω2(Uα). The restriction of the 2k-form p(F∇) ∈ Ω2(X) to Uα
is defined by
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p(F∇)|Uα = p(Fα) =
∑
|ν|=k

aνω
ν

where ων = (ω1)ν1∧. . .∧(ωN )νN is defined in terms of the exterior product.
Since p is invariant under the adjoint action this definition is independent
of α. The crucial step is the following fundamental lemma.

Lemma 1.32 The form p(F∇) is closed.

Proof: Let the akij be defined by

[Ei, Ej ] =
∑
k

akijEk.

Then it follows from the invariance of p that∑
j,k

∂kP (ξ)ξjakij = 0

for all i. To see this consider the curve ξ(t) = exp(−tEi)ξ exp(tEi) and
differentiate the function t 7→ P (ξ(t)) at t = 0. Then with Fα = ω =∑
i ω

iEi ∈ Ω2(Uα, g) it follows that∑
j,k

∂kp(ω) ∧ ωjakij = 0.

Moreover, with Aα =
∑
i a
iEi ∈ Ω1(Uα, g) the Bianchi identitiy d∇F∇ = 0

takes the form

dωk +
∑
i,j

ai ∧ ωjakij = 0

and this implies

d(p(ω)) =
∑
k

∂kp(ω) ∧ dωk = −
∑
i,j,k

∂kp(ω) ∧ ai ∧ ωjakij = 0

as claimed. 2

Corollary 1.33 The cohomology class of p(F∇) is independent of ∇.

Proof: Consider the convex combination ∇t = t∇0 + (1 − t)∇1 of two

connections on E. On the bundle Ẽ = E×R→ X̃ = X×R there is a unique
connection ∇̃ such that the pullback connection under the obvious inclusion
ιt : X → X × R is given by ιt

∗∇̃ = ∇t. For any invariant polynomial p on
g write

p(F ∇̃) = ω̃ = ω(t) + β(t) dt ∈ Ω2k(X × R),



22 CONNECTIONS AND CURVATURE

where ω(t) = ιt
∗ω̃ = p(F∇t) ∈ Ω2k(X) and β(t) ∈ Ω2k−1(X). That ω̃ is

closed is equivalent to dω(t) = 0 and ω̇(t) = dβ(t) for every t. Thus the
form

p(F∇1)− p(F∇0) = d

∫ 1

0

β(t) dt

is exact. 2

The (deRham version of the) Chern classes ck(E) ∈ H2k
DR(X) of a com-

plex vector bundle over X are defined as the cohomology classes of ck(F∇)
where ∇ is a Hermitian connection on E and the ck : u(n)→ R are defined
as in Example 1.31. That these classes satisfy the naturality, functoriality,
direct sum, and zero axioms is obvious from the definitions.

Proof of the normalization axiom: Think of CPn as the space of com-
plex lines ` ⊂ Cn+1 and consider the canonical bundle H → CPn whose
fiber over ` ∈ CPn is the dual line H` = `∗ = Hom(`,C). This bundle can
be identified with the quotient

H = S2n+1 ×S1 C

under the equivalence relation [z, w] ≡ [λz, λw] for z = (z0, z1, . . . , zn) ∈
S2n+1 ⊂ Cn+1 and w ∈ C. Thus a connection on L is an imaginary valued
1-form α ∈ Ω1(S2n+1, iR) such that

αλz(λζ) = αz(ζ), αz(iz) = −i,

for z ∈ S2n+1 and ζ ∈ TzS2n+1. In more abstract terms, think of S2n+1 as
the total space of a principal S1-bundle. Then H is the associated bundle
corresponding to the representation S1 → Aut(C) : λ 7→ λ̄. Hence the mi-
nus sign. An example of such a 1-form is given by αz(ζ) = −i|z|−2Im 〈z, ζ〉
or, equivalently,

α =
1

2|z|2
n∑
j=0

(zjdz̄j − z̄jdzj).

α can also be expressed in the form

α =
1

2
(∂̄f − ∂f), dα = ∂∂̄f, f(z) = log |z|2.

Hence the Chern form
i

2π
dα =

1

2πi
∂̄∂f

of the connection α agrees with the Kähler form ω of the Fubini-Study
metric. (See Example 3.49 in Chapter 3.) It is an easy exercise to show
that the integral of this form over CP 1 is 1 and hence c1(H) = h is the
generator of H2(CPn;Z). (See Exercise 1.36 below.) 2
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The normalization and functoriality axioms can now be used to define
the Chern classes as integral classes. For further details the reader is referred
to the excellent book by Milnor and Stasheff [93]. The next proposition
asserts that the Euler class of a complex vector bundle agrees with the
top Chern class. Given a section s : X → E note that the linear map
∇s(x) : TxX → Ex is at a zero of s independent of the connection ∇. If
X is oriented and has real dimension 2n, where E has rank n, then a zero
x of s is called nondegenerate if ∇s(x) : TxX → Ex is an isomorphism
and in this case the index ν(s, x) = ±1 is determined by whether or not
this isomorphism is orientation preserving. (Note that the fiber Ex carries
a natural orientation as a complex vector space.)

Proposition 1.34 Let E → X be a complex rank-n bundle over a compact
oriented 2n-manifold. If s : X → E is a section with only nondegenerate
zeros then

〈cn(E), [X]〉 =
∑
s(x)=0

ν(s, x)

where the sum runs over all zeros of s.

Proof: We only sketch the main idea in the case n = 1. In this case
E = L is a complex Hermitian line bundle over a Riemann surface X = Σ.
Suppose without loss of generality that Σ is connected, choose a splitting

Σ = Σ1 ∪C Σ2,

and orient C = ∂Σ1 = −∂Σ2 as the boundary of Σ1. Then choose nonzero
sections si : Σi → L with |si(x)| = 1 for x ∈ Σi. Define γ : C → S1 by

s2(x) = γ(x)s1(x), x ∈ C.

Now fix a Hermitian connection ∇ and define αi ∈ Ω1(Σi,
√
−1R) by ∇si =

αisi. Then F∇|Σi = dαi and α2|C = α1|C + γ−1dγ. Hence it follows from
Stokes’ theorem that∫

Σ

F∇ =

∫
Σ1

dα1+

∫
Σ2

dα2 =

∫
C

α1−α2 = −
∫
C

γ−1dγ = −2π
√
−1 deg(γ).

This shows that

deg(γ) =

√
−1

2π

∫
Σ

F∇ = 〈c1(L), [Σ]〉. (1.6)

The proposition now follows by applying this formula to the splitting where
Σ1 is a union of small discs centered at the zeros of s and Σ2 is the closure
of the complement. The details of this are left to the reader. 2
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Corollary 1.35 The Euler characteristic of an almost complex 2n-mani-
fold X is given by

〈cn(TX), [X]〉 = χ(X).

In particular, if Σ is a compact oriented Riemann surface of genus g, then

〈c1(TΣ), [Σ]〉 = 2− 2g.

Proof: Proposition 1.34 and the Poincaré-Hopf theorem. 2

1.6 Examples and exercises

Exercise 1.36. (Line bundles) Let L → X be a complex line bundle
over a smooth manifold X. Suppose that L is equipped with a Hermitian
structure and denote by π : P → X the unit circle bundle in L. Then the
action of S1 on P is generated by a vector field v : P → TP (i.e. the flow
of v is given by X × R → X : (x, t) 7→ x · e2πit). A connection 1-form
A ∈ Ω1(P, iR) satisfies

ι(v)dA = 0, ι(v)A = 2πi.

Show that LvA = ι(v)dA+dι(v)A = 0 and deduce that the curvature form
dA descends to X. Show that the (deRham) first Chern class of L is given
by

c1(L) = [ω],
i

2π
dA = π∗ω.

Compare this with the proof of the normalization axiom. 2

Remark 1.37 (i) Let L → Σ be a complex line bundle over a compact
oriented Riemann surface. Then 〈c1(L), [Σ]〉 is the selfintersection number
of the zero section in L.
(ii) For a line bundle L → X over a general compact manifold the first
Chern class can be defined as the Poincaré dual of the zero set of a generic
section s : X → L.
(iii) If (X, J) is an almost complex 4-manifold and C ⊂ X is a pseudo-
holomorphic submanifold of real dimension 2 then the genus of C is given
by the adjunction formula

2g(C)− 2 = C · C + c1(K) · C. (1.7)

Here C ·C denotes the self-intersection number and c1(K) = −c1(TX, J) ∈
H2(X;Z) denotes the canonical class. To see this consider the splitting
TCX = TC ⊕ νC into tangent and normal bundle. Both are complex line
bundles over C and, by (i), 〈c1(νC), [C]〉 = C · C. 2
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Example 1.38 Isomorphism classes of line bundles over the torus
Tm = Rm/Zm can be described as equivalence classes of cocycles

Zm → Map(Rm, S1) : k 7→ ϕk

which satisfy ϕk+`(x) = ϕ`(x+k)ϕk(x) for x ∈ Rm and k, ` ∈ Zm. Two such
cocycles ϕ and ψ are equivalent if there exists a function g : Rm → S1 such
that ψk(x) = g(x + k)−1ϕk(x)g(x). For any cocycle ϕ the corresponding
line bundle L = L(ϕ) → Tm can be explicitly described as the quotient
L = Rm×C/Zm under the action k ·(x, z) = (x+k, ϕk(x)z). Thus a section
of L is a smooth map s : Rm → C which satisfies s(x+ k) = ϕk(x)s(x) for
x ∈ Rm and k ∈ Zm. A connection on L has the form

∇As = ds+As, A =

n∑
ν=1

Aν(x)dxν ,

where the functions Aν : Rm → iR satisfy

Aν(x+ k)−Aν(x) = −ϕk(x)−1 ∂ϕk
∂xν

(x).

This can be used to compute the curvature and hence the first Chern class
of the bundle. For example, for any integer matrix B ∈ Zm×m consider the
cocycle

ϕk(x) = exp(2πikTBx). (1.8)

A corresponding connection is given by A = −2πi
∑m
ν,µ=1 xνBνµdxµ with

curvature form FA = dA = −2πi
∑
ν<µ (Bνµ −Bµν) dxν ∧ dxµ. Hence the

bundle L(ϕ) has first Chern class

c1(L(ϕ)) =

[
m∑
ν<µ

Cνµdxν ∧ dxµ

]
, C = B −BT .

This bundle admits a trivialization whenever B is symmetric and it admits
a square root whenever B is skew-symmetric. (Prove this.) The reader may
check that another cocycle with first Chern class C is given by

ϕk(x) = ε(k) exp(πikTCx).

where the numbers ε(k) = ±1 are chosen such that

ε(k + `) = ε(k)ε(`) exp(πikTC`).

If C = B−BT then the numbers ε(k) = exp(πikTBk) satisfy this condition.
That every cocycle is equivalent to one of the form (1.8) is a consequence
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of Exercise 1.39 below. But it can also be proved directly by choosing
two Yang-Mills connections A and A′ (with constant curvature form) for
two cocycles ϕ and ϕ′ with the same Chern class. Then FA′ = FA and
hence A′ = A + dξ for some function ξ : Rm → iR. Now the function
g = exp(ξ) : Rm → S1 transforms ϕ into ϕ′. 2

Exercise 1.39 Prove that for every compact manifold X the map

{complex line bundles L→ X}
isomorphisms

−→ H2(X;Z) : L 7→ c1(L)

is a bijection. (In fact, it is a group isomorphism with respect to the tensor
product of line bundles.) Hint: Triangulate X, denote by Xk ⊂ X the k-
skeleton, and by Sk the set of k-simplices in the triangulation (thought of
as submanifolds with corners). Fix a unitary section s : X1 → L over the 1-
skeleton. For every 2-simplex ∆ ∈ S2 choose a unitary section s∆ : ∆→ L
and define the map ϕs : S2 → Z by

ϕs(∆) = deg(γ∆)

where the loop γ∆ : ∂∆ → S1 is defined by s∆(x) = γ∆(x)s(x) for x ∈
∂∆. Show that ϕs is a simplicial cocycle, that its cohomology class [ψs] is
independent of s, and that this class agrees with the first Chern class:

c1(L) = [ϕs] ∈ H2(X;Z).

Prove that if ϕs is a coboundary then L admits a trivialization over the
2-skeleton and hence over all of X. 2

Exercise 1.40 Prove that, up to isomorphism, there are precisely two
complex vector bundles over RP 2 of any given rank. Relate this to the fact
that H2(RP 2;Z) = Z2. Hint: Show that the set of paths Ψ : [0, 1]→ U(n)
with Ψ(0)Ψ(1) = 1l has two components. 2

Example 1.41 The previous exercise shows that up to isomorphism there
is a unique nontrivial complex line bundle L → RP 2. Explicitly, such a
bundle is given by

L = S2 ×Z2
C

where Z2 acts in the obvious way on both factors. Thus L is the set of
equivalence classes of pairs [x, z] in S2 × C under the equivalence relation
[x, z] ≡ [−x,−z]. A section of this bundle is a smooth map s : S2 → C
which satisfies s(−x) = −s(x). By the Borsuk-Ulam theorem every such
map must have a zero. This shows that the bundle is nontrivial. 2

Exercise 1.42 Let E → X be a Hermitian vector bundle over a smooth
oriented 4-manifold. Prove that
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1

4π2

∫
X

tracec(FA ∧ FA) = 〈2c2(E)− c1(E)2, [X]〉

for every Hermitian connection A on E. 2

Exercise 1.43 Prove that two complex vector bundles over a smooth com-
pact 4-manifold X are isomorphic if and only if they have the same rank
and the same Chern classes. Hint: Assume X is connected. Triangulate
X and use the same notation as in Exercise 1.39. Choose an isomorphism
Ψ10(x) : E0x → E1x over the 1-skeleton. For every 2-simplex ∆ ∈ S2 choose
trivializations Φ∆

0 (x) : Cn → E0x and Φ∆
1 (x) : Cn → E1x over ∆. Then

define γ∆ : ∂∆→ U(n) by

γ∆(x) = Φ∆
1 (x)−1Ψ10(x)Φ∆

0 (x).

Consider the map ρ : S2 → Z defined by

ρ(∆) = deg(det ◦ γ∆).

If c1(E0) = c1(E1) show that ρ is a simplicial cocycle and use this to con-
struct and isomorphism E0 → E1 over the 2-skeleton. Using π2(U(n)) = 0
extend this isomorphism over the 3-skeleton and in fact over the comple-
ment of a single 4-simplex ∆. Finally use the same argument as above to
construct a map ∂∆ ∼= S3 → U(n) and show that this map is contractible
if and only if c2(E0) = c2(E1). 2

Exercise 1.44 The space

J (R4) =
{
J ∈ R4×4 | J2 = −1l

}
of complex structures on R4 is homotopy equivalent to S2 (see e.g. [85]).
Hence the space of homotopy classes of almost complex structures on the
trivial bundle E = S4×R4 → S4 can be identified with π4(S2) = Z2. Thus
there are precisely two homotopy classes of almost complex structures on
E. Let these be represented by J0, J1 : S4 → J (R4). (In fact J0 can be
chosen constant.) Use the previous exercise to show that (E, J0) and (E, J1)
are isomorphic as complex vector bundles, i.e. there exists a smooth map
Φ : S4 → GL(4,R) such that

J1(x) = Φ(x)−1J0Φ(x)

for every x ∈ S4. 2

The Hirzebruch signature theorem expresses the signature of a
complex 2k-dimensional manifold (that is, the signature of the intersection
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form on the middle dimensional homology) in terms of the Chern classes
of TX. In the case of a complex surface this formula is

sign(QX) =
1

3
〈c1(TX)2 − 2c2(TX), [X]〉. (1.9)

The following lemma relates the first Chern class to the intersection form
QX . It is an important tool in deciding whether or not the intersection
form QX is even.

Lemma 1.45 Assume that X is a complex surface. Then

〈c1(TX), α〉 = QX(α, α)(mod 2)

for every α ∈ H2(X;Z).

Proof: We prove this lemma first under the assumption that the homology
class α can be represented by an oriented Riemann surface Σ which is
embedded into X as a complex submanifold. Then the normal bundle νΣ

is a complex line bundle over Σ and, by the above remark, the number
〈c1(νΣ), [Σ]〉 is the self-intersection number of Σ in X. Hence

〈c1(TX), [Σ]〉 = 〈c1(TΣX), [Σ]〉
= 〈c1(TΣ), [Σ]〉+ 〈c1(νΣ), [Σ]〉
= 2− 2g + Σ · Σ
≡ QX([Σ], [Σ])(mod 2).

In general, every integral homology class α can be represented by an ori-
ented embedded surface Σ ⊂ X which may or may not be a complex
submanifold.∗ If Σ is not complex then the same argument works modulo 2
if c1 is replaced by the second Stiefel-Whitney class w2(TX) ∈ H2(X;Z2).
This class agrees with the mod 2 reduction of c1. 2

∗ Every 2-dimensional integral homology class α in a compact manifold X can be
represented by an oriented embedded submanifold Σ ⊂ X. To see this note first that α

can be represented by a finite cycle, because X can be triangulated. Every such cycle
can be thought of as a continuous map defined on a compact 2-dimensional simplicial

complex without boundary. Every such complex can be given the structure of a smooth

2-dimensional compact manifold without boundary (which in the case of integer coeffi-
cients is orientable). Hence α is represented by a continuous map f : Σ→ X defined on

a smooth compact 2-manifold Σ. Approximate f by a smooth map and use a general po-

sition argument to make f an immersion with finitely many transverse self-intersections.
Use a local surgery argument to remove the self-intersections.

If X is a smooth 4-manifold there is an alternative proof which uses the correspondence

between complex line bundles and H2(X;Z) (see Exercise 1.39). Given a homology class
α ∈ H2(X;Z) choose a complex line bundle L → X with first Chern class c1(L) =
PD(α). Choose a smooth section s : X → L which is transverse to the zero section.

Then the submanifold Σ = s−1(0) represents the class α. Use surgery along curves to
obtain a connected submanifold.
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1.7 A crossing index for Fredholm families

K-theory

Let M be a finite dimensional compact manifold. A K-theory class on M
is an equivalence class of pairs (E,F ) of complex vector bundles over M
under the equivalence relation

(E1, F1) ≡ (E2, F2) ⇐⇒ E1 ⊕ F2 ⊕ CN ∼= E2 ⊕ F1 ⊕ CN

for some integer N . The additional summand CN is needed to obtain an
equivalence relation. Denote by E	F the equivalence class of a pair (E,F ).
The set of equivalence classes is denoted by K(M). Note that the number
rankE − rankF only depends on the equivalence class E 	 F . Thus there
is an augmentation homomorphism

ε : K(M)→ Z, ε(E 	 F ) = rankE − rankF

and its kernel is denoted by K̃(M). It consists of all equivalence classes E	
F with rankE = rankF . For every bundle E the pair (E,E) is equivalent

to (0, 0) and thus E 	E ≡ 0 ∈ K̃(M). Note also that, with the convention
E = E 	 {0}, one has E ≡ F ⊕G if and only if E 	 F ≡ G. This justifies
the notation E 	 F .

The correspondence E 7→ E	CrankE induces a map from isomorphism
classes of vector bundles to K̃(M). This map is surjective but not injective.
The kernel consists of all isomorphism classes of vector bundles E → M
such that E ⊕ CN ∼= CrankE+N is the trivial bundle for some integer N .
That the map is onto follows from the fact that for every bundle F there
exists a bundle F ′ such that F ⊕ F ′ is isomorphic to the trivial bundle
and hence E 	 F ≡ (E ⊕ F ′) 	 CN with N = rank(E ⊕ F ′) whenever

rankE = rankF . Thus K̃(M) can be defined as the set of equivalence
classes of vector bundles over X under the equivalence relation

E ≡ F ⇐⇒ E ⊕ CrankF+N = F ⊕ CrankE+N (1.10)

for some integer N . This is called stable equivalence and K̃(M) is called
the reduced K-theory of M .

The obvious operations of Whitney sum and tensor product carry over
to K-theory. Recall that the Chern character is a homomorphism from iso-
morphism classes of vector bundles over M (with Whitney sum and tensor
product) to the rational cohomology of M (with sum and cup-product):

ch(E ⊕ F ) = ch(E) + ch(F ), ch(E ⊗ F ) = ch(E)ch(F )

In particular this shows that the difference of the Chern characters of two
bundles E and F depends only on the equivalence class E 	 F ∈ K(M).
Hence it is natural to define
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ch(E 	 F ) = ch(E)− ch(F ).

The total Chern class is multiplicative in the sense that

c(E ⊕ F ) = c(E)c(F ), c(E 	 F ) = c(E)c(F )−1.

To prove the second formula note, firstly, that the Chern classes of E depend
only on the equivalence class of E under (1.10), secondly, that the Chern
classes of the trivial bundle are all zero and, thirdly, that c(F )c(F ′) = 1
whenever F ⊕ F ′ is the trivial bundle.

A crossing index

Recall from Remark 1.37 that the n-th Chern class of a complex rank-n
bundle over a 2n-dimensional manifold agrees with the Euler class. Thus it
can be thought of as the number of zeros of a generic section, counted
with appropriate signs. This observation can be generalized as follows.
Let E and F be two complex vector bundles over a smooth compact
oriented manifold of real dimension dim M = 2n and consider a section
D ∈ C∞(M,Hom(E,F )) of the bundle of complex linear maps E → F :

E
D−→ F

↘ ↙
M

.

If
rankE − rankF + n− 1 = 0 (1.11)

then a generic section D will be injective at all but finitely many points.
A point x ∈M is called a crossing if ker D(x) 6= {0}. A crossing is called
regular if dimc ker D(x) = 1 and

imD(x)⊕ {(∇vD)(x)ζ | v ∈ TxM} = Fx

for some (and hence every) nonzero vector ζ ∈ ker D(x). For every regular
crossing x ∈ M define the crossing index at x by ν(x,D) = +1 or
ν(x,D) = −1 according to the orientations in the direct sum.

Proposition 1.46 Assume (1.11) and let D ∈ C∞(M,Hom(E,F )) be a
section with only regular crossings. Then the crossing index of D is given
by

ν(D) =
∑

ker D(x)6={0}

ν(x,D) =

∫
M

cn(F 	 E).

Proof: Assume first that E = C. Then condition (1.11) says that rankF =
n and a section of Hom(E,F ) is a section s of F . A crossing x is simply a
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zero of s, it is regular if s intersects the zero section of F transversally at
x, and the crossing index is the intersection number. Hence the assertion
of the proposition in this case reduces to the fact that the n-th Chern class
agrees with the Euler class.

Secondly, suppose that E = CN+1 for some integer N . Then (1.11)
reads rankF = N + n. A general position argument shows that under this
condition N generic sections s1, . . . , sN of F are everywhere linearly inde-
pendent. Denote by F0 ⊂ F the rank-N subbundle spanned by such generic
sections. This subbundle is obviously isomorphic to the trivial bundle and
hence the n-th Chern class of the quotient agrees with that of F . Now
choose a further section s : M → F such that the induced section s̄ of
the rank-n bundle F/F0 intersects the zero section transversally. Then the
crossing index of s̄ : M → F/F0 agrees with the crossing index of

D = s1 ⊕ · · · ⊕ sn ⊕ s ∈ C∞(M,Hom(CN+1, F ))

and hence

ν(D) = ν(s̄) =

∫
M

cn(F/F0) =

∫
M

cn(F ).

This proves the proposition in the case where E is the trivial bundle. The
general case can easily be reduced to this. Choose a bundle E′ → M such
that E′ ⊕ E = CN+1 is the trivial bundle and consider the section D′ =
D ⊕ id of Hom(E ⊕ E′, F ⊕ E′). The formula c(F ⊕ E′) = c(F )c(E′) =
c(F )c(E)−1 = c(F 	 E) shows that

ν(D) = ν(D′) =

∫
M

cn(F ⊕ E′) =

∫
M

cn(F 	 E).

This proves the proposition. 2

It is also interesting to consider the case where (1.11) does not hold but
instead

d = rankE − rankF + n− 1 > 0. (1.12)

Denote by SE the unit sphere bundle in E and by PE = SE/S1 the
corresponding projective bundle. There is a natural line bundle

L = PE ×S1 C→ PE

which restricts to the canonical bundle over projective space in each fiber.
A section D ∈ C∞(M,Hom(E,F )) is called transverse if the restriction
of D to SE is transverse to the zero section in F or, equivalently, D itself
is transverse to the zero section in F . The reader may check that in the
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case (1.11) this condition is equivalent to D having only regular crossings.
For transverse sections the space

M(D) =
{(x, ζ) |x ∈M, ζ ∈ Ex, |ζ| = 1, D(x)ζ = 0}

S1
⊂ PE

is a smooth submanifold of real dimension dim M(D) = 2d where d is
given by (1.12).

Proposition 1.47 Assume (1.12) and suppose D ∈ C∞(M,Hom(E,F ))
is transverse. Then

ν(D) =

∫
M(D)

c1(L)d =

∫
M

cn(F 	 E).

Proof: This result reduces to Proposition 1.46 as follows. An interesting
class of sections of the canonical bundle H → CP k (with fiber H` = `∗ =
Hom(`,C) for ` ∈ CP k) is given by choosing a linear functional ϕ : Ck+1 →
C and defining s(`) = ϕ|`. Similarly, a section of the bundle L → PE
can be obtained from any fiberwise linear map ϕ : E → C. Given D ∈
C∞(M,Hom(E,F )) choose d such maps

ϕ1, . . . , ϕd ∈ C∞(M,Hom(E,C))

such that the section

D′ = D ⊕ ϕ1 ⊕ · · · ⊕ ϕd ∈ C∞(M,Hom(E,F ⊕ Cd))

has only regular crossings. This is possible by a general position argument.
Now each ϕν determines a section sν : PE → L as above. Moreover, D′

has only regular crossings if and only if the common zero set of the sections

s = s1 ⊕ · · · ⊕ sd : PE → Ld = L⊕ · · · ⊕ L

is transverse toM(D). The reader may check that in this case the crossing
index of D′ = D⊕ϕ agrees with the intersection number of the zero set of
s : PE → Ld with M(D). Hence, by Propositioon 1.46,∫

M(D)

c1(L)d = s−1(0) · M(D) = ν(D ⊕ ϕ) =

∫
M

cn(F 	 E).

This proves the proposition. 2

The infinite dimensional case

The previous proposition generalizes easily to the infinite dimensional set-
ting with complex Banach space bundles E,F → M over a finite dimen-
sional compact oriented manifold M and a section of Fredholm operators
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D(x) : Ex → Fx for x ∈ M . However, in this case the Chern classes of
E 	 F are undefined and should be replaced by the topological index

IND(D) = ker D 	 cokerD ∈ K(M).

This is a well defined element in the K-theory of M and hence has Chern
classes. (See Section A.1.) As in the finite dimensional case there is a canon-
ical line bundle L → PE over the infinite dimensional projective bundle.

Proposition 1.48 Let D : E → F be a bundle of complex linear Fred-
holm operators over a compact oriented 2n-manifold M . Suppose that the
restriction D|SE : SE → F is transverse to the zero section in F and

d = indexcDx + n− 1 ≥ 0 (1.13)

for x ∈M . Then

ν(D) =

∫
M(D)

c1(L)d =

∫
M

cn(IND(D∗)).

If d = 0 then the left hand side is to be understood as the oriented number
of points x ∈M where D(x) is not injective:

ν(D) =
∑

ker D(x) 6={0}

ν(x,D) =

∫
M

cn(IND(D∗)).

The sign ν(x,D) is determined, as before, by whether or not the isomor-
phism TxM → cokerD(x) : v 7→ ∇vD(x)ζ is orientation preserving for
0 6= ζ ∈ ker D(x).

Proof: Choose a subbundle E1 ⊂ E of finite codimension such that D|E1

is injective. Then F1 = DE1 ⊂ F is also a subbundle of finite codimension
and there exist complements E0 ⊂ E and F0 ⊂ F such that

E = E0 ⊕ E1, F = F0 ⊕ F1.

Write D = D00 + D01 + D11 where Dij : Ei → Fj . Suppose, by making a
small perturbation if necessary, that D00|SE0 : SE0 → F0 is transverse to
the zero section in F0. Then the map

D0 = D00 +D11

is transverse to the zero section in F . Now choose a family of sections
Kt : E → F such that Kt(x) : Ex → Fx is a compact operator for every
x ∈M and
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K0 = 0, K1 = D01 = D −D0.

A generic such family gives rise to a cobordism from M(D0) to M(D)
in PE and hence the two integrals of c1(L)d agree. Moreover, D0 can be
replaced by the finite dimensional bundle homomorphism D00 since D1 is
bijective. Hence∫
M(D)

c1(L)d =

∫
M(D00)

c1(L)d =

∫
M

cn(F0 	 E0) =

∫
M

cn(IND(D∗)).

The last identity follows from the fact that D, D0, and D00 have the same
topological index with IND(D00) = E0	F0 (see Section A.1). This proves
the proposition. 2

Proposition 1.49 Let D : E → F be a bundle of complex linear Fred-
holm operators over a compact oriented m-manifold M . Suppose that the
restriction D|SE : SE → F is transverse to the zero section in F and

indexcDx = k + 1 ≥ 1. (1.14)

for x ∈M . Then M(D) is a manifold of dimension 2k +m and∫
M(D)

c1(L)k ∧ π∗ω =

∫
M

ω

for every ω ∈ Ωm(M), where π : PE →M denotes the obvious projection.

Proof: If k = 0 then dim M(D) = dim M = m and the projection
π : M(D) → M has degree 1. To see this just note that the operator Dx

is onto for a generic point x ∈ M . Any such point is a regular value of
the projection π : M(D) → M with a single preimage. This proves the
assertion (up to a sign) for k = 0. The verification of the sign is left to
the reader. The general case reduces to the case k = 0 as in the proof of
Proposition 1.47. Namely, choose k maps ϕ1, . . . , ϕk ∈ C∞(M,Hom(E,C))
such that the section

D′ = D ⊕ ϕ1 ⊕ · · · ⊕ ϕk ∈ C∞(M,Hom(E,F ⊕ Ck)),

when restricted to SE is transverse to the zero section in F ⊕Ck. Consider
the sections sν : PE → L determined by ϕν and denote by s−1(0) ⊂ PE
their common zero set. This is a codimension-2k submanifold transverse to
M(D) and M(D′) = s−1(0)∩M(D). Since s−1(0) is the Poincaré dual of
the class c1(L)k ∈ H2k(PE;Z) it follows that∫

M(D)

c1(L)k ∧ π∗ω =

∫
M(D′)

π∗ω =

∫
M

ω.

This proves the proposition. 2
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RIEMANNIAN GEOMETRY

This chapter is devoted to foundational material about Riemannian
manifolds. The first section collects some basic facts about the Levi-Civita
connection and the curvature tensor. Section 2.2 is devoted to a discussion
of the scalar curvature. It contains a brief discussion of Einstein metrics
and proofs of the uniformization theorem for Riemann surfaces as well as
the Gromov-Lawson theorem that the posititive scalar curvature condition
is preserved under connected sums. The last two sections on the covariant
divergence and differential forms contain material which will play a crucial
role in the discussion of spin representations and Dirac operators.

2.1 The Levi-Civita connection

Let X be an n-dimensional Riemannian manifold. The Levi-Civita con-
nection is the unique torsion free Riemannian connection∇ on the tangent
bundle TX. The Riemannian condition asserts that for any three vector
fields u, v, w ∈ Vect(X) we have

∂u〈v, w〉 = 〈∇uv, w〉+ 〈v,∇uw〉

and the torsion free condition asserts that the Lie bracket of two vector
fields v and w is given by∗

[v, w] = ∇wv −∇vw.

∗The Lie bracket of two vector fields v, w : X → TX is defined by

[v, w] = −Lvw = −
d

dt

∣∣∣
t=0

ϕt
∗w,

where ϕt ∈ Diff(X) denotes the flow of v. In local coordinates,

[v, w]α = dvα · wα − dwα · vα.

With this convention the operator Vect(X)→ Der(C∞(X)) : v 7→ Lv defined by Lvf =

df ◦ v = d
dt

∣∣
t=0

f ◦ ϕt is a Lie algebra anti-homomorphism:

L[v,w] = LwLv − LvLw = −[Lv ,Lw].

This corresponds to the fact that it is the differential at the identity of the Lie group

anti-homomorphism Diff(X) → Aut(C∞(X)) which assigns to each diffeomnorphism
ϕ ∈ Diff(X) the linear operator f 7→ f ◦ ϕ on C∞(X).
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Exercise 2.1. (Christoffel symbols) Prove that the tangent bundle of a
Riemannian manifold admits a unique torsion free Riemannian connection.
Hint: In local coordinates a connection can be expressed in the form

∇ξη =
∑
k

∑
i

∂ηk

∂xi
ξi +

∑
i,j

Γkijξ
iηj

 ∂

∂xk

where ξ =
∑
i ξ
i∂/∂xi and η =

∑
j η

j∂/∂xj are vector fields, gij denotes

the Riemannian metric, and the Γkij are suitable real valued functions.

The torsion free condition takes the form Γkij = Γkji and the connection is
Riemannian if and only if

∂gij
∂x`

=

n∑
ν=1

(
Γν`igνj + giνΓν`j

)
.

Prove that these two conditions are satisfied if and only if the Γkij are the
Christoffel symbols, given by

Γkij =
∑
ν

gkνΓνij , Γkij =
1

2

(
∂gki
∂xj

+
∂gkj
∂xi

− ∂gij
∂xk

)
.

Here the gij are the entries of the inverse matrix, i.e.
∑
ν giνg

νj = δji . 2

The curvature tensor is a skew-symmetric bilinear form Rx : TxX ×
TxX → End(TxX) defined by

R(u, v)w = ∇u∇vw −∇v∇uw +∇[u,v]w

for u, v, w ∈ Vect(X). The Riemannian condition on the Levi-Civita con-
nection implies R(u, v) ∈ so(TX) for all u and v.

Lemma 2.2. (Bianchi’s first identity) For u, v, w, z ∈ Vect(X)

R(u, v)w +R(v, w)u+R(w, u)v = 0 (2.1)

and hence
〈R(u, v)w, z〉 = 〈R(w, z)u, v〉. (2.2)

Proof: The first identity follows from the Jacobi identity for the Lie
bracket of vector fields and the second identity follows from the first. 2

The covariant derivative of the tensor R can be defined by

(∇uR)(v, w) = ∇u(R(v, w))−R(∇uv, w)−R(v,∇uw).

It satisfies the following.
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Lemma 2.3. (Bianchi’s second identity) For u, v, w ∈ Vect(X)

(∇uR)(v, w) + (∇vR)(w, u) + (∇wR)(u, v) = 0. (2.3)

Proof: The Bianchi identity for any connection ∇ on any vector bundle
E → X with curvature form R∇ ∈ Ω2(X,End(E)) asserts that d∇R∇ = 0
(see Chapter 1). In the case of the Levi-Civita connection the left hand side
of (2.3) is d∇R∇(u, v, w) and hence must be zero. 2

Exercise 2.4 Prove that the curvature tensor can, in local coordinates, be
expressed in the form

〈R(u, v)w, z〉 =
∑
i,j,k,`

R`kiju
ivjwkz`, R`kij =

∑
ν

g`νR
ν
kij ,

where

R`kij =
∂Γ`jk
∂xi

− ∂Γ`ik
∂xj

+
∑
ν

(
Γ`iνΓνjk − Γ`jνΓνik

)
.

Prove that the formula (2.2) reads

Rijk` = Rk`ij ,

that Bianchi’s first identity (2.1) takes the form

R`kij +R`jki +R`ijk = 0,

and Bianchi’s second identity (2.3) takes the form

∂mR
i
jk` + ∂kR

i
j`m + ∂`R

i
jmk =

∑
ν

(
Riνk`Γ

ν
mj +Riν`mΓνkj +RiνmkΓν`j

)
−
∑
ν

(
ΓimνR

ν
jk` + ΓikνR

ν
j`m + Γi`νR

ν
jmk

)
for i, j, k, `,m. 2

Orthonormal frames

It is sometimes useful to describe the Levi-Civita connection and the cur-
vature tensor in terms of a local orthonormal frame e1, ..., en of TX. Thus
we define

Γkij = 〈∇eiej , ek〉, R`kij = 〈R(ei, ej)ek, e`〉.

Note that with this definition the numbers Γkij are not symmetric in i and
j unless the Lie bracket [ei, ej ] vanishes. In fact, we have

[ei, ej ] =
∑
k

(Γkji − Γkij)ek, Γkij + Γjik = 0.
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The first equation expresses the fact that the Levi-Civita connection is
torsion free and the second that it is Riemannian. The curvature is now
given by the formula

R`kij = ∂iΓ
`
jk − ∂jΓ`ik +

∑
ν

(
Γ`iνΓνjk − Γ`jνΓνik

)
−
∑
ν

(
Γνij − Γνji

)
Γ`νk,

where ∂j denotes the derivative in the direction ej . Also note that in an
orthonormal frame we have

Rijk` = Rk`ij = Rk`ij = R`kij

and that this expression is anti-symmetric under interchanging i and j,
respectively k and `. In an orthonormal frame the first Bianchi identity
takes the form

R`ijk +R`jki +R`kij = 0 (2.4)

and, if ∇eiej = 0 for all i, j at some point x ∈ X, then at this point the
second Bianchi identity reads

∂Rijk`
∂xm

+
∂Rij`m
∂xk

+
∂Rijmk
∂x`

= 0. (2.5)

The proofs are left to the reader.

Exercise 2.5 Prove that on any Riemannian manifold X near every point
x ∈ X there exists a local orthonormal frame e1, . . . , en such that the
covariant derivatives ∇ejek all vanish at the point x. 2

2.2 Scalar curvature

The Ricci tensor is a symmetric bilinear form Sx : TxX × TxX → R
defined by

S(u, v) =

n∑
i=1

〈R(ei, u)v, ei〉 (2.6)

for any orthonormal frame e1, . . . , en of TX. The reader may check, using
Lemma 2.2, that this expression is independent of the orthonormal frame
used to define it and that the resulting bilinear form is symmetric. In an
orthonormal frame the Ricci tensor can be represented by a symmetric
matrix. The scalar curvature of X is defined as the trace of this matrix
and is denoted by s. Thus

s =

n∑
j=1

S(ej , ej)

for any orthonormal frame e1, . . . , en. In particular, a manifold with positive
definite Ricci tensor has positive scalar curvature.
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If the same orthonormal frame is used to define the Ricci tensor and
the scalar curvature we obtain the expression

s =
∑
i,j

〈R(ei, ej)ej , ei〉 =
∑
i,j

Rijij . (2.7)

This formula holds only in orthonormal frames. It relates the scalar curva-
ture to the sectional curvature of a plane E ⊂ TxX. The latter is defined
by

Kx(E) = 〈R(u, v)v, u〉

for any orthonormal frame u, v of E and its value is independent of the
choice of this frame. Hence the scalar curvature is twice the sum of the
sectional curvatures over all planes which are spanned by pairs of vectors
in a given orthonormal frame.

Exercise 2.6 Prove that the Ricci curvature tensor is in local coordinates
given by

S(ξ, η) =
∑
i,j

Rijξ
iηj , Rij =

n∑
k=1

Rkikj =
∑
k,`

gk`Rki`j .

Hence prove that the scalar curvature is

s =
∑
i,j

gijRij =
∑
i,j,k

gijRkikj = −
∑
i,j

Rijij . 2

Lemma 2.7 Let X be a Riemannian manifold of dimension n = dim X ≥
3 and assume that there exists a function λ : X → R such that the Ricci
tensor satisfies

S(u, v) = λ〈u, v〉 (2.8)

for all x ∈ X and all u, v ∈ TxX. Then λ is constant and, moreover, the
scalar curvature is given by

s = nλ.

Proof: Choose a local orthonormal frame e1, . . . , en near a point x ∈ X
such that all the covariant derivatives ∇ejek = 0 at x (see Exercise 2.5).
Denote by Rijk` the curvature tensor in this frame. Then the Ricci tensor
is given by

Rij = S(ei, ej) =
∑
k

Rkikj .

Since 〈ei, ej〉 = 1 the condition S = λg takes the form

Rij = λδij
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and, in particular, the scalar curvature is

s =
∑
j

Rjj = nλ.

By (2.5), the second Bianchi identity at the point x reduces to

∂mRijk` + ∂kRij`m + ∂`Rijmk = 0

for all i, j, k, `,m. Choose k = i and ` = j, and rename m into k to obtain

∂kRijij + ∂iRijjk + ∂jRijki = 0.

Now take the sum over all i and j and use the formulae Rijk` = Rk`ij =
−Rjik` to obtain

0 = ∂k
∑
i,j

Rijij +
∑
i,j

∂iRijjk +
∑
i,j

∂jRijki

= ∂k
∑
j

Rjj −
∑
i,j

∂iRjijk −
∑
i,j

∂jRijik

= n∂kλ−
∑
i

∂iRik −
∑
i

∂jRjk

= (n− 2)∂kλ

for all k. Hence λ must be constant. 2

A Riemannian metric on X is called an Einstein metric if its Ricci-
tensor is a constant multiple of the metric g, i.e. if (2.8) holds for some
constant λ ∈ R. The question of the existence of an Einstein metric on
a given manifold X is an important problem in Riemannian geometry. A
deep theorem by Yau guarantees the existence of such metrics on a large
class of Kähler manifolds. We shall discuss his result in Chapter 3.

Remark 2.8. (Second fundamental form) Assume that the manifold
X is embedded into RN and inherits the metric from the ambient space.
Consider the map π : X → RN×N which assigns to each point x ∈ X
the orthogonal projection π(x) : RN → TxX. Its differential at x in the
direction v ∈ TxX is a matrix dπ(x)v ∈ RN×N which sends TxX to TxX

⊥.
Thus we have a map

hx : TxX → Hom(TxX,TxX
⊥)

defined by
hx(v)w = (dπ(x)v)w
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for v, w ∈ TxX. This map is called the second fundamental form. It
satisfies hx(v)w = hx(w)v. The Gauss equation asserts that the curvature
of X at x ∈ X is given by

Rx(u, v) = hx(u)∗hx(v)− hx(v)∗hx(u). (2.9)

If f : TxX → TxX
⊥ is a function whose graph agrees with X (with the

point x shifted to the origin) then it is easy to see that hx(v)w is given by
the Hessian of f at 0.

Example 2.9 Consider the n-sphere Sn ⊂ Rn+1 with its standard metric.
Prove that

Rx(u, v) = uv∗ − vu∗ ∈ End(TxX)

for u, v ∈ TxX. Deduce that the curvature tensor, when regarded as a linear
map Λ2 → Λ2, is the identity. Hence prove that the scalar curvature of the
n-sphere with its standard metric is s = n(n− 1). 2

Exercise 2.10 In holomorphic coordinates x+ iy the standard metric on
S2 = C ∪ {∞} is

g = 4
dx2 + dy2

(1 + x2 + y2)2
.

Use this to prove that the 2-sphere has constant scalar curvature 2. 2

Exercise 2.11 Consider the manifold X = S2 × S2 with the metric gX =
λ1g×λ2g where g denotes the standard metric on S2 and λi > 0. Prove that
gX is an Einstein metric if and only if λ1 = λ2. Prove that the manifold
X = S2 × Σ does not admit an Einstein metric whenever Σ is a Riemann
surface with genus g ≥ 1. 2

Exercise 2.12 Let X and Y be Riemannian manifolds. Prove that the
scalar curvature of the product metric on X × Y is given by

sX×Y (x, y) = sX(x) + sY (y)

for x ∈ X and y ∈ Y . In particular X × Y admits a metric with positive
scalar curvature whenever either X or Y does. 2

Exercise 2.13 Let Bn = {x ∈ Rn | |x| ≤ 1} dnote the unit ball in Rn.
Consider the diffeomorphism f : Rn − {0} → R× Sn−1 given by

f(x) =

(
log |x|, x

|x|

)
.

Prove that the pullback of the product metric g on R × Sn−1 under f is
given by

f∗g(ξ, η) = g(df(x)ξ, df(x)η)) =
1

|x|2
〈ξ, η〉

for x ∈ Bn and ξ, η ∈ Rn = TxB
n. 2
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Exercise 2.14 Let f : X → Y be a diffeomorphism of smooth n-mani-
folds. Let g be a Riemannian metric on Y with scalar curvature sg and
denote by f∗g the pullback metric on X. Prove that the scalar curvature
of this metric is given by

sf∗g = sg ◦ f.

Hint: Use the naturality of the curvature on general vector bundles. 2

Exercise 2.15 Prove that the positive definite Laplace-Beltrami operator
∆g = d∗d of the metric g is in local coordinates given by

∆gu = − 1√
det(g)

∑
i,j

∂

∂xi

(
gij
√

det(g)
∂u

∂xj

)
(2.10)

or, equivalently,

∆gu = −
∑
i,j

gij
∂2u

∂xi∂xj
+
∑
i,j,k

∂u

∂xk
Γkijg

ij . (2.11)

for u : Rn → R. 2

The following proposition gives an explicit formula for the change in
the scalar curvature under a conformal change in the metric.

Lemma 2.16 Let X be an n-manifold with Riemannian metric g and
scalar curvature s = sg : X → R. Consider the metric

g̃ = u2g

for some positive function u : X → R. The corresponding scalar curvature
s̃ = su2g : X → R is given by

s̃− u−2s = 2(n− 1)u−3∆gu− (n− 1)(n− 4)u−4|du|2g. (2.12)

Proof: The proof is by a rather lengthy, but not very enlightening cal-
culation which we leave to the reader as an exercise with hints. The first
hint is to use the formula (2.11) of Exercise 2.15 for the Laplace-Beltrami
operator. Secondly, it is convenient to use geodesics to construct a local
coordinate chart such that gij(0) = δij and the Christoffel symbols Γkij all

vanish at x = 0. Note, however, that the derivatives of the Γkij and also the
individual derivatives of the gij will in general not vanish at x = 0. The
curvature tensor at x = 0 is given by

R`kij =
∂Γ`jk
∂xi

− ∂Γ`ik
∂xj

.
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A simple calculation shows that the Christoffel symbols Γ̃kij of the metric

g̃ = u2g are given by

Γ̃kij − Γkij = akij = u−1

(
∂u

∂xi
δkj +

∂u

∂xj
δki −

∑
ν

gkν
∂u

∂xν
gij

)
.

It is important here to distinguish between δij and gij because the akij
are still to be differentiated. In fact, the lemma follows by inserting this
expression in the formula

R̃`kij −R`kij =
∂a`jk
∂xi

− ∂a`ik
∂xj

+
∑
ν

a`iνa
ν
jk −

∑
ν

a`jνa
ν
ik,

setting ` = i, multiplying by gjk, and finally summing over all i, j, and k.
These calculations are left to the reader. 2

Exercise 2.17 With n 6= 2 and v = un/2−1 prove that (2.12) is equivalent
to the Yamabe equation

4(n− 1)

n− 2
∆gv + sv = s̃v

n+2
n−2 . (2.13)

Here s̃ is the scalar curvature of the metric

g̃ = v
4

n−2 g

and thus a positive solution of (2.13) with a given constant s̃ = λ gives rise
to a metric with constant scalar curvature. Hint: Use the identities

|dum|2g = m2u2m−2 |du|2g

and

∆gu
m = mum−1∆gu+m(m− 1)um−2 |du|2g . 2

Theorem 2.18. (Gromov-Lawson) Let n ≥ 3 and assume that X and
Y are Riemannian n-manifolds with positive scalar curvature. Then the
connected sum X#Y admits a metric of positive scalar curvature.

Proof: The proof was explained to me by Mario Micallef. It relies on the
formula of Lemma 2.16. Fix a point x0 ∈ X and identify a neighbourhood
of x0 in X with a neighbourhood of 0 in Rn. Thus we are given a metric
g on Rn with positive scalar curvature. We may assume without loss of
generality that gij(0) = δij and Γkij(0) = 0. The main idea is to multiply
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this metric by a function u2 : Rn → (0,∞) which at 0 has a singularity of
the form

u(x) ∼ |x|−1.

In view of Exercise 2.13 this implies that the rescaled metric near zero
approximates the metric on the cylinder R × Sn−1. The main point is to
show that this can be done without destroying the positivity of the scalar
curvature. To see this recall from Lemma 2.16 that the scalar curvature s̃
of the rescaled metric g̃ = u2g is given by

s̃ = u−2s+ 2(n− 1)u−3∆gu− (n− 1)(n− 4)u−4|∇u|2g.

Now consider the ordinary Laplacian

∆ = −
n∑
j=1

∂2

∂x2
j

for the function u0(x) = 1/|x|. The reader may check that for this choice
of u the scalar curvature s̃ is positive near zero. (Note that ∆u0 = 0 in the
case n = 3.) More generally, if we define

u(x) = f(|x|)

for some function f : R→ R we find

∆u = −f ′′(r)− (n− 1)
f ′(r)

r
, |∇u|2 = f ′(r)2

where r = |x|. Thus we must find a function f such that

f(r) =

{
δ/r, for r near 0,

1, for r near 1,

and

s0 − 2(n− 1)
f ′′

f
− 2(n− 1)2 f

′

rf
− (n− 1)(n− 4)

(
f ′

f

)2

− C r|f
′|

f
> 0

for all r where s0 > 0 is the infimum of the scalar curvature of the metric
g. Here we have worked with the ordinary Laplacian but this is only a
small perturbation of the Laplace-Beltrami operator near x = 0. The last
term in the inequality accounts for the error terms. Following Micallef and
Wang [88] we introduce the function α : R→ R by

f ′

f
= −α

r
,

f ′′

f
= −α

′

r
+
α+ α2

r2
.
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Then the above inequality becomes

s0 + 2(n− 1)
α′

r
+ (n− 1)(n− 2)

α(2− α)

r2
− Cα > 0. (2.14)

It is now fairly easy to find a function α : R→ R which satisfies (2.14) and

α(r) =

{
1, for r near 0,
0, for r near 1.

The term of the form α/r2 can be used to compensate for the negative
term −Cα for small r. We can then choose α : [0, r0] → [0, 1] with r0 > 0
sufficiently small such that α(r0) = 0, α(0) = 1, and

s0 + 2(n− 1)
α′

r
+ (n− 1)(n− 2)

α(1 + ε− α)

r2
> 0.

To find this function it is useful to consider the curve

γ(t) = α(r0e
−t).

Then the differential inequality translates into

γ̇ < (1 + ε− γ)γ + cr0
2e−2t.

A solution of the differential equation

γ̇ = (1 + ε− γ)γ

is given by the explicit formula

γ(t) =
(1 + ε)Ae(1+ε)t

1 +Ae(1+ε)t
, 0 < A� 1.

Perturbing this function slightly near t = 0 and t = ∞ gives a solution of
the required differential inequality with γ(0) = 0 and γ(t) = 1 for t ≥ T .
Thus we have constructed a metric on X − {x0} which has positive scalar
curvature and which near x0 converges to a product metric on the cylinder
R× Sn−1. We can now perturb this metric to make it equal to the metric
on the cylinder in a neighbourhood of x0. Choosing a similar metric on
Y − {y0} we can construct a metric of positive scalar curvature on the
connected sum X#Y . This proves the theorem. 2

In Chapter 3 we shall see that CP 2 has positive sectional curvature and
hence positive scalar curvature.
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Corollary 2.19 For any two positive integers ` and m the 4-manifold

X = `CP 2#mCP 2

admits a metric of positive scalar curvature.

Proof: Theorem 2.18 and Example 3.49 below. 2

Theorem 2.20. (Uniformization) Every compact oriented Riemann sur-
face Σ admits a metric with constant scalar curvature. There is such a
metric in every conformal class and it is unique up to a constant factor.

Proof: Let g be a Riemannian metric on Σ with volume form ωg. For any
function u : Σ→ R consider the rescaled metric g̃ = e2ug. By Lemma 2.16
the scalar curvature se2ug : Σ→ R of the rescaled metric is given by

se2ug = e−2usg + 2e−3u∆ge
u + 2e−4u|deu|2g

where ∆g = d∗d denotes the positive definite Laplace-Beltrami operator of
the metric g. Since ∆eu = eu∆u− eu|du|2 and |deu|2 = e2u|du|2 it follows
that se2ug = e−2u(sg + 2∆gu). Hence the Gauss curvature K = s/2 of the
rescaled metric is given by

Ke2ug = e−2u(∆gu+Kg). (2.15)

By the Gauss-Bonnet theorem, the integral of Kg is given by∗

1

2π

∫
Σ

Kgωg = χ(Σ).

In the case of the torus this integral is zero. Hence the linear equation
∆gu = −Kg has a solution u and it follows that Ke2ug = 0. Uniqueness in
this case is obvious. That the 2-sphere with the standard complex structure
admits a metric of constant scalar curvature was shown in Examples 2.9
and 3.48. The uniqueness proof in this case will be omitted. For surfaces
of higher genus write (2.15) in the form

∆gu− e2uKe2ug = −Kg.

With Ke2ug = −1 this equation becomes

∆gu+ e2u = −Kg.

Since
∫

Σ
(−Kg)ωg = −2πχ(Σ) > 0 this is a special case of the Kazdan-

Warner equation (D.1) in Appendix D and hence, by Theorem D.1, it has
a unique solution u. This proves the theorem. 2

∗This also follows from the fact that the Ricci form ρωg = Kgωg represents 2π times
the first Chern class of the tangent bundle. (See Lemma 3.44 below.)
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2.3 Divergence

The covariant derivative of a vector field v : X → TX determines an
endomorphism TX → TX : w 7→ ∇wv which we denote by ∇v. Its trace is
called the covariant divergence of v and is denoted by

div(v) = trace(∇v) =
∑
i

〈∇eiv, fi〉

where e1, . . . , en is a basis of TX and f1, . . . , fn is the dual basis, i.e.

〈ei, fj〉 = δij .

Note that the divergence of v is independent of the choice of the basis used
to define it. The divergence has the following formal properties.

Lemma 2.21 For any function f : X → R and any vector field v : X →
TX we have

div(fv) = fdiv(v) + df(v)

and ∫
X

div(v) dvol = 0. (2.16)

Proof: The first identity follows by direct calculation:

div(fv) =
∑
i

〈fi,∇ei(fv)〉

=
∑
i

〈fi, f∇eiv + df(ei)v〉

= f ·
∑
i

〈fi,∇eiv〉+ df

(∑
i

〈fi, v〉ei

)
= f · div(v) + df(v).

To prove the second identity note that the volume form is in local coordi-
nates given by

dvol =
√

det gdx1 ∧ . . . ∧ dxn.

The divergence of a vector field ξ =
∑
i ξ
i∂/∂xi is given by

divg(ξ) =
∑
i

(
∂ξi

∂xi
+

1

2

∑
ν,µ

gνµ
∂gνµ
∂xi

ξi

)

=
∑
i

(
∂ξi

∂xi
+

1

2
trace

(
g−1 ∂g

∂xi

)
ξi
)
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=
∑
i

(
∂ξi

∂xi
+ ξi

1√
det g

∂

∂xi

√
det g

)
Hence

divg(ξ) ·
√

detg =
∑
i

∂

∂xi

(
ξi
√

detg
)

and this proves the lemma. 2

Lemma 2.22 Let D : C∞(X,E)→ Ω1(X,E) be any Riemannian connec-
tion on any Riemannian vector bundle E → X. Then the L2-adjoint of the
first order operator Dv : C∞(X,E)→ C∞(X,E) is given by the formula

D∗vs+Dvs = −div(v)s

for s ∈ C∞(X,E).

Proof: For two sections s, s′ ∈ C∞(X,E) consider the function

f = 〈s, s′〉.

Since D is a Riemannian connection we have

〈Dvs, s
′〉+ 〈s,Dvs

′〉 = df(v) = div(fv)− fdiv(v)

for any vector field v : X → TX. By Lemma 2.21, the integral of div(fv)
over X vanishes, and hence∫

X

(〈Dvs, s
′〉+ 〈s,Dvs

′〉) dvol = −
∫
X

div(v) · 〈s, s′〉dvol.

This proves the lemma. 2

Lemma 2.23 If e1, . . . , en is a local frame of TX and f1, . . . , fn is the
dual frame then ∑

i

(
∇eifi + div(ei)fi

)
= 0.

Proof: The pointwise inner product with ej gives∑
i

〈∇eifi + div(ei)fi, ej〉 = div(ej)−
∑
i

〈fi,∇eiej〉 = 0

for every j. 2

Exercise 2.24 Prove that the covariant divergence of a vector field v sat-
isfies the identity

Lvdvol = div(v)dvol

(and hence depends only on the volume form). 2
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Remark 2.25 Consider a local orthonormal frame e1, . . . , en of TX with
Γkij = 〈∇eiej , ek〉 as in Section 2.1. Then the covariant divergence of the
vector field ej is given by

div(ej) = −
∑
i

Γjii. 2

2.4 Differential forms

Any connection on TX induces a connection on the bundle ΛkT ∗X whose
sections are differential k-forms on X. This induced connection is uniquely
characterized by the formula

∇v(ι(w)α) = ι(∇vw)α+ ι(w)∇vα. (2.17)

For α ∈ Ω1(X) the left hand side is the ordinary derivative of the function
α(w) and so the equation determines the covariant derivative of 1-forms.
Now it can be used inductively to define the covariant derivative of k-forms
for k = 2, 3, . . .. It is easy to see that

∇v(α ∧ β) = (∇vα) ∧ β + α ∧∇vβ. (2.18)

Recall that the pointwise inner product of k-forms α, β ∈ Ωk(X) at x ∈ X
is given by

〈α, β〉 =
∑

i1<···<ik

α(ei1 , . . . , eik)β(ei1 , . . . , eik)

where e1, . . . , en is any orthonormal basis of TxX. Exercise 2.28 below shows
that this expression is independent of the choice of the orthonormal basis.
Recall also that the Riemannian metric induces an isomorphism

TX → T ∗X : v 7→ v∗

where v∗ : TxX → R denotes the linear functional w 7→ 〈v, w〉 for v ∈ TxX.

Lemma 2.26 For τ ∈ Ωk(X), α ∈ Ωk−1(X), and a vector field v : X →
TX we have

〈ι(v)τ, α〉 = 〈τ, v∗ ∧ α〉.

Proof: The formula is equivalent to

〈τ, v∗1 ∧ . . . ∧ v∗k〉 = τ(v1, . . . , vk)

for vector fields vi : X → TX. If the vector fields vi are orthonormal then
this is obvious from the above definition of the norm (and its independence
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of the choice of orthonormal frame). In general it follows by writing the
vi as linear combinations of a fixed orthonormal basis e1, . . . , en and using
multi-linearity on both sides of the equation. 2

Lemma 2.27 Let e1, . . . , en be a local frame of TX and f1, . . . , fn be the
dual frame so that 〈ei, fj〉 = δij. Then the differential and codifferential of
a k-form α ∈ Ωk(X) are given by

dα =
∑
i

f∗i ∧∇eiα, d∗α = −
∑
i

ι(fi)∇eiα.

Proof: We prove that the right hand side in the equation for dα is inde-
pendent of the choice of the basis. To see this take any other bases

e′k =
∑
i

aikei, f ′` =
∑
j

bj`fj .

The condition that the f ′` form the dual basis of e′k can be expressed in the
form ∑

k

aikb
j
k = δij ,

∑
i

aikb
i
` = δk`.

These two equations are equivalent. Now∑
i

f ′i
∗ ∧∇e′

i
α =

∑
i,k,`

aki b
`
if
∗
` ∧∇ekα =

∑
i,k,`

f∗k ∧∇ekα.

With ek = ∂/∂xk, fk = dxk we obtain the formula for dα. The formula for
d∗α follows from the identity (with L2 inner products)

〈d∗α, β〉 = 〈α, dβ〉
=
∑
i

〈α, f∗i ∧∇eiβ〉

=
∑
i

〈ι(fi)α,∇eiβ〉

= −
∑
i

〈∇eiι(fi)α, β〉 −
∑
i

div(ei)〈ι(fi)α, β〉

= −
∑
i

〈ι(fi)∇eiα, β〉 −
∑
i

〈ι(∇eifi + div(ei)fi)α, β〉

= −
∑
i

〈ι(fi)∇eiα, β〉.

The second equation follows from our formula for dβ in terms of the local
frame, the third from Lemma 2.26, the fourth from Lemma 2.22, the fifth
from (2.17), and the last from Lemma 2.23. 2
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Exercise 2.28 Let α =
∑
I αIdx

I be the local coordinate representation
of a k-form on X where the sum runs over all multi-indices I = {i1, . . . , ik}
with i1 < i2 < · · · < ik. Prove that the pointwise norm of α is given by

|α|2 =
∑
I,J

αIg
IJαJ , gIJ = det

(
(giνjµ)kν,µ=1

)
. 2

Exercise 2.29 Prove that in local coordinates the covariant derivative of
a 1-form α =

∑
k αkdx

k in the direction of a vector field ξ =
∑
ξi∂/∂xi is

given by

∇ξα =
∑
k

∑
i

ξi

∂αk
∂xi
−
∑
i,j

Γjikαj

 dxk

For 2-forms τ =
∑
i<j τijdx

i ∧ dxj the formula is

∇ξτ =
∑
k<`

∑
i

ξi

∂τk`
∂xi

−
∑
j

(Γjikτj` − Γji`τjk)

 dxk ∧ dx`. 2

Exercise 2.30 Let e1, . . . , en be a local orthonormal frame of TX. Prove
that the positive definite Laplace-Beltrami operator on C∞(X) is given by

∆gf = d∗df = −
n∑
i=1

(
∂i∂if + div(ei)∂if

)
where ∂if = df(ei) denotes the derivative of the function f : X → R in the
direction ei. 2

Exercise 2.31. (Weitzenböck formula) Prove that in a local orthonor-
mal frame e1, . . . , en the Hodge Laplacian on 1-forms is given by

d∗dα+ dd∗α = ∇∗∇α+
∑
i,j

α(ei)S(ei, ej)ej
∗

where ∇∗∇ =
∑
i∇i
∗∇i is the Bochner Laplacian and S : S2TX → R

denotes the Ricci tensor. (Hint: Use the formulae of Lemma 2.27 with
ei = fi. Assume without loss of generality that ∇iej = 0 at a given point
x0 ∈ X for all i and j.) Deduce that

〈dβ, dα〉L2 + 〈d∗β, d∗α〉L2 = 〈∇β,∇α〉L2 +

∫
X

S(α∗, α∗)dvol

for α, β ∈ Ω1(X). With α = β this formula shows that H1(X;R) = 0 for
every manifold with positive Ricci tensor. 2
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For any endomorphism Φ ∈ C∞(X,End(TX)) consider the operator
Ω∗(X)→ Ω∗(X) : τ 7→ ι(Φ)τ defined by

ι(Φ)τ(v1, . . . , vk) =

k∑
j=1

τ(v1, . . . , vj−1,Φvj , vj+1, . . . , vk) (2.19)

for τ ∈ Ωk(X). Thus ι(Φ)α = Φ∗α for α ∈ Ω1(X) and for forms of higher
degree one finds

ι(Φ)(σ ∧ τ) = ι(Φ)σ ∧ τ + σ ∧ ι(Φ)τ.

Here we use the convention ι(Φ)σ ∧ τ = (ι(Φ)σ)∧ τ . This formula can also
be used as a definition of ι(Φ). For any connection ∇ on the tangent bundle
the covariant derivative of Φ is defined by the Leibnitz rule

∇u(Φv) = (∇uΦ)v + Φ∇uv.

With this convention we have

∇u(ι(Φ)τ) = ι(∇uΦ)τ + ι(Φ)∇uτ.

The proof is left to the reader.

Exercise 2.32 If ΦΨ = ΨΦ prove that

ι(Φ)ι(Ψ)τ = ι(Ψ)ι(Φ)τ

for τ ∈ Ω∗(X). Moreover, prove that

ι(v)ι(Φ)τ − ι(Φ)ι(v)τ = ι(Φv)τ

for v ∈ Vect(X), Φ ∈ C∞(X,End(TX)), and τ ∈ Ω∗(X). 2

Exercise 2.33 Denote by ∇ the Levi-Civita connection on TX and by
R ∈ Ω2(X,End(TX)) the curvature tensor. Prove that

∇u∇vτ −∇u∇vτ +∇[u,v]τ = −ι(R(u, v))τ

for τ ∈ Ω∗(X) and u, v ∈ Vect(X). 2

Exercise 2.34. (Weitzenböck formula) Prove that in a local orthonor-
mal frame e1, . . . , en the Laplace-Beltrami operator on k-forms is given by

d∗dτ + dd∗τ = ∇∗∇τ +
∑
i,j

ei
∗ ∧ ι(ej)ι(R(ei, ej))τ

where ∇∗∇ =
∑
i∇i
∗∇i is the Bochner Laplacian and R denotes the Rie-

mann curvature tensor (Compare with Exercise 2.31). 2
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Exercise 2.35 Assume that Φ ∈ End(TX) satisfies

∇Φ = 0, Φ∗Φ = 1l

and
ΦR(u, v) = R(u, v)Φ, R(u, v) = R(Φu,Φv).

Prove that
∆ι(Φ)τ = ι(Φ)∆τ

where ∆ = d∗d+ dd∗ denotes the Laplace-Beltrami operator. In Chapter 3
we shall see that the complex structure on a Kähler manifold satisfies the
conditions we have imposed on Φ. 2

Exercise 2.36 Prove that for any 1-form α ∈ Ω1(X) on a manifold with
boundary we have∫

X

(
|∇α|2 − 〈α,∇∗∇α〉

)
dvolX =

∫
∂X

〈α,∇να〉dvol∂X

where ∇να denotes the covariant derivative in the direction of the outward
unit normal on ∂X. Hint: Use Stokes’ formula∫

X

div(v)dvolX =

∫
∂X

〈ν, v〉dvol∂X

for v ∈ Vect(X). 2

Duality

Recall from Lemma 2.26 that for every vector field v ∈ Vect(X) the
operator Ωk(X) → Ωk+1(X) : τ 7→ v∗ ∧ τ is the adjoint operator of
ι(v) : Ωk+1(X) → Ωk(X). If we denote by α = v∗ ∈ Ω1(X) the differ-
ential form which is dual to v and by v = α∗ the vector field dual to α then
we see that the adjoint operator of τ 7→ α∧ τ is given by τ 7→ ι(α∗)τ . Since
no confusion can arise we shall delete the ∗ in this formula and use the
notation ι(α)τ instead. This extends naturally to forms of higher degree as
follows. Define

ι(α)τ =
∑
I

αIι(eI)τ, ι(eI)τ = ι(ei1) · · · ι(eik)τ, (2.20)

where the summation is over all multi-indices I = {i1, . . . , ik} with i1 <
. . . < ik, the vector fields e1, . . . , en form a local orthonormal frame of TX
and the k-form α is given by

α =
∑
I

αIeI
∗, eI

∗ = ei1
∗ ∧ . . . ∧ eik∗.
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The reason for this definition lies in the following lemma. In particular,
the lemma proves that the right hand side of (2.20) is independent of the
choice of the orthonormal frame.

Lemma 2.37 For α ∈ Ωk(X), τ ∈ Ω`(X) and σ ∈ Ω`−k(X) we have

〈τ, α ∧ σ〉 = (−1)
k(k−1)

2 〈ι(α)τ, σ〉.

Proof: Consider the form α = eI
∗ and apply Lemma 2.26 repeatedly. The

factor (−1)
k(k−1)

2 arises from reversing the order in the exterior product
ei1
∗ ∧ . . . ∧ eik∗. 2



3

COMPLEX GEOMETRY

This chapter is concerned with various topics revolving around almost
complex, symplectic, and Kähler manifolds. Section 3.1 lays the foundations
with a discussion of the canonical splitting of the complex exterior algebra
of a symplectic vector space. Section 3.2 examines the corresponding split-
ting of the space of complex valued differential forms on an almost complex
manifold. Contrary to the Kähler case, the ordinary differential d does not
split into the sum ∂+ ∂̄. There are additional terms to consider which arise
from the Nijenhuis tensor. Section 3.3 deals with compatible almost com-
plex structures J on a symplectic manifold (X,ω). Here the splitting into
(p, q)-forms is not invariant under the Levi-Civita connection, but there
is a canonical Hermitian connection on TX which does respect the split-
ting. The section contains a proof of a Weitzenböck type formula and some
other useful identities. Section 3.4 is devoted to the Dolbeault cohomology
of a Kähler manifold and Section 3.5 to holomorphic line bundles and their
relation with Hermitian Yang-Mills connections. Section 3.6 discusses the
Hirzebruch-Riemann-Roch theorem. A proof is given in the case of the triv-
ial bundle over a symplectic 4-manifold. Section 3.7 gives a brief discussion
of Kähler-Einstein metrics (without proofs). Section 3.9 contains Milnor’s
calculation of the characteristic classes and Betti numbers of hypersurfaces
in projective space.

3.1 Complex exterior algebra

Hermitian vector spaces

Let V be a 2n-dimensional real vector space, ω : V × V → R be a skew-
symmetric bilinear form, and J ∈ End(V ) be a complex structure which is
compatible with ω. This means that the bilinear form

g(v, w) = ω(v, Jw)

defines an inner product on V and hence

〈v, w〉 = g(v, w) + iω(v, w)

is a Hermitian form. It is complex anti-linear in the first argument and
complex linear in the second. The triple (V, J, ω) is called a Hermitian
vector space. The volume form of the inner product g is given by
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dvolg =
ωn

n!
.

The standard example is R2n with the Euclidean metric. In the coordinates
x1, y1, . . . , xn, yn the standard symplectic and complex structures are given
by

ω0 =

n∑
j=1

dxj ∧ dyj , J0 =


0 −1 · · · 0 0
1 0 0 0
...

. . .
...

0 0 0 −1
0 0 · · · 1 0

 .

If we identify R2n = Cn via zj = xj + iyj then the matrix J0 represents
multiplication by i =

√
−1 and the symplectic form ω0 can be written as

ω0 =
1

2i

n∑
j=1

dz̄j ∧ dzj

where dzj = dxj+ idyj and dz̄j = dxj− idyj . The resulting Hermitian form
on Cn is given by

〈z, ζ〉 =

n∑
ν=1

z̄νζν .

Any Hermitian vector space (V, J, ω) admits a unitary basis, i.e. an or-
thonormal basis of the form v1, Jv1, . . . , vn, Jvn. Any such basis induces a
vector space isomorphism Ψ : R2n → V which identifies ω, J , and g with
the standard structures on R2n.

Example 3.1 Consider the Euclidean space R2 with coordinates (x, y) and
its standard orientation. An inner product on R2 is given by a symmetric
matrix

g =

(
E F
F G

)
with E > 0 and EG− F 2 > 0. The corresponding area form

ω =
√
EG− F 2 dx ∧ dy

is always compatible with g. The corresponding complex structure is given
by the matrix

J =
1√

EG− F 2

(
−F −G
E F

)
.

Thus every inner product on an oriented 2-dimensional real vector space
determines a unique complex structure and Hermitian form on this vector
space such that the real part of the Hermitian form is the given inner
product. 2
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Endomorphisms

Let (V, J, ω) be a Hermitian vector space of complex dimension n. Denote
by End(V, J) the space of complex linear endomorphisms and by End0(V, J)
the space of complex linear traceless endomorphisms. It is standard con-
vention to define the metric on End(V, J) as half the complex trace, i.e.

〈T1, T2〉 =
1

2
tracec(T1

′T2).

for T1, T2 ∈ End(V, J). Here T ′ = T ∗ ∈ End(V, J) denotes the adjoint oper-
ator defined by 〈T ′w, v〉 = 〈w, Tv〉. The corresponding norm on End(V, J)
is given by

|T | =
√

1

2
trace(T ′T ).

For v, w ∈ V let vw′ ∈ End(V, J) be given by

vw′θ = v〈w, θ〉

for θ ∈ V . The traceless part of vw′ is given by

(vw′)0 = vw′ − 1

n
〈w, v〉1l.

Lemma 3.2 Let (V, J, ω) be a Hermitian vector space. Then

|(vw′)0|
2

=
1

2
|v|2 |w|2 − 1

2n
|〈v, w〉|2

for v, w ∈ V , and

〈T, (vw′)0〉 =
1

2
〈Tw, v〉

for v, w ∈ V and T ∈ End0(V, J).

Proof: To prove the first assertion compute

(wv′)0(vw′)0 = wv′vw′ − 1

n
ww′vv′ − 1

n
vv′ww′ +

1

n2
|〈v, w〉|2 1l

and take half the trace. To prove the second assertion note that T has zero
trace and so 〈T, 1l〉 = 0. Hence

〈T, (vw′)0〉 =
1

2
trace(T ′vw′) =

1

2
trace(w′T ′v) =

1

2
〈Tw, v〉.

This proves the lemma. 2
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Dual space

We denote by

V ∗ = Hom(V,R)

the dual space of V as a real vector space and by

V → V ∗ : v 7→ v∗ = g(v, ·)

the natural isomorphism induced by the inner product g. The space V ∗

carries a natural complex structure J∗. It is important to note that, by the
compatibility condition, we have

J∗v∗ = −(Jv)∗

and hence the isomorphism v 7→ v∗ is complex anti-linear. At some places
we shall not mention the complex structure explicitly and denote by V̄
the real vector space V with the reversed complex structure −J . Thus we
denote by Hom(V,C) the space of complex linear and by Hom(V̄ ,C) the
space of complex anti-linear functionals V → C.

The space V ∗⊗C is the space of complex valued real linear functionals
on V and decomposes as

V ∗ ⊗ C = Hom(V,C)⊕Hom(V̄ ,C)

into the subspaces of complex linear and complex anti-linear functionals.
There are natural isomorphisms

V̄ → Hom(V,C) : v 7→ v′, V → Hom(V̄ ,C) : v 7→ v′′

given by

v′ = v∗ + i(Jv)∗ = 〈v, ·〉, v′′ = v∗ − i(Jv)∗ = 〈·, v〉. (3.1)

Note that

(Jv)′ = −iv′, (Jv)′′ = iv′′.

The Hermitian structure on Λ∗V ∗ ⊗ C is induced by the standard inner
product on Λ∗V ∗ and the complex structure. Thus we define

〈σ, τ〉 =
∑

i1<···<ik

σ(ei1 , . . . , eik)τ(ei1 , . . . , eik)

for σ, τ ∈ ΛkV ∗ ⊗ C and an orthonormal basis e1, . . . , e2n of V . (See Sec-
tion 2.4 and, in particular, Exercise 2.28.)
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Remark 3.3 In our standard model R2n ∼= Cn the isomorphisms C̄n →
Λ1,0Cn∗ : v 7→ v′ and Cn → Λ0,1Cn∗ : v 7→ v′′ are given by

v′ =

n∑
ν=1

v̄νdzν , v′′ =

n∑
ν=1

vνdz̄ν

for v = (v1, . . . , vn) ∈ Cn. Moreover the forms

2−k/2dzI ∧ dz̄J = 2−k/2dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq

with p+ q = k form a unitary basis of ΛkV ∗ ⊗ C. 2

Exterior algebra

The exterior algebra Λ∗V ∗ ⊗ C of complex valued real multi-linear forms
on V decomposes as a direct sum

Λ∗V ∗ ⊗ C =
⊕
p,q

Λp,qV ∗. (3.2)

The space Λp,qV ∗ is generated by elements of the form σ ∧ τ where σ ∈
Λp,0V ∗ is complex linear in each argument and τ ∈ Λ0,qV ∗ is complex
anti-linear in each argument. Given τ ∈ ΛkV ∗⊗C denote by τp,q ∈ Λp,qV ∗

the projection of τ onto Λp,qV ∗. In particular we have v∗1,0 = 1
2v
′ and

v∗0,1 = 1
2v
′′.

Lemma 3.4 For τ ∈ Λ0,kV ∗, σ ∈ Λ0,k−1V ∗, and v ∈ V we have

〈τ, v′′ ∧ σ〉 = 2〈ι(v)τ, σ〉.

Proof: The fact that τ is complex anti-linear in all variables can be
expressed in the form ι(Jv)τ = −iι(v)τ. Hence for τ ∈ Λ0,kV ∗ and σ ∈
Λ0,k−1V ∗ we obtain

〈τ, v′′ ∧ σ〉 = 〈τ, v∗ ∧ σ〉 − 〈τ, i(Jv)∗ ∧ σ〉
= 〈τ, v∗ ∧ σ〉 − i〈τ, (Jv)∗ ∧ σ〉
= 〈ι(v)τ, σ〉 − i〈ι(Jv)τ, σ〉
= 〈ι(v)τ, σ〉+ i〈iι(v)τ, σ〉
= 2〈ι(v)τ, σ〉.

Here we have used the formula 〈τ, v∗ ∧ σ〉 = 〈ι(v)τ, σ〉 of Lemma 2.26 with
the real inner product replaced by the Hermitian form. The reader may
check that this is permitted. (For real valued forms the imaginary part of
the Hermitian inner product is zero.) 2
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As in the case of the real exterior algebra we generalize the formula
of Lemma 3.4 to forms of higher degree. Choose an orthonormal basis of
TX of the form e1, Je1, . . . , en, Jen. Then every form α ∈ Λ0,k which is
complex anti-linear in all variables can be expressed as

α =
∑
I

αIeI
′′, eI

′′ = ei1
′′ ∧ . . . ∧ eik ′′,

where the sum runs over all multi-indices I = {i1, . . . , ik} with i1 < · · · <
ik. Define the linear map

ι(ᾱ) : Λ0,`V ∗ → Λ0,`−kV ∗

by

ι(ᾱ)τ =
∑
I

ᾱIι(eI)τ (3.3)

for τ ∈ Λ0,`V ∗ where ι(eI)τ = ι(ei1) · · · ι(eik)τ . The reader may check
that the right hand side of this equation is independent of the choice of
the unitary basis e1, . . . , en used to define it. In fact, the formula (3.3)
continues to hold for any complex basis. Note that the map (α, τ) 7→ ι(ᾱ)τ
is complex linear in τ and complex anti-linear in α.

Lemma 3.5 For α ∈ Λ0,kV ∗, τ ∈ Λ0,`V ∗ and σ ∈ Λ0,`−kV ∗ we have

〈τ, α ∧ σ〉 = 2k(−1)
k(k−1)

2 〈ι(ᾱ)τ, σ〉.

Proof: Consider the form α = eI
∗ and apply Lemma 3.4 repeatedly. 2

Remark 3.6 The components of a 1-form σ are given by

σ1,0(v) =
1

2
(σ(v)− iσ(Jv)) ,

σ0,1(v) =
1

2
(σ(v) + iσ(Jv)) .

If V = Cn and σ ∈ V ∗ ⊗ C is given by

σ =

n∑
j=1

Ajdxj +

n∑
j=1

Bjdyj

then σ1,0, σ0,1 ∈ V ∗ ⊗ C are given by

σ1,0 =

n∑
j=1

1

2
(Aj − iBj)dzj , σ0,1 =

n∑
j=1

1

2
(Aj + iBj)dz̄j . 2
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Remark 3.7 The components of a 2-form τ are given by

τ2,0(v, w) =
1

4
(τ(v, w)− τ(Jv, Jw)− iτ(Jv,w)− iτ(v, Jw)) ,

τ1,1(v, w) =
1

2
(τ(v, w) + τ(Jv, Jw)) ,

τ0,2(v, w) =
1

4
(τ(v, w)− τ(Jv, Jw) + iτ(Jv,w) + iτ(v, Jw)) .

If V = Cn and F ∈ Λ2V ∗ ⊗ C is given by

F =
∑
j<k

Ajkdxj ∧ dxk +
∑
j,k

Bjkdxj ∧ dyk +
∑
j<k

Cjkdyj ∧ dyk

with Ajk = −Akj and Cjk = −Ckj for j ≥ k then

F 2,0 =
1

4

∑
j<k

(
Ajk − Cjk − i(Bjk −Bkj)

)
dzj ∧ dzk,

F 1,1 =
1

4

∑
j,k

(
Ajk + Cjk − i(Bjk +Bkj)

)
dz̄j ∧ dzk,

F 0,2 =
1

4

∑
j<k

(
Ajk − Cjk + i(Bjk −Bkj)

)
dz̄j ∧ dz̄k.

In particular, F 0,2 = 0 if and only if Ajk = Cjk and Bjk = Bkj . 2

3.2 Cauchy-Riemann operators and the Nijenhuis tensor

Complex valued differential forms

Let X be a smooth manifold of dimension 2n. An almost complex struc-
ture on X is an automorphism J : TX → TX of the tangent bundle which
satisfies J2 = −1l. Any such almost complex structure gives rise to a split-
ting of the space Ωk(X,C) of complex valued k-forms as a direct sum

Ωk(X,C) =
⊕
p+q=k

Ωp,q(X), (3.4)

where Ωp,q(X) denotes the space of (p, q)-forms on X, i.e. of sections of
the bundle Λp,qT ∗X. There are natural operators ∂̄ : Ωp,q → Ωp,q+1 and
∂ : Ωp,q → Ωp+1,q defined by the operator d followed by the projection onto
the relevant subspace in the decomposition (3.4). Thus

∂τ = (dτ)p+1,q, ∂̄τ = (dτ)p,q+1

for τ ∈ Ωp,q(X).
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Exercise 3.8 Prove that

∂̄(σ ∧ τ) = (∂̄σ) ∧ τ + (−1)deg(σ)σ ∧ ∂̄τ

for σ, τ ∈ Ω∗(X). 2

The Nijenhuis tensor

An almost complex structure J is called integrable if it arises from com-
plex coordinate charts on X with holomorphic transition maps. In this case
it follows from the local coordinate representation of the operators ∂̄ and
∂ that d = ∂ + ∂̄. In the nonintegrable case the difference between these
operators gives rise to the Nijenhuis tensor

NJ : TX ⊗ TX → TX

which is defined by

NJ(v, w) = [v, w] + J [Jv,w] + J [v, Jw]− [Jv, Jw] (3.5)

for v, w ∈ Vect(X).

Exercise 3.9 Prove that (3.5) is a tensor. This means that the value of
NJ(v, w) at x ∈ X depens only on v(x) and w(x) but not on the derivatives.
Hint: Show that NJ is bilinear over the functions, i.e.

NJ(fv, w) = fNJ(v, w)

for v, w ∈ Vect(X) and f ∈ C∞(X). 2

Exercise 3.10 Prove that NJ is skew-symmetric and complex anti-linear
in both variables, i.e.

N(v, w) +N(w, v) = 0, N(Jv,w) = N(v, Jw) = −JN(v, w).

for v, w ∈ Vect(X). 2

Exercise 3.11 Prove that

α ∈ Ω1,0(X) =⇒ (dα)0,2 =
1

4
α ◦NJ

and similarly for α ∈ Ω0,1(X). Hint: Use the formula

dα(v, w) = Lv(α(w))− Lw(α(v)) + α([v, w]).

and Remark 3.7. 2
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Exercise 3.12 Define the operator ι(NJ) : Ωk(X,C) → Ωk+1(X,C) by
ι(NJ)α = α ◦NJ for α ∈ Ω1 and by

ι(NJ)(σ ∧ τ) = (ι(NJ)σ) ∧ τ + (−1)deg(σ)σ ∧ ι(NJ)τ

in general. Prove that

dτ − ∂τ − ∂̄τ =
1

4
ι(NJ)τ ∈ Ωp+2,q−1(X)⊕ Ωp−1,q+2(X)

for τ ∈ Ωp,q(X). Hint: Use Exercises 3.8 and 3.11. 2

Exercise 3.13 Prove that

∂̄∂̄f = −1

4
(∂f) ◦NJ , ∂∂f = −1

4
(∂̄f) ◦NJ .

Hint: Use Exercise 3.11 with α = ∂f and α = ∂̄f . 2

The Nijenhuis tensor can be viewed as an obstruction to integrability.
It follows easily from Exercise 3.11 or by direct calculation that NJ = 0
whenever J is integrable. The Newlander-Nirenberg theorem asserts that
the converse is true as well. Its proof goes beyond the scope of this book.

Theorem 3.14. (Newlander-Nirenberg) An almost complex structure
is integrable if and only if the Nijenhuis tensor vanishes.

In the integrable case Exercise 3.12 asserts that the d operator splits as
d = ∂ + ∂̄. This gives rise to the Dolbeault cohomology groups. These will
be discussed in Section 3.4.

Cauchy-Riemann operators on vector bundles

The decomposition (13.8) extends to complex vector bundles E → X over
almost complex manifolds (X, J):

Ωk(X,E) =
⊕
p+q=k

Ωp,q(X,E).

Here Ωp,q(X,E) = C∞(X,Λp,qT ∗X ⊗E) denotes the space of (p, q)-forms
onX with values in E. A Cauchy-Riemann operator on E is an operator
D′′ : C∞(X,E)→ Ω0,1(X,E) such that

D′′(fs) = ∂̄f ⊗ s+ fD′′s

for s ∈ C∞(X,E) and f ∈ C∞(X,C). Note that any such operator extends
naturally to an operator D′′ : Ωp,q(X,E)→ Ωp,q+1(X,E) via

D′′(τ ⊗ s) = ∂̄τ ⊗ s+ (−1)deg(τ)τ ∧D′′s

for s ∈ C∞(X,E) and τ ∈ Ωp,q(X,E).
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Relation with Hermitian connections

Choose a Hermitian structure on E and let P → X denote the principal
unitary frame bundle associated to E. Then any Hermitian connection
B ∈ A(P ) determines a covariant derivative operator

dB : C∞(X,E)→ Ω1(X,E)

and its complex linear and complex anti-linear parts

∂B : C∞(X,E)→ Ω1,0(X,E), ∂̄B : C∞(X,E)→ Ω0,1(X,E)

are given by

∂Bs =
1

2
(dBs+ idBs ◦ J), ∂̄Bs =

1

2
(dBs− idBs ◦ J)

for s ∈ C∞(X,E). Note that ∂̄B is a Cauchy-Riemann operator. The
induced Cauchy-Riemann operator ∂̄B : Ωp,q(X,E) → Ωp,q+1(X,E) is
also given by the covariant derivative followed by the projection onto the
(p, q + 1)-part. Similarly for ∂B : Ωp,q → Ωp+1,q.

Proposition 3.15 For every Cauchy-Riemann operator D′′ on E there
exists a unique Hermitian connection B ∈ A(P ) such that D′′ = ∂̄B.

Proof: A general Cauchy-Riemann operator can in local coordinates be
represented in the form

(D′′s)α = ∂̄sα + Cαsα

where Cα ∈ Ω0,1(α(Uα),Cm×m) with

(β ◦ α−1)Cβ = ΦβαC
αΦ−1

βα − (∂̄Φβα)Φ−1
βα.

The 1-forms Bα = Cα− (Cα)∗ take values in the skew-Hermitian matrices
and satisfy (1.2). Hence they are the connection potential of a Hermitian
connection B ∈ A(E). If Jα : α(Uα) → R2n×2n represents the almost
complex structure on X then the associated ∂̄-operator is given by

(∂̄Bs)
α = ∂̄sα +

1

2
(Bα + iBα ◦ Jα)sα = ∂̄sα + Cαsα = (D′′s)α.

This prove existence. To prove uniqueness assume that b ∈ Ω1(X, u(E)) is
the difference of two Hermitian connections which induce the same Cauchy-
Riemann operator. Then b0,1 = 0. But since b is skew-Hermitian and
b0,1(v) = (b(v) + ib(Jv))/2 for v ∈ TX it follows that b = 0 (every com-
plex matrix decomposes uniquely into a Hermitian and a skew-Hermitian
matrix). This proves the proposition. 2
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Proposition 3.16 For every Hermitian connection B ∈ A(E) the associ-
ated Cauchy-Riemann operator satisfies

∂̄B ∂̄Bs = F 0,2
B s− 1

4
(∂Bs) ◦NJ

for s ∈ C∞(X,E).

Proof: By Exercise 3.11, (dBη)0,2 = η ◦NJ/4 for η ∈ Ω1,0(X). Hence

∂̄B ∂̄Bs = (dB ∂̄Bs)
0,2 = (dBdBs)

0,2 − (dB∂Bs)
0,2 = F 0,2

B s− 1

4
(∂Bs) ◦NJ

as claimed. 2

If (X,J) is a complex manifold then NJ = 0 and so we have

∂̄B ◦ ∂̄B = F 0,2
B .

It is a deep theorem in complex geometry that the (0, 2)-part of the cur-
vature vanishes precisely when locally near every point the bundle E has
a basis of holomorphic sections. (These are sections in the kernel of ∂̄B .)
This implies that there is a system of coordinate charts and local trivializa-
tions of E with holomorphic transition matrices, i.e. E is a holomorphic
vector bundle. Conversely, whenever E is a holomorphic vector bundle
with a Hermitian structure there is a canonical Cauchy-Riemann operator
on E given by the ordinary ∂̄-operator in any holomorphic trivialization.
This operator obviously satisfies ∂̄ ◦ ∂̄ = 0. In view of Proposition 3.15 this
Cauchy-Riemann operator corresponds to a Hermitian connection B which
is called the Chern connection of E and satisfies F 0,2

B = 0. These find-
ings are summarized in the following classical theorem of complex geometry
which we shall not prove here.

Theorem 3.17. (Newlander-Nirenberg) Let (X,J) be a complex man-
ifold and E → X be a Hermitian vector bundle with a connection B. Then
the Cauchy-Riemann operator ∂̄B : Ω0(X,E) → Ω0,1(X,E) determines a
holomorphic structure on E if and only if F 0,2

B = 0.

3.3 Almost complex structures on symplectic manifolds

Let (X,ω) be a symplectic manifold. This means that ω ∈ Ω2(X) is a
closed nondegenerate 2-form. An almost complex structure J on X is called
compatible with ω if the expression

g(v, w) = ω(v, Jw) (3.6)

defines a Riemannian metric on X. Such almost complex structures always
exist and they form a contractible space denoted by J (X,ω) (cf. [85]). Fix
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an almost complex structure J ∈ J (X,ω) and denote the corresponding
Hermitian structure on TX by

〈v, w〉 = g(v, w) + iω(v, w).

This structure is complex anti-linear in the first argument and complex
linear in the second. The goal of this section is to show how to construct a
natural Hermitian connection on the tangent bundle TX. This connection
will preserve the canonical splitting of the space of differential forms. The
induced connection on the bundle of forms of type (p, q) can in fact be
defined as the Levi-Civita connection followed by the L2-orthogonal pro-
jection onto Ωp,q. We begin with a brief discussion of the Nijenhuis tensor
in the symplectic case.

The Nijenhuis tensor on symplectic manifolds

The next lemma summarizes some basic facts about the almost complex
structure in symplectic manifolds. The first two assertions also hold when
ω is not closed. The third assertion shows that J is integrable if and only if
∇J = 0 where ∇ denotes the Levi-Civita connection of the metric induced
by J . The last assertion will play a crucial role in relating the Dirac operator
on a symplectic manifold to the Cauchy-Riemann operator.

Lemma 3.18 Let (X,ω) be a symplectic manifold and J ∈ J (X,ω). de-
note by ∇ the Levi-Civita connection of the metric (3.6) and by N = NJ the
Nijenhuis tensor of J . Then the following holds for all u, v, w ∈ Vect(X).

(i) (∇vJ)J + J(∇vJ) = 0 and g((∇uJ)v, w) + g(v, (∇uJ)w) = 0.

(ii) g((∇uJ)v, w) + g((∇vJ)w, u) + g((∇wJ)u, v) = 0.

(iii) g(u,N(v, w)) = 2g(J(∇uJ)v, w).

(iv) J(∇JuJ) = ∇uJ.
(v) 〈u,N(v, w)〉+ 〈v,N(w, u)〉+ 〈w,N(u, v)〉 = 0.

Proof: To prove the first assertion differentiate the identities

g(v, Jw) + g(Jv,w) = 0, J2 = −1l.

Statement (ii) is based on the formula

dω(u, v, w) = ∇u(ω(v, w)) +∇v(ω(w, u)) +∇w(ω(u, v))

+ω([u, v], w) + ω([v, w], u) + ω([w, u], v).

Choose vector fields such that all six covariant derivatives ∇uv etc vanish
at a given point x ∈ X. Then the Lie brackets all vanish at x and with
ω(v, w) = g(Jv,w) the first three terms on the right give the expression
in (ii). The left hand side vanishes because ω is closed. The formula for the
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Nijenhuis tensor in (iii) follows by direct calculation using [u, v] = ∇vu−∇uv
and (ii). Now we have

2g(J(∇JuJ)v, w) = g(Ju,N(v, w))

= −g(u, JN(v, w))

= g(u,N(v, Jw))

= 2g(J(∇uJ)v, Jw)

= 2g((∇uJ)v, w).

The first and fourth equalities follow from (iii) and the third follows from
Exercise 3.10. This proves (iv). To prove (v) note that

g(u,N(v, w)) + g(v,N(w, u)) + g(w,N(u, v))

= 2g(J(∇uJ)v, w) + 2g(J(∇vJ)w, u) + 2g(J(∇wJ)u, v)

= − 2g((∇JuJ)v, w)− 2g((∇vJ)w, Ju)− 2g((∇wJ)Ju, v)

= 0.

The first equation follows from (iii), the second from (iv) and (i), and the
last from (ii). This shows that the real part of the left hand side in (v) is
zero. But, by Exercise 3.10, the left hand side is a (0, 3)-form on X and
hence the imaginary part vanishes as well. This proves the lemma. 2

The previous lemma shows that the Nijenhuis tensor on a symplectic
manifold can be interpreted as a complex anti-linear map

Vect(X)→ Ω0,2(X) : u 7→ Θu

which assigns to every vector field u ∈ Vect(X) the 2-form

Θu(v, w) = 〈u,N(v, w)〉 = 2〈w, J(∇uJ)v〉. (3.7)

Here we have used the Hermitian form rather than the real inner product.
The second equality requires the assertions (iv) and (v) of Lemma 3.18. It
follows from (i) in Lemma 3.18 that the form Θu is complex anti-linear in
both variables.

Exercise 3.19 Prove that in a local unitary frame e1, . . . , en

Θu =
1

2

∑
i,j

〈u,N(ei, ej)〉ei′′ ∧ ej ′′,
∑
i

ei
′′ ∧Θei = 0.

The last equation is equivalent to assertion (vi) in Lemma 3.18. 2
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The Hermitian connection

The Levi-Civita connection will not in general preserve the spaces Ωp,q(X).
There is a canonical connection which has this property. It is given by

∇̃vw = ∇vw −
1

2
J(∇vJ)w (3.8)

for v, w ∈ Vect(X). The induced connection on Ωk is given by

∇̃vτ = ∇vτ +
1

2
ι(J∇vJ)τ

for τ ∈ Ωk(X), where ι(J∇vJ)τ is defined by (2.19). For τ ∈ Ωp,q(X)
this formula can be interpreted as the Levi-Civita connection followed by
projection onto Ωp,q.

Lemma 3.20 (i) For u, v, w ∈ Vect(X)

∇̃v(Jw) = J∇̃vw, Lu(g(v, w)) = g(∇̃uv, w) + g(v, ∇̃uw).

(ii) For α, β ∈ Ω∗(X) and u, v ∈ Vect(X)

∇̃u(α ∧ β) = (∇̃uα) ∧ β + α ∧ (∇̃uβ)

∇̃u(ι(v)α) = ι(∇̃uv)α+ ι(v)∇̃uα.

(iii) If τ ∈ Ωp,q(X) then ∇̃vτ ∈ Ωp,q(X) for all v ∈ Vect(X).

Proof: Statement (i) is proved by direct calculation. The formula

∇̃v(Jw)− J∇̃vw = (∇vJ)w − 1

2
J(∇vJ)Jw +

1

2
J2(∇vJ)w = 0,

shows that ∇̃J = 0 and the second identity follows from the fact that
J(∇vJ) is a skew symmetric endomorphism of TX. Statement (ii) follows

easily by induction. To prove (iii) let α ∈ Ω0,1. Then, since ∇̃J = 0,

(∇̃vα)(Jw) = Lv(α(Jw))− α(∇̃v(Jw))

= −iLv(α(w))− α(J∇̃vw)

= −iLv(α(w)) + iα(∇̃vJ)

= −i(∇̃vα)(w)

and hence ∇̃vα ∈ Ω0,1(X). For α ∈ Ω1,0(X) the argument is similar. For
general p and q take exterior products and use (ii) to prove that if τ ∈ Ωp,q

then ∇̃vτ ∈ Ωp,q. This proves the lemma. 2
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The curvature of the Hermitian connection

We examine the curvature tensor R̃ ∈ Ω2(X,End(TX)) of ∇̃. As in the
general case this 2-form is defined by

R̃(u, v) = ∇̃u∇̃vw − ∇̃v∇̃uw + ∇̃[u,v]w

for u, v, w ∈ Vect(TX). It takes values in the space of skew-Hermitian
endomorphisms on TX and hence has a complex trace. As before let R
denote the curvature tensor of the Levi-Civita connection ∇.

Lemma 3.21 The curvature tensor R̃ of ∇̃ is given by

R̃(u, v) =
1

2
R(u, v)− 1

2
JR(u, v)J − 1

4
[∇uJ,∇vJ ].

For all u, v ∈ TxX this is a complex linear skew Hermitian endomorphism
of TxX. Its complex trace is given by

ρω,J = i tracec
(
R̃(u, v)

)
=

1

2
trace(JR(u, v))− 1

8
trace(J [∇uJ,∇vJ ]).

The second term on the right is a form of type (1, 1). The form ρω,J is
closed and c1(TX, J) = (2π)−1[ρω,J ].

Proof: The formula for R̃ follows by a direct computation which is left
to the reader. The formula for the trace follows from the general assertion
that for every complex linear tranformation T : V → V of a complex vector
space (V, J) the complex trace is related to the real trace by

tracec(T ) =
1

2
trace(T )− i

2
trace(JT ).

That the form (u, v) 7→ trace(J [∇uJ,∇vJ ]) is of type (1, 1) can, by Re-
mark 3.7, be expressed in the form [∇JuJ,∇JvJ ] = [∇uJ,∇vJ ]. This follows
from the identity ∇JuJ = −J∇uJ in Lemma 3.18 (v). The assertion about
the Chern class is a general fact about Hermitian connections. 2

Remark 3.22 Assume that E → X is a complex line bundle with con-
nection B and denote by ∇̃B the connection on Λ0,∗T ∗X ⊗ E induced by
the Hermitian ∇̃ and B as in Exercise 3.24. Recall from By Lemma 3.21,
the curvature of the connection induced by ∇̃ on the anti-canonical bundle
K∗ = Λ0,nT ∗X is the scalar 2-form

F̃ = tracec(R̃) = − i
2

trace(JR) +
i

8
trace(J [∇.J,∇.J ]). (3.9)

In the terminology of Section 6.3 below this is twice the curvature FAcan

where Acan is the virtual connection on the bundle LΓcan

1/2 = K−1/2. Thus

F̃ = 2FAcan
. (See Lemma 6.16.) 2
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Relation with the Cauchy-Riemann operator

Proposition 3.23 Let e1, Je1, . . . , en, Jen be a local orthonormal frame of
TX. Then for τ ∈ Ω0,k(X) we have

∂̄τ =
1

2

n∑
j=1

ej
′′ ∧

(
∇̃ejτ + i∇̃Jejτ

)
,

∂̄∗τ = −
n∑
j=1

(
ι(ej)∇̃ejτ + ι(Jej)∇̃Jejτ

)
.

Proof: By Lemma 2.27,

∂̄τ = (dτ)0,k+1

=

(∑
j

ej
∗ ∧∇ejτ +

∑
j

(Jej)
∗ ∧∇Jejτ

)0,k+1

=
1

2

(∑
j

ej
′′ ∧ ∇̃ejτ +

∑
j

(Jej)
′′ ∧ ∇̃Jejτ

)
.

This proves the first assertion. It continues to hold when ω is not closed.
In the proof of the second assertion we shall use the identity

(ι(v)∇uτ)
0,k−1

= ι(v)∇̃uτ −
1

2
ι(J(∇uJ)v)τ

for τ ∈ Ω0,k(X) and u, v ∈ Vect(X) and the formula for d∗τ in Lemma 2.27:

∂̄∗τ = (d∗τ)0,k−1

= −
∑
j

(
ι(ej)∇ejτ + ι(Jej)∇Jejτ

)0,k−1

= −
∑
j

(
ι(ej)∇̃ejτ + ι(Jej)∇̃Jejτ

)

+
1

2

∑
j

(
ι(J(∇ejJ)ej)τ + ι(J(∇JejJ)Jej)τ

)

= −
∑
j

(
ι(ej)∇̃ejτ + ι(Jej)∇̃Jejτ

)

+
1

2

∑
j

(
ι(J(∇ejJ)ej + (∇JejJ)ej)τ

)
.

By Lemma 3.18 (v), the last term vanishes. Here we have used the fact
that ω is closed. 2
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Exercise 3.24 Prove that the formulae of Proposition 3.23 continue to
hold for forms τ ∈ Ω0,k(X,E) with values in a line bundle E with connec-
tion∇B provided that on the left we consider the Cauchy-Riemann operator
∂̄B induced by B and on the right we replace ∇̃ by the connection ∇̃B on
Λ0,∗T ∗X ⊗ E defined by

∇̃B(τ ⊗ s) = (∇̃τ)⊗ s+ τ ⊗∇Bs

for τ ∈ Ω0,k(X) and s ∈ C∞(X,E). 2

The Weitzenböck formula

Given τ ∈ Ω2(X,C) define the function τω : X → C by

τ ∧ ωn−1 = τωω
n. (3.10)

It is easy to see that in a local unitary frame e1, Je1, . . . , en, Jen with
J ∈ J (X,ω) the function τω can be expressed in the form

τω =
1

n

n∑
j=1

τ(ej , Jej).

Proposition 3.25 Let (X,ω) be a symplectic manifold of dimension 2n
and J ∈ J (X,ω). Suppose that E → X is a Hermitian line bundle and
B ∈ A(E) is a Hermitian connection. Then

∂̄∗B ∂̄Bϕ0 =
1

2
dB
∗dBϕ0 −

n

2
i(FB)ωϕ0.

for ϕ0 ∈ Ω0,0(X,E). Moreover, if (X,ω) is a symplectic 4-manifold, then

∂̄B ∂̄
∗
Bϕ2 =

1

2
∇̃B
∗
∇̃Bϕ2 + i(FB + F̃ )ωϕ2.

for ϕ2 ∈ Ω0,2(X,E), where F̃ is given by (3.9).

Proof: Denote the connection on E by ∇B,vs = dBs(v) for v ∈ TX. Then
the formulae of Proposition 3.23 have the form

∂̄Bϕ0 =
1

2

n∑
j=1

ej
′′ ∧

(
∇B,ejϕ0 +

√
−1∇B,Jejϕ0

)
,

∂̄∗Bα =

n∑
j=1

(
∇B,ej

∗(ι(ej)α) +∇B,Jej
∗(ι(Jej)α)

)
for ϕ0 ∈ C∞(X,E) and α ∈ Ω0,1(X,E). With α = ∂̄Bϕ0 one finds
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∂̄∗B ∂̄Bϕ0 =
1

2

n∑
i,j=1

∇B,ei
∗
(
ι(ei)ej

′′ ∧
(
∇B,ejϕ0 +

√
−1∇B,Jejϕ0

))

+
1

2

n∑
i,j=1

∇B,Jei
∗
(
ι(Jei)ej

′′ ∧
(
∇B,ejϕ0 +

√
−1∇B,Jejϕ0

))

=
1

2

n∑
j=1

∇B,ej
∗
(
∇B,ejϕ0 +

√
−1∇B,Jejϕ0

)

−
√
−1

2

n∑
j=1

∇B,Jej
∗
(
∇B,ejϕ0 +

√
−1∇B,Jejϕ0

)

=
1

2

n∑
j=1

(
∇B,ej

∗∇B,ejϕ0 +∇B,Jej
∗∇B,Jejϕ0

)

+

√
−1

2

n∑
j=1

(
∇B,ej

∗∇B,Jejϕ0 −∇B,Jej
∗∇B,ejϕ0

)
=

1

2
dB
∗dBϕ0

−
√
−1

2

n∑
j=1

(
∇B,ej∇B,Jejϕ0 −∇B,Jej∇B,ejϕ0 +∇B,[ej ,Jej ]ϕ0

)

=
1

2
dB
∗dBϕ0 −

√
−1

2

n∑
j=1

FB(ej , Jej)ϕ0

=
1

2
dB
∗dBϕ0 −

n
√
−1

2
(FB)ωϕ0.

This computation relies on the formulae ∇B,v∗ = −∇B,v − div(v), on the
fact that FB is the curvature of the connection∇B on E, and on the identity

n∑
j=1

[ej , Jej ] =

n∑
j=1

(
div(ej)Jej − div(Jej)ej

)

for an orthonormal frame e1, Je1, . . . , en, Jen. (See Lemma 2.23.) This
proves the first equation. The proof of the second equation is similar and
is left as an exercise. One uses the formula

∂̄∗Bϕ2 = −
n∑
j=1

(
ι(ej)∇̃B,ejϕ2 + ι(Jej)∇̃B,Jejϕ2

)
.

of Proposition 3.23 and the dual identity



ALMOST COMPLEX STRUCTURES ON SYMPLECTIC MANIFOLDS 73

∂̄Bα = −1

2

n∑
j=1

(
∇̃B,ej

∗
(ej
′′ ∧ α) + ∇̃B,Jej

∗
((Jej)

′′ ∧ α)

)

for α = ∂̄∗Bϕ2. The proof uses the fact that Ω0,3(X,E) = {0} for symplectic
4-manifolds. The curvature term has the required form because ϕ2 is a
section of the bundle Λ0,2T ∗X ⊗ E with curvature

F ∇̃B = FB + F̃ .

This proves the proposition. 2

Corollary 3.26 Let (X,ω) be a symplectic manifold and J ∈ J (X,ω).
Then, for every function f : X → C,

∂̄∗∂̄f =
1

2
d∗df.

Proof: Proposition 3.25 with E = X × C and dB = d. 2

Duality

Here are some useful equations relating the Hodge-∗-operator to a com-
patible almost complex structure on a symplectic manifold (X,ω). The
Hodge-∗-operator ∗ : Ωk(X,C)→ Ω2n−k(X,C) is defined by

ᾱ ∧ ∗β = 〈α, β〉dvol

for α, β ∈ Ωk(X,C). This operator maps Ωp,q(X) → Ωn−q,n−p(X) and,
since the manifold X is even dimensional, it satisfies

d∗τ = − ∗ d ∗ τ

Lemma 3.27 Let (X,ω) be a symplectic manifold and J ∈ J (X,ω). De-
note by ∗ the Hodge-∗-operator of the corresponding metric (3.6). Then,
for every 1-form α ∈ Ω1(X),

∗(α ◦ J) = α ∧ ωn−1

(n− 1)!
, d∗(α ◦ J) = −n(dα)ω.

Proof: The first identity is symplectic linear algebra and can be proved
by an explicit calculation in a symplectic vector space with a unitary basis.
The second follows from the first:

d∗(α ◦ J) = − ∗ d ∗ (α ◦ J) = − ∗ (dα) ∧ ωn−1

(n− 1)!
= −n(dα)ω.

This proves the lemma. 2
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The previous identities were noted by LeHong Van in [69]. She proved
that a compatible pair (ω, J) satisfies the second identity in Lemma 3.27
if and only if ω is closed.

Corollary 3.28 Let (X,ω) be a 2n-dimensional symplectic manifold and
J ∈ J (X,ω). Then, for every α ∈ Ω1(X,C)

∂̄∗α0,1 =
1

2
(d∗α− in(dα)ω), ∂∗α1,0 =

1

2
(d∗α+ in(dα)ω).

Proof: Lemma 3.27, α0,1 = (α+ i(α ◦ J)/2, and ∂̄∗α0,1 = d∗α0,1. 2

Corollary 3.29 Let (X,ω) be a 2n-dimensional symplectic manifold and
J ∈ J (X,ω). Then, for f ∈ C∞(X),

(∂∂̄f)ω =
i

2n
d∗df.

Proof: If α ∈ Ω0,1(X) then d∗α = ∂̄∗α = ∂̄∗α0,1 and, by Corollary 3.28,

in(dα)ω = −∂̄∗α.

With α = ∂̄f , this gives in(∂∂̄f)ω = −∂̄∗∂̄f = −d∗df/2. The last equation
follows from Corollary 3.26. 2

Exercise 3.30 Prove that ∂∗ = − ∗ ∂̄ ∗ and ∂̄∗ = − ∗ ∂ ∗. 2

Exercise 3.31 Prove that, for every τ ∈ Ω0,q(X),

∗
(
τ ∧ ω

k

k!

)
= (−1)

q(q−1)
2 iqτ ∧ ωn−q−k

(n− q − k)!
,

and, for every σ ∈ Ωp,0(X),

∗
(
σ ∧ ω

k

k!

)
= (−1)

p(p+1)
2 ipσ ∧ ωn−p−k

(n− p− k)!
.

Hint: Prove this with standard coordinates zj = xj + iyj on R2n = Cn
and use the formula ∣∣∣∣τ ∧ ωkk!

∣∣∣∣2 =

(
n− q
k

)
|τ |2

for τ ∈ Ω0,q(X,C) and 0 ≤ k ≤ n − q. This last formula can be proved
easily for the standard basis of Λ0,qCn and in general follows from the fact
that the map Λ0,q → Λk,k+q : τ 7→ τ ∧ ωk is conformal for 0 ≤ k ≤ n − q
(i.e. the image of the standard basis is orthogonal). 2
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Lemma 3.32 Let (X,ω) be a symplectic manifold of dimension 2n and
J ∈ J (X,ω). Let τ ∈ Ω0,q(X) and σ ∈ Ωp,0(X). Then

∂∗
(
τ ∧ (iω)k

k!

)
= (∂̄τ) ∧ (iω)k−1

(k − 1)!
, (3.11)

∂̄∗
(
σ ∧ (iω)k

k!

)
= −(∂σ) ∧ (iω)k−1

(k − 1)!
(3.12)

for every k ≥ 1 and

(∂τ) ∧ (iω)n−q

(n− q)!
= (∂̄∗τ) ∧ (iω)n−q+1

(n− q + 1)!
, (3.13)

(∂̄σ) ∧ (iω)n−p

(n− p)!
= −(∂∗σ) ∧ (iω)n−p+1

(n− p+ 1)!
. (3.14)

Proof: By Exercises 3.30 and 3.31 we have

∂∗
(
τ ∧ (iω)k

k!

)
= − ∗ ∂̄ ∗

(
τ ∧ (iω)k

k!

)
= −(−1)

q(q−1)
2 iq+k ∗

(
(∂̄τ) ∧ ωn−q−k

(n− q − k)!

)
= −(−1)

q(q−1)
2 iq+k(−1)

q(q+1)
2 iq+1(∂̄τ) ∧ ωk−1

(k − 1)!

= −(−1)qi2q+k+1(∂̄τ) ∧ ωk−1

(k − 1)!

= (∂̄τ) ∧ (iω)k−1

(k − 1)!
.

This proves (3.11). (3.12) follows by complex conjugation. To prove (3.13)
note first that the map

Λ0,q → Λn−q,n : τ 7→ τ ∧ ωn−q

(n− q)!

is a bijection. (The hint in Exercise 3.31 shows that this map is injective and
both spaces have the same dimension.) Hence it follows from Exercise 3.31
with α = τ ∧ ωn−q/(n− q)! that

(∗α) ∧ ωn−q

(n− q)!
= (−1)

q(q−1)
2 iqα, α ∈ Λn−q,n.

Hence
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(∂̄∗τ) ∧ (iω)n−q+1

(n− q + 1)!

= −(∗ ∂ ∗ τ) ∧ (iω)n−q+1

(n− q + 1)!

= −(−1)
q(q−1)

2 in+1

{
∗
(

(∂τ) ∧ ωn−q

(n− q)!

)}
∧ ωn−q+1

(n− q + 1)!

= −(−1)
q(q−1)

2 in+1(−1)
(q−1)(q−2)

2 iq−1(∂τ) ∧ ωn−q

(n− q)!

= −(−1)q−1i2q(∂τ) ∧ (iω)n−q

(n− q)!

= (∂τ) ∧ (iω)n−q

(n− q)!
.

This proves (3.13) and (3.14) follows again by conjugation. 2

3.4 Dolbeault cohomology

Let (X, J, ω) be a Kähler manifold of real dimension 2n. The Kähler con-
dition means that ω is a closed nondegenerate 2-form and J is an integrable
complex structure which is compatible with ω. By Lemma 3.18 The Kähler
condition is equivalent to ∇J = 0, where ∇ denotes the Levi-Civita connec-
tion of the Kähler metric g(v, w) = ω(v, Jw). Let R ∈ Ω2(X,End(TX))
denote the curvature tensor and S : S2TX → R the Ricci tensor of the
Kähler metric.

Lemma 3.33 Let (X, J, ω) be a Kähler manifold. Then

R(u, v)J = JR(u, v), R(Ju, Jv) = R(u, v)

and

S(u, v) = S(Ju, Jv) =
1

2
trace(JR(u, Jv))

for all x ∈ X and all u, v ∈ TxX.

Proof: Exercise. Hint: Use ∇J = 0 and the formulae of Section 2.1. 2

By Exercise 3.12, the d operator on differential forms splits as

d = ∂ + ∂̄.

Hence the equation d ◦ d = 0 decomposes as

∂∂ = 0, ∂∂̄ + ∂̄∂ = 0, ∂̄∂̄ = 0.

This gives rise to the Dolbeault double complex



DOLBEAULT COHOMOLOGY 77

Ωp,q−2
∂̄ ∂ Ωp+1,q−1

∂̄ ∂ Ωp+2,q

↘ ↗ ↘ ↗
∂ Ωp,q−1

∂̄ ∂ Ωp+1,q
∂̄

↗ ↘ ↗ ↘
Ωp−1,q−1

∂̄ ∂ Ωp,q ∂̄ ∂ Ωp+1,q+1

↘ ↗ ↘ ↗
∂ Ωp−1,q

∂̄ ∂ Ωp,q+1
∂̄

↗ ↘ ↗ ↘
Ωp−2,q Ωp−1,q+1 Ωp,q+2

with corresponding Dolbeault cohomology groups

Hp,q(X) =
Ωp,q(X) ∩ ker d

Ωp,q(X) ∩ im d
.

There is an obvious embedding Hp,q(X) ↪→ Hp+q(X;C) and hence the
Dolbeault cohomology groups Hp,q(X) are finite dimensional. They can be
identified with the spaces of harmonic forms of type (p, q)

Hp,q(X) ∼= Ωp,q(X) ∩ ker d ∩ ker d∗.

These groups can also be defined on general complex manifolds. But in the
Kähler case their direct sum agrees with the ordinary de Rham cohomology.

Theorem 3.34 On a Kähler manifold (X, J, ω) there is a natural isomor-
phism

Hk(X;C) ∼=
⊕
p+q=k

Hp,q(X).

Proof: By Lemma 3.33, the complex structure J satisfies the conditions
of Exercise 2.35. Hence

∆ι(J)τ = ι(J)∆τ (3.15)

for every τ ∈ Ω∗(X,C), where ∆ = d∗d+dd∗ denotes the Laplace-Beltrami
operator and and ι(J)τ is defined by (2.19). Now the space Ωp,q(X) can be
uniquely characterized as the subspace of those forms τ ∈ Ωp+q(X,C) for
which

ι(J)τ = i(p− q)τ.

In other words, the orthogonal projection Πp,q : Ωp+q(X,C) → Ωp,q(X) is
the eigenspace projection of the operator ι(J) : Ωp+q(X,C)→ Ωp+q(X,C)
onto the eigenspace with eigenvalue i(p− q). Hence it can be expressed in
the form of a contour integral

Πp,q =

∫
Cp,q

(λ1l− ι(J))
−1
dλ
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where Cp,q is a simple closed curve encircling the eigenvalue i(p−q) (say, of
radius 1/2). The formula (3.15) shows that this projection operator com-
mutes with the Laplace-Beltrami operator ∆ = d∗d+dd∗. Hence the kernel
of ∆, that is, the space of harmonic (p + q)-forms, is invariant under the
projection Πp,q. It follows that every harmonic k-form τ ∈ Hk(X;C) de-
composes as a sum

τ =
∑
p+q=k

Πp,qτ

of harmonic forms of type (p, q). This proves the theorem. 2

Remark 3.35 Consider the ∂̄-Laplacian and the ∂-Laplacian

∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗, ∆∂ = ∂∗∂ + ∂∂∗.

Comparing these operators with ∆ we find that

∆∂ + ∆∂̄ = ∆ = d∗d+ dd∗

is the standard Laplace-Beltrami operator. To see this just recall that d =
∂ + ∂̄ and d∗ = ∂∗ + ∂̄∗ and note that, by (3.15), the spaces Ωp,q are
invariant under ∆. Hence

∂∗∂̄ + ∂̄∂∗ = 0, ∂̄∗∂ + ∂∂̄∗ = 0.

The first operator is the component of ∆ which goes from Ωp,q → Ωp−1,q+1

and the second goes to Ωp+1,q−1. Moreover, the two operators ∆∂̄ and ∆∂

agree and hence

∆∂̄ = ∆∂ =
1

2
∆.

The proof is left as an exercise. It follows that on a Kähler manifold the
Dolbeault cohomology group Hp,q(X) = Hp+q(X) ∩ Ωp,q(X) is naturally
isomorphic to the quotients ker ∂̄/im ∂̄ and ker ∂/im ∂ in Ωp,q(X). 2

Recall that the Hodge-∗-operator maps Ωp,q(X) → Ωn−q,n−p(X) and
preserves the space of harmonic forms. Hence we have the following.

Corollary 3.36 On a compact Kähler manifold of real dimension 2n the
Hodge-∗-operator induces a natural isomorphism

Hp,q(X)→ Hn−q,n−p(X).

Moreover, complex conjugation gives an isomorphism Hp,q(X)→ Hq,p(X)
and thus the odd cohomology groups H2k+1(X;C) are even dimensional.

If X has real dimension 4 then a 2-form η ∈ Ω2(X,C) is called self-dual
(respectively anti-self-dual) if η = ∗η (respectively η = − ∗ η). Denote



DOLBEAULT COHOMOLOGY 79

by Ω2,±(X) = Ω2,±(X, g) the space of self-dual, respectively anti-self-dual,
2-forms. For η ∈ Ω2(X) denote by η± = 1

2 (η±∗η) its self-dual, respectively
anti-self-dual, part. Since the Hodge-∗-operator preserves the space H2(X)
of (real valued) harmonic forms this space splits as a direct sum

H2(X) = H2,+(X)⊕H2,−(X)

into the spaces of self-dual and anti-self-dual harmonic 2-forms. It is impor-
tant to note that this splitting is orthogonal with respect to the standard
inner product. Define b± = b±(X) = dimH2,±(X).

If (X, J, ω) is a Kähler surface then the 2-form ω is always self-dual
and hence b+ is at least 1. Moreover, the bundle Λ2,+T ∗X ⊗C of complex
valued self-dual 2-forms decomposes as

Λ2,+T ∗X ⊗ C = Λ2,0T ∗X ⊕ Cω ⊕ Λ0,2T ∗X.

It is easy to see, by examining the real and imaginary parts of dz1∧dz2, that
every form of type (2, 0) and of type (0, 2) is self-dual. Since the space of
self-dual 2-forms is 3-dimensional this proves the above identity. It follows
that the bundle Λ2,−T ∗X ⊗ C consists entirely of forms of type (1, 1) and

Λ1,1T ∗X ⊗ C = Cω ⊕ Λ2,−T ∗X ⊗ C.

These observations have some important consequences for the topology of
Kähler surfaces which we shall discuss next.

Proposition 3.37 Let (X, J, ω) be a Kähler surface and E → X be a
holomorphic line bundle with a nonzero section s : X → E. Then either E
is the trivial bundle or

[ω] · c1(E) > 0.

Proof: The zero set of s is an analytic hypersurface V ⊂ X and any such
hypersurface decomposes as a union V = V1 ∪ · · · ∪ V` of irreducible ones.
(See Theorem F.18 in Appendix F.) Each Vi has a well-defined multiplicity
mi > 0 as a zero set of s (see the discussion on page 573). In other words
the pair (E, s) is represented by the effective divisor D =

∑
imiVi and it

follows easily (from standard arguments in differential topology) that the
first Chern class of E is given by

c1(E) =
∑
i

miPD([Vi]).

By Proposition F.19, each Vi is the image of some nonconstant holomorphic
map ui : Σi → X defined on a compact connected Riemann surface Σi. For
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each i the number PD([Vi]) · [ω] is given by the integral of ω over Vi (or the
integral of ui

∗ω over Σi) and this integral is always positive. Hence

c1(E) · [ω] =
∑
i

mi

∫
Σi

ui
∗ω ≥ 0.

Equality can only occur if s has no zeros and in this case E admits a
holomorphic trivialization. This proves the proposition. 2

Proposition 3.38 If (X, J, ω) is a compact Kähler surface with b+ > 1
then [ω] · c1(TX) ≤ 0. Moreover, b+ is always odd and

dimcH2,0(X) =
b+ − 1

2
= pg.

This number is called the geometric genus of X.

Proof: The cohomology group H1,1(X) can be identified with the space
of harmonic 2-forms η of type (1, 1) Any such form can be written as
η = fω + η− where η+ = fω and η− are both harmonic. This implies
df ∧ ω = d(fω) − fdω = 0. Now it is a simple exercise in 4-dimensional
linear algebra to prove that ∗α = −(α ◦ J) ∧ ω for every 1-form α. This
shows that the map Ω1 → Ω3 : α 7→ α ∧ ω is a bijection and hence we
obtain df = 0. Thus f is a constant function and we conclude that

H1,1(X) = Cω ⊕H2,−(X;C).

The Hodge decomposition H2(X;C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X) of
Theorem 3.34 now shows that

H2,+(X;C) = H2,0(X)⊕ Cω ⊕H0,2(X).

Hence b+ > 1 if and only if H2,0(X) 6= 0. Now H2,0(X) can be identified
with the space of all forms τ ∈ Ω2,0(X) which satisfy ∂̄τ = 0. To see this
just note that, by Remark 3.35, 2∂̄∗∂̄τ = d∗dτ + dd∗τ . Hence H2,0(X) is
the space of holomorphic sections of the bundle Λ2,0T ∗X with Chern class
−c1(TX). Hence it follows from Proposition 3.37 that [ω] · c1(TX) ≤ 0 as
claimed. 2

Theorem 3.39. (Hodge index theorem) Let E and F be holomorphic
line bundles over a compact Kähler surface X and denote a = c1(E) and
b = c1(F ). Assume a · a ≥ 0. Then

(a · a)(b · b) ≤ |a · b|2

and if equality holds then a and b are linearly dependent.
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Proof: Every holomorphic line bundle has a connection whose curvature
form is of type (1, 1). Hence a, b ∈ H1,1(X;R). The proof of Proposition 3.38
shows that the space H1,1(X;R) of real valued harmonic forms splits as a
direct sum

H1,1(X;R) = Rω ⊕H2,−(X;R).

Hence the quadratic form (x, y) 7→ x · y on H1,1(X;R) is nondegener-
ate and has a 1-dimensional positive subspace. This implies that every
2-dimensional subspace W ⊂ H1,1(X;R) must contain a vector x with
x · x < 0. Assume that the vectors a and b are linearly independent
and consider the subspace W spanned by a and b. The quadratic form
W → R : x 7→ x · x = x2 is represented by the matrix

A =

(
a2 ab
ab b2

)
Since W contains a vector with negative self-intersection number this ma-
trix must have a negative eigenvalue. Since a2 ≥ 0 it follows that det(A) < 0
and this proves the required inequality. 2

3.5 Holomorphic line bundles

Let (X, J, ω) be a Kähler manifold of real dimension 2n. The goal of this
section is to show that the space of holomorphic structures on a line bundle
E → X with first Chern class in H1,1(X) can be identified with the torus
H1(X; iR)/H1(X; 2πiZ). Consider the space of Hermitian Yang-Mills
connections

Aω(E) =
{
B ∈ A(E) |F 0,2

B = 0, (FB)ω = µ
}
.

Here µ is a constant. The formula

c1(E) · [ω]n−1 =

∫
X

iFB
2π
∧ ωn−1 =

iµ

2π
n!Vol(X)

shows that the natural choice for this constant is

µ = −2πic1(E) · [ω]n−1

n!Vol(X)
(3.16)

The group G(E) = Map(X,S1) of unitary gauge transformations acts nat-
urally on Aω(E). The next theorem asserts that the quotient space can be
naturally identified with the space of holomorphic structures on E. It also
asserts that this space is nonempty whenever c1(E) is of type (1, 1) and
in this case can be identified with the torus H1(X; iR)/H1(X; 2πiZ). This
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latter identification is not natural. It requires the choice of a base point. To
be more explicit let us denote by CR(E) the set of Cauchy-Riemann opera-
tors ∂̄ : C∞(X,E)→ Ω0,1(X,E) which satisfy ∂̄ ◦ ∂̄ = 0. The complexified
gauge group G(E)c = Map(X,C∗) acts on this space by ∂̄ 7→ u−1 ◦ ∂̄ ◦ u
for u ∈ G(E)c. The quotient space CR(E)/G(E)c is the set of holomorphic
structures on E.

Theorem 3.40 Let (X, J, ω) ba a Kähler manifold and E → X be a com-
plex line bundle. Then the map Aω(E) → CR(E) : B 7→ ∂̄B induces a
bijection of quotient spaces

Aω(E)

G(E)
→ CR(E)

G(E)c
.

If the first Chern class c1(E) ∈ H2(X;Z) projects to a class in H1,1(X;C),
then Aω(E) 6= ∅ and there exists a bijection

Aω(E)

G(E)
∼=

H1(X; iR)

H1(X; 2πiZ)
.

Lemma 3.41 Let (X,ω) be a Kähler manifold of real dimension 2n and
α ∈ Ω1(X,R). Then

(dα)0,2 = 0 =⇒ ‖dα‖L2 = n ‖(dα)ω‖L2 .

Proof: Suppose that (dα)0,2 = 0. Since the Dolbeault Laplacian is equal
to half the Hodge Laplacian (see Remark 3.35), we have

dd∗α0,1 + d∗dα0,1 = 2∂̄∂̄∗α0,1 = 2∂̄d∗α0,1.

Since 2α0,1 = α+ iα ◦ J we obtain

∆α0,1 = ∂̄d∗α+ i∂̄d∗(α ◦ J)

=
1

2

(
dd∗α+ i(dd∗α) ◦ J + idd∗(α ◦ J)− (dd∗(α ◦ J)) ◦ J

)
.

The real part on the left is 2−1(d∗dα+dd∗α). Comparing this with the real
part on the right gives

d∗dα = −(dd∗(α ◦ J)) ◦ J.

Take the L2-inner product with α to obtain

‖dα‖2 = ‖d∗(α ◦ J)‖2 = n2 ‖(dα)ω‖2 .

Here we have used Lemma 3.27. 2
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Proof of Theorem 3.40: For a Hermitian connection B ∈ A(E) and a
complex gauge transformation u ∈ Map(X,C∗) = G(E)c define

u∗B = B + u−1∂̄u− ū−1∂ū.

Note that this agrees with the usual action whenever u ∈ Map(X,S1) =
G(E) and that

∂̄u∗B = u−1 ◦ ∂̄B ◦ u
for u ∈ G(E)c.

We prove that, for every B ∈ A0,2(E), there exists a u ∈ Gc(E) such
that u∗B ∈ Aω(E). It suffices to consider gauge transformations of the
form u = eθ, where θ : X → R. In this case

u∗B = B + ∂̄θ − ∂θ

and hence, by Corollary 3.29,

(Fu∗B)ω = (FB)ω + 2(∂∂̄θ)ω = (FB)ω +
i

n
d∗dθ.

This shows that F 0,2
u∗B = 0. Moreover, by Hodge theory, there exists a

function θ such that the right hand side is equal to a constant, namely the
mean value of (FB)ω. With this choice Fu∗B ∈ Aω(E).

Next we prove that if B0, B1 ∈ Aω(E) are complex gauge equivalent
then they are unitarily gauge equivalent. To see this suppose that there is
a function u : X → C∗ such that B1 = u∗B0. Write u in the form u = eθu0

where θ : X → R and u0 : X → S1. Then

b := B1 −B0 = u−1∂̄u− ū−1∂ū = u0
−1du0 + ∂̄θ − ∂θ.

Since B0, B1 ∈ Aω(E), we have (db)0,2 = 0 and (db)ω = 0. Hence, by
Lemma 3.41,

0 = db = d(∂̄θ − ∂θ) = 2∂∂̄θ.

By Corollary 3.29, d∗dθ = 0, hence θ is constant, and hence

B1 = B0 + u0
−1du0 = u0

∗B0.

Thus we have proved that the inclusionAω(E)→ A0,2(E) induces a natural
bijection of quotient spaces

Aω(E)

G(E)
∼=
A0,2(E)

G(E)c
.

If the first Chern class c1(E) is of type (1, 1) then A0,2(E) 6= ∅ and hence,
by what we just proved, Aω(E) 6= ∅.
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It remains to prove that the quotient Aω(E)/G(E) is diffeomorphic to
the torus. To see this fix a base point B0 ∈ Aω(E). By Lemma 3.41,

Aω(E) =
{
B0 + b | b ∈ Ω1(X, iR), db = 0

}
.

Hence the map B0 + b 7→ b determines is a bijection of quotient spaces

Aω(E)

G(E)
∼=

ker(d : Ω1(X, iR)→ Ω2(X, iR))

{u−1du |u : X → S1}
.

By Proposition 5.30 in Section 5.4 below, a closed 1-form b ∈ Ω1(X, iR)
has the form b = u−1du for some smooth map u : X → S1 if and only if all
its periods are integer multiples of 2πi. Hence the quotient Aω(E)/G(E)
can be identified with the torus H1(X; iR)/H1(X; 2πiZ) as claimed. 2

Theorem 3.40 has interesting connections with symplectic geometry.
The space A(E) carries a natural symplectic form Ω defined by

ΩB(b, b′) = −
∫
X

b ∧ b′ ∧ ωn−1.

This form is easily seen to be nondegenerate and closed. There is a com-
patible complex structure given by

b 7→ ∗
(
b ∧ ωn−1

(n− 1)!

)
= −b ◦ J.

(See Lemma 3.27.) The submanifold A0,2(E) is invariant under the com-
plex structure and hence the restriction of the form Ω to A0,2(E) is still
nondegenerate. The action of the gauge group G(E) is a Hamiltonian one
and the moment map is given by

B 7→ n!((FB)ω − µ).

Here the number µ is given by (3.16) and is chosen such that the image
of the moment map consists of all functions with mean value zero. Thus
the space Aω(E)/G(E) is the Marsden-Weinstein quotient. The proof of
Theorem 3.40 shows that the quotient of the total space A0,2(E) by the
complexified gauge group can be identified with the symplectic reduction

A0,2(E)//G(E) = Aω(E)/G(E)

at the zero set of the moment map. This is an infinite dimensional analogue
of the GIT quotient for Hamiltonian group actions on finite dimenaional
Kähler manifolds.
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In the 4-dimensional case Aω(E) is the space of anti-self-dual connec-
tions and hence there is a one-to-one correspondence between gauge equiv-
alence classes of anti-self-dual S1-connections and isomorphism classes of
holomorphic line bundles. This is a simple model case for the much deeper
theorem of Donaldson relating stable holomorphic rank-2 bundles over
Kähler surfaces to anti-self-dual U(2)-connections (cf. [21, Chapter 6]).

3.6 The Hirzebruch-Riemann-Roch theorem

Let (X, J, ω) be a Kähler manifold of real dimension 2n. Fix a holomorphic
vector bundle E → X and consider the ∂̄-complex

Ω0,0(X,E)
∂̄−→ Ω0,1(X,E)

∂̄−→ · · · ∂̄−→ Ω0,n(X,E).

In the integrable case we have

∂̄ ◦ ∂̄ = 0

and the cohomology groups are denoted by

H0,k

∂̄
(X,E) =

ker ∂̄

im ∂̄
.

The alternating sum of the dimensions is an invariant of the tangent bun-
dle TX and the vector bundle E. It is called the holomorphic Euler
characteristic of the pair (X,E) and is denoted by

χ(X,E) =

n∑
k=0

(−1)k dimc H0,k

∂̄
(X,E).

In the almost complex case there is no canonical ∂̄-operator on a non-
trivial complex vector bundle. However, given a connection B on E one
can consider the associated operator ∂̄B : Ω0,k(X,E) → Ω0,k+1(X,E) as
above. In general, the composition ∂̄B ◦ ∂̄B will be nonzero and then there
is no corresponding chain complex. Note, however, that in the integrable
case the holomorphic Euler characteristic can be expressed as the complex
Fredholm index of the operator

∂̄B + ∂̄∗B : Ω0,ev(X,E)→ Ω0,odd(X,E).

Thus in the almost complex case it is natural to extend the definition of
the holomorphic Euler-characteristic via

χ(X,E) = indexc(∂̄B + ∂̄∗B).
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This number is independent of the connection B and depends only on
the homotopy class of the almost complex structure J . The Hirzebruch-
Riemann-Roch theorem expresses this number in terms of the Chern classes
of (TX, J) and E.

Theorem 3.42. (Hirzebruch-Riemann-Roch) Let E → X be a com-
plex vector bundle over an almost complex manifold (X, J). Then the twis-
ted J-holomorphic Euler characteristic is given by

χ(X,E) =

∫
X

ch(E) ∧ td(TX)

where ch(E) denotes the Chern character and td(TX) denotes the Todd
class of the tangent bundle with the almost complex structure J .

The Todd class and Chern character of a complex vector bundle
E → X are integral cohomology classes given by the formulae

td(E) =
m∏
j=1

xj
1− e−xj

, ch(E) =

m∑
j=1

exj

where the xj are to be understood as formal variables of degree 2 repre-
senting the first Chern classes of line bundles Lj in a decomposition

E = L1 ⊕ L2 ⊕ · · · ⊕ Lm

if such a decomposition exists. The total Chern class of E can be ex-
pressed in the form

c(E) = 1 + c1(E) + · · ·+ cm(E) =

m∏
j=1

(1 + xj).

The individual Chern classes cj(E) are the elementary symmetric functions
in the variables x1, . . . , xm. Conversely, every symmetric function in the xj
can be expressed in terms of the elementary symmetric functions and hence
in terms of the Chern classes of E. This is how the above formulae for td(E)
and ch(E) should be interpreted when E does not decompose. In particular,
when X is a 4-manifold, we have

td(E) = 1 +
1

2
c1(E) +

1

12
(c1(E)2 + c2(E))

and, with m = rankE,

ch(E) = m+ c1(E) +
1

2
(c1(E)2 − 2c2(E)).

This leads to the following index formula in dimension 4.
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Corollary 3.43 The holomorphic Euler characteristic of a compact con-
nected almost complex manifold (X,J) is given by

χ(X,O) =
1

4
σ(X) +

1

4
χ(X) =

1− b1 + b+

2

where σ(X) denotes the signature, χ(X) the ordinary Euler characteristic,
and b1, b2 = b+ + b− the Betti numbers. After twisting by a line bundle E
we have

χ(X,E) =
1

8
〈c1(K∗ ⊗ E2)2, [X]〉 − 1

8
σ(X).

where K = det(T ∗X) = Λ2,0T ∗X is the canonical bundle.

Proof 1: If E = C is the trivial bundle then the formula of the Hirzebruch-
Riemann-Roch theorem gives

χ(X,O) = 〈td(TX), [X]〉

=
1

12
〈c1(TX)2 + c2(TX), [X]〉

=
1

12
〈c1(TX)2 − 2c2(TX), [X]〉+

1

4
〈c2(TX), [X]〉

=
1

4
σ(X) +

1

4
χ(X).

Here we have used χ(X) = 〈c2(TX), [X]〉 (see Remark 1.37) and the Hirze-
bruch signature formula (1.9). Note that, in terms of the Betti numbers,
χ(X) = 2 − 2b1 + b+ + b− and σ(X) = b+ − b−. It follows that for com-
pact Kähler surfaces the number b0 − b1 + b+ must be even and we have
χ(X,O) = 1

2 (1− b1 + b+) as claimed. In general

χ(X,E) =
1

2
〈c1(E)c1(TX) + c1(E)2, [X]〉+

1

12
〈c1(TX)2 + c2(TX), [X]〉

=
1

8
〈(c1(TX) + 2c1(E))2, [X]〉 − 1

24
〈c1(TX)2 − 2c2(TX), [X]〉

=
1

8
〈c1(K∗ ⊗ E2)2, [X]〉 − 1

8
σ(X).

Here we have again used the Hirzebruch signature theorem. This proves
the corollary. 2

Proof 2: Here is a proof of Corollary 3.43 in the case E = C, which does
not rely on Theorem 3.42. Assume that (X,ω) is a symplectic manifold with
compatible almost complex structure J ∈ J (X,ω). Consider the operator

D : Ω0,1(X)→ Ω0,0(X)⊕ Ω0,2(X)
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defined by
Dτ1 = (∂̄∗τ1, ∂̄τ1 − τ̄1 ◦NJ/4)

where NJ : TX ⊗ TX → TX denotes the Nijenhuis tensor of J . This is
a compact (but not necessarily complex linear) perturbation of ∂̄ + ∂̄∗ :
Ω0,1 → Ω0,0 ⊕ Ω0,2. Hence the real Fredholm index of D is

indexD = −2χ(X,O)

Moreover, D is isomorphic to the self-duality operator D+ = d∗ ⊕ d+ (see
Lemma 8.15). There is a commutative diagram

Ω0,1(X)
D−→ Ω0,0(X)⊕ Ω0,2(X)

↓ ↓
Ω1(X, iR)

D+

−→ Ω0(X, iR)⊕ Ω2,+(X, iR)

where the vertical isomorphisms are given by

τ1 7→ τ1 − τ̄1, (τ0, τ2) 7→ (2iIm τ0, i(Re τ0)ω + τ2 − τ̄2).

The commutativity of the diagram can be expressed in the explicit form

d∗β = 2iIm ∂̄∗β0,1, (dβ)ω = iRe (∂̄∗β0,1), (dβ)0,2 = ∂̄β0,1 +
1

4
β1,0 ◦NJ .

for β ∈ Ω1(X, iR) with τ1 = β0,1. These identities follow from Corol-
lary 3.28 and Proposition 3.16. But the kernel and cokernel of D+ are
ker D+ = H1(X; iR) and cokerD+ = H0(X; iR)⊕H2,+(X; iR). Hence

χ(X,O) = −1

2
indexD+ =

1 + b+ − b1
2

=
χ(X) + σ(X)

4
.

This proves the result in the case of the trivial bundle. 2

The proof of Corollary 3.43 shows how the Cauchy-Riemann operator
can be used to construct a natural orientation

εJ ∈ Or(H0(X)⊕H1(X)⊕H2,+(X))

on the cohomology of an almost complex manifold (X, J). To see this con-
sider the operator family Dt : Ω0,1(X) → Ω0,0(X) → Ω0,2(X) defined by
Dtτ1 = (∂̄∗τ1, ∂̄τ1 − tτ̄1 ◦ NJ/4) for 0 ≤ t ≤ 1. For t = 0 this operator
is complex linear and hence its kernel and cokernel carry natural complex
structures. Trivializing the determinant line bundle over the path t 7→ Dt

of Fredholm operators gives rise to an orientation of det(D1) ∼= det(D+)
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where the last isomorphism is as in the proof of Corollary 3.43 (see Ap-
pendix A). The orientation of det(D+) can be interpreted as an orientation
of ker D+⊕cokerD+ ∼= H0(X)⊕H1(X)⊕H2,+(X) which will be denoted
by εJ .

Let us denote by J (X) the set of almost complex structures on X.
In [16, 17] Donaldson proved that there is an involution

J (X)→ J (X) : J 7→ J̃

such that

c1(TX, J̃) = c1(TX, J), εJ̃ = −εJ .

This shows, in particular, that J̃ and J lie in different components of J (X)
even though the complex vector bundles (TX, J) and (TX, J̃) are isomor-
phic. (See Exercises 1.43 and 1.44.) In [15] it was proved by Connolly, Lé
Hông, and Ono that if J is compatible with some Kähler form ω then J̃ is
not compatible with any Kähler form. Their proof uses the Seiberg-Witten
invariants.

3.7 Kähler-Einstein metrics

Let (X, J, ω) be a Kähler manifold and R ∈ Ω2(X,End(TX)) denote the
curvature tensor of the Kähler metric. The first statement in Lemma 3.33
asserts that, for all u, v ∈ TxX, the endomorphism R(u, v) is complex linear
and hence is a skew-Hermitian transformation of TxX. This is an example
of the general fact that the curvature of a G-connection is a 2-form with
values in the Lie algebra g = Lie(G). The equation R(u, v) = R(Ju, Jv)
asserts that the curvature is a form of type (1, 1). (See Remark 3.7.) The
condition S(u, v) = S(Ju, Jv) asserts that the Ricci-form

ρ(v, w) = ρω(v, w) = S(Jv,w)

is skew-symmetric. Moreover, it turns out that this form is always closed
and in fact represents the first Chern class of the tangent bundle TX. To
see this note that

ρ(v, w) =
1

2
trace(JR(v, w)) = itracec(R(u, v)).

Here trace denotes the real trace of JR(v, w) ∈ End(TX). This endomor-
phism is Hermitian and hence half the real trace agrees with the complex
trace of JR(v, w) and hence with itracec(R(u, v)). Now we know from the
general theory of connections that the 2-form (i/2π)tracec(F∇) is closed
and represents the first Chern class of the bundle for any Hermitian con-
nection ∇. Thus we obtain the following.
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Lemma 3.44 If (X, J, ω) is a Kähler manifold with Ricci-form ρω then
dρω = 0 and the first Chern class of TX is given by c1(TX) = [ρω]/2π.

A Kähler manifold (X, J, ω) is called a Kähler-Einstein manifold if
the Kähler metric g is an Einstein metric. This means that the Ricci tensor
S is a multiple of the metric tensor g, i.e.

S = λg

(see Lemma 2.7). Moreover, the constant is given by λ = s/2n where X
has real dimension 2n and s is the scalar curvature, which by Lemma 2.7
is constant in the case n ≥ 2. Since ρω(v, w) = S(Jv,w) and ω(v, w) =
g(Jv,w) the identity S = λg can be expressed in the form

ρω =
s

2n
ω. (3.17)

Example 3.45. (Riemann surfaces) Let Σ be a compact oriented Rie-
mann surface with a complex structure J which is compatible with the
orientation. Let g be a Riemannian metric on Σ which is compatible with
J and let ωg be the corresponding volume form. Then (Σ, J, ωg) is a Kähler
manifold of complex dimension 1. By Lemma 3.33, the Ricci tensor Sg sat-
isfies Sg(u, v) = Sg(Ju, Jv) and Example 3.1 shows that Sg is, at each point
of Σ, a scalar multiple of the Riemannian metric g. The proof of Lemma 2.7
shows that the factor is half the scalar curvature sg or, equivalently, the
Gauss curvature Kg:

Sg =
1

2
sgg = Kgg.

Note, however, that in dimension 2 this does not imply that the scalar
curvature is constant. Example 3.1 also shows that any other metric which
is compatible with J lies in the same conformal class as g and, by Theo-
rem 2.20, there is up to scaling a unique metric of constant scalar curvature
in each conformal class. Hence every compact oriented Riemann surface ad-
mits a Kähler-Einstein metric with constant scalar curvature. 2

Example 3.46. (Euclidean space) The standard Kähler structure on
Cn with coordinates z1 = x1 + iy1, . . . , zn = xn + iyn is given by the
Euclidean metric and the standard complex structure i. The corresponding
symplectic form

ω0 =

n∑
j=1

dxj ∧ dyj

can also be expressed in the form

ω0 =
1

2i

n∑
j=1

dz̄j ∧ dzj .
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or, equivalently,

ω0 =
1

2i
∂̄∂f, f(z) =

n∑
ν=1

|zν |2

where

∂ =

n∑
j=1

∂

∂zj
dzj , ∂̄ =

n∑
j=1

∂

∂z̄j
dz̄j

with
∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
,

∂

∂z̄j
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
and dzj = dxj + idyj , dz̄j = dxj − idyj . 2

Let f : Cn → R be a smooth function. Then the 2-form

ω =
1

2i
∂̄∂f (3.18)

on Cn is real valued and closed. Moreover, it satisfies ω(Jv, Jw) = ω(v, w)
and hence is of type (1, 1). It is compatible with the standard complex
structure if and only if the Hermitian matrix

H =

(
∂2f

∂z̄j∂zk

)
is positive definite (for all z ∈ Cn). In this case the Kähler metric associated
to ω is given by

gω(v, w) = Re

n∑
j,k=1

v̄j
∂2f

∂z̄j∂zk
wk

for v, w ∈ Cn.

Lemma 3.47 The Ricci-form of the Kähler metric gω is given by

ρω =
1

2i
∂̄∂ϕ, ϕ = −2 log det

(
∂2f

∂z̄j∂zk

)
.

Proof: Kobayashi-Nomizu [57], Volume II, pp.155–158. 2

That the sign and the constant are correct in this equation can be
checked in the example of the standard 2-sphere (see Example 3.48 below).
It follows from Lemma 3.47 that the Kähler form (3.18) gives rise to a
Kähler-Einstein metric with factor λ = s/2n if and only if

2 log det

(
∂2f

∂z̄j∂zk

)
+ λf = h (3.19)
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where h : Cn → R satisfies ∂̄∂h = 0 (i.e. h is an affine map). Hence the
scalar curvature of the Kähler metric gω is given by

sω = 2nλ (3.20)

whenever ω is given by (3.18) and f satisfies (3.19).

Example 3.48. (2-sphere) Identify S2 with C ∪ {∞} via stereographic
projection

C→ S2 : z 7→
(

2Re z

|z|2 + 1
,

2Im z

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

The pullback of the standard area form (with total area 4π) under this
map is given by

ω =
4dx ∧ dy

(1 + x2 + y2)2
=

2dz̄ ∧ dz
i(1 + |z|2)2

=
1

2i
∂̄∂f

where
∂2f

∂z̄∂z
=

4

(1 + |z|2)2

A function f : C→ R which satisfies this equation is given by

f(z) = 4 log(1 + |z|2).

Hence

2 log

(
∂2f

∂z̄∂z

)
+ f = 4 log 2

and so f satisfies (3.19) with λ = 1. Hence sω = 2. 2

Example 3.49. (Complex projective space) A point in CPn is a com-
plex line ` ⊂ Cn+1 or an equivalence class [z0 : z1 : · · · : zn] of nonzero vec-
tors in Cn+1 under the equivalence relation [z0 : · · · : zn] ≡ [λz0 : · · · : λzn]
for λ ∈ C−{0}. This manifold can be described by n+1 coordinate patches

Uj = {[z0 : z1 : · · · : zn] | zj = 1} .

The transition maps are obviously holomorphic and hence the manifold
carries a complex structure. A compatible Kähler form is given by the
formula

ωj =
1

2πi
∂̄∂fj , fj(z) = log

1 +
∑
ν 6=j

|zν |2


over the coordinate patch Uj . ωj is the restriction of the form
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ω =
1

2πi|z|2
n∑
j=0

dz̄j ∧ dzj −
1

2πi|z|4
n∑
j=0

zkdz̄k ∧ z̄jdzj

on Cn+1 − {0} to the affine subspace zj = 1. The cohomology class of ω is
an integral class with area 1 over the standard 2-sphere CP 1 ⊂ CP 2. The
corresponding metric on CPn is called the Fubini-Study metric. The
reader may check that the function fj satisfies the condition (3.19) with
λ = 2n + 2. Hence CPn is a Kähler-Einstein manifold with positive Ricci
tensor. It has scalar curvature

sω = 4πn(n+ 1).

The additional factor π arises from the factor 1/π in ωj = ∂̄∂fj/2πi. Note
that in the case n = 1 the standard metric differs by a factor 4π from the
Fubini-Study metric on S2 ∼= CP 1. 2

For any Kähler manifold (X, J, ω) the Ricci-form ρω is a closed 2-form
of type (1, 1) such that (2π)−1ρω represents the first Chern class of TX.
In 1957 Calabi first posed the question whether any such form ρ appears
as the Ricci form of some Kähler metric. An affirmative answer to this
question is a deep theorem in Kähler geometry which is due to Yau.

Theorem 3.50. (Yau) Let (X, J) be a complex manifold which admits a
Kähler metric in the cohomology class a ∈ H2(X;Z). Then for every closed
2-form ρ ∈ Ω2(X) such that

ρ(v, w) = ρ(Jv, Jw),
1

2π
[ρ] = c1(TX, J)

there exists a unique Kähler form ω such that

ρ = ρω, [ω] = a.

In other words, this theorem asserts that the map ω 7→ ρω is a bijection
from the space of Kähler forms representing the class a to the space of
(1, 1)-forms representing the class c1. The question of the existence of a
Kähler-Einstein metric can now be rephrased as the existence of a fixed
point of the projectivization of this map. An obvious necessary condition for
the existence of such a metric is that the cohomology class c1 = c1(TX, J)
is a multiple of the Kähler class [ω] for some Kähler form. Yau proved that
this condition is also sufficient, provided that the factor is nonpositive.

Theorem 3.51. (Yau) Let (X, J, ω) be a Kähler manifold such that

c1(TX, J) = λ[ω], λ ≤ 0.

Then X admits a Kähler-Einstein metric.
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In particular, this shows that every Kähler manifold with vanishing first
Chern class admits a Ricci-flat Kähler metric.

Remark 3.52 The condition λ ≤ 0 in Theorem 3.51 cannot be removed.
The Kähler surfaces which satisfy c1(TX, J) = λ[ω] for some λ > 0 are
CP 1 ×CP 1 and CP 2 with up to eight points blown up. Tian [122] proved

that among these only CP 2#CP 2
and CP 2#CP 2

#CP 2
do not admit

Kähler-Einstein metrics. 2

3.8 Minimal Kähler surfaces

Let X be a compact smooth 4-manifold. An exceptional sphere in X is
an embedded 2-sphere with self-intersection number S ·S = −1. If (X,ω) is
a symplectic manifold then a submanifold S ⊂ X is called an exceptional
symplectic sphere in X if it is an exceptional sphere and a symplectic
submanifold. If (X,J) is a complex surface, then a submanifold S ⊂ X is
called an exceptional divisor if it is an exceptional sphere and a holo-
morphic curve. A complex surface (X, J) is called minimal if it does not
contain any exceptional divisor. Likewise, a symplectic 4-manifold (X,ω) is
called minimal if it does not contain any exceptional symplectic spheres.

The significance of these definitions lies in the fact that if S ⊂ X is an
exceptional sphere then there exists a 4-manifold X ′ and a diffeomorphism

X ∼= X ′#CP 2

which identitfies S with CP 1. Moreover, if X is symplectic (respectively
Kähler) and S is symplectic (respectively complex) then X ′ can be chosen
to be symplectic (respectively Kähler). Here is how this works.

Blowing up a point

We describe a construction called blowing up a point. The data required
for this construction are a smooth 4-manifold X, a point x0 ∈ X, an open
neighbourhood Ur of x0, and a diffeomorphism ϕ : Ur → Br, where

Br = {w ∈ C2 | |w| < r}.

Denote by Wr ⊂ Br × CP 1 the submanifold

Wr =
{

(w0, w1, [z0 : z1]) ∈ Br × CP 1 |w0z1 = w1z0

}
.

By Exercise 3.55 below, this is a disc bundle in a line bundle L→ CP 1 with
Chern number −1. Hence the zero section E = {0}×CP 1 is an exceptional
sphere. The projection πr : Wr → Br restricts to a diffeomorphism from
Wr − E → Br − {0}. The blowup X̃ = X̃(ϕ) of X at x0 is defined as the
quotient
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X̃ = (X − {x0}) ∪Wr/ ∼,

where x ∈ X − {x0} is equivalent to (w, `) ∈ Wr if and only if x ∈ Ur and
ϕ(x) = w. By Exercise 3.54, Wr is diffeomorphic to the complement of a
ball in CP 2 and hence

X̃ ∼= X#CP 2
.

Moreover, there is a natural projection π : X̃ → X which maps the excep-
tional sphere E ⊂Wr to x0 and is a diffeomorphism on X̃ − E.

Exercise 3.53 Show that the diffeomorphism type of X̃(ϕ) is independent
of the choice of ϕ. 2

Exercise 3.54 Prove that the map

Wr → CP 2 : (w0, w1, [z0 : z1]) 7→ [z0 : z1 : z0w̄0 + z1w̄1]

is an orientation reversing embedding and that the image is the complement
of a ball. Hint: [z0 : z1 : z0w̄0 + z1w̄1] = [w0 : w1 : |w0|2 + |w1|2]. 2

Exercise 3.55 Let L→ CP 1 be the line bundle whose fibre over ` ∈ CP 1

is the line ` itself. Prove that 〈c1(L), [CP 1]〉 = −1. Hint: Find a section
with precisely one nondegenerate zero. 2

Proposition 3.56 (i) Let (X, J) be a complex surface and ϕ : Ur → Br
be a holomorphic coordinate chart. Then X̃(ϕ) admits a unique complex

structure J̃ such that E is an exceptional divisor and the projection π :
X̃ → X is holomorphic.

(ii) Let (X,ω) be a symplectic 4-manifold and ϕ : Ur → Br be a Darboux

chart. Fix a real number λ ∈ (0, r). Then X̃(ϕ) admits a symplectic struc-
ture ω̃λ such that E is an exceptional symplectic sphere of area πλ2 and
the projection π : X̃ − Ũr → X − Ur is a symplectomorphism.

(iii) Let (X, J, ω) be a Kähler surface and ϕ : Ur → Br be a holomorphic

coordinate chart. Then, for λ ∈ (0, r) sufficiently small, X̃(ϕ) admits a

Kähler form ω̃λ which is compatible with J̃ such that E has area πλ2 and
the projection π : X̃ − Ũr → X − Ur is a Kähler isomorphism.

Proof 1: To prove (i) note that Wr is a complex submanifold of Br×CP 1

and the projection πr : Wr → Br is holomorphic. Hence X̃(ϕ) admits a

complex structure J̃ which is equal to J on X−{x0} and equal to i on Wr.
We prove (ii) for λ > 0 sufficiently small. Let (X,ω) be a symplectic

manifold and π : X̃ → X be a smooth blowup of X at x0. Choose a
tubular neighbourhood Ũ ⊂ X̃ of the exceptional divisor E and denote by
p : Ũ → E the projection. Let τ be a symplectic form on E of area π. Since
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Ũ − E is diffeomorphic to the punctured 4-ball, the restriction of p∗τ to
Ũ − E is exact. Hence there exists a 1-form σ ∈ Ω1(Ũ − E) such that

p∗τ |
Ũ−E = dσ.

Let β : Ũ → [0, 1] be a smooth cutoff function which is equal to 1 near E

and equal to 0 near ∂Ũ . Then the 2-form

ω̃ = π∗ω + λ2d(βσ)

is nondegenerate for λ > 0 sufficiently small.
To prove (iii) let (X, J, ω) be a Kähler surface and π : (X̃, J̃)→ (X, J) a

complex blowup of X at x0. Let p : Ũ → E be a holomorphic projection of
a tubular neighbourhood and τ ∈ Ω2(E) be a symplectic form of area π. In
dimension 2 any symplectic form is compatible with any complex structure.
Hence p∗τ is of type (1,1). Hence there exists a function h : Ũ − E → R
such that p∗τ |

Ũ−E = i∂∂̄h. Let β be as above. Then the 2-form

ω̃ = π∗ω + λ2i∂∂̄(βh)

is nondegenerate and compatible with J̃ for λ > 0 sufficiently small. 2

Proof 2: Following McDuff et al [83] we prove (ii) for every λ < r. Let
(X,ω) be a symplectic manifold and suppose that ϕ : (Ur, ω) → (Br, ω0)
is a Darboux chart. Fix a positive real number λ < r and consider the
symplectic form ωλ on C2 − {0} given by

ωλ =
i

2
∂∂̄(|w|2 + λ2 log |w|2)

=
i

2

((
1 +

λ2

|w|2

) 1∑
j=0

dwj ∧ dw̄j −
λ2

|w|4
1∑

j,k=0

w̄jwkdwj ∧ dw̄k
)
.

We leave it as an exercise to prove that πδ
∗ωλ extends to a symplectic form

on Wδ for any δ > 0. Choose δ =
√
r2 − λ2 and define the diffeomorphism

fλ : Bδ−{0} → Br−cl(Bλ) by fλ(w) =
√

1 + λ2/|w|2w. Then fλ
∗ω0 = ωλ

(Exercise 3.57). Consider the manifold

X̃λ = (X − cl(Uλ)) ∪Wδ/ ∼,

where x ∈ X − cl(Uλ) is equivalent to (w, `) ∈ Wδ if and only if λ <
|ϕ(x)| < r and ϕ(x) = fλ(w). This manifold admits a symplectic form τ̃λ
which is equal to ω on X − cl(Uλ) and equal to ωλ on Wδ. Geometrically,

X̃λ is obtained from X by removing an open ball of radius λ and forming
the quotient of the boundary by the standard circle action.
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We construct a diffeomorphism f̃ : X̃ → X̃λ such that composition
π ◦ f̃−1 : X̃λ → X is a symplectomorphism on X − Ur. Let 0 < ε < δ and
α : [0, r]→ [λ, r] be a smooth function such that

α(t) =

{√
λ2 + t2, for 0 ≤ t ≤ ε,

t, for t near r,
α′(t) > 0,

and define f : Br − {0} → Br − cl(Bλ) by f(w) := α(|w|)w/|w|. The

required diffeomorphism f̃ : X̃ → X̃λ is given by

f̃(x) :=

{
x, for x ∈ X − Ur,

ϕ−1 ◦ f ◦ ϕ(x), for x ∈ Ur − {x0},

for x ∈ X − {x0} and by f̃(w, `) = (fλ
−1 ◦ f(w), `) for (w, `) ∈ Wδ. The

symplectic structure on X̃ is given by

ω̃λ := f̃∗τ̃λ ∈ Ω2(X̃).

On X − Ur this form agrees with ω and on Ur − {x0} it is given by ω̃λ =
ϕ∗f∗ω0. Since f |Bε = fλ it follows that ω̃ = ϕ∗ωλ on Uε and hence ω̃ agrees
with ωλ on Wε. Hence E = {0}×CP 1 is an exceptional symplectic sphere.

Now suppose that (X,J, ω) is a Kähler manifold. Choose holomorphic
coordinates ϕ : (U, J) → (B, i) near x0 such that ω agrees with ϕ∗ω0

at x0. By Exercise 3.59, ω can be deformed within its cohomology class
to a Kähler form (still denoted by ω) which agrees with ϕ∗ω0 near x0

and with ω outside a small neighbourhood of x0. Hence we may assume
that ϕ : (Ur, ω, J) → (Br, ω0, i) is a Kähler isomorphism for some r > 0.
Under this assumption it follows from Exercise 3.58 that the above form
ω̃λ is compatible with J̃ . Hence (X̃, J̃ , ω̃λ) is a Kähler surface and E is an
exceptional divisor. 2

Exercise 3.57 Prove that ωλ is compatible with i. Prove that π∗ωλ ex-
tends to a symplectic form on W and that fλ

∗ω0 = ωλ. 2

Exercise 3.58 Let α : (0,∞) → (0,∞) be a smooth function such that
α′(t) > 0 for every t > 0. Consider the function f : R2n−{0} → R2n−{0},
defined by f(z) = α(|z|)z/|z|. Prove that f∗ω0 is compatible with J0. 2

Exercise 3.59 Let ω ∈ Ω2(Cn) be a symplectic form that is compatible
with i and agrees with ω0 at the origin. Prove that there exists a smooth
function h : Cn → R which vanishes up to second order at z = 0 and
satisfies ω = ω0 + i∂∂̄h. Let β : Cn → R be a smooth cutoff function which
vanishes in the unit ball and is equal to 1 outside the ball of radius 2. For
r > 0 define βr(z) = β(z/r). Prove that, for r > 0 sufficiently small, the
2-form ωr = ω0 + i∂∂̄(βrh) is nondegenerate, compatible with i, and agrees
with ω0 on the ball of radius r and with ω outside the ball of radius 2r. 2



98 COMPLEX GEOMETRY

Blowing down an exceptional divisor

The next result is the converse of Proposition 3.56. It asserts that every
smooth 4-manifold which contains an exceptional sphere is diffeomorphic
to the blowup of some 4-manifold X ′. Moreover, if X carries a complex,
symplectic, or Kähler structure then so does X ′. In the smooth case the
result is obvious and in the symplectic case it was noted by Gromov [46].
The proof in the complex case relies on the Grauert criterion [42, 43, 8].
Grauert’s theorem extends the Castelnuovo–Enriques criterion which only
applies to the algebraic case [45, page 476].

Theorem 3.60 Let X be a compact smooth 4-manifold and S ⊂ X be an
exceptional sphere.

(i) There exists a smooth 4-manifold X ′, a point x′0 ∈ X ′, and a projection
π : X → X ′ such that π−1(x′0) = S and the restriction π : X − S →
X ′ − {x′0} is a diffeomorphism.

(ii) If (X,J) is a complex manifold and S is a complex submanifold then
X ′ admits a complex structure J ′ and π can be chosen holomorphic.

(iii) If (X,ω) is a symplectic manifold and S is an exceptional symplectic
sphere then X ′ admits a symplectic form ω′ and π can be chosen to be a
symplectomorphism outside an arbitrarily small neighbourhood of S.

(iv) Let (X, J, ω) be a Kähler surface, S ⊂ X be an exceptional divisor,
and π : (X, J)→ (X ′, J ′) be a holomorphic projection as in (ii). Then there
exists a Kähler form ω′ on (X ′, J ′) such that π is a Kähler isomorphism
outside an arbitrarily small neighbourhood of S.

Proof: The normal bundle of S has Euler number −1. Hence, by Exer-
cise 3.55, there exists a tubular neighbourhood Vδ of S and a diffeomor-
phism ψ : Vδ → Wδ which identifies S ⊂ Vδ with E = {0} × CP 1 ⊂ Wδ.
We define

X ′ = (X − S) ∪Bδ/ ∼,

where x ∈ X − S is equivalent to w ∈ Bδ if and only if x ∈ Vδ and
πδ(ψ(x)) = w. The manifold X ′ is obtained from X by cutting out the
tubular neighbourhood Vδ of S and replacing it with a copy of the open
unit ball Bδ ⊂ C2. The original manifold X can be reconstructed by cutting
out the ball Bδ and replacing it with a copy of Wδ. Moreover, there is an
obvious projection π : X → X ′ which maps X − S diffeomorphically to
X − {x′0}, where x′0 = 0 ∈ Bδ ⊂ X ′. This proves (i).

We prove (ii). It follows from the Grauert criterion [8, Thms 2.1 and 4.1]
that for every exceptional divisor in a complex surface there exist a neigh-
bourhood Vδ and a holomorphic diffeomorphism ψ : (Vδ, J) → (Wδ, i)
which sends S to E. Hence X ′ admits a complex structure J ′ which agrees
with J on X − S and with i on Bδ. With this complex structure the pro-
jection π : X → X ′ is holomorphic.



MINIMAL KÄHLER SURFACES 99

The proof of (iii) relies on the symplectic neighbourhood theorem [85,
Theorem 3.30]. In the present case the theorem asserts that, for every
exceptional symplectic sphere S of area πλ2, there exist a δ > 0, a neigh-
bourhood Vδ of S, and a symplectomorphism ψ : (Vδ, ω)→ (Wδ, ωλ) which
identifies S with E. Let r =

√
λ2 + δ2 and define

X ′λ = (X − S) ∪Br/ ∼,

where x ∈ X − S is equivalent to z ∈ Br if and only if x ∈ Vδ, λ < |z| < r,
and fλ ◦ πδ ◦ ψ(x) = z. Then X ′λ admits a symplectic form τ ′λ which is
equal to ω on X−S and to ω0 on Br. Note that X ′λ is obtained from X by
replacing the exceptional sphere S with the ball Bλ while X ′ is obtained
from X by replacing S with a single point x′0.

We construct a diffeomorphism f ′ : X ′ → X ′λ such that the composition
f ′ ◦ π : X → X ′λ is a symplectomorphism on X − Vδ. Let 0 < ε < δ and
β : [0, δ]→ [0, r] be a smooth function such that

β(t) =

{
λt/ε, for 0 ≤ t ≤ ε,√

λ2 + t2, for t near δ,
β′(t) > 0.

Define g : Bδ → Br by

g(w) :=
β(|w|)
|w|

w.

The required diffeomorphism f ′ : X ′ → X ′λ is then given by

f ′(x) :=

{
x, for x ∈ X − Vδ,

(πδ ◦ ψ)−1 ◦ fλ−1 ◦ g ◦ (πδ ◦ ψ)(x), for x ∈ Vδ − Vε,

for x ∈ X − Vε and by f ′(w) := g(w) for w ∈ Bδ. This diffeomorphism
identifies the ball Bε ⊂ X ′ with Bλ ⊂ X ′λ. The symplectic structure on X ′

is given by
ω′λ := f ′

∗
τ ′λ ∈ Ω2(X ′).

This form agrees with ω on X − Vδ and with (πδ ◦ψ)∗g∗ω0 on Vδ − Vε. On
Bδ −Bε it is given by g∗ω0 and on Bε by λω0/ε.

If (X, J, ω) is a Kähler manifold and S is an exceptional divisor then,
by (ii), X ′ admits a complex structure J ′ such that the projection π : X →
X ′ is holomorphic. In [94] Miyaoka proved that for every Kähler form ω
on the punctured ball B − {0} there exists a Kähler form ω′ on B which
agrees with ω near the boundary. Hence there exists a Kähler form ω′ on
(X ′, J ′) such that π is a Kähler isomorphism outside a neighbourhood of
the exceptional divisor. This proves the theorem. 2

Remark 3.61 In [42] Grauert proved that a system of rational curves
C1, . . . , Cn in a complex surface X can be blown down if and only if the
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intersection matrix with entries Ci · Cj is negative definite. In general the
reduced variety is singular, but in the case m = 1 and C1 · C1 = −1 it is
smooth. 2

Remark 3.62 The work of Kodaira [58], Miyaoka [95], and Siu [112] shows
that a complex surface (X, J) admits a Kähler metric if and only if b1(X) is
even. By Proposition 3.56 it suffices to consider minimal complex surfaces.
Kodaira’s classification theorem [58] implies that every minimal complex
surface with even first Betti number is either elliptic or a K3-surface or a
complex torus or algebraic. Miyaoka [95] proved that every elliptic surface
with even first Betti number is Kähler and Siu [112] proved that every com-
plex K3-surface is Kähler. Complex tori and algebraic surfaces obviously
admit Kähler forms. Putting these result together one obtains that every
minimal complex surface with even first Betti number admits a Kähler
form. 2

Minimal Kähler surfaces

Let us now examine minimal Kähler surfaces. Note, for example, that every
spin Kähler surface is minimal. Throughout we denote by K = Λ2,0T ∗X
the canonical bundle of X. Note that c1(K) = −c1(TX).

Proposition 3.63 Every minimal Kähler surface X with b+ > 1 satisfies

c1(K) · c1(K) ≥ 0.

Proof: Assume, by contradiction, that c1(K) · c1(K) < 0. Since b+ > 1
there is a non-zero holomorphic 2-form and hence the canonical bundle K
has a non-zero holomorphic section. Let s : X → K be such a section and
consider its divisor D =

∑
imiVi. Each irreducible component Vi is the

image of some nonconstant holomorphic curve ui : Σi → X defined on
a compact connected Riemann surface (see Appendix F). The first Chern
class of K is given by

c1(K) =
∑
i

miPD([Vi]).

By assumption, c1(K) · c1(K) < 0 and hence the bundle is nontrivial.
This implies that at least one of the curves Vi is nonempty. Suppose first
that each curve is immersed with di regular double points. Any such curve
satisfies the adjunction formula

c1(K) · Vi = 2gi − 2− Vi · Vi + 2di (3.21)

where gi is the genus of Σi. To see this note that the pullback bundle ui
∗TX

splits into the direct sum of the normal bundle and the tangent bundle. The
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first Chern number of the normal bundle is given by c1(νj) = Vj · Vj − 2dj
and the Chern class of the tangent bundle by 2−2gi. Their sum is the Chern
number of ui

∗TX and, since c1(TX) = −c1(K), this number is −c1(K) ·Vi.
This proves (3.21).

Since c1(K) =
∑
imiPD([Vi]) and c1(K) · c1(K) < 0 it follows that

c1(K) · Vi < 0 for some i. Since Vi · Vj ≥ 0 for i 6= j this implies Vi · Vi < 0.
For this value of i the right hand side of (3.21) can only be negative if

gi = 0, Vi · Vi = −1, di = 0.

This means that Vi is an exceptional divisor and hence X is not minimal
in contradiction to our assumption. This proves the proposition in the case
where the Vi are all immersed. The general case can be reduced to this
by a generic perturbation of the complex structure to an almost complex
structure. By a theorem of Nijenhuis and Wolf there exists such a pertur-
bation after which the classes [Vi] are represented by immersed pseudo-
holomorphic curves with regular double points. The important point to
note is that each singularity will contribute a positive number of double
points and hence the number di can only be zero if the original curve Vi
was already embedded. The details of this argument will not be carried
out. (See [89] and [79] for singularities on pseudo-holomorphic curves.) 2

Example 3.64 The assumptions in Proposition 3.63 that X be minimal
and b+ > 1 cannot be removed. Consider for example the product

X = Σ1 × Σ2

of two Riemann surfaces of genus g1 and g2, respectively. This manifold has
Betti-numbers b1 = 2(g1 + g2) and b2 = 2 + 4g1g2 and signature zero. The
intersection form is even and hence the manifold is spin. By the Hirzebruch
signature theorem, c1 · c1 = 2χ+ 3σ = 2(2− 2g1)(2− 2g2). This number is
negative whenever g1 = 0 and g2 > 1 and in this case we have b+ = b− = 1.
That the assumption of minimality is necessary follows by considering the
formulae

χ(X#CP 2
) = χ(X) + 1, σ(X#CP 2

) = σ(X)− 1.

This shows that blowing up a point decreases the number c1(K) · c1(K) =
2χ(X) + 3σ(X) by 1 and so, after blowing up sufficiently many points, this
number will eventually become negative. For surfaces with c1(K) = 0, such
as the 4-torus and the K3-surface, blowing up a single point suffices. 2

Remark 3.65 A minimal Kähler surface (X, J, ω) is said to be of general
type if the canonical class K = −c1(TX, J) satisfies

K ·K > 0, K · ω > 0.
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(compare with Proposition 3.63). For such surfaces the following are equiv-
alent.

(i) There is no embedded holomorphic sphere S with S · S = −2.

(ii) (X, J) admits a Kähler form ω such that c1 = λ[ω] for some λ < 0.

(iii) (X, J) admits a Kähler-Einstein metric.

That (i) implies (iii) was proved by Yau and the implications (iii) =⇒ (ii)
=⇒ (i) are easy exercises. 2

3.9 Hypersurfaces in projective space

Consider the hypersurface of degree d in CP 3

Xd =

[z0 : · · · : z3] ∈ CP 3
∣∣∣ 3∑
j=0

zj
d = 0

 .

This is a smooth manifold and it follows from the Lefschetz hyperplane
theorem that X = Xd is simply connected. Hence the second homology
is generated by π2(X). The second homology splits into the negative and
positive parts under the intersection form and their dimensions are given
in the following proposition. The proof is due to Milnor [91].

Proposition 3.66 The second Betti number of the hypersurface Xd ⊂
CP 3 is given by

b2 = d3 − 4d2 + 6d− 2 (3.22)

and the intersection form QXd has signature

sign(QXd) =
1

3
(4− d2)d. (3.23)

Moreover, the first and second Chern classes of TX are given by

c1(TX) = (4− d)ι∗h, c2(TX) = (6− 4d+ d2)ι∗h2. (3.24)

where h ∈ H2(CP 3;Z) is the canonical generator of H2 and ι : Xd → CP 3

denotes the inclusion.

Proof: The proof relies on the following observations.

(i) The canonical generator of H2(CP 3;Z) is the first Chern class

h = c1(H) ∈ H2(CP 3;Z)

of the canonical line bundle H whose fiber over ` ∈ CP 3 is the space
H` = `∗ of complex linear functionals on `. To see this fix a nonzero vector
w ∈ C4 and consider the section s : CP 3 → H which assigns to ` ∈ CP 3 the
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restriction of the linear functional v 7→ w̄T v to `. This section is transverse
to the zero section and its zero set is a copy of CP 2 in CP 3. Hence h is the
Poincaré dual of the hyperplane class

[CP 2] = PD(h) ∈ H4(CP 3;Z).

Note also that h agrees, up to a positive factor, with the cohomology class
of the standard symplectic structure on CP 3, defined in Example 3.49.

(ii) The tangent bundle of CP 3 satisfies

TCP 3 ⊕ C ' H4 = H ⊕H ⊕H ⊕H.

To see this note that T`CP 3 ∼= Hom(`, `⊥) and C ∼= Hom(`, `).

(iii) The normal bundle νX is a complex line bundle over X and its first
Chern class satisfies

c1(νX) = dι∗h.

where ι : Xd → CP 3 denotes the natural embedding. To see this let Σ ⊂
X be a submanifold such that ι(Σ) ⊂ CP 3 represents a 2-dimensional
homology class of degree k. Then the intersection number of X and Σ is
X · Σ = dk. Now the intersection number is also the oriented number of
zeros of a generic section s : X → νX when restricted to Σ. This means
that 〈c1(νX), [Σ]〉 = dk = d〈ι∗h, [Σ]〉.
(iv) The cohomology class ι∗h2 ∈ H4(X;Z) is given by

〈ι∗h2, [X]〉 = d.

To see this note that h2 is the generator of H4(CP 3;Z) and its Poincaré
dual is a line. Any such line intersects X in d points, counted with multi-
plicity.

With these preparations in place we consider the tangent bundle of CP 3

restricted to the submanifold X = Xd. This bundle splits as TXCP 3 =
TX ⊕ νX and hence

c(TXCP 3) = c(TX)c(νX).

where c = 1 + c1 + c2 denotes the total Chern class. By (ii) we have
c(TXCP 3) = (1 + ι∗h)4 and, by (iii), c(νX) = 1 + dι∗h. Hence

(1 + ι∗h)4 = (1 + c1(TX) + c2(TX))(1 + dι∗h).

Solving this equation, first for c1 and then for c2, we obtain (3.24). Now
use (iv) and the fact that 〈c2(TX), [X]〉 = 2 + b2 is the Euler characteris-
tic to obtain (3.22). Finally, (3.23) follows from the Hirzebruch signature
formula (1.9). 2



104 COMPLEX GEOMETRY

The equations (3.22) and (3.23) together show that the positive and
negative parts of QX are of dimension

b+(X) =
1

3
(d3 − 6d2 + 11d− 3), b−(X) =

1

3
(2d3 − 6d2 + 7d− 3).

Since both numbers are positive (unless d = 1) the form QX is indefinite.
Now for any simply connected Kähler surface X the first Chern class of
TX satisfies

〈c1(TX), α〉 = QX(α, α) (mod 2)

for α ∈ H2(X;Z). In view of (3.24) this means that QX is even (i.e.
QX(α, α) is even for all α ∈ H2(X)) if and only if d is even. Hence the
classification theorem of indefinite quadratic forms (cf. [92]) shows that the
intersection form of Xd, in the odd case, is diagonalizable and so agrees
with that of

X ′d = `CP 2#mCP 2
, ` = b+(X), m = b−(X).

We shall see below that these manifolds have different Seiberg-Witten in-
variants for d ≥ 4 and hence are not diffeomorphic. Moreover, these invari-
ants show that the manifold Xd does not admit a metric of positive scalar
curvature for d ≥ 4 while, by Theorem 2.18, the manifold X ′d does admit
such a metric. The case d = 3 is an exception. In this case one can prove

that the manifold X3 is in fact diffeomorphic to CP 2#6CP 2
.

It is interesting to distinguish the cases d ≤ 3, d = 4, and d ≥ 5. The
manifolds

X1 = CP 2, X2 = S2 × S2, X3 = CP 2#6CP 2

are positive in the sense that the cohomology class [ω] of the restriction of
the Fubini–Study form is a positive multiple of c1. Such manifolds are also
called Fano varieties. The manifold X4 is a compact, connected, simply
connected 4-dimensional Kähler manifold whose first Chern class vanishes.
All 4-manifolds with these properties are diffeomorphic and they are called
K3-surfaces. Their second Betti number is b2 = 22. K3-surfaces have
played an important role in 4-dimensional topology [21]. The manifolds Xd

for d ≥ 5 are surfaces of general type. For all these manifolds the first
Chern class of TXd is a negative multiple of the cohomology class ι∗h = [ω]
of the standard symplectic structure. Note, in particular, that for d ≥ 4
the manifold Xd satisfies the assumptions of Yau’s theorem 3.51 and hence
admits a Kähler-Einstein metric. The manifolds X1 and X2 admit Kähler-
Einstein metrics for obvious reasons. Kähler Einstein metrics on X3 were
found by Tian [122].
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SPIN GEOMETRY

In this chapter the development of the theory that leads up to the
Seiberg-Witten invariants begins in earnest with the discussion of the spin
and spinc groups of a real vector space. As a warmup Section 4.1 deals
with the spin groups in dimensions 3 and 4. Section 4.2 puts these groups
in the more general context of the real and complex Clifford algebras C(V )
and Cc(V ) of an oriented real inner product space V . In Section 4.3 the
groups Spin(V ) and Spinc(V ) are defined and their fundamental properties
discussed. Section 4.4 introduces (irreducible) spinc representations as cer-
tain linear maps Γ : V → End(W ) which extend to algebra isomorphisms
from the complexified Clifford algebra to End(W ). Section 4.5 discusses
the canonical splitting W = W+ ⊕ W− of a spinc representation. Sec-
tion 4.6 introduces spin structures as spinc structures together with a com-
plex anti-linear automorphism of W which commutes with Γ and is either
an involution or another complex structure, depending on the dimension
of V . Section 4.7 discusses the canonical spinc structure Wcan = Λ0,∗V ∗

in the case where the underlying vector space V itself carries a complex
structure. The final section 4.8 examines the action of the exterior algebra
of V on the spinc representation W via its identification with the Clifford
algebra. Here a special emphasis is placed on the 4-dimensional case and
on the canonical spinc structure in the complex case.

To begin with let V be a finite dimensional oriented real Hilbert space
of dimension dim V ≥ 3. Then the group SO(V ) of orientation preserving
orthogonal transformations has fundamental group π1(SO(V )) = Z2. Its
universal cover is called Spin(V ) and there is an exact sequence

1 −→ Z2 −→ Spin(V ) −→ SO(V ) −→ 1.

The group Spinc(V ) is defined by Spinc(V ) = Spin(V )×Z2
S1. This group

is a circle extension of SO(V ) and there is an exact sequence

1 −→ S1 −→ Spinc(V ) −→ SO(V ) −→ 1.

To understand these groups better it is useful to think of them as subgroups
of the Clifford algebra C(V ) or the complexified Clifford algebra Cc(V ) of
V . This will be discussed in Section 4.3.
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4.1 Spin groups in dimensions three and four

The group SO(3) is naturally diffeomorphic to the unit tangent bundle of
the 2-sphere. The diffeomorphism sends an orthogonal matrix to the first
two columns. Now the unit tangent bundle of the 2-sphere is diffeomorphic
to RP 3 and hence the universal cover of SO(3) is the 3-sphere. Geometri-
cally, the nontrivial element in π1(SO(3)) can be realized as a full rotation
around one axis. Explicitly, the universal cover can be described in terms
of the unit quaternions.

Quaternions

Identify R4 with the quaternions H via x = x0 + ix1 + jx2 + kx3 where the
multiplication rules are

i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k.

The quaternions form an algebra over the reals with unit 1. Conjugation
defines a natural involution x 7→ x̄ = x0 − ix1 − jx2 − kx3 which satisfies

xy = ȳx̄, x̄x = |x|2 =

3∑
ν=0

xν
2.

The unit quaternions form a group

Sp(1) = {x ∈ H | |x| = 1}

whose Lie algebra sp(1) = Lie(Sp(1)) = Im(H) consists of the imaginary
quaternions. The standard orientation of Sp(1) is determined by the basis
i, j, k of sp(1).

There is a natural embedding γ : H→ C2×2 given by

γ(x) =

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
. (4.1)

This map is obviously linear with γ(1) = 1l and the matrices I = γ(i),
J = γ(j), K = γ(k) are given by

I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
. (4.2)

These matrices satisfy the same commutation relations as i, j, k and hence

γ(xy) = γ(x)γ(y), γ(x̄) = γ(x)∗. (4.3)

This shows that γ is an algebra homomorphism.
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Exercise 4.1 Prove that the center of H is given by Z(H) = {1,−1}. 2

Exercise 4.2 Prove that γ induces a Lie group isomorphism Sp(1) →
SU(2) and a Lie algebra isomorphism sp(1) = Im(H)→ su(2). 2

Exercise 4.3 Prove that γ(H) = su(2) ⊕ R1l = {tU | t ∈ R, U ∈ SU(2)}.
Prove that γ extends to an algebra isomorphism H⊗R C→ C2×2. 2

The spin group in dimension three

The next lemma shows that that Sp(1) ∼= S3 is naturally isomorphic to
Spin(3). The projection Sp(1) → SO(3) is given by the adjoint action of
Sp(1) on the imaginary quaternions.

Lemma 4.4 For every u ∈ Sp(1) there exists a unique orthogonal matrix
Φ(u) ∈ SO(3) such that

Φ(u)x = uxū

for x = x1i + x2j + x3k ∈ Im(H) = R3. The map Φ : Sp(1) → SO(3) is a
surjective homomorphism with kernel {±1} and hence

SO(3) ∼= Sp(1)/Z2, Spin(3) ∼= Sp(1).

Proof: Fix an element u ∈ Sp(1). Then one checks easily, by direct cal-
culation, that the real part of uxū is zero for every x ∈ Im(H). Hence
there is a well defined matrix Φ(u) ∈ R3×3 such that Φ(u)x = uxū for all
x ∈ Im(H). Since |uxū| = |x| it follows that Φ(u) ∈ O(3) and, since Sp(1)
is connected and Φ(1) = 1l we have Φ(u) ∈ SO(3) for all u ∈ Sp(1). The
map u 7→ Φ(u) is obviously a group homomorphism.

We prove that its kernel is ±1. Suppose that Φ(u) = 1l. Then ux = xu
for all x ∈ Im(H). Inserting x = i, j, k we obtain u1 = u2 = u3 = 0 and
hence u = u0 = ±1.

We prove that Φ is surjective. Identify the Lie algebra sp(1) = Im(H)
of Sp(1) with R3 via ξ = ξ1i + ξ2j + ξ3k. With this identification the
Lie bracket on R3 is given by [ξ, η] = 2 ξ × η. The differential of the Lie
group homomorphism Φ : Sp(1)→ SO(3) is the Lie algebra homomorphism
Φ̇ : R3 → so(3) given by

Φ̇(ξ)x = ξx− xξ,

or in matrix form

Φ̇(ξ) =

 0 −2ξ3 2ξ2
2ξ3 0 −2ξ1
−2ξ2 2ξ1 0

 .

Hence Φ̇ is an isomorphism. Since the exponential map of SO(3) is surjective
there exists, for every A ∈ SO(3), a ξ ∈ Im(H) such that A = exp(Φ̇(ξ)) =
Φ(exp(ξ)). This proves the lemma. 2
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Exercise 4.5 (i) Prove that the homomorphism Φ̇ : R3 → so(3) is equi-
variant with respect to the standard action of SO(3) on R3 and the adjoint
action on its Lie algebra.
(ii) Prove that every equivariant map R3 → so(3) must be a constant
multiple of Φ̇.
(iii) Prove that the homomorphism Φ : Sp(1) → SO(3) is given by the
explicit formula

Φ(u) =

u2
0 + u2

1 − u2
2 − u2

3 2(u1u2 − u0u3) 2(u1u3 + u0u2)
2(u1u2 + u0u3) u2

0 − u2
1 + u2

2 − u2
3 2(u2u3 − u0u1)

2(u1u3 − u0u2) 2(u2u3 + u0u1) u2
0 − u2

1 − u2
2 + u2

3

 .

(iv) Prove that for every unit vector ξ ∈ R3 the map

S3 → S2 : u 7→ Φ(u)ξ

is a Hopf fibration. 2

By Lemma 4.4 and Exercise 4.2, Spin(3) ∼= SU(2). The covering homo-
morphism is still denoted by Φ : SU(2) → SO(3) and is again given by
the adjoint action of SU(2) on its Lie algebra su(2). With this convention
Spinc(3) = Spin(3)×Z2

S1 can be identified with

Spinc(3) ∼=
{
eiθU | θ ∈ R, U ∈ SU(2)

}
= U(2).

The extended homomorphism

Φ : U(2)→ SO(3)

is also given by the adjoint action. In fact, the Lie algebra of U(2) consists
of the skew adjoint matrices and splits as

u(2) = su(2)⊕ iR1l.

The adjoint action of U(2) on its Lie algebra preserves the subspace su(2).
Explicitly, if U ∈ U(2) then the matrix Φ(U) ∈ R3×3 is given by

γ(Φ(U)ξ) = Uγ(ξ)U−1

for ξ ∈ Im(H) = R3. Another way to describe the homomorphism Φ is as
follows. Given a matrix U ∈ U(2) one can obtain a matrix with determinant
1 by dividing by a square root λ of det(U). Since there are two choices
for the square root this gives rise to a map U(2) → SU(2)/{±1l}. The
homomorphism Φ : U(2)→ SO(3) is the composition of this map with the
isomorphism SU(2)/{±1l} ∼= Sp(1)/{±1} → SO(3) of Lemma 4.4.
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The spin group in dimension four

The next lemma shows how the group Sp(1) × Sp(1) can be naturally
identified with Spin(4).

Lemma 4.6 For every pair u, v ∈ Sp(1) there exists a unique orthogonal
matrix Ψ(u, v) ∈ SO(4) such that

Ψ(u, v)x = uxv̄

for x ∈ H = R4. The map Ψ : Sp(1) × Sp(1) → SO(4) is a surjective
homomorphism with kernel {±1} and hence

SO(4) ∼= Sp(1)×Z2
Sp(1), Spin(4) ∼= Sp(1)× Sp(1).

Proof: The linear map H → H : x 7→ uxv̄ is obviously orthogonal for
(u, v) ∈ Sp(1)× Sp(1) and, since Sp(1) is connected, it has determinant 1.
The map Ψ : Sp(1)× Sp(1)→ SO(4) is obviously a homomorphism.

We prove that its kernel is ±1. If Ψ(u, v) = 1l then ux = xv for all
x ∈ H. With x = 1 we see that u = v and with x = i, j, k it follows that
u = v = ±1.

We prove that Ψ is surjective. Its differential at the identity is the Lie
algebra homomorphism Ψ̇ : Im(H)× Im(H)→ so(4) which assigns to a pair
ξ, η ∈ Im(H) the matrix Ψ̇(ξ, η) ∈ so(4) defined by

Ψ̇(ξ, η)x = ξx− xη

for x ∈ H. Writing this explicitly in matrix form one fiinds that Ψ̇ is an
isomorphism. Since the exponential map of SO(4) is surjective, it follows
as in the proof of Lemma 4.4 that Ψ is surjective. 2

There are two natural homomorphisms

ρ± : SO(4)→ SO(3)

given by the inverse of the isomorphism Sp(1) ×Z2
Sp(1)

∼=−→ SO(4) of
Lemma 4.6 followed by the projection of either of the two factors onto
SO(3) ∼= Sp(1)/Z2. In more explicit terms ρ+ maps Ψ(u, v) to Φ(u) and
ρ− maps Ψ(u, v) to Φ(v). Hence there are two exact sequences

1 −→ Sp(1)
ι±−→ SO(4)

ρ±−→ SO(3) −→ 1

where the inclusions ι± : Sp(1)→ SO(4) are given by ι+(v) = Ψ(1, v) and
ι−(u) = Ψ(u, 1). We shall see below that these sequences are related to the
action of SO(4) on the spaces Λ± of self-dual and anti-self-dual 2-forms.
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By Lemma 4.6 and Exercise 4.2, Spin(4) ∼= SU(2)×SU(2). The covering
homomorphism is still denoted by Ψ : SU(2)×SU(2)→ SO(4) and is given
by the action of SU(2) on su(2) ⊕ R1l = γ(H) on the left and right. With
this convention Spinc(4) = Spin(4)×Z2

S1 can be identified with

Spinc(4) ∼= {(U, V ) ∈ U(2)×U(2) |detU = detV } .

The extended homomorphism Ψ : Spinc(4) → SO(4) is also given by the
action on γ(H). Explicitly, if U, V ∈ U(2) with det(U) = det(V ) then the
matrix Ψ(U, V ) ∈ R4×4 is given by

γ(Ψ(U, V )ξ) = Uγ(ξ)V ∗ (4.4)

for ξ ∈ H.

Exercise 4.7 Prove that the map Ψ : Sp(1) × Sp(1) → SO(4) extends to
an algebra isomorphism

H⊗R H→ R4×4.

Hint: Ψ obviously extends to an algebra homomorphism and the dimen-
sions are equal. Thus it remains to show that every 4× 4 matrix is a linear
combination of orthogonal ones. 2

4.2 Clifford algebras

Let V be an n-dimensional real vector space with an inner product 〈·, ·〉
and choose an orthonormal basis e1, . . . , en. Associated to V is the real
Clifford algebra C(V ). This is a 2n-dimensional real vector space and
an algebra with unit 1. It is generated by the basis vectors e1, . . . , en with
multiplication rules

ei
2 = −1, eiej = −ejei

for i 6= j. For general vectors v, w ∈ V this amounts to the multiplication
rule

vw + wv = −2〈v, w〉.
A basis of C(V ) as a real vector space is given by the elements

e0 = 1, eI = ei1ei2 · · · eik

for I = {i1, . . . , ik} ⊂ {1, . . . , n} with i1 < i2 < · · · < ik. For such a
multi-index denote k = |I| = deg(eI). An element x =

∑
I xIeI ∈ C(V )

is said to be of degree k if xI = 0 unless |I| = k. Denote by Ck(V ) the
subset of elements of degree k and by Cev(V ) and Codd(V ) the subspace
of all elements of even, respectively odd, degree. Note that Cev(V ) is a
subalgebra of C(V ). Note also that C0(V ) = R and for any x ∈ C(V )
denote by x0 ∈ R its degree-0 part.
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Remark 4.8. (Naturality) There are different presentations of the Clif-
ford algebra, one for each choice of an orthonormal basis, and for the basis
e1, . . . , en this algebra should be denoted by C(V, e1, . . . , en). If f1, . . . , fn
is another orthonormal basis then there is a canonical isomorphism

C(V, e1, . . . , en)→ C(V, f1, . . . , fn) :
∑
I

xIeI 7→
∑
J

yJfJ

given by

yJ =
∑
I

xIaIJ , aIJ = det(aiνjµ)kν,µ=1, aij = 〈ei, fj〉.

These isomorphisms preserve the grading and the degree-0 part. To be
completely rigorous one should define the Clifford algebra as the set of
all maps ξ : B(V ) → R2n , defined on the set B(V ) of orthonormal bases
of V , such that ξ(e1, . . . , en) and ξ(f1, . . . , fn) are related by the above
isomorphism for any two orthonormal bases {ei} and {fj}. 2

Remark 4.9. (Center) If n = dim V is even then the center of C(V ) is

Z(C(V )) = C0(V ).

If n is odd then the center is

Z(C(V )) = C0(V )⊕ Cn(V ).

To see this, consider a basis vector eI = ei1 · · · eik . Then

eIeiν = (−1)k−1eiνeI , eIej = (−1)kejeI , j /∈ I,

Hence eI commutes with all elements of C(V ) if and only if either I = ∅
or I = {1, . . . , n} with n odd. 2

Remark 4.10. (Inner product) The Clifford algebra carries a natural
inner product

〈x, y〉 =
∑
I

xIyI

for x, y ∈ C(V ). This inner product is preserved by the canonical isomor-
phisms of Remark 4.8. 2

Remark 4.11. (Involution) There is a natural involution

C(V )→ C(V ) : x 7→ x̃

defined by
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x̃ =
∑
I

εIxIeI , εI = (−1)k(k+1)/2, k = |I|,

for x =
∑
I xIeI ∈ C(V ). This involution is preserved by the canonical

isomorphisms of Remark 4.8. Moreover,

x̃y = ỹx̃, (x̃y)0 = 〈x, y〉.

To prove the second identity just note that eI
2 = εI . The first identity is

an exercise. Hint: Consider first the case x = eI and y = ej and use the
commutation relations of Remark 4.9. 2

Remark 4.12. (Direct sum) For any two finite dimensional real Hilbert
spaces V and W there is a natural isomorphism

C(V ⊕W ) ∼= C(V )⊗̂C(W )

of graded algebras. Here the tensor product is over the reals and the de-
gree k part of C(V )⊗̂C(W ) is defined as usual as the direct sum of the
tensor products Cj(V )⊗̂Ck−j(W ) over j = 0, 1, . . . , k. As a vector space
C(V )⊗̂C(W ) agrees with the ordinary tensor product C(V )⊗C(W ); how-
ever, the product structure is defined in the graded sense as

(x⊗̂y)(x′⊗̂y′) = (−1)deg(y) deg(x′)(xx′⊗̂yy′)

for homogeneous elements x, x′ ∈ C(V ) and y, y′ ∈ C(W ). (For more details
see Lawson-Michelsohn [67].) 2

The Clifford algebra is characterized by the following universal property.

Proposition 4.13 Let V be an n-dimensional real Hilbert space and A be
a finite dimensional associative algebra over R with unit 1l and involution
a 7→ a∗. Then every linear map

f : V → A

which satisfies

f(v)∗ + f(v) = 0, f(v)∗f(v) = |v|21l (4.5)

extends uniquely to an algebra homomorphism C(V )→ A, still denoted by
f . If dim V is even then the extended homomorphism

f : C(V )→ A

is injective.
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Proof: First consider the formula

f(v + w)∗f(v + w) = |v + w|21l

to obtain f(v)∗f(w) + f(w)∗f(v) = 2〈v, w〉1l. This shows that

f(v)f(w) + f(w)f(v) = −2〈v, w〉1l

for v, w ∈ V . Hence f extends naturally to an algebra homomorphism
which is still denoted by f : C(V ) → A. An easy calculation shows that
f(ẽI) = f(eI)

∗ for all I and hence f(x̃) = f(x)∗ for all x ∈ C(V ).
Now suppose that V has even dimension. Consider, for each a ∈ A, the

linear map La : A→ A given by Lab = ab and define τ : A→ R by

τ(a) =
1

dim A
trace(La).

Then τ(ab) = τ(ba). We prove that

τ ◦ f(x) = x0 (4.6)

for every x ∈ C(V ). It suffices to prove this for the basis vectors eI . For
e0 = 1 we get τ(f(1)) = τ(1l) = 1. For I 6= ∅ choose an element j /∈ I
when |I| is odd, and an element j ∈ I when |I| is even. In either case
eIej = −ejeI and hence eI = ejeIej . This implies

τ(f(eI)) = τ(f(ej)f(eI)e(ej)) = τ(f(eI)f(ej)e(ej)) = −τ(f(eI))

and hence τ(eI) = 0. This proves (4.6). Injectivity now follows easily. If
f(x) = 0 then

0 = τ(f(x̃x)) = (x̃x)0 = |x|2

and hence x = 0. This proves the proposition. 2

Exercise 4.14 Prove that the map f : Rk × R` → C(Rk) ⊗ C(R`) given
by

f(v, w) = v ⊗ ε+ 1⊗ w
satisfies (4.5) if and only if the element ε ∈ C(R`) satisfies

ε̃ = ε, ε2 = 1, εw + wε = 0

for every w ∈ R`. In particular, ε = 1 never satisfies these conditions. 2

Examples

Example 4.15 C(R) = C. The Clifford algebra of R can be identified with
the complex numbers via i = e1 and the involution is given by complex
conjugation. 2
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Example 4.16 C(R2) = H. The Clifford algebra of R2 can be identified
with the quaternions via j = e1, k = e2, i = e1e2. 2

Example 4.17 C(R3) = H⊕H. The Clifford algebra of R3 can be identi-
fied with H⊕H via

e0 = (1, 1), e1e2e3 = (−1, 1),
e1 = (i, i), e2e3 = (i,−i),
e2 = (j,−j), e3e1 = (j, j),
e3 = (k, k), e1e2 = (k,−k).

If R3 is identified with Im(H) via x = ix1 + jx2 + kx3, then the inclusion
Im(H)→ H⊕H is given by x 7→ (x, jxj). 2

Example 4.18 C(R4) = H2×2. The Clifford algebra of R4 can be identified
with the 2× 2 quaternion matrices via

e1 =

(
0 1
−1 0

)
, e2 =

(
0 i
i 0

)
, e3 =

(
0 j
j 0

)
, e4 =

(
0 k
k 0

)
.

The involution is given by A 7→ A∗ where A∗ denotes the conjugate trans-
pose. 2

Classification

Here is a complete list of the Clifford algebras of Euclidean spaces. Excel-
lent references are the book by Lawson-Michelsohn [67] and the paper by
Atiyah-Bott-Shapiro [6]. In our proof we follow the argument in [67].

Theorem 4.19 The Clifford algebras of Euclidean spaces are given by the
following table.

n C(Rn) Spin(Rn)

0 R 1
1 C Z2

2 H U(1)
3 H⊕H Sp(1)
4 H2×2 Sp(1)× Sp(1)
5 C4×4 Sp(2)
6 R8×8 SU(4)
7 R8×8 ⊕ R8×8

8 R16×16.

(4.7)

Moreover, for every n there is an algebra isomorphism

C(Rn+8) ∼= C(Rn)⊗ R16×16

where the tensor product is to be understood over the reals.
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Proof: For every n ≥ 0 there is an algebra isomorphism

f : C(Rn ⊕ R4)→ C(Rn)⊗ C(R4). (4.8)

It is given by

f(v, w) = v ⊗ ε+ 1⊗ w

for v ∈ Rn and w ∈ R4, where ε = e1e2e3e4 ∈ C(R4) for any orthonormal
basis e1, e2, e3, e4 of R4. Since εw + wε = 0 and ε2 = 1 it follows that f
satisfies the requirements of Proposition 4.13 (see Exercise 4.14). Hence f
extends to an algebra homomorphism f : C(Rn+4)→ C(Rn)⊗C(R4). If n is
even it follows from Proposition 4.13 that f is injective and, for dimensional
reasons, f is an isomorphism. If n is odd denote ε′ = e′1 · · · e′n for some
orthonormal basis e′1, . . . , e

′
n of Rn and check directly that f(ε′ε) = ε′ ⊗ 1.

With τ : C(Rn)⊗C(R4)→ R defined by τ(x, y) = x0y0, the same argument
as in the proof of Proposition 4.13 shows that f is bijective. This proves
the existence of the isomorphism (4.8).

Now use the identities

H2×2 = H⊗ R2×2, Rk×k ⊗ R`×` = Rk`×k`, H⊗H = R4×4

(see Exercise 4.7 for the last equation) to obtain the eightfold periodicity

C(Rn+8) = C(Rn)⊗H2×2 ⊗H2×2

= C(Rn)⊗H⊗H⊗ R2×2 ⊗ R2×2

= C(Rn)⊗ R4×4 ⊗ R4×4

= C(Rn)⊗ R16×16.

Moreover, by Exercise 4.3, H⊗ C = C2×2 and hence

C(R5) = C(R)⊗H2×2 = C⊗H⊗ R2×2 = C2×2 ⊗ R2×2 = C4×4.

Similarly,

C(R6) = C(R2)⊗H2×2 = H⊗H⊗ R2×2 = R4×4 ⊗ R2×2 = R8×8,

C(R7) = C(R3)⊗H2×2 = (H⊕H)⊗H2×2 = R8×8 ⊕ R8×8,

and

C(R8) = C(R0)⊗ R16×16 = R16×16.

This proves the theorem. 2
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Example 4.20. (Cayley numbers) The Clifford algebra of R8 is related
to the Cayley numbers as follows. There is a cross product on R7 given by

u× v = A(u)v, A(u) =



0 −u3 u2 −u5 u4 −u7 u6

u3 0 −u1 u6 −u7 −u4 u5

−u2 u1 0 −u7 −u6 u5 u4

u5 −u6 u7 0 −u1 u2 −u3

−u4 u7 u6 u1 0 −u3 −u2

u7 u4 −u5 −u2 u3 0 −u1

−u6 −u5 −u4 u3 u2 u1 0


for u, v ∈ R7. The reader may check that this product structure is skew-
symmetric and distributive and satisfies

〈u× v, w〉 = 〈u, v × w〉,

(u× v)× w + u× (v × w) = 2〈u,w〉v − 〈u, v〉w − 〈v, w〉u.
Given these rules the product is characterized by the relations

e1 × e2 = e3, e1 × e4 = e5, e1 × e6 = e7, e2 × e4 = −e6.

This gives rise to a map γ : R8 → R8×8 given by

γ(v) = v01l +

(
0 −v̄T
v̄ A(v̄)

)
=



v0 −v1 −v2 −v3 −v4 −v5 −v6 −v7

v1 v0 −v3 v2 −v5 v4 −v7 v6

v2 v3 v0 −v1 v6 −v7 −v4 v5

v3 −v2 v1 v0 −v7 −v6 v5 v4

v4 v5 −v6 v7 v0 −v1 v2 −v3

v5 −v4 v7 v6 v1 v0 −v3 −v2

v6 v7 v4 −v5 −v2 v3 v0 −v1

v7 −v6 −v5 −v4 v3 v2 v1 v0


(4.9)

for v = (v0, . . . , v7) ∈ R8 where v̄ = (v1, . . . , v7). The restriction of γ
to R6 satisfies the requirements of Proposition 4.13 and hence gives rise
to an algebra isomorphism C(R6) → R8×8. The reader may also check
that the restriction of Γ to R5 determines a linear map R5 → C4×4 which
satisfies (4.18), where the complex structure on R8 is given by

x = u0 + iu1, y = u2 − iu3, z = u4 − iu5, w = u6 + iu7.

The isomorphism C(R8)→ R16×16 is induced by the map Γ : R8 → R16×16

given by

Γ(v) =

(
0 γ(v)

−γ(v)T 0

)
for v ∈ R8, where γ(v) is given by (4.9). 2
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The complexified Clifford algebra

Denote by
Cc(V ) = C(V )⊗R C

the complexified Clifford algebra of V . Thus, with a given orthonormal
basis e1, . . . , en of V the elements of C(V ) can be written in the form

x =
∑
I

xIeI

with xI ∈ C. In this case the involution x 7→ x̃ is given by

x̃ =
∑
I

εI x̄IeI .

As before x̃y = ỹx̃ and now there is a Hermitian structure

〈x, y〉 = (x̃y)0 =
∑
I

x̄IyI .

Example 4.21 In Example 4.15 it was shown that the C(R) ∼= C and
hence the complexified clifford algebra of R is

Cc(R) = C⊕ C.

The inclusion R→ C⊕ C is given by e1 7→ (i,−i). 2

Example 4.22 In Example 4.16 it was shown that C(R2) ∼= H and hence
the complexified Clifford algebra of R2 is

Cc(R2) = H⊗R C = C2×2.

The inclusion R2 → C2×2 is given by e1 7→ J and e2 7→ K. (See (4.1) and
Exercise 4.3.) 2

Theorem 4.23 For every n there are algebra isomorphisms

Cc(R2n) ∼= C2n×2n , Cc(R2n+1) ∼= C2n×2n ⊕ C2n×2n .

Proof: This result follows directly from Theorem 4.19. Alternatively, one
can prove that, for every n, there is an algebra isomorphism

Cc(Rn ⊕ R2)→ Cc(Rn)⊗ Cc(R2) : (v, w) 7→ v ⊗ ε+ 1⊗ w,

where ε = ie2e1 ∈ Cc(R2). The details are as in Theorem 4.19 and are left
to the reader. Note in particular that ε2 = 1 because of the factor i. 2
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4.3 The groups Spin and Spinc

The group Spin

An element x ∈ C(V ) is called a unit if it has an inverse (denoted by x−1).
Note here that x has a right inverse if and only if it has a left inverse, that
both inverses are unique, and that they are equal. These are general facts
about finite dimensional algebras.

Exercise 4.24 Let x ∈ C(V ). Prove that x has a right inverse if and only
if x has a left inverse and that both inverses agree. Hint: Consider the
linear operator Lx : C(V ) → C(V ) defined by Lxy = xy for y ∈ C(V ).
Prove that L∗x = Lx̃. Prove that x has a right inverse iff Lx is surjective,
and has a left inverse iff Lx̃ is surjective.

Consider the twisted adjoint action of the units on C(V ). For a unit
x the action ad(x) : C(V )→ C(V ) is given by

ad(x)ξ = (xev − xodd)ξx̃ (4.10)

for ξ ∈ C(V ), where xev ∈ Cev(V ) and xodd ∈ Codd(V ) denote the even and
odd parts of x. One checks easily that the map x 7→ xev−xodd is an algebra
automorphism of C(V ). This implies that ad is a group homomorphism
from the units in C(V ) to the automorphisms of C(V ). Namely, for any
two units x, y ∈ C(V ),

ad(xy) = ad(x)ad(y), ad(x̃) = ad(x)∗, ad(1) = 1l. (4.11)

Note that the adjoint action is orthogonal whenever x̃x = 1. We define

Spin(V ) = {x ∈ Cev(V ) | x̃x = 1, xV x̃ = V } .

The next lemma shows that Spin(V ) is the universal cover of SO(V ).

Lemma 4.25 Assume dim V ≥ 3. Then the group Spin(V ) is compact,
connected, and simply connected. There is an exact sequence

1 −→ Z2 −→ Spin(V )
ad−→ SO(V ) −→ 1.

Proof: We follow the exposition in Atiyah-Bott-Shapiro [6]. They intro-
duce the group

Pin(V ) =
{
x ∈ C(V ) | x̃x = 1, (xev − xodd)V x̃ = V

}
.

This is a subgroup of the units of C(V ). Since |x|2 = (x̃x)0 = 1 for x ∈
Pin(V ), this subgroup is compact. The twisted adjoint action determines
a homomorphism
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ad : Pin(V )→ O(V )

which assigns to every x ∈ Pin(V ) the restriction of ad(x) to V . A simple
calculation shows that every w ∈ V with |w| = 1 belongs to Pin(V ) and
satisfies

ad(w)v = v − 2〈v, w〉w
for v ∈ V . Thus ad(w) is the reflection at the hyperplane orthogonal to w
and, since every orthogonal transformation is a composition of reflections,
it follows that ad : Pin(V )→ O(V ) is surjective.

Next we prove that the kernel of ad is {±1}. To see this note that
ad(x) = 1l if and only if

(xev − xodd)v = vx

for all v ∈ V . Equivalently xev commutes with v and xodd anticommutes
with v for all v ∈ V , and this is the case if and only if xodd = 0 and
xev = ±1. Thus there is an exact sequence

1 −→ {±1} −→ Pin(V )
ad−→ O(V ) −→ 1

and it follows that Pin(V ) is a double cover of O(V ).
Next we prove that x ∈ Pin(V ) is even if and only if ad(x) ∈ SO(V ).

To see this let x ∈ Pin(V ), choose reflections R1, . . . , Rm ∈ O(V ) such that
ad(x) = R1 · · ·Rm, and choose unit vectors wi ∈ V such that ad(wi) = Ri.
Then

ad(x) = ad(w1) · · · ad(wm)

and hence x = ±w1 · · ·wm. Hence x is even if and only if m is even if and
only if ad(x) is orientation preserving. This means that

Spin(V ) = ad−1(SO(V )).

Hence there is an exact sequence

1 −→ {±1} −→ Spin(V )
ad−→ SO(V ) −→ 1

as claimed.
We prove that Spin(V ) is connected. Given x0 ∈ Spin(V ) choose a

path [0, 1] → SO(V ) : t 7→ At such that A0 = ad(x0) and A1 = 1l. Let
[0, 1] → Spin(V ) : t 7→ xt be the unique continuous lift and note that
x1 = ±1. If x1 = −1 choose a path γ : [0, π]→ Spin(V ) such that γ(0) = 1
and γ(π) = −1. An explicit formula is given by

γ(t) = exp(te1e2) = cos(t) + sin(t)e1e2.

This shows that Spin(V ) is connected. That the group is simply connected
follows from the fact that π1(SO(V )) = Z2. This proves the lemma. 2
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Exercise 4.26 Prove that the Lie algebra of Spin(V ) agrees with that of
Pin(V ) and is given by the degree-2-part of the Clifford algebra:

Lie(Pin(V )) = Lie(Spin(V )) = C2(V ).

Show that the linear map Ad : C2(V ) → so(V ) which sends ξ ∈ C2(V ) to
the endomorphism Ad(ξ) : V → V given by

Ad(ξ)v = [ξ, v] = ξv − vξ (4.12)

is a Lie algebra isomorphism. Show that this isomorphism is the differential
of the Lie algebra homomorphism ad : Pin(V ) → O(V ) at x = 1. Deduce
that the identity component of Pin(V ) is equal to Spin(V ) = Pin(V ) ∩
Cev(V ). 2

Lemma 4.27 If dim V ≥ 3 then there is no nontrivial homomorphism
Spin(V )→ S1.

Proof 1: Since Spin(V ) is simply connected, any such homomorphism
lifts to a homomorphism Spin(V )→ R. The image of the lift is a compact
subgroup of R. The only such subgroup is {1}. 2

Proof 2: Let ρ : Spin(V ) → S1 be a homomorphism. Then the kernel of
ρ is a normal subgroup of Spin(V ). Since Spin(V ) is a simple group there
is no nontrivial such subgroup and hence ρ = 1. 2

Proof 3: Consider the induced Lie algebra homomorphism ρ̇ : C2(V ) →
iR. Since dim V ≥ 3 every basis vector eiej ∈ C2(V ) can be expressed as
a Lie bracket of two other vectors

eiej =
1

2
[eiek, ejek], k 6= i, k 6= j.

Hence ρ̇(eiej) = 0 for all i and j. This implies that ρ is locally constant.
Since Spin(V ) is connected it follows that ρ(x) = 1 for all x ∈ Spin(V ). 2

Exercise 4.28 Fix an orientation of V and let e1, . . . , en be a positively
oriented orthonormal basis of V . Prove that the element

ε = en · · · e1 ∈ Cn(V )

is independent of the choice of the basis used to define it. Prove that

εε̃ = 1, ε2 = (−1)n(n+1)/2,

and εvε̃ = (−1)n−1v for every v ∈ V . Deduce that

ε ∈ Spin(V ), ad(ε) = −1l ∈ SO(V ),

whenever n is even. 2
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The group Spinc

As in the real case the group Spinc(V ) is defined as the set of even elements
x ∈ Cev(V )⊗C which satisfy x̃x = 1 and xV x̃ = V . Its Lie algebra is given
by

Lie(Spinc(V )) = C2(V )⊕ iR.

Hence Spinc(V ) is a central extension of SO(V ) with center S1 and it can
be written in the form

Spinc(V ) =
{
eiθx | θ ∈ R, x ∈ Spin(V )

}
. (4.13)

Thus one can identify

Spinc(V ) = Spin(V )×Z2 S
1

where the action of Z2 = {±1} is the obvious diagonal one.
There is an exact sequence

1 −→ S1 −→ Spinc(V )
ad−→ SO(V ) −→ 1 (4.14)

where the second map is the obvious inclusion of S1 into Spinc(V ) and
the map ad : Spinc(V ) → SO(V ) is defined by (4.10) as before. There is
another exact sequence

1 −→ Spin(V ) −→ Spinc(V )
δ−→ S1 −→ 1 (4.15)

where the map δ : Spinc(V )→ S1 is given by

δ(eiθx) = e2iθ (4.16)

for θ ∈ R and x ∈ Spin(V ) or, equivalently, δ(x) =
∑
I xI

2 for x ∈
Spinc(V ). Define the degree of a loop γ : S1 → Spinc(V ) as the degree of
the map δ ◦ γ : S1 → S1.

Remark 4.29 In analogy to the real case one can introduce the group

Pinc(V ) =
{
x ∈ Cc(V ) | x̃x = 1, (xev − xodd)V x̃ = V

}
with the obvious representation ad : Pinc(V ) → O(V ). There is an exact
sequence

1 −→ S1 −→ Pinc(V )
ad−→ O(V ) −→ 1.

Hence Pinc(V ) has two components and the identity component agrees
with Spinc(V ). 2
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Lemma 4.30 Assume dim V = n ≥ 3.

(i) The homomorphism δ : Spinc(V ) → S1 induces an ismomorphism of
fundamental groups

π1(Spinc(V )) ∼= π1(S1) ∼= Z.

(ii) The homomorphism ad : Spinc(V ) → SO(V ) induces a surjective ho-
momorphism of fundamental groups

π1(Spinc(V )) ∼= Z→ π1(SO(V )) ∼= Z2.

Explicitly, given γ : S1 → Spinc(V ), the loop ad ◦ γ : S1 → SO(V ) is
contractible if and only if δ ◦ γ : S1 → S1 has even degree.

(iii) For γ : S1 → Spinc(V ) and λ : S1 → S1,

deg(λ · γ) = deg(γ) + 2 deg(λ).

Proof: The first assertion follows from the exact sequence (4.15) since
Spin(V ) is simply connected. Here is an alternative proof. Let e1, e2 be
orthonormal vectors in V . Then the loop

γ1(t) = exp(te1e2 + it) = eit(cos(t) + sin(t)e1e2), 0 ≤ t ≤ π

has degree 1. Hence the homomorphism π1(Spinc(V )) → π1(S1) is surjec-
tive. Moreover, the loop ad◦γ1 : R/πZ→ SO(V ) is not contractible because
it lifts to a path t 7→ e−itγ1(t) in Spin(V ) which connects 1 to −1. This
shows that the homomorphism π1(Spinc(V )→ π1(SO(V )) is surjective.

To examine the kernel of both homomorphisms, observe that, if γ :
S1 → Spinc(V ) is a loop such that δ ◦ γ : S1 → S1 has even degree, then
there exists a loop λ : S1 → S1 such that

λ(t)2 = δ(γ(t))

for t ∈ S1. Consider the loop γ0 : S1 → Spin(V ) defined by

γ0(t) = λ(t)−1γ(t).

By Lemma 4.25, this loop is contractible. Hence the loop ad ◦ γ = ad ◦ γ0 :
S1 → SO(V ) is contractible. If, moreover, deg(δ ◦ γ) = 0 then the loop
λ : S1 → S1 is contractible as well and hence so is γ = λγ0. This proves (i).
To complete the proof of (ii) just note that, if deg(δ◦γ) is odd, then γ1 ·γ−1

has even degree and hence the loop ad ◦ γ ∼ ad ◦ γ1 is not contractible.
This proves (ii). Statement (iii) is obvious from the definition of δ because
δ(λ · γ) = λ2 · δ(γ). 2
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Exercise 4.31 Suppose that V has even dimension and let x ∈ Cc(V )
such that x̃x = 1 and xV x̃ = V . Prove that x ∈ Spinc(V ) if and only if the
transformation

V → V : v 7→ xvx̃

is orientation preserving. Hint: Show that the Lie algebra of the group
G = {x ∈ Cc(V ) | x̃x = 1, xV x̃ = V } agrees with that of Spinc(V ). Show
that the identity component of G agrees with Spinc(V ). 2

4.4 Spinc representations

If V has even dimension 2n then, by Theorem 4.23, the complexified Clifford
algebra Cc(V ) can be identified with the algebra of endomorphisms of a
2n-dimensional complex Hermitian vector space W . More precisely, such
an identification is an algebra isomorphism

Γ : Cc(V )→ End(W )

which satisfies

Γ(x+ y) = Γ(x) + Γ(y), Γ(xy) = Γ(x)Γ(y), Γ(x̃) = Γ(x)∗ (4.17)

for all x, y ∈ Cc(V ). In particular, this implies Γ(0) = 0 and Γ(1) = 1l.
Note that, firstly, for any W the isomorphism Γ : Cc(V )→ End(W ) is not
unique and, secondly, any such Γ is uniquely determined by its restriction
to V ⊂ Cc(V ). This gives rise to the following definition.

Definition 4.32 Let V be a real inner product space of dimension 2n or
2n+ 1. A spinc structure on V is a pair (W,Γ), where W is a 2n-dimen-
sional complex Hermitian vector space and

Γ : V → End(W )

is a linear map which satisfies

Γ(v)∗ + Γ(v) = 0, Γ(v)∗Γ(v) = |v|21l (4.18)

for every v ∈ V . A spinc isomorphism from (V0,W0,Γ0) to (V1,W1,Γ1)
is a pair (A,Φ), where A : V0 → V1 is an orientation preserving orthogonal
transformation, Φ : W0 →W1 is a unitary isomorphism, and

ΦΓ0(v0)Φ−1 = Γ1(Av0) (4.19)

for v0 ∈ V0. The set of spinc isomorphisms is denoted by

Homspinc

(W0,W1) = {(A,Φ) | (4.19)}.
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Definition 4.32 can be rephrased in the form that a spinc structure on
a real Hilbert space V is an irreducible representation of the complexified
Clifford algebra Cc(V ). One can think of this as a category with objects
(V,W,Γ) and morphisms (A,Φ). Theorem 4.23 shows that the set of ob-
jects is nonempty. In the even dimensional case Proposition 4.33 below
shows that the set of morphisms between any two objects is nonempty and
that each spinc structure Γ : V → End(W ) indeed extends to an algebra
isomorphism Cc(V )→ End(W ). Proposition 4.36 then shows that this ex-
tended isomorphism identifies the group Spinc(V ) with the group of spinc

automorphisms of (V,W,Γ). Thus there is a commutative diagram

Spinc(V )
Γ−→ Homspinc

(W,W )

ad ↘ ↙
SO(V )

.

where the map Homspinc

(W,W )→ SO(V ) is the projection (A,Φ) 7→ A.

Proposition 4.33 Assume dimV = 2n and let Γ : V → End(W ) be a
spinc structure on V . Then Γ extends uniquely to an algebra isomorphism
(denoted by the same letter)

Γ : Cc(V )→ End(W )

which satisfies Γ(x̃) = Γ(x)∗ for x ∈ Cc(V ). If

Γ0 : V → End(W0), Γ1 : V → End(W1)

are two spinc structures on V then there exists a unitary isomorphism
Φ : W0 →W1 such that

Γ1(v) = ΦΓ0(v)Φ−1

for every v ∈ V .

Proof: By Proposition 4.13, Γ extends uniquely to an algebra homomor-
phism, which is still denoted by Γ : Cc(V ) → End(W ). Proposition 4.13
also asserts that the extended homomorphism is injective. For dimensional
reasons Γ must be bijective.

Now assume that Γ0 : V → End(W0) and Γ1 : V → End(W1) are two
linear maps which satisfy (4.18). By the first part of the proof, both maps
extend to algebra isomorphisms Γi : Cc(V )→ End(Wi). Hence the map

f = Γ1 ◦ Γ0
−1 : End(W0)→ End(W1)

is an algebra isomorphism, i.e.



SPINC REPRESENTATIONS 127

f(A+B) = f(A) + f(B), f(AB) = f(A)f(B), f(A∗) = f(A)∗

for all A,B ∈ End(W0). We claim that any such isomorphism has the form

f(A) = ΦAΦ∗

for some unitary transformation Φ : W0 → W1. To see this note that for
any 1-dimensional complex subspace ` ⊂ W0 the set of endomorphisms
A ∈ End(W0) with imA ⊂ ` is a minimal right ideal in End(W0). Since
f : End(W0) → End(W1) maps minimal right ideals to minimal right
ideals it follows that f preserves the set of rank-1 endomorphisms. Now
every rank-1 endomorphism A ∈ End(W0) has the form

A = xy∗ = x〈y, ·〉

for some x, y ∈W0. Fix vectors x0, y0 ∈W0 and x1, y1 ∈W1 such that

f(x0y0
∗) = x1y1

∗, |x1| = |x0| = 1.

Then f identifies the two minimal right ideals determined by x0 and x1:

f : {A0 ∈ End(W0) | imA0 ⊂ Cx0} −→ {A1 ∈ End(W1) | imA1 ⊂ Cx1}.

Hence there exists a function ϕ : W0 →W1 such that

f(x0y
∗) = x1ϕ(y)∗

for y ∈W0. Since f(A∗) = f(A)∗,

f(zx0
∗) = ϕ(z)x1

∗

for z ∈W0. Now use the condition f(AB) = f(A)f(B) with A = zx0
∗ and

B = x0y
∗ to obtain

f(zy∗) = ϕ(z)ϕ(y)∗

for y, z ∈W0. Since f is complex linear so is ϕ and hence

f(zy∗) = Φzy∗Φ∗

for y, z ∈ W0 and some Φ ∈ Hom(W0,W1). Since f is bijective Φ 6= 0.
Choose z ∈W0 such that Φz 6= 0 and use the condition f(A)f(B) = f(AB)
for A = zy∗ and B = yz∗ to obtain

y∗Φ∗Φy = |y|2

for all y ∈W0. This shows that Φ∗Φ = 1l as claimed. 2
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Proposition 4.34 Assume dimV = 2n+ 1 and let Γ : V → End(W ) be a
spinc structure on V . Then the following holds.

(i) Γ extends to a surjective algebra homomorphism Γ : Cc(V )→ End(W )
which satisfies Γ(x̃) = Γ(x)∗ for x ∈ Cc(V ).

(ii) There exists a unique vector εΓ ∈ C2n+1(V ) such that

Γ(εΓ) = −in+11l. (4.20)

(iii) If εΓ is defined by (4.20) then, for every x ∈ Cc(V ),

Γ(x) = 0 ⇐⇒ εΓx = in+1x. (4.21)

(iv) Two spinc structures Γ0 : V → End(W0) and Γ1 : V → End(W1) are
isomorphic if and only if εΓ0

= εΓ1
.

Proof: We prove (i). By Proposition 4.13, Γ extends to an algebra homo-
morphism Cc(V ) → End(W ). The restriction of Γ to any codimension-1
subspace of V is a spinc structure on an even dimensional vector space.
Hence it follows from Proposition 4.33 that Γ is surjective.

We prove (ii). Let e1, . . . , e2n+1 be an orthonormal basis of V and define

ε = e2n+1 · · · e1 ∈ C2n+1(V ).

Then ε2 = (−1)n+1 and εv = vε for all v ∈ V . Hence Γ(ε) is a scalar
multiple of the identity and Γ(ε)2 = (−1)n+11l. Changing the ordering of
the basis, if necessary, we obtain Γ(ε) = −in+11l. Since C2n+1(V ) is a one-
dimensional real vector space, this equation determines ε = εΓ uniquely.

We prove (iii). Denote ε = εΓ. If εx = in+1x then

in+1Γ(x) = Γ(εx) = Γ(ε)Γ(x) = −in+1Γ(x)

and hence Γ(x) = 0. This proves the ‘if’ part of (4.21). The ‘only if’
part follows from dimensional considerations. Namely, since Γ : Cc(V ) →
End(W ) is surjective dim ker Γ = 22n. On the other hand the operator
x 7→ xev − xodd anti-commutes with x 7→ εx and hence interchanges its
eigenspaces E± = {x ∈ Cc(V ) | εx = ±in+1x}. Hence E+ and E− have the
same dimension 22n. This proves (iii).

We prove (iv). Two spinc structures Γ0 and Γ1 on V which satisfy
εΓ0
6= εΓ1

are obviously not isomorphic. If on the other hand εΓ0
= εΓ1

then the two extended operators Γi : Cc(V ) → End(Wi) have the same
kernel. Hence there exists an algebra isomorphism f : End(W0)→ End(W1)
such that Γ1 = f ◦ Γ0. It follows as in the proof of Proposition 4.33 that
f(A) = ΦAΦ∗ for some unitary automorphism Φ : W0 → W1. This proves
the proposition. 2
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Let V be an oriented real inner product space of dimension 2n + 1.
A spinc structure Γ : V → End(W ) is said to be compatible with the
orientation if

Γ(e2n+1) · · ·Γ(e1) = −in+11l (4.22)

for every positively oriented orthonormal basis e1, . . . , e2n+1 of V . This
means that

εΓ = e2n+1 · · · e1

for such a basis.

Exercise 4.35 Let Γ : V → End(W ) be a spinc structure on an odd
dimensional real vector space. Prove that the restriction of the extended
homomorphism Γ : Cc(V ) → End(W ) to Cev(V ) ⊗R C is an algebra iso-
morphism. Prove that the restriction of Γ to Codd(V ) ⊗R C is injective.
2

Proposition 4.36 Let V be a real inner product space of dimension 2n or
2n+ 1. Let Γ : V → End(W ) be a spinc structure on V .

(i) Let A ∈ SO(V ) and Φ ∈ Aut(W ) be a unitary automorphism. Then A
and Φ satisfy (4.19) if and only if there exists an x ∈ Spinc(V ) such that

Γ(x) = Φ, ad(x) = A.

(ii) If x ∈ Spinc(V ) then

det(Γ(x)) = δ(x)2n−1

,

where δ : Spinc(V )→ S1 is given by (4.16).

(iii) Let Φ ∈ End(W ) be a complex linear endomorphism. The Φ commutes
with Γ(v) for every v ∈ V if and only if Φ = z1l for some z ∈ C.

Proof: If Φ = Γ(x) for some x ∈ Spinc(V ) then

ΦΓ(v) = Γ(xv) = Γ(xvx̃)Γ(x) = Γ(ad(x)v)Φ.

for v ∈ V and hence (4.19) holds with A = ad(x). Conversely, suppose that
Φ ∈ Aut(W ) and A ∈ SO(V ) satisfy (4.19) and Φ∗Φ = 1l. By Proposi-
tions 4.33 and 4.34, there exists an x ∈ Cc(V ) such that Φ = Γ(x). If V
is odd dimensional then, by Exercise 4.35, we may choose x ∈ Cev(V ). In
either case it follows from Φ∗Φ = 1l that

x̃x = 1.

By (4.19), we have
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Γ(Av) = ΦΓ(v)Φ∗ = Γ(xvx̃)

for all v ∈ V . Since both Av and xvx̃ are odd elements of Cc(V ), and the
restriction of Γ to Codd(V )⊗R C is always injective, it follows that

xV x̃ = V.

If dimV is odd this implies x ∈ Spinc(V ). If dimV is even it remains to
prove that x is even. But this follows from Exercise 4.31 and the fact that
the map V → V : x 7→ xvx̃ is orientation preserving. This proves (i).

To prove (ii) note that, by Lemma 4.27,

det(Γ(y)) = δ(y) = 1

for y ∈ Spin(V ). Now write x ∈ Spinc(V ) in the form

x = eiθy, y ∈ Spin(V ).

Then Γ(x) = eiθΓ(y) and δ(x) = e2iθ. Since dim W = 2n it follows that

det(Γ(x)) = e2niθdet(Γ(y)) = e2niθ = δ(x)2n−1

for y ∈ Spin(V ) and eiθ ∈ S1. This proves (ii). (iii) follows immediately
from the fact that Γ : Cc(V )→ End(W ) is surjective. 2

Example 4.37 Recall from Example 4.16 that the real Clifford algebra of
C = R2 can be identified with the quaternions H via e1 7→ j and e2 7→ k.
Now the map γ : H → C2×2 given by (4.1) satisfies (4.17) and hence
determines a spinc structure on R2. The composition of γ with the inclusion
R2 = C→ H is the map

C→ C2×2 : z 7→
(

0 z
−z̄ 0

)
This is a spinc structure on R2. 2

Example 4.38 Let Λ be an oriented 3-dimensional real Hilbert space. A
spinc structure on Λ is a pair (W,γ), where W is a 2-dimensional Hermitian
vector space and γ : Λ→ End(W ) is a linear map which satisfies (4.17). It
is compatible with the orientation if

γ(e3)γ(e2)γ(e1) = 1l

for every positively oriented orthonormal basis e1, e2, e3 of Λ. These two
conditions can be expressed in the equivalent form
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γ(v) + γ(v)∗ = 0, γ(v)γ(w) = γ(v × w)− 〈v, w〉1l, (4.23)

where (v, w) 7→ v × w denotes the cross product, i.e. v × w is the unique
vector which is orthogonal to v and w and satisfies

|v × w|2 = |v|2|w|2 − 〈v, w〉2, det(v, w, v × w) = 1.

The map γ : Im(H)→ C2×2 given by (4.1) is an example. 2

Example 4.39 Consider the map Γ : H→ C4×4 given by

Γ(x) =

(
0 γ(x)

−γ(x)∗ 0

)
where γ : H → C2×2 is the algebra homomorphism (4.1). The reader may
check that this map satisfies (4.18). Hence, by Proposition 4.33, it extends
to an isomorphism Γ : Cc(H)→ C4×4. It is interesting to note that

Γ(e0e1) =

(
I 0
0 −I

)
, Γ(e0e2) =

(
J 0
0 −J

)
, Γ(e0e3) =

(
K 0
0 −K

)
,

Γ(e2e3) =

(
I 0
0 I

)
, Γ(e3e1) =

(
J 0
0 J

)
, Γ(e1e2) =

(
K 0
0 K

)
.

This shows that Γ identifies the Lie algebra of Spin(4) with su(2) × su(2)
and it follows again that Spin(4) ∼= SU(2)× SU(2). 2

The formula in Example 4.39 shows that there is a splitting of the
4-dimensional spinc representation into

W = C4 = C2 ⊕ C2

which is preserved under the even elements of the Clifford algebra. Such a
splitting exists in every spinc representation. However, in 4 dimensions it
is related to the splitting

Λ2 = Λ2,+ ⊕ Λ2,−

of the space of 2-forms into the self-dual and anti-self-dual ones. More
precisely, identify Λ2V ∗ with C2(V ) in the obvious way via e∗i ∧ e∗j 7→ eiej
for i 6= j. Then Γ induces a map Λ2 → End(C4) and the formulae for
Γ(eiej) in Example 4.39 show that the self-dual forms only act on C2⊕{0}
while the anti-self-dual ones act on {0} ⊕ C2. This is discussed in more
detail in Section 4.8 below.
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4.5 Splitting and orientation

Let (W,Γ) be a spinc structure on V . Fix an orientation of V and a posi-
tively oriented orthonormal basis e1, . . . , e2n, and denote

ε = e2n · · · e2e1 ∈ C(V ).

This element is independent of the choice of the basis used to define it. By
Exercise 4.28,

ε2 = (−1)n.

Hence there is a splitting

W = W+ ⊕W−

into the eigenspaces of Γ(ε):

W± = {θ ∈W |Γ(ε)θ = ±inθ} .

Note that changing the orientation of V interchanges the spaces W+ and
W−. Note also that Γ(v) maps W− to W+ (and W+ to W−) for every
v ∈ V and hence

dimCW
+ = dimCW

− = 2n−1.

It follows that the subspaces W± are invariant under the even elements of
the Clifford algebra. Since Cc(V ) ∼= End(W ) it is easy to see that Cev(V )⊗
C acts transitively on W± − {0}.

Lemma 4.40 Up to interchanging + and − the splitting W = W+ ⊕W−
is uniquely determined by the condition

Γ(v)W± ⊂W∓

for every v ∈ V .

Proof: Let W = W1 ⊕W2 be any splitting such that Γ(v) interchanges
W1 and W2. It remains to prove that either W1 = W+ or W1 = W−.
By assumption, W1 and W2 are invariant under Γ(x) for all even elements
x ∈ Cev(V ) of the Clifford algebra and hence under Γ(ε). Hence

W1 = W+
1 ⊕W

−
1 , W±1 = W1 ∩W±.

Assume without loss of generality that W+
1 6= {0} and choose a nonzero

vector θ ∈ W+
1 . Then Γ(x)θ ∈ W+

1 for all even elements x ∈ Cev(V ) ⊗ C.
Since the even part of the Clifford algebra acts transitively on W+ − {0}
it follows that W+ ⊂W1. Hence, for dimensional reasons, W+ = W1. This
proves the lemma. 2
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The restrictions of Γ(v) to W− for v ∈ V determine a linear map
γ : V → Hom(W−,W+) which satisfies

γ(v)∗γ(v) = |v|21l (4.24)

for every v ∈ V . The spinc structure Γ : V → End(W ) can be recovered
from γ via W = W+ ⊕W− and

Γ(v) =

(
0 γ(v)

−γ(v)∗ 0

)
. (4.25)

Obviously, γ satisfies (4.24) if and only if Γ satisfies (4.18). By Propo-
sition 4.33, this shows that every linear map γ : V → Hom(W−,W+)
which satisfies (4.24) determines a natural isomorphism Γ : Cc(V ) →
End(W+ ⊕W−) via (4.25).

Lemma 4.41 Assume that γ : V → Hom(W−,W+) satisfies (4.24) with
dimCW

± = 2n−1 and dimR V = 2n ≥ 4. Then

det(γ(v)∗γ(w)) = |v|2
n−1

|w|2
n−1

for v, w ∈ V .

Proof: We prove first that

trace(γ(v)∗γ(w)) = 2n−1〈v, w〉. (4.26)

To see this note that W− is invariant under Γ(ξ) for ξ ∈ C2(V ), and
that the Lie algebra homomorphism C2(V ) → iR : ξ 7→ trace(Γ(ξ)|W−)
is the differential of the Lie group homomorphism Spin(V ) → S1 : x 7→
det(Γ(x)|W−). By Lemma 4.27, this homomorphism is trivial for dim V =
2n ≥ 4. Hence trace(Γ(ξ)|W−) = 0 for all ξ ∈ C2(V ). Apply this to the
element ξ = vw + 〈v, w〉 ∈ C2(V ) with

Γ(vw + 〈v, w〉)|W− = −γ(v)∗γ(w) + 〈v, w〉1l.

to obtain (4.26).
Now consider the path [0, 1] → V : t 7→ v(t) = w + t(v − w). Then,

by (4.26), the functions

f1(t) = det(γ(v(t))∗γ(w)), f2(t) = |v(t)|2
n−1

|w|2
n−1

both satisfy the differential equation

ḟ = 2n−1|v|−2〈v, v̇〉f, f(0) = |w|2
n

,

and hence must be equal for all t. This proves the lemma. 2
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Exercise 4.42 Let V be a 4-dimensional real Hilbert space.

(i) Show that a spinc structure on V can be defined as a triple (W+,W−, γ)
where W± are 2-dimensional Hermitian vector spaces and

γ : V → Hom(W−,W+)

is a linear map which satisfies (4.24) and

γ(e0)∗γ(e1)γ(e2)∗γ(e3) = 1l (4.27)

for every positively oriented orthonormal basis of V . More precisely, if
W = W+ ⊕W− and Γ : V → End(W ) is given by (4.25), show that W+

is the −1-eigenspace and W− the +1-eigenspace of Γ(e3e2e1e0).

(ii) Show that the map γ : H→ C2×2, defined by (4.1), satisfies (4.27).

(iii) Let W±, γ, and Γ be as in (i). Prove that Γ : Cc(V ) → End(W )
identifies Spinc(V ) with the endomorphisms of the form

Γ(x) =

(
U 0
0 V

)
, U ∈ U(W+), V ∈ U(W−), det(U) = det(V ).

Prove that the maps δ : Spinc(V ) → S1 and ad : Spinc(V ) → SO(V ) are
given by

δ(x) = det(U) = det(V ), γ(ad(x)v) = Uγ(v)V ∗

for v ∈ V , x ∈ Spinc(V ), U ∈ U(S+), V ∈ U(S−) with Γ(x) = diag(U, V ).
Hint: Use the formulae for Γ(eiej) in Example 4.39. 2

The previous exercise shows that there is a Lie group isomorphism

SU(W+)×Z2
SU(W−)

∼=−→ SO(V ).

This gives rise to an action of SO(V ) on the Lie algebras su(W+) and
su(W−) via the adjoint action of SU(W±) on their respective Lie algebras.
In Section 4.8 it will be shown that these Lie algebras can be naturally
identified with the spaces Λ± of self-dual, respectively anti-self-dual, 2-
forms. This gives rise to exact sequences

1 −→ SU(W∓) −→ SO(V ) −→ SO(Λ±) −→ 1

where the inclusions SU(W∓) → SO(V ) are given by the above iden-
tification of Spin(V ) with SU(W+) × SU(W−) and the homomorphisms
SO(V )→ SO(Λ±) are given by the obvious action of SO(V ) on Λ±.
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4.6 Spin representations

Recall from (4.7) that the Clifford algebra of a finite dimensional real
Hilbert space V has a quaternionic structure if dim V ≡ 2, 3, 4(mod 8),
a real structure if dim V ≡ 0,−1,−2(mod 8) and a complex structure if
dim V ≡ 1(mod 4). In the quaternionic case this leads to the following
definition of a spin structure.

Definition 4.43 Let V be a real inner product space of dimension 2n ≡
2, 4(mod 8) or 2n+ 1 ≡ 3(mod 8). A spin structure on V is a quadruple
(S, I, J,Γ) where S is a 2n+1-dimensional real Hilbert space, I and J are
two anti-commuting orthogonal complex structures, i.e.

I−1 = I∗ = −I, J−1 = J∗ = −J, IJ = −JI,

and Γ : V → End(S) is a real linear map which satisfies (4.18) and com-
mutes with both I and J , i.e.

Γ(v)I = IΓ(v), Γ(v)J = JΓ(v).

for v ∈ V . A spin isomorphism

(V0, S0, I0, J0,Γ0)→ (V1, S1, I1, J1,Γ1)

is a pair (A,Φ) where A : V0 → V1 and Φ : S0 → S1 are orientation pre-
serving orthogonal transformations such that (4.19) holds and Φ commutes
with both I and J . The set of spin isomorphisms is denoted by

Homspin(S0, S1) = {(A,Φ) | (4.19), IΦ = ΦI, JΦ = ΦJ}.

Definition 4.43 can be rephrased in the form that a spin structure on
a real Hilbert space V of dimension 2, 3, or 4 modulo 8 is an irreducible
representation of the real Clifford algebra C(V ). As in the complex case the
group Homspin(S, S) of automorphisms of such a structure is isomorphic to
Spin(V ) and there is a commutative diagram

C(V )
Γ−→ EndH(S)

∪ ∪
Spin(V )

Γ−→ Homspin(W,W )

ad ↘ ↙
SO(V )

.

Here EndH(S) denotes the set of all real linear isomorphisms of S which
commute with both I and J . As before the map Homspin(S, S) → SO(V )
is the projection (A,Φ) 7→ A.
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Note that the existence of two anti-commuting complex structures I
and J on S is equivalent to the existence of an algebra homomorphism
R : H→ End(S) which satisfies

R(ab) = R(a)R(b), R(ā) = R(a)∗, R(1) = 1l.

Any such homomorphism is uniquely determined by the complex structures

I = R(i), J = R(j), K = R(k).

These satisfy the usual quaternionic commutation rules.

Exercise 4.44 Let S be any real vector space with two anti-commuting
complex structures I and J . Prove that the dimension of S is divisible by 4.
Hint: Prove that there exists an inner product on S with respect to which
both I and J are orthogonal. Then show that if a linear subspace E ⊂ S
is invariant under I and J then so is its orthogonal complement. 2

Any two anti-commuting complex structures I and J give rise to a 2-
sphere of complex structures Ja = R(a), parametrized by the imaginary
unit quaternions a ∈ Im(H), |a| = 1. In this 2-sphere of complex structures
the equator orthogonal to I forms a circle of complex structures which
anti-commute with I. If, moreover, I and J commute with Γ then all the
complex structures on this circle also commute with Γ. This relates to spinc

structures as follows. If (W,Γ) is a spinc structure on V as in Definition 4.32
denote by S the underlying real Hilbert space obtained from W by forget-
ting the complex structure. The complex structure then becomes a real
linear transformation I ∈ End(S) which satisfies

I∗ = I−1 = −I, IΓ = ΓI.

Consider the set

Q(S, I,Γ) =
{
J ∈ End(S) | J∗ = J−1 = −J, IJ = −JI, JΓ = ΓJ

}
.

This set is a circle which for any given J0 ∈ Q(S, I,Γ) can be parametrized
by the function

S1 → Q(S, I,Γ) : eiθ 7→ Jθ = cos θJ0 + sin θIJ0.

To see this just note that if J ∈ Q(S, I,Γ) then JJ0 commutes with I and
with Γ(v) for every v ∈ V . Hence, by Proposition 4.36 (iii), JJ0 is given
by multiplication with a unit complex number and this implies J = Jθ
for some θ. This shows that for every spinc structure (W,Γ) on V there
is a circle of complex structures on W which convert the spinc structure
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into a spin structure. This works only in dimensions 2, 3, or 4 modulo 8
because for all other dimensions there simply is no complex structure J
which anti-commutes with I and commutes with Γ. That such a complex
structure does exist in dimensions 2, 3, or 4 modulo 8 is a consequence of
the classification theorem 4.19 for Clifford algebras. In dimensions 3 and 4
there are the following natural examples.

Example 4.45 Assume dim V = 3, identify V = Im(H) and define S = H.
Consider the maps Γ0 : Im(H)→ End(H) and R0 : H→ End(H) given by

Γ0(v)ξ = vξ, R0(a)ξ = ξā,

for v ∈ Im(H) and a, ξ ∈ H. Then Γ0, I0 = R0(i), and J0 = R0(j) satisfy
the requirements of Definition 4.43. 2

Example 4.46 If dim V = 4 identify V = H and define S = H ⊕ H.
Consider the maps Γ1 : H→ End(H⊕H) and R1 : H→ End(H⊕H) given
by

Γ1(v)

(
ξ
η

)
=

(
vη
−v̄ξ

)
, R1(a)

(
ξ
η

)
=

(
ξā
ηā

)
,

for v, a, ξ, η ∈ H. Then Γ1, I1 = R1(i), and J1 = R1(j) satisfy the require-
ments of Definition 4.43. 2

Lemma 4.47 Let V be a real Hilbert space of dimension 2, 3, or 4 modulo 8
and (S, I, J,Γ) be a spin structure on V . Let R : H→ End(S) be the unique
algebra homomorphism which satisfies R(i) = I and R(j) = J .
(i) If Φ ∈ End(S) commutes with Γ(v) for every v ∈ V then Φ = R(a) for
some a ∈ H.
(ii) If Φ ∈ End(S) commutes with R(a) for every a ∈ H then Φ = Γ(x) for
some x ∈ C(V ).

Proof: Assume that dim V = 8k+ 2 or dim V = 8k+ 4. To prove (i) sup-
pose that Φ commutes with Γ(v) for every v ∈ V . Fix a complex structure
I = R(i) and write Φ = Φ′ + Φ′′, where

Φ′ =
1

2
(Φ− IΦI), Φ′′ =

1

2
(Φ + IΦI)

denote the complex linear and complex anti-linear parts of Φ. They both
commute with Γ(v) for every v. Moreover, by Proposition 4.33, every com-
plex linear transformation of S has the form Φ′ = Γ(x) + IΓ(y) for some
x, y ∈ C(V ). Since Φ′ commutes with Γ(v) for every v ∈ V it follows from
Proposition 4.36 that x, y ∈ C0(V ) = R and hence Φ′ = x1l + yI for some
x, y ∈ R. A similar argument for the complex linear map JΦ′′ shows that
Φ′′ = zJ + wK for some w, z ∈ R where J = R(j) and K = R(k). Hence

Φ = R(x+ iy + jz + kw).
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To prove (ii) suppose that Φ commutes with R(a) for every a ∈ H. Since Φ
commutes with I = R(i) it follows as above that Φ = Γ(x)+IΓ(y) for some
x, y ∈ C(V ). Since ΦJ = JΦ for J = R(j) it follows that Γ(y) = 0. This
proves the lemma in the case where V has even rank. The case rankV =
8k + 3 is left to the reader. 2

Exercise 4.48 Assume that dim V ≡ 0, 6(mod 8) and let (S, I,Γ) be a
spinc structure on V . Prove that there exists a complex anti-linear orthog-
onal involution T ∈ End(S) which commutes with Γ:

T ∗ = T−1 = T, IT = −TI, ΓT = TΓ.

Prove that these involutions form a circle Q(S, I,Γ). Define a spin struc-
ture on V as a puadruple (S, I, T,Γ) where (S, I,Γ) is a spinc structure
and T ∈ Q(S, I,Γ). Prove that the group of automorphisms of such a
spin structure is naturally isomorphic to Spin(V ). Extend this to the case
dim V ≡ 7(mod 8). Interprete the Cayley numbers as an example (see
Example 4.20). 2

Exercise 4.49 Assume that dim V ≡ 5(mod 8) and let (S, I,Γ) be a spinc

structure on V . Prove that for every unit vector v ∈ V there exists an
automorphism J ∈ End(S) such that

J∗ = J−1 = −J, JI = −IJ, (4.28)

and

JΓ(w) = Γ(w − 2〈w, v〉v)J (4.29)

for every w ∈ V . Denote the set of such pairs (v, J) by R(S, I,Γ). Prove
that the group Spinc(V ) acts on R(S, I,Γ) via

(v, J) 7→ (ad(x)v,Γ(x)JΓ(x̃)).

Prove that the quotient Q(S, I,Γ) = R(S, I,Γ)/Spinc(V ) is a circle. Define
a spin structure on V as a spinc structure (S, I,Γ) together with an element
of the circle Q(S, I,Γ). Prove that the group of automorphisms of such
a spin structure is naturally isomorphic to Spin(V ). Hint: Denote ε =
en · · · e1 ∈ C(V ) as in Exercise 4.28. Show that Γ(ε) = ±i1l whenever
dim V ≡ 1(mod 4). Prove that Γ defines a spinc structure on the orthogonal
complement of v. 2

Exercise 4.50 Assume that dim V ≡ 1(mod 8). Define a spin structure
on V as in Exercise 4.49, but with J replaced by an orthogonal involution
T ∈ End(S) which anti-commutes with Γ(v) and commutes with Γ(w)
whenever w is perpendicular to v. 2
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4.7 Complex vector spaces

Let V be an oriented real Hilbert space of dimension 2n. A complex struc-
ture J : V → V is called compatible with the orientation and metric
if J∗ = J−1 = −J and every basis of the form e1, Je1, . . . , en, Jen is pos-
itively oriented. The space of such complex structures will be denoted by
J +(V ). The space of complex structures which are compatible with the
metric and the opposite orientation will be denoted by J−(V ).

Let Γ : V → End(W ) be a spinc structure. Every unit vector τ ∈ W
determines an isometric embedding V ↪→ W : v 7→ Γ(v)τ . The image of
this embedding is a real linear subspace which we shall denote by

Vτ = {Γ(v)τ | v ∈ V } ⊂W. (4.30)

If Vτ is a complex subspace, then the embedding determines a complex
structure Jτ : V → V which under the embedding corresponds to multipli-
cation by i. Thus Jτ is given by

Γ(Jτv)τ = iΓ(v)τ (4.31)

for v ∈ V . The next lemma shows that Jτ ∈ J +(V ) whenever τ ∈W+ and
that every J ∈ J +(V ) has the form Jτ for some τ ∈W+.

Lemma 4.51 Let Γ : V → End(W ) be a spinc structure on an oriented
real Hilbert space V of dimension 2n. Let τ ∈ W be a unit vector. If Vτ is
a complex subspace of W then τ ∈W+ ∪W− and

Jτ ∈ J±(V ) ⇐⇒ τ ∈W±. (4.32)

Conversely, if J ∈ J±(V ) then

EJ = EJ,Γ =
⋂
v∈V

ker (Γ(Jv)− iΓ(v)) (4.33)

is a 1-dimensional complex subspace of W±.

Proof: Fix a unit vector τ ∈ W such that Vτ is a complex subspace of
W . Since V → Vτ : v 7→ Γ(v)τ is an isometric embedding the complex
structure J = Jτ on V is orthogonal. Hence it remains to examine the
orientation induced by J . We first observe that, by (4.31),

v ∈ V, |v| = 1 =⇒ Γ(Jv)Γ(v)τ = iτ.

Choose a basis of V of the form e1, Je1, . . . , en, Jen. Then

Γ(Jen)Γ(en) · · ·Γ(Je1)Γ(e1)τ = inτ.

If this basis is positively oriented then τ ∈ W+, and if it is negatively
oriented we obtain τ ∈W−. This proves (4.32).
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Now let J ∈ J +(V ) and EJ ⊂ W be defined by (4.33). It follows
from (4.32) that EJ ⊂W+. Choose an orthonormal basis of V of the form
e1, Je1, . . . , en, Jen and consider the operators

Tν = Γ(Jeν)− iΓ(eν) ∈ End(W )

for ν = 1, . . . , n. These operators anti-commute and are nilpotent:

TνTµ + TµTν = 0, Tν
2 = 0

for µ 6= ν. We prove by induction that

dim

n⋂
ν=k+1

ker Tν = 2k (4.34)

for k = 0, . . . , n− 1. For k = n− 1 this follows from the fact that

Tn
∗Tn = 21l− 2iΓ(en)Γ(Jen).

Now, for any two orthogonal vectors v, w ∈ V , we have (Γ(v)Γ(w))2 = −1l
and the eigenspaces of Γ(v)Γ(w) corresponding to the two eigenvalues ±i
are isomorphic via Γ(v). Hence they both have the same dimension 2n−1.
This shows that dim ker Tn = 2n−1. Now suppose that (4.34) has been
proved for any k ≤ n− 1. Denote

Vk = span{e1, Je1, . . . , ek, Jek}, Wk =

n⋂
ν=k+1

ker Tν .

Then Γ determines a spinc structure Γk : Vk → End(Wk). Hence the first
step of the induction shows that dim Wk−1 = dim (Wk ∩ ker Tk) = 2k−1.
This proves (4.34) with k replaced by k − 1. With k = 0 it follows that
EJ =

⋂n
ν=1 ker Tν has complex dimension one. This proves the lemma. 2

The one dimensional subspace EJ ⊂W+, defined by (4.33), is called the
space of pure spinors. Note that, for every unit vector τ ∈ W+, τ ∈ EJ
if and only if Vτ is a complex subspace of W− and Jτ = J . Hence, by
Lemma 4.51, the pure spinors determine a natural embedding

J +(V )→ PW+ : J 7→ EJ .

This situation is particularly simple and beautiful in the 4-dimensional case.
In this case, for dimensional reasons, Vτ = W− for every unit vector τ ∈
W+ and hence J +(V ) ∼= PW+. This observation will play an important
role in distinguishing homotopy classes of almost complex structures on
4-manifolds which induce isomorphic spinc structure.
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The canonical spinc structure

Every Hermitian vector space (V, J, ω) admits a canonical spinc structure.
To describe this structure let us recall some notation from Section 3.1. The
inner product on V , induced by J and ω, will be denoted by g : V ×V → R
and the Hermitian form by 〈·, ·〉. As before, denote by V ∗ the real dual
space of V , by V̄ the vector space with the reversed complex structure,
by Hom(V,C) = Λ1,0V ∗ the space of complex linear functionals, and by
Hom(V̄ ,C) = Λ0,1V ∗ the space of complex anti-linear functionals. Recall
that there are natural isomorphisms

V̄ → Hom(V,C) : v 7→ v′, V → Hom(V̄ ,C) : v 7→ v′′

given by

v′ = v∗ + i(Jv)∗ = 〈v, ·〉, v′′ = v∗ − i(Jv)∗ = 〈·, v〉.

These satisfy (Jv)′ = −iv′ and (Jv)′′ = iv′′.
Consider the complex vector space

Wcan = Λ0,∗V ∗

of all alternating forms on V which are complex anti-linear (with respect
to J) in all variables. This space is of complex dimension 2n and carries a
natural Hermitian structure as defined in Section 3.1. The homomorphism
Γcan : V → End(Wcan) is defined by

Γcan(v)τ =
1√
2
v′′ ∧ τ −

√
2ι(v)τ (4.35)

for v ∈ V and τ ∈ W . Sometimes it will be convenient to stress the de-
pendence on the complex structure J and then we will write ΓJ : V →
End(WJ) instead of Γcan : V → End(Wcan).

Lemma 4.52 The operator Γcan(v) : Wcan →Wcan satisfies (4.18) and

W+
can =

⊕
k even

Λ0,kV ∗, W−can =
⊕
k odd

Λ0,kV ∗.

The subspace of pure spinors is given by

Ecan = EJ,Γcan
= Λ0,0V ∗ = C.

Proof: Recall from Lemma 3.4 that

〈τ, v′′ ∧ σ〉 = 2〈ι(v)τ, σ〉.
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for τ ∈ Λ0,kV ∗, σ ∈ Λ0,k−1V ∗, and v ∈ V . This immediately implies

Γcan(v)∗ = −Γcan(v).

To prove the second formula in (4.18) note that

ι(v)v′′ = 〈v, v〉 = |v|2.

Hence

Γcan(v)Γcan(v)τ =
1√
2
v′′ ∧

(
1√
2
v′′ ∧ τ −

√
2ι(v)τ

)
−
√

2ι(v)

(
1√
2
v′′ ∧ τ −

√
2ι(v)τ

)
= − v′′ ∧ ι(v)τ − ι(v)(v′′ ∧ τ)

= − (ι(v)v′′)τ

= − |v|2τ

for v ∈ V and τ ∈ Λ0,∗V ∗. This proves (4.18). Now the operator Γ(v)
obviously interchanges the subspaces W+

can and W−can. Hence Lemma 4.40
shows that W±can are the two eigenspaces of Γcan(ε). It remains to prove that
W+

can = Λ0,evV ∗ is the eigenspace with eigenvalue in. To see this consider
1 ∈ Λ0,0V ∗ ⊂W+

can and note that

Γcan(Jv)Γcan(v)1 =
1√
2

Γcan(Jv)v′′ = −ι(Jv)v′′ = iι(v)v′′ = i

for v ∈ V with |v| = 1. Hence Γcan(ε)1 = in as required. If τ ∈ Λ0,0V ∗

then, by definition,

Γcan(Jv)τ =
1√
2

(Jv)′′ ∧ τ = iΓcan(v)τ.

Hence the last assertion follows from Lemma 4.51. 2

The unitary spin group

Let (W,Γ) be any spinc structure on a Hermitian vector space (V, J, ω) of
real dimension 2n. Denote by U(V, J) ⊂ SO(V ) the subgroup of unitary
transformation and define

Uc(V, J) = {x ∈ Spinc(V ) | ad(x) ∈ U(V, J)} .

Here ad : Spinc(V )→ SO(V ) denotes the homomorphism (4.10). The group
Uc(V, J) has two natural characters:
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Uc(V, J) ↪→ Spinc(V )
δ−→ S1

ad ↓
U(V, J)

detc−→ S1

.

The next lemma asserts that the subspace EJ,Γ of pure spinors is invariant
under Uc(V, J) and that the action of Uc(V, J) on EJ,Γ is given by a square
root of the quotient of the above two characters. The existence of such a
square root implies that Uc(V, J) is isomorphic to the product U(V, J)×S1.

Lemma 4.53 (i) EJ,Γ is invariant under Uc(V, J). Let Θ : Uc(V, J) →
S1 denote the corresponding character, given by Θ(x)τ = Γ(x)τ for x ∈
Uc(V, J) and τ ∈ EJ,Γ.
(ii) If x ∈ Uc(V, J) then

Θ(x)2detc(ad(x)) = δ(x), x ∈ Uc(V, J).

(iii) There is a natural isomorphism Uc(V, J)→ U(V, J)× S1.

Proof: We examine the action of Uc(V, J) on W in the standard model
with Wcan = Λ0,∗V ∗ and Ecan = Λ0,0V ∗. Choose an orthonormal basis of V
of the form e1, Je1, . . . , en, Jen. Then the Lie algebra Lie(Uc(V, J)) consists
of all elements ξ ∈ Cc(V ) of the complexified Clifford algebra which have
the form

ξ = iθ +
∑
j<k

ajk(ejek + (Jej)(Jek)) +
∑
j,k

bjkej(Jek) (4.36)

with real coefficients ajk = −akj and bjk = bkj . The action of Lie(Uc(V, J))
on Wcan is determined by the formula (4.35). For τ ∈ Λ0,0V ∗ this gives

Γcan(v)Γcan(w)τ =
1

2
v′′ ∧ w′′ ∧ τ − 〈v, w〉τ.

With ξ ∈ Lie(Uc(V, J)) given by (4.36) it is easy to check that

Γcan(ξ)τ = iθτ − i
n∑
j=1

bjjτ

for τ ∈ Λ0,0V ∗. This shows that Ecan is invariant under Uc(V, J) and that
the infinitesimal character Θ̇ : Lie(Uc(V, J))→ iR is given by

Θ̇(ξ) = iθ − i
∑
j

bjj (4.37)

for ξ ∈ Lie(Uc(V, J)). This proves (i).
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We prove (ii). The two infinitesimal characters of Uc(V, J) are given by

δ̇(ξ) = 2iθ, tracec(Ad(ξ)) = 2i

n∑
j=1

bjj . (4.38)

To prove the second formula note that the adjoint action of Lie(Uc(V, J))
on V is described by the complex matrix Ad(ξ) ∼= −2A+ 2iB in the given
complex basis e1, . . . , en of V . Since A is skew symmetric this proves (4.38).
Combining this with (4.37) we find that

2Θ̇ + tracec ◦Ad = δ̇.

This proves (ii) for the canonical spinc structure. The general case follows
from the observation that Θ is independent of Γ. The isomorphism in (iii)
is given by

Uc(V )→ U(V )× S1 : x 7→ (ad(x),Θ(x)).

This proves the lemma. 2

4.8 Spinc representations and exterior algebra

Let V be a real inner product space and Γ : V → End(W ) be a spinc

structure on V . Any such structure gives rise to an action of the space
Λ2V ∗ on W which is induced by Clifford multiplication. To see this identify
Λ2V ∗ with C2(V ) in the obvious way via the map

Λ2V ∗ → C2(V ) : η =
∑
i<j

ηijei
∗ ∧ ej∗ 7→

∑
i<j

ηijeiej .

Compose this map with Γ to obtain a map ρ : Λ2V ∗ → End(W ) given by

ρ

∑
i<j

ηijei
∗ ∧ ej∗

 =
∑
i<j

ηijΓ(ei)Γ(ej) (4.39)

for any orthonormal basis e1, . . . , e2n of V . The reader may check that this
map is independent of the choice of the orthonormal basis used to define
it. It makes the following diagram commute.

Λ2V ∗
ρ−→ End(W )

↑ ↗
C2(V ) Γ

The image of the map ρ : Λ2V ∗ → End(W ) corresponds to the Lie algebra
of Spin(V ) under Γ. The map ρ extends in an obvious way to a map
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ρ : Λ2V ∗ ⊗ C→ End(W )

on the space of complex valued 2-forms. Note that if η is a real valued 2-
form then ρ(η) is skew-Hermitian and if η is imaginary valued then ρ(η) is
Hermitian. If V is even dimensional then the spaces W± are invariant under
ρ(η) for every 2-form η ∈ Λ2V ∗. In this case we denote ρ±(η) = ρ(η)|W±
for η ∈ Λ2V ∗.

Lemma 4.54 Let ρ : Λ2V ∗ → End(W ) be given by (4.39). Then

η(v, w) =
1

2n
trace(Γ(v)ρ(η)Γ(w)) (4.40)

for η ∈ Λ2V ∗ and v, w ∈ V . Moreover, the map ρ is equivariant with respect
to the action of Spinc(V ), namely

ρ(ad(x)∗η) = Γ(x)−1ρ(η)Γ(x) (4.41)

for x ∈ Spinc(V ) and η ∈ Λ2V ∗.

Proof: It suffices to prove the formula (4.40) for η = ei
∗ ∧ ej∗ with i < j.

Recall from the proof of Proposition 4.33 that

trace(Γ(x)) = 2nx0

for every x ∈ C2(V ). Now any two vectors v =
∑
ν vνeν and w =

∑
ν wνeν

satisfy

(veiejw)0 = viwjeieiejej + vjwiejeiejei = viwj − vjwi

and hence

trace(Γ(v)Γ(ei)Γ(ej)Γ(w)) = 2n(viwj − vjwi).

This shows that η can be obtained from ρ(η) via (4.40). To prove the
equivariance note first that if x ∈ Spinc(V ) and Ψ = ad(x) ∈ SO(V ) then
Γ(Ψv) = Γ(x)Γ(v)Γ(x)−1. Hence

Ψ∗η(v, w) = η(Ψv,Ψw)

= 2−ntrace(Γ(Ψv)ρ(η)Γ(Ψw))

= 2−ntrace

(
Γ(x)Γ(v)Γ(x)−1ρ(η)Γ(x)Γ(w)Γ(x)−1

)
= 2−ntrace

(
Γ(v)Γ(x)−1ρ(η)Γ(x)Γ(w)

)
.

This shows that ρ(Ψ∗η) = Γ(x)−1ρ(η)Γ(x) as claimed. 2



146 SPIN GEOMETRY

The four dimensional case

Let V be an oriented four-dimensional reainner product space. Consider
the Hodge-∗-operator on the space Λ2V ∗. For any positively oriented or-
thonormal basis e0, e1, e2, e3 of V this operator is given by

∗ω01 = ω23, ∗ω02 = ω31, ∗ω03 = ω12

where ωjk = ej
∗ ∧ ek∗. Denote by

Λ2,± = {ω ∈ Λ2 | ∗ ω = ±ω}

the subspaces of self-dual, respectively anti-self-dual, forms. For any form
ω ∈ Λ2V ∗ denote the self-dual and anti-self-dual parts of ω by

ω± =
1

2
(ω ± ∗ω).

The next lemma shows that the splitting

Λ2V ∗ = Λ2,+ ⊕ Λ2,−

of the space of 2-forms into the self-dual and anti-self-dual ones corresponds
under the map ρ to the splitting

Γ(Spin(V )) = SU(W+)× SU(W−).

Lemma 4.55 Assume dim V = 4 and let ρ : Λ2V → End(W ) be given
by (4.39). Let η ∈ Λ2V ∗. Then

ρ±(η) = 0 ⇐⇒ η± = 0.

Proof: Consider the standard example γ : V → C2×2 with

γ(e0) = 1l, γ(e1) = I, γ(e2) = J, γ(e3) = K.

If Γ : V → C4×4 is given by (4.25) then, as in Example 4.39,

ρ(ω01) =

(
I 0
0 −I

)
, ρ(ω02) =

(
J 0
0 −J

)
, ρ(ω03) =

(
K 0
0 −K

)

ρ(ω23) =

(
I 0
0 I

)
, ρ(ω31) =

(
J 0
0 J

)
, ρ(ω12) =

(
K 0
0 K

)
.

Since the left upper block represents ρ+(η) and the right lower block rep-
resents ρ−(η) it follows that ρ∓(η) = 0 if and only if η ∈ Λ2,±. This proves
the lemma. 2
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The previous lemma shows that the map ρ gives rise to isomorphisms
ρ± : Λ2,± → su(W±). Here su(W±) denotes the space of traceless skew-
Hermitian endmorphisms of W±. In other words, every spinc structure
Γ : V → End(W ) on a 4-dimensional real Hilbert space induces spinc

structures ρ± : Λ2,± → End(W±) of the 3-dimensional real Hilbert spaces
of self-dual and anti-self-dual 2-forms on V . The complexified map

ρ± : Λ2,± ⊗R C→ End0(W±)

is an isomorphism from the space of complex valued (anti-)self-dual 2-
forms to the space End0(W±) of traceless endomorphisms of W±. Note
that ρ±(η) is Hermitian iff η is imaginary valued and skew-Hermitian iff η
is real valued. Lemma 4.54 shows that the inverse map

σ± = (ρ±)−1 : End0(W±)→ Λ2,± ⊗R C

is given by σ±(T )(v, w) = 1
4 trace(Γ(v)TΓ(w)) for T ∈ End0(W±). All these

observations readily carry over to 4-dimensional vector bundles.

Exercise 4.56 Assume dimR V = 6. Prove that a 2-form η ∈ Λ2V ∗ satis-
fies ρ+(η) = ρ(η)|W+ = 0 if and only η = 0. 2

Exercise 4.57 Let V be a 3-dimensional oriented real inner product space
and γ : V → End(W ) be a spinc structure which is compatible with the
orientation. Identify V with V ∗. Prove that, for η ∈ Λ2V ,

ρ(η) = γ(∗η). 2

Exercise 4.58 Let V be a 2-dimensional oriented real inner product space
and γ : V → End(W ) be a spinc structure. Prove that, for η ∈ Λ2V and
θ ∈W±,

ρ(η)θ = ∓ ∗ iηθ. 2

The complex case

Let (V, J, ω) be a Hermitian vector space (see Section 3.1) of real dimension
2n and Γcan : V → End(Wcan) be the canonical spinc structure withWcan =
Λ0,∗V ∗ (see (4.35)). Consider the map ρcan : Λ2V ∗ ⊗ C → End(Wcan)
defined by (4.39).

Lemma 4.59 Let e1, Je1, . . . , en, Jen be an orthonormal basis of V . Then,
for τ ∈ Λ0,∗V ∗,

1

8
ρcan(ei

′ ∧ ej ′)τ = ι(ei)ι(ej)τ,
1

2
ρcan(ei

′′ ∧ ej ′′)τ = ei
′′ ∧ ej ′′ ∧ τ,

1

4
ρcan(ei

′ ∧ ej ′′)τ = ej
′′ ∧ ι(ei)τ −

1

2
δijτ.
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Proof: Recall that ej
′ = ei

∗ + i(Jej)
∗ and ej

′′ = ej
∗ − i(Jej)∗. Hence

ei
′ ∧ ej ′ = ei

∗ ∧ ej∗ − (Jei)
∗ ∧ (Jej)

∗ + i(Jei)
∗ ∧ ej∗ + iei

∗ ∧ (Jej)
∗,

ei
′′ ∧ ej ′′ = ei

∗ ∧ ej∗ − (Jei)
∗ ∧ (Jej)

∗ − i(Jei)∗ ∧ ej∗ − iei∗ ∧ (Jej)
∗,

ei
′ ∧ ej ′′ = ei

∗ ∧ ej∗ + (Jei)
∗ ∧ (Jej)

∗ + i(Jei)
∗ ∧ ej∗ − iei∗ ∧ (Jej)

∗.

(Note here that i =
√
−1 whenever i does not appear as a subscript.) It

follows from the definition of Γ that

ρcan(ei
∗ ∧ ej∗)τ =

1

2
ei
′′ ∧ ej ′′ ∧ τ + 2ι(ei)ι(ej)τ

+ ej
′′ ∧ ι(ei)τ − ei′′ ∧ ι(ej)τ,

ρcan((Jei)
∗ ∧ (Jej)

∗)τ = − 1

2
ei
′′ ∧ ej ′′ ∧ τ − 2ι(ei)ι(ej)τ

+ ej
′′ ∧ ι(ei)τ − ei′′ ∧ ι(ej)τ,

iρcan((Jei)
∗ ∧ ej∗)τ = − 1

2
ei
′′ ∧ ej ′′ ∧ τ + 2ι(ei)ι(ej)τ

+ ej
′′ ∧ ι(ei)τ + ei

′′ ∧ ι(ej)τ − δijτ,

iρcan(ei
∗ ∧ (Jej)

∗)τ = − 1

2
ei
′′ ∧ ej ′′ ∧ τ + 2ι(ei)ι(ej)τ

− ej ′′ ∧ ι(ei)τ − ei′′ ∧ ι(ej)τ + δijτ.

The lemma follows by combining these equations. 2

Assume that (V, J, ω) is a Hermitian vector space of 2 complex dimen-
sions and consider the space Λ2,+ of self-dual 2-forms.

Lemma 4.60 There is a natural isomorphism

Λ2,+ ∼=−→ Rω ⊕ Λ0,2

given by η 7→ (η1,1, η0,2).

Proof: Consider C2 with its standard coordinates zj = xj + iyj and
its standard Hermitian structure. The standard orientation is given by
x1, y1, x2, y2. Hence the forms

Re dz1 ∧ dz2 = dx1 ∧ dx2 − dy1 ∧ dy2,

Im dz1 ∧ dz2 = dx1 ∧ dy2 + dy1 ∧ dx2,

ω = dx1 ∧ dy1 + dx2 ∧ dy2

form a basis of the space Λ2,+ of self-dual 2-forms. Since the (2, 0)-part of
a real-valued 2-form is determined by its (0, 2)-part (see Remark 3.7) this
proves the lemma. 2
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Consider the map ρ+
can : Λ2,+⊗iR→ End(W+

can) defined by (4.39) in the
complex 2-dimensional case. This map is an isomorphism between imagi-
nary valued self-dual 2-forms on V and traceless Hermitian endomorphisms
of W+.

Lemma 4.61 If η ∈ Λ2,+⊗ iR and τ = (τ0, τ2) ∈W+
can = Λ0,0⊕Λ0,2 then

ρ+
can(η) :

(
τ0
τ2

)
7→ 2

(
η0τ0 + 〈η2, τ2〉
τ0η2 − η0τ2

)
where η1,1 = iη0ω and η0,2 = η2.

Proof: By Lemma 4.60 the form η ∈ Λ+ ⊗ iR can be written as

η = ae1
′′ ∧ e2

′′ − āe1
′ ∧ e2

′ + iη0ω,

where

η2 = ae1
′′ ∧ e2

′′, ω =
i

2
(e1
′ ∧ e1

′′ + e2
′ ∧ e2

′′) .

Let τ2 = be1
′′ ∧ e2

′′. Then 〈η2, τ2〉 = 4āb = −4āι(e1)ι(e2)τ2. Now use
Lemma 4.59 to obtain ρcan(ej

′∧ej ′′)τ0 = −2τ0 and ρcan(ej
′∧ej ′′)τ2 = 2τ2.

Hence σ(ω)τ0 = −2iτ0, σ(ω)τ2 = 2iτ2, and so

ρcan(η)τ0 = 2ae1
′′ ∧ e2

′′τ0 + 2η0τ0 = 2τ0η2 + 2η0τ0,

ρcan(η)τ2 = −8āι(e1)ι(e2)τ2 − 2η0τ2 = 2〈η2, τ2〉 − 2η0τ2.

This proves the lemma. 2

The previous lemma is concerned with imaginary valued 2-forms η be-
cause such forms arise as (the self-dual parts of) curvature forms of connec-
tions on line bundles. Recall that in this case the endomorphism ρ+

can(η) is
Hermitian and has zero trace. It is useful to rephrase Lemma 4.61 in terms
of the inverse map

σ+
can = (ρ+

can)−1 : End0(W+
can)→ Λ2,+ ⊗R C.

Note in particular that, if T ∈ End0(W+
can) is a traceless Hermitian endo-

morphism then σ+
can(T ) is an imaginary valued anti-self-dual 2-form. The

next lemma gives an explicit formula for σ+
can((ΦΦ∗)0) for Φ ∈W+

can. Here
ΦΦ∗ ∈ End(W+

can) denotes the Hermitian endomorphism

ΦΦ∗τ = 〈Φ, τ〉Φ

and T0 = T − 1
2 trace(T )1l ∈ End0(W+

can) denotes the traceless part of
T ∈ End(W+

can). Thus, for τ ∈W+
can,

(ΦΦ∗)0τ = 〈Φ, τ〉Φ− 1

2
|Φ|2τ.
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Lemma 4.62 In the case of the canonical spinc structure on a 2-dimen-
sional complex vector space (V, J)

2σ+
can((ΦΦ∗)0) = i

|ϕ0|2 − |ϕ2|2

2
ω + ϕ̄0ϕ2 − ϕ0ϕ̄2

for Φ = (ϕ0, ϕ2) ∈W+
can = Λ0,0 ⊕ Λ0,2.

Proof: The 2-form η = σ+
can((ΦΦ∗)0) ∈ Λ2,+V ∗ ⊗ iR decomposes as

η = η2 + iη0ω − η̄2

where η0 ∈ R and η0,2 = η2 and η2,0 = −η̄2. Moreover,

ρ+
can(η)τ = (ΦΦ∗)0τ = (ϕ̄0τ0 + 〈ϕ2, τ2〉)ϕ−

|ϕ0|2 + |ϕ2|2

2
τ

for τ = (τ0, τ2) ∈ W+
can with τ0 ∈ Λ0,0 = C and τ2 ∈ Λ0,2. Comparing this

with the formula of Lemma 4.61 for ρ+
can(η) one finds

2η0τ0 + 2〈η2, τ2〉 = (ϕ̄0τ0 + 〈ϕ2, τ2〉)ϕ0 −
|ϕ0|2 + |ϕ2|2

2
τ0,

2τ0η2 − 2η0τ2 = (ϕ̄0τ0 + 〈ϕ2, τ2〉)ϕ2 −
|ϕ0|2 + |ϕ2|2

2
τ2.

The formula 〈ϕ2, τ2〉ϕ2 = |ϕ2|2τ2 shows that these two equations can be
written in the form

2η0τ0 + 2〈η2, τ2〉 =
|ϕ0|2 − |ϕ2|2

2
τ0 + 〈ϕ̄0ϕ2, τ2〉,

2τ0η2 − 2η0τ2 =
|ϕ2|2 − |ϕ0|2

2
τ2 + τ0ϕ̄0ϕ2.

These last two equations hold for all τ0 ∈ C and all τ2 ∈ Λ0,2 if and only if
η is given by

2η2 = ϕ̄0ϕ2, 2η0 =
|ϕ0|2 − |ϕ2|2

2
.

Since η = η2 + iη0ω − η̄2 it follows that

2η = i
|ϕ0|2 − |ϕ2|2

2
ω + ϕ̄0ϕ2 − ϕ0ϕ̄2

as claimed. 2
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Remark 4.63 The proof of Lemma 4.62 shows that η ∈ Λ2,+V ∗⊗ iR and
Φ ∈W+

can satisfy
ρ+

can(η) = (ΦΦ∗)0

if and only if

2η0,2 = ϕ̄0ϕ2, 2iη ∧ ω =
|ϕ2|2 − |ϕ0|2

2
ω ∧ ω.

To see this just note that ω is of type (1, 1) and hence η0,2 ∧ ω = 0. 2



5

SPIN STRUCTURES ON VECTOR BUNDLES

The goal of this chapter is to discuss spin structures and spinc struc-
tures on vector bundles V → X. The approach taken here is to define spin
and spinc structures as representations on spinor bundles S → X (in the
spin case) and W → X (in the spinc case). The reader may have noted
that the Definitions 4.32 and 4.43 carry over directly to the vector bundle
situation. That this is equivalent to the perhaps more familiar principal
bundle approach is shown in the next section. The results for general vec-
tor bundles are then adapted to tangent bundles. Section 5.2 deals with
the classification of spinc structures in terms of integral lifts of w2(TX).
It is proved that every orientable smooth 4-manifold admits a spinc struc-
ture. Section 5.3 examines spinc structures on complex vector bundles and
Section 5.4 deals with the classification of spin structures.

5.1 Basic definitions

Let X be a smooth manifold and V → X be an m-dimensional oriented
real vector bundle with an inner product.

Definition 5.1 A spin structure on V is a principal bundle P → X with
structure group G = Spin(m) = Spin(Rm) together with an isomorphism

P ×ad Rm → V

of oriented Riemannian vector bundles. A bundle V is called spin if it
admits a spin structure.

It is shown in Theorem 5.28 below that an oriented Riemannian vector
bundle V → X admits a spin structure if and only if its second Stiefel-
Whitney class w2(V ) ∈ H2(X;Z2) vanishes. This means that the restriction
of V to every embedded surface Σ ⊂ X admits a trivialization. A manifold
X is called spin if its tangent bundle TX admits a spin structure.

Let us examine this condition for compact oriented smooth 4-manifolds.
Any such manifold X carries a mod-2 intersection form

QX,2 : H2(X;Z2)×H2(X;Z2)→ Z2.

The footnote on page 28 can be adapted to show that every Z2-homology
class α can be represented by a smoothly embedded, but not necessarily
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oriented, surface Σ ⊂ X. The intersection form is given by the mod-2 in-
tersection numbers of such embedded surfaces. The second Stiefel-Whitney
class of TX satisfies

〈w2(TX), α〉 = QX,2(α, α) (5.1)

for α ∈ H2(X;Z2). This follows from the multiplicativity of the Stiefel-
Whitney classes for the splitting TΣX = TΣ + νΣ. The proof of (5.1) uses
the identities w2(TΣ) = χ(Σ)(mod 2), w2(νΣ) = Σ · Σ(mod 2), and

χ(Σ) = w1(TΣ)2 (mod 2) (5.2)

for every 2-manifold Σ (compare this with Lemma 1.45). Equation (5.1)
shows that a 4-manifold X is spin if and only if the mod-2 self-intersection
number of every mod-2 homology class is zero. In the simply connected case
this means that the integral intersection form QX : H2(X;Z)×H2(X;Z)→
Z is even. However, care must be taken if X is not simply connected. In this
case w2(TX) may be a nonzero torsion class and any such class satisfies
〈w2(TX), α〉 = 0 for all α ∈ H2(X;Z) (but the pairing is nonzero for some
α ∈ H2(X;Z2) which does not admit an integral lift). For an example of a
non-spin 4-manifold with even intersection form see Example 6.28 below.

Definition 5.2 A spinc structure on an m-dimensional oriented Rie-
mannian vector bundle V → X is a principal bundle P → X with structure
group G = Spinc(m) = Spinc(Rm) together with an isomorphism

P ×ad Rm → V

of Riemannian vector bundles.

It is shown in Theorem 5.8 below that an oriented Riemannian vector
bundle admits a spinc structure if and only if its second Stiefel-Whitney
class w2(V ) ∈ H2(X;Z2) admits an integral lift. Such an integral lift is
in fact given by the first Chern class c = c1(L) of the characteristic line
bundle

L = P ×δ C.

Here the action of Spinc(m) on C is given by the homomorphism δ :
Spinc(m) → S1 in (4.16). The class w2(V ) admits an integral lift if and
only if it maps to zero under the Bockstein homomorphism H2(X;Z2) →
H3(X;Z). This is the case, for example, if there is no 2-torsion in H2(X;Z).
In Theorem 5.8 it is also shown that a spinc structure on a bundle V need
not be determined uniquely (up to spinc isomorphism) by its associated line
bundle L. The difference of two such line bundles L0 and L1 arising from
spinc structures P0 and P1 is necessarily even, i.e. the mod-2 reduction of
the difference of first Chern classes c1(L1)− c1(L0) ∈ H2(X;Z) is zero. In
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general spinc structures are determined by square roots of these classes. In
other words, isomorphism classes of spinc structures form a principal space
Sc(V ) with structure group H2(X;Z) but in general there is no natural
base point. The map Sc(V )→ H2(X;Z) which assigns to a spinc structure
the first Chern class c1(L) is a bijection if and only if there is no 2-torsion
in H2(X;Z).

A spinc structure on an oriented Riemannian manifold X is defined as
a spinc structure on its tangent bundle. The above assertions state that such
a structure exists if and only if the second Stiefel-Whitney class w2(TX) ∈
H2(X;Z2) of its tangent bundle admits an integral lift. In particular, it
is shown in Theorem 5.10 below that every orientable smooth 4-manifold
admits a spinc structure, but it only admits a spin structure if w2(TX) = 0
(i.e. in the simply connected case if its intersection form is even).

Let us now return to the case of spinc structures on general vector
bundles V → X of rank m = 2n or m = 2n + 1. Then, by Theorem 4.23,
there is a representation Γ0 : Spinc(Rm)→ End(C2n) and this gives rise to
a Hermitian vector bundle

W = P ×Γ0
C2n .

Clifford multiplication determines a homomorphism Γ : V → End(W )
which satisfies (4.18). This gives rise to the following alternative definitions.

Definition 5.3 A spinc structure on an oriented Riemannian vector
bundle V → X of dimension 2n or 2n+ 1 is a pair (W,Γ) where W → X
is a Hermitian vector bundle of rank 2n and Γ : V → End(W ) is a homo-
morphism which satisfies (4.18) and, in the odd dimensional case, (4.22).
A spinc isomorphism from (W0,Γ0) to (W1,Γ1) is a unitary bundle iso-
morphism Φ : W0 →W1 which satisfies

ΦΓ0 = Γ1Φ

Denote by Sc(V ) the set of isomorphism classes of spinc structures on V .

Definition 5.4 A spin structure on an oriented Riemannian vector bun-
dle V → X of rank 2n ≡ 2, 4(mod 8) or 2n+ 1 ≡ 3(mod 8) is a quadruple
(S, I, J,Γ) where S → X is a Riemannian vector bundle of (real) rank 2n+1,
I, J ∈ C∞(X,End(S)) are orthogonal anti-commuting complex structures,
and Γ : V → End(S) is a homomorphism which and commutes with I
and J , and satisfies (4.18) and, in the odd dimensional case, (4.22). A
spin isomorphism from (S0, I0, J0,Γ0) to (S1, I1, J1,Γ1) is an orthogonal
bundle isomorphism Φ : S0 → S1 which satisfies

ΦΓ0 = Γ1Φ, ΦI0 = I1Φ, ΦJ0 = J1Φ.

Denote by S(V ) the set of isomorphism classes of spin structures on V .
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If (W,Γ) is a spinc structure on an even dimensional vector bundle
V → X then, by Proposition 4.33, Γ extends to an isomorphism Cc(V )→
End(W ) which is still denoted by Γ. By Lemma 4.40, the Hermitian vector
bundle W admits a natural splitting

W = W+ ⊕W−

into the bundles of eigenspaces of Γ(ε) with eigenvalues ±in where ε ∈
C2n(V ) is determined by a positively oriented orthonormal basis as in
Lemma 4.40.

Remark 5.5 The definitions 5.2 and 5.3 are equivalent. To see this choose
model space V0, of dimension 2n or 2n + 1, and a model spinc structure
Γ0 : V0 → End(W0). Let Γ : V → End(W ) be a spinc structure as in Defi-
nition 5.3. Then there is a principle frame bundle PΓ → X with structure
group Spinc(V0) such that the fibre of PΓ over x ∈ X is the space of all
spinc isomorphisms from the model space W0 to the fibre Wx. Thus

PΓ =
{

(x,A,Φ) |x ∈ X, (A,Φ) ∈ Homspinc

(W0,Wx)
}
.

Thus a point in PΓ is a triple (x,A,Φ) where x ∈ X, A : V0 → Vx is an
orientation preserving orthogonal transformation, and Φ : W0 → Wx is
a unitary isomorphism such that ΦΓ0(v0)Φ∗ = Γ(Av0) for v0 ∈ V0. The
group Spinc(V0) acts on PΓ by

(x,A,Φ) 7→ (x,A ◦ ad(a),Φ ◦ Γ0(a)

for a ∈ Spinc(V0). The bundle P ×ad V0 is the space of equivalence classes
[x,A,Φ, v0] ∈ P ×ad V0 with equivalence relation

[x,A,Φ, v0] ≡ [x,A ◦ ad(a),Φ ◦ Γ0(a), ad(a)−1v0]

for a ∈ Spinc(V0). There is a canonical isomorphism

PΓ ×ad V0

∼=−→ V : [x,A,Φ, v0] 7→ Av0. 2

Conversely, if P → X is a principal Spinc(V0)-bundle over X, then there
is an obvious homomorphism P ×ad V0 → End(P ×Γ0

W0). If we assume
V ∼= P×adV0 and define W = P×Γ0

W0 This gives rise to a homomorphism
Γ : V → End(W ) as required. 2

Exercise 5.6 Show that the the two definitions of spin structures in 5.1
and 5.4 are equivalent. Define a spin structure on a vector bundle of rank 0
or 6 mod 8 along the lines of 5.4 and show that your definition is equivalent
to 5.1. Hint: See Exercise 4.48. 2
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It is interesting to examine the associated line bundle

LΓ = PΓ ×δ C.

The elements of LΓ are equivalence classes of quadruples [x,A,Φ, z] ∈ P×C
under the equivalence relation

[x,A,Φ, z] ≡ [x,A ◦ ad(a),Φ ◦ Γ0(a), δ(a)−1z] (5.3)

for a ∈ Spinc(V0). The next lemma shows that, when V has rank 2, 3, or 4
modulo 8, then the unit sphere bundle in LΓ is naturally isomorphic to the
bundle Q = QΓ → X whose fiber over x consists of all orthogonal complex
structures J on Wx which anti-commute with I = i and commute with Γ:

QΓ =
{

(x, J) | J ∈ EndR(Wx), J−1 = J∗ = −J, JI = −IJ, JΓ = ΓJ
}
.

Lemma 5.7 Assume that V has rank 2, 3, or 4 modulo 8. Then the circle
bundle QΓ → X is naturally isomorphic to the unit sphere bundle in LΓ.

Proof: Fix an orthogonal complex structure J0 : W0 → W0 which anti-
commutes with I0 = i and commutes with Γ0. Consider the map PΓ×S1 →
QΓ : (x,A,Φ, z) 7→ (x, J(Φ, z)), where J(Φ, z) is given by

J(Φ, z) = Re zΦJ0Φ−1 + Im zΦI0J0Φ−1.

We prove that this map is invariant under the action of Spinc(V0) as in (5.3).
Note first that J0 commutes with Γ0(v0) for every v0 ∈ V0 and hence with
Γ0(a0) for every a0 ∈ Spin(V0) ⊂ C(V0). Now write a ∈ Spinc(V0) in the
form a = eiθa0 where a0 ∈ Spin(V0). Then

J(Φ ◦ Γ0(a), 1) = ΦΓ0(a)J0Γ0(a)−1Φ−1

= Φ(cos θ + sin θI0)J0(cos θ − sin θI0)Φ−1

= cos(2θ)ΦJ0Φ−1 + sin(2θ)I0ΦJ0Φ−1

= J(Φ, e2iθ)

= J(Φ, δ(a)).

This proves the lemma. 2

The previous lemma shows that the line bundle LΓ associated to a spinc

structure (W,Γ) has first Chern class c1(LΓ) = 0 if and only the bundle
QΓ admits a section. Any such section is precisely an orthogonal complex
structure J on W which commutes with Γ and anti-commutes with the
standard complex structure I = i. Hence a spin structure on an oriented
2n-dimensional Riemannian vector bundle V → X can also be defined as
a triple (W,Γ, θ) where (W,Γ) is a spinc structure with c1(X,LΓ) = 0 and
θ : X → LΓ is a section which satisfies |θ(x)| = 1 for all x ∈ X.
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5.2 Classification of spinc structures

With the definitions in place we shall now examine the fundamental ques-
tion of the existence of spinc structures and their uniqueness up to natural
spinc isomorphisms. It is convenient to label spinc structures by the map
Γ : V → End(W ) and denote the associated principal and line bundles by
PΓ and LΓ respectively. The first Chern class of the line bundle LΓ is the
fundamental object in the classification of spinc structures. As a warm-up
consider its relation with the determinant line bundles of W+ and W−.
Note first that these determinant bundles are canonically isomorphic. The
isomorphism is induced by Γ(v) with |v| = 1 and, by Lemma 4.41, is inde-
pendent of the choice of v. Moreover, it follows from Proposition 4.36 (ii)
that the line bundle L = LΓ is related to these determinant bundles by

LΓ
⊗2n−2 ∼= det(W+) ∼= det(W−). (5.4)

The spinc structure arises from a spin structure of X precisely if the line
bundle LΓ can be trivialized. The situation is particularly simple in the
4-dimensional case when L ∼= det(W+) ∼= det(W−).

The next theorem is the fundamental result of this section. It answers
the questions about the existence and uniqueness of spinc structures. In
particular, it asserts that, given a spinc structure Γ : V → End(W ) on
V , any other spinc structure can be obtained from it by tensoring with a
Hermitian line bundle and that the two structures are isomorphic if and
only if the line bundle admits a trivialization. Thus the set Sc(V ), if it is
nonempty, is a principal space structure group H2(X;Z)

Theorem 5.8 Let V → X be an oriented Riemannian vector bundle of
rank 2n.

(i) If Γ : V → End(W ) is a spinc structure on V then the first Chern class
c1(LΓ) ∈ H2(X;Z) is an integral lift of w2(V ) ∈ H2(X;Z2).

(ii) For every integral lift c ∈ H2(X;Z) of w2(V ) there exists a spinc

structure Γ : V → End(W ) with c1(LΓ) = c.

(iii) If Γ : V → End(W ) is a spinc structures on V and E → X is a
Hermitian line bundle then the characteristic line bundle of the twisted
spinc structure Γ̃ = Γ⊗ 1l : V → End(W ⊗ E) is given by

LΓ̃ = LΓ ⊗ E⊗2.

(iv) If Γ1 : V → End(W1) and Γ2 : V → End(W2) are spinc structures on
V then there exists a Hermitian line bundle E → X such that

W2
∼= W1 ⊗ E, Γ2

∼= Γ1 ⊗ 1l.

These two spinc structures are isomorphic if and only if c1(E) = 0.
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Proof: We prove (i). Let α ∈ H2(X;Z2) and choose a compact embedded
(but not necessarily oriented) 2-manifold Σ ⊂ X such that

α = [Σ] ∈ H2(X;Z2)

(see the footnote on page 28). Write

Σ = Σ1 ∪C Σ2,

where Σ1 ⊂ Σ is a closed disc, Σ2 = cl(Σ − Σ1), and C = ∂Σ1 is the
common boundary. Since Spinc(V0) is connected, there exist sections of PΓ

over Σ1 and Σ2. Write these in the form

Σi → PΓ : z 7→ (z,Ai(z),Φi(z)),

where Ai(z) ∈ Hom(V0, Vz) and Φi(z) ∈ Hom(W0,Wz) satisfy

Φi(z)Γ0(v0)Φi(z)
∗ = Γ(Ai(z)v0)

for z ∈ Σi, v0 ∈ V0, and i = 1, 2. By Proposition 4.36 (i), the two sections
over C give rise to a transition map α : C → Spinc(V0) such that

Φ2(z) = Φ1(z) ◦ Γ0(α(z)), A2(z) = A1(z) ◦ ad(α(z))

for z ∈ C. Hence

〈w2(V ), [Σ]〉 =

{
0, if ad ◦ α is contractible,
1, otherwise.

Now the trivializations of PΓ also give rise to sections si : Σi → LΓ given
by

si(z) = [z,Ai(z),Φi(z), 1].

These sections satisfy
s2(z) = δ(α(z))s1(z).

If Σ is oriented, then Proposition 1.34 shows that 〈c1(LΓ), [Σ]〉 = deg(δ◦α).
With similar arguments one can show also in the nonorientable case that
the number of zeros of a generic section of LΓ over Σ is equal to the degree
of δ ◦ α modulo 2. Hence

〈w2(LΓ), [Σ]〉 = deg2(δ ◦ α) = 〈w2(V ), [Σ]〉.

The last identity follows from the fact that the degree of δ ◦ α is even if
and only if ad ◦ α is contractible (Lemma 4.30). This proves (i).
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We prove (ii). Triangulate X and denote by Xk ⊂ X the k-skeleton.
Think of the simplices in the triangulation as submanifolds with corners
and write them in the form ∆α, ∆β , etc. The indices belong to a finite

set S =
⋃2n
k=0 Sk, and indices in Sk correspond to k-simplices. For each

simplex α ∈ S choose a trivialization of V |∆α
and write it in the form

Aα(x) : V0 → Vx for x ∈ ∆α. Let us denote the transition functions by

Aβα(x) = Aβ(x)−1Aα(x) ∈ SO(V0), x ∈ ∆α ∩∆β .

Since V is oriented there exists a trivialization of V over the 1-skeleton.
This translates into the condition

α, β ∈ S0 ∪ S1, x ∈ ∆α ∩∆β =⇒ Aβα(x) = 1l. (5.5)

We shall construct the bundleW as the union of the trivial bundles ∆α×W0

with spinc structures Γα = Γ0◦Aα(x)−1 : Vx → End(W0) for x ∈ ∆α. Thus

W =
⋃
α

{α} ×∆α ×W0/ ≡

The equivalence relation, for x ∈ ∆α ∩∆β , has the form

[α, x, θ0] ≡ [β, x,Γ0(aβα(x))θ0],

where the transition functions aβα : ∆α ∩∆β → Spinc(V0) satisfy

aγβaβα = aγα, aαα(x) = 1, (5.6)

ad ◦ aβα = Aβα. (5.7)

We shall construct the transition functions over the k-skeleton, by induction
over k. For α, β ∈ S0∪S1 define aβα(x) = 1. Then (5.7) follows from (5.5). It
also follows from (5.5) that, for every 2-simplex β ∈ S2 and every x ∈ ∂∆β ,
the transition matrix Aγβ(x) ∈ SO(V0) is independent of the 1-simplex γ
(with x ∈ ∆γ) used to define it. Hence these transition matrices give rise
to a loop ρβ : ∂∆β → SO(V0) defined by ρβ(x) = Aγβ(x) for γ ∈ S1 with
x ∈ ∆γ ⊂ ∆β . Define `2 : S2 → Z2 by

`2(β) =

{
0, if ρβ is contractible,
1, if ρβ is not contractible.

This function is a cocycle and represents the second Stiefel-Whitney class
of V . Since c is an integral lift of w2(V ) there exists a cocycle ` : S2 → Z
which represents the class c and whose mod-2 reduction agrees with `2. In
particular, the sum of the labels over each boundary is zero and the sum
of the labels over a cycle σ agrees with 〈c, σ〉.
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For every 2-simplex β ∈ S2, choose a loop aβ : ∂∆β → Spinc(V0) such
that

ad ◦ aβ = ρβ , deg(δ ◦ aβ) = `(β).

Such loops exist by Lemma 4.30. Now, for every γ ∈ S0∪S1 with ∆γ ⊂ ∆β ,
define

aγβ(x) := aβ(x)

for x ∈ ∆α ∩∆β . These functions satisfy (5.7). If β, β′ ∈ S2 are 2-simplices
with nonempty intersection then we must define

aβ′β(x) = aγβ′(x)−1aγβ(x) = aβ′(x)−1aβ(x),

where γ ∈ S1 is chosen such that x ∈ ∆γ ⊂ ∆β ∩∆β′ . This defines W and
Γ over the 2-skeleton such that the first Chern class of LΓ agrees with c.

Now let α ∈ S3. Consider the circle bundle

Qα → ∂∆α

whose fibre over x ∈ ∆α ∩∆β , with β ∈ S2, consists of all a ∈ Spinc(V0)
such that ad(a) = Aβα(x). If x ∈ ∆β ∩ ∆β′ then the two corresponding
circles can be naturally identified via a 7→ aβ′β(x)a. The square Qα×S1 Qα
of this bundle has transition functions δ ◦ aβ′β = (δ ◦ aβ′)−1(δ ◦ aβ) and
hence its Euler number is given by

e(Qα ×S1 Qα) =
∑
β∈S2

∆β⊂∆α

ε(β, α) deg(δ ◦ aβ) =
∑
β∈S2

∆β⊂∆α

ε(β, α)`(β) = 0.

Here the sign ε(β, α) ∈ {±1} is determined by comparing the orientation
of ∆β with that of ∂∆α. The last equation follows from the fact that ` is
a cocycle. Since ∂∆α is a 2-sphere it follows that e(Qα) = 0 and hence
Qα has a section. By construction of Qα, such a section determines the
required transition functions aαβ for β ∈ S2 with ∆β ⊂ ∆α.

Now suppose, by induction, that the aβα have been constructed for all
α, β ∈ S0 ∪ · · · ∪ Sk, where k ≥ 3. Let α ∈ Sk+1 and consider the circle
bundle Qα → ∂∆α, defined as above. In this case this is a circle bundle
over a k-sphere with k ≥ 3 and every such bundle has a section.∗ This
proves the existence of the transition functions over the (k + 1)-skeleton,
and hence the existence of a spinc structure Γ with c1(LΓ) = c.

∗ Any smooth map u : ∂Bk → S1 extends to Bk when k ≥ 3. To see this note
that, because ∂Bk is simply connected there exists a lift ξ : ∂Bk → R such that

u(x) = exp(iξ(x)) for x ∈ ∂Bk. The map ξ obviously extends over Bk via ξ(tx) = tξ(x)

for t ∈ [0, 1] and x ∈ ∂Bk. This extension is only continuous but a smooth extension
can be obtained by a standard approximation argument.



CLASSIFICATION OF SPINC STRUCTURES 161

We prove (iii). Assume that Γ : V → End(W ) is a spinc structure and
E → X a Hermitian line bundle. Consider the twisted spinc structure

W̃ = W ⊗ E, Γ̃ = Γ⊗ 1l.

The corresponding principal bundle P̃ is given by

P̃ = P ⊗S1 PE

where PE denotes the unit sphere bundle of E. Hence the fiber over x ∈ X
of the line bundle LΓ̃ consists of equivalence classes of triples [Φ, λ, z] ∈
Px × PEx × C under the equivalence relation

[Φ, λ, z] ≡ [Φ ◦ Γ0(a), λ, δ(a)−1z] ≡ [eiθΦ, e−iθλ, z] ≡ [Φ, e−iθλ, e2iθz]

for a ∈ Spinc(V0) and eiθ ∈ S1. In particular, with θ = π, one obtains
[Φ, λ, z] ≡ [Φ,−λ, z]. The required isomorphism LΓ̃ → LΓ⊗E ⊗E is given
by [Φ, λ, z] 7→ [Φ, z]⊗ λ⊗ λ.

To prove (iv) assume that Γ1 : V → End(W1) and Γ2 : V → End(W2)
are two spinc structures and consider the circle bundle Q→ X whose fiber
over x consists of all spinc isomorphisms Φ : W1x → W2x which lift the
identity isomorphism of Vx, i.e.

ΦΓ1(v) = Γ2(v)Φ

for all v ∈ Vx. Indeed, any two such spinc isomorphisms are related by
multiplication with a complex number of modulus 1. Now the two spinc

structures are isomorphic if and only if the bundle Q→ X admits a section.
Hence consider the tensor product of W1 with a line bundle E. Then the
corresponding modification QE = Q ⊗S1 PE∗ of Q is given by the tensor
product with the unit circle bundle of E∗. With a suitable choice of the line
bundle E the resulting circle bundle QE of spinc isomorphisms will have a
section and so give rise to an isomorphism W2

∼= W1 ⊗ E. Obviously, the
isomorphism class of E is uniquely determined by Γ1 and Γ2. This proves
the theorem. 2

Exercise 5.9 Let Γ : V → End(W ) be a spinc structures on a real vector
bundle V → X of rank 2n and A ∈ C∞(X,SO(V )) be an automorphism.

(i) Show that there is a natural homomorphism

ρA : π1(X)→ Z2

defined as follows. Given a loop γ : S1 → X trivialize the bundle γ∗V and
define ρA(γ) = 1 whenever the resulting loop in SO(2n) determined by
A ◦ γ is not contractible and ρA(γ) = 0 if this loop is contractible.
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(ii) Let eA ∈ H2(X;Z) be the image of the class ρA ∈ H1(X;Z2) under
the boundary homomorphism H1(X;Z2) → H2(X;Z) in the coefficient
exact sequence. Let E → X be a complex line bundle with first Chern
class c1(E) = eA. Prove that the spinc structure Γ ◦ A : V → End(W ) is
isomorphic to Γ⊗ 1l : V → End(W ⊗ E).

(iii) Deduce that for two spinc structures Γ1 and Γ2 on V there exist a
unitary bundle isomorphism Φ : W1 → W2 and an orientation preserving
orthogonal bundle automorphism A : V → V with

ΦΓ1Φ−1 = Γ2 ◦A

if and only if c1(LΓ1
) = c1(LΓ2

). 2

Theorem 5.10 Let X be a compact oriented smooth 4-manifold. Then X
admits a spinc structure. Moreover, if c ∈ H2(X;Z) satisfies

〈c, α〉 ≡ α · α(mod 2) (5.8)

for all α ∈ H2(X;Z) then there exists a torsion class c0 ∈ H2(X;Z) such
that c+ c0 is an integral lift of w2(TX).

Lemma 5.11 Let C be a free Z-module and ∂ : C → C be a boundary
operator. Denote by R2 : H∗(C, ∂;Z) → H∗(C, ∂;Z2) the homomorphism
induced by the projection r2 : Z→ Z2. If w0 ∈ H∗(C, ∂;Z2) satisfies

〈w0, α〉 = 0 (5.9)

for every α ∈ H∗(C, ∂;Z), then there exists a torsion class c0 ∈ H∗(C, ∂;Z)
such that w0 = R2(c0).

Proof: The proof is based on the following two facts.

(i) Every submodule of a free Z-module is free.

(ii) If B is a free Z-module then, for every homomorphism ϕ : B → Z2,
there exists a homomorphism ψ : B → Z such that ϕ = r2 ◦ ψ.

Let w0 ∈ H∗(C, ∂;Z2) satisfy (5.9) and choose a cocycle ϕ : C → Z2 that
represents w0. By (5.9), ϕ vanishes on ker ∂ ⊂ C and hence descends to a
homomorphism ϕ̄ : C/ ker ∂ → Z2. By (i), C/ ker ∂ ∼= im∂ ⊂ C is a free Z-
module. By (ii), there exists a homomorphism ψ̄ : C/ ker ∂ → Z such that
ϕ̄ = r2 ◦ ψ̄. Denote by ψ the composition of the projection C → C/ ker ∂
with ψ̄. Then

∂σ = 0 =⇒ ψ(σ) = 0.

and ϕ = r2 ◦ ψ. The first condition asserts that c0 = [ψ] ∈ H∗(C, ∂;Z) is a
torsion class and the second condition implies R2(c0) = [r2 ◦ψ] = [ϕ] = w0.
This proves the lemma. 2
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Proof of Theorem 5.10: Recall from (5.1) that

〈w2(TX), α〉 = α · α (mod 2)

for α ∈ H2(X;Z). This implies that α 7→ 〈w2(TX), α〉 descends to a
homomorphism H2(X;Z)/torsion → Z2. Since H2(X;Z)/torsion ∼= Zm
for some integer m, any such homomorphism lifts to a homomorphism
H2(X;Z)/torsion → Z. Composing this with the projection H2(X;Z) →
H2(X;Z)/torsion, we obtain a homomorphism ϕ : H2(X;Z)→ Z such that
ϕ(α) = α · α(mod 2) for every α ∈ H2(X;Z). Since the map H2(X;Z) →
Hom(H2(X;Z),Z) is surjective, there exists a class c ∈ H2(X;Z) which
satisfies (5.8).

If c ∈ H2(X;Z) satisfies (5.8) then w0 = w2(TX)−R2(c) ∈ H2(X;Z2)
satisfies (5.9). Hence, by Lemma 5.11, there exists a torsion class c0 ∈
H2(X;Z) such that w2(TX)−R2(c) = R2(c0). By Theorem 5.8 (ii), there
exists a spinc structure Γ on TX such that c1(LΓ) = c + c0. This proves
the theorem. 2

Exercise 5.12 Let X be a compact oriented smooth 4-manifold. Show
that w ∈ H2(X;Z2) is in the image of R2 : H2(X;Z)→ H2(X;Z2) if and
only if w · α = 0(mod 2) for every torsion class α ∈ Tor(H2(X;Z)) (use
Lemma 5.11). Deduce that the cohomology of X has the form

H2(X;Z2) ∼= H ⊕ T ⊕ T ′

where H ⊕ T ∼= H2(X;Z) ⊗ Z2, T = Tor(H2(X;Z)) ⊗ Z2 and T ∼= T ′.
The isomorphism between T and T ′ is given by Poincaré duality with Z2

coefficients. 2

Example 5.13 Consider the manifold

X = RP 3 × S1.

Its second homology is given by

H2(X;Z) = Z2, H2(X;Z2) = Z2 ⊕ Z2.

If γ ⊂ RP 3 denotes the nontrivial loop then [γ×S1] is a nontrivial integral
homology class while the nonorientable submanifold RP 2×{pt} represents
a class in H2(X;Z2) but not in H2(X;Z). Note, however, that the tangent
bundle of RP 3 admits a trivialization and hence X admits a spin structure.
A more interesting example is given by the Enriques surface X = X4/Z2

where X4 ⊂ CP 3 denotes the K3-surface (a hypersurface of degree 4). This
manifold has even intersection form but does not admit a spin structure
(see Example 6.28). Thus the class c = 0 satisfies (5.8) and the torsion class
c0 in Theorem 5.10 has to be chosen nonzero. 2



164 SPIN STRUCTURES ON VECTOR BUNDLES

Lemma 5.14 Let Γ : TX → End(W ) be a spinc structure on a compact
oriented smooth 4-manifold. Then

2χ(X) + 3σ(X) = 〈c1(W+)2 − 4c2(W+), [X]〉.

Proof: The Hirzebruch signature formula takes the form

σ(X) =
p1(X)

3
= −〈c2(TX ⊗R C), [X]〉

3
. (5.10)

Here p1(X) = 〈p1(TX), [X]〉 denotes the first Pontryagin number (see
page 212). Now Γ defines a bundle isomorphism

TX ⊗R C ∼= Hom(W−,W+).

Since c1(W+) = c1(W−) this gives

c2(TX ⊗R C) = 2c2(W+) + 2c2(W−)− c1(W+)2. (5.11)

Moreover, the second Chern classes of W+ and W− are related by

〈c2(W−)− c2(W+), [X]〉 = χ(X). (5.12)

To see this choose a section s− : X → W− and a vector field v : X → TX
which are both transverse to the zero section and have no common zeros.
Then (5.12) follows by counting the zeros of

s+ = Γ(v)s− : X →W+

and noting that, for every nonzero vector s− ∈ W−x the isomorphism
TxX → W+

x : v 7→ Γ(v)s− is orientation reversing. Combining (5.10)
with (5.11) and (5.12) we obtain

2χ(X) + 3σ(X) = 2χ(X)− 〈c2(TX ⊗R C), [X]〉
= 〈c1(W+)2 − 4c2(W+), [X]〉.

This proves the lemma. 2

Exercise 5.15 Prove that

p1(X) = 〈c1(TX)2 − 2c2(TX), [X]〉,

whenever X is an almost complex 4-manifold. Hence in this case (1.9)
and (5.10) coincide. 2
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The three dimensional case

Recall from Section 4.1 that the group Spinc(3) is naturally isomorphic
to U(2) and that the projection Φ : U(2) → SO(3) is given by the ad-
joint action of U(2) on su(2). Let W → X be a Hermitian rank-2 bundle
and consider the associated principal frame bundle P → X with structure
group G = U(2). The homomorphism Φ : U(2) → SO(3) gives rise to an
associated R3-bundle Λ = P ×Φ R3. This bundle is naturally isomorphic to

su(W ) = {(x,A) |A ∈ End(Wx), A+A∗ = 0, trace(A) = 0} .

If one thinks of Px as the set of unitary isomorphisms p : C2 → Wx then
Λx is the set of equivalence classes [p, ξ] ∈ Px × R3 under the equivalence
relation [p, ξ] ≡ [p ◦ U,Φ(U)−1ξ] and the isomorphism Λx → su(Wx) is
given by [p, ξ] 7→ p ◦ γ(ξ) ◦ p−1. Note that

su(W ) ∼= su(W ⊗ E), det(W ⊗ E) ∼= det(W )⊗ E⊗2

for every Hermitian line bundle E → X.
Now let Λ→ X be a 3-dimensional oriented real vector bundle equipped

with an inner product. A spinc structure on Λ is a Hermitian rank-
2 bundle W → X together with an orientation preserving isomorphism
su(W )→ Λ. Any such isomorphism can be expressed as a fiberwise linear
map γ : Λ→ End(W ) which satisfies

γ(v)∗ + γ(v) = 0, γ(v)∗γ(v) = |v|21l (5.13)

for v ∈ Λ. The reader should note that any such map γ satisfies

γ(v)γ(w) + γ(w)γ(v) = −2〈v, w〉1l

for (v, w) ∈ Λ⊕Λ. In particular, γ(v) = −γ(w)γ(v)γ(w)−1 whenever v ⊥ w
and w 6= 0. Thus trace(γ(v)) = 0 for all v ∈ Λ and hence γ is indeed an
isomorphism from Λ to su(W ) (see Proposition 4.13). This isomorphism is
orientation preserving if and only if

γ(e3)γ(e2)γ(e1) = 1l (5.14)

for every positively oriented orthonormal frame e1, e2, e3 of Λ. The condi-
tions (5.13) and (5.14) together can be expressed in the form

γ(v)∗ + γ(v) = 0, γ(v)γ(w) = γ(v × w)− 〈v, w〉1l (5.15)

for (v, w) ∈ Λ⊕ Λ (see Example 4.38).
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Theorem 5.16 Let Λ → X be an oriented Riemannian vector bundle of
real dimension 3.

(i) If γ : Λ→ End(W ) is a spinc structure on Λ then the first Chern class
c1(W ) ∈ H2(X;Z) is an integral lift of w2(Λ) ∈ H2(X;Z2).

(ii) For every integral lift c ∈ H2(X;Z) of w2(Λ) there exists a spinc

structure γ : Λ→ End(W ) with c1(W ) = c.

(iii) If γ1 : Λ → End(W1) and γ2 : Λ → End(W2) are spinc structures on
Λ then there exists a Hermitian line bundle E → X such that

W2
∼= W1 ⊗ E, γ2

∼= γ1 ⊗ 1l, c1(W2) = c1(W1) + 2c1(E).

These two spinc structures are isomorphic if and only if c1(E) = 0.

Proof: There is a one-to-one correspondence between isomorphism classes
of spinc structures on Λ and isomorphism classes of spinc structures on the
4-dimensional Riemannian vector bundle

V = R⊕ Λ.

To see this define W̃ = W ⊕W and let Γ : R⊕ Λ→ End(W̃ ) be given by

Γ(v0, v) =

(
0 γ(v) + v01l

γ(v)− v01l 0

)
for v0 ∈ R and v ∈ Λ. It is an easy exercise to show that Γ defines a spinc

structure on V . It follows from (5.14) that

W̃+ = W ⊕ {0}, W̃− = {0} ⊕W

are the ∓1 eigenspaces of

Γ(e3)Γ(e2)Γ(e1)Γ(e0) =

(
−1l 0

0 1l

)
for e0 = (1, 0) ∈ R⊕Λ and a positively oriented orthonormal frame e1, e2, e3

of Λ. Conversely, suppose that Γ : V → End(W̃ ) is a spinc structure on V .

Then there is a natural isomorphism Γ(1, 0) : W̃− → W̃+. Define W = W̃+

and γ : Λ→ End(W ) by

γ(v) = Γ(1, 0)Γ(0, v)|
W̃+ = − Γ(0, v)Γ(1, 0)|

W̃+

for v ∈ Λ. This map satisfies (5.13). Hence there is a one-to-one correspon-
dence between isomorphism classes of spinc structures on Λ and isomor-
phism classes of spinc structures on R⊕Λ. Hence the assertions follow from
Theorem 5.8. 2
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Corollary 5.17 The tangent bundle of an orientable smooth 3-manifold
Y admits a spinc structure.

Proof: By Theorem 5.10 choose a spinc structure on S1×Y . Restrict this
structure to {eiθ} × Y to obtain a spinc structure on the bundle R⊕ TY .
Now use the proof of Theorem 5.16 to obtain a spinc structure on TY . 2

Exercise 5.18 Give a direct proof of the fact that the first Chern class of
W is an integral lift of the second Stiefel-Whitney class of su(W ). 2

Exercise 5.19 Generalize Theorem 5.16 to arbitrary odd dimensional real
vector bundles. 2

5.3 Spinc structures on complex vector bundles

The existence and uniqueness problem for spinc structures appears in a new
light in the case of complex vector bundles. Let V → X be an oriented real
vector bundle of rank 2n equipped with a Riemannian metric g : V ⊗V → R
and denote by J (V ) ⊂ C∞(X,Aut(V )) the set of complex structures on
V which are compatible with metric and orientation. For each J ∈ J (V )
denote by

〈v, w〉 = 〈v, w〉J = g(v, w) + iω(v, w)

the corresponding Hermitian structure with ω(v, w) = ωJ(v, w) = g(Jv,w).
The canonical bundle K = KJ is the complex line bundle over X defined
as the highest complex exterior power of the dual bundle (V ∗, J∗):

K = KJ = Λn,0J V ∗.

If Γ : V → End(W ) is a spinc structure on V then there is a natural line
subbundle EJ = EJ,Γ ⊂W of pure spinors defined by

EJ = {(x, θ) |x ∈ X, θ ∈Wx, Γ(Jv)θ = iΓ(v)θ for all v ∈ Vx} .

This bundle is not invariant under spinc automorphisms of W but it is
fiberwise invariant under the action of the lift Uc(Vx) of the unitary group
of Vx.

Lemma 5.20 For a spinc structure Γ : V → End(W ) on a complex vector
bundle (V, J) the line bundle LΓ = PΓ×δ C is related to the bundle of pure
spinors by

LΓ
∼= EJ,Γ ⊗ EJ,Γ ⊗KJ

∗.

Moreover, the bundle of pure spinors of the twisted spinc structure Γ⊗1lE :
V → End(W ⊗ E) is given by

EJ,Γ⊗1lE = EJ,Γ ⊗ E

for any Hermitian line bundle E → X.
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Proof: Choose a unitary frame bundle P → X with structure group
Uc(V0, J0) (instead of Spinc(V0)) and recover EJ as the bundle associated
to the homomorphism Θ : Uc(V0, J0) → S1 in Lemma 4.53. Recall the
formula Θ2 · detc ◦ ad = δ. Since

LΓ
∼= P ×δ C, KJ

∗ ∼= P ×detc◦ad C, EJ ∼= P ×Θ C

it follows that EJ ⊗ EJ ⊗KJ
∗ ∼= LΓ as claimed. The second statement is

obvious. 2

The discussion of Section 4.7 shows that every J ∈ J (V, g) determines
a canonical spinc structure given by

Wcan = Λ0,∗V ∗

with Γcan : V → End(Wcan) given by

Γcan(v)τ =
1√
2
v′′ ∧ τ −

√
2ι(v)τ (5.16)

for v ∈ TxX and τ ∈ Λ0,oddT ∗xX with v′′ = 〈·, v〉. Lemma 4.52 shows that
in this case the splitting is given by

W−can = Λ0,oddV ∗, W+
can = Λ0,evV ∗.

Note that reversing the complex structure results in an alternative spinc

structure with L replaced by L∗ and complex anti-linear forms replaced by
complex linear ones. Sometimes we shall use the notation WJ = Λ0,∗

J V ∗

and ΓJ : V → End(WJ) to stress the dependence on the almost complex
structure. The following corollary shows that the line bundle L = LΓJ is
isomorphic to the anti-canonical bundle KJ

∗ = Λ0,nV ∗.

Corollary 5.21 For a complex vector bundle (V, J) the line bundle LΓcan

associated to the canonical spinc structure (5.16) is isomorphic to the anti-
canonical bundle:

LΓcan
∼= K∗.

Proof: By Lemma 4.53, EJ,Γcan
∼= Λ0,0V ∗ ∼= C and hence the result follows

from Lemma 5.20. 2

Any spinc structure on a complex vector bundle (V, J) can be obtained
from the canonical spinc structure Γcan : V → End(Wcan) by twisting with
a line bundle E → X. Denote the resulting spinc structure by ΓE : V →
End(WE) where

WE = Wcan ⊗ E.
By Lemma 5.20, LΓE = K∗⊗E⊗2 and EJ,ΓE

∼= E. This proves the follow-
ing.
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Corollary 5.22 For complex vector bundles (V, J) the correspondence

(W,Γ) 7→ EJ,Γ

determines a bijection between isomorphism classes of spinc structures and
isomorphism classes of complex line bundles over X.

Exercise 5.23 If two almost complex structures J0, J1 ∈ J (V ) are homo-
topic prove that the corresponding canonical spinc structures are isomor-
phic. 2

Exercise 5.24 Let Γ : V → End(W ) be any spinc structure on a 2n-
dimensional real Riemannian vector bundle and J ∈ J (V ) be any almost
complex structure. Prove that the following are equivalent

(i) Γ is isomorphic to the canonical spinc structure of J .

(ii) There exists a section s : X →W+ such that |s(x)| = 1 and

Γ(J(x)v)s(x) = iΓ(v)s(x)

for all x ∈ X and v ∈ Vx.

Hint: Suppose that W = WJ ⊗ E and use Lemma 5.20 to show that E
admits a nonzero section. 2

Consider the map

π0(J (V ))→ Sc(V ) : [J ] 7→ [ΓJ ]

which assigns to a homotopy class of almost complex structures the isomor-
phism class of the corresponding canonical spinc structures. This map is
neither onto nor injective. For any spinc structure Γ : V → End(W ) denote
the set of orthogonal almost complex structures J on V whose canonical
spinc structure ΓJ is isomorphic to Γ by

J (V,Γ) = {J ∈ J (V ) |ΓJ ∼= Γ} .

IfX is a smooth 4-manifold and V a rank-4 bundle then this set is nonempty
if and only if c2(W+) = 0. If in addition V is the tangent bundle of X then
the components of J (TX,Γ) are characterized in the next proposition.

Proposition 5.25 For every compact oriented smooth 4-manifold X and
every spinc structure Γ : TX → End(W ) with c2(W+) = 0 there is a
natural isomorphism

π0(J (TX,Γ)) ∼= Z2 ⊕
H3(X;Z)

H1(X;Z) ∪ c1(W+)
.
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Proof: By Exercise 5.23, the canonical spinc structure ΓJ is isomorphic
to Γ if and only if there exists a unit section s : X → W+ such that
Γ(J ·)s = iΓ(·)s. The almost complex structure J is uniquely determined
by s and, conversely, the section s is determined by J up to multiplication
with a function u : X → S1. Hence there is a one-to-one correpondence
between homotopy classes of almost complex structures J ∈ J (V ) with
ΓJ ∼= Γ and homotopy classes of unit sections of W+ up to S1-gauge
equivalence. These homotopy classes of unit sections can be understood
in terms of the Pontryagin-Thom constructions as follows (compare Mil-
nor [90], Chapter 7).

Denote by W+
1 the unit sphere bundle in W+ and fix a reference section

s̄ : X →W+
1 . For any section s : X →W+

1 which is transverse to s̄ consider
the 1-dimensional submanifold

C = Cs = {x ∈ X | s(x) = s̄(x)} .

There are two real rank-3 vector bundles over C, namely the normal bundle
NC → C and the vertical tangent bundle VC → C of W+

1 :

NC = {(x, ξ) |x ∈ C, ξ ∈ TxX, ξ ⊥ TxC} ,

VC =
{

(x, τ) |x ∈ C, τ ∈W+
x , τ ⊥ s̄(x)

}
.

Transversality implies that the vertical differential D(s − s̄)(x) : TxX →
W+
x determines an isomorphism

ρs : NC → VC ,

called the vertical framing. The pair (Cs, ρs) is called the Pontryagin
manifold of the section s : X → W+

1 . Note that the framing ρ : NC →
VC determines an orientation of the normal bundle NC and hence of the
tangent bundle TC via TCX = TC⊕NC . Thus a framed 1-manifold (C, ρ)
carries a natural orientation.

Two (vertically) framed 1-manifolds (C0, ρ0) and (C1, ρ1) are called
(vertically) framed cobordant if there exists an oriented cobordism
Σ ⊂ X × [0, 1] from C0 to C1 together with a framing

ρ : NΣ → VΣ

such that
ρ|C0 = ρ0, ρ|C1 = ρ1.

Here NΣ is the normal bundle of Σ in X × [0, 1] and VΣ is the vertical
tangent bundle of W+

1 along s̄|Σ. With this understood the result is proved
in five steps.
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Step 1 Every smooth section s : X → W+
1 is smoothly homotopic to one

which is transverse to s̄.

Step 2 Every vertically framed 1-manifold (C, ρ) arises as the Pontryagin
manifold of a section s : X →W+

1 which is transverse to s̄.

Step 3 Two sections s0, s1 : X → W+
1 which are both transverse to s̄ are

smoothly homotopic if and only if the corresponding Pontryagin manifolds
(Cs0 , ρs0) and (Cs1 , ρs1) are framed cobordant.

Step 4 For each homology class α ∈ H1(X;Z) there are precisely two
cobordism classes of vertically framed 1-manifolds (C, ρ) with [C] = α.

Step 5 For every section s : X →W+
1 and every smooth map u : X → S1

such that both s and us are transverse to s̄ we have

PD([Cus]) = PD([Cs]) +
[u−1du]

2πi
∪ c1(W+).

Moreover, if [Cs] = [Cus] then the two framings ρs and ρus are homotopic.

The first three steps are adapted from Chapter 7 in Milnor [90] and
can be proved with the same techniques. To prove Step 4, represent α by
a connected 1-manifold C ⊂ X and note that, since π1(SO(3)) = Z2, there
are precisely two framings ρ+ and ρ− along C up to homotopy. We must
show that these framings are not cobordant. To see this, let Σ ⊂ X × S1

be a compact oriented embedded surface and note that the second Stiefel-
Whitney classes of TX and W+ agree over Σ. Since the normal bundle NΣ

and the vertical bundle VΣ are obtained from TX⊕R and W+ by splitting
off a summand with w2 = 0 it follows that

w2(VΣ) = w2(NΣ).

With this established it is easy to see that the two framings over a 1-
manifold C ⊂ X are not cobordant and this proves Step 4.

We prove Step 5. Consider a splitting W+ = C⊕L for some line bundle
L→ X and choose the constant section s̄(x) = (1, 0). Suppose that

s(x) = (f(x), σ(x))

for some section σ : X → L and some function f : X → C with |f(x)|2 +
|σ(x)|2 = 1. Then

Cs = f−1(1) ∩ σ−1(0), Cus = (uf)−1(1) ∩ σ−1(0).

Suppose that σ is transverse to the zero section. Then the embedded surface
Σ = σ−1(0) ⊂ X is Poincaré dual to the first Chern class c = c1(L) =
c1(W+). Suppose that 1 is a regular value of both functions f : Σ → S1

and fu : Σ→ S1. Then the 1-manifold f−1(1)∩Σ is Poincaré dual (relative
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Σ) to the cohomology class (2πi)−1[f−1df ]. Similarly for fu : Σ→ S1 and
u : X → S1. Hence, with ι : Σ→ X denoting the obvious embedding,

[Cus]X − [Cs]X = ι∗PDΣ

(
(uf)−1d(uf)− f−1df

2πi

)
= ι∗PDΣ

(
u−1du

2πi

)
= [u−1(1) ∩ Σ]X

= PDX

(
[u−1du]

2πi
∪ c1(W+)

)
.

The proof that the two framings ρs and ρus are homotopic in the case
[Cs] = [Cus] is left as an exercise. This proves Step 5 and the five steps
obviously prove the proposition. 2

Example 5.26 The condition V = TX cannot be removed in Proposi-
tion 5.25. Consider for example the trivial rank-4 bundle

V0 = CP 2 × R4

over CP 2 equipped with the trivial spinc structure Γ0. Then the space
J (V0,Γ0) is connected. To see this note that homotopy classes of maps
CP 2 → S3 are characterized by framed cobordism classes of 1-manifolds
in CP 2 and there is only one such class. (The two framings along a loop
are related by a cobordism along CP 1.) This shows that for each choice
of first Chern class there is precisely one almost complex structure on the
trivial R4-bundle over CP 2. The geometric reason for the absence of the
Z2-summand is the fact that CP 2 is not spin while the bundle V0 admits
a spin structure. (See Step 4 in the proof of Proposition 5.25.) 2

5.4 Classification of spin structures

Theorem 5.8 shows that a vector bundle V → X admits a spinc structure
if and only if its second Stiefel-Whitney class w2(V ) ∈ H2(X;Z2) admits
an integral lift c ∈ H2(X;Z). If w2(V ) = 0 then this integral lift can be
chosen to be zero and the resulting spinc structure (W,Γ) has a line bundle
LΓ which admits a trivialization, that is a section

θ : X → LΓ

of norm 1. Recall from Section 5.1 that, when the rank of V is 2, 3, or 4
modulo 8, then any such section precisely determines a spin structure on V
in the sense of Definition 5.4. This shows that the bundle V → X admits a
spin structure if and only if w2(V ) = 0. This gives rise to a third defintion
of spin structures which is equivalent to Definitions 5.1 and 5.4.
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Definition 5.27 Let V → X be an oriented Riemannian vector bundle. A
spin structure on V is a triple (W,Γ, θ) where (W,Γ) is a spinc structure
on V with c1(LΓ) = 0 and θ : X → LΓ is a section with |θ(x)| = 1
for all x ∈ X. A spin isomorphism from (W0,Γ0, θ0) to (W1,Γ1, θ1) is
a spinc isomorphism Φ : W0 → W1 such that the induced isomorphism
ΦL : L0 → L1 satisfies

ΦLθ0 = θ1.

Denote by S(V ) the set of isomorphism classes of spin structures on V .

Theorem 5.28 Let V → X be an oriented Riemannian vector bundle.

(i) V admits a spin structure if and only if w2(V ) = 0.

(ii) If (W1,Γ1, θ1) and (W2,Γ2, θ2) are two spin structures on V then there
exists a Hermitian line bundle E → X with 2c1(E) = 0 and a unitary
section ψ : X → E ⊗ E such that

W2
∼= W1 ⊗ E, θ2

∼= θ1 ⊗ ψ.

These two spin structures are isomorphic if and only if c1(E) = 0 and E
admits a unitary section ϕ : X → E such that

ψ = ϕ⊗ ϕ.

(iii) The set S(V ) of isomorphism classes of spin structures on V is a
principal space with structure group H1(X;Z2).

Proof: It w2(V ) = 0 then, by Theorem 5.8, there exists a spinc structure
Γ : V → End(W ) with

c1(LΓ) = 0.

Since line bundles are classified by their first Chern class the bundle LΓ

admits a nonzero section θ. This proves (i). To prove (ii) recall first from
Theorem 5.8 that for any two spinc structures (W1,Γ1) and (W2,Γ2) on V
there exists a Hermitian line bundle E → X such that

W2
∼= W1 ⊗ E, Γ2

∼= Γ1 ⊗ 1l, L2
∼= L1 ⊗ E⊗2

where Li = LΓi for i = 1, 2. Now for any two unit sections θ1 : X → L1

and θ2 : X → L2 there exists a unique unit section ψ : X → E⊗2 such that
θ2
∼= θ1 ⊗ ψ. This proves the first part of (ii). To prove the second part

note first that if E admits a trivialization ϕ with ψ = ϕ ⊗ ϕ then there
is an obvious isomorphism Φ : W1 → W2 = W1 ⊗ E (given by the tensor
product with ϕ) which intertwines the two spin structures. Conversely, if
two spin structures are isomorphic then the underlying spinc structures
are necessarily isomorphic. Hence consider two spin structures of the form
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(W,Γ, θ1) and (W,Γ, θ2). These are isomorphic if and only if there exists
a spinc isomorphism Φ ∈ C∞(X,End(W )) which commutes with Γ and
satisfies θ2 = δ(Φ)θ1. Now, by Proposition 4.36 (iii), every isomorphism
Φ ∈ C∞(X,End(W )) which commutes with Γ is of the form Φ = u1l where
u : X → S1. Since δ(u1l) = u2 it follows that the two spin structures
(W,Γ, θ1) and (W,Γ, θ2) are isomorphic if and only if there exists a smooth
map u : X → S1 such that

θ2 = u2θ1.

This proves (ii). To prove (iii) fix a spinc structure (W,Γ, θ). Then, by (ii),
S(V ) can be identified with the space of equivalence classes of pairs (E,ψ)
where E → X is a Hermitian line bundle and ψ : X → E ⊗ E is a unit
section. Two such pairs (E,ψ) and (E′, ψ′) are equivalent if there exists a
unitary isomorphism u : E → E′ such that (u⊗u)◦ψ = ψ′. Now every pair
(E,ψ) determines a homomorphism ρE,ψ : π1(X)→ Z2 as follows. Given a
loop γ : S1 → X, define ρE,ψ(γ) = 0 if the pullback bundle γ∗E admits a
section whose square is γ∗ψ, and ρE,ψ(γ) = 1 otherwise. It is easy to check
that (E,ψ) is equivalent to (E′, ψ′) if and only if ρE,ψ = ρE′,ψ′ .

Here is an alternative proof of (iii). By Theorem 5.8, isomorphism classes
of spinc structures (W,Γ) with c1(LΓ) = 0 form a principal space with
structure group

Tor2(H2(X;Z)) = {c ∈ H2(X;Z) | 2c = 0}.

By (ii), the isomorphism classes of spin structures of the form (W,Γ, θ) with
fixed spinc structure Γ can be identified with equivalence classes of unitary
sections θ : X → LΓ under the equivalence relation θ ∼ u2θ for u : X → S1.
These equivalence classes form a principal space with structure group

Map(X,S1)/Mapev(X,S1) ∼= H1(X;Z)/H1(X; 2Z).

Here Mapev(X,S1) denotes the space of even maps from X to S1. This
notion and the isomorphism of the quotient spaces are explained in Propo-
sition 5.30 below. It follows that S(V ) is a principal space with structure
group H1(X;Z)/H1(X; 2Z)× Tor2(H2(X;Z)). The exact sequence

H1(X;Z)
2→ H1(X;Z)→ H1(X;Z2)→ H2(X;Z)

2→ H2(X;Z)

shows that this group is isomorphic to H1(X;Z2). 2

Exercise 5.29 Let E → X be a Hermitian line bundle and ψ : X →
E ⊗ E be a unit section. Let ρE,ψ : π1(X) → Z2 be defined as in the
proof of Theorem 5.28. Prove that the image of ρE,ψ under the Bockstein
homomorphism H1(X;Z2)→ H2(X;Z) is the first Chern class of E. 2
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For the understanding of spinc structures it is sometimes interesting to
compare them with spin structures, if these exist. Thus let V → X be a
real Riemannian vector bundle of rank 2, 3, or 4 modulo 8 with w2(V ) = 0.
Then V admits a spin structure (S, I, J,Γ) as in Definition 5.4. Think of
(S, I) as a complex vector bundle. Then (S, I,Γ) is a spinc structure whose
corresponding line bundle has first Chern class zero. In fact the complex
structure J corresponds, by Lemma 5.7, to a nonzero section of this line
bundle. Now Theorem 5.8 shows that every other spinc structure on V is
of the form

W = S ⊗ L1/2

for some line bundle L1/2 → X. Theorem 5.8 also shows that the charac-
teristic line bundle of this spinc structure is given by L = L1/2⊗L1/2. Note
that if this bundle has Chern class zero then W is again a spin structure.

Physicists sometimes use the notation W = S⊗L1/2 even when the bun-
dle V does not admit a spin structure. Then neither S nor L1/2 are mean-
ingful, only their tensor product is well defined. Nevertheless, this notation
gives a good intuition of what spinc structures are. This is particularly
enlightening when it comes to spinc connections because the Riemannian
metric on X determines a natural spin connection on S and thus every
connection on L1/2 determines a spinc connection on W . This is explained
in detail in Chapter 6 below.

Appendix to Section 5.4: Maps to the circle

A smooth map u : X → S1 is called even if it admits a square root. It is
easy to see that this is only a condition on the homotopy class of u. Hence
the quotient Map(X,S1)/Mapev(X,S1) can be identified with the corre-
sponding quotient π0(Map(X,S1))/π0(Mapev(X,S1)) of the groups of com-
ponents. The next proposition shows that the components of Map(X,S1)
are in one-to-one correspondence with the homomorphism π1(X)→ Z and
the components of Mapev(X,S1) are in one-to-one correspondence with the
homomorphism π1(X)→ 2Z. Thus

π0(Map(X,S1)) ∼= H1(X;Z), π0(Mapev(X,S1)) ∼= H1(X; 2Z)

and this shows that Map(X,S1)/Mapev(X,S1) is naturally isomorphic to
H1(X;Z)/H1(X; 2Z) as required. Moreover, the proposition shows that
every homotopy class of maps X → S1 has a harmonic representative.
Here a map u : X → S1 is called harmonic if

d∗(u−1du) = 0.

Since d(u−1du) = 0 for every smooth map u : X → S1 this means that
u−1du ∈ Ω1(X, iR) is a harmonic 1-form.
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Proposition 5.30 Let X be a compact connected manifold.

(i) Every component of the group Map(X,S1) contains a harmonic repre-
sentative which is unique up to multiplication by a constant.

(ii) The map Map(X,S1)→ Hom(π1(X),Z) : u 7→ ρu given by

ρu(γ) = deg(u ◦ γ) =
1

2πi

∫
γ

u−1du

induces an isomorphism π0(Map(X,S1))→ Hom(π1(X);Z).

(iii) A map u : X → S1 is even if and only if ρu ∈ Hom(π1(X), 2Z).

Proof: We prove (i). Given u : X → S1 there exists, by Hodge theory, a
smooth function ξ : X → iR such that

d∗(u−1du+ dξ) = 0.

The function
u0(x) = eξ(x)u(x)

is harmonic and is homotopic to u via ut(x) = e(1−t)ξ(x)u(x). To prove
uniqueness, suppose that u and v are homotopic and are both harmonic.
Then the 1-form v−1dv− u−1du is harmonic and exact (differentiate along
a homotopy connecting u to v). Hence u−1du = v−1dv. Fix a point x0 ∈ X
and choose θ ∈ R such that v(x0) = eiθu(x0). For any path t 7→ x(t) with
x(0) = x0 the circle valued functions α(t) = eiθu(x(t)) and β(t) = v(x(t))
satisfy α(0) = β(0) and α̇/α = β̇/β. Hence α(t) = β(t) for all t. Since X is
connected, this proves that v(x) = eiθu(x) for all x ∈ X.

We prove (ii). We show first that the map

π0(Map(X,S1))→ Hom(π1(X),Z) : [u] 7→ ρu

is injective. This means that two maps u, v : X → S1 are homotopic if and
only if ρu = ρv. The only if statement follows from the homotopy invariance
of the degree. Hence assume that ρu = ρv. By (i), we may assume without
loss of generality that u and v are harmonic. Thus v−1dv − u−1du is a
harmonic 1-form whose integral over every loop is zero. Hence u−1du =
v−1dv and, as in the proof of (i), there exists a constant θ ∈ R such that
v(x) = eiθu(x) for all x ∈ X. Hence u and v are homotopic. This shows that
the map [u] 7→ ρu is injective. It remains to show that this map is onto, i.e.
that for every homomorphism ρ : π1(X) → Z there exists a smooth map
u : X → S1 such that

deg(u ◦ γ) = ρ(γ)

for every loop γ : S1 → X. That such a map u exists can be seen by
triangulating X and then constructing u as follows. First define u(x) = 1
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for each vertex x. Then choose a map ` : {edges} → Z such that the
oriented sum of the labels over a loop γ agrees with ρ(γ). Such a lift exists
whenever ρ is a homomorphism. Now extend u over the 1-skeleton such that
the degree along each oriented edge e agrees with `(e). By construction the
degree around the boundary of any 2-simplex is zero and hence u extends
over the 2-skeleton. Finally, u extends over X because every smooth map
∂Bm → S1 extends to Bm for m ≥ 3. (See the footnote on page 160.)

Here is an alternative argument. By deRham’s theorem, choose a closed
1-form α ∈ Ω1(X) such that ∫

γ

α = ρ(γ)

for every loop γ : S1 → X. Next define θ : X̃ → R by integrating α along
paths, so that dθ = α. Since ρ(γ) ∈ Z for all γ, the function u(x) = e2πiθ(x)

is well defined on X. It satisfies u−1du = 2πiα and hence ρu = ρ. This
proves (ii).

To prove (iii) note first that if u = v2 is even then ρu = 2ρv ∈
Hom(π1(X), 2Z). Conversely, if ρu ∈ Hom(π1(X), 2Z) then the existence
of a square root of u follows by a simple lifting argument along paths in X
which is left to the reader. 2

5.5 Euler and Spinc structures on three-manifolds

Spin structures

Throughout let Y be a compact oriented smooth 3-manifold. We begin by
establishing the existence of spin structures on TY .

Proposition 5.31 Every compact oriented smooth 3-manifold Y admits a
spin structure.

Proof: Let Σ ⊂ Y be a (not necessarily oriented) 2-dimensional subman-
ifold and denote by νΣ the normal bundle. Then, by (5.2),

〈w2(TY ), [Σ]〉 = w2(TΣ) + w1(TΣ) · w1(νΣ) = χ2(Σ) + w1(TΣ)2 = 0,

where χ2 denotes the mod-2 Euler characteristic. Hence w2(TY ) = 0. 2

Lemma 5.32 Let V → Y be an oriented real vector bundle over a compact
oriented smooth 3-manifold. Suppose that rankV ≥ 3 and w2(V ) = 0. Then
V admits a trivialization.

Proof: Here is a sketch of the argument. Triangulate Y and trivialize
V over the 1-skeleton. Use the fact that w2(V ) = 0 and rankV ≥ 3 to
modify this trivialization in such a way that it extends over the 2-skeleton.
Since π2(SO(n)) = 0 the trivialization then extends over the 3-skeleton.



178 SPIN STRUCTURES ON VECTOR BUNDLES

The details are similar to the proofs of Theorem 5.8 and Proposition 5.30
and are left to the reader. 2

It follows from Proposition 5.31 and Lemma 5.32 that the tangent bun-
dle of every compact oriented smooth 3-manifold Y admits a trivialization.
Suppose that the vector fields e1, e2, e3 : Y → TY form a global positively
oriented orthonormal frame and consider the function γe : TY → C2×2,
defined by

γe(ξ1e1 + ξ2e2 + ξ3e3) = ξ1I + ξ2J + ξ3K, (5.17)

where I, J,K ∈ su(2) are given by (4.2). It follows from (4.3) that γe is a
spinc structure, and evidently c1(Lγe) = 0. To obtain a spin structure we
must specify a family j : Y → EndR(C2) of orthogonal complex structures
on C2 which anti-commute with i. An example is the automorphism j0 :
C2 → C2 given by

j0(z1, z2) = (−z̄2, z̄1).

Any other such map has the form

jλ(y) = λ(y)j0,

where λ : Y → S1. It follows by straightforward computation that jλ
commutes with su(2) and hence with γe for every e.

Exercise 5.33 (i) Prove that every spin structure on Y is isomorphic to
one of the form (γe, jλ). If H1(Y ;Z) = 0 prove that every spin structure
on Y is isomorphic to one of the form (γe, j0). Hint: Use Lemma 5.7 and
Exercise 1.43.

(ii) Let A : Y → SO(3) be a gauge transformation with matrix entries
aij : Y → R and consider the action on frames via

(Ae)i =
∑
i

aijej .

Prove that (γe, j0) and (γAe, j0) are isomorphic spin structures if and only
if A admits a lift Φ : Y → SU(2)

(iii) Prove that γe and γAe are isomorphic spinc structures if and only if
A admits a lift Φ : Y → U(2).

Exercise 5.34 Find a trivialization of TS3. 2

Exercise 5.35 Prove that every smooth map A : S3 → SO(3) lifts to a
smooth map Φ : S3 → SU(2). 2

Exercise 5.36 Prove that a smooth map A : RP 3 → SO(3) lifts to a
smooth map Φ : RP 3 → SU(2) if and only if it has even degree. Hint:
The Borsuk-Ulam theorem asserts that a smooth map f : S3 → S3 which
satisfies f(−x) = −f(x) has odd degree. 2
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Exercise 5.37 Let e = (e1, e2, e3) be a global positively oriented orthonor-
mal frame of TRP 3 and suppose that A : RP 3 → SO(3) is a map of odd de-
gree. Prove that γe and γAe are not isomorphic as spinc structures on RP 3.
Hint: By the Borsuk-Ulam theorem, there is no smooth map λ : S3 → S1

which satisfies λ(−x) = −λ(x). Use Exercise 5.33 (iii). 2

Euler structures

Let π : SY → Y denote the unit sphere bundle in TY and, for y ∈ Y ,
denote by ιy : SyY → SY the inclusion of the fibre. The vertical tangent
space TvSyY = v⊥ carries a natural complex structure

η 7→ v × η.

Hence the fibres of SY carry a natural orientation as complex manifolds.
However, they do not carry a natural complex line bundle representing the
generator of H2(SyY ;Z) over each fiber.

Exercise 5.38 The unit sphere bundle always admits a natural orientation
even if Y is not orientable. To see this, regard SY as a submanifold of the
cotangent bundle T ∗Y ∼= TY with its standard symplectic structure. Call
a basis e1, . . . , e5 of T(y,v)SY positively oriented if the vectors v, e1, . . . , e5

form a positively oriented basis of T(y,v)TY . Check that this orientation
agrees with the above, when e1, e2, e3 are chosen as a positively oriented
horizontal basis and e4, e5 as a positively oriented vertical basis. 2

An Euler structure on Y is a cohomology class e ∈ H2(SY ;Z)
such that the restriction to each fibre SyY is the canonical generator of
H2(SyY ;Z) (cf. Turaev [123]). Denote by E(Y ) the set of all Euler struc-
tures on Y . This space carries a natural involution

E(Y )→ E(Y ) : e 7→ ẽ,

given by
ẽ = −τ∗e,

where the diffeomorphism τ : SY 7→ SY is defined by τ(y, v) = (y,−v).
The space E(Y ) also carries a natural action of H2(Y ;Z) via

E(Y )×H2(Y ;Z)→ E(Y ) : (e, a) 7→ e+ π∗a.

The next lemma shows that this action is transitive and free. Hence there
exists a unique function h : E(Y )× E(Y )→ H2(Y ;Z) such that

e1 − e0 = π∗h(ẽ0, e1) (5.18)

for all e0, e1 ∈ E(Y ).
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Lemma 5.39 The action of H2(Y ;Z) on E(Y ) is transitive and free.

Proof: Consider the Gysin sequence

0→ H2(Y ;Z)
π∗→ H2(SY ;Z)

π∗→ H0(Y ;Z)
∧Eul→ H3(Y ;Z)→ · · ·

(cf. Bott-Tu [11, pp.177–179]). The third map is given by integration over
the fibre. If e, e′ ∈ E(Y ) then ιy

∗(e′−e) = 0 for y ∈ Y and hence π∗(e
′−e) =

0. By exactness, this implies that e′−e = π∗a for some a ∈ H2(Y ;Z). This
shows that the action is transitive. That it is free follows from the fact that
π∗ : H2(Y ;Z)→ H2(SY ;Z) is injective. 2

Exercise 5.40 The Gysin sequence for the product Y × S2 is en easy
exercise in homological algebra. The homology of Y ×S2 is generated by a
chain complex of the form

D∗ = C∗ ⊗ (Z⊕ uZ),

where C∗ = C∗(Y ), deg(u) = 2, and ∂(σ+τu) = (∂σ)+(∂τ)u for σ, τ ∈ C∗.
Assume, without loss of generality, that C0 = Z and denote by 1 ∈ C0

the generator. The projection induced map π∗ : D∗ → C∗ is given by
π∗(σ+τu) = σ and the condition ιy

∗[ϕ] = 0 for [ϕ] ∈ H2(Y ×S2) = H2(D)
translates into ϕ(1⊗ u) = 0. Use these observations to show that

Hi(D) ∼= Hi(C)⊕Hi−2(C)

and establish the Gysin sequence. 2

For every unit vector field v : Y → SY denote by

[v] = v∗[Y ] ∈ H3(SY ;Z)

the homology class represented by the image. If E → SY is a complex line
bundle with first Chern class c1(E) = PD([v]) then its restriction to each
fiber SyY is isomorphic to the canonical bundle and hence e = PD([v]) is
an Euler structure. The dual structure is given by

ẽ = PD([−v]).

Proposition 5.41 below shows that every Euler structure can be expressed in
this form. This gives rise to a more geometric definition of Euler structures
on Y . More precisely, two unit vector fields v0, v1 : Y → SY are called
homologous if [v0] = [v1] ∈ H3(SY ;Z). An Euler structure on Y can now
be defined as an equivalence class of homologous unit vector fields. Before
proving that this agrees with the original definition we shall examine the
function h : E(Y )× E(Y )→ H2(Y ;Z) in terms of unit vector fields.
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Two unit vector fields v0, v1 : Y → SY are called transverse if their
images v0(Y ) and v1(Y ) are transverse as submanifolds of SY . In this case
the set

C(v0, v1) = {y ∈ Y | v0(y) = v1(y)}

is a 1-dimensional submanifold of Y , called the Pontryagin manifold of
the pair (v0, v1). There are two real rank-2 bundles over C, namely the
normal bundle NC → C and the vertical tangent bundle VC → C of SY :

NC = {(y, v) | y ∈ C, v ∈ TyY, v ⊥ TyC} ,

VC = {(y, η) | y ∈ C, η ∈ TyY, η ⊥ v0(y)} .

The vertical differential D(v1−v0)(y) : TyY → TyY (the ordinary differen-
tial followed by projection onto the vertical subspace of TSY ) determines,
in the transverse case, an isomorphism ρ(v0, v1) : NC → VC , hence an
orientation of NC , and hence an orientation of C. We define

h(v0, v1) := PD([C(v0, v1)]) ∈ H2(Y ;Z) (5.19)

for two transverse unit vector fields v0, v1 : Y → SY . One proves as in [90]
that the right hand side depends only on the homotopy classes of v0 and
v1 and hence is well defined for all pairs of unit vector fields, transverse or
not. Note that

h(v0, v1) = h(v1, v0) = −h(−v0,−v1) (5.20)

for any two unit vector fields v0, v1 : Y → SY . The crucial point is that the
orientation of the vertical bundle of C(v0, v1) is determined by the vector
product with v0(y) = v1(y) for y ∈ Y .

Proposition 5.41. (Turaev) Let Y be a compact oriented smooth 3-man-
ifold.

(i) For any two unit vector fields v0, v1 : Y → SY ,

PD([v1])− PD([v0]) = π∗h(−v0, v1).

(ii) For any three unit vector fields v, v0, v1 : Y → SY ,

h(−v0, v1) = h(v, v1)− h(v, v0).

(iii) For every Euler structure e ∈ E(Y ) there exists a unit vector field
v : Y → SY such that e = PD([v]).

(iv) Two unit vector fields v0, v1 : Y → SY are homologous if and only if
they are homotopic over Y − int(B) for any embedded closed 3-ball B ⊂ Y .
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Proof: To prove (i) it suffices to assume that −v0 and v1 are transverse.
Choose a trivialization of TY and let f : Y ×S2 → SY be the corresponding
trivialization of the unit sphere bundle. Let us define u0 : Y → S2 and
u1 : Y → S2 by

v0(y) = f(y, u0(y)), v1(y) = f(y, u1(y)).

Fix an arbitrarily small tubular neighbourhood NC of C. The Pontryagin-
Thom construction shows that the homotopy class of u1 is uniquely deter-
mined by the framed Pontryagin manifold C = C(−u0, u1) = C(−v0, v1).
Hence, without changing the submanifold C (nor the function u0 nor the
homotopy class of u1), we may assume that u1(y) = u0(y) for y /∈ NC ,
u1(y) = −u0(y) for y ∈ C, and that u1 maps each normal slice in NC onto
S2 with degree 1. We claim that under these assumptions

[graph (u1)] = [graph (u0)] + [C × S2]. (5.21)

To see this, triangulate Y × S2 in such a way that the 1-simplices are
disjoint from graph (u0) and NC×S2. Then the intersection numbers of all
three submanifolds graph (u1), graph (u0), and C×S2, with 2-simplices are
well defined, and hence they determine integral simpicial cocycles. With
this construction one checks easily that (5.21) holds on the chain level.
With (5.21) established, it follows that

PD([graph (u1)]) = PD([graph (u0)]) + PD([C × S2]).

Hence the vector fields vi = f ◦ graph (ui) : Y → SY satisfy

PD([v1]) = PD([v0]) + π∗PD([C]).

This proves (i).
Assertion (ii) follows immediately from (i). (iii) follows from the fact

that for every cohomology class a ∈ H2(Y ;Z) and every vector field v0 :
Y → SY there exists a vector field v1 : Y → SY which is transverse to
−v0 and satisfies a = h(−v0, v1). In fact one can prescribe the Pontryagin
manifold C(−v0, v1) (see Milnor [90]).

We prove (iv). As before, let f : Y ×S2 → SY be a trivialization of the
sphere bundle and choose u0, u1 : Y → S2 such that vi(y) = f(y, ui(y))
for i = 1, 2. Let x0 ∈ S2 be a common regular value of u0 and u1, and
denote by Ci = ui

−1(x0) the framed Pontryagin manifolds. The framings
are trivializations of the normal bundle determined by a fixed framing of
Tx0

S2. Then u0 and u1 are homotopic if and only if C0 and C1 are framed
cobordant (see Milnor [90]). By (i) and (ii), they are homologous if and
only if C0 and C1 are homologous.
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Assume first that C0 and C1 are homologous. Fix a connected oriented
1-dimensional submanifold C ⊂ Y which is homologous to C0 (and hence
to C1). Then, with two suitable framings, this submanifold is framed cobor-
dant to C0 and C1, respectively. Hence u0 and u1 are homotopic to smooth
maps u′0, u

′
1 : Y → S2 which both have C as their Pontryagin manifolds,

but with possibly different framings. Moreover, we may assume without
loss of generality that C passes through the interior of our ball B and that
the two framings, and the functions u′0 and u′1 themselves, agree outside
B. Removing this ball, we obtain a homotopy from u0 to u1.

Conversely, suppose that there exists an embedded 3-ball B ⊂ Y and a
homotopy (Y −int(B))×[0, 1] : (y, λ)→ uλ(y) from u0 to u1. Choose a com-
mon regular value x0 ∈ S2 of u0, u1, the homotopy (Y − int(B))× [0, 1]→
S2, and of its restriction to the boundary ∂B× [0, 1]→ S2. Examining the
preimage of x0 we see that C0 = u0

−1(x0) and C1 = u1
−1(x0) are homolo-

gus as relative classes in H1(Y,B;Z). Collapsing B to a point we see that
they are homologous in H1(Y ;Z). This proves the proposition. 2

Exercise 5.42 Let Σ be a compact oriented Riemann surface and u =
(u0, u1) : Σ → S2 × S2 be a smooth function which is transverse to the
diagonal ∆ ⊂ S2 × S2. Prove that

u ·∆ = deg(u0) + deg(u1).

Hint: ∆ is homologous to {pt} × S2 ∪ S2 × {pt}. 2

Exercise 5.43 Let Σ be a compact oriented Riemann surface. Prove that,
for any two smooth functions u : Σ→ S2 and A : Σ→ SO(3),

deg(Au) = deg(u).

Hint: Prove this first in the case u(z) ≡ const, using H2(SO(3);Z) = 0.
Reduce the general case to the case deg(u) = 0 by using Exercise 5.42. 2

Exercise 5.44 Let f : Y ×S2 → SY be a trivialization of the unit sphere
bundle and Σ ⊂ Y be a compact oriented embedded 2-manifold. For every
unit vector field v : Y → SY define f∗v : Y → S2 by f(y, f∗v(y)) = v(y)
for y ∈ Y . Prove that the integer

deg (v|Σ) := deg (f∗v|Σ) = 〈[v], f∗[Σ× {pt}]〉

is independent of the choice of f . Hint: Use Exercise 5.43. 2

Exercise 5.45 Let v0, v1 : Y → SY be unit vector fields and Σ ⊂ Y be a
compact oriented embedded 2-manifold. Prove that

〈h(v0, v1), [Σ]〉 = deg (v0|Σ) + deg (v1|Σ) .

Hint: Use Exercises 5.42 and 5.44. 2
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Spinc structures

For every unit vector field v : Y → SY denote by Lv → Y the complex line
bundle

Lv = v⊥ = {(y, η) | y ∈ Y, η ∈ TyY, η ⊥ v(y)} .
This is the pullback of the vertical tangent bundle of SY under the map
v : Y → SY . The decomposition TY ∼= Rv ⊕ Lv shows that w2(Lv) = 0
and so c1(Lv) is an integral lift of w2(TY ) = 0. Hence there exists a spinc

structure γ : TY → End(W ) with det(W ) ∼= Lv. An explicit spinc structure
with this property is the map γv : TY → End(C⊕ Lv), given by

γv(η)

(
z
ζ

)
=

(
− i〈η, v〉z − 〈η, ζ〉 − i〈v × η, ζ〉

〈η, v〉v × ζ + x(η − 〈η, v〉v) + yv × η

)
(5.22)

for z ∈ C, ζ ∈ v⊥, and η ∈ TY . Note that (5.22) is isomorphic to (5.17)
whenever v = e1 (and hence e2 and e3 trivialize Lv).

Exercise 5.46 Prove that (5.22) is a spinc structure. Prove that c1(Lv0) =
c1(Lv1

) if and only if there exists a gauge transformation A : Y → SO(TY )
such that Av0 = v1. Prove that a complex line bundle L→ Y is isomorphic
to Lv for some v if and only if w2(L) = 0. Hint: Trivialize L⊕ R. 2

Proposition 5.47. (Turaev) Let Y be a compact oriented smooth 3-man-
ifold.

(i) If v : Y → SY is a unit vector field then c1(Lv) = h(v, v).

(ii) Every spinc structure on Y is isomorphic to one of the form γv for
some unit vector field v : Y → SY .

(iii) Two unit vector fields v0, v1 : Y → SY are homologous if and only if
the spinc structures γv0 and γv1 are isomorphic.

Proof: Choose a vector field w : Y → SY which is close to v and transverse
to v. Consider the section s : Y → Lv given by

s(y) = w(y)− 〈w(y), v(y)〉v(y)

for y ∈ Y . Since w is close to v we have w(y) 6= −v(y) for all y ∈ Y . Hence
s(y) = 0 if and only if w(y) = v(y), and so the zero set of s is given by

s−1(0) = C(v, w).

Moreover, for every y ∈ C(v, w),

Ds(y) = D(w − v)(y) : TyY → v(y)⊥.

Hence s is transverse to the zero section and the orientation of C as the
zero set of s agrees with its orientation as a Pontryagin manifold of the
pair (v, w). This proves (i).
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Now suppose that v0 and v1 are any two unit vector fields and con-
sider the line bundle E → Y whose fiber over y ∈ Y consists of all spinc

isomorphisms Φ : C⊕ v0(y)⊥ → C⊕ v1(y)⊥. Thus

E =
{

(y,Φ) |Φ ∈ Homc(C⊕ v0(y)⊥,C⊕ v1(y)⊥), Φγv0
= γv1

Φ
}

We shall prove that the first Chern class of this line bundle is given by

c1(E) = h(−v0, v1). (5.23)

The proof of Theorem 5.8 shows that γv0
⊗ E ∼= γv1

. Hence it follows
from (5.23) that γv0

and γv1
are isomorphic if and only if h(−v0, v1) = 0

and this means that v0 and v1 are homologous. That every spinc structure
is isomorphic to one of the form γv follows immediately from Theorem 5.8.

It remains to establish (5.23). We assume that −v0 is transverse to v1.
A general complex linear homomorphism

C⊕ v0
⊥ → C⊕ v1

⊥ : (z0, ζ0) 7→ (z1, ζ1) = Φ(z0, ζ0),

has the form

z1 = (a+ ib)z0 + 〈w0, ζ0〉+ i〈v0 × w0, ζ0〉,
ζ1 = x0w1 + y0v1 × w1 + ϕ(ζ0),

(5.24)

where a+ ib ∈ C, w0 ∈ v0
⊥, w1 ∈ v1

⊥, and ϕ ∈ Homc(v0
⊥, v1

⊥). Suppose
that v0 6= v1. Then one checks by direct calculation that Φγv0

= γv1
Φ if

and only if

a = −〈v0 × v1, w1〉
1− 〈v0, v1〉

, b = − 〈v0, w1〉
1− 〈v0, v1〉

, w0 = −w1 + b(v1 − v0),

ϕ(ζ0) =
〈v1, v0 × ζ0〉
1− 〈v0, v1〉

w1 +
〈v1, ζ0〉

1− 〈v0, v1〉
v1 × w1.

Hence there is an isomorphism Lv1 → E : (y, w1) 7→ (y,Φ) over Y −
C(v0, v1). In particular, this isomorphism is defined over a neighbourhood
of C(−v0, v1). Now there is a smooth section

s : Y → E

where s(y) = Φy ∈ Ey is the map (5.24) determined by

w1(y) = v1(y)× v0(y).

If v0(y) 6= v1(y) then this determines a+ ib, w0, and ϕ uniquely. Moreover,
one checks easily that s extends to a smooth section over all of Y . Namely,
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a(y) = 1 + 〈v0, v1〉, b(y) = 0, w0(y) = v0 × v1

obviously extend, and for

ϕy(ζ0) =
〈v0 × v1, ζ0〉
1− 〈v0, v1〉

v0 × v1 +
〈v1, ζ0〉

1− 〈v0, v1〉
(v0 − 〈v0, v1〉v1)

this is an easy exercise. One obtains ϕy(ζ0) = 2ζ0 whenever v0(y) = v1(y).
Evidently, s(y) = 0 if and only if y ∈ C(−v0, v1). We must prove that s is
transverse to the zero section and that the natural orientation of C(−v0, v1)
agrees with the one induced by s. The isomorphism between E and Lv1

=
v1
⊥ near C(−v0, v1) shows that it suffices to examine C(−v0, v1) as a zero

set of the section
Y → Lv1 : y 7→ v1(y)× v0(y).

Multiplication by −
√
−1 does not change orientations and hence we may

consider instead the section

Y → Lv1
: y 7→ v0(y)− 〈v0(y), v1(y)〉v1(y).

The vertical differential of this section at y ∈ C(−v0, v1) is given by

D(v0 + v1)(y) : TyY → v1(y)
⊥

. This determines the correct orientation
of C(−v0, v1). This proves (5.23) and the proposition. 2

Both Propositions 5.41 and 5.47 are due to Turaev [123]. They show
that there is a natural one-to-one correspondence between isomorphism
classes of Euler structures and spinc structure, given by

E(Y )→ Sc(Y ) : PD([v]) 7→ [γv].

In the case b1(Y ) ≥ 1 Turaev defines a function

T : E(Y )→ Z

which assigns to each Euler structure on Y a torsion invariant, called the
Turaev-Milnor torsion. This is a kind of refinement of the Reidemeister
torsion. On the other hand the Seiberg-Witten invariants have the form of
a function

SW : Sc(Y )→ Z,

also defined in the case b1(Y ) ≥ 1. In [123] Turaev conjectures that these
two invariants agree. This is a refinement of a result by Meng–Taubes [87].
A special case of this (for mapping tori) is proved in [108].
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DIRAC OPERATORS

This chapter is devoted to the study of the Dirac operator and their fun-
damental properties. Section 6.1 gives an introduction to spinc connections
and Section 6.2 to Dirac operators. Section 6.3 deals with Dirac operators
on symplectic manifolds with their canonical spinc structure (associated
to a compatible almost complex structure) and, in particular, it is proved
that the Dirac operator agrees with the Cauchy-Riemann operator ∂̄ + ∂̄∗.
The Weitzenböck formula is proved in Section 6.4 and the Fredholm in-
dex is discussed (without proof) in Section 6.5. The chapter closes with
two applications to 4-manifold topology, namely Rohlin’s theorem and the
theorem of Lichnerowicz which asserts that spin 4-manifolds with positive
scalar curvature have zero signature. This result was one of the starting
points for the work of Gromov and Lawson on positive scalar curvature
manifolds and, as a vanishing theorem involving the Dirac operator, it can
be viewed as a kind of prelude to the Seiberg-Witten invariants.

6.1 Spinc connections

Let X be a compact Riemannian manifold of dimension 2n or 2n+ 1 and
suppose that Γ : TX → End(W ) is a spinc structure. Recall that, in the
even dimensional case, there is a canonical splitting W = W+ ⊕W−. A
Hermitian connection ∇ on W is called a spinc connection if there exists
a connection on TX, also denoted by ∇, such that

∇v(Γ(w)Φ) = Γ(w)∇vΦ + Γ(∇vw)Φ (6.1)

for Φ ∈ C∞(X,W ) and v, w ∈ Vect(X). Note that the connection on TX is
uniquely determined by the spinc connection on W but not vice versa. It is
left to the reader to prove that the induced connection on TX is necessarily
Riemannian. However, it need not be torsion free.

Lemma 6.1 Let ∇1 and ∇2 be two spinc connections on W . Then there
exists a 1-form α ∈ Ω1(X,C2(TX)⊕ iR) such that

∇2
vΦ−∇1

vΦ = Γ(α(v))Φ

for Φ ∈ C∞(X,W ) and v ∈ Vect(X). Conversely, if ∇ is a spinc connection
on W and α ∈ Ω1(X,C2(X)⊕iR) then ∇+Γ(α) is also a spinc connection.
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Proof: The map ∇2 − ∇1 : C∞(X,W ) → Ω1(X,W ) is linear over the
functions and is therefore given by an endomorphism valued 1-form A ∈
Ω1(X,End(W )). Since ∇1 and ∇2 are both spinc connections there exists
a homomorphism a ∈ C∞(X,End(TX)) which represents the difference of
the induced connections on TX. Taking the difference of the formulae (6.1)
for ∇1 and ∇2 one obtains

A(v)Γ(w)− Γ(w)A(v) = Γ(a(v)w)

for v, w ∈ Vect(X). This implies A(v) ∈ Γ(C2(V ) ⊕ iR). Thus there is a
unique 1-form α ∈ Ω1(X,C2(TX) ⊕ iR) such that [α(v), w] = a(v)w and
A(v) = Γ(α(v)) for v, w ∈ Vect(X). This proves the lemma. 2

Lemma 6.2 Assume dim X = 2n.

(i) Every spinc connection ∇ on W preserves the subbundles W+ and W−.

(ii) If X carries an almost complex structure J then ∇ preserves the sub-
bundle EJ,Γ if and only if the induced connection on TX satisfies ∇J = 0.

Proof: To prove (i) fix a path β : R→ X and choose parallel vector fields
v1, . . . , v2n along β which form a positively oriented orthonormal frame.
Then Φ ∈ C∞(X,W+) satisfies Γ(v2n) · · ·Γ(v1)Φ = inΦ and hence

Γ(v2n) · · ·Γ(v1)∇β̇Φ = ∇β̇ (Γ(v2n) · · ·Γ(v1)Φ) = in∇β̇Φ

and hence ∇Φ ∈ Ω1(X,W+). Similarly for W−. This proves the first as-
sertion. To prove (ii) assume that Φ ∈ C∞(X,EJ,Γ) and hence Γ(Jv)Φ =
iΓ(v)Φ for every vector field v : X → TX. Then

0 = ∇v (Γ(Jw)Φ− iΓ(w)Φ)

= Γ(J(∇vw))Φ− iΓ(∇vw)Φ

+ Γ(Jw)∇vΦ− iΓ(w)∇vΦ + Γ((∇vJ)w)Φ

= Γ(Jw)∇vΦ− iΓ(w)∇vΦ + Γ((∇vJ)w)Φ.

Hence ∇vΦ ∈ C∞(X,EJ,Γ) if and only if Γ((∇vJ)w)Φ = 0 for all w ∈
Vect(X). This shows that ∇ preserves EJ,Γ if and only if ∇J = 0. 2

A spinc connection ∇ on W is said to be compatible with the Levi-
Civita connection if it satisfies the formula (6.1) with ∇vw denoting the
Levi-Civita connection on X. Any two such connections ∇1,∇2 differ by an
imaginary valued 1-form a ∈ Ω1(X, iR). Moreover, the group Map(X,S1)
acts on the space of connections by

(u∗∇)Φ = u−1∇(uΦ) = u−1du⊗ Φ +∇Φ

for Φ ∈ C∞(X,W ) and u ∈ Map(X,S1).
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Curvature

Recall that the curvature tensor of a spinc connection is an endomorphism
valued 2-form F∇ ∈ Ω2(X,End(W )) defined by

F∇(v, w)Φ = ∇v∇wΦ−∇w∇vΦ +∇[v,w]Φ

for v, w ∈ Vect(X) and Φ ∈ C∞(X,W ). Since ∇ is compatible with the
Levi-Civita connection the traceless part of F∇ is given by the Riemannian
curvature tensor of X. This means that

F∇(v, w)− 1

2n
trace(F∇(v, w)) = ρ(R(v, w)) (6.2)

where the homomorphism ρ : so(TX)→ End(W ) is defined by the formula
ρ ◦ Ad = Γ : C2(V ) → End(W ). This means that the map ρ makes the
following diagram commute

so(TX)
ρ−→ End(S)

Ad ↑ ↗
C2(TX) Γ

Here the map Ad : C2(TX)→ so(TX) is defined by (4.12). The trace of the
curvature (times 21−n) is the curvature of the induced connection on the
line bundle LΓ. To see this it is convenient to reformulate spinc connections
in terms of principal bundles.

Spinc connections on principal bundles

As in Remark 5.5 denote by P = PΓ → X the principal frame bundle of
W , based on some model structure Γ0 : V0 → End(W0). It has structure
group Spinc(V0), and there are natural isomorphisms

W ∼= P ×Γ0
W0, TX ∼= P ×ad V0, LΓ

∼= P ×δ C.

In particular, a section Φ : X → W can be identified with an equivariant
map Φ0 : PΓ → W0 via Φ(x) = pΦ0(p) for p ∈ Px = Homspinc(W0,Wx).
Abbreviate

G = Γ0(Spinc(V0)) ⊂ Aut(W0),

g = Lie(G) = Γ0(C2(V0)⊕ iR) ⊂ End(W0).

With this terminology in place a spinc connection on P can be defined
as in Chapter 1 as a Lie algebra valued connection 1-form Â ∈ Ω1(P, g)
which is equivariant and canonical in the vertical directions. Every such
connection induces covariant derivative operators on the associated bun-
dles W , TX, and LΓ. Moreover, by Exercise 1.18, there is a one-to-one
correspondence between spinc connections on W and connection 1-forms
on P .
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Exercise 6.3 The curvature 2-form of the spinc connection Â ∈ A(P ) ⊂
Ω1(P, g) is the Lie algebra valued 2-form

F
Â

= dÂ+
1

2
[Â ∧ Â] ∈ Ω2(X, gP )

as in Chapter 1. This 2-form can be identified with an endomorphism valued
2-form via the spinc isomorphism p ∈ Px = Homspinc

(W0,Wx). In fact,
given v, w ∈ TxX choose p ∈ Px and vectors v̂, ŵ ∈ TpP which descend
to v, w. Prove that the endomorphism p ◦ F

Â
(v̂, ŵ) ◦ p−1 : Wx → Wx

is independent of the choices and agrees with F∇(v, w), where ∇ is the

covariant derivative operator on W induced by Â. 2

There is a splitting of the Lie algebra

g = g0 ⊕ iR

with g0 = Γ0(C2(V0)). Correspondingly every spinc connection Â ∈ A(P ) ⊂
Ω1(P, g) decomposes into the traceless part Â0 ∈ Ω1(P, g0) and the trace:

Â = Â0 +
1

2n
trace(Â).

Since g0 is isomorphic to so(V0) via g0 → so(V0) : Γ0(ξ) 7→ Ad(ξ) it follows

that Â0 induces a connection on TX ∼= P ×ad V0. The reader may check
that the corresponding covariant derivative operator on TX is precisely the
one that appears in (6.1).

Throughout denote the trace of Â by

A =
1

2n
trace(Â).

This is an imaginary valued 1-form A ∈ Ω1(P, iR) which satisfies

Apg(vg) = Ap(v), Ap(p · ξ) =
1

2n
trace(ξ). (6.3)

for v ∈ TpP , g ∈ G, and ξ ∈ g ⊂ End(W0). Denote

A(Γ) =
{
A ∈ Ω1(P, iR) |A satisfies (6.3)

}
.

A spinc connection Â ∈ A(P ) is uniquely determined by the induced con-

nection on TX and the 1-form A = 2−ntrace(Â) ∈ A(Γ) via Â = Â0 +A1l.
Hence there is a one-to-one correspondence of 1-forms A ∈ A(Γ) with spinc

connections on W (in the sense of covariant derivative operators) which are
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compatible with the Levi-Civita connection. For every A ∈ A(Γ) denote
the associated covariant derivative operator by

∇A : C∞(X,W )→ Ω1(X,W ).

One must be careful to distinguish the curvature of ∇ = ∇A, which is an
endomorphism valued 2-form F∇ ∈ Ω2(X,End(W )), from the curvature
of the corresponding 1-form A, which is a scalar 2-form FA ∈ Ω2(X, iR).
They are related by

FA(v, w) =
1

2n
trace(F∇(v, w))

for v, w ∈ TxX.

Remark 6.4 The space A(Γ) is an affine space with parallel vector space
Ω1(X, iR). If A ∈ A(Γ) and a ∈ Ω1(X, iR) then

FA+a = FA + da.

Moreover, the covariant derivative operator ∇A : C∞(X,W ) → Ω1(X,W )
is uniquely characterized by the compatibility condition with the Levi-
Civita connection and the fact that the induced connection on the line
bundle det(W ) = LΓ

⊗2n−1

is given by 2nA.

Remark 6.5 Note that δ(eiθ1l) = e2iθ and so δ̇(iθ1l) = 2iθ. Hence it follows
from Exercise 1.19 that for every A ∈ A(Γ) the 1-form 2A ∈ Ω1(P, iR)
represents a connection on the line bundle LΓ. This shows that the first
Chern class of LΓ is represented by the 2-form FA via

c1(LΓ) =

[
i

π
FA

]
.

If the bundle LΓ admits a square root L → X with

L ⊗ L = LΓ

then the 1-form A can be interpreted as a connection on L. However, such
a square root only exists if X admits a spin structure. In general, the
1-form A may not be a connection on any bundle over X and thus the
2-form iFA/2π may not represent an integral cohomology class. However,
for notational purposes it will be more convenient to work with 1-forms A
which satisfy (6.3) rather than the actual corresponding connection 2A on
LΓ. In the following A is sometimes called a virtual connection on the
virtual line bundle LΓ

1/2. 2
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Gauge transformations

The group G = Map(X,S1) acts on the space A(Γ) by

u∗A = u−1du+A

for A ∈ A(Γ) and u ∈ G. One can think of G as a subgroup of the automor-
phism group of the bundle W . The action of G on the space of covariant
derivative operators on W corresponds to conjugation with this automor-
phism. Hence

∇u∗A(u−1Φ) = u−1∇AΦ

and

Du∗A(u−1Φ) = u−1DAΦ (6.4)

for A ∈ A(Γ), Φ ∈ C∞(X,W ) and u ∈ G. Moreover, the 1-form u−1du is
always closed and hence

Fu∗A = FA. (6.5)

It will follow from (6.4) and (6.5) that, in dimensions three and four, the
space of solutions of the Seiberg-Witten equations is invariant under the
action of the gauge group on A(Γ)×C∞(X,W ) via (A,Φ) 7→ (u∗A, u−1Φ).

Components of the gauge group

Recall from the discussion on page 176 that a map u : X → S1 is called
harmonic if the 1-form u−1du ∈ Ω1(X, iR) satisfies d∗(u−1du) = 0. Denote
by

G0 =
{
u : X → S1 | d∗(u−1du) = 0

}
the subgroup of harmonic gauge transformations. Proposition 5.30 shows
that the inclusion G0 ↪→ G induces an isomorphism of π0. It also shows that
there is a split exact sequence

1 −→ S1 −→ G0 −→ H1(X;Z) −→ 0

where the third map is given by u 7→ (2πi)−1[u−1du]. Given a basepoint
x0 ∈ X there is a homomorphism

H1(X;Z) ∼= Hom(π1(X),Z)→ G0

which assigns to ρ ∈ Hom(π1(X),Z) the unique harmonic gauge transfor-
mation u ∈ G0 with u(x0) = 1 and deg(u ◦ γ) = ρ(γ) for γ ∈ π1(X). This
map induces an isomorphism

H1(X;Z) ∼= π0(G).
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Spin connections

Let X be a Riemannian manifold of dimension 2, 3, or 4 modulo 8 and
(S, I, J,Γ) be a spin structure on TX. Thus

Γ : TX → End(S)

satisfies (4.18) and I, J are two orthogonal anti-commuting complex struc-
tures on S which both commute with Γ. A Riemannian connection ∇ on
S is called a spin connection if it is compatible with the Levi-Civita
connection on TX as in (6.1) and commutes with I and J .

Lemma 6.6 Let X be a Riemannian spin-manifold of dimension 2, 3, or
4 modulo 8 and (S, I, J,Γ) be a spin structure on TX as in Definition 5.4.
Then there exists a unique spin connection on S.

Proof: A connection on S which satisfies (6.1) and commutes with I is
a spinc connection with respect to I. Let ∇ be such a connection. Then
every other spinc connection on (S, I) has the form

∇α,uΦ = ∇uΦ + Iα(u)Φ

for some 1-form α ∈ Ω1(X). It remains to prove that there exists a unique
such 1-form α such that

∇α,uJ = ∇uJ + 2α(u)IJ = 0.

To see this note that ∇uJ commutes with Γ(v) for every v. Hence it follows
from Lemma 4.47 that ∇uJ = R(a) for some a = a(u) ∈ H. Now the
formulae J2 = −1l and JI = −IJ show that ∇uJ anti-commutes with I and
J . Hence ∇uJ must be a multiple of K = IJ . Hence there exists a (unique)
1-form α such that ∇uJ = −2α(u)IJ . This shows that ∇α = ∇+ Iα is the
required spin connection on S. 2

Exercise 6.7 Prove the analogue of Lemma 6.6 when X has dimension 0,
6, or 7 modulo 8. 2

Exercise 6.8 Give an alternative proof of Lemma 6.6 using connections
on principal bundles. 2

6.2 The Dirac operator

Continue the above notation. Given any virtual connection A ∈ A(Γ) de-
note by

∇ = ∇A : C∞(X,W )→ Ω1(X,W )

the corresponding covariant derivative operator which is compatible with
the Levi-Civita connection and induces the connection 2nA on det(W ).
The Dirac operator
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DA : C∞(X,W )→ C∞(X,W )

is defined by

DAΦ =
∑
ν

Γ(eν)∇eνΦ

for Φ ∈ C∞(X,W ), where the vectors e1, . . . , e2n form an orthonormal basis
of TX. It is easy to see that the expression on the right is independent of
the choice of this basis. If X has even dimension and Φ ∈ C∞(X,W+) then
DAΦ ∈ C∞(X,W−) and vice versa. In this case we write

DA± : C∞(X,W±)→ C∞(X,W∓).

The next Lemma asserts that the Dirac operator is self-adjoint. If X has
even dimension this means that

DA− = (DA+)∗.

Lemma 6.9 The Dirac operator DA : C∞(X,W ) → C∞(X,W ) is for-
mally self-adjoint. Moreover,

d∗〈Γ(·)Ψ,Φ〉 = 〈Ψ,DAΦ〉 − 〈DAΨ,Φ〉 (6.6)

for Φ,Ψ ∈ C∞(X,W ).

Proof 1: Think of 〈Ψ,Γ(·)Φ〉 as a complex valued 1-form on X and let
e1, . . . , em be a local orthonormal frame of TX. Abbreviate ∇i = ∇ei . Then,
by Lemma 2.27

d∗〈Γ(·)Ψ,Φ〉 = −
∑
i

ι(ei)∇i〈Γ(·)Ψ,Φ〉

= −
∑
i

∇i〈Γ(ei)Ψ,Φ〉+
∑
i

〈Γ(∇iei)Ψ,Φ〉

= −
∑
i

〈Γ(ei)∇A,eiΨ,Φ〉 −
∑
i

〈Γ(ei)Ψ,∇A,eiΦ〉

= 〈Ψ,DAΦ〉 − 〈DAΨ,Φ〉.

This proves (6.6). Since the integral of d∗α over X is zero for every α ∈
Ω1(X) it follows that∫

X

〈DAΨ,Φ〉dvol =

∫
X

〈Ψ,DAΦ〉dvol

for all Φ,Ψ ∈ C∞(X,W ). Hence DA is formally self-adjoint. 2
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Proof 2: By Lemma 2.23,∑
i

(∇eiei + div(ei)ei) = 0

for every orthonormal frame of TX. Moreover, by Lemma 2.22,

∇ei
∗ = −∇ei − div(ei)

and hence

DA∗Φ =
∑
i

∇ei
∗(Γ(ei)

∗Φ)

=
∑
i

∇ei(Γ(ei)Φ) +
∑
i

div(ei)Γ(ei)Φ

=
∑
i

Γ(ei)∇eiΦ +
∑
i

Γ(∇eiei + div(ei)ei)Φ

= DAΦ.

Note that this calculation can be simplified by choosing an orthonormal
frame with ∇eiej = 0 for all i and j at a given point x0 ∈ X.

Now identify TX with T ∗X and think of Γ as a bundle homomorphism
T ∗X → End(W ) whenever convenient. Then, by definition of the Dirac
operator,

DA(fΨ)− fDAΨ = Γ(df)Ψ.

Take the L2-inner product with Φ to obtain∫
X

(〈Ψ,DAΦ〉 − 〈DAΨ,Φ〉) f dvol =

∫
X

〈Γ(df)Ψ,Φ〉dvol

for all Φ,Ψ ∈ C∞(X,W ). This implies (6.6). 2

In the subsequent chapters it will be conveniend to use the notation
DA = DA+ and DA

∗ = DA− in the even dimensional case, and DA = DA
in the odd dimensional case.

Exercise 6.10 Let (S, I, J,Γ) be a spin structure on a Riemannian mani-
foldX of dimension 2, 3, or 4 modulo 8. Let∇ be the unique spin connection
on W and denote by

D : C∞(X,S)→ C∞(X,S)

the associated Dirac operator. Prove that Dirac operator commutes with I
and J . Deduce that its kernel carries an action of the quaternions H. 2
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Dirac operators on three-manifolds

Let Y be a compact oriented Riemannian 3-manifold and

γ : TY → End(W )

be a spinc structure on Y which is compatible with the orientation. This
means that W → Y is a Hermitian rank-2 bundle and γ satisfies (5.15). As
in Lemma 3.2 define the metric on the endomorpism bundle End(W ) as half
the trace. For Φ,Ψ ∈Wy let ΦΨ∗ ∈ End(Wy) be given by ΦΨ∗θ = Φ〈Ψ, θ〉,
where 〈·, ·〉 denotes the Hermitian inner product on Wy. The traceless part
of ΦΨ∗ is given by

(ΦΨ∗)0 = ΦΨ∗ − 1

2
〈Ψ,Φ〉1l.

Compare this with the discussion preceding Lemma 4.62. Let us denote by
End0(W ) the bundle of traceless complex linear endomorphisms of W . The
next lemma contains some useful identities for the three dimensional case.

Lemma 6.11 Let γ : TY → End(W ) be a spinc structure on a compact
oriented smooth 3-manifold and A ∈ A(γ). Then the following holds for
Φ,Ψ ∈ C∞(Y,W ), α ∈ Ω1(Y ), v ∈ Vect(Y ), and T ∈ C∞(Y,End0(W )).

(i)
|v| = |γ(v)| .

(ii)

γ−1((ΦΨ∗)0) =
1

2
〈γ(·)Ψ,Φ〉,

γ−1((ΦΨ∗ −ΨΦ∗)0) = Re 〈γ(·)Ψ,Φ〉,
γ−1((ΦΨ∗ + ΨΦ∗)0) = iIm 〈γ(·)Ψ,Φ〉.

(iii)
γ−1((γ(α)ΦΨ∗ + ΦΨ∗γ(α))0) = 〈Ψ,Φ〉α.

(iv)
γ(∗dα) = DAγ(α) + γ(α)DA +∇A,α − (∇A,α)∗.

(v)

∗d〈γ(·)Ψ,Φ〉 = 〈γ(·)DAΨ +∇AΨ,Φ〉 − 〈Ψ, γ(·)DAΦ +∇AΦ〉.

Proof: Assertion (i) is obvious from the definitions. To prove (ii) take the
inner product with α:

〈α, γ−1((ΦΨ∗)0)〉 = 〈γ(α),ΦΨ∗〉 =
1

2
trace(γ(α)∗ΦΨ∗) =

1

2
〈γ(α)Ψ,Φ〉.

To prove (iii) write α′ = γ−1((γ(α)ΦΨ∗+ΦΨ∗γ(α))0). Then the Hermitian
inner product of β ∈ Ω1(Y ) with α′ is given by
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〈β, α′〉 = 〈γ(β), γ(α)ΦΨ∗ + ΦΨ∗γ(α)〉

=
1

2
trace (γ(β)∗γ(α)ΦΨ∗ + γ(β)∗ΦΨ∗γ(α))

= −1

2
trace ((γ(β)γ(α) + γ(α)γ(β))ΦΨ∗)

= 〈β, α〉trace (ΦΨ∗)

= 〈β, 〈Ψ,Φ〉α〉.

This continues to hold for complex valued 1-forms β ∈ Ω1(Y,C). The proof
of (iv) relies on the identities

∗dα =

3∑
i=1

ei
∗ ×∇iα, d∗α = −

3∑
i=1

ι(ei)∇iα,

for an orthonormal frame e1, e2, e3 of TY (see Lemma 2.27). We obtain

DA(γ(α)Φ) + γ(α)DAΦ

=
∑
i

(
γ(ei)∇A,ei(γ(α)Φ) + γ(α)γ(ei)∇A,eiΦ

)
=
∑
i

(
γ(ei)γ(∇iα)Φ + (γ(ei)γ(α) + γ(α)γ(ei))∇A,eiΦ

)
=
∑
i

(
γ(e∗i ×∇iα)Φ− (ι(ei)∇iα)Φ− 2

∑
i

α(ei)∇A,eiΦ
)

= γ(∗dα)Φ + d∗αΦ− 2∇A,αΦ

= γ(∗dα)Φ−∇A,αΦ + (∇A,α)∗Φ.

This proves (iv). To prove (v) consider the Hermitian L2-inner product of
α ∈ Ω1(Y ) and ∗d〈Ψ, γ(·)Φ〉:

〈α, ∗d〈γ(·)Ψ,Φ〉〉 = 2〈γ(∗dα),ΦΨ∗〉 = 〈γ(∗dα)Ψ,Φ〉.

Here the first identity follows from (i) and the fact that ∗d is self-adjoint.
The second identity follows as in the first line of the proof. Hence, by (iv),

〈α, ∗d〈γ(·)Ψ,Φ〉〉 = 〈DA(γ(α)Ψ) + γ(α)DAΨ +∇A,αΨ− (∇A,α)∗Ψ,Φ〉
= 〈γ(α)DAΨ +∇A,αΨ,Φ〉 − 〈Ψ, γ(α)DAΦ +∇A,αΦ〉
= 〈α, 〈γ(·)DAΨ +∇AΨ,Φ〉 − 〈Ψ, γ(·)DAΦ +∇AΦ〉〉

This identity continues to hold for α ∈ Ω1(Y,C). This proves (v) and the
lemma. 2
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6.3 Dirac operators on symplectic manifolds

Let (X,ω) be a symplectic manifold with a compatible almost complex
structure J and a corresponding Hermitian structure

〈v, w〉 = g(v, w) + iω(v, w).

on TX, where g(v, w) = ω(v, Jw) is the Riemannian metric determined
by ω and J . (See Section 3.3 for the relevant definitions.) Recall from
Section 3.2 that for any Hermitian line bundle E → X with Hermitian
connection B there is an operator

∂̄B + ∂̄∗B : Ω0,ev(X,E)→ Ω0,odd(X,E).

The goal of this section is to compare this operator with the Dirac operator
with respect to a suitable spinc connection.

Spinc connection on symplectic manifolds

The canonical spinc bundle of X is the 2n dimensional complex vector bun-
dle Wcan = Λ0,∗T ∗X with its standard Hermitian structure and splitting
into

W+
can = Λ0,evT ∗X, W−can = Λ0,oddT ∗X.

The canonical spinc representation Γcan : TX → End(Wcan) is given by

Γcan(v)τ =
1√
2
v′′ ∧ τ −

√
2ι(v)τ.

The goal is to find a spinc connection on Wcan which is compatible with the
Levi-Civita connection on TX. Recall from Section 3.3 that the Levi-Civita
connection does not preserve the spaces Ω0,k(X) unless J is integrable.
However, there is a Hermitian connection on TX given by the formula

∇̃vw = ∇vw −
1

2
J(∇vJ)w

for v, w ∈ Vect(X) and the induced connection on ΛkT ∗X ⊗ C is given by

∇̃vτ = ∇vτ +
1

2
ι(J∇vJ)τ

for τ ∈ Ωk(X) and v ∈ Vect(X) where ι(J∇vJ)τ is defined by (2.19).
(See (3.8) in Section 3.3.) This connection preserves the subspaces Ω0,k(X)
and hence defines a connection on the canonical spinc bundle Wcan. The
next lemma shows that this is a spinc connection. However, it is compat-
ible with the Hermitian connection ∇̃ on TX instead of the Levi-Civita
connection ∇.
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Lemma 6.12 For τ ∈ Ω0,∗(X) and u, v ∈ Vect(X)

∇̃u(Γ(v)τ) = Γ(∇̃uv)τ + Γ(v)∇̃uτ

This formula continues to hold for forms τ ∈ Ω0,∗(X,E) = C∞(X,WE)
with values in a Hermitian line bundle E with Hermitian connection B
provided that the connection ∇̃ on Λ0,∗T ∗X is replaced by the connection
∇̃B on WE = Λ0,∗T ∗X ⊗ E as in Exercise 3.24.

Proof: By Lemma 3.20,

∇̃u(Γcan(v)τ) = ∇̃u
(

1√
2
v∗ ∧ τ +

1√
2
i(Jv)∗ ∧ τ −

√
2ι(v)τ

)
=

1√
2

(∇̃uv)∗ ∧ τ +
1√
2
i(J∇̃uv)∗ ∧ τ −

√
2ι(∇̃uv)τ

+
1√
2
v∗ ∧ ∇̃uτ +

1√
2
i(Jv)∗ ∧ ∇̃uτ −

√
2ι(v)∇̃uτ

= Γcan(∇̃uv)τ + Γcan(v)∇̃uτ.

This proves the lemma in the untwisted case. The twisted case is left as an
exercise. 2

It is necessary to modify the connection ∇̃ on Wcan by a suitable endo-
morphism valued 1-form in order to obtain a connection which is compatible
with the Levi-Civita connection on TX. To find this endomorphism recall
that there is a homomorphism µ : so(TX)→ End(Wcan) which makes the
following diagram commute.

so(TX)
µ−→ End(Wcan)

ad ↑ ↗
C2(TX) Γ

Since ad(ξ)v = ξv − vξ for ξ ∈ C2(TxX) and v ∈ TxX the homomorphism
µ can be characterized by the identity

[µ(A),Γ(v)] = Γ(Av). (6.7)

Consider the connection ∇can : C∞(X,Wcan)→ Ω1(X,Wcan) defined by

∇can,vτ = ∇̃vτ +
1

2
µ(J(∇vJ))τ (6.8)

for τ ∈ Ω0,∗(X) and v ∈ Vect(X). Note that in the Kähler case ∇can =

∇̃ = ∇ is the Levi-Civita connection on forms.
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Lemma 6.13 The connection ∇can on Wcan is a spinc connection which is
compatible with the Levi-Civita connction on X.

Proof: By Lemma 3.20 (iii) and 6.7),

∇can,v(Γ(w)τ) = ∇̃v(Γ(w)τ) +
1

2
µ(J(∇vJ))Γ(w)τ

= Γ(w)∇̃vτ + Γ(∇̃vw)τ +
1

2
µ(J(∇vJ))Γ(w)τ

= Γ(w)∇can,vτ + Γ(∇̃vw)τ +
1

2
[µ(J(∇vJ)),Γ(w)]τ

= Γ(w)∇can,vτ + Γ(∇̃vw)τ +
1

2
Γ(J(∇vJ)w)τ

= Γ(w)∇can,vτ + Γ(∇vw)τ.

This proves the lemma. 2

The discussion on page 190 shows that there is a one-to-one correspon-
dence between spinc connections ∇ = ∇A on W and virtual connections

A ∈ A(Γ) on the virtual bundle L
1/2
Γ . In the case of the canonical spinc

structure this shows that there is a unique connection

Acan ∈ A(Γcan)

such that ∇can = ∇Acan . Note that 2Acan is a connection on the anti-
canonical bundle

LΓcan
= K∗ = Λ0,nT ∗X.

Lemma 6.14 Assume that (X, J, ω) is a Kähler manifold and so

∇can = ∇̃ = ∇.

Then the connection 2Acan on LΓcan = Λ0,nT ∗X agrees with the Levi-Civita
connection.

Proof: Since ∇J = 0, it follows that the connection on the principal
bundle P → X is a Uc(V0)-connection. The induced connection on TX ∼=
P ×ad V0 is the Levi-Civita connection and hence the induced connection
on

Λ0,nT ∗X = P ×detc◦ad C

is also the Levi-Civita connection. Now recall from Lemma 4.53 that

δ(x) = detc(ad(x))

for x ∈ Uc(V0) and hence ∇ also induces the Levi-Civita connection on
LΓcan

= P ×δ C ∼= Λ0,nT ∗X. 2
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In order to understand the induced connection on the bundle LΓcan
=

Λ0,nT ∗X in the nonintegrable case we must examine the homomorphism
µ : so(TX)→ End(Wcan) in more detail. The next lemma expresses this ho-
momorphism in terms of the Nijenhuis tensor as defined in Section 3.2. Re-
call from (3.7) in Section 3.3 that, on a symplectic manifold, the Nijenhuis
tensor can be interpreted as a linear map Vect(X) → Ω0,2(X) : u 7→ Θu

given by Θu(v, w) = 〈u,N(v, w)〉. Recall also the notation ι(Θ̄u)τ as defined
in (3.3) in Section 3.1.

Lemma 6.15 (i) For v, w ∈ Vect(X)

µ(vw∗ − wv∗) =
1

2

(
g(v, w)1l− Γ(v)Γ(w)

)
.

(ii) For v ∈ Vect(X) and τ ∈ Ω0,∗(X)

µ(J∇vJ)τ =
1

4
Θv ∧ τ + ι(Θ̄v)τ.

Proof: In a unitary frame e1, . . . , en, Je1, . . . , Jen of TX the following
holds

eiejek − ekeiej =

 2ej , if k = i 6= j,
−2ei, if k = j 6= i,

0, otherwise.

Hence Ad(eiej) = 2(ejei
∗ − eiej∗) for i 6= j. This proves (i). To prove (ii)

note first that for two vector fields v, w ∈ Vect(X)

Γ(v)Γ(w)τ − Γ(Jv)Γ(Jw)τ = v′′ ∧ w′′ ∧ τ + 4ι(v)ι(w)τ,

Γ(v)Γ(Jw)τ + Γ(v)Γ(Jw)τ =
√
−1v′′ ∧ w′′ ∧ τ − 4

√
−1ι(v)ι(w)τ.

Now

J∇vJ =
∑
i,j

g(ei, J(∇vJ)ej)

(
eiej

∗ − (Jei)(Jej)
∗
)

+
∑
i,j

g(ei, (∇vJ)ej)

(
ei(Jej)

∗ + (Jei)ej
∗
)

=
∑
i<j

g(ei, J(∇vJ)ej)

(
eiej

∗ − ejei∗ − (Jei)(Jej)
∗ + (Jej)(Jei)

∗
)

+
∑
i<j

g(ei, (∇vJ)ej)

(
ei(Jej)

∗ − (Jej)ei
∗ + (Jei)ej

∗ − ej(Jei)∗
)

and hence, using (i) and the formulae ∇vJ = J(∇JvJ) and g(v,N(ei, ej)) =
2g(J(∇vJ)ei, ej),
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µ(J∇vJ)τ = − 1

2

∑
i<j

g(ei, J(∇vJ)ej)

(
Γ(ei)Γ(ej)− Γ(Jei)Γ(Jej)

)
τ

− 1

2

∑
i<j

g(ei, J(∇JvJ)ej)

(
Γ(ei)Γ(Jej) + Γ(Jei)Γ(ej)

)
τ

=
1

4

∑
i,j

g(J(∇vJ)ei, ej)

(
Γ(ei)Γ(ej)− Γ(Jei)Γ(Jej)

)
τ

+
1

4

∑
i,j

g(J(∇JvJ)ei, ej)

(
Γ(ei)Γ(Jej) + Γ(Jei)Γ(ej)

)
τ

=
∑
i,j

g(v,N(ei, ej))

(
1

8
ei
′′ ∧ ej ′′ ∧ τ +

1

2
ι(ei)ι(ej)τ

)

+
√
−1
∑
i,j

g(Jv,N(ei, ej))

(
1

8
ei
′′ ∧ ej ′′ ∧ τ −

1

2
ι(ei)ι(ej)τ

)

=
∑
i,j

(
〈v,N(ei, ej)〉

8
ei
′′ ∧ ej ′′ ∧ τ +

〈N(ei, ej), v〉
2

ι(ei)ι(ej)τ

)
.

Now recall from Section 3.3 that

Θv =
1

2

∑
i,j

〈v,N(ei, ej)〉ei′′ ∧ ej ′′

and hence, by definition of ι(Θ̄v)τ in (3.3) in Section 3.1,

ι(Θ̄v)τ =
1

2

∑
i,j

〈N(ei, ej), v〉ι(ei)ι(ej)τ.

This proves the lemma. 2

Lemma 6.16 Assume that (X,ω) is a 4-dimensional symplectic manifold
with compatible almost complex structure J . Then the connection 2Acan on
the line bundle LΓcan

= detc(W+
can) = detc(W−can) = Λ0,2T ∗X agrees with

∇̃. Hence

FAcan
=

1

2
tracec(R̃)

where R̃ denotes the full curvature tensor of ∇̃ on (TX, J).

Proof: In the 4-dimensional case W−can = Λ0,1T ∗X and the formula of
Lemma 6.15 (ii) shows that µ(J∇vJ)τ = 0 for τ ∈ Λ0,1T ∗X. Hence the

spinc connection ∇can agrees with ∇̃ on W−can and this implies that the

induced connection on LΓcan
= Λ2

CW
−
can is also given by ∇̃. 2
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The Dirac operator and the Cauchy-Riemann operator

Let (X,ω) be a 2n-dimensional symplectic manifold with compatible al-
most complex structure J ∈ J (X,ω) and corresponding canonical spinc

structure Wcan = Λ0,∗T ∗X. Given a Hermitian line bundle E → X denote
the twisted spinc bundle by

WE = Λ0,∗T ∗X ⊗ E

and its standard splitting by WE = W+
E ⊕W

−
E where W+

E = Λ0,evT ∗X⊗E
and W−E = Λ0,oddT ∗X ⊗E. Consider the spinc connection ∇can on Wcan =
Λ0,∗T ∗X, defined by (6.8), and fix a Hermitian connection B on E. To-
gether these determine a spinc connection ∇A = ∇Acan+B on WE , which
preserves the subbundles W+

E and W−E , and is defined by

∇A(τ ⊗ s) = (∇canτ)⊗ s+ τ ⊗ dBs

for s ∈ C∞(X,E) and τ ∈ Ω0,∗(X). The associated Dirac operator is
denoted by DA : C∞(X,W+

E ) → C∞(X,W−E ). The space of sections of
WE can be identified with the space of (0, ∗)-forms on X with values in E
and there is an operator ∂̄B + ∂̄∗B : Ω0,ev(X,E)→ Ω0,odd(X,E) induced by
the Riemannian metric on X and the connection B. The following theorem
relates these two operators.

Theorem 6.17 The Dirac operator DA : Ω0,ev(X,E) → Ω0,odd(X,E) on
a symplectic manifold has the form

1√
2
DAcan+B = ∂̄B + ∂̄∗B .

Proof: Fix a local unitary frame e1, Je1, . . . , en, Jen of TX and recall that
the homomorphism µE : so(TX)→ End(WE) is defined by µE ◦Ad = ΓE :
C2(TX)→ End(WE) as in (6.8) The first step is to prove the formula

1√
2
DAcan+B = ∂̄B + ∂̄∗B +R (6.9)

where the operator R given by

R =
1

2
√

2

∑
k

(
ΓE(ek)µE(J(∇ekJ)) + ΓE(Jek)µE(J(∇JekJ))

)
. (6.10)

To see this note first that the formula (6.8) continues to hold with ∇can

and ∇̃ replaced by ∇Acan+B and ∇̃B . Now combine the formulae for ∂̄Bτ
and ∂̄∗Bτ in Proposition 3.23 (and Exercise 3.24) with the definition of the
Dirac operator DA with A = Acan +B to obtain
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1√
2
DAτ =

1√
2

∑
k

(
ΓE(ek)∇A,ekτ + ΓE(Jek)∇A,Jekτ

)
=

1√
2

∑
k

(
ΓE(ek)∇̃B,ekτ + ΓE(Jek)∇̃B,Jekτ

)
+

1

2
√

2

∑
k

(
ΓE(ek)µE(J(∇ekJ))τ + ΓE(Jek)µE(J(∇JekJ))τ

)
=

1

2

∑
k

(
ek
′′ ∧ ∇̃B,ekτ + (Jek)′′ ∧ ∇̃B,Jekτ

)
−
∑
k

(
ι(ek)∇̃B,ekτ + ι(Jek)∇̃B,Jekτ

)
+Rτ

= ∂̄Bτ + ∂̄∗Bτ +Rτ.

This proves the formula (6.9) withR given by (6.10). Now insert the formula
for µE(J∇vJ) of Lemma 6.15 into (6.10) and use the identities

ΘJv = −iΘv, ι(Θ̄Jv)τ = iι(Θ̄v)τ,

with Θu ∈ Ω0,2(X) given by (3.7), to obtain

2Rτ =
1√
2

∑
k

ΓE(ek)

(
1

4
Θek ∧ τ + ι(Θ̄ek)τ

)
+

1√
2

∑
k

ΓE(Jek)

(
1

4
ΘJek ∧ τ + ι(Θ̄Jek)τ

)
=

1

8

∑
k

ek
′′ ∧Θek ∧ τ −

1

4

∑
k

ι(ek)(Θek ∧ τ)

+
1

2

∑
k

ek
′′ ∧ ι(Θ̄ek)τ −

∑
k

ι(ek)ι(Θ̄ek)τ

+
1

8

∑
k

Jek
′′ ∧ΘJek ∧ τ −

1

4

∑
k

ι(Jek)(ΘJek ∧ τ)

+
1

2

∑
k

Jek
′′ ∧ ι(Θ̄Jek)τ −

∑
k

ι(Jek)ι(Θ̄Jek)τ

=
1

4

∑
k

ek
′′ ∧Θek ∧ τ − 2

∑
k

ι(ek)ι(Θ̄ek)τ

= 0.

The last equation follows from Exercise 3.19 in Section 3.3. (See also the
definition of ι(Θ̄u)τ in (3.3) in Section 3.1.) This proves the theorem. 2



THE WEITZENBÖCK FORMULA 205

6.4 The Weitzenböck formula

Let X be a Riemannian manifold of dimension 2n or 2n+ 1 and Γ : TX →
End(W ) be a spinc structure. Denote by P → X the associated frame bun-
dle with structure group Spinc(V0) and by LΓ = P ×δ C the associated line
bundle. Recall that A(Γ) denotes the space of virtual connections on the

virtual line bundle LΓ
1/2 and that every A ∈ A(Γ) determines a spinc con-

nection ∇A on W and a Dirac operator DA : C∞(X,W )→ C∞(X,W ) re-
spectively, in the even dimensional case, DA : C∞(X,W+)→ C∞(X,W−).
Recall also that FA = 2−ntrace(F∇A) ∈ Ω2(X, iR). In Section 4.8 it was
shown that there is a natural linear operator ρ : Λ2T ∗X ⊗ C → End(W )
defined by

ρ

∑
i<j

ηijei
∗ ∧ ej∗

 =
∑
i<j

ηijΓ(ei)Γ(ej) (6.11)

for any orthonormal frame e1, . . . , e2n.

Exercise 6.18 Denote by ∇A∗ : Ω1(X,W ) → C∞(X,W ) the L2 adjoint
of the covariant derivative operator ∇ = ∇A. The composition

∇A∗∇A : C∞(X,W )→ C∞(X,W )

is called the Bochner Laplacian. Prove that in an orthonormal frame this
operator is given by ∇A∗∇AΦ =

∑
i∇i
∗∇iΦ where ∇i = ∇A,eiΦ denotes the

covariant derivative in the direction ei. 2

Theorem 6.19. (Weitzenböck formula) Let s : X → R denote the
scalar curvature. Then, for A ∈ A(Γ) and Φ ∈ C∞(X,W ),

DADAΦ = ∇A∗∇AΦ +
1

4
sΦ + ρ(FA)Φ.

Proof: Choose a local orthonormal frame e1, . . . , e2n of TX and denote

aij = −Γ(ei)Γ(ej) ∈ End(W+)

for i, j = 1, . . . , 2n. These endomorphisms satisfy (6.14) in Lemma 6.20
below. Hence, in particular,

aij + aji = 2δij1l.

Abbreviate ∇iΦ = ∇AΦ(ei) for Φ ∈ C∞(X,W+). The curvature F∇ is a 2-
form on X with values in End(W ). In the local frame F∇ =

∑
i<j Fijei

∗ ∧
ej
∗, where

FijΦ = ∇i∇jΦ−∇j∇iΦ +∇[ei,ej ]Φ

for Φ ∈ C∞(X,W ). These endomorphisms Fij preserve W+ and W−.
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Recall that the Dirac operator DA : C∞(X,W )→ C∞(X,W ) is defined
by DAΦ = DA∗Φ =

∑
i Γ(ei)∇iΦ for Φ ∈ C∞(X,W+) and hence

DADAΦ =
∑
i,j

∇i∗ (aij∇jΦ) .

The diagonal terms with i = j give the operator ∇A∗∇AΦ =
∑
i∇i
∗∇iΦ

and the remaining terms can be expressed as follows

DADAΦ = ∇A∗∇AΦ−
∑
i<j

aijFijΦ. (6.12)

To see this note that, by Lemma 2.22,

DADAΦ−∇A∗∇AΦ =
∑
i 6=j

∇i∗ (aij∇jΦ)

= −
∑
i 6=j

∇i (aij∇jΦ)−
∑
i6=j

div(ei)aij∇jΦ

= −
∑
i 6=j

aij∇i∇jΦ−
∑
i 6=j

(∇iaij + div(ei)aij)∇jΦ

= −
∑
i<j

aij(∇i∇jΦ−∇j∇iΦ)

−
∑
i6=j

(∇iaij + div(ei)aij)∇jΦ

= −
∑
i<j

aijFijΦ +
∑
i<j

aij∇[ei,ej ]Φ

−
∑
i6=j

(∇iaij + div(ei)aij)∇jΦ.

It remains to prove that the first order terms vanish, i.e.∑
i<j

aij∇[ei,ej ]Φ− (∇iaij + div(ei)aij)∇jΦ = 0

This is obvious for the following reason. Firstly, the left hand side of this
equation (as a local section of W+) is independent of the choice of the
orthonormal frame. This can either be proved directly or deduced from
the fact that the other terms in the above equation are independent of the
choice of the frame. Now fix a point x0 ∈ X and choose a frame e1, . . . , en
near x0 such that all the covariant derivatives ∇eiej = 0 vanish at x0. Then
∇iaij = 0, div(ei) = 0 and [ei, ej ] = 0 at x0 and hence the first order terms
all vanish at x0. This proves (6.12).
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Let us now examine the right hand side of (6.12). The curvature terms
Fij split up into the trace and the traceless part F 0

ij = Fij−2−ntrace(Fij)1l.
This part is entirely determined by the Levi-Civita connection and it sat-
isfies ∑

i<j

aijF
0
ij = −1

4
s1l (6.13)

where s : X → R denotes the scalar curvature. To see this recall the
formula (6.2) which asserts that the traceless part of the curvature is given
by

F 0
ij = ρ(R(ei, ej))

where R ∈ Ω2(X,End(TX)) denotes the Riemann curvature tensor and the
homomorphism ρ : so(TX) → End(W ) is defined by ρ(Ad(ξ)) = Γ(ξ) for
ξ ∈ C2(TX). The proof of Lemma 6.15 shows that Ad(e`ek) = 2(eke`

∗ −
e`ek

∗) for k 6= ` and thus

ρ(eke`
∗ − e`ek∗) =

1

2
Γ(e`)Γ(ek) =

1

2
ak`

for k 6= `. Hence

F 0
ij = ρ(R(ei, ej))

=
∑
k,`

Rijk` · ρ(eke`
∗)

=
∑
k<`

Rijk` · ρ(eke`
∗ − e`ek∗)

=
1

2

∑
k<`

Rijk` · ak`.

Now it follows from Lemma 6.20 below that∑
i<j

aijF
0
ij =

1

2

∑
i<j

∑
k<`

Rijk`aijak` =
1

8

∑
i,j,k,`

Rijk`aijak` = −1

4
s1l.

This proves (6.13). Combining this with (6.12) gives

DADAΦ = ∇A∗∇AΦ−
∑
i<j

aijFijΦ

= ∇A∗∇AΦ−
∑
i<j

aijF
0
ijΦ−

1

2n

∑
i<j

aijtrace(Fij)Φ

= ∇A∗∇AΦ +
1

4
sΦ− 1

2n

∑
i<j

aijtrace(Fij)Φ.
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Now the curvature of the virtual connection A is the 2-form

FA =
1

2n
trace(F∇) =

1

2n

∑
i<j

trace(Fij)ei
∗ ∧ ej∗.

Hence it follows from the definition of ρ+ : Λ2T ∗X → End(W+) in (6.11)
that

ρ+(FA) =
1

2n

∑
i<j

trace(Fij)Γ(ei)Γ(ej) = − 1

2n

∑
i<j

aijtrace(Fij).

Hence

DADAΦ = ∇A∗∇AΦ +
1

4
sΦ− 1

2n

∑
i<j

aijtrace(Fij)Φ

= ∇A∗∇AΦ +
1

4
sΦ + ρ+(FA)

and this proves the theorem. 2

Lemma 6.20 Let Rijk` denote the curvature coefficients in an orthonor-
mal frame e1, . . . , e2n of TX and assume that aij ∈ End(W ) satisfy

aijajk = aik, aii = 1l, aijak` + aikaj` = 2δjkai` (6.14)

for i, j, k, ` = 1 . . . , 2n. Then∑
i,j,k,`

Rijk`aijak` = −2s1l

where s =
∑
i,j Rijij is the scalar curvature.

Proof: Equation (6.14) with k = ` = i implies aij + aji = 2δij1l. More-
over, recall from Section 2.1 that Rijk` = Rk`ij = −Rjik` and the Bianchi
identity reads

Rijk` +Rik`j +Ri`jk = 0.

In particular, this shows that Rjijk = Rjkji and hence

∑
i,j,k

Rijjkaik = −1

2

∑
i,j,k

Rjijk(aik + aki) = −
∑
i,j,k

Rjijkδik1l = −s1l.

Abbreviating

a =
∑
i,j,k,`

Rijk`aijak`, b =
∑
i,j,k,`

Rijk`aikaj`
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one finds

a+ b = 2
∑
i,j,k,`

Rijk`δjkai` = 2
∑
i,j,`

Rijj`ai` = −2s1l

and, by the Bianchi identity,

a− 2b =
∑
i,j,k,`

Rijk`aijak` − 2
∑
i,j,k,`

Rijk`aikaj`

= −
∑
i,j,k,`

Rijk` (aika`j + ai`ajk)− 2
∑
i,j,k,`

Rijk`aikaj`

= −
∑
i,j,k,`

Rijk`aik (a`j + aj`)

= − 2
∑
i,j,k

Rijkjaik

= −
∑
i,j,k

Rijkj(aik + aki)

= − 2
∑
i,j

Rijij1l

= − 2s1l.

This implies a = −2s1l and b = 0 as claimed. 2

Recall from Exercise 2.31 a Weitzenböck formula for the Laplace-Bel-
trami operator on 1-forms which involves the Ricci tensor. Compare this
with the formula in Theorem 6.19 which only involves the scalar curvature.
To understand this consider the case of a symplectic 4-manifold X with the
standard spinc structure. Then W−can = Λ0,1T ∗X and 2−1/2DA is just the
operator ∂̄ + ∂̄∗ (see Theorem 6.17). The second formula in Theorem 6.19
becomes

∂̄∗∂̄α+ ∂̄∂̄∗α =
1

2
∇̃∗∇̃α+

1

8
sα+

1

2
ρ−(F̃ )α

for α ∈ Ω0,1(X). Here ∇̃ denotes the Hermitian connection on TX and

F̃ = 2FAcan denotes the complex trace of the curvature. The sum of the last
two terms in this formula correspond to the Ricci term in Exercise 2.31. An
interesting special case is that of a spin structure where the line bundle LΓ is
trivial and A is the zero connection. Then the last term in the Weitzenböck
formula of Theorem 6.19 is zero and only the scalar curvature remains.
Thus, as is shown in Section 6.6 below, the Dirac operator can be used
in the spin case, in conjunction with the Atiyah-Singer index theorem, to
obtain interesting obstructions to the existence of metrics with positive
scalar curvature. Such obstructions cannot be obtained from the formula
in Exercise 2.31 because the full Ricci tensor appears.
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6.5 The Fredholm index

The Weitzenböck formula is a powerful tool for studying the Dirac operator
and its relation with the geometry of the underlying manifold. In the first
place it can be used to prove that the Dirac operator on a compact manifold
is a Fredholm operator. It is a first order differential operator and can
naturally be considered as an operator between Hilbert spaces

DA : W 1,2(X,W )→ L2(X,W ).

Here L2(X,E) denotes the space of L2-sections of a vector bundle E → X
with norm

‖Φ‖L2 =

√∫
X

|Φ|2dvol.

The Sobolev space W 1,2(X,E) is defined as the completion of the space
C∞(X,E) with respect to the norm

‖Φ‖W 1,2 =

√∫
X

(|Φ|2 + |∇Φ|2) dvol.

Here ∇Φ ∈ Ω1(X,E) denotes the covariant derivative of Φ with respect
to some connection on E. Thus the W 1,2-norm depends on a choice of a
connection, however, the space of W 1,2-sections of E is independent of this
choice.

Proposition 6.21 The Dirac operator DA : W 1,2(X,W ) → L2(X,W ) is
a Fredholm operator.

Proof: The Weitzenböck formula of Theorem 6.19 shows that

‖DAΦ‖2L2 = 〈Φ,DADAΦ〉L2

=

〈
Φ,∇A∗∇As+

1

4
sΦ + σ+(FA)Φ

〉
L2

= ‖∇AΦ‖2L2 +

∫
X

(
1

4
s|Φ|2 + 〈Φ, σ+(FA)Φ〉

)
dvol

≥ ‖∇AΦ‖2L2 − c ‖Φ‖2L2

for some constant c > 0 which is independent of Φ. Hence

‖Φ‖2W 1,2 ≤ ‖DAΦ‖2L2 + (1 + c) ‖Φ‖2L2

for every Φ ∈ C∞(X,W ). Now the inclusion W 1,2(X,W ) ↪→ L2(X,W )
is a compact operator, by Rellich’s theorem, and hence it follows from
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Lemma A.1 that DA has a finite dimensional kernel and a closed range.
Moreover, by elliptic regularity, the orthogonal complement of the image
of DA is contained in W 1,2(X,W ) and agrees with the kernel of the formal
adjoint operator DA∗ = DA and hence is also finite dimensional. Hence DA
is a Fredholm operator. 2

The Dirac operator DA is always self-adjoint and hence has Fredholm
index zero. However, in the even dimensional case, the index of the operator

DA = DA+ : W 1,2(X,W+)→ L2(X,W−)

is an interesting topological invariant, given by the Atiyah-Singer index
theorem. Here is the answer in the 4-dimensional case.

Theorem 6.22. (Atiyah-Singer) Let X be a compact smooth 4-manifold
with a spinc structure Γ : TX → End(W ) and associated line bundle LΓ.
Then the real Fredholm index of the Dirac operator DA is given by

indexDA =
〈c1(LΓ)2, [X]〉 − σ(X)

4
.

Consider the Kähler case with the canonical spinc structure twisted by
a holomorphic line bundle E → X. Then Theorem 6.17 shows that the
Dirac operator DA agrees with the Cauchy-Riemann operator ∂̄ + ∂̄∗ and
so its kernel and cokernel are given by

ker DA
∼= H0,ev(X,E), cokerDA

∼= H0,odd(X,E).

Hence the real Fredholm index of DA is twice the twisted holomorphic
Euler characteristic

indexDA = 2χ(X,E) =
〈c1(K∗ ⊗ E⊗2)2, [X]〉 − σ(X)

4

where K = Λ2,0T ∗X. The last identity follows from Corollary 3.43. Now
recall from Lemma 5.20 and Corollary 5.21 that the line bundle LΓ is given
by LΓ = K∗ ⊗ E⊗2. Thus the index formula of Theorem 6.22 agrees with
the Hirzebruch-Riemann-Roch formula.

Another interesting special case is that of a spin structure on a man-
ifold X of dimension 4k. Recall from Definition 5.1 that, when k is odd,
a spin structure on X is a quadruple (S, I, J,Γ) where I and J are anti-
commuting orthogonal complex structures on S and Γ : TX → End(S)
satisfies (4.18) and commutes with I and J . When k is even, a spin struc-
ture is a quadruple (S, I, T,Γ) where S, I,Γ are as above and T is an in-
volution of S which anti-commutes with I and commutes with Γ. In either
case the triple (S, I,Γ) is a spinc structure whose canonical line bundle
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LΓ carries a natural trivialization. (See Exercise 5.6 and Lemma 5.7.) Re-
call from Lemma 6.6 that the Levi-Civita connection on X determines a
unique spin connection on S and that this connection preserves the sub-
bundles S+ and S−. Let E → X be any Hermitian vector bundle over X
with connection A. Together with the spin connection on S this determines
a connection ∇ = ∇A on S⊗E and hence there is a twisted Dirac operator
DA : C∞(X,S+ ⊗ E)→ C∞(X,S− ⊗ E).

Theorem 6.23. (Atiyah-Singer) Let X be a spin manifold of dimen-
sion 4k. Then the complex Fredholm index of the Dirac operator DA :
C∞(X,S+ ⊗ E)→ C∞(X,S− ⊗ E) is given by

indexcDA =

∫
X

ch(E) ∧ Â(TX)

where Â(TX) ∈ H∗(X;Z) denotes the Â-genus. If the dimension of X is
not divisible by 4 then indexDA = 0.

The Â-genus of a real vector bundle E → X of rank 2m is defined as
the formal power series

Â(E) =

m∏
i=1

xi
exi/2 − e−xi/2

where the xi are to be understood as formal variables in H2(X;Z). They
are related to the Pontryagin classes

pj(E) = (−1)jc2j(E ⊗R C) ∈ H4j(X;Z)

by the formula

p(E) = 1 + p1(E) + · · ·+ pm(E) =

m∏
i=1

(1 + xi
2).

Thus the classes pj(E) ∈ H4j(X;Z) can be expressed as the elementary
symmetric functions in the variables xi

2. A moment’s thought shows that
the above power series for Â(E) is a symmetric function in the xi

2 and
hence can be expressed as a function of the Pontryagin classes. Consider the
special case where E itself is a complex vector bundle. Then E⊗RC ∼= E⊕Ē
where Ē denotes the bundle with the reversed complex structure. If E
decomposes as a direct sum of line bundles E = L1 ⊕ · · · ⊕ Lm then the
total Chern class of E ⊕ Ē is given by c(E ⊗ Ē) =

∏
i(1 − xi

2) and so
the variables xi represent the first Chern classes of the bundles Li as in
Section 3.6. Now consider the canonical bundle
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K = Λm,0E∗.

If this bundle admits a square root K1/2 then the Chern character of this
square root is given by

ch(K1/2) =

m∏
i=1

e−xi/2.

Multiplying this class with the Todd class

td(E) =

m∏
i=1

xi
1− e−xi

gives the Â-genus. Thus

Â(E) = ch(K1/2) ∧ td(E) (6.15)

for any complex vector bundle E. It is not obvious that the Â-genus of the
tangent bundle of a 4k-dimensional spin manifold is an integral cohomology
class. This, however, follows from the index theorem 6.23.

There is a natural generalization of Theorem 6.23 to families of Dirac
operators. Assume as before that X is a 4k-dimensional spin manifold with
spin structure Γ : TX → End(S). Let Z be a finite dimensional compact
manifold (the parameter space) and

E→ X × Z

be a complex vector bundle with a Hermitian structure. Suppose that for
each z ∈ Z the pullback bundle Ez = ιz

∗E under the obvious inclusion
ιz : X → X×Z is equipped with a connection Az which varies continuously
with z. Then there is a family of Dirac operators

DAz : C∞(X,S+ ⊗ Ez)→ C∞(X,S− ⊗ Ez).

Any such family of Fredholm operators determines a K-theory class

IND(DA) = ker DA 	 cokerDA ∈ K(Z).

This formula can be interpreted literally when the kernel and cokernel of the
operators DAz are of constant dimension and hence form complex vector
bundles over Z. (See Section 1.7 for the notation 	.) In general one has to
stabilize to make sense of the index as a class in K-theory (see Section A.1).
The Atiyah-Singer index theorem for families gives a formula for the Chern
character of IND(DA) which reduces to Theorem 6.23 when Z is a point.
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Theorem 6.24. (Atiyah-Singer) Let E→ X ×Z and DAz be as above.
Then

ch(IND(DA)) =

∫
X

ch(E) ∧ Â(TX) ∈ H∗(Z)

where the right hand is to be understood as integration over the fiber.

Let Γ : X → End(W ) be a spinc structure with characteristic line
bundle L = LΓ where X has dimension 4k. Assume that A is a spinc

connection on W with corresponding Dirac operator DA. As before let E→
X × Z be a complex vector bundle equipped with a family of connections
Bz on Ez = ιz

∗E for z ∈ Z. Then there is a family of spinc Dirac operators

DA+Bz : C∞(X,W+ ⊗ Ez)→ C∞(X,W− ⊗ Ez)

with corresponding topological index IND(DA+B) ∈ K(Z). If X admits a
spin structure then Theorem 6.24 asserts that

ch(IND(DA+B)) =

∫
X

ch(L1/2) ∧ ch(E) ∧ Â(TX) ∈ H∗(Z). (6.16)

This formula continues to hold when X does not admit a spin structure.

Remark 6.25 Let X be a smooth compact oriented Riemannian 4-mani-
fold with a spin structure (S, I, J,Γ). Think of (S, I) as a complex vector
bundle. Then any spinc structure on X can be obtained from S by twisting
with a line bundle L1/2 → X, namely. W = S ⊗ L1/2. The canonical line
bundle associated to this spinc structure is L itself. In the 4-dimensional
case direct computation shows that the Â-genus of TX and the Chern
character of L1/2 are given by

Â(TX) = 1− 1

24
p1(TX), ch(L1/2) = 1 +

1

2
c1(L) +

1

8
c1(L)2.

Hence the Hirzebruch signature formula shows that

2

∫
X

ch(L1/2) ∧ Â(TX) =
c1(L)2 − σ(X)

4
.

The left hand side is the index formula of Theorem 6.23 while the right
hand side is the index formula of Theorem 6.22. Thus the two formulae are
consistent. In the case c1(L) = 0 this computation shows that the Â-genus
of a smooth 4-manifold is given by∫

X

Â(TX) = −1

8
σ(X).

In the spin case the Â-genus is an integer because, for purely algebraic rea-
sons, the signature of an even unimodular quadratic form over the integers
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is divisible by 8. (Theorem 6.27 below shows in fact that it is divisible by

16.) However, Â(TX) may not be an integral class when X is not spin. 2

Remark 6.26 Let X be a complex spin manifold. Then its canonical bun-
dle K = Λn,0T ∗X has a square root. In this case the formula (6.15) for
the tangent bundle of X is consistent with the Hirzebruch-Riemann-Roch
theorem 3.42. More precisely, the Cauchy-Riemann operator

D = ∂̄ + ∂̄∗ : Ω0,ev(X,E)→ Ω0,odd(X,E)

agrees with the Dirac operator corresponding to the spinc representation

WE = Wcan ⊗ E = S ⊗K−1/2 ⊗ E

where Wcan = Λ0,∗T ∗X is the canonical spinc structure. Since LΓcan = K∗

it follows that
S = Wcan ⊗K1/2

is a spin structure on X and so, by Theorem 6.23,

indexD = 2

∫
X

ch(L1/2) ∧ Â(TX),

where
L1/2 = K−1/2 ⊗ E.

Comparing this with the Hirzebruch-Riemann-Roch theorem one obtains∫
X

ch(L1/2) ∧ Â(TX) =

∫
X

ch(E) ∧ td(TX),

for every complex vector bundle E → X. This is consistent with (6.15). 2

Theorem 6.27. (Rohlin) If X is a compact smooth 4 manifold which
admits a spin structure then its signature is divisible by 16.

Proof: Let (S, I, J,Γ) be a spin structure on TX as in Definition 5.4 Let
∇ be the corresponding spin connection on S defined in Lemma 6.6 and
D : C∞(X,S+)→ C∞(X,S−) be the associated Dirac operator. Since the
line bundle LΓ admits a trivialization it follows from Theorem 6.22 that
this operator has Fredholm index

indexD = −1

4
σ(X).

Moreover, by Lemma 6.6, the Dirac operator commutes with the action of
H via i 7→ I, j 7→ J , and k 7→ K = IJ . Hence H acts on the kernel and
cokernel of D and this implies that the real Fredholm index is divisible by
4 (see Exercise 4.44). 2
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Example 6.28 The hypersurface Xd ⊂ CP 3 given by

Xd = {zd0 + zd1 + zd2 + zd3 = 0} ⊂ CP 3

carries an involution τ : Xd → Xd given by complex conjugation. If d is
even then this map has no fixed points and hence determines a free Z2

action. The quotient Z = X4/Z2 is called the Enriques surface. It has
fundamental group π1(Z) = Z2 and intersection form

QZ = E8 ⊕H.

Hence σ(Z) = −8 and, by Theorem 6.27, this manifold is not spin. 2

Exercise 6.29 Find a nonorientable 2-dimensional submanifold of the En-
riques surface with mod-2 self-intersection number 1. 2

6.6 Metrics with positive scalar curvature

Consider the trivial bundle E = X×C and a spin structure Γ : X → End(S)
with the canonical spin connection. Then the Chern character of E is 1 and
thus the index of the Dirac operator is

indexD = 2

∫
X

Â(TX).

This gives rise to the following theorem due to Lichnerowicz [75].

Theorem 6.30. (Lichnerowicz) Let X be a compact spin manifold of di-
mension 4k and assume that X admits a metric of positive scalar curvature.
Then ∫

X

Â(TX) = 0.

Proof: The Weitzenböck formula for the Dirac operatorD : C∞(X,S+)→
C∞(X,S−) associated to a spin structure Γ : TX → End(S) and a flat
connection on the trivial bundle LΓ

∼= X × C reads

D∗DΦ = ∇∗∇Φ +
1

4
sΦ

for Φ ∈ C∞(X,S+) and hence

‖DΦ‖2L2 = ‖∇Φ‖2L2 +
1

4

∫
X

s|Φ|2dvol.

Since the scalar curvature s is positive it follows that ker D = {0}. The
same formula holds for the adjoint operator D∗ and hence ker D∗ = {0}.
this proves that D must be bijective and hence indexD = 0. Now the
assertion follows from Theorem 6.23. 2
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The condition that X be a spin manifold cannot be removed in Theo-
rem 6.30. The manifold CPn, for example, has nonzero Â-genus but admits
a metric of positive scalar curvature. Of course, CPn does not admit a spin
structure. The K3-surface X4 ⊂ CP 3, on the other hand, does admit a
spin structure and has Â-genus∫

X4

Â(TX4) = −1

8
σ(X4) = 2.

Hence for any metric the Dirac operator must have a nontrivial kernel and
so the K3-surface does not admit a metric of positive scalar curvature. A
similar example is given by a hypersurfaces Xd ⊂ CP 3 of even degree

d = 2k ≥ 4.

This manifold has Â-genus∫
Xd

Â(TXd) = −1

8
σ(Xd) =

(d2 − 4)d

24
> 0.

(See Proposition 3.66.) If d is even then Xd is spin and so, by Theorem 6.30,
it does not admit a metric of positive scalar curvature.

In the late 70’s Schoen and Yau proved, using minimal surfaces, that
the torus Tn = Rn/Zn does not admit a metric of positive scalar curvature

for n ≤ 7. Note, however, that the torus has Â-genus zero and so Theo-
rem 6.30 does not apply. In [48] Gromov and Lawson refined the techniques
of Lichnerowicz to prove that, for any n, the n-torus does not admit a met-
ric of positive scalar curvature. In fact, they proved that for any compact
spin manifold Y of dimension n the connected sum

X = Tn#Y

does not admit a metric of positive scalar curvature. Moreover, they proved
that if X admits a metric of nonnegative scalar curvature then this metric
must be flat and X must be the standard n-torus.

In the odd case the hypersurface Xd ⊂ CP 3 of degree d is not a spin
manifold and hence in this case Theorem 6.30 does not apply. This is where
spinc structures come in and the Seiberg-Witten invariants can be used to
show that, in the odd case, the hypersurface Xd does not admit a metric
of positive scalar curvature for d ≥ 5. Note that

X3
∼= CP 2#6CP 2

and so, by Theorem 2.18, this manifold admits a metric of positive scalar
curvature.
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Part III

SEIBERG-WITTEN
INVARIANTS





7

SEIBERG-WITTEN INVARIANTS OF FOUR-MANIFOLDS

The goal of this chapter is to discuss the Seiberg-Witten monopole equa-
tions, and to show how these give rise to invariants of smooth 4-manifold.
The more technical parts in the proofs of the compactness and transversal-
ity theorems are deferred to the Chapter 8. Section 7.1 give an introduc-
tion to the Seiberg-Witten equations in dimension four. Section 7.2 lays the
foundations for the constructions of the invariants with the discussion of the
moduli spaces. It outlines the proofs of the compactness and regularity the-
orems, and the proofs that the moduli spaces form orientable smooth finite
dimensional manifolds. Section 7.3 deals with cobordisms. The Seiberg-
Witten invariants are discussed in Section 7.4. The final section discusses
some basic properties of the Seiberg-Witten invariants of 4-manifolds such
as finiteness (the invariant is nonzero for only finitely many isomorphism
classes of spinc structures), the behaviour under complex conjugation, the
vanishing in the case of positive scalar curvature, LeBrun’s generalization
of the Miyaoka-Yau inequality, and Witten’s fundamental conjecture about
the relation between the Seiberg-Witten and the Donaldson invariants.

7.1 The Seiberg-Witten equations in dimension four

Let X be a compact connected oriented smooth 4-manifold and fix a spinc

structure Γ : TX → End(W ) (see Definition 5.3). Recall that there is a
natural splitting

W = W+ ⊕W−

(see Section 4.4) and that the characteristic line bundle LΓ is, in the 4-
dimensional case, given by

LΓ
∼= det(W+) ∼= det(W−).

(see (5.4)). As in Section 6.1 denote byA(Γ) the space of virtual connections

on the virtual line bundle LΓ
1/2. For A ∈ A(Γ), denote the corresponding

spinc connection by ∇A : C∞(X,W ) → Ω1(X,W ) and the corresponding
Dirac operator by DA : C∞(X,W+) → C∞(X,W−) (see Section 6.2).
Recall that the curvature of A is a scalar 2-form

FA =
1

4
tracec(F∇A) ∈ Ω2(X, iR),

and that the 2-form iFA/π represents the first Chern class of LΓ.
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The Seiberg-Witten monopole equations are a system of first order dif-
ferential equations for a pair (A,Φ) where A ∈ A(Γ) and Φ ∈ C∞(X,W+).
They read

DAΦ = 0, F+
A = σ+((ΦΦ∗)0). (7.1)

In the physics terminology FA is the field strength and Φ is a monopole
coupled to the dual gauge field A. Here ΦΦ∗ ∈ C∞(X,End(W+)) is defined
by ΦΦ∗τ = 〈Φ, τ〉Φ for τ ∈ C∞(X,W+). Its traceless part is given by

(ΦΦ∗)0τ = 〈Φ, τ〉Φ− 1

2
|Φ|2τ.

Let End0(W+) denote the bundle of traceless endomorphisms of W+. The
bundle isomorphism

σ+ : End0(W+)→ Λ2,+T ∗X ⊗ C

is the inverse of the map ρ+ : Λ2,+T ∗X⊗C→ End0(W+) defined by (4.39)
in Section 4.8. Recall from Lemma 4.55 that, in the 4-dimensional case,
ρ+ identifies the imaginary valued self-dual 2-forms on X with the trace-
less Hermitian endomorphisms of W+ (and the real valued forms with the
traceless skew-Hermitian endomorphisms). Thus σ+((ΦΦ∗)0) is an imagi-
nary valued self-dual 2-form and so is F+

A . Sometimes it is useful to write
the second equation in (7.1) in the form

ρ+(FA) = (ΦΦ∗)0.

This can be read as an equation in the (real rank 3) bundle of traceless
Hermitian endomorphisms of W+. Note that the term ρ+(FA) appears
in the Weitzenböck formula. The reader who is interested in an explicit
discussion of the monopoles on flat Euclidean 4-space may wish to consult
Section 8.1 in the next chapter.

Remark 7.1 The Seiberg-Witten equations make sense on manifolds X of
any even dimension if the second equation is written in the form ρ+(FA) =
(ΦΦ∗)0. However, they have interesting consequences only in dimension
4. The reason lies in the fact that ρ+(FA) depends only on F+

A in the
4-dimensional case. In dimension 2n ≥ 6 the equation ρ+(FA) = 0 is equiv-
alent to FA = 0, but the bundle LΓ does not carry any flat connections
unless its Chern class is torsion. In other words, the equations are over-
determined in dimensions bigger than 4. If one assumes, however, that the
manifold X carries some additional structure such as a Kähler structure or
a symplectic form, then it may well be possible that a suitable modification
of the Seiberg-Witten equations gives rise to interesting new invariants in
higher dimensions. 2
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Vanishing

A first observation is that the Seiberg-Witten equations have no nontrivial
solutions whenever X is a 4-manifold with positive scalar curvature. This
is a kind of nonlinear analogue of Licherovicz’ theorem 6.30.

Lemma 7.2 If X is a Riemannian 4-manifold with nonnegative scalar cur-
vature then Φ = 0 for every solution of (7.1).

Proof: Let (A,Φ) be a solution of (7.1). Then, by the Weitzenböck formula,

0 = DA
∗DAΦ = ∇A∗∇AΦ +

s

4
Φ + ρ+(FA)Φ = ∇A∗∇AΦ +

s

4
Φ +

1

2
|Φ|2Φ

Taking the L2-inner product with Φ we obtain

0 =

∫
X

(
|∇AΦ|2 +

s

4
|Φ|2 +

1

2
|Φ|4

)
dvol.

Hence Φ = 0. 2

Energy

The energy or action of a pair (A,Φ) ∈ A(Γ)×C∞(X,W+) is defined by

E(A,Φ) =

∫
X

(
|∇AΦ|2 +

s

4
|Φ|2 +

1

4
|Φ|4 + |FA|2

)
dvol. (7.2)

This integral is not necessarily positive because the scalar curvature term
may be negative. However, the following proposition shows that the action
integral has a universal lower bound which is attained by the solutions of
the Seiberg-Witten (7.1) equations if such solutions exist.

Proposition 7.3 The energy satisfies

E(A,Φ) =

∫
X

(
|DAΦ|2 + 2

∣∣F+
A − σ

+((ΦΦ∗)0)
∣∣2)− π2〈c1(LΓ)2, [X]〉.

As in Lemma 3.2 we define the norm on End(W±) as half the trace.
The proof of Proposition 7.3 relies on the following rules.

Lemma 7.4 Let Γ : TX → End(W ) be a spinc structure on a compact
oriented smooth 4-manifold. Then the following holds for η ∈ Ω2,+(X,C),
T ∈ C∞(X,End0(W+)), and Φ ∈ C∞(X,W+).

∣∣ρ+(η)
∣∣2 = 2

∣∣η+
∣∣2 , ∣∣σ+(T )

∣∣2 =
1

2
|T |2 ,

|(ΦΦ∗)0|2 =
1

4
|Φ|4 , 〈T, (ΦΦ∗)0〉 =

1

2
〈TΦ,Φ〉.
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Proof: Any 2-form η =
∑
i<j ηijei

∗ ∧ ej∗ ∈ Ω2(X,C) satisfies

|ρ(η)|2 = |
∑
i<j

ηijΓ(ei)Γ(ej)|2

=
1

2
trace

∑
i<j

∑
k<`

η̄ijηk`Γ(ej)Γ(ei)Γ(ek)Γ(e`)


=

1

2
trace

∑
i<j

|ηij |21l


= 2|η|2.

The last equation uses the fact that here 1l denotes the identity on a 4-di-
mensional complex vector space. Hence |ρ+(η)|2 = |ρ(η+)|2 = 2|η+|2 and
this proves the first two assertions. The remaining assertions are statements
about complex vector spaces and follow from Lemma 3.2. 2

Proof of Proposition 7.3: Any 2-form η ∈ Ω2(X, iR) satisfies ‖η‖2 =
−
∫
X
η ∧ ∗η where ‖.‖ denotes the L2-norm. This implies

∥∥F+
A

∥∥2
= −

∫
X

F+
A ∧ F

+
A ,

∥∥F−A ∥∥2
=

∫
X

F−A ∧ F
−
A

and hence

2
∥∥F+

A

∥∥2 − ‖FA‖2 =
∥∥F+

A

∥∥2 −
∥∥F−A ∥∥2

= −
∫
X

F+
A ∧ F

+
A −

∫
X

F−A ∧ F
−
A

= −
∫
X

FA ∧ FA

= π2〈c1(LΓ)2, [X]〉.

The last equality uses the fact that the 2-form (i/π)FA represents the first
Chern class of the line bundle LΓ. Now Lemma 7.4 shows that

2
∣∣F+
A − σ

+((ΦΦ∗)0)
∣∣2 = 2

∣∣F+
A

∣∣2 + 2
∣∣σ+((ΦΦ∗)0)

∣∣2
− 4

〈
F+
A , σ

+((ΦΦ∗)0)
〉

= 2
∣∣F+
A

∣∣2 +
1

4
|Φ|4 − 2

〈
ρ+(FA), (ΦΦ∗)0

〉
= 2

∣∣F+
A

∣∣2 +
1

4
|Φ|4 −

〈
Φ, ρ+(FA)Φ

〉
.
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Note here that since ρ+(FA) and (ΦΦ∗)0 are both Hermitian endomor-
phisms their Hermitian inner product is real. The last two equations to-
gether give

2
∥∥F+

A − σ
+((ΦΦ∗)0)

∥∥2 − π2〈c1(LΓ)2, [X]〉

=

∫
X

(
2
∣∣F+
A

∣∣2 +
1

4
|Φ|4 −

〈
Φ, ρ+(FA)Φ

〉)
dvol− π2〈c1(LΓ)2, [X]〉

=

∫
X

(
|FA|2 +

1

4
|Φ|4 −

〈
Φ, σ+(FA)Φ

〉)
dvol.

Now the Weitzenböck formula shows that

‖DAΦ‖2 = ‖∇AΦ‖2 +

∫
X

s

4
|Φ|2dvol +

〈
Φ, σ+(FA)Φ

〉
L2

where ‖.‖ denotes the L2-norm. Take the sum with the previous identity
to obtain the required formula for the action. 2

Remark 7.5 The action integral has another universal lower bound which
depends only on the metric g, namely

E(A,Φ) ≥ 1

4

∫
X

(s|Φ|2 + |Φ|4)dvol ≥ − 1

16

∫
X

s2dvol.

By Proposition 7.3, this shows that the Seiberg-Witten equations (7.1) can
only have a solution (A,Φ) if

〈c1(LΓ)2, [X]〉 ≤ 1

16π2

∫
X

s2dvol.

This is a rather crude estimate which can only be attained if FA = 0,
∇AΦ = 0, and 2|Φ|2 + s = 0. 2

In the physics terminology the integrand of the action integral (7.2) is
the Lagrangian and plays a more fundamental role than the equations (7.1).
This Lagrangian led Seiberg and Witten to the discovery of their monopole
equations.

Exercise 7.6 The action integral (7.2) makes sense for any section of the
spinor bundle. Prove that the restriction of E to A(Γ) × C∞(X,W−) is
minimized by the solutions of the negative Seiberg-Witten equations

DA
∗Ψ = 0, F−A = σ−((ΨΨ∗)0). (7.3)

Prove that changing the orientation of X interchanges (7.1) and (7.3). 2



226 SEIBERG-WITTEN INVARIANTS OF FOUR-MANIFOLDS

Perturbations

The solutions of the Seiberg-Witten equations can be used to define in-
variants of 4-manifolds. The basic idea is quite similar to the way in which
the degree of a map f : X → Y between compact manifolds of the same
dimension can be defined by counting the preimages of a regular value. The
solutions of the Seiberg-Witten equations can be thought of as the zeros of
a map between Banach manifolds. Roughly speaking, the number of zeros,
counted with appropriate signs, determine an invariant of the underlying
4-manifold. To make this idea work one has to choose the number of preim-
ages of a regular value, rather than the zeros, if zero is not a regular value.
This can be reformulated as a perturbation of the Seiberg-Witten equa-
tions. Fix a self-dual 2-form η ∈ Ω2,+(X, iR) and consider the perturbed
equation

DAΦ = 0, F+
A + η = σ+((ΦΦ∗)0). (7.4)

The solutions of these equations minimize the action

E(A,Φ; η) =

∫
X

(
|∇AΦ|2 +

s

4
|Φ|2 + 2|σ+((ΦΦ∗)0)− η|2 + |FA + 2η|2

)
.

Exercise 7.7 Prove the energy identity

Eη(A,Φ) =

∫
X

(
|DAΦ|2 + 2

∣∣F+
A + η − σ+((ΦΦ∗)0)

∣∣2)dvol

+ 4

∫
X

|η|2dvol− π2〈c1(LΓ)2, [X]〉.

Deduce that the solutions of (7.4) minimize the action E. Moreover, prove
that

Eη(A,Φ) ≥ − 1

16

∫
X

(
4
√

2|η| − s
)2

dvol

for every pair (A,Φ) ∈ A(Γ)× C∞(X,W+). 2

Scale invariance

The next proposition shows how the solutions of the Seiberg-Witten equa-
tions behave under rescaling of the metric by a constant factor. Denote by
E(A,Φ; g, η) the action functional with respect to the metric g.

Proposition 7.8 The pair (A,Φ) satisfies (7.4) with the metric g if and
only if the pair (A, λ−1Φ) satisfies (7.4) with the metric λ2g. Moreover,

Eη(A,Φ; g) = Eη(A, λ−1Φ;λ2g).

Proof: The spinc structure for the rescaled metric g̃ = λ2g is given by



THE SEIBERG-WITTEN EQUATIONS IN DIMENSION FOUR 227

Γ̃(v) = λΓ(v), ρ̃+(η) = λ−2ρ+(η)

for v ∈ TX and η ∈ Λ2T ∗X. To prove the second equation choose an
orthonormal frame e1, . . . , e4 of TX with respect to g and note that the
vectors ẽν = λ−1eν form an orthonormal frame with respect to g̃. Hence
ẽ∗ν = λe∗ν and Γ̃(ẽν) = Γ(eν), and this implies the formula for ρ̃+. It follows

that ρ+(FA + η) = (ΦΦ∗)0 if and only if ρ̃+(FA + η) = (Φ̃Φ̃∗)0, where

Φ̃ = λ−1Φ. Moreover, note that D̃AΦ̃ = λ−2DAΦ.
Now consider the action integral with respect to the rescaled metric.

The pointwise norm of a 1-form gets multiplied by λ−1 and that of a 2-
form by λ−2. Hence∣∣∣∇AΦ̃

∣∣∣2
g̃

= λ−4 |∇AΦ|2g , |FA + 2η|2g̃ = λ−4 |FA + 2η|2g .

Recall also from Lemma 2.16 that the scalar curvature of the rescaled metric
is given by s̃ = λ−2s. This shows that the integrand of the action functional
scales with the factor λ−4. Since the volume form of the rescaled metric
is given by dvolλ2g = λ4dvolg it follows that the action integral remains
unchanged. This proves the proposition. 2

Symmetry

Let W ∗ → X denote the bundle W ∗ = Hom(W,C). This corresponds to
reversing the complex structure. Then

Γ∗ : TX → End(W ∗)

defines a spinc structure on X. If Φ ∈ C∞(X,W ) then we shall denote by
Φ∗ = 〈Φ, ·〉 the corresponding section of W ∗. Note that W ∗+ = W+∗. If
∇A is a spinc connection on W then the induced connection on W ∗ will
be denoted by ∇A∗ . This corresponds to the fact that LΓ∗ = Λ2,0W+∗ ∼=
Hom(LΓ,C) and hence

LΓ∗
∼= LΓ

∗.

If A is a connection on LΓ
1/2 then A∗ denotes the corresponding connection

on LΓ∗
1/2.

Exercise 7.9 Prove that

FA∗ = −FA, σ∗+((Φ∗Φ∗∗)0) = −σ+((ΦΦ∗)0)

for A ∈ A(Γ) and Φ ∈ C∞(X,W+). Deduce that A, Φ, and η satisfy (7.4)
if and only if A∗, Φ∗, and η∗ = −η satisfy (7.4). 2

The bundle W ∗ can be naturally identified with
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W ∗ ∼= W ⊗ LΓ
∗.

To see this note that for every rank-2 complex vector bundle E there is a
natural isomorphism E ⊗ det(E)∗ → Hom(E,C) : (Φ, β) 7→ ι(Φ)β where
β ∈ det(E)∗ = Λ2,0E∗. Apply this isomorphism to both W+ and W− to
obtain the isomorphism W ⊗ LΓ

∗ →W ∗.

The Γ-wall

Consider the action of the gauge group

G = Map(X,S1)

on A(Γ)× C∞(X,W+) by (A,Φ) 7→ (u∗A, u−1Φ) (see page 192). By (6.4)
and (6.5), the space of solutions of the Seiberg-Witten equations is invariant
under this action. Now the isotropy subgroup of a connection A is the group
of constant gauge transformations. Hence G acts freely on the space of all
those pairs (A,Φ) ∈ A(Γ)× C∞(X,W+) with Φ 6= 0. To obtain a smooth
moduli space it will therefore be important to avoid solutions of the form
(A,Φ) with Φ = 0. In this case the connection A ∈ A(Γ) satisfies

F+
A + η = 0. (7.5)

Such connections give rise to singular points in the moduli space. The next
proposition shows that if b+(X) > 0 then, for a generic choice of η, there
are no solutions of (7.5).

Proposition 7.10 The set

Ω2,+
Γ (X, iR) =

{
η ∈ Ω2,+(X, iR) | ∃A ∈ A(Γ) 3 F+

A + η = 0
}

is an affine subspace of codimension b+ whose parallel vector space is the
image of the operator d+ : Ω1(X, iR)→ Ω2,+(X, iR).

Proof: Fix an element η0 ∈ Ω2,+
Γ (X, iR) and a connection A0 ∈ A(Γ) such

that F+
A0

+ η0 = 0. Then

Ω2,+
Γ (X, iR) = η0 + im d+.

Namely, if F+
A + η = 0 then η − η0 = d+(A0 − A) and if η = η0 + d+α

then F+
A0−α + η = 0. Now the result follows from the fact that Ω2,+(X, iR)

decomposes as a direct sum

Ω2,+(X, iR) = H2,+(X, iR)⊕ im d+. (7.6)

To see this let τ ∈ Ω2,+(X, iR) and, by Hodge theory, write
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τ = τ0 + dα+ ∗dβ,

where τ0 is harmonic and α, β ∈ Ω1(X, iR). Then

τ = ∗τ = ∗τ0 + dβ + ∗dα

and hence τ0 = ∗τ0 and dα = dβ. This shows that

τ = τ0 + dα+ ∗dα = τ0 + 2d+α,

where τ0 is a self-dual harmonic 2-form. Since every self-dual harmonic
2-form is orthogonal to the image of d+, this proves (7.6). 2

Consider the cases b+ > 1, b+ = 1, and b+ = 0. In the first case the
Γ-wall Ω2,+

Γ (X, g) has codimension at least 2 and hence its complement

Ω2,+(X, iR)− Ω2,+
Γ (X, iR)

is connected. In the case b+ = 1 this complement has two components
which can be distinguished as follows. For every metric g on X and every
orientation of H2,+(X; iR) there exists a unique self-dual harmonic 2-form

ωg ∈ H2,+(X; iR)

which has L2-norm 1 and represents the given orientation of H2,+(X; iR).
With this notation we obtain

η ∈ Ω2,+
Γ (X, iR) ⇐⇒ ε(g, η) = 0

where

ε(g, η) = εΓ(g, η) = −
∫
X

〈iη, ωg〉dvolg − π[ωg] · c1(LΓ). (7.7)

This follows from the fact that η ∈ Ω2,+
Γ (X, iR) if and only if there exists

a closed 2-form τ ∈ Ω2(X) which represents the class [τ ] = c1(LΓ) and
satisfies τ+ + iη/π = 0. When b+ = 1 this is equivalent to ε(g, η) = 0.

The two components of the complement of the Γ-wall can be distin-
guished by the sign of ε(g, η). The minus sign in (7.7) is introduced so that
ε(g, η) is positive whenever η is a large multiple of iωg. Note that the choice
of the basis vector ωg depends on an orientation of H2,+(X; iR). In the case
b+ = 0 the Γ-wall is the entire space Ω2,+(X, iR) and hence in this case
there exists, for every metric g and every perturbation η, a solution of the
Seiberg-Witten equations (7.4) with Φ = 0.
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7.2 Moduli spaces

Fix a smooth compact Riemannian 4-manifold X equipped with a spinc

structure Γ : TX → End(W ). The goal of this section is to discuss the
basic properties of the moduli space

M(X,Γ, g, η) =
{(A,Φ) ∈ A(Γ)× C∞(X,W+) | (7.4)}

G

of gauge equivalence classes of solutions of the Seiberg-Witten equations.
We shall prove that, whenever b+(X) > 0, the moduli space M(X,Γ, g, η)
is a finite dimensional compact oriented smooth manifold for a generic
choice of the perturbation η. The Seiberg-Witten invariant of (X,Γ) will
be defined as the integral of a certain characteristic class over this moduli
space. We shall begin by formulating the basic regularity and compactness
theorems, then examine why the moduli space is a smooth manifold, and
finally discuss orientability.

Compactness and Regularity

The basic regularity theorem asserts that every weak solution (A,Φ) of (7.4)
of class W 1,p with p > 2 is gauge equivalent to a smooth solution by a gauge
transformation of class W 2,p. To be more precise we fix a smooth reference
connection A0 ∈ A(Γ) and consider the space

A1,p(Γ) =
{
A0 + α |α ∈W 1,p(X,T ∗X ⊗ iR)

}
.

The group

G2,p = W 2,p(X,S1) =
{
u : X → S1 |u−1du ∈W 1,p

}
acts naturally on this space. Note that, by the Sobolev embedding theorem,
every function u : X → S1 of class W 2,p is continuous. The next theorem
asserts that M(X,Γ, g, η) can be naturally identified with the W 1,p quo-
tient space

M(X,Γ, g, η) ∼=
{

(A,Φ) ∈ A1,p(Γ)×W 1,p(X,W+) | (7.4)
}

G2,p
.

Theorem 7.11. (Regularity) If A ∈ A1,p(Γ) and Φ ∈ W 1,p(X,W+)
with p > 2 satisfy (7.4) then there exists a gauge transformation u ∈ G2,p

such that the pair (u∗A, u−1Φ) is C∞ smooth.

It is convenient, for later reference, to formulate the compactness the-
orem for a convergent sequence of Riemannian metrics on X. Note that
the spinc representation Γ : TX → End(W ) depends on the Rieman-
nian metric. However, it is possible to fix the bundle W and the splitting
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W = W+ ⊕W− with det(W+) ∼= det(W−) and choose, for each metric g,
a spinc structure on W which respects the given splitting. All these spinc

structures have the same characteristic line bundle LΓ = det(W+) and

hence the same space of spinc connections A(Γ) = A(LΓ
1/2).

Theorem 7.12. (Compactness) Let gν be a sequence of Riemannian
metrics on X which converges in the C∞-topology to a metric g and let Γν :
TX → End(W ) be a corresponding convergent sequence of spinc structures
which respects the splitting W = W+ ⊕W−. Let ην ∈ Ω2,+(X, iR; gν) be a
sequence of gν-self-dual 2-forms converging in the C∞-topology to η. Then
for every sequence (Aν ,Φν) ∈ A1,p(Γ)×W 1,p(X,W+) of solutions of (7.4)
with p > 2 there exists a subsequence ν′ and a sequence of gauge trans-
formations uν′ ∈ W 2,p(X,S1) such that the sequence (uν′

∗Aν′ , uν′
−1Φν′)

converges uniformly with all derivatives.

In particular, Theorem 7.12 asserts that the moduli spaceM(X,Γ, g, η)
is compact The proof is due to Kronheimer and Mrowka. It is based on the
following crucial lemma which gives a universal upper bound for the sup-
norm of the monopole Φ for any solution of (7.4).

Lemma 7.13 Let (A,Φ) be a smooth solution of (7.4). Then either Φ ≡ 0
or

sup
X
|Φ|2 ≤ 1

2
sup
X

(
4
√

2|η| − s
)
.

In particular Φ ≡ 0 whenever the metric on X has positive scalar curvature
and η is sufficiently small.

Proof: The proof relies on the identity

∆g|Φ|2 = −2|∇AΦ|2 + 2Re 〈Φ,∇A∗∇AΦ〉 (7.8)

where ∆g = d∗d denotes the positive definite Laplace-Beltrami operator
of the metric g. To prove (7.8) recall from Exercise 2.30 that the Laplace-
Beltrami operator is, in an orthonormal frame e0, e1, e2, e3 of TX, given
by

∆g|Φ|2 = −
∑
i

(
∂i∂i|Φ|2 + div(ei)∂i|Φ|2

)
= − 2

∑
i

(
∂iRe 〈Φ,∇iΦ〉+ div(ei)Re 〈Φ,∇iΦ〉

)
= − 2

∑
i

|∇iΦ|2 − 2
∑
i

Re 〈Φ,∇i∇iΦ + div(ei)∇iΦ〉

= − 2|∇AΦ|2 + 2Re 〈Φ,∇A∗∇AΦ〉 .

The last equality holds because ∇i∗ = −∇i−div(ei). This proves (7.8). Now
use the Weitzenböck formula of Theorem 6.19 with DAΦ = 0 to obtain
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∆g |Φ|2 ≤ 2Re 〈Φ,∇A∗∇AΦ〉

= − 2
〈
Φ, ρ+(FA)Φ

〉
− 1

2
s |Φ|2

= 2
〈
Φ, ρ+(η)Φ− (ΦΦ∗)0Φ

〉
− 1

2
s |Φ|2

= 4
〈
ρ+(η), (ΦΦ∗)0

〉
− |Φ|4 − 1

2
s |Φ|2

≤ 4
∣∣ρ+(η)

∣∣ |(ΦΦ∗)0| − |Φ|4 −
1

2
s |Φ|2

= 2
√

2 |η| |Φ|2 − |Φ|4 − 1

2
s |Φ|2 .

Note that this inequality relies on the identity ρ+(FA) = (ΦΦ∗)0 − ρ+(η)
from (7.4), and on the formulae of Lemma 7.4. This proves that every
solution (A,Φ) of (7.4) satisfies

|Φ|2
(

2
√

2|η| − |Φ|2 − 1

2
s

)
≥ ∆g|Φ|2.

Let x0 ∈ X be a point at which the function x 7→ |Φ(x)|2 attains its
maximum. At such a point

∆g|Φ|2 = −
∑
i

∂i∂i|Φ|2 ≥ 0

and hence either Φ(x0) = 0 or

|Φ(x0)|2 ≤ 2
√

2|η(x0)| − 1

2
s(x0).

This proves the lemma. 2

Uhlenbeck’s theorem

The general result which deals with the compactness problem for connec-
tions is Uhlenbeck’s theorem and it applies to any principal G-bundle
P over a compact manifold X, where G is a compact Lie group. It asserts
that a connection with an Lp bound on the curvature is gauge equiva-
lent to a connection which satisfies an Lp bound on all its first derivatives
whenever 2p > dim X. (cf. [125]). As a result, every sequence of connec-
tions with a uniform Lp-bound on the curvature is gauge equivalent to a
sequence which has a weakly convergent subsequence. For general compact
Lie groups this is a deep analytical theorem in gauge theory. However, in
the case G = S1 the proof is an elementary consequence of Hodge theory
and will be discussed next.
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Theorem 7.14. (Uhlenbeck) Fix a connection A0 ∈ A(Γ) and a con-
stant p > n = 1

2 dim X. Then there exists a constant c > 0 such that for
every A ∈ A1,p(Γ) there exists a u ∈W 2,p(X,S1) such that

d∗(u∗A−A0) = 0, ‖u∗A−A0‖W 1,p ≤ c(1 + ‖FA‖Lp). (7.9)

Proof: Denote by H1(X; iR) the space of imaginary valued harmonic 1-
forms on X and consider the lattice Λ = H1(X; 2πiZ) ⊂ H1(X; iR). It
consists of all harmonic 1-forms α ∈ H1(X;R) whose integral over every
loop is an integer multiple of 2πi. By Proposition 5.30, Λ can also be
characterized as the set of harmonic 1-forms of the form α = u−1du where
u : X → S1 satisfies d∗(u−1du) = 0.

Now let A = A0 + α with α ∈ W 1,p(X,T ∗X ⊗ iR). By Hodge theory,
the 1-form α decomposes as

α = α0 + dξ + ∗dη

where α0 ∈ H1(X; iR) is a harmonic 1-form and ξ, η ∈ W 2,p(X, iR). Con-
sider the operator

α 7→ (α0, dα, d
∗α)

from W 1,p to the appropriate Lp spaces. By the Calderón-Zygmund in-
equality, Rellich’s theorem, and Lemma A.1, this operator has a closed
range. Moreover, it is obviously injective. Hence it follows from the open
mapping theorem that there is an estimate

‖α‖W 1,p ≤ c (‖α0‖Lp + ‖dα‖Lp + ‖d∗α‖Lp) (7.10)

where the constant c is independent of α. Now choose a bounded funda-
mental domain in H1(X; iR) with respect to the action of the subgroup
Λ. Given a 1-form α ∈ W 1,p(X,T ∗X ⊗ iR) with harmonic part α0 there
exists a function u0 : X → S1 such that u0

−1du0 ∈ Λ is harmonic and
α0 + u0

−1du0 lies in the given fundamental domain. Since this domain is
bounded there is a constant c0 > 0 which is independent of α0 such that∥∥α0 + u0

−1du0

∥∥
Lp
≤ c0.

If α = α0 + dξ + ∗dη as above define

u(x) = e−ξ(x)u0(x).

Then u ∈W 2,p(X,S1) and

α+ u−1du = α0 + u0
−1du0 + ∗dη.

Hence d∗(α+ u−1du) = 0 and d(α+ u−1du) = dα. So the inequality (7.10)
shows that
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∥∥α+ u−1du
∥∥
W 1,p ≤ c(c0 + ‖dα‖Lp).

This proves the theorem. 2

To prove Theorem 7.11 one chooses a gauge transformation u ∈ G2,p

such that d∗(u∗A− A0) = 0 and then proves that the pair (u∗A, u−1Φ) is
smooth. Thus it remains to prove that every W 1,p-solution (A,Φ) of the
equation

DAΦ = 0, F+
A + η = σ+((ΦΦ∗)0), d∗(A−A0) = 0 (7.11)

is smooth. This is based on the fact that the 1-form α = A − A0 and the
section Φ satisfy the elliptic equations

DA0Φ = −Γ(α)Φ, d∗dα+ dd∗α = 2d∗F+
A . (7.12)

Here we identify TX with T ∗X and think of Γ as a bundle homomorphism
T ∗X → End(W ). Elliptic regularity now tells us that every W k,p-solution
of (7.11) is in fact of class W k+1,p provided that kp > 4. Hence every W 1,p-
solution is smooth, at least if p > 4. If p > 2 a slightly more subtle version
of this argument gives smoothness.

On can use a similar argument to prove that every sequence of solutions
(A0 + α,Φ) of (7.11) which also satisfy the estimate

‖α‖W 1,p ≤ c(1 + ‖dα‖Lp) (7.13)

of Theorem 7.14 has a convergent subsequence. The starting point is the
uniform L∞ bound of Φ and hence F+

A . The second equation in (7.12) then
gives a uniform Lp bound on dα and, by (7.13), a uniform W 1,p-bound on
α. Now a standard elliptic bootstrapping argument gives uniform W k,p-
bounds on α and Φ for all k. The Sobolev embedding theorem then gives
a uniform Ck-bound on α and Φ for every k. Finally, it follows from the
Arzéla-Ascoli theorem that every sequence (Aν ,Φν) of solutions of (7.11)
and (7.13) has a subsequence which converges in the Ck-norm for every k.
The details of these arguments will be carried out in the next chapter.

Remark 7.15 Both Theorems 7.11 and 7.12 extend to the C` category.
Thus if η and the Riemannian metric are of class C` then for every solution
(A,Φ) of (7.4) of class W 1,p with p > 2 there exists a gauge transformation
u = exp(ξ) of class W 2,p such that the pair (u∗A, u−1Φ) is of class C`. Sim-
ilarly, if ην and the Riemannian metrics gν are of class C` and converge in
the C`-norm then the solutions of (7.4) are, up to gauge equivalence, uni-
formly bounded in the C`-norm and hence the subsequence in the assertion
of Theorem 7.12 converges in the C`−1-norm. 2
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Transversality

Our next goal is to prove that for a generic perturbation η the moduli spaces
M(X,Γ, g, η) are all smooth manifolds. There is, however, the problem that
the circle does not act freely on those solutions (A,Φ) of (7.4) which satisfy
Φ = 0. It is convenient to introduce the spaces

M̃(X,Γ, g, η) = {(A,Φ) | (7.4), d∗(A−A0) = 0, } ,

M̃∗(X,Γ, g, η) =
{

(A,Φ) ∈ M̃(X,Γ, g, η) |Φ 6= 0
}
.

The moduli spaces of Seiberg-Witten monopoles can be identified with the
quotient spaces

M(X,Γ, g, η) =
M̃(X,Γ, g, η)

G0
, M∗(X,Γ, g, η) =

M̃∗(X,Γ, g, η)

G0

where G0 denotes the 1-dimensional group of harmonic gauge transforma-
tions u : X → S1 such that d∗(u−1du) = 0. Recall from page 192 that G0

is a central extension of H1(X;Z) with

S1 → G0 → H1(X;Z).

Since G0 acts freely and properly on M̃∗ it suffices to show that M̃∗ is a
smooth finite dimensional manifold for a generic perturbation η.

Theorem 7.16 There exists a set Ω2,+
reg (X, iR) ⊂ Ω2,+(X, iR), which is of

the second category in the sense of Baire with respect to the C∞-topology
(it is a countable intersection of open and dense sets), such that for every
η ∈ Ω2,+

reg (X, iR) the space M∗(X,Γ, g, η) is a smooth finite dimensional
manifold of real dimension

dim M∗(X,Γ, g, η) =
〈c1(LΓ)2, [X]〉

4
− 2χ(X) + 3σ(X)

4
.

By Lemma 5.14, this number coincides with 〈c2(W+), [X]〉.

Exercise 7.17 Let (X, J) be an almost complex 4-manifold and ΓE :
TX → End(WE) be the canonical spinc structure twisted by a Hermitian
line bundle E → X. Prove that in this case

dim M∗(X,ΓE , g, η) = 〈c1(W+
E ), [X]〉 = 〈c1(E)2 − c1(E) ∪ c1(K), [X]〉,

where c1(K) = −c1(TX, J) denotes the canonical class. Hint: Use the
Hirzebruch signature formula (1.9). 2
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Exercise 7.18 Baire’s category theorem asserts that every countable in-
tersection of open and dense sets in a complete metric space is dense. Prove
that the distance function

d(f, g) =

∞∑
k=0

2−k
‖f − g‖Ck

1 + ‖f − g‖Ck

makes the space C∞(X) of smooth functions on a compact smooth manifold
X into a complete metric space. Deduce that the set Ω2,+

reg (X, iR) is dense
in Ω2,+(X, iR). 2

The proof of Theorem 7.16 consists essentially of two parts. The first
part is to consider the linearized Seiberg-Witten equations, to show that
the resulting operator is Fredholm, and to compute its index. The second
part of the proof is to show that this linearized operator is onto for a generic
perturbation η.

The space M̃(X,Γ, g, η) of solutions of (7.11) can be expressed as the
zero set of a map Fη : X → Y, where

X = A(Γ)× C∞(X,W+),

Y = Ω0(X, iR)⊕ Ω2,+(X, iR)⊕ C∞(X,W−),

Fη
(
A
Φ

)
=

 d∗(A−A0)
F+
A + η − σ+((ΦΦ∗)0)

DAΦ

 . (7.14)

By Theorem 7.11, the zero set of this map agrees with the zero set of the
extended map Fη : X 1,p → Yp between the Sobolev completions

X 1,p = A1,p(Γ)×W 1,p(X,W+),

Yp = Lp(X, iR)⊕ Lp(X,Λ2,+T ∗X ⊗ iR)⊕ Lp(X,W−).

We shall prove that Fη : Z1,p → Yp is a Fredholm map of Fredholm index
〈c2(W+), [X]〉. To see this, note that

T(A,Φ)X k,p = W 1,p(X, iR)⊕W 1,p(X,W+)

and consider the operator DA,Φ = dFη(A,Φ) : T(A,Φ)X 1,p → Yp. It is given
by

DA,Φ
(
α
ϕ

)
=

 d∗α
d+α
DAϕ

+

 0
−σ+((Φϕ∗ + ϕΦ∗)0)

Γ(α)Φ

 . (7.15)

This operator is a zeroth order perturbation of D+ ⊕DA, where
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D+ : Ω1(X, iR)→ Ω0(X, iR)⊕ Ω2,+(X, iR)

is given by D+α = d∗α⊕ d+α. This is a Fredholm operator of index

indexD+ = b1 − 1− b+ = −χ(X) + σ(X)

2
.

(See Lemma 8.15 in the next chapter.) Moreover, by Proposition 6.21 and
Theorem 6.22, DA is a Fredholm operator of index

indexDA =
c · c− σ

4
,

where c = c1(LΓ). Hence the DA,Φ is Fredholm operator of index

indexDA,Φ =
〈c1(LΓ)2, [X]〉

4
− 2χ(X) + 3σ(X)

4
. (7.16)

The L2-orthogonal complement of imDA,Φ always contains the space of
constant functions in Lp(X, iR) and so is at least 1-dimensional. A per-
turbation η ∈ Ω2,+(X, iR) is called regular if the cokernel of DA,Φ has

dimension 1, i.e. cokerDA,Φ ∼= H0(X; iR), for all (A,Φ) ∈ M̃∗(X,Γ, g, η).
The set of regular perturbations will be denoted by

Ω2,+
reg (X, iR) ⊂ Ω2,+(X, iR).

It is a simple consequence of the implicit function theorem B.3 that the
moduli space M̃∗(X,Γ, g, η) is a smooth manifold of dimension

dim M̃∗(X,Γ, g, η) = indexDA,Φ + 1

for all η ∈ Ω2,+
reg (X, iR).

Remark 7.19 Recall that the moduli space M̃∗(X,Γ, g, η) carries an S1-

action (A,Φ) 7→ (A, eiθΦ). Since Φ 6= 0 for all (A,Φ) ∈ M̃∗(X,Γ, g, η) this
action is free. The generator of the S1-action is the vector field

M̃∗(X,Γ, g, η) −→ TM̃∗(X,Γ, g, η) : (A,Φ) 7→ (0, iΦ).

Since the tangent space of M̃∗(X,Γ, g, η) at (A,Φ) is the kernel of the
operator DA,Φ it follows that

R(0, iΦ) ⊂ ker DA,Φ

whenever (A,Φ) is a solution of (7.4). Hence DA,Φ always has at least a
1-dimensional kernel. Note that the tangent space of the quotient M∗ =
M̃∗/G0 at (A,Φ) is the quotient space ker DA,Φ/R(0, iΦ). 2
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It remains to prove that the set Ω2,+
reg (X, g) is of the second category in

the sense of Baire. The main idea is to prove first that the space

N k,p =
{

(A,Φ) ∈ X k,p |DAΦ = 0, d∗(A−A0), Φ 6≡ 0
}

is always a smooth Banach manifold. Then it follows from the Sard-Smale
theorem B.13 that the set of smooth perturbations η ∈ Ω2,+(X, iR) which
are regular values of the maps

N k,p →W k−1,p(X,Λ2,+T ∗X ⊗ iR) : (A,Φ) 7→ σ+((ΦΦ∗)0)− F+
A

for all k form an open and dense subset of Ω2,+(X, iR). This completes the
sketch of the proof of Theorem 7.16. Details will be carried out in the next
chapter.

Orientation

The next aim is to prove that the moduli spaces M∗(X,Γ, g, η) carry a
natural orientation. To see this note first that the tangent space at a point
(A,Φ) ∈ M̃∗(X,Γ, g, η) is given by the kernel of the operator DA,Φ. Hence

an orientation of M̃∗(X,Γ, g, η) is equivalent to a trivialization of the real

line bundle Det→ M̃∗(X,Γ, g, η) with fibers

DetA,Φ = det(DA,Φ) = Λmax ker DA,Φ.

(See Appendix A.) Here the highest exterior power of the kernel can be
identified with the determinant line because the cokernel H0(X, iR) is nat-
urally isomorphic to R. By Theorem A.6 of Appendix A the bundle Det
extends to a locally trivial bundle

Det→ A(Γ)× C∞(X,W+)

over the space of all pairs (A,Φ). The latter space is contractible and hence
the bundle Det can be trivialized over the entire space A(Γ)×C∞(X,W+).

A natural trivialization of this bundle can be described as follows. The
operator DA,Φ is a compact perturbation of

DA,0 = D+ ⊕DA.

Hence an orientation of det(D+ ⊕DA) determines an orientation of DA,Φ
by considering the family of operators DA,tΦ for 0 ≤ t ≤ 1. Now the
Dirac operator DA : C∞(X,W+) → C∞(X,W−) is a complex linear
operator between complex vector spaces and so its kernel and cokernel
are complex vector spaces. Hence they carry natural orientations induced
by the complex structure and this determines an orientation of the line
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det(DA). By Exercise A.14, this orientation is invariant under trivializa-
tions of the determinant line bundle. In other words, a trivialization of the
line bundle

⋃
t det(DAt) over the unit interval, corresponding to the path

[0, 1] → A(Γ) : t 7→ At, identifies the orientations which arise from the
complex structure. Now recall that

ker D+ = H1(X; iR), cokerD+ = H0(X; iR)⊕H2,+(X; iR).

The space H0(X; iR) = R carries a natural orientation. Let us fix once and
for all orientations of the real vector spaces H1(X; iR) and H2,+(X; iR).
This determines an orientation of the line det(D+) and hence of

det(DA,0) = det(D+)⊗ det(DA).

Now use the path λ 7→ det(DA,λΦ) of 1-dimensional vector spaces to ob-
tain the required orientation of det(DA,Φ). In fact, any path in A(Γ) ×
C∞(X,W+) starting at some pair (A0, 0) and ending at (A,Φ) gives rise
to an orientation of the line det(DA,Φ). That this orientation is indepen-
dent of the choice of the path follows from Theorem A.6 in Appendix A
and the fact that the space A(Γ)×C∞(X,W+) is simply connected. That
it is also independent of the choice of the base point (A0, 0) follows from
Exercise A.14.

Recall that if H1(X; iR) 6= 0 then the action of the disconnected group

G0 =
{
u : X → S1 | d∗(u−1du) = 0

}
acts on M̃∗(X,Γ, g, η). The next pro-

position asserts that G0 acts by orientation preserving diffeomorphisms,
and hence the quotient M∗(X,Γ, g, η) is orientable.

Proposition 7.20 (i) Orientations of H1(X) and H2,+(X) determine
natural orientations

ε(Γ, g, η) ∈ Or(M̃∗(X,Γ, g, η)),

one for every spinc structure Γ and every 2-form η ∈ Ω2,+
reg (X, iR).

(ii) The group G0 acts on M̃∗(X,Γ, g, η) by orientation preserving diffeo-
morphisms.
(iii) Reversing the complex structure of W results in diffeomorphic moduli

spaces M̃∗(X,Γ∗, g, η) ∼= M̃∗(X,Γ, g, η). If these are 1-dimensional then
(χ+ σ)/2 = 1 + b+ − b1 ∈ 2Z and

ε(Γ∗, g, η) = (−1)
χ+σ

4 ε(Γ, g, η).

Proof: Statement (i) was proved above. To prove (ii) choose two paths
t 7→ At and t 7→ Φt with

A1 = u∗A0, Φ1 = u−1Φ0



240 SEIBERG-WITTEN INVARIANTS OF FOUR-MANIFOLDS

for u ∈ G0. Then a trivialization of the determinant line bundle over the
path t 7→ det(DAt,Φt) gives rise to an isomorphism

det(DA0,Φ0
)→ det(DA1,Φ1

).

On the other hand, linearizing the action of the gauge group (A,Φ) 7→
(u∗A, u−1Φ) gives rise to isomorphisms

ker DA0,Φ0
→ ker DA1,Φ1

: (α,ϕ) 7→ (α, u−1ϕ),

cokerDA0,Φ0
→ cokerDA1,Φ1

: (ξ, τ, ψ) 7→ (ξ, τ, u−1ψ).

We prove that the induced isomorphism det(DA0,Φ0
) → det(DA1,Φ1

) of
determinant lines agrees with the above. To see this consider first the case
Φt = 0 for every t. Then

det(DAt,0) = det(D+)⊗ det(DAt).

This line bundle over the interval has the obvious natural trivialization
because the operators DAt are all complex linear and the resulting map
det(DA0

)→ det(DA1
) identifies the two orientations arising from the com-

plex structures (see Exercise A.14). On the other hand the isomorphisms

ker DA0
→ ker DA1

: ϕ 7→ u−1ϕ

and
ker DA0

∗ → ker DA1

∗ : ψ 7→ u−1ψ

are complex linear and hence induce the same map det(DA0)→ det(DA1).
This proves the assertion in the case Φt ≡ 0. The general case now follows
from a standard homotopy argument.

It remains to prove the assertion about the reversal of the complex
structure. The only thing that changes are the orientations of the kernel
and cokernel of the Dirac operator. The factor is −1 if and only if the
complex dimension is odd. Hence

ε(Γ∗, g, η) = (−1)λε(Γ, g, η), λ =
〈c1(LΓ)2, [X]〉

8
− σ(X)

8
,

where λ is the complex index of the Dirac operator DA. Now suppose
that the moduli space M̃∗(X,Γ, g, η) is 1-dimensional. Then the dimension
formula of Theorem 7.16 shows that 〈c1(LΓ)2, [X]〉 = 2χ(X) + 3σ(X) and
hence

λ =
χ(X) + σ(X)

4
.

This proves the proposition. 2
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7.3 Cobordisms

Recall that a spinc structure on X is a bundle homomorphism Γ : TX →
End(W ) which assigns to each tangent vector v ∈ TxX a skew Hermitian
endomorphism Γ(v) ∈ End(Wx) such that

Γ(v)∗Γ(v) = |v|21l.

The right hand side depends on the Riemannian metric. Given two Rie-
mannian metrics g0 and g1, two corresponding spinc structures Γ0 and Γ1

on W are called equivalent if

1

|v|g0

Γ0(v) =
1

|v|g1

Γ1(v).

Given a spinc structure Γ0 for g0 there is a unique spinc structure Γ for
any other metric g which is equivalent to Γ0.

Assume that g0 and g1 are two Riemannian metrics on X with equiva-
lent spinc structures Γ0,Γ1 : TX → End(W ). Assume also that

η0 ∈ Ω2,+
reg (X, iR; Γ0, g0), η1 ∈ Ω2,+

reg (X, iR; Γ1, g1).

The goal of this section is to prove that the corresponding moduli spaces
M(X,Γ0, g0, η0) andM(X,Γ1, g1, η1) are cobordant. The proof goes along
the lines of Proposition B.17 in Appendix B. Fix a path [0, 1] −→Met(X) :
t 7→ gt of Riemannian metrics connecting g0 to g1 with a corresponding path
of equivalent spinc structures Γt : TX → End(W ). Denote by

Z = Ω2,+(X, iR; {gt}, η0, η1)

the space of all smooth paths [0, 1] −→ Ω2(X, iR) : t 7→ ηt connecting η0

to η1 such that ηt ∈ Ω2,+(X, iR; gt) for every t. For {ηt} ∈ Z consider the
moduli space

W∗ = {[t, A,Φ] | t ∈ [0, 1], [A,Φ] ∈M∗(X,Γ, gt, ηt)} .

In general it will not be possible to find a path t 7→ ηt such that ηt ∈
Ω2,+

reg (X, iR; gt) for every t. The complement of of the set Ω2,+
reg (X, iR; g) is,

roughly speaking, of codimension 1 for every Riemannian metric g. This is
the anlogue of the observation, in finite dimensional differential topology,
that the set of regular values of a smooth map f : X → Y is in general not
connected. However, any two regular values y0 and y1 can be connected
by a path whose preimage under f is a smooth manifold with boundary.
Similarly, in the present context, there exists a path t 7→ ηt from η0 to η1

such that W∗ is a smooth manifold with boundary.
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Theorem 7.21 Assume b+ ≥ 1. There exists a set

Zreg = Ω2,+
reg (X, iR; {gt}, η0, η1) ⊂ Z,

which is of the second category in the sense of Baire with respect to the
C∞-topology and satisfies the following. For every path {ηt} ∈ Zreg the
spaceW∗ =W∗(X, {Γt}, {gt}, {ηt}) is a smooth oriented finite dimensional
manifold with boundary. It has real dimension

dim W∗ =
〈c1(LΓ)2, [X]〉

4
− 2χ(X) + 3σ(X)

4
+ 1

and its boundary is given by

∂W∗ =M∗(X,Γ1, g1, η1)−M∗(X,Γ0, g0, η0).

Here the minus sign stands for the reversal of orientation

Proof: The proof is a combination of the arguments in the proofs of
Theorem 7.16 and Proposition B.17. Here is a sketch of the main points.
Consider the space

X = A(Γ)× C∞(X,W+)

and the infinite dimensional vector bundle E → [0, 1]×X whose fiber over
the point (t, A,Φ) depends only on t and is given by

Et = Ω0
0(X, iR; gt)⊕ Ω2,+(X, iR; gt)⊕ C∞(X,W−).

Here Ω0
0(X, iR; gt) denotes the space of smooth functions ξ : X → iR which

have mean value zero with respect to the metric gt and Ω2,+(X, iR; gt)
denotes the space of imaginary valued 2-forms which are self-dual with
respect to gt. Consider the section F : X → E of this bundle given by

F(t, A,Φ) =

 d∗t(A−A0)

F+
A + ηt − σ+

t
−1

((ΦΦ∗)0)
DA;tΦ

 .

Here the Hodge-∗-operator, the maps A 7→ F+
A and σ+

t : Λ2,+T ∗X →
End(W+), and the Dirac operator DA;t depend on the metric gt. Denote
by

DF(t, A,Φ) : R× T(A,Φ)X → Et

the differential of F (as a function with values in Ω0 ⊕ Ω2 ⊕ C∞(X,S−))
followed by the L2-orthogonal projection onto Et, denoted by Πt. This
operator is given by
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DF(t, A,Φ)(τ, α, ϕ) = DA,Φ;t(α,ϕ) + τΠt
∂

∂t
F(t, A,Φ). (7.17)

where DA,Φ;t : T(A,Φ)X → Et denotes the linearized operator defined
in (7.15) for the metric gt. Recall that DA,Φ;t is a Fredholm operator and
hence F is a Fredholm section of the infinite dimensional vector bundle
E (modified with appropriate completions and Sobolev norms). A path
{ηt} ∈ Ω2,+(X, {gt}, η0, η1) is called regular if the operator DF(t, A,Φ) :
R×T(A,Φ)X → Et is onto whenever F(t, A,Φ) = 0. The set of regular paths
is denoted by

Zreg = Ω2,+
reg (X, iR; {gt}, η0, η1)

For every regular path {ηt} the section F is transverse to the zero section
and hence, by the implicit function theorem B.3, its zero set is a smooth
manifold whose dimension agrees with the index of the map F . Now this
zero set is precisely given by

F−1(0) = W̃∗ = W̃∗(X, {Γt}, {gt}, {ηt}).

For {ηt} ∈ Zreg it is a manifold of dimension

dim W̃∗ = index(F) =
〈c1(LΓ)2, [X]〉

4
− 2χ(X) + 3σ(X)

4
+ 2.

As in the finite dimensional analogue the boundary of this manifold is given
by its intersection with the boundary of [0, 1]×X and thus

∂W̃∗ = M̃∗(η1)− M̃∗(η0)

where M̃∗(ηt) = M̃∗(X,Γt, gt, ηt). That this assertion is correct with ori-
entations will be proved below. There is a natural action of the group

G0 = S1 ×H1(X; 2πiZ)

on W̃∗. To see this fix a point x0 ∈ X and denote by

Gt =
{
u : X → S1 | d∗t(u−1du) = 0

}
the group of gt-harmonic gauge transformations. Then, for every (λ, α) ∈
S1×H1(X; 2πiZ) and every t ∈ [0, 1], there is a unique gt-harmonic gauge
transformation ut = ut,λ,α ∈ Gt such that u(x0) = λ and u−1du = α. The

action of (λ, α) on W̃∗ is then given by (t, A,Φ) 7→ (t, ut
∗A, ut

−1Φ). The

quotient W∗ = W̃∗/G0 is the required cobordism with

∂W∗ =M∗(η1)−M∗(η0).
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It remains to prove that the set Zreg ⊂ Z is of the second category
and to verify the assertion about the orientations. The proof of the for-
mer is strictly analogous to the corresponding arguments in the proof of
Theorem 7.16. One first proves that the universal moduli space Ũ∗ of all
quadruples (t, A,Φ, {ηt}) with {ηt} ∈ Z` and (t, A,Φ) ∈ W̃∗({ηt}) is a
smooth Banach manifold (with the C`-norm on Z`) and then considers

the obvious projection π : Ũ∗ → Z`. A path {ηt} ∈ Z` is a regular value
of this projection if and only if {ηt} ∈ Z`reg and it thus follows from the

Sard-Smale theorem B.13 that the set Z`reg ⊂ Z` is of the second category
in the sense of Baire. The details of this argument, as well as the reduction
of the C∞-case to the C`-case, are exactly the same as in Theorem 7.16
and Proposition B.17 and will be omitted.

Let us now turn to the question of orientations. The tangent space of the
manifold W̃∗ = W̃∗({ηt}) at a triple (t, A,Φ) is the kernel of the operator
DF(t, A,Φ):

T(t,A,Φ)W̃∗ = ker
(
DF(t, A,Φ) : R× T(A,Φ)X → Et

)
.

By assumption on {ηt} ∈ Zreg, this operator is surjective and hence an
orientation of its kernel corresponds to an orientation of its determinant
line. Now recall from (7.17) that this operator has the form

DF(t, A,Φ)(τ, α, ϕ) = τζ +DA,Φ;t(α,ϕ)

for some vector ζ ∈ Et. In the notation of Section A.2 this operator can
be written as DF(t, A,Φ) = ζ ⊕DA,Φ;t where ζ is to be understood as the
operator R→ Et : τ 7→ τζ. Operators of this form are discussed in detail in
the proof of Theorem A.6 and in Exercise A.7 where it is shown that there
is a natural isomorphism

det(DA,Φ;t)→ det(DF(t, A,Φ)).

Hence an orientation of the determinant line det(DA,Φ;t) induces naturally
an orientation of the determinant line det(DF(t, A,Φ)) and hence of the

tangent space of W̃∗. In Section 7.2 above it is proved that the determinant
line of DA,Φ;t carries a natural orientation, given orientations of H1(X; iR)
and H2,+(X; iR). It follows that this orientation carries over to the deter-

minant line of DF(t, A,Φ). Hence the manifold W̃∗ is orientable and in
fact carries a natural orientation. That the group {Gt} acts by orientation
preserving diffeomorphisms is proved as in Proposition 7.20 and it follows
that the orientation of W̃∗ descends to the quotient W∗. It remains to
compare the orientation of W̃∗ with that of M̃∗(η0) and M̃∗(η1) near the
boundary. For this it is useful to give a more explicit description of the
orientation of the cobordism W̃∗.
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Consider the obvious projection π : W̃∗ → [0, 1]. It is easy to see that

(t, A,Φ) ∈ W̃∗ is regular for π (i.e. dπ(t, A,Φ) is surjective) if and only if
the operator DA,Φ;t : T(A,Φ)X → Et is onto. If (t, A,Φ) is such a regular
point for π then Exercise A.8 shows that a positively oriented basis of
ker DF(t, A,Φ) = T(t,A,Φ)W̃∗ is of the form

(1, ξ0), (0, ξ1), . . . , (0, ξk)

where the vectors ξ1, . . . , ξk form a positively oriented basis of ker DA,Φ;t.
The standard convention for orienting the boundary is given by choosing
the outward unit normal as the first basis vector and then completing to
a positively oriented basis by adding a basis of the tangent space to the
boundary. With this convention the boundary components at t = 1 inherit
their original orientation as the boundary of W̃∗ while those at t = 0 inherit
the opposite orientation. Thus

∂W̃∗ = M̃∗(η1)− M̃∗(η0).

To obtain the same formula for the quotient W∗ we use the convention
that the tangent vector to the S1-action comes last, i.e. that a basis of the
quotient space is called positively oriented if after completing it by adding
the generator of the S1-action at the end, it is a positively oriented basis
of the total space. This proves the theorem. 2

In order forW∗ to be compact it is necessary to assume that the Seiberg-
Witten equations (7.4) have no solution with Φ = 0 for any pair (gt, ηt).
This means that

ηt /∈ Ω2,+
Γt

(X, iR; gt) (7.18)

for every t. By Proposition 7.10, the set Ω2,+
Γt

(X, iR; gt) is a hyperplane
of codimension b+ = b+(X) and hence, if b+ ≥ 2, there always is a path
{ηt} connecting η0 and η1 which satisfies (7.18). If b+ = 1 then Ω2,+

Γt
(X, gt)

is a codimension-1 hyperplane. If η0 and η1 lie on opposite sides of this
hyperplane, in the sense that the numbers ε(η0, g0) and ε(η1, g1) defined
by (7.7) have opposite sign, then every path from η0 to η1 must pass through
the Γ-wall for some value of t and hence there is no path from η0 to η1 which
satisfies (7.18). Thus a compact cobordism will only exist if either b+ ≥ 2
or b+(X) = 1 and in addition ε(η0, g0) and ε(η1, g1) have the same sign. If
either of these conditions are satisfied there exists a regular path {ηt} from
η0 to η1 which satisfies (7.18) and for such a path the space

W =W(X, {Γt}, {gt}, {ηt}) =W∗(X, {Γt}, {gt}, {ηt})

is a compact smooth oriented cobordism with ∂W =M(η1)−M(η0). These
cobordisms give rise to the Seiberg-Witten invariants.
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7.4 Invariants of smooth four-manifolds

The zero dimensional case

Consider the case where the moduli spaceM(X,Γ, g, η) has dimension zero,
that is

c · c− σ
4

=
χ+ σ

2
. (7.19)

This is the real index of the Dirac operator and is therefore an even number.
The right hand side is equal to 1 + b+− b1 and hence b+− b1 must be odd.
A zero-dimensional compact manifold consists of finitely many points and
hence, under the assumption (7.19), the moduli space M(X,Γ, g, η) is a
finite set whenever η ∈ Ω2,+

reg (X, iR; c, g) where c = c1(LΓ) ∈ H2(X;Z). The
simplest version of the Seiberg-Witten invariant is the number of points
in the moduli space, counted modulo 2. That this is an invariant, i.e. is
independent of the choices of g and η, is a consequence of Theorem 7.22
below.

An orientation, in the zero-dimensional case, consists of attaching a sign
±1 to each point of the manifold. Here is an explicit description of this sign.
Let (A,Φ) ∈ M̃(X,Γ, g, η) represent a point in M(X,Γ, g, η), that is, the
corresponding equivalence class under the action of G0, denoted by

[A,Φ] =
{

(u∗A, u−1Φ) | d∗(u−1du) = 0
}
.

The transversality condition η ∈ Ω2,+
reg (X, iR; g) means, in the zero-dimen-

sional case, that

ker DA,Φ = iRΦ, cokerDA,Φ = H0(X; iR) = iR

for all (A,Φ) ∈ M̃∗(X,Γ, g, η). (See Remark 7.19.) Hence the determi-
nant det(DA,Φ) is naturally isomorphic to R. Now recall that the deter-
minant line of DA,0 has a canonical orientation. A trivialization of the
1-dimensional real vector bundle⋃

0≤λ≤1

det(DA,λΦ)

over the unit interval gives rise to an isomorphism

det(DA,0)→ det(DA,Φ)

and hence to an orientation of the line det(DA,Φ) ∼= R. It is interesting
to consult Propositions A.9 and A.10 in Appendix A for a more precise
discussion of such trivializations in the case of index zero. Define ν(A,Φ) =
1 if the resulting orientation of det(DA,Φ) ∼= R agrees with the standard
orientation of R and ν(A,Φ) = −1 otherwise.
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The zero-dimensional Seiberg-Witten invariant can now be defined
as follows. Assume that b+ ≥ 2 and b+−b1 is odd and fix a spinc structure Γ.
For a Riemannian metric g and a regular self-dual 2-form η ∈ Ω2,+

reg (X, iR; g)
define

SW (X,Γ; g, η) =
∑
[A,Φ]

ν(A,Φ). (7.20)

Here the sum runs over the finite set of all equivalence classes [A,Φ] ∈
M(X,Γ, g, η).

Theorem 7.22. (Seiberg-Witten) Assume that b+ > 1 and b+ − b1 is
odd. Then the number

SW (X,Γ) = SW (X,Γ; g, η)

is independent of the choice of g and η and depends only on the isomorphism
class of the spinc structure Γ.

Choose {ηt} ∈ Ω2,+
reg (X, iR; {gt}, η0, η1) such that

ηt ∈ Ω2,+
Γt

(X, iR; gt)

for all t. This is possible because b+ > 1 and it follows that all solutions
(A,Φ) of (7.4) with g = gt and η = ηt satisfy Φ 6= 0. Hence the moduli space
W = W(X, {Γt}, {gt}, {ηt}) constructed in Theorem 7.21 is a compact
oriented cobordism with

∂W =M(η1)−M(η0).

Lemma 7.23 Assume W has dimension 1 and let [t, A,Φ] be a regular
point of the projection

π :W → [0, 1]

given by π([t, A,Φ]) = t. Then π is orientation preserving at [t, A,Φ] if and
only if ν(A,Φ) = 1.

Proof: Consider the operator

DA,Φ,t : T(A,Φ)X → Et

as in (7.17) in the proof of Theorem 7.21. A point [t, A,Φ] ∈ W is regular
for π :W → [0, 1] if and only if this operator is surjective. In this case the
kernel of DA,Φ,t is 1-dimensional and spanned by the standard basis vector

ξ1 = (0, iΦ). This is the tangent vector to the S1-action on W̃ and it is
positively oriented if and only if ν(A,Φ) = 1. In this case {(1, ξ0), (0, ξ1)} is
a positively oriented basis of ker DF(t, A,Φ). (See equation (7.17).) Hence



248 SEIBERG-WITTEN INVARIANTS OF FOUR-MANIFOLDS

the equivalence class of the vector [1, ξ0] is a positively oriented basis vector

of the tangent space to the quotient W = W̃/{Gt} at [t, A,Φ] and it is
mapped to 1 under dπ. Conversely, if ν(A,Φ) = −1 then the vector ξ1 =
(0, iΦ) is a negatively oriented basis of ker DA,Φ;t, thus {(1, ξ0), (0, ξ1)} is a
negatively oriented basis of ker DF(t, A,Φ), and thus [1, ξ0] is a negatively
oriented tangent vector of W. This proves the Lemma. 2

Proof of Theorem 7.22: The cobordism W determines finitely many
paths

[0, 1]→W : s 7→ [tj(s), Aj(s),Φj(s)],

which parametrize the components ofW that are diffeomorphic to the unit
interval. Their endpoints lie on ∂W and the signs of these are denoted by

νj(0) = ν(Aj(0),Φj(0)), νj(1) = ν(Aj(1),Φj(1)).

Note that tj(0) ∈ {0, 1} and tj(1) ∈ {0, 1}. Now consider the projection π :
W → [0, 1]. This map is a diffeomorphism near each boundary point (A,Φ)
and Lemma 7.23 asserts that ν(A,Φ) = 1 if and only if this diffeomorphism
is orientation preserving near (A,Φ) and ν(A,Φ) = −1 otherwise. Now if
both ends of the path s 7→ (tj(s), Aj(s),Φj(s)) lie on the same side of the
boundary ofW (i.e. tj(0) = tj(1)) then the projection π has opposite parity
at the two ends of the path and hence

tj(0) = tj(1) =⇒ νj(0) + νj(1) = 0.

(In this case the crossing number of the operator family DAj(s),Φj(s) as
in (A.4) is odd.) On the other hand, if the path s 7→ (tj(s), Aj(s),Φj(s))
runs from t = 0 to t = 1 or vice versa then π has the same parity at the
two ends of the path and hence

tj(0) 6= tj(1) =⇒ νj(0) = νj(1).

(In this case the crossing number of the operator family DAj(s),Φj(s) is
even.) Hence

SW (X,Γ0, η0, g0) =
∑

tj(0)=0

νj(0) +
∑

tj(1)=0

νj(1)

=
∑

tj(0)=1

νj(0) +
∑

tj(1)=1

νj(1)

= SW (X,Γ1, η1, g1).

This proves the theorem. 2
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Higher dimensional moduli spaces

For every metric g and every perturbation η /∈ Ω2,+
Γ (X, g) the moduli space

M(X,Γ, g, η) is a compact subset of the infinite dimensional configuration
space

C(Γ) =
A(Γ)× C∞(X,W+)∗

G
where C∞(X,W+)∗ = C∞(X,W+) − {0}. If η ∈ Ω2,+

reg (X, iR; g) then this
moduli space is a finite dimensional oriented submanifold of C(Γ) and a
numerical invariant of X can be obtained by integrating a suitable coho-
mology class in H∗(C(Γ);Z) over this moduli space.

There is a natural 2-dimensional cohomology class τ ∈ H2(C(Γ);Z)
which, in the simply connected case, is in fact the generator of H2. To
describe this class fix a point x0 ∈ X and consider the based gauge
group

G(x0) = {u ∈ G |u(x0) = 1} .

This group acts freely on A(Γ) and the quotient

C(Γ, x0) =
A(Γ)× C∞(X,W+)∗

G(x0)

is a circle bundle over C(Γ) where the circle acts on a pair [A,Φ] by rotating
Φ and leaving A unchanged, i.e. [A,Φ] 7→ [A, eiθΦ]. Denote by

τ ∈ H2(C(Γ);Z)

the Euler class of this circle bundle. The following exercise shows that this
class is independent of the choice of the base point x0 when X is connected.

Exercise 7.24 Assume that X is connected. Prove that the circle bundles
C(Γ, xi) → C(Γ) are isomorphic for two different points x0, x1 ∈ X. Hint:
Choose a smooth path γ : [0, 1]→ X with γ(0) = x0 and γ(1) = x1. Define
a map ργ : A(Γ)→ S1 by

ργ(A0 + α) = exp

(∫ 1

0

αγ(t)(γ̇(t)) dt

)
and show that

ργ(u∗A) = u(x1)ργ(A)u(x0)−1

for all A ∈ A(Γ) and u ∈ G(Γ). Prove that the map

C(Γ, x0)→ C(Γ, x1) : [A,Φ]0 7→ [A, ργ(A)Φ]1

is the required bundle isomorphism. 2
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The above construction of a cohomology class in the configuration space
C(Γ) is a particularly simple example of Donaldson’s µ-map in gauge theory.
The general construction of this µ-map is based on the universal bundle
over the product X×C(Γ). Then every characteristic class of this universal
bundle gives rise to a map H∗(X)→ H∗(C(Γ)) given by the slant product.
In the case at hand this universal bundle is a line bundle

L → X × C(Γ)

which in explicit terms can be expressed as the quotient

L = L(Γ) =
X ×A(Γ)× C∞(X,W+)∗ × C

G
.

Here the action of u ∈ G on (x,A,Φ, z) is given by

u∗(x,A,Φ, z) =
(
x, u∗A, u−1Φ, u(x)−1z

)
.

The above circle bundle C(Γ, x0) → C(Γ) can evidently be identified with
the unit circle bundle of the restriction L(x0) = L(Γ, x0) = ιx0

∗L to the
submanifold {x0}×C(Γ). Hence the Euler class of the circle bundle C(Γ, x0)
agrees with the first Chern class of L(x0):

τ = c1(L(x0)) ∈ H2(C(Γ);Z).

From this point of view it is obvious that this class is independent of the
choice of x0 when X is connected. More generally, as in Donaldson theory,
one can consider the µ-map

µ : Hj(X;Z)→ H2−j(C(Γ);Z)

given by the slant product with c1(L) ∈ H2(X × C(Γ);Z). The class τ ∈
H2(C(Γ);Z) is the image of the generator 1 ∈ H0(X;Z). It is easy to see
that the bundle L admits a trivialization over Σ×{pt} ⊂ X×C(Γ) for every
2-dimensional submanifold Σ ⊂ X. Hence µ(α) = 0 for every α ∈ H2(X;Z).

Remark 7.25 The configuration space C(Γ) fibers over the quotient

B(Γ) =
A(Γ)

G
∼ H1(X;R)

H1(X; 2πiZ)

with projection π : C(Γ) → B(Γ) given by π([A,Φ]) = [A]. The fibers are
given by

F(Γ) =
C∞(X,W+)∗

S1
∼ CP∞.
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For each A ∈ A(Γ) the inclusion of the fiber is the map ιA : F(Γ)→ C(Γ)
given by ιA([Φ]) = [A,Φ]. In other words C(Γ) fibers over the torus of
dimension b1 with fiber the infinite dimensional complex projective space.

F(Γ) ↪→ C(Γ)
↓ π
B(Γ)

The restriction of L(Γ, x0) to the fiber F(Γ) is the canonical line bun-
dle and thus the class ιA

∗τ ∈ H2(F(Γ);Z) is the canonical generator of
H2(CP∞;Z). This property determines the class τ uniquely whenever X
is simply connected, but in general one can add to the class τ the pullback
of any 2-dimensional class on the base. 2

Exercise 7.26 A generator of Hb1(B(Γ);Z) is given by the moduli space
T = T (η) of reducible solutions of the perturbed Seiberg-Witten equa-
tions, i.e. the space of gauge equivalence classes of connections A ∈ A(Γ)
which satisfy F+

A + η = 0. This space can be identified with the torus
H1(X; iR)/H1(X; 2πiZ). (See page 305 below for more details.) Fix an
orientation of H1(X;R) and denote by

dvolT ∈ Hb1(B(Γ);Z)

the positive generator which evaluates to 1 on the fundamental class of T .
If

γ1, . . . , γb1 ∈ H1(X;Z).

is a positively oriented set of integral generators prove that

µ(γ1) ∧ · · · ∧ µ(γb1) = π∗dvolT ∈ Hb1(C(Γ);Z). 2

Exercise 7.27 For every 1-form α ∈ Ω1(X, iR) and every smooth path
γ : [0, 1]→ X consider the holonomy ρα(γ) ∈ S1 defined by

ρα(γ) = exp

(∫
γ

α

)
.

Fix a point x0 ∈ X and for each point x ∈ X near x0 denote by γx :
[0, 1] → X the path running from x to x0 in a straight line in some fixed
local chart. Fix a reference connection A0 and a and a nonzero section Ψ ∈
C∞(X,W+) with support in the given neighbourhood of x0 and consider
the map h : A(Γ)→ C∞(X,W+)∗ defined by

h(A)(x) = ρA−A0(γx)Ψ(x)

Prove that this map satisfies
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h(u∗A) = u(x0)u−1h(A)

for u ∈ G. Prove that for any such map the function (A,Φ) 7→ 〈h(A),Φ〉L2

can be interpreted as a section of the line bundle L(Γ, x0)→ C(Γ) which is
transverse to the zero section. Deduce that the codimension-2 submanifold

Nh =

{
[A,Φ]

∣∣∣ ∫
X

〈h(A),Φ〉dvol = 0

}
⊂ C(Γ)

admits a natural coorientation and represents the class τ in the sense that∫
Σ

τ = Nh · Σ

for every 2-dimensional oriented submanifold Σ ⊂ C(Γ). 2

Exercise 7.28 A connection on the bundle L(Γ, x0) can be defined as an
imaginary valued 1-form Θ on the total space A(Γ)×C∞(X,W+)∗ which
satisfies

Θ(u∗A,u−1Φ)(α, u
−1ϕ) = Θ(A,Φ)(α,ϕ),

Θ(A,Φ)(dξ,−ξΦ) = ξ(x0)
(7.21)

for A ∈ A(Γ), Φ ∈ C∞(X,W+)∗, u ∈ G, and ξ ∈ Ω0(X, iR) = Lie(G).
Prove that an example of such a connection is given by the formula

Θ(A,Φ)(α,ϕ) = − i

‖Φ‖2
∫
X

Im 〈Φ, ϕ−R0(d∗α)Φ〉dvol. (7.22)

Here ‖Φ‖ denotes the L2-norm and the linear operator R0 : Ω0(X, iR) →
Ω0(X, iR) is defined by

R0(ζ) = ξ ⇐⇒ d∗dξ = ζ − 1

Vol(X)

∫
X

ζdvol, ξ(x0) = 0.

Prove that the curvature 2-form τ = idΘ/2π on A(Γ) × C∞(X,W+)∗

descends to a closed form on C(Γ) which represents the first Chern class
of the line bundle L(Γ, x0). Prove that the pull back of Θ to the fiber
C∞(X,W+)∗ under the map ιA(Φ) = (A,Φ) is given by

ιA
∗Θ =

1

2

(
∂̄f − ∂f

)
where f : C∞(X,W+)∗ → R is the function

f(Φ) = log

(∫
X

|Φ|2dvol

)
.
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Deduce that

τ = ιA
∗ i

2π
dΘ =

1

2πi
∂̄∂f.

Find an explicit formula for this 2-form and prove that it represents the
standard generator of H2(C∞(X,W+)∗/S1;Z) = Z. Identify S3 with the
unit sphere in C2 and consider the map

S2 = S3/S1 → C∞(X,W+)∗/S1 : [z0 : z1] 7→ [z0Φ0 + z1Φ1].

Prove that the integral of τ over this map is 1. Hint: Note that the form
τ descends to C∞(X,W+)∗/C∗ and use coordinates (1, z) ∈ C2. Show
that tha pullback form on C is a constant multiple of the standard form
in Example 3.48. The form ιA

∗τ is an infinite dimensional version of the
Fubini-Study Kähler form. Compare this with the proof of the normaliza-
tion axiom on page 22. 2

Now assume that the moduli space M(X,Γ, g, η) has dimension 2d.
This is equivalent to the condition

c · c
4
− 2χ(X) + 3σ(X)

4
= 2d (7.23)

where c = c1(LΓ) and it follows that b+− b1 is odd. If η ∈ Ω2,+
reg (X, iR; Γ, g)

then the moduli spaceM(X,Γ, g, η) ⊂ C(Γ) is a smooth compact subman-
ifold which carries a natural orientation. Thus it represents a homology
class

[M(X,Γ, g, η)] ∈ H2d(C(Γ);Z).

Evaluating the d-th power of the class τ ∈ H2(C(Γ);Z) on the fundamental
class of M(X,Γ, g, η) gives rise to the Seiberg-Witten invariant

SW (X,Γ; g, η) =

∫
M(X,Γ,g,η)

τd. (7.24)

Note that the cohomology class τ in this context can be expressed in purely
finite dimensional terms, namely, as the first Chern class of the restriction
of the line bundle L(Γ, x0)→ C(Γ) to the moduli space M(X,Γ, g, η).

Theorem 7.29. (Seiberg-Witten) Assume that b+−b1 is odd and b+ >
1. Then the number

SW (X,Γ) = SW (X,Γ; g, η)

is independent of the choice of g and η and depends only on the isomorphism
class of the spinc structure Γ.
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Proof: Let g0 and g1 be two Riemannian metrics on X with corresponding
equivalent spinc structures Γ0 and Γ1. Assume ηj ∈ Ω2,+

reg (X, iR; Γj , gj) and
abbreviateM(ηj) =M(X,Γj , gj , ηj) for j = 0, 1. Fix a path of metrics t 7→
gt from g0 to g1 with corresponding spinc structures Γt. By Theorem 7.21
and Proposition 7.10, choose a generic path {ηt} ∈ Ω2,+

reg (X, iR; {gt}, η0, η1)
such that ηt ∈ Ω2,+(X; Γ, gt) for every t. This is possible whenever b+ ≥ 2.
Then the moduli space M({ηt}) =M(X, {Γt}, {gt}, {ηt}), constructed in
Theorem 7.21, has dimension 2d+ 1 and is a compact oriented cobordism
with oriented boundary ∂M({ηt}) = M(η1) −M(η0). Hence, by Stokes’
theorem, ∫

M(η1)

τd −
∫

M(η0)

τd =

∫
∂M({ηt})

τd =

∫
M({ηt})

dτd = 0.

This proves the theorem. 2

Four-manifolds with b+ = 1

Let X be a compact oriented smooth 4-manifold with

b+ = 1, b1 ∈ 2Z.

Fix an orientation of H2,+(X). Then for every Riemannian metric g on X
there exists a unique self-dual harmonic 2-form

ωg ∈ H2,+(X)

which has L2-norm 1 and determines the given orientation of H2,+. Recall
that the Γ-wall

Ω2,+
Γ (X, g) ⊂ Ω2,+(X, g)

is defined as the set of those perturbations η ∈ Ω2,+(X, g) for which the
Seiberg-Witten equations (7.4) have solutions of the form (A, 0), i.e. for
which there exists a connection A ∈ A(Γ) with F+

A + η = 0. By Proposi-
tion 7.10 the Γ-wall has codimension b+ = 1. If η is a regular perturbation
in the complement of the Γ-wall, i.e.

η ∈ Ω2,+
reg (X, iR; g)− Ω2,+

Γ (X, iR; g),

then there is a compact moduli spaceM(X,Γ, g, η) of the correct dimension
and the Seiberg-Witten invariant SW (X,Γ; g, η) can be defined as before
by (7.20) in the zero-dimensional case and (7.24) for higher dimensional
moduli spaces. Moreover, the proofs of Theorems 7.22 and 7.29 show that
these invariants are independent of the pair (g, η) along any path which
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does not cross the Γ-wall. Now recall that the Γ-wall is characterized by
the condition ε(g, η) = 0, where

ε(g, η) = εΓ(g, η) = −
∫
X

〈iη, ωg〉dvolg − π[ωg] · c1(LΓ)

as in (7.7). Hence for every spinc structure Γ there are two invariants
SW±(X,Γ) defined by

SW±(X,Γ) = SW (X,Γ; g, η), ±ε(g, η) > 0,

The relation between these invariants can be studied by examining how the
moduli space M(X,Γ, g, η) changes as the parameter η crosses the Γ-wall.
In the simply connected case one obtains the formula

SW+(X,Γ)− SW−(X,Γ) = 1

whenever the moduli spaces have nonnegative dimension. In the case b1 > 0
the relation between the two invariants is more complicated but there is
still an explicit wall-crossing formula. This will be discussed in detail in
Chapter 9.

7.5 Basic properties of the invariants

Finiteness

There are natural restrictions on a spinc structure Γ with nontrivial Sei-
berg–Witten invariants, firstly from the a priori estimate of Lemma 7.13
and secondly from the requirement that the dimension of the moduli space
M(X,Γ, g, η) be nonnegative.

Proposition 7.30. (Seiberg-Witten) Let X be a compact oriented 4-
manifold with b+ > 0 and suppose that η ∈ Ω2,+

reg (X, iR; g)−Ω2,+
Γ (X, iR; g)

for every spinc structure Γ. Then there are only finitely many (isomorphism
classes of) spinc structures Γ with a nonempty moduli space M(X,Γ, g, η).
In particular, when b+ > 1 the Seiberg-Witten invariants SW (X,Γ) are
zero for all but finitely many spinc structures Γ.

Proof: Denote c = c1(LΓ). The formula

dimM(X,Γ, g, η) =
c · c
4
− 2χ(X) + 3σ(X)

4

shows that the moduli space can only be nonempty if

c · c ≥ 2χ(X) + 3σ(X).

Now the class c ∈ H2(X;Z) is represented by the 2-form i
πFA and hence
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π2c · c = −
∫
X

FA ∧ FA =
∥∥F+

A

∥∥2 −
∥∥F−A ∥∥2

.

Here ‖.‖ denotes the L2-norm. It follows that there is a universal constant
K0 = K0(X) = −π2(2χ(X) + 3σ(X)) such that∥∥F−A ∥∥2 −

∥∥F+
A

∥∥2 ≤ K0

for every (A,Φ) ∈ M(X,Γ, g, η). Now recall from Lemma 7.13 that there
exists a constant K1 = K1(X, g, η), again independent of the spinc struc-
ture Γ, such that

sup
X
|Φ| ≤ K1

for every (A,Φ) ∈M(X,Γ, g, η) and every Γ. Since

F+
A = σ+((ΦΦ∗)0)− η

there is an estimate ∥∥F+
A

∥∥2 ≤ K2

for a suitable constant K2 = K2(X, g, η) and every (A,Φ) ∈M(X,Γ, g, η).
Hence both F+

A and F−A are uniformly bounded and so

‖FA‖2 ≤ K0 + 2K2.

Thus there are only finitely many values of c = c1(LΓ) ∈ H2(X;Z) for
which the moduli space M(X,Γ, g, η) is nonempty provided that η is reg-
ular. Since for every c there are only finitely many spinc structures with
c1(LΓ) = c the proposition is proved. 2

The bound on ‖FA‖2 in Proposition 7.30 depends on the choice of the
perturbation η. This is especially relevant in the case b+ = 1. For example,
if X admits a metric of positive scalar curvature (such as CP 2 or S2 × Σ
for any Riemann surface Σ) then Proposition 7.32 shows that the Seiberg-
Witten invariant must vanish on the side of the wall which contains the
perturbation η = 0. Now there is a crossing-of-the-wall formula (discussed
in Section 9.2 below) which in many cases asserts that the invariant must be
nontrivial on the other side of the wall. Hence in this case there are infinitely
many chambers with nontrivial Seiberg-Witten invariants. Proposition 7.30
asserts in this case that each particular perturbation parameter η can only
lie in finitely many chambers with nontrivial invariants, or in other words,
that the walls corresponding to different spinc structures Γ move further
and further away from the origin as c1(LΓ)→∞. (See Proposition 7.10.)
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Symmetry

Recall from the discussion on page 227 that spinc structures come in pairs
Γ : TX → End(W ) and Γ∗ : TX → End(W ∗) where W ∗ = Hom(W,C)e.
Thus

c1(LΓ∗) = −c1(LΓ).

The following proposition shows how the Seiberg-Witten invariants for Γ
and Γ∗ are related.

Proposition 7.31. (Seiberg-Witten) Let X be a compact smooth ori-
ented 4-manifold with b+ − b1 odd and Γ : TX → End(W ) be a spinc

structure. If b+ > 1 then

SW (X,Γ∗) = (−1)
χ+σ

4 SW (X,Γ)

and if b+ = 1 then

SW+(X,Γ∗) = (−1)
χ+σ

4 SW−(X,Γ).

Proof: By Exercise 7.9 there is a natural bijection

M(X,Γ, g, η)→M(X,Γ∗, g,−η) : [A,Φ] 7→ [A∗,Φ∗]

where A∗ denotes the virtual connection on LΓ∗
1/2 = LΓ

−1/2 induced by
A. In fact one can think of this bijection simply as a change of notation
in the definition of the complex numbers, replacing i by −i and it is then
obvious that η is regular for Γ if and only if η∗ = −η is regular for Γ∗:

η ∈ Ω2,+
reg (X, iR; Γ, g) ⇐⇒ −η ∈ Ω2,+

reg (X, iR; Γ∗, g).

Moreover, in the regular case the above map is a diffeomorphism which,
however, need not be orientation preserving. It relates the two orientations
by the sign which is determined by the complex index of the Dirac operator.
This diffeomorphism also reverses the sign of the first Chern class of the
canonical line bundle L → M. Hence the net change in the sign of the
Seiberg-Witten invariant is

(−1)indexDA/2−dim M/2 = (−1)
σ+χ

4 .

In the case b+ = 1 note that

εΓ∗(g,−η) = −εΓ(g, η).

and hence the correspondence Γ 7→ Γ∗ interchanges the invariants SW+

and SW−. This proves the proposition. 2
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Scalar curvature

Proposition 7.32 Let X be a compact oriented smooth 4-manifold of pos-
itive scalar curvature with b+ − b1 odd and b+ ≥ 2. Then all the Seiberg-
Witten invariants are zero.

Proof: First assume that g is a metric with positive scalar curvature and
choose η ∈ Ω2,+

reg (X, iR; Γ, g) so small that

2
√

2 sup
X
|η| − 1

2
inf
X
s < 0.

Then the a piori estimate of Lemma 7.13 shows that M(X,Γ, g, η) = ∅.
Hence SW (X,Γ, g, η) = 0 for this choice of g and η and all spinc structures
Γ. 2

The previous result can be interpreted as a nonlinear version of Lich-
nerowicz’ theorem 6.30. It can be used to prove that hypersurfaces in CP 3

of odd degree do not admit metrics of positive scalar curvature and hence

cannot be diffeomorphic to connected sums of the form `CP 2#mCP 2
. This

last assertion was previously proved by Donaldson via his polynomial in-
variants. There is a more sophisticated vanishing theorem for connected
sums, which is due to Morgan, Taubes and others, and will be discussed
in Section 11.2. Another interesting consequence of the nontriviality of the
invariants arises for manifolds with constant scalar curvature.

Proposition 7.33. (Witten) Let X be a compact smooth 4-manifold with
a metric g of constant scalar curvature s. Fix a spinc structure Γ : X →
End(W ) and denote c = c1(LΓ) ∈ H2(X;Z). Suppose that one of the
following conditions is satisfied.

(i) b+ ≥ 2 and SW (X,Γ) 6= 0.

(ii) b+ = 1, c · [ωg] ≤ 0, and SW+(X,Γ) 6= 0.

Then

c · c ≤ s2Vol(X)

32π2

with equality if and only if there exists a pair (A,Φ) ∈ A(Γ)×C∞(X,W+)
which satisfies

|F+
A |

2 =
s2

32
, F−A = 0, ∇AΦ = 0, |Φ|2 = −s

2
.

Proof: Each of the conditions implies that the unperturbed moduli space
M(X,Γ, g, 0) is nonempty. In the case (ii) the condition c · [ωg] ≤ 0 is
equivalent to εΓ(g, 0) ≥ 0 and hence M(X,Γ, g, iλωg) is nonempty for
every λ > 0 and the assertion follows by taking the limit λ→ 0. Hence in
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both cases there exists a solution (A,Φ) of the unperturbed Seiberg-Witten
equations (7.1). Assume first that that Φ 6= 0. Then, by Lemma 7.13, the
monopole Φ satisfies the pointwise inequality

2|Φ|+ s ≤ 0

and, using the rules of Lemma 7.4, one finds that

∣∣F+
A

∣∣2 =
∣∣σ+((ΦΦ∗)0)

∣∣2 =
1

2
|(ΦΦ∗)0|2 =

1

8
|Φ|4 ≤ s2

32
.

This inequality is obviously satisfied when Φ = 0 and hence F+
A = 0. It

follows that

c · c =
1

π2

∫
X

(∣∣F+
A

∣∣2 − ∣∣F−A ∣∣2)dvol ≤ s2Vol(X)

32π2

with equality if and only if F−A = 0 and |F+
A | ≡ s2/32. By Proposition 7.3,

the energy of (A,Φ) is given by

E(A,Φ) = −π2c · c ≥ − 1

32

∫
X

s2dvol

Suppose now that c · c = s2Vol(X)/32π2 so that |FA| = |F+
A | = s2/32.

Then we find

0 = E(A,Φ) +
1

32

∫
X

s2dvol

=

∫
X

(
|∇AΦ|2 +

s

4
|Φ|2 +

1

4
|Φ|4 + |FA|2 +

s2

32

)
dvol

=

∫
X

(
|∇AΦ|2 +

s

4
|Φ|2 +

1

4
|Φ|4 +

s2

16

)
dvol

=

∫
X

(
|∇AΦ|2 +

1

16

(
2|Φ|2 + s

)2
)

dvol.

This shows that ∇AΦ = 0 and 2|Φ|2 = −s as claimed. 2

This proposition has particularly interesting implications when X ad-
mits an Einstein metric and the moduli space is zero-dimensional. The
following theorem is due to LeBrun (cf [71]). It is a generalization of the
Miyaoka-Yau inequality for Kähler surfaces (cf [128]). LeBrun also used
these techniques to prove that Einstein metrics are essentially unique on
manifolds whose universal cover is the complex hyperbolic space.



260 SEIBERG-WITTEN INVARIANTS OF FOUR-MANIFOLDS

Theorem 7.34. (LeBrun) Let X be a compact oriented smooth 4-mani-
fold with an Einstein metric g. Let Γ : TX → End(W ) be a spinc structure
such that the class c = c1(LΓ) satisfies

c · c = 2χ+ 3σ

Suppose that one of the following conditions is satisfied.

(i) b+ ≥ 2 and SW (X,Γ) 6= 0.

(ii) b+ = 1, c · [ωg] ≤ 0, and SW+(X,Γ) 6= 0.

Then
−2χ ≤ 3σ ≤ χ.

Moreover, 3σ = χ if and only if the universal cover of X is either R4 or
the complex hyperbolic 2-space CH2 = SU(2, 1)/U(2).

Proof: The Hitchin-Thorpe formulae for the Euler characteristic and sig-
nature of a Riemannian 4-manifold are

χ =
1

8π2

∫
X

(
|W+|2 + |W−|2 +

s2

24
− 1

2
|R0|2

)
dvol

and

σ =
1

12π2

∫
X

(
|W+|2 − |W−|2

)
dvol.

Here s is the scalar curvature, R0 is the traceless part of the Ricci tensor,
and W± denote the self-dual and anti-self-dual parts of the Weyl tensor.
The Einstein condition is precisely that the traceless part of the Ricci tensor
is zero. Hence for Einstein manifolds we have

2χ± 3σ =
1

4π2

∫
X

(
2|W±|2 +

s2

24

)
dvol ≥ s2Vol(X)

96π2
.

With the + sign this is the Hitchin-Thorpe inequality 2χ + 3σ ≥ 0.
Now it follows from Proposition 7.33 that under the assumptions of the
theorem

2χ+ 3σ = c · c ≤ s2Vol(X)

32π2
.

The two inequalities together give

2χ+ 3σ ≤ 3(2χ− 3σ).

This is equivalent to LeBrun’s generalization of the Miyaoka-Yau in-
equality 3σ ≤ χ. If equality holds then W− = 0 and c·c = s2Vol(X)/32π2.
This can be used to prove that X is Kähler and locally symmetric. It then
follows that the exponential map induces an isometry between either R4 or
complex hyperbolic space with the universal cover of X. For more details
of this argument see [71]. 2
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Simple type

For all simply connected smooth 4-manifolds with b+ > 1 for which the
Seiberg-Witten invariants are known (at the time of writing) the higher
dimensional invariants are zero. Such manifolds are said to be of simple
type.

Definition 7.35 Let X be a compact oriented smooth 4-manifold with b+−
b1 odd and b+ ≥ 2. A cohomology class c ∈ H2(X;Z) is called a basic
class, or SW-basic class, if there exists a spinc structure Γ on TX with
c1(LΓ) = c and SW (X,Γ) 6= 0. The manifold X is said to be of simple
type, or SW-simple type, if

c · c = 2χ(X) + 3σ(X) (7.25)

for every basic class c ∈ H2(X;Z). This means that the spinc structures
with nonzero Seiberg-Witten invariants all have zero dimensional moduli
spaces.

Remark 7.36 The cohomology classes c ∈ H2(X;Z) which are integral
lifts of the second Stiefel-Whitney class w2(TX) and satisfy (7.25) are
in one-to-one correspondence with isomorphism classes of almost complex
structures on TX. (See Proposition 13.1 below.) Hence, for 4-manifolds
without 2-torsion in H1(X;Z), the simple type condition can be expressed
in the form that the only possible spinc structures with nontrivial Seiberg-
Witten invariants are the canonical spinc structures of almost complex
structures on TX. 2

Proposition 7.31 shows that the basic classes come in pairs ±c. Evi-
dently, the basic classes play a fundamental role in the topology of the
manifold X. Any diffeomorphism of X must preserve these classes. Note,
however, that there is no such restriction on homeomorphisms.

It is known that CP 2 is not of simple type. However, care must be taken
here since b+ = 1 and so the invariants change as η crosses the Γ-walls.
So far all known 4-manifolds with b+ > 1 are either of simple type or it
is not known whether they are. Witten conjectured that there should be
4-manifolds with b+ > 1 which are not of simple type.

Exercise 7.37 Prove that every orientation preserving diffeomorphism f :
X → X preserves the basic classes and

SW (X, f∗Γ) = SW (X,Γ)

for every spinc structure Γ. Here f∗Γ : TX → End(f∗W ) denotes the

obvious pullback structure. Show that (A,Φ) ∈ M̃(X,Γ, g, η) if and only if

then (f∗A,Φ ◦ f) ∈ M̃(X, f∗Γ, f∗g, f∗η). 2
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Relation to Donaldson’s invariants

In their work [63, 64, 65] on the structure of Donaldson’s invariants Kro-
nheimer and Mrowka introduced another notion of simple type which will
henceforth be called D-simple type. In [126] Witten conjectured that both
notions of simple type should agree and that, for manifolds of simple type,
the Donaldson invariants should be completely determined by the Seiberg-
Witten invariants.

Here is a brief review of the definition of Donaldson’s invariants. Let
X be a compact connected simply connected smooth 4-manifold. Assume
throughout that b+ is odd and

b+ ≥ 3.

Given an integer k choose a principal SU(2)-bundle P → X with Chern
number c2(P ) = k and denote by Mk the moduli space of gauge equivalence
classes of anti-self-dual connections (instantons in the physics terminology)
on P . For a generic metric this space is a smooth manifold of dimension

dim Mk = 2d = 8k − 3(1 + b+).

In contrast to the Seiberg-Witten case this moduli space is never compact
(unless it is empty) and there is a nontrivial compactification problem.
Moreover, the topology of these moduli spaces (and of the ambient con-
figuration space B(P ) of gauge equivalence classes of connections on P ) is
much richer than in the Seiberg-Witten case. There is a universal SO(3)-
bundle

P→ X ×Mk

whose first Pontryagin class gives rise to a correspondence between the
homology of X and the cohomology of Mk. This is Donaldson’s µ-map

µ : Hi(X)→ H4−i(Mk).

(All homology and cohomology groups in this section are to be understood
with integer coefficients.) This map extends naturally, via exterior products,
to the symmetric algebra

A(X) = S∗(H0(X)⊕H2(X)).

This is to be understood as a graded algebra where the homology classes
in H2(X) have degree 2 and those in H0(X) have degree 4. With this con-
vention the map µ : A(X) → H∗(Mk) preserves the degree. Note that
all elements of A(X) have even degree and, for any integer d, denote by
A2d(X) the subspace of elements of degree 2d. Briefly, Donaldson’s poly-
nomial invariants of X are defined by evaluating the cohomology classes
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µ(z) ∈ H2d(Mk) on the fundamental class of the moduli space Mk of di-
mension 2d, namely

DX(z) = 〈µ(z), [Mk]〉

for z ∈ A2d(X) where 2d = 8k−3(1+b+). To make this idea work requires a
lot of sophisticated analysis. Although the construction is similar in spirit to
that of the Seiberg-Witten invariants, it is technically much more difficult.
(For details see [17, 18, 21].)

There is a distinguished homology class u ∈ H0(X), the generator,
which plays an important role in the structure of the Donaldson invari-
ants. This class can be used to formally relate moduli spaces of different
dimensions, corresponding to bundles with different Chern numbers. For
example, if z ∈ A2d(X) with 2d = 8k−3(1+ b+) then u2z ∈ A2d+8(X) and
there are invariants

DX(z) = 〈µ(z), [Mk]〉, DX(u2z) = 〈µ(u2z), [Mk+1]〉.

Of course, a priori there is no guarantee that there should be any relation
between these two numbers. However, such relations between the Donald-
son invariants corresponding to moduli spaces of different dimensions were
discovered by Kronheimer and Mrowka [65]. They introduced the concept of
D-simple type and proved that a large class of simply connected 4-manifolds
with b+ ≥ 3 possess this property.

Definition 7.38 Let X be a compact connected simply connected smooth
4-manifold with b+ odd and greater than or equal to 3. Then X is said to
be of D-simple type if for every z ∈ A(X)

DX(u2z) = 4DX(z).

Exercise 7.39 The condition of D-simple type can be rephrased in the
form that DX annihilates the ideal in A(X) generated by u2−4. Show that
this is equivalent to the formula

DX(eλuz) = e2λDX
((

1 +
u

2

)
z
)

+ e−2λDX
((

1− u

2

)
z
)

for z ∈ A(X) and λ ∈ Z.

In 1993 Kronheimer and Mrowka proved the following structure theorem
for Donaldson’s invariants [63, 64, 65].

Theorem 7.40. (Kronheimer-Mrowka) Let X be a compact connected
simply connected smooth 4-manifold with b+ odd and greater than or equal
to 3. Assume that X has D-simple type. Then there exist cohomology classes
K1, . . . ,Ks ∈ H2(X) and rational numbers a1, . . . , as such that
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DX
((

1 +
u

2

)
eh
)

= eh·h/2
s∑
i=1

aie
Ki·h

for every h ∈ H2(X). The cohomology classes Ki are all integral lifts of
w2(TX). Moreover, every oriented connected smoothly embedded 2-mani-
fold Σ ⊂ X with Σ ·Σ ≥ 0 (which represents a nontrivial homology class in
the case of genus 0) satisfies

2g(Σ)− 2 ≥ Σ · Σ + |Ki · Σ|

where g(Σ) denotes the genus.

The cohomology classes Ki are called the KM-basic classes. In [126]
Witten conjectured that these agree with the basic classes of Definition 7.35
and that, moreover, the numbers ai agree, up to a universal factor, with
the corresponding Seiberg-Witten invarants.

Conjecture 7.41. (Witten) Let X be a compact connected simply con-
nected smooth 4-manifold with b+ odd and greater than or equal to 3. Then
X has D-simple type if and only if it has SW-simple type. Moreover, if X
has simple type then the KM-basic classes agree with the SW-basic classes
and

DX
((

1 +
u

2

)
eh
)

= 22+ 7χ+11σ
4 eh·h/2

∑
Γ

SW (X,Γ)ec1(LΓ)·h, (7.26)

DX
((

1− u

2

)
eh
)

= 22+ 7χ+11σ
4 i

χ+σ
4 e−h·h/2

∑
Γ

SW (X,Γ)e−ic1(LΓ)·h

(7.27)
for h ∈ H2(X). In both cases the sum runs over all isomorphism classes of
spinc structures on X.

Exercise 7.42 Use the formula of Proposition 7.31 to show that the right
hand side of (7.27) is real. Moreover, show that the numbers (7χ+ 11σ)/4
and (χ+ σ)/4 are integers whenever b1 = 0 and b+ is odd. 2

In [126] Witten gave a heuristic “proof” of his conjecture based on phys-
ical considerations. In his lectures in December 1994 Pidstrigach outlined
a geometric approach for a mathematically rigorous proof which he devel-
oped jointly with Tyurin (cf. [104]). Their basic idea is to use analogues of
the Seiberg-Witten monopole equations, for spinc structures on X twisted
by rank-2-bundles rather than line bundles, to obtain a moduli space which
contains both the Seiberg-Witten moduli spacesM(X,Γ, g, η) and the ASD
instanton moduli spaces Mk as reductions.
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Example 7.43 It is a consequence of Theorem 12.9 below that c = 0 is the
only SW-basic class of the K3 surface. Moreover, with χ = 24 and σ = −16
one finds 2 + (7χ+ 11σ)/4 = 0. Hence the right hand side of (7.26) gives

DK3

((
1 +

u

2

)
eh
)

= eh·h/2

in agreement with known computations of Donaldson’s invariants. More
generally, both invariants have been computed for general elliptic surfaces
and these computations confirm Witten’s conjecture in this case. The com-
putation of the Seiberg-Witten invariants for elliptic surfaces will be dis-
cussed in Section 12.9 2



8

TRANSVERSALITY AND COMPACTNESS

This chapter contains the proofs of the fundamental theorems 7.12
and 7.16 concerning the compactness of the space of solutions of the Sei-
berg-Witten equations and the fact that these solutions form finite di-
mensional manifolds. The first section gives an explicit discussion of the
Seiberg-Witten equations on flat R4. This is used in Section 8.2 for the
proof of the removable singularity theorem. Moreover it may be a good
starting point for readers to familiarize themselves with the Seiberg-Witten
monopole equations.

8.1 Monopoles on flat Euclidean space

Consider the Seiberg-Witten equations (7.1) on flat Euclidean space R4 =
H with coordinates x0, x1, x2, x3. Fix the constant spinc structure Γ : H =
TxH→ C4×4 given by

Γ(ξ) =

(
0 γ(ξ)

−γ(ξ)∗ 0

)
, γ(ξ) =

(
ξ0 + iξ1 ξ2 + iξ3
−ξ2 + iξ3 ξ0 − iξ1

)
. (8.1)

Thus γ(e0) = 1l, γ(e1) = I, γ(e2) = J , and γ(e3) = K with

I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
.

Consider the spinc connection ∇ = ∇A given by

∇jΦ =
∂Φ

∂xj
+AjΦ

where Aj : H→ iR and Φ : H→ C2. The associated connection on the line

bundle LΓ
1/2 = H× C is the connection 1-form

A =

3∑
i=0

Aidxi ∈ Ω1(H, iR).

Its curvature 2-form is given by

FA = dA =
∑
i<j

Fijdxi ∧ dxj ∈ Ω2(H, iR)
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where

Fij =
∂Aj
∂xi
− ∂Ai
∂xj

for i, j = 0, . . . , 3.

Lemma 8.1 The Seiberg-Witten equations (7.1) for A ∈ Ω1(X, iR) and
Φ ∈ C∞(H,C2) are equivalent to

∇0Φ = I∇1Φ + J∇2Φ +K∇3Φ (8.2)

and

F01 + F23 = −2−1Φ∗IΦ,

F02 + F31 = −2−1Φ∗JΦ, (8.3)

F03 + F12 = −2−1Φ∗KΦ.

Proof: The Dirac operator DA : C∞(H,C2) → C∞(H,C2) on the space
of positive spinors is given by

DAΦ = −∇0Φ + I∇1Φ + J∇2Φ +K∇3Φ

and hence the equation DAΦ = 0 is equivalent to (8.2). Now the formulae
for ρ(ωij) with ωij = dxi ∧ dxj in the proof of Lemma 4.55 show that the
matrix ρ+(FA) ∈ C2×2 is given by

ρ+(FA) = (F01 + F23)I + (F02 + F31)J + (F03 + F12)K.

The traceless part

T0 = T − 1

2
traceT1l

of a complex 2× 2-matrix A can be expressed in the form

T0 = −1

2
trace(IT )I − 1

2
trace(JT )J − 1

2
trace(KT )K.

To see this just note that the formula holds for the matrices T = 1l, I, J,K
and that every complex 2× 2-matrix is a linear combination of these four.
Apply this formula to A = ΦΦ∗ to obtain

(ΦΦ∗)0 = −1

2
(Φ∗IΦ)I − 1

2
(Φ∗JΦ)J − 1

2
(Φ∗KΦ)K.

This shows that the formula ρ+(FA) = (ΦΦ∗)0 is equivalent to (8.3). 2
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Exercise 8.2 In the case of the standard spinc structure on R4 = H the
adjoint of the Dirac operator DA is given by

DA
∗Ψ = ∇0Ψ + I∇1Ψ + J∇2Ψ +K∇3Ψ.

The Weitzenböck formula takes the form

DA
∗DAΦ +

3∑
i=0

∇i∇iΦ

= (F01 + F23)IΦ + (F02 + F31)JΦ + (F03 + F12)KΦ.

Give a direct proof of this formula. 2

In the case of the standard spinc structure on flat R4 the action of the
pair (A,Φ) is given by

E(A,Φ) =

∫
R4

 3∑
i=0

|∇iΦ|2 +
1

4
|Φ|4 +

∑
i<j

|Fij |2
 . (8.4)

For later reference we prove here a local version of the energy identity in
Proposition 7.3. For any open set Ω ⊂ R4 denote by E(A,Φ; Ω) the action
of (A,Φ) on Ω.

Lemma 8.3 Let Ω ⊂ R4 be a bounded open domain with smooth boundary
and let A ∈ Ω1(R4, iR) and Φ ∈ C∞(R4,C2). Then

E(A,Φ; Ω) =

∫
Ω

(
|DAΦ|2 + 2

∣∣F+
A − σ

+((ΦΦ∗)0)
∣∣2)

+

∫
∂Ω

A ∧ dA+

∫
∂Ω

〈Φ,∇A,νΦ + Γ(ν)DAΦ〉dvol∂Ω

where ν : ∂Ω→ R4 denotes the outward unit normal vector field, ∇A,νΦ =∑
i νi∇iΦ, and Γ(ν) = −ν01l + ν1I + ν2J + ν3K.

Proof: As in the proof of Proposition 7.3 one finds∫
Ω

(
|FA|2 − 2|F+

A |
2

)
=

∫
Ω

FA ∧ FA =

∫
∂Ω

A ∧ dA.

The last equality follows from the fact that FA∧FA = d(A∧dA). Moreover,
a simple calculation shows that

〈DAΦ, DAΦ〉 − 〈Φ, DA
∗DAΦ〉 =

3∑
i=0

∂

∂xi
〈Γ(ei)Φ, DAΦ〉
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where Γ(e0) = −1l, Γ(e1) = I, Γ(e2) = J , Γ(e3) = K (recall that Γ(v)Φ =
−γ(v)∗Φ for Φ ∈W+). Similarly,

〈∇AΦ,∇AΦ〉 − 〈Φ,∇A∗∇AΦ〉 =

3∑
i=0

∂

∂xi
〈Φ,∇iΦ〉.

These two equations show that∫
Ω

(
|∇AΦ|2 − |DAΦ|2

)
=

∫
Ω

〈Φ,∇A∗∇AΦ−DA
∗DAΦ〉

+

∫
∂Ω

〈Φ,∇A,νΦ + Γ(ν)DAΦ〉dvol∂Ω

= −
∫

Ω

〈Φ, ρ+(FA)Φ〉

+

∫
∂Ω

〈Φ,∇A,νΦ + Γ(ν)DAΦ〉dvol∂Ω

= − 4

∫
Ω

〈F+
A , σ

+((ΦΦ∗)0)〉

+

∫
∂Ω

〈Φ,∇A,νΦ + Γ(ν)DAΦ〉dvol∂Ω.

The second equation follows from Exercise 8.2 and the last from Lemma 7.4.
The rest of the proof is obvious. 2

The next proposition is the main result of this section. It shows that
there are no nontrivial finite energy solutions of the Seiberg-Witten equa-
tions (8.2) and (8.3) on R4.

Proposition 8.4 Let A ∈ Ω1(H, iR) and Φ ∈ C∞(H,C2) satisfy (8.2)
and (8.3) with

E(A,Φ) <∞.

Then E(A,Φ) = 0, i.e. Φ = 0 and FA = 0.

Proof: Denote by

∆ = −
3∑
i=0

∂2

∂xi2

the positive definite Laplacian on R4. We shall prove that every solution
(A,Φ) of (8.2) and (8.3) satisfies

∆|Φ|2 = −2

3∑
i=0

|∇iΦ|2 − |Φ|4. (8.5)
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This implies that the function R4 → R : x 7→ |Φ(x)|2 is subharmonic and
hence cannot have finite L2-norm unless it vanishes. To prove (8.5) use the
Weitzenböck formula of Exercise 8.2 and compute

∆|Φ|2 = − 2
∑
i

∂

∂xi
Re 〈Φ,∇iΦ〉

= − 2
∑
i

|∇iΦ|2 − 2
∑
i

Re 〈Φ,∇i∇iΦ〉

= − 2
∑
i

|∇iΦ|2 − 2Re 〈Φ, (F01 + F23)IΦ〉

− 2Re 〈Φ, (F02 + F31)JΦ〉 − 2Re 〈Φ, (F03 + F12)KΦ〉
= − 2

∑
i

|∇iΦ|2 − |Φ∗IΦ|2 − |Φ∗JΦ|2 − |Φ∗KΦ|2

= − 2
∑
i

|∇iΦ|2 − |Φ|4.

Here all inner products are real. The first two equalities are standard calcu-
lations with Riemannian connections. The third equality follows from the
Weitzenböck formula in Exercise 8.2. The last but one equality uses the
formula (8.3) of Lemma 8.1 and the fact that Re (Φ∗IΦ)2 = −|Φ∗IΦ|2 etc.
The last equality is equivalent to

|Φ|4 = |Φ∗IΦ|2 + |Φ∗JΦ|2 + |Φ∗KΦ|2

and this can be proved by direct computation with

Φ∗IΦ = i(|Φ1|2 − |Φ2|2), Φ∗JΦ = 2iIm Φ1Φ2, Φ∗KΦ = 2iRe Φ1Φ2.

This proves (8.5) and it follows that

∆|Φ|4 = − 2

3∑
i=0

∣∣∣∣ ∂∂xi |Φ|2
∣∣∣∣2 + 2|Φ|2∆|Φ|2 ≤ 0.

Here ∆ is the positive definite Laplacian and so the function x 7→ |Φ(x)|4
is subharmonic. Hence it satisfies the mean value inequality

|Φ(x)|4 ≤ 2

π2r4

∫
Br(x)

|Φ(y)|4 dy (8.6)

for all r > 0 and all x ∈ R4. Since the L4-norm of Φ is finite it follows, by
taking the limit r → ∞, that Φ(x) = 0 for all x. The formula (8.3) now
shows that the connection A is anti-self-dual. This means that
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FA = dA = − ∗ dA

and hence

∆FA = dd∗FA + d∗dFA = dd∗dA+ d∗ddA = −dd∗ ∗ dA = 0.

This implies

∆|FA|2 = −
∑
i,j,k

∣∣∣∣∂Fij∂xk

∣∣∣∣2 ≤ 0. (8.7)

Since the L2-norm of FA is finite it follows from the mean value inequality,
as above, that FA = 0. This proves the proposition. 2

Remark 8.5 It is easy to construct a 1-form A on R4 with an anti-self-
dual differential FA = dA 6= 0. The proof of Proposition 8.4 shows that
such a 1-form must have infinite energy ‖dA‖2 = ∞. To construct A let
f : R3 → R be a nonconstant harmonic function and define

ω = (∂1f)ω1 + (∂2f)ω2 + (∂3f)ω3,

where ω1 = dx0dx1−dx2dx3, ω2 = dx0dx2−dx3dx1, ω3 = dx0dx3−dx1dx2.
This form is obviously anti-self-dual and one checks by direct calculation
that ω is closed. By Poincaré’s lemma, there exists a 1-form A ∈ Ω1(R4)
such that dA = ω. 2

8.2 Removal of singularities

The goal of this section is to prove the following removable singularity
theorem for Seiberg-Witten monopoles defined on a punctured ball B−{0}
where B = B4 = {x ∈ R4 | |x| ≤ 1}. We consider here the standard flat
metric even though the result continues to hold for any metric. If Φ = 0
then the result reduces to Uhlenbeck’s removable singularity theorem for
ASD instantons in the case of the gauge group G = S1 (cf. Uhlenbeck [124]
and Donaldson–Kronheimer [21], pp 58–72 and 166-170).

Theorem 8.6. (Removable singularities) Let A ∈ Ω1(B−{0}, iR) and
Φ ∈ C∞(B − {0},C2) satisfy (8.2) and (8.3) with E(A,Φ;B) < ∞. Then
there exists a gauge transformation u : B−{0} → S1 such that u(x) = 1 for
|x| = 1 and u∗A and u−1Φ extend to a smooth solution of (8.2) and (8.3)
over B.

A crucial ingredient in the proof is the following weak removable singu-
larity theorem for 1-forms on Rn. The theorem asserts that if α is a 1-form
on the punctured ball Bn − {0} such that dα is of class L2 then there
exists a function ξ : Bn − {0} → R such that α − dξ is of class W 1,2 (and
d∗(α− dξ) = 0). If n = 4 and α is anti-self-dual then it follows easily that
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α − dξ extends to a smooth 1-form on B4. This is Uhlenbeck’s removable
singularity theorem for ASD instantons in the case G = S1. Note also that
this is the special case Φ = 0 in Theorem 8.6. The proof in the case G = S1

is quite simple compared to the nonabelian case. Throughout denote by
Bn(r) = {x ∈ Rn | |x| ≤ r} the closed ball in Rn of radius r and abbrevi-
ate Bn = Bn(1) and A(r0, r1) = An(r0, r1) = {x ∈ Rn | r0 ≤ |x| ≤ r1} for
r0 < r1.

Proposition 8.7. (Uhlenbeck) Assume n ≥ 4 and let α ∈ Ω1(Bn−{0})
be a smooth real valued 1-form which satisfies∫

Bn
|dα|2 <∞.

Then there exists a smooth function ξ : Bn − {0} → R such that α− dξ is
of class W 1,2 on the (unpunctured) unit ball and satisfies∫

Bn

(
|∇(α− dξ)|2 +

|α− dξ|2

|x|2

)
≤ 4

∫
Bn
|dα|2

as well as

d∗(α− dξ) = 0,
∂ξ

∂ν
= α(ν).

Here dξ/∂ν denotes the normal derivative on ∂Bn and α(ν) =
∑
i αi(x)xi

for |x| = 1.

Note that addition of any exact 1-form onBn−{0} does not alter the L2-
norm of dα. Thus the behaviour of α near zero may be extremely singular.
The proposition asserts that there exists an exact 1-form dξ on Bn − {0}
which tames the singularity at 0 in the sense that α − dξ is of class W 1,2

on Bn. We shall construct ξ as a limit of functions ξε : Bn(1)−Bn(ε)→ R
defined by d∗(α − dξε) = 0 with boundary condition ∂ξε/∂ν = α(ν) on
∂(B1 −Bε). The convergence proof relies on the following three lemmata.

Lemma 8.8 Assume n ≥ 4. Then every smooth 1-form α ∈ Ω1(An(ε, 1))
with α(ν) = 0 on ∂An(ε, 1) satisfies the inequality∫

A(ε,1)

(
|∇α|2 +

|α|2

|x|2

)
≤ 4

∫
A(ε,1)

(
|dα|2 + |d∗α|2

)
.

Proof: Let α =
∑n
i=1 αidxi be a smooth 1-form on a domain Ω ⊂ Rn

with smooth boundary. Suppose that

〈α, ν〉 =

n∑
i=1

αiνi = 0
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on ∂Ω. This condition is equivalent to ∗α|∂Ω = 0. Note that ∆ = d∗d+dd∗

is the standard (positive definite) Laplace operator. Consider the identities∫
Ω

|∇α|2 =

∫
Ω

〈α,∆α〉+

∫
∂Ω

〈
α,
∂α

∂ν

〉
dvol∂Ω,∫

Ω

|dα|2 =

∫
Ω

〈α, d∗dα〉+

∫
∂Ω

α ∧ ∗dα,∫
Ω

|d∗α|2 =

∫
Ω

〈α, dd∗α〉.

The last identity holds whenever 〈α, ν〉 = 0 on ∂Ω. Take the difference of
these identities to obtain

‖∇α‖2 − ‖dα‖2 − ‖d∗α‖2 =

∫
∂Ω

〈
α,
∂α

∂ν

〉
dvol∂Ω −

∫
∂Ω

α ∧ ∗dα.

Here all norms on the left are L2-norms on A(ε, 1). Now use the formulae

dvol∂Ω =
∑
i

νi ∗ dxi, ∗dxi|∂Ω = νidvol∂Ω

and

dxi ∧ ∗(dxi ∧ dxj) = − ∗ dxj , dxj ∧ ∗(dxi ∧ dxj) = ∗dxi

for i < j and compute∫
∂Ω

α ∧ ∗dα =
∑
i<j

∑
k

∫
∂Ω

αk

(
∂αj
∂xi
− ∂αi
∂xj

)
dxk ∧ ∗(dxi ∧ dxj)

=
∑
i<j

∫
∂Ω

αi

(
∂αj
∂xi
− ∂αi
∂xj

)
dxi ∧ ∗(dxi ∧ dxj)

+
∑
i<j

∫
∂Ω

αj

(
∂αj
∂xi
− ∂αi
∂xj

)
dxj ∧ ∗(dxi ∧ dxj)

=
∑
i,j

∫
∂Ω

αi

(
∂αi
∂xj
− ∂αj
∂xi

)
∗ dxj

=
∑
i,j

∫
∂Ω

αi

(
∂αi
∂xj
− ∂αj
∂xi

)
νj dvol∂Ω

=

∫
∂Ω

〈
α,
∂α

∂ν

〉
dvol∂Ω −

∫
∂Ω

∑
i,j

αi
∂αj
∂xi

νj dvol∂Ω

=

∫
∂Ω

〈
α,
∂α

∂ν

〉
dvol∂Ω +

∫
∂Ω

∑
i,j

αiαj
∂νj
∂xi

dvol∂Ω.
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The last equality follows from the fact that

∑
i

αi
∂

∂xi

∑
j

αjνj

 = 0

on ∂Ω. This is because
∑
i αiνi = 0 on ∂Ω and α = (α1, . . . , αn) is tangent

to ∂Ω. Now consider the case Ω = A(ε, 1):∫
∂Ω

〈
α,
∂α

∂ν

〉
dvol∂Ω −

∫
∂Ω

α ∧ ∗dα = −
∫
∂Ω

∑
i,j

αiαj
∂νj
∂xi

dvol∂Ω

=
1

ε

∫
|x|=ε

|α|2 −
∫
|x|=1

|α|2.

Thus we have proved the identity

‖∇α‖2 = ‖dα‖2 + ‖d∗α‖2 +
1

ε

∫
|x|=ε

|α|2 −
∫
|x|=1

|α|2 (8.8)

for 1-forms on A(ε, 1) which satisfy 〈α, ν〉 = 0 on the boundary. Now con-
sider the function f : Rn − {0} → Rn given by

f(x) =
x

|x|2
, div(f) =

n− 2

|x|2
.

Then for every smooth function u : A(ε, 1)→ R

1

ε

∫
|x|=ε

|u|2 −
∫
|x|=1

|u|2 = −
∫
∂A(ε,1)

〈ν, f〉|u|2 dvol

= −
∫
A(ε,1)

n∑
i=1

∂

∂xi
(fi|u|2)

= −
∫
A(ε,1)

n∑
i=1

(
2fiu

∂u

∂xi
+ |u|2 ∂fi

∂xi

)
≤ 2

∫
A(ε,1)

|u| |∇u|
|x|

−
∫
A(ε,1)

div(f)|u|2

= 2

∫
A(ε,1)

|u| |∇u|
|x|

− (n− 2)

∫
A(ε,1)

|u|2

|x|2

≤ δ

∫
A(ε,1)

|∇u|2 −
(
n− 2− 1

δ

)∫
A(ε,1)

|u|2

|x|2
.

The last inequality holds for any constant δ > 0. If n ≥ 4 we can choose
1/(n− 2) < δ < 1. For example, with δ = 3/4 we obtain from (8.8)
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‖∇α‖2 ≤ ‖dα‖2 + ‖d∗α‖2 +
3

4
‖∇α‖2 −

(
n− 2− 4

3

)∫
A(ε,1)

|α|2

|x|2
.

This holds for all n. But for n ≥ 4 the last term on the right is negative
and the desired inequality follows. 2

Lemma 8.9. (Poincaré inequality) There is a constant c = c(n) > 0
such that every smooth function ξ : An(1/2, 1)→ R with∫

A(1/2,1)

ξ = 0

satisfies the inequality∫
A(1/2,1)

|ξ|2 ≤ c
∫
A(1/2,1)

|dξ|2.

Proof: Suppoose otherwise that there exists a sequence of smooth func-
tions ξi : A(1/2, 1)→ R which have mean value zero and satisfy∫

A(1/2,1)

|ξi|2 = 1, lim
i→∞

∫
A(1/2,1)

|dξi|2 = 0.

Then, by Rellich’s theorem, there exists a subsequence (still denoted by
ξi) which converges weakly in W 1,2 and strongly in L2. The limit function
ξ = limi→∞ ξi lies in W 1,2, has L2-norm 1, satisfies dξ = 0, and has mean
value zero. But dξ = 0 implies that ξ is constant and the mean value zero
condition shows that ξ = 0 contradicting the fact that the L2-norm is 1.
This proves the lemma. 2

Lemma 8.10 Every smooth function ξ : An(r0, r1 + t) → R satisfies the
inequality ∫

A(r0,r1)

|ξ|2 ≤ 2

∫
A(r0+t,r1+t)

|ξ|2 +

∫
A(r0,r1+t)

|dξ|2

for 0 < r0 < r1 ≤ 1 and 0 ≤ t ≤ 1.

Proof: Consider the identity

ξ(rx) = ξ((t+ r)x)−
∫ t

0

〈∇ξ((r + s)x), x〉 ds

and use the Cauchy-Schwarz inequality to obtain

|ξ(rx)|2 ≤ 2 |ξ((t+ r)x)|2 +
2

(n− 2)rn−2

∫ r+t

r

sn−1|dξ(sx)|2 ds
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for |x| = 1 and n ≥ 3. In the case n = 2 there is a similar inequality with
1/(n− 2)rn−2 replaced by log(r + t)− log r ≤ r − log r. Now multiply by
rn−1 and integrate over Sn−1 and over r0 ≤ r ≤ r1. 2

Lemma 8.11 Let u : Bn − {0} → R be a smooth function such that∫
Bn
|∇u(x)|2 <∞.

Then u is of class W 1,2 on Bn, i.e. its distributional derivatives exist and
agree with the ordinary derivatives.

Proof: Note first that, by Lemma 8.10 with r1 = t = 1/2 and r0 → 0, the
function u is square integrable on Bn. Choose a test function ϕ : Rn → R
with compact support in Bn. Then∫

ε≤|x|≤1

(
∂ϕ

∂xi
u+ ϕ

∂u

∂xi

)
= −

∫
|x|=ε

xi
ε
ϕu. (8.9)

The integrand on the left is integrable on Bn and hence the limit as ε→ 0
exists. We must prove that this limit is zero. But the term on the right is
bounded in absolute value by

f(ε) = c

∫
|x|=ε

|u| .

where c = sup |ϕ|. By the Cauchy-Schwarz inequality,

f(ε)2 ≤ c2ωnεn−1

∫
|x|=ε

|u|2

where ωn denotes the area of the unit sphere Sn−1 ⊂ Rn. Hence the con-
dition on u shows that∫ 1

0

f(ε)2

εn−1
dε ≤ c2ωn

∫
0<|x|≤1

|u(x)|2 dx <∞.

This implies that f(εk)→ 0 for some sequence εk → 0 and hence the limit
in (8.9) as ε→ 0 is zero as required. 2

Proof of Proposition 8.7: For every ε > 0 there exists a smooth function
ξε : An(ε, 1)→ R which satisfies

d∗(α− dξε) = 0,
∂ξε
∂ν

= 〈α, ν〉

where the last equation holds on the boundary. To see this choose first
a smooth function ξ0 : An(ε, 1) → R which satisfies ∂ξ0/∂ν = 〈α, ν〉 on
∂An(ε, 1) and then choose ξ1 ∈W 2,2(An(ε, 1)) with
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d∗dξ1 = d∗α− d∗dξ0, ∂ξ1/∂ν = 0

(the Neumann boundary value problem). Then ξε = ξ0 + ξ1 is as required.
Moreover, the function ξε is only determined up to a constant which can
be fixed by the normalization condition∫

1/2≤|x|≤1

ξε(x) dx = 0.

It follows from Lemma 8.8 that

‖∇(α− dξε)‖2L2 +

∫
ε≤|x|≤1

|α− dξε|2

|x|2
≤ 4 ‖dα‖2L2 .

Fix some number δ > 0. Then for ε < δ

‖∇dξε‖L2(A(δ,1)) ≤ 2 ‖dα‖L2 + ‖∇α‖L2(A(δ,1))

and

‖dξε‖L2(A(δ,1)) ≤ 2 ‖dα‖L2 + ‖α‖L2(A(δ,1)) .

Now use Lemma 8.9 and the mean value condition to control the L2-norm
of ξε on A(1/2, 1) and Lemma 8.10 to control the this norm on A(δ, 1/2).
This shows that for every δ > 0 there exists a constant cδ > 0 such that

‖ξε‖W 2,2(A(δ,1)) ≤ cδ

for every ε ∈ (0, δ). Now the usual diagonal sequence argument shows that
there exists a sequence εi → 0 such that ξεi converges strongly in W 1,2(K)
and weakly in W 2,2(K) for every compact subset K ⊂ Bn−{0}. The limit
function ξ : Bn − {0} → R is of class W 2,2 on every compact subset away
from 0 and satisfies

d∗(α− dξ) = 0, 〈α− dξ, ν〉 = 0.

Moreover,∫
K

(
|∇(α− dξ)|2 +

|α− dξ|2

|x|2

)
≤ lim

i→∞

∫
K

(
|∇(α− dξi)|2 +

|α− dξi|2

|x|2

)
≤ 4

∫
Bn
|dα|2

for every compact subset K ⊂ Bn−{0}. By Lemma 8.11, α−dξ is of class
W 1,2 on Bn. This proves the proposition. 2
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Proof of Theorem 8.6: By Proposition 8.7 there exists a smooth func-
tion ξ : B4 − {0} → iR such that A− dξ is of class W 1,2 on the closed ball
B4 and d∗(A−dξ) = 0. Hence we may assume from now on that A ∈W 1,2

and d∗A = 0. Moreover, by the finite energy condition, we have Φ ∈ L4

and ∇iΦ ∈ L2. The Sobolev embedding theorem shows that A ∈ L4 and
hence

∂iΦ = ∇iΦ−AiΦ ∈ L2

for i = 0, 1, 2, 3. By Lemma 8.11, this shows that Φ ∈W 1,2. Thus we have
a solution (A,Φ) of (8.2) and (8.3) which is smooth on the punctured ball
B4 − {0} and on the closed ball satisfies

A ∈W 1,2, Φ ∈W 1,2, d∗A = 0.

We shall prove in three steps that∫
|x|≤1

2|∇AΦ|2 + |Φ|4

|x|2
<∞. (8.10)

and that there exists a constant c > 0 such that

E0(A,Φ;Br) =

∫
|x|≤r

(
2|∇AΦ|2 + |Φ|4

)
≤ cr2. (8.11)

Then it will follow easily that Φ is of class Lp for some p > 4 and the rest
of the argument is by elliptic bootstrapping.

Step 1: For every r ∈ (0, 1]

E0(A,Φ;Br) = 2

∫
|x|=r

∑
i

〈Φ,∇iΦ〉
xi
r
.

Let Ω ⊂ R4 be any open domain with smooth boundary such that A
and Ψ are defined on its closure. (Thus 0 /∈ Ω̄.) Consider the energy

E0(A,Φ; Ω) =

∫
Ω

(
2|∇AΦ|2 + |Φ|4

)
=

∫
Ω

(
2|∇AΦ|2 +

1

2
|Φ|4 + 4|F+

A |
2

)
= 2

∫
∂Ω

〈Φ,∇A,νΦ〉dvol∂Ω.

The second equality follows from the fact that |Φ|4 = 8|F+
A |2 for solu-

tions of (8.3) and the last equality follows from the proof of Lemma 8.3.
Abbreviate
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f(r) = 2

∫
|x|=r

∑
i

〈Φ,∇iΦ〉
xi
r
.

Then f : (0, 1] → R is a smooth function and the previous identity shows
that

E0(A,Φ;Br −Bε) = f(r)− f(ε).

Hence f is monotonically increasing. Moreover, the energy is finite and
hence, by taking the limit ε → 0, we see that f is bounded below. This
shows that the limit

f(0) := lim
ε→0

f(ε)

exists. Now it follows from the finiteness of the energy that Φ ∈ L4 and
∇iΦ ∈ L2 and hence 〈Φ,∇iΦ〉 ∈ L4/3 for all i. Moreover, by Hölder’s in-
equality,

|f(r)|4/3 ≤

(∫
|x|=r

1

)1/3 ∫
|x|=r

(|Φ| |∇AΦ|)4/3

≤ (2π2)1/3r

∫
|x|=r

(|Φ| |∇AΦ|)4/3

and hence ∫ 1

0

|f(r)|4/3

r
dr <∞.

This shows that there must be a sequence εi → 0 with f(εi) → 0 and it
follows that f(0) = 0. This implies f(r) = E0(A,Φ;Br) as claimed.

Step 2: Every smooth function u : R4 − {0} → R satisfies the identity

−
∫
ρ≤|x|≤r

∆u

|x|2
=

∫
|x|=r

2u+ 〈∇u, x〉
r3

−
∫
|x|=ρ

2u+ 〈∇u, x〉
ρ3

.

Note the choice of sign in the definition of the Laplacian

∆ = −
∑
i

∂

∂xi2
.

With this sign we have the familiar identity∫
Ω

(
u∆v − v∆u

)
=

∫
∂Ω

(
∂u

∂ν
v − u∂v

∂ν

)
.

Step 2 arises as the special case of the annulus
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Ω =
{
x ∈ R4 | ρ ≤ |x| ≤ r

}
with v(x) = 1/|x|2. This is the fundamental solution of Laplace’s equation
and satisfies ∇v(x) = −2x/|x|4 and ∆v(x) = 0 for x 6= 0.

Step 3: Proof of (8.10) and (8.11).

Recall from the proof of Proposition 8.4 that

∆|Φ|2 = −2|∇AΦ|2 − |Φ|4.

Moreover, note that∫
|x|=r
〈∇|Φ|2, x〉 = 2

∫
|x|=r

∑
i

〈Φ,∇iΦ〉xi = rf(r).

Hence it follows from Step 2 with u = |Φ|2 that∫
ρ≤|x|≤r

2|∇AΦ|2 + |Φ|4

|x|2
dx =

2

r3

∫
|x|=r

|Φ|2 +
f(r)

r2

− 2

ρ3

∫
|x|=ρ

|Φ|2 − f(ρ)

ρ2

Since the terms involving ρ have negative sign the inequality (8.10) follows
by taking the limit ρ→ 0. Moreover,

f(ρ)

ρ2
≤ f(r)

r2
+

2

r3

∫
|x|=r

|Φ|2

for 0 < ρ ≤ r and this proves (8.11).

Recall from the proof of Proposition 8.4 that the function x 7→ |Φ(x)|4
is subharmonic and hence

|Φ(x)|4 ≤ 2

π2r4

∫
Br(x)

|Φ|4 ≤ 2

π2r4
E0(A,Φ;B2r) ≤

8c

π2r2

for r = |x|. The first inequality is the mean value inequality for subharmonic
functions, the second follows from the definition of E0, and the last follows
from (8.11). Thus

|Φ(x)|4 ≤ 8c

π2|x|2

and, since the function x 7→ 1/|x|α is integrable in a neighbourhood of zero
whenever α < 4, it follows that |Φ|p is integrable for every p < 8. Thus we
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have proved that |Φ|2 ∈ Lp for any p < 4. Since d+A = σ+((ΦΦ∗)0) this
shows that d+A ∈ Lp for any p < 4. Now recall that d∗A = 0 and hence

∆A = d∗dA = 2d∗d+A = 2d∗σ+((ΦΦ∗)0).

Note that A is a weak solution of this equation on the closed (unpunctured)
ball and hence it follows that A ∈ W 1,p for any p < 4. Thus A ∈ Lq for
any q <∞. The formula

0 = DAΦ = DΦ− Γ(A)Φ

with Γ(A)Φ ∈ Lp now shows that Φ ∈ W 1,p for any p < 4. Thus Φ ∈ Lq
for some q > 4 and using the last equation again with Γ(A)Φ ∈ Lq we find
that Φ ∈ W 1,q for some q > 4. This implies d∗σ+((ΦΦ∗)0) ∈ Lq and, by
the previous equation A ∈W 2,q. Using the two equations alternatingly we
conclude that A and Φ are smooth on B1. This is the elliptic bootstrapping
argument. More details are carried out in the next section. 2

8.3 Compactness and Regularity

The goal of this section is to give detailed proofs of Theorems 7.11 and 7.12
about the compactness and regularity properties of the solutions of the
Seiberg-Witten equations (7.4). The proofs require some preparation.

Estimates for the Dirac-operator

Fix a smooth compact Riemannian 4-manifold X equipped with a spinc

structure Γ : TX → End(W ). The Lemmata 8.14 and 8.13 below deal
entirely with the linear problem of the regularity of a section Φ in the
kernel of DA for a given connection A. It is important here to observe that
the connection A is only assumed to be of class W k,p and it is necessary
to keep track of how the constants in the elliptic estimates depend on A.
These lemmata also are the essential ingredients in the proof of the following
proposition which deals with the Fredholm properties of the Dirac operator
under weak regularity assumptions on the connection A.

Proposition 8.12 Let A ∈ Ak,q(Γ) for some constant q > 1 and some
integer k ≥ 0. Let j ∈ Z and p > 1 such that

0 ≤ j ≤ k, j − 4

p
≤ k − 4

q
, (k + 1)q > 4.

Then the Dirac operator DA : W j+1,p(X,W+) → W j,p(X,W−) is Fred-
holm with index

indexDA =
c1(LΓ) · c1(LΓ)− σ(X)

4
.
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The next lemma gives the fundamental elliptic Lp estimate for the Dirac
operator. In particular, it shows how the constant depends on the connec-
tion A.

Lemma 8.13 Fix integers j, k and real numbers p, q ≥ 1 such that

0 ≤ j ≤ k, j − 4

p
≤ k − 4

q
, (k + 1)q > 4.

Then the following holds.

(i) For any two connections A0, A1 ∈ Ak,q(Γ) the linear operator

DA1 −DA0 : W j+1,p(X,W+)→W j,p(X,W−)

is compact.

(ii) If kq > 4 then for every smooth reference connection A0 ∈ A(Γ) there
exists a constant c = c(A0, j, k, p, q) > 0 such that

‖Φ‖W j+1,p ≤ c
(
‖DAΦ‖W j,p + (1 + ‖A−A0‖Wk,q ) ‖Φ‖W j,p

)
for every A ∈ Ak,q(Γ) and every Φ ∈W j+1,p(X,W+).

Proof: Let A0, A1 ∈ Ak,q(Γ) and denote α = A1−A0 ∈ Ak,q(X). Then the
operator DA1

− DA0
: W j+1,p(X,W+) → W j,p(X,W−) is given by Φ 7→

Γ(α)Φ. A priori it is not even clear that Γ(α)Φ actually lies in W j,p. This
will be established below, and that the operator is compact will essentially
follow from Rellich’s theorem. The proof relies on the product estimates of
Proposition C.19 in Appendix C. There are three cases to consider.

Case 1: Assume kq < 4 and j − 4/p < k− 4/q. Then Proposition C.19 (i)
shows that there is an estimate

‖Γ(α)Φ‖W j,p ≤ c ‖α‖Wk,q ‖Φ‖W j,r .

where r = 4pq/(4q − 4p+ kpq) > p.

This shows that the map W j,r(X,W+) → W j,p(X,W−) : Φ 7→ Γ(α)Φ
is a bounded linear operator. Moreover, the number r satisfies

1

r
=

1

p
− 1

q
+
k

4
.

It turns out that there is a compact inclusion W j+1,p ↪→ W j,r precisely
when (k + 1)q > 4. This follows from Rellich’s theorem and the fact that

r <
4p

4− p
⇐⇒ 1

r
>

1

p
− 1

4
⇐⇒ (k + 1)q > 4.
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Hence the operator W j+1,p → W j,p : Φ 7→ Γ(a)Φ is the composition of a
compact operator and a bounded linear operator and is therefore compact.

Case 2: Assume kq < 4 and j−4/p = k−4/q. Then Proposition C.19 (ii)
shows that there is an estimate

‖Γ(α)Φ‖W j,p ≤ c ‖α‖Wk,q (‖Φ‖W j,4/j + ‖Φ‖L∞) .

In this case the map Φ 7→ Γ(a)Φ is a bounded linear operator from
W j,4/j(X,W+)∩L∞(X,W+) to W j,p(X,W−). By Rellich’s theorem, there
is a compact inclusion W j+1,p ↪→ W j,4/j ∩ L∞ if and only if (j + 1)p > 4
and, since j − 4/p = k − 4/q, this is equivalent to (k + 1)q > 4.

Case 3: If kq = 4 then Proposition C.19 (iii) shows that for every ε > 0
there is an estimate

‖Γ(α)Φ‖W j,p ≤ cε ‖α‖Wk,q ‖Φ‖W j,p+ε .

If kq > 4 then, by Proposition C.19 (iv), this estimate holds with ε = 0.

In this case use the fact that the inclusion W j+1,p ↪→W j,p+ε is compact
for 0 ≤ ε < 4p/(4 − p) when p ≤ 4 and for any ε ≥ 0 when p > 4. This
proves (i).

To prove (ii) assume first that A is smooth, denote Ψ = DAΦ, and
consider the equation

∇A∗∇AΦ = DA
∗Ψ− s

4
Φ− ρ+(FA)Φ. (8.12)

Now use the Calderón-Zygmund inequality for the Bochner Laplacian to
obtain

‖∇AΦ‖Lp ≤ c sup
ϕ

〈∇Aϕ,∇AΦ〉
‖ϕ‖W 1,q

= c sup
ϕ

〈DAϕ,Ψ〉 −
〈
s
4Φ + ρ+(FA)ϕ,Φ

〉
‖ϕ‖W 1,q

where 1/p+1/q = 1 and the supremum is over all ϕ ∈ C∞(X,W+). Hence,
with Ψ = DAΦ

‖Φ‖W 1,p ≤ c (‖Φ‖Lp + ‖DAΦ‖Lp) .

More generally, the Calderón-Zygmund inequality implies that

‖Φ‖W j+1,p ≤ c (‖Φ‖W j,p + ‖DAΦ‖W j,p)

for any j where the constant c depends of j, p, and A. This proves (ii)
when A = A0 is smooth. The general case follows from the smooth case
and Case 3 above. This proves the lemma. 2
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The next lemma addresses the question of the regularity of Φ given a
connection A. It shows that every weak solution Φ of DAΦ = Ψ with A
and Ψ of class W j,p must be of class W j+1,p whenever (j + 1)p > 4.

Lemma 8.14 Let A ∈ Aj,p(Γ) and Ψ ∈ W j,p(X,W−) for some constant
p ≥ 1 and integer j ≥ 1 with (j + 1)p > 4. Suppose that Φ ∈ Lq(X,W+)
with 1/p+ 1/q = 1 satisfies∫

X

〈DA
∗ψ,Φ〉dvol =

∫
X

〈ψ,Ψ〉dvol

for all ψ ∈ C∞(X,W−). Then Φ ∈W j+1,p(X,W+) and DAΦ = Ψ.

Proof: Assume first that A is smooth. Then the result follows from stan-
dard elliptic regularity for the Bochner Laplacian ∇A∗∇A. Namely, choose
a test function ψ = DAϕ and use the Weitzenböck formula to obtain∫

X

〈∇A∗∇Aϕ,Φ〉 =

∫
X

〈DAϕ,Ψ〉 −
∫
X

〈
ϕ,
s

4
Φ + ρ+(FA)Φ

〉
for every ϕ ∈ C∞(X,W+). Thus Φ is a weak solution of the equation (8.12)
above with Ψ ∈W j,p and this implies Φ ∈W j+1,p. This proves the lemma
in the case where A is smooth. In the general case fix a smooth reference
connection A0, denote α = A−A0 ∈W j,p(X,T ∗X ⊗ iR), and consider the
equation

DA0Φ = Ψ− Γ(α)Φ.

Assume first that j = 1 and p > 2. Since α ∈W 1,p ⊂ L4p/(4−p) and Φ ∈ Lq
with q = p/(p− 1) it follows from Hölder’s inequality that

Γ(α)Φ−Ψ ∈ Lr, 1

r
=

4− p
4p

+
1

q
.

By the first part of the proof, this implies

Φ ∈W 1,r ⊂ Lq1 , q1 =
4r

4− r
=

2pq

2p+ 2q − pq
> q.

The inequality q1 > q follows uses the fact that p > 2. Now continue by
induction with

qi+1 =
2pqi

2p+ 2qi − pqi
> qi

until q′ = qi+1 ≥ 2p/(p − 2). This shows that Φ ∈ L2p/(p−2) and hence
as above Γ(α)Φ − Ψ ∈ L4. This in turn implies Φ ∈ W 1,4 ⊂ Ls for any
s <∞ and thus Γ(α)Φ−Ψ ∈ Lr for some r > 4. This shows that Φ ∈W 1,r

and hence Γ(α)Φ − Ψ ∈ W 1,p. (Multiplication by a function in W 1,r with
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r > 4 preserves any Sobolev space W 1,p.) Finally, using the first part of the
proof again, one obtains Φ ∈ W 2,p. This proves the lemma for j = 1 and
p > 2. Now suppose, by induction over j, that the lemma has been proved
for j ≥ 1 and any p ≥ 1 with (j + 1)p > 4. Assume that A ∈ Aj+1,q and
Ψ ∈W j+1,q with (j + 2)q > 4. Then

A ∈ Aj,p, Φ ∈W j,p, p =
4q

4− q

and the reader may check that (j + 1)p > 4. By the induction hypothesis,
this implies that Φ ∈W j+1,p. Since (j + 1)p > 4 it follows that multiplica-
tion by Φ preserves the Sobolev space W j+1,q and thus Γ(α)Φ ∈ W j+1,q.
Hence the equation DA0Φ = Ψ − Γ(α)Φ shows that Φ ∈ W j+2,q. This
proves the lemma. 2

Proof of Proposition 8.12: By Lemma 8.13 (i) the operator DA−DA0
:

W j+1,p(X,W+) → W j,p(X,W−) is compact whenever A ∈ Ak,q, 0 ≤ j ≤
k, j−4/p ≤ k−4/q, and (k+1)q > 4. Hence it suffices to prove that DA0

is
a Fredholm operator of the required index whenever A0 is a smooth connec-
tion. ThatDA0 has a closed range and a finite dimensional kernel follows im-
mediately from Lemma 8.13 (ii), Lemma A.1, and Rellich’s theorem. That
DA0

has a finite dimensional cokernel follows from Lemma 8.14 and the fact
that the formal adjoint operator DA

∗ : W j+1,p(X,W−) → W j,p(X,W+)
also has a finite dimensional kernel. The index formula follows from The-
orem 6.22 and the fact that the index is independent of j, and p. This in
turn follows from the fact that, again by Lemma 8.14, the elements of the
kernel and cokernel of DA0

are smooth whenever A0 is smooth. This proves
the proposition. 2

Elliptic bootstrapping

Proof of Theorem 7.11: By Theorem 7.14, every connection is gauge
equivalent to one which satisfies d∗(A − A0) = 0 for some fixed smooth
connection A0 ∈ A(Γ). Assume without loss of generality that the reference
connection A0 is Yang-Mills, i.e. d∗FA0

= 0 and hence d∗F+
A0

= 0. The 1-

form α = A−A0 ∈ Ω1(X, iR) satisfies

F+
A = F+

A0
+ d+a = F+

A0
+

1

2
(dα+ ∗dα).

and hence dα = 2F+
A −2F+

A0
−∗dα. Since d∗α = 0 and d∗F+

A0
= 0 it follows

that

〈dβ, dα〉+ 〈d∗β, d∗α〉 = 2〈dβ, F+
A 〉. (8.13)

for every 1-form β ∈ Ω1(X, iR). Here 〈·, ·〉 denotes the L2 inner product..
Note that (8.13) is a weak version of the equation
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d∗dα+ dd∗α = 2d∗F+
A .

But it only makes sense in the strong form once it has been established
that α is of class W 2,p. This, however, follows easily: By Lemma 8.14, we
have Φ ∈W 2,p(X,W+) and the identity

F+
A + η = σ+((ΦΦ∗)0)

shows that F+
A ∈ W 2,p. (Since 2p > 4 the Sobolev space W 2,p is invariant

under products.) It now follows from (8.13) with d∗FA+ ∈ W 1,p that α ∈
W 3,p. Hence A ∈ A3,p and, by Lemma 8.14, Φ ∈W 4,p. The rest of the proof
is an easy induction argument. Once Φ ∈ W k,p for some k ≥ 2 it follows
as above that F+

A ∈ W k,p, hence α ∈ W k+1,p, and thus Φ ∈ W k+2,p. This
holds for all integers k and thus α and Φ are smooth. 2

Proof of Theorem 7.12: Fix a constant p > 4 and a smooth reference
connection A0 ∈ A(Γ). Then, by Theorem 7.14, every solution (A,Φ) of the
perturbed Seiberg-Witten equations (7.4) is gauge equivalent to one which
satisfies

d∗α = 0, ‖α‖W 1,p ≤ c(1 + ‖dα‖Lp) (8.14)

where α = A−A0. Here the constant c > 0 is independent of A and Φ. The
proof of Theorem 7.11 shows that under this assumption (d∗α = 0) the
pair (A,Φ) is smooth. Hence Lemma 7.13 shows that there is an estimate

sup
X
|Φ|2 ≤ c0

where the constant c0 is independent of the pair (A,Φ). Combine this with
the formula F+

A + η = σ+((ΦΦ∗)0) to obtain a uniform upper bound

sup
X
|F+
A | ≤ c0.

Now recall from the proof of Theorem 7.11 the equation

〈dβ, dα〉+ 〈d∗β, d∗α〉 = 2
〈
dβ, F+

A − F
+
A0

〉
(8.15)

for β ∈ Ω1(X, iR). The Calderón-Zygmund inequality asserts that

‖dα‖Lp ≤ c sup
β

〈dβ, dα〉+ 〈d∗β, d∗α〉
‖β‖W 1,q

= c sup
β

2
〈
dβ, F+

A − F
+
A0

〉
‖β‖W 1,q

where 1/p + 1/q = 1. The estimate on F+
A shows that the right hand side

is uniformly bounded. Hence, by (8.14),

‖α‖W 1,p ≤ c1.
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Since p > 4 it follows from the Sobolev embedding theorem that α is
uniformly bounded in the sup-norm. Now Lemma 8.14 shows that Φ ∈W 2,p

and hence, by Lemma 8.13 (i) with DAΦ = 0, p = q, k = 1, and j = 0,

‖Φ‖W 1,p ≤ c (1 + ‖α‖W 1,p) ‖Φ‖L4 ≤ c′1.

Thus both α and Φ satisfy a uniform W 1,p-estimate. Now it follows from
the Calderón-Zygmund inequality for equation (8.15) and Lemma 8.13 that
for every integer k ≥ 1 there exists a constant c = c(k,X) > 0 such that

‖α‖Wk+1,p ≤ c (1 + ‖ΦΦ∗‖Wk,p) ,

‖Φ‖Wk+1,p ≤ c (1 + ‖α‖Wk,p) ‖Φ‖Wk,p

Use these inequalities inductively for k = 1, 2, 3, . . . to obtain uniform esti-
mates

‖α‖Wk,p + ‖Φ‖Wk,p ≤ ck.
Rellich’s theorem asserts that every sequence which is bounded in W k+1,p

has a subsequence which converges inW k,p. Hence any sequence of solutions
(Aν ,Φν) of (7.1) which satisfies (7.9) has a subsequence which converges in
W k,p for every integer k > 0. By the Sobolev embedding theorem (W k,p ⊂
C` for kp > `p + n) the subsequence converges in the C∞-topology. The
reader may check that the constants in the proof are also independent of
the choice of the metric gν and the perturbation ην provided that these are
converging sequences. 2

The technique in the proof of the Theorem 7.12 is the elliptic boot-
strapping method. The proof is significantly simpler than the compactness
theorem for anti-self-dual instantons with nonabelian Lie groups. The rea-
son lies, firstly, in the fact that Lemma 7.13 gives a uniform bound on the
function Φ and hence on the curvature of A. Secondly, the existence of a
Coulomb gauge (the condition d∗(A − A0) = 0) simply reduces to Hodge
theory and the result is global, rather than local in a neighbourhood of A0.
This significantly simplifies the proof of Uhlenbeck’s theorem in the case
of compact abelian Lie groups.

In the general case one first proves a compactness theorem for solutions
with, say, bounded curvature. Then one observes that the energy formula
gives only a uniform bound on the L2-norm of the curvature (a borderline
case for the Sobolev embedding theorem in dimension 4). Using the con-
formal invariance of the energy (Proposition 7.8) one can then show that,
if the curvature tends to infinity, a nontrivial instanton on Euclidean space
splits off. This argument can also be used for the Seiberg-Witten equa-
tions and then the nonexistence of nontrivial Seiberg-Witten monopoles on
R4 (Proposition 8.4) would guarantee a uniform bound on the curvature.
However, the above argument with the a priori estimate of Lemma 7.13 is
simpler.
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8.4 Transversality in dimension four

Our goal in this section is to provide the proof of Theorem 7.16 which
asserts that for a generic perturbation η the moduli spaces M∗(X,Γ, g, η)
are all smooth manifolds. The proof will be based on the next two cru-
cial lemmata. The first deals with the fundamental Fredholm properties
of the operator D+ defined by D+α = (d∗α, d+α) for α ∈ Ω1(X, iR) (see
page 237.) The second deals with the universal space of all pairs (A,Φ)
where A ∈ A(Γ) is a spinc connection and Φ ∈ ker DA is a nonzero har-
monic spinor. Proposition 8.16 below asserts that this space is a smooth
paracompact separable Banach manifold.

Lemma 8.15 The operator

D+ : W 1,p(X,T ∗X) −→ Lp(X)⊕ Lp(X,Λ2,+T ∗X)

is Fredholm with

indexD+ = b1 − 1− b+ = −χ(X) + σ(X)

2
.

Proof: For general p the proof that D+ is Fredholm is based on the
Calderón-Zygmund inequality and this will not be carried out here. (See
Appendix C for more details about Lp-estimates.) However in the case
p = 2 a simple argument shows that the operator D+ satisfies the estimate

‖α‖W 1,2 ≤ c
(∥∥D+α

∥∥
L2 + ‖α‖L2

)
. (8.16)

To see this consider the formal adjoint operator

(D+)∗ : Ω0(X)⊕ Ω2,+(X) −→ Ω1(X),

defined by 〈(D+)∗(η, τ), α〉 = 〈(η, τ), D+α〉 for η ∈ Ω0(X), τ ∈ Ω2,+(X),
α ∈ Ω1(X, iR). The identity 〈η, d∗α〉+ 〈τ, d+α〉 = 〈dη+ d∗τ, α〉 shows that

(D+)∗(η, τ) = dη + d∗τ.

Hence

(D+)∗D+α = dd∗α+
1

2
d∗dα

for α ∈ Ω1(X, iR). Now recall from Exercise 2.31 that

‖dα‖2L2 + ‖d∗α‖2L2 = ‖∇α‖2L2 +

∫
X

S(α∗, α∗)dvol

where S : S2TX → R denotes the Ricci tensor. This implies
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∥∥D+α
∥∥2

L2 =

〈
α, dd∗α+

1

2
d∗dα

〉
= ‖d∗α‖2L2 +

1

2
‖dα‖2L2

≥ 1

2
‖∇α‖2L2 − c ‖α‖2L2

=
1

2
‖α‖2W 1,2 −

(
c+

1

2

)
‖α‖2L2 .

This proves the estimate (8.16). By Lemma A.1, the operator D+ has a
closed range and a finite dimensional kernel. Moreover, elliptic regularity
asserts that if η ∈ L2(X) and τ ∈ L2(X,Λ2,+T ∗X) satisfy

〈η, d∗α〉+ 〈τ, d+α〉 = 0

for all α ∈ Ω1(X) then η and τ are smooth and (D+)∗(η, τ) = dη+d∗τ = 0.
This shows that the cokernel of D+ agrees with the kernel of (D+)∗ and
a similar estimate as (8.16) for the operator (D+)∗ shows that the kernel
of (D+)∗ is also finite dimensional. This proves that D+ is a Fredholm
operator.

Now consider the kernel of D+. Firstly, by elliptic regularity, all 1-forms
in the kernel of D+ are smooth. Secondly, for every α ∈ Ω1(X),

D+α = 0 ⇐⇒ d+α = 0, d∗α = 0 ⇐⇒ dα = 0, d∗α = 0.

Note here that 2d∗d+ = d∗d and hence d+α = 0 implies d∗dα = 0. Then
take the inner product with α to obtain dα = 0. Thus the kernel of D+ is
the space of harmonic 1-forms

ker D+ = H1 = ker d ∩ ker d∗.

Now consider the operator (D+)∗(η, τ) = dη+d∗τ . Since d◦d = 0 it follows
that 〈dη, d∗τ〉 = 0 for all η and τ . Hence (D+)∗(η, τ) = 0 if and only if
dη = 0 and d+τ = 0. But a self-dual 2-form τ = ∗τ ∈ Ω2,+(X) satisfies
dτ = 0 if and only if d∗τ = 0. Hence

ker (D+)∗ = H0 ⊕H2,+

where H0 = ker (d : Ω0(X) → Ω1(X)) is the space of constant functions
and H2,+ is the space of self-dual harmonic 2-forms. Since dim H0 = 1,
dim H1 = b1, and dim H2,+ = b+ this proves the index formula for D+. 2

Recall from Proposition 8.12 that DA : W 1,p(X,W+)→ Lp(X,W−) is
a Fredholm operator with indexDA = (c ·c−σ)/4 where c = c1(LΓ). Hence
it follows from Lemma 8.15 that the operator
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DA,Φ :
W 1,p(X,T ∗X ⊗ iR)

⊕
W 1,p(X,W+)

−→

Lp(X, iR)
⊕

Lp(Λ2,+T ∗X ⊗ iR)
⊕

Lp(X,W−)

defined by (7.15) is a Fredholm operator whose index is the sum of the
indices of DA and D+ and hence is given by (7.16):

indexDA,Φ =
〈c1(LΓ)2, [X]〉

4
− 2χ(X) + 3σ(X)

4
.

Recall that the L2-orthogonal complement of imDA,Φ always contains the
space H0(X, iR) and that a perturbation η ∈ iΩ2,+(X) is called regular

if cokerDA,Φ ∼= H0(X, iR) for all (A,Φ) ∈ M̃∗(X,Γ, g, η). The proof that
the set Ω2,+

reg (X, iR; g) of regular perturbations is of the second category
in the sense of Baire relies on the Sard-Smale theorem B.13 and on the
following auxiliary lemma. Note here the choice of the constant p > 4.
The result should continue to hold for any p > 2, however, for such values
of p the proof of the unique continuation theorem (see Theorem E.8 in
Appendix E) becomes more difficult and the following result suffices for all
the applications treated in this book.

Proposition 8.16 For every p > 4 and every integer k ≥ 1 the space

N k,p = N k,p(X,Γ, g)

of all pairs (A,Φ) ∈ Ak,p(Γ)×W k,p(X,W+) which satisfy

DAΦ = 0, d∗(A−A0) = 0, Φ 6= 0

is a smooth paracompact separable Banach manifold.∗ Its tangent space
at (A,Φ) ∈ N k,p consists of all pairs α ∈ W k,p(X,T ∗X ⊗ iR), ϕ ∈
W k,p(X,W+) which satisfy

DAϕ+ Γ(α)Φ = 0, d∗α = 0.

Proof: Consider the Banach manifolds

X = Ak,p(Γ)⊕W k,p(X,W+)∗,

Y0 = W k−1
0 (X, iR)⊕W k−1,p(X,W−)

(8.17)

∗A topological space is called separable if it admits a countable dense subset. It is
called paracompact if every open cover admits a locally finite refinement. Both conditions

together imply that every open cover has a countable subcover.
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where W k,p(X,W+)∗ denotes the set of nonzero W k,p-sections of W+ and

W k−1,p
0 (X, iR) =

{
ξ ∈W k−1,p(X, iR) |

∫
X

ξdvol = 0

}
.

Note that T(A,Φ)X = W k,p(X,T ∗X ⊗ iR) ⊕W k,p(X,W+). Consider the
map F0 : X → Y0 given by

F0(A,Φ) = (d∗(A−A0), DAΦ) .

The differential dF0(A,Φ) = DA,Φ : T(A,Φ)X → Y0 given by

DA,Φ

(
α
ϕ

)
=

(
d∗α

DAϕ+ Γ(α)Φ

)
. (8.18)

The next lemma is the key to the proof of the proposition.

Lemma 8.17 Assume p > 4 and k ≥ 1. Suppose that A ∈ Ak,p(Γ) and
Φ ∈W k,p(X,W+) satisfy DAΦ = 0 and Φ 6= 0. Then the operator

DA,Φ :
W k,p(X,T ∗X ⊗ iR)

⊕
W k,p(X,W+)

−→
W k−1,p

0 (X, iR)
⊕

W k−1,p(X,W−)

defined by (8.18) is onto and has a right inverse.

Proof: Consider first the case k = 1. By Proposition 8.12, the oper-
ator DA,0 has a closed range and a finite dimensional cokernel and, by
Lemma 8.13, the difference DA,Φ −DA,0 is compact. By Corollary A.3 in
Appendix A, this implies that DA,Φ has a closed range and a finite dimen-
sional cokernel. Hence it remains to prove that DA,Φ has a dense range. To
see this consider the formal adjoint operator

DA,Φ
∗ :

W k+1,p
0 (X, iR)
⊕

W k+1,p(X,W−)

−→
W k,p(X,T ∗X ⊗ iR)

⊕
W k,p(X,W+)

.

The formula

〈ψ,Γ(α)Φ〉 =
∑
j

Imα(ej)〈ψ, iΓ(ej)Φ〉 = 〈α, i〈ψ, iΓ(·)Φ〉〉

for ψ ∈ C∞(X,W−) shows that the operator DA,Φ
∗ is given by

DA,Φ
∗
(
ξ
ψ

)
=

(
dξ + i〈ψ, iΓ(·)Φ〉

DA
∗ψ

)
. (8.19)
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The first claim is that, by elliptic regularity, every pair (ξ, ψ) ∈ Lq0(X, iR)⊕
Lq(X,W−) with 1/p + 1/q = 1 which annihilates the image of DA,Φ is of
class W 2,p and lies in the kernel of DA,Φ

∗. More precisely, assume that the
pair (ξ, ψ) is of class Lq and satisfies∫

X

(
〈ξ, d∗α〉+ 〈ψ,DAϕ+ Γ(α)Φ〉

)
dvol = 0,

∫
X

ξ dvol = 0,

for all α ∈ Ω1(X, iR) and ϕ ∈ C∞(X,W+). First consider this formula with
α = 0 and use Lemma 8.14 to obtain ψ ∈ W 2,p(X,W−) and DA

∗ψ = 0.
Secondly, note that∫

X

〈ξ, d∗α〉dvol = −
∫
X

〈ψ,Γ(α)Φ〉 = −
∫
X

〈α, i〈ψ, iΓ(·)Φ〉〉dvol

for all α ∈ Ω1(X, iR). Since ψ ∈ W 2,p and Φ ∈ W 1,p it follows that
i〈ψ, iΓ(·)Φ〉 ∈ W 1,p. By elliptic regularity for the Laplace-Beltrami opera-
tor, this implies ξ ∈ W 2,p and dξ + i〈ψ, iΓ(·)Φ〉 = 0. This shows that the
pair (ξ, ψ) is indeed in the kernel of the adjoint operator.

It remains to prove that the kernel of DA,Φ
∗ is zero whenever DAΦ = 0

and Φ 6= 0. To see this it is convenient to first compute the operator
DA,ΦDA,Φ

∗. The formulae

Γ(i〈ψ, iΓ(·)Φ〉)Φ = |Φ|2ψ

and

d∗(i〈ψ, iΓ(·)Φ〉) = − i
∑
j

∂j〈ψ, iΓ(ej)Φ〉 − i
∑
j

div(ej)〈ψ, iΓ(ej)Φ〉

= − i
∑
j

〈∇jψ, iΓ(ej)Φ〉 − i
∑
j

〈ψ, iΓ(ej)∇jΦ〉

− i
∑
j

〈ψ, iΓ(∇jej + div(ej)ej)Φ〉

= i
∑
j

〈Γ(ej)∇jψ, iΦ〉 − i
∑
j

〈ψ, iΓ(ej)∇jΦ〉

= i〈D∗Aψ, iΦ〉 − i〈ψ, iDAΦ〉

show that

DA,ΦDA,Φ
∗
(
ξ
ψ

)
=

(
d∗dξ + i〈D∗Aψ, iΦ〉 − i〈ψ, iDAΦ〉
DADA

∗ψ + |Φ|2ψ + Γ(dξ)Φ

)
. (8.20)

Now suppose that (ξ, ψ) is of class W 2,p and lies in the kernel of DA,Φ
∗,

i.e.
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DA
∗ψ = 0, dξ + i〈ψ, iΓ(·)Φ〉 = 0.

Assume DAΦ = 0 and Φ 6= 0. Then, by (8.20),

d∗dξ = i〈ψ, iDAΦ〉 − i〈D∗Aψ, iΦ〉 = 0.

Hence ξ is constant and, since it has mean value zero, it must vanish. Now
the second component of (8.20) vanishes as well and since ξ = 0 this means

DADA
∗ψ + |Φ|2ψ = 0.

Take the inner product with ψ to obtain∫
X

(
|DA

∗ψ|2 + |Φ|2|ψ|2
)

dvol = 0.

The function Φ is continuous and nonzero. Hence ψ vanishes on some open
set and it follows from the unique continuation theorem E.8 in Appendix E
that ψ must vanish everywhere. (This is the only place in the proof where
the condition p > 4 rather than p > 2 is required.) This argument also
gives a formula for the right inverse of the operator DA,Φ, namely,

T = DA,Φ
∗ (DA,ΦDA,Φ

∗)
−1
.

Here the operator DA,ΦDA,Φ
∗ is to be understood from W 2,p to Lp. By

Lemma 8.13, this operator is a compact perturbation of the Laplacian.
Hence it is Fredholm and has index zero. The above argument shows that
its kernel is zero and so the operator is invertible. This proves the lemma
in the case k = 1. The case k ≥ 1 is now an easy consequence. Just
note that the operator DA,ΦDA,Φ

∗ is still bijective when regarded as an
operator from W k+1,p to W k−1,p provided that A and Φ are of class W k,p.
Injectivity is obvious and surjectivity follows from elliptic regularity.∗ But
since DA,ΦDA,Φ

∗ is bijective from W k+1,p to W k−1,p the above operator T
is a right inverse of DA,Φ : W k,p →W k−1,p. This proves the lemma. 2

Proof of Proposition 8.16 continued: By Lemma 8.17, the linearized
operator DA,Φ = dF0(A,Φ) : T(A,Φ)X → Y0 is onto and has right inverse
whenever (A,Φ) ∈ X . Hence 0 is a regular value of F0 and it follows from
the implicit function theorem B.3 that N k,p = F0

−1(0) is a Banach mani-
fold. As a metric space this manifold is paracompact. That it is separable
follows immediately from the fact that X is a separable Banach space.
Namely, by Proposition B.14, cover N k,p by countably many charts and
choose a dense sequence in each chart. 2

∗Given (ξ′, ψ′) ∈ Wk−1,p ⊂ Lp the equation DA,ΦDA,Φ
∗(ξ, ψ) = (ξ′, ψ′) has a

solution (ξ, ψ) ∈W 2,p which, by elliptic regularity, is necessarily of class Wk+1,p.
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Proof of Theorem 7.16: Consider the map

F1 : N k,p →W k−1,p(X,Λ2,+T ∗X ⊗ iR)

defined by
F1(A,Φ) = F+

A − σ
+((ΦΦ∗)0)

for (A,Φ) ∈ N k,p. For any p > 4 and any integer k ≥ 1 this a smooth
Fredholm map of index

index(F1) =
c · c
4
− 2χ+ 3σ

4
+ 1

where c = c1(LΓ) ∈ H2(X;Z) and χ = χ(X), σ = σ(X). To see this note
that the linearized map dF1(A,Φ) : T(A,Φ)N k,p is given by

dF1(A,Φ)(α,ϕ) = d+α− σ+((Φϕ∗ + ϕΦ∗)0)

for (α,ϕ) ∈W k,p(X,T ∗ ⊗ iR)×W k,p(X,W+) which satisfy

d∗α = 0, DAϕ+ Γ(α)Φ = 0.

The kernel and cokernel of this operator agree with those of the operator
DA,Φ and hence both operators have the same index.∗ Recall here that the
additional +1 arises when the target space of DA,Φ is restricted to triples
(ξ, ω, ψ) where ξ has mean value zero. Note that

F1
−1(η) = M̃∗(X,Γ, g, η)

for every η ∈ W k−1,p(X,Λ2,+T ∗X) and the above formulae show that
η is a regular value of F1 if and only if the operator DA,Φ has a one
dimensional cokernel (consisting of the constant functions) for every pair
(A,Φ) ∈ F1

−1(η). Hence the set

Zk−1,p
reg

of regular values of F1 consists of all η ∈ W k−1,p(X,Λ2,+T ∗X) such that
cokerDA,Φ = H0(X, iR) for all (A,Φ) ∈ F1

−1(η). It follows from the Sard-
Smale theorem B.13 that this set is of the second category in the sense of
Baire with respect to the W k−1,p topology.

∗There is a finite dimensional analogue. Suppose that X,Y0, Y1 are finite dimensional
manifolds and f0 : X → Y0, f1 : X → Y1 are smooth maps. Let y0 ∈ Y0 be a regular

value of f0 and consider the submanifold N = f0
−1(y0) ⊂ X. Then the differential of

the restriction of f1 to N at a point x ∈ N has the same kernel and cokernel as the
differential of the product map f = f0 × f1 : X → Y0 × Y1.
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We shall use an argument of Taubes to reduce the C∞-case to the
W k,p-case. Abbreviate

Zreg = Ω2,+
reg (X, iR; g)

(the set of smooth regular self-dual 2-forms) and note that

Zreg =
⋂
ε>0

Zε,reg.

where Zε,reg is defined as the set of all η ∈ Ω2,+(X, g) such that the operator
DA,Φ : X → Y is onto for all solutions (A,Φ) of (7.4) with maxx ‖Φ(x)‖ ≥ ε.
We shall prove that the set Zε,reg is open and dense in Ω2,+(X) with respect
to the C∞ topology.

We first prove that the complement of Zε,reg is closed. Choose a se-
quence ην ∈ Ω2,+(X, g)− Zε,reg and assume that ην converges to η in the
C∞-topology. Then there exists a sequence of solutions (Aν ,Φν) of (7.4)
with η = ην such that maxx ‖Φν(x)‖ ≥ ε and the operator DAν ,Φν : X → Y
is not onto. By Theorem 7.12 the sequence (Aν ,Φν) has a convergent subse-
quence and the limit pair (A,Φ) is a solution of (7.4) with maxx ‖Φ(x)‖ ≥ ε.
Moreover, the operator DA,Φ : X → Y cannot be onto since otherwise the
operators DAν ,Φν would be onto for ν sufficiently large. Hence η /∈ Zε,reg

and this proves that Zε,reg is open.
We prove that Zε,reg is dense in Ω2,+(X, g) with respect to the C∞-

topology. To see this let η ∈ Ω2,+(X, g) and recall from the first part of
the proof that Zk,preg is dense in the space W k,p(X,Λ2,+T ∗X) of self-dual

2-forms of class W k,p. Define

Zk,pε,reg ⊂W k,p(X,Λ2,+T ∗X)

in the obvious way and notice, as above, that this set is open with respect
to the W k,p-topology. Moreover,

Zk,preg ⊂ Zk,pε,reg

and so this set is also dense. Hence approximate η by a sequence ην ∈ Zk,pε,reg

with respect to the W k,p-topology. Since Zk,pε,reg is open with respect to the

W k,p topology, each ην can be approximated by a C∞ smooth 2-form η′ν ∈
Zk,pε,reg. Since η′ν is smooth it follows that η′ν ∈ Zε,reg and, by construction,
η′ν converges to η. This proves that Zε,reg is dense in Ω2,+(X). It follows
that the space Zreg = Ω2,+

reg (X, iR; g) is a countable intersection of open
and dense sets in Ω2,+(X, iR; g) and hence is of the second category in the
sense of Baire. This proves the theorem. 2
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Remark 8.18 It is sometimes useful to use regular perturbations with
support in some given open subset Ω ⊂ X. The existence of such pertur-
bations can be proved by a standard argument similar to that in the proof
of Theorem 7.16. Namely, consider the space

Zk−1,p
Ω =

{
η ∈W k−1,p(X,Λ2,+T ∗X ⊗ iR) | supp η ⊂ Ω

}
and the map

F2 : N k,p ×Zk−1,p
Ω →W k−1,p(X,Λ2,+T ∗X ⊗ iR)

defined by
F2(A,Φ, η) = F+

A + η − σ+((ΦΦ∗)0).

The key point is that 0 is a regular value of this map. To see this just note
that if ω ∈ Lq(X,Λ2,+T ∗X⊗iR) annihilates the image of dF2(A,Φ, η) then
ω is a self-dual harmonic 2-form which vanishes in Ω and hence must vanish
everywhere. (See Remark E.9.) This proves that 0 is a regular value in the
case k = 0. In the general case surjectivity of dF2(A,Φ, η) can be easily
reduced to the case k = 0 via elliptic regularity. With this established one
considers the universal moduli space

M̃∗ =
{

(A,Φ, η) ∈ N k,p ×Zk−1,p
Ω |F+

A + η = σ+((ΦΦ∗)0)
}

and defines Zk−1,p
Ω,reg ⊂ Z

k−1,p
Ω as the set of regular values of the projection

M̃∗ → Zk−1,p
Ω : (A,Φ, η) 7→ η.

That this set is of the second category in the sense of Baire follows from the
Sard-Smale theorem B.13. Moreover, a smooth parameter η is regular and
supported in Ω if and only if η ∈ Zk−1,p

Ω,reg for every k. That the intersection
of these sets is of the second category with respect to the C∞-topology
can be proved by the same arguments as above. The details are left to the
reader. 2

Remark 8.19 There is an alternative approach to the transversality prob-
lem which elminates the action of S1 and the obvious 1-dimensional parts
of the kernel and cokernel of DA,Φ. In this approach the linearized operator
has the form

D̃A,Φ
(
α
ϕ

)
=

 d∗α
d+α
DAϕ

+

 −i〈iΦ, ϕ〉
−σ+((Φϕ∗ + ϕΦ∗)0)

Γ(α)Φ

 .

The difference to DA,Φ lies in the first component in the second column.
This arises from considering the action of the gauge group G = Map(X,S1)
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on the pair (A,Φ) and noting that a tangent vector (α,ϕ) is orthogonal to
the tangent space of the orbit of (A,Φ) under this action if and only if

d∗α− i〈iΦ, ϕ〉 = 0. (8.21)

The operator D̃A,Φ is onto whenever cokerDA,Φ = H0(X, iR) and there is
a natural isomorphism

ker DA,Φ
R(0, iΦ)

−→ ker D̃A,Φ.

Note that every pair (A′,Φ′) near (A,Φ) is gauge equivalent to one of the
form A′ = A+ α, Φ′ = Φ + ϕ where α and ϕ satisfy (8.21). But this local
representative may not be globally unique. 2

Remark 8.20 It is interesting to rephrase the compactness theorem 7.12
in the notation of this section. Recall from the proof of Theorem 7.16 on
page 294 that there is a Fredholm map

F1 : N k,p →W k−1,p(X,Λ2,+T ∗X ⊗ iR)

given by
F1(A,Φ) = F+

A − σ
+((ΦΦ∗)0).

where N k,p is the Banach manifold of Proposition 8.16. This map is invari-
ant under the action of the group G0 of harmonic gauge transformations.
Denote by Wk−1,p ⊂ W k−1,p(X,Λ2,+T ∗X ⊗ iR) the complement of the
Γ-wall (see page 228). Then Theorem 7.12 asserts that the induced map

F1 : N k,p/G0 →Wk−1,p

is proper. Actually, the compactness theorem as stated only asserts that
if ην = F1(Aν ,Φν) is smooth and converges in the C∞-topology then
(Aν ,Φν) has a subsequence which converges, modulo gauge equivalence, in
the C∞-topology. However, the argument carries over easily to the Sobolev
space W k,p provided that p > 4 and k ≥ 3. Under this assumption Aν and
Φν are twice continuously differentiable and Lemma 7.13 asserts that the
sequence Φν is uniformly bounded in the L∞-norm. Then the elliptic boot-
strapping argument employed in the proof of Theorem 7.12 shows that Aν
and Φν are uniformly bounded in the W k,p-norm (after modification by a
suitable sequence of gauge transformations). It then follows from Rellich’s
theorem that some subsequence converges in W k−1,p. With (k− 1)p > 4 it
follows from the Seiberg-Witten equations with their quadratic zeroth order
nonlinearities that d+(Aν −A0) and DA0

Φν converge in the W k−1,p-norm
and hence Aν and Φν converge in the W k,p-norm. 2
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INTERSECTION FORMS AND WALL CROSSING

The goal of this chapter is, firstly, to give a proof of the wall crossing
formula for Seiberg-Witten invariants in the case b+ = 1, secondly, to give
a Seiberg-Witten proof of Donaldson’s theorem about the diagonalizabil-
ity of definite intersection forms and, thirdly, to explain Furuta’s proof of
the 10/8-conjecture. The reason why all these results are collected in one
chapter is that their proofs have many common features. The first section
is devoted to some background material on intersection forms and the sec-
ond section formulates the general wall crossing formula and gives some
applications.

9.1 Intersection forms

Let X be a compact oriented smooth 4-manifold. Denote by H2(X) the
integral homology modulo torsion and consider the intersection form

QX : H2(X)×H2(X)→ Z.

This is a unimodular quadratic form. The goal of this section is to discuss
the question which unimodular quadratic forms Q can be realized as inter-
section forms of smooth 4-manifolds. To begin with here is a brief review
of symmetric bilinear forms over the integers.

Unimodular quadratic forms

For a general exposition of the subject and proofs the reader is referred to
Milnor-Husemoller [92]. Let Λ be a finitely generated free abelian group.
Any such group is isomorphic to Zn for some n. A symmetric bilinear form
Q : Λ × Λ → Z is called unimodular if its matrix representation A with
respect to some (and hence any) integral basis of Λ has determinant ±1.
Two forms Q0 and Q1 are called equivalent if there exists an isomorphism
T : Λ0 → Λ1 such that Q1(Tα, Tβ) = Q0(α, β) for all α, β ∈ Λ0. The
important invariants under this equivalence relation are the rank, signature
and type of Q. The rank of Q is, by definition, the rank of Λ, and the
signature is the number of positive minus the number of negative diagonal
entries in a diagonalization over the reals. A form Q is called even (or of
type II) if Q(α, α) ∈ 2Z for all α and is called odd (or of type I) if it is
not even. Note that even forms cannot be diagonalized over the integers.
The simplest examples of even forms are
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H =

(
0 1
1 0

)
, E8 =



2 0 1 0 0 0 0 0
0 2 0 1 0 0 0 0
1 0 2 1 0 0 0 0
0 1 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2


.

The form E8 is related to the Dynkin diagram of the same name where the
vertices correspond to the generators of Λ and the edges give rise to the
off-diagonal entries 1. The form E8 is positive definite while the form H is
indefinite with signature 0. A vector γ ∈ Λ is called characteristic for Q
if

Q(γ, α) ≡ Q(α, α)(mod 2)

for every α ∈ V . Since the map α 7→ Q(α, α) is a homomorphism over
Z2 such a characteristic vector always exists. In particular, if Q is even
then the zero vector is characteristic. Hence the next lemma shows that
the signature of an even form is divisible by 8.

Lemma 9.1 [92] If γ ∈ Λ is a characteristic vector then

Q(γ, γ) ≡ signQ (mod 8).

If Q = `(1)⊕m(−1) then this lemma follows from the fact that k2−1 is
divisible by 8 for every odd integer k. The general case can be easily reduced
to this case since odd indefinite forms are diagonalizable over the integers.
The latter is the contents of the next theorem which asserts that indefinite
unimodular quadratic forms over the integers are completely classified by
rank, signature, and type. For a proof the reader is referred to [92].

Theorem 9.2. (Hasse-Minkowski) Let Q be a unimodular quadratic
form over the integers. If Q is odd and indefinite then it can be diago-
nalized over Z and thus

Q ∼ `(1)⊕m(−1)

for some positive integers ` and m. If Q is even and indefinite then it is
equivalent to the form

Q ∼ `E8 ⊕mH

for some integers ` and m ≥ 1.

Exercise 9.3 According to Theorem 9.2 the form E8⊕(−E8) is equivalent
over the integers to 8H. Find a corresponding change of basis. 2
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Exercise 9.4 Find an integral change of basis relating the quadratic forms

Q1 =

0 1 0
1 0 0
0 0 −1

 , Q2 =

1 0 0
0 −1 0
0 0 −1

 .

These are the intersection forms of the diffeomorphic manifolds

X1 = (CP 1 × CP 1)#CP 2
, X2 = CP 2#CP 2

#CP 2
.

(See Exercise 12.20.) 2

For definite forms the situation is quite different. In dimension 8 every
even positive definite form is equivalent to E8. In dimension 16 there are two
forms E8⊕E8 and E16. In dimension 24 there are five forms including 3E8,
E8 ⊕ E16, and the Leech lattice. The definite forms cannot be classified
and are often referred to as exotic forms. Assume that Q is positive
definite and note that in this case the rank and signature of Q agree. Thus
Lemma 9.1 asserts that the number Q(γ, γ) − rankQ is a multiple of 8.
Since Q(γ, γ) > 0 for every characteristic vector γ one can ask the question
what the minimum of these numbers is over all characteristic vectors. This
question has only recently been addressed and the following result was
proved by Noam Elkies in May 1995 (cf. [22]).

Theorem 9.5. (Elkies) Let Q : Λ × Λ → Z be a positive definite uni-
modular quadratic form which is not diagonalizable over the integers. Then
there exists a characteristic vector γ ∈ Λ such that

Q(γ, γ) ≤ rankQ− 8. (9.1)

Such a vector γ obviously does not exist when Q is diagonalizable.
In that case the minimum of the numbers Q(γ, γ) over all characteristic
vectors is the rank of Q. For the quadratic form Q = E8⊕`(1), for example,
this minimum is rankQ − 8. If Q is even then 0 is a characteristic vector.
Since rankQ is an integer multiple of 8 this vector obviously satisfies the
inequality (9.1).

Intersection forms of smooth 4-manifolds

In his thesis in 1982 Donaldson proved the following theorem in the simply
connected case. The extension to general 4-manifolds was later given by
Fintushel-Stern, Furuta, and Donaldson himself. For a further discussion
see Donaldson and Kronheimer [21].

Theorem 9.6. (Donaldson) If X is a compact oriented smooth 4-ma-
nifold with definite intersection form then QX is diagonalizable over the
integers.
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The diagonal forms Q1 = `(+1) and Q2 = `(−1) are realized by con-

nected sums of ` copies of CP 2 respectively CP 2
. Thus for the existence

question it remains to consider indefinite forms.

Example 9.7 The manifold X = S2 × S2 has intersection form

QS2×S2 = H

It follows from Proposition 3.66 and Theorem 9.2 that the K3-surface (a
hypersurface of CP 3 of degree 4) has intersection form

QK3 = 2(−E8)⊕ 3H.

Hence the 4-manifold X = kK3#m(S2 × S2) has intersection form

QX = 2k(−E8)⊕ (3k +m)H.

Note that these are all spin manifolds. 2

Recall that every spin 4-manifold X has an even intersection form. This
is because w2(TX) = 0 and

QX(α, α) ≡ w2(TX) · α(mod 2).

(See (5.1) in Section 5.1.) Moreover, by Rohlin’s theorem 6.27, the signature
is divisible by 16 and, by Theorem 9.6, the form is indefinite. Hence a
smooth spin 4-manifold has intersection form

Q = 2kE8 ⊕mH

with m ≥ 1. Example 9.7 shows that every form in this family which
satisfies m ≥ 3|k| can be realized as the intersection form of a smooth spin
4-manifold. Nobody has found an example with m < 3|k|. This gave rise
to the following conjecture.

The 11/8 conjecture: If X is a smooth compact oriented spin 4-manifold
then its intersection form QX is equivalent to 2kE8 ⊕mH with m ≥ 3|k|.

The reader may check that the condition m ≥ 3|k| is equivalent to

b2(X)

|σ(X)|
≥ 11

8
.

Since every simply connected smooth 4-manifold with even intersection
form is spin, an affirmative answer to the 11/8-conjecture would com-
pletely settle the existence question in the simply connected case. For non
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simply connected manifolds the situation is quite different. Recall from
Example 6.28 that the Enriques surface X = K3/Z2 has intersection form
QX = E8⊕H. This manifold has fundamental group π1(X) = Z2 and it is
not spin.

For spin manifolds the 11/8-conjecture has been confirmed by Donald-
son for the case k = 1 and more recently for k = 2, 3 by Kronheimer with
the use of the Seiberg-Witten invariants. The reader should note that if the
conjecture holds for some integer k = k0 then it also holds for any integer
k < k0. (A counterexample for k would give rise to a counterexample for
k + 1 by taking a connected sum with the K3-surface.) Recently Furuta
proved the following theorem for all values of k. The result is often referred
to as the 10/8-conjecture. I learned about the proof from a lecture by
Dan Freed in Gökova in May 1995.

Theorem 9.8. (Furuta) If X is a smooth spin 4-manifold with indefinite
intersection form then QX = 2kE8 ⊕mH with m ≥ 2|k|+ 1.

The result should be contrasted with the theorem of M.H. Freedman
which asserts that every unimodular quadratic form can be realized as the
intersection form of a compact simply connected oriented topological 4-
manifold. He also proved that any two compact simply connected oriented
smooth 4-manifolds with equivalent intersection forms are homeomorphic.
(In the C0 case there are two homeomorphism types for each odd intersec-
tion form. At most one of these has a smooth representative.)

9.2 The wall crossing formula

Let X be a compact oriented smooth 4-manifold with

b+ = 1, b1 ∈ 2Z

and fix throughout an orientation of H2,+(X). Recall that in this case for
every spinc structure Γ : TX → End(W ) there are two Seiberg-Witten
invariants SW±(X,Γ) depending on the sign of the number

ε(g, η) = εΓ(g, η) = −
∫
X

〈iη, ωg〉dvolg − π[ωg] · c1(LΓ)

associated to the metric g and the perturbation η. The goal of this chapter
is to compute the wall crossing number

w(X,Γ) = SW+(X,Γ)− SW−(X,Γ).

This can be done by examining the structure of the moduli spaces near
a perturbation parameter on the Γ-wall. Fix throughout a metric g and a
reference connection A0 ∈ A(Γ) which may be chosen with F+

A0
= 0. It is

convenient to distinguish the cases b1 = 0 and b1 > 0.
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The case b1 = 0

Theorem 9.9 Let X be a compact connected oriented smooth 4-manifold
with b+ = 1 and b1 = 0. Let Γ be a spinc structure on X with

c1(LΓ) · c1(LΓ) ≥ 2χ+ 3σ.

Then
SW+(X,Γ)− SW−(X,Γ) = 1.

Remark 9.10 The formula in Theorem 9.9 is invariant under change of
orientation of H2,+(X, iR). A change of orientation interchanges the two
invariants SW+(X,Γ) and SW−(X,Γ) but it also changes the sign in the
definition of these invariants. Moreover, note that if b+ = 1 and b1 = 0
then χ+ σ = 2 + 2b+ − 2b1 = 4 and hence, by Proposition 7.31,

SW+(X, Γ̄) = −SW−(X,Γ).

This shows that the formula of Theorem 9.9 is also invariant under reversing
the complex structure on W . 2

Examples

Example 9.11 Consider the complex projective space X = CP 2 with
its standard orientation and the spinc structure ΓE : TCP 2 → WE with
WE = Wcan ⊗ E. Let g denote the Fubini-Study metric on CP 2 so that
the corresponding self-dual harmonic 2-form ω = ωg is the Kähler form
with respect to which CP 1 has area 1. Thus [ω] = H ∈ H2(CP 2,Z) is the
unique positive generator. Suppose that c1(E) = dH with d ∈ Z. Then

εΓE (g, 0) = π(c1(K)− 2c1(E)) · ω = −π(2d+ 3).

Since g has positive scalar curvature it follows that SW−(X,ΓE) = 0
whenever d ≥ −1 and SW+(X,ΓE) = 0 whenever d ≤ −2. Moreover, the
virtual dimension of the moduli space is given by

dim M(CP 2,ΓE) =
c1(LΓE ) · c1(LΓE )− 2χ− 3σ

4
= d(d+ 3).

Hence the moduli space is empty whenever d = −1 or d = −2 and in these
cases both invariants are zero. This shows that

SW−(CP 2,ΓE) =

{
0, if d ≥ −2,
−1, if d ≤ −3,

SW+(CP 2,ΓE) =

{
1, if d ≥ 0,
0, if d ≤ −1.

The minus sign is consistent with the fact that (χ+ σ)/4 = 1. 2
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Example 9.12 Consider the 4-manifold X = S2 × S2 with χ = 4 and
σ = 0. In this case K = −2a1 − 2a2 where a1 = PD(S2 × {pt}) and
a2 = PD({pt} × S2). Consider the spinc structure ΓE with first Chern
class

c1(E) = p1a1 + p2a2.

Then for the standard product metric one finds

εΓE (g, 0) = −2π(2 + p1 + p2)

while the virtual dimension of the moduli space is given by

dim M(S2 × S2,ΓE) = 2(p1 + 1)(p2 + 1)− 2.

Since S2 × S2 again admits a metric of positive scalar curvature it follows
that

SW−(S2 × S2,ΓE) =

{
−1, if p1 ≤ −2 and p2 ≤ −2,

0, otherwise,

SW+(S2 × S2,ΓE) =

{
1, if p1 ≥ 0 and p2 ≥ 0,
0, otherwise.

Note, in particular, that if p1 < 0 and p1+p2+2 ≥ 0 then (p1+1)(p2+1) ≤ 0
and hence the moduli space has negative dimension. 2

The torus of reducible solutions

If b1 = 0 then for every perturbation η ∈ Ω2,+
Γ (X, g) there exists a unique

connection Aη ∈ A(Γ) such that

F+
Aη

+ η = 0, d∗(Aη −A0) = 0.

The existence of Aη follows from the definition of the Γ-wall. Moreover, if
A1, A2 ∈ A(Γ) with F+

Ai
+ η = 0 then the 1-form α = A2−A1 ∈ Ω1(X, iR)

satisfies d∗α = 0 and d+α = 0. Hence α is a harmonic 1-form and, since
b1 = 0, it follows that α = 0. It is also useful to recall that χ + σ = 4
and hence the condition c · c ≥ 2χ + 3σ in Theorem 9.9 is equivalent to
indexDAη ≥ 2. These observations are specific to the case b1 = 0. In general
the set

T̃ = T̃ (η) =
{
A ∈ A(Γ) |F+

A + η = 0, d∗(A−A0) = 0
}

is an affine space parallel to H1(X, iR). Dividing by the group

G0(x0) =
{
u : X → S1 | d∗(u−1du) = 0, u(x0) = 1

}
one obtains a torus
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T =
T̃

G0(x0)
∼=

H1(X, iR)

H1(X, 2πiZ)
.

Denote the elements of T by ρ. This notation is justified by the fact that,
given a fixed reference connection A0 ∈ T̃ , the quotient T can be identified
with Hom(π1(X), S1) via the holonomy

ρA(γ) = exp

(∫
γ

(A−A0)

)

for A ∈ T̃ . (Compare with Proposition 5.30.)

The universal line bundle

There is a natural line bundle

E −→ X × T (9.2)

which can be explicitly represented as the quotient E = X×T̃ ×C/G0(x0).
Here the action of an element u ∈ G0(x0) on a triple (x,A, z) is given by

u∗(x,A, z) = (x, u∗A, u(x)−1z).

For every ρ ∈ T consider the pullback bundle

Eρ = ιρ
∗E→ X

under the obvious inclusion ιρ : X → X × T . This bundle is the set of
all equivalence classes of triples (x,A, z) with ρA = ρ under the above

equivalence relation. For every A ∈ T̃ with ρA = ρ the bundle Eρ admits
a trivialization

ιA : X × C→ Eρ, ιA(x, z) = [x,A, z].

If ρA = ρ then any other connection in T̃ with this property is of the form
u∗A for some u ∈ G0(x0) and, moreover, the two trivializations of Eρ are
related by the same gauge transformation u, i.e. ιu∗A(x, z) = ιA(x, u(x)z)
The formula ∇u∗A = u−1 ◦ ∇A ◦ u now shows that there is a natural spinc

connection ∇Aρ on the bundle

Wρ = W ⊗ Eρ

in the gauge equivalence class ρ. One can think of ρ as the holonomy of
connection on the bundle Eρ which in the trivialization determined by A is
given by A−A0. Twisting the connection ∇A0

on W by ρ gives the resulting
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spinc connection∇Aρ on Wρ. Note that this spinc connection is independent

of the choice of the base point A0 in T̃ . In summary, the bundle

W = W ⊗ E→ X × T

has the universal property that for every ρ ∈ T the restriction Wρ =
W ⊗Eρ of W to X×ρ carries a natural spinc connection ∇Aρ in the gauge
equivalence class ρ. For the computation of the first Chern class of E the
reader may wish to consult the following exercises.

Exercise 9.13 (i) Prove that the first Chern class of the line bundle E
over X × T is represented by the 2-form Ω ∈ Ω2(X × T ) given by

Ωx,A((v, α), (w, β)) =
1

2πi

(
β(v)− α(w)

)
for v, w ∈ TxX and α, β ∈ TAT = H1(X, iR).

(ii) Choose an integral basis αν = uν
−1duν of H1(X, 2πiZ) and show that

the form Ω can be expressed in the form

Ω =
1

2πi

n∑
ν=1

αν ∧ dtν ,

where t1, . . . , tn ∈ R/Z are coordinates on T via A = A0 +
∑n
ν=1 tναν .

(iii) Consider a complex line bundle E → T2n = R2n/Z2n with first Chern
class c1(E) = [ω] ∈ H2(T2n,Z) where

ω =

n∑
ν=1

dsν ∧ dtν .

In Example 1.38 it is shown that such a bundle can be explicitly represented
as the quotient E = R2n × C/Z2n where the action of Z2n on R2n × C is
given by (k, `) · (s, t, z) =

(
s+ k, t+ `, ze−2πis·`) . Prove that the bundle

E → X × T can be naturally identified with the pullback E = f∗E of E
under the map f : X × T → T2n given by

f(x, [A]) = [s1, . . . , sn, t1, . . . , tn],

where sν ∈ R/2πiZ and tν ∈ R/2πiZ are defined by

uν(x) = e2πisν , A = A0 +

n∑
ν=1

tναν .
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As in (ii), A0 ∈ T̃ is a reference connection and the harmonic 1-forms
αν = uν

−1duν , with uν : X → S1, form an integral basis of H1(X, 2πiZ).
Show that f∗dsν = αν/2πi and f∗ω = Ω. 2

The general wall crossing formula

The following wall crossing formula was first discovered by Li and Liu [72].
At about the same time (around May-June 1995) the formula was also
worked out, independently, by Ohta-Ono [101]. The proof given below is
original and independent of their work. I benefited in my understanding
of the result from discussions with John Jones, Dusa McDuff, and Kaoru
Ono.

Theorem 9.14. (Li-Liu,Ohta-Ono) Let X be a compact connected ori-
ented smooth 4-manifold with b+ = 1 and b1 = 2k. Let Γ be a spinc

structure on X whose characteristic class c = c1(LΓ) ∈ H2(X,Z) satis-
fies c · c ≥ 2χ+ 3σ. Then

SW+(X,Γ)− SW−(X,Γ) =
1

k!

∫
T

(
−1

4

∫
X

Ω ∧ Ω ∧ c
)k

where Ω ∈ Ω2(X×T ) denotes the 2-form in Exercise 9.13 which represents
the first Chern class of the universal line bundle E→ X × T .

Theorem 9.14 was used by Ono and Ohta [101] and Liu [74] to prove
that every minimal symplectic 4-manifold which admits a metric of positive
scalar curvature must be diffeomorphic to either CP 2 or a 2-sphere bundle
over some Riemann surface. The proof of both theorems will be given below.

The topological index

The wall crossing formula in Theorem 9.14 can be interpreted in terms
of the topological index of the family ρ 7→ DAρ of Dirac operators pa-
rametrized by the torus T . Here Aρ denotes the unique spinc connection
on Wρ = W ⊗ Eρ for ρ ∈ T . The topological index is the K-theory class
IND ∈ K(T ) defined as the formal difference

IND = ker DAρ 	 cokerDAρ

This definition can be taken literally when the kernels and cokernels are
of constant dimension and hence form vector bundles over T . In general
one has to stabilize as is explained in Section A.1. The Atiyah-Singer index
theorem for families asserts that the Chern character of IND is given by

ch(IND) =

∫
X

ch(LΓ
1/2) ∧ Â(TX) ∧ ch(E) ∈ H∗(T ,Z) (9.3)

where the right hand side is to be understood as integration over the fiber.
(See Theorem 6.24 and (6.16).)
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Lemma 9.15 Suppose that b+(X) ≤ 2. Then the 3-dimensional cohomol-
ogy class α1∪α2∪α3 is a torsion class for any three 1-dimensional classes
αi ∈ H1(X,Z).

Proof: If α1 ∪ α2 ∪ α3 is not a torsion class then there exists a class
α0 ∈ H1(X,Z) with 〈α0 ∪ α1 ∪ α2 ∪ α3, [X]〉 > 0. Hence the classes ω1 =
α0 ∪ α1 + α2 ∪ α3, ω2 = α0 ∪ α2 + α3 ∪ α1, and ω3 = α0 ∪ α3 + α1 ∪ α2

satisfy ωi ·ωi > 0 and ωi ·ωj = 0 for i 6= j. It follows that the ωi are linearly
independent and the intersection form is positive on the subspace spanned
by these classes. Thus b+(X) ≥ 3. 2

Lemma 9.16 The k-th Chern class of −IND is given by

ck(−IND) =
1

k!

(
−1

4

∫
X

Ω ∧ Ω ∧ c1(LΓ)

)k
∈ H2k(T ,Z).

Proof: By Lemma 9.15, Ωk = 0 for k ≥ 3. Hence the Chern character of
the universal bundle E→ X × T is given by

ch(E) = 1 + Ω +
Ω2

2
.

Moreover, recall from Remark 6.26 that

ch(LΓ
1/2) = 1 +

c

2
+
c2

8
, Â(TX) = 1− 1

24
p1(TX)

where c = c1(LΓ). Take the product and integrate over X to obtain

ch(IND) =
c · c− σ

8
+

1

4

∫
X

Ω ∧ Ω ∧ c.

Here we have used the Hirzebruch signature theorem which asserts that
3σ(X) =

∫
X
p1(TX). Note that the constant term is the complex Fredholm

index of the Dirac operator. Moreover, the first Chern class of −IND is
given by

c1(−IND) = −1

4

∫
X

Ω ∧ Ω ∧ c.

Write −IND formally as a sum of line bundles with first Chern classes
y1, . . . , y`. Then the vanishing of the degree-k term in ch(−IND) is equiv-
alent to

∑
i yi

k = 0 for all k ≥ 2. This implies

ck(−IND) =
∑

i1<···<ik

yi1 · · · yik =
1

k!

(∑̀
i=1

yi

)k
=
c1(−IND)k

k!
.

This proves the lemma. 2
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Ruled surfaces

The computation in the following example is due to Ohta-Ono [101] and
Li-Liu [72]. A ruled surface is compact smooth 4-manifold X which fibers
over a Riemann surface Σ with fiber CP 1:

CP 1 ↪→ X
π−→ Σ.

Such a 4-manifold admits a Kähler structure with respect to which the
projection π is holomorphic. Suppose that the surface Σ is of genus g. We
denote by F ⊂ X a fiber of the projection and by S ⊂ X be a section. Both
are complex curves and the restriction π|S : S → Σ is a diffeomorphism.

Proposition 9.17. (Li-Liu,Ohta-Ono) Let X be as above and consider
a spinc structure WE = Wcan ⊗ E where

c1(E) · [F ] = p, c1(E) · [S] = q.

Then

SW−(X,ΓE) =

{
−(p+ 1)g, if p ≤ −2, q + 1

2S · S ≤ (g − 1)p/(p+ 1),
0, otherwise,

SW+(X,ΓE) =

{
(p+ 1)g, if p ≥ 0, q + 1

2S · S ≥ (g − 1)p/(p+ 1),
0, otherwise.

If p = −1 then both invariants are zero.

Proof: Denote aF = PD([S]− S · S[F ]) and aS = PD([F ]) so that

aS · [S] = 1, aS · [F ] = 0, aF · [S] = 0, aF · [F ] = 1.

The first Chern class of TX satisfies c1(TX) · [F ] = 2 and c1(TX) · [S] =
2− 2g + S · S. Hence c1(K) = −c1(TX) and c1(E) are given by

c1(K) = −2aF + (2g − 2− S · S)aS , c1(E) = paF + qaS .

A simple calculation with c = c1(L) = 2c1(E)−c1(K), σ = 0, and χ = 4−4g
shows that the moduli spaces have dimension

dim M =
c · c
4

+ 2g − 2 = (p+ 1)(2q + S · S)− 2p(g − 1).

Thus the invariants are zero unless this number is nonnegative. Let us now
examine the position of the Γ-wall. There is a metric with positive scalar
curvature. For this metric the curvature of the sphere F must dominate
that of the section S and hence the sphere F will have a very small radius.
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Thus the corresponding symplectic form (which is self-dual) lies in the
cohomology class

[ω] = δaF + aS

for some small number δ > 0. The position of the Γ-wall is now determined
by the number

εΓE (g, 0) = π(c1(K)− 2c1(E)) · [ω]

= −π(2p+ 2 + δ(2q + S · S + 2− 2g)).

If p ≥ 0 then this number is negative and SW−(X,ΓE) = 0 while in the
case p ≤ −2 the number is positive and SW+(X,ΓE) = 0. In the case
p = −1 the wall crossing formula will show that both invariants are zero.

We will prove that

SW+(X,ΓE)− SW−(X,ΓE) = (p+ 1)g (9.4)

whenever (p + 1)(q + 1
2S · S) ≥ p(g − 1). In the case g = 0 the manifold

X is simply connected and so (9.4) follows immediately from Theorem 9.9.
Hence assume g ≥ 1 and choose generators

αν = u−1
ν duν , ν = 1, . . . , 2g

of H1(X, 2πiZ) = H1(Σ, 2πiZ). Then, by Exercise 9.13, the first Chern
class of the universal line bundle E→ X ×T in (9.2) is represented by the
2-form

Ω =

2g∑
ν=1

dsν ∧ dtν ∈ Ω2(X × T ),

where dsν = (1/2πi)uν
−1duν ∈ Ω1(X) and the 1-form dtν ∈ Ω1(T ) is

determined by the coordinate system A = A0 +
∑
ν tναν . Suppose that the

basis [dsν ] of H1(X,Z) = H1(Σ,Z) is chosen such that

[ds1 ∧ ds2] = [ds3 ∧ ds4] = · · · = [ds2g−1 ∧ dsg] = aS

and all the other products are zero. Then

Ω ∧ Ω = −2aS ∧ ωT

where ωT = dt1 ∧dt2 +dt3 ∧dt4 + · · ·+dt2g−1 ∧dtg denotes the symplectic
form on the torus. With

c = 2c1(E)− c1(K) = 2(p+ 1)aF + (2q + S · S + 2− 2g)aS

it follows that
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X

Ω ∧ Ω ∧ c = −4(p+ 1)ωT .

Hence it follows from Theorem 9.14 that the crossing index is given by

SW+(X,ΓE)− SW−(X,ΓE) =
1

g!

∫
T

(
−1

4

∫
X

Ω ∧ Ω ∧ c
)g

=
(p+ 1)g

g!

∫
T
ωT

g

= (p+ 1)g.

This proves the proposition. 2

9.3 Regular crossings

Recall that, for every crossing parameter η ∈ Zk−1,p, T̃ = T̃ (η) denotes
the set of connections A ∈ Ak,p(Γ) with F+

A + η = 0 and d∗(A− A0) = 0.
If b1 = 0 then this set consists of a single point Aη. For any A ∈ Ak,p(Γ)
denote by cokerDA ⊂ W k+1,p(X,W−) the L2-orthogonal complement of
imDA or, equivalently, the kernel of DA

∗. Moreover, denote by

πA : L2(X,W−)→ cokerDA

the L2-orthogonal projection. Likewise, denote by

π+ : Ω2,+(X, iR)→ H2,+(X, iR)

the L2-orthogonal projection.

Definition 9.18 Assume b+ = 1 and fix a spinc structure Γ on X. Then
a perturbation parameter η ∈ Ω2,+

Γ (X, g) on the Γ-wall is called regular,
or a regular crossing parameter, if the following holds.

(a) Every (A,Φ) ∈ M̃∗(X,Γ, g, η) satisfies cokerDA,Φ = H0(X, iR).

(b) For every A ∈ T̃ (η) and every Φ ∈ ker DA with Φ 6= 0 the linear map

H1(X, iR)→ cokerDA : α 7→ πA(Γ(α)Φ)

is surjective.

(c) For every A ∈ T̃ (η) and every Φ ∈ ker DA with Φ 6= 0 there exists a
ϕ ∈ C∞(X,W+) such that

π+σ+((ϕΦ∗ + Φϕ∗)0) 6= 0, DAϕ ∈ Γ(H1(X, iR))Φ.
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Remark 9.19 Suppose that η is a regular crossing parameter and DA is
not injective for some A ∈ T̃ (η). Then dim ker DA ≥ 2 and condition (ii)
in Definition 9.18 implies that dim cokerDA ≤ b1. Hence

indexDA ≥ 2− b1

and, since b+ = 1, this is equivalent to

c1(LΓ) · c1(LΓ) ≥ 2χ+ 3σ. (9.5)

Thus the Seiberg-Witten moduli spaces for Γ have nonnegative dimension.
Conversely, if (9.5) does not hold, then η is a regular crossing parameter

if and only if DA is injective for every A ∈ T̃ (η) and M∗(X,Γ, g, η) = ∅.
Such crossing parameters do exist precisely when indexDA < 2 − b1. In
general, if DA is injective for some A ∈ T̃ , then there are no solutions of
the Seiberg-Witten equations near (A, 0) (for any parameter η′ near η). It
is also interesting to consider the case b1 = 0. In this case condition (b) in
Definition 9.18 asserts that DAη is onto and (c) asserts that the quadratic
form ker DAη → H2,+(X, iR) : ϕ 7→ π+σ+((ϕϕ∗)0) is nondegenerate. 2

Proposition 9.20 The set of regular crossings is an open and dense set
in Ω2,+

Γ (X, g) with respect to the C∞-topology. Moreover, for every regular
crossing parameter η0 and every p > 2 there exists a constant ε > 0 such
that every η ∈ Ω2,+(X, iR) − Ω2,+

Γ (X, g) with ‖η − η0‖Lp ≤ ε is regular in
the sense of Theorem 7.16.

The proof will occupy the remainder of this section. To begin with note
that Definition 9.18 extends to the W k,p category. Throughout denote by

Zk,p =
{
η ∈W k,p(X,Λ2,+T ∗X ⊗ iR)x | ε(g, η) = 0

}
the Banach manifold of crossing parameters of classW k,p. The set of regular
crossing parameters of class W k,p will be denoted by Zk,preg . Abbreviate

Zp = Z0,p, Zpreg = Z0,p
reg .

Remark 9.21 The conditions (a) and (b) in Definition 9.18 can be re-
stated in terms of the Fredholm operator

PA,Φ : H1(X, iR)⊕W 1,2(X,W+)→ H2,+(X, iR)⊕ L2(X,W−)

defined by

PA,Φ

(
α
ϕ

)
=

(
π+σ+((ϕΦ∗ + Φϕ∗)0)

DAϕ+ Γ(α)Φ

)
.

Its formal adjoint operator
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PA,Φ
∗ : H2,+(X, iR)⊕W 1,2(X,W−)→ H1(X, iR)⊕ L2(X,W+)

is given by

PA,Φ
∗
(
ω
ψ

)
=

(
π(i〈ψ, iΓ(·)Φ〉)

DA
∗ψ − 1

2ρ
+(ω)Φ

)
.

Here π : Ω1(X, iR) → H1(X, iR) denotes the L2-orthogonal projection
onto the space of harmonic 1-forms. To check the formula for PA,Φ

∗ use
Lemma 7.4 and compare with the calculation for the adjoint operator in
the proof of Lemma 8.17.

A connection A ∈ Ak,p(Γ) satisfies conditions (b) and (c) in Defini-
tion 9.18 if and only if the operator PA,Φ is surjective for every nonzero
Φ ∈ ker DA. Equivalently, the adjoint operator satisfies an estimate

‖PA,Φ∗(ω, ψ)‖L2 ≥ δ ‖(ω, ψ)‖W 1,2 . (9.6)

A simple compactness argument shows that this estimate holds with a
uniform constant δ for all Φ ∈ ker DA with

‖Φ‖L2 = 1.

(Note that the kernel of DA is a finite dimensional vector space and hence
it does not matter here which norm is used for Φ.) 2

Lemma 9.22 Suppose that A ∈ Ak,p(Γ) satisfies (a) and (b) in Defini-
tion 9.18. Then there exists a constant ε > 0 such that

cokerDA,Φ = H0(X, iR)

for every Φ ∈ ker DA with

0 < ‖Φ‖L4 ≤ ε.

Moreover, the constant ε > 0 depends only on δ in (9.6) but not on A itself.

Proof: The formal adjoint operator

DA,Φ∗ :

W 1,2(X, iR)
⊕

W 1,2(X,Λ2,+T ∗X ⊗ iR)
⊕

W 1,2(X,W−)

−→
L2(X,T ∗X ⊗ iR)

⊕
L2(X,W+)

is given by

DA,Φ∗
 ξ
ω
ψ

 =

(
dξ + d∗ω + i〈ψ, iΓ(·)Φ〉
DA
∗ψ − 1

2ρ
+(ω)Φ

)
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We shall prove an estimate

‖DA,Φ∗(ξ, ω, ψ)‖0,λ ≥
δ

2
‖(ξ, ω, ψ)‖1,λ

where λ = ‖Φ‖L2 , and

‖(α,ϕ)‖20,λ =
1

λ2
‖π(α)‖2L2 + ‖α− π(α)‖2L2 + ‖ϕ‖2L2 ,

‖(ξ, ω, ψ)‖21,λ = λ2
∥∥π+ω

∥∥2

L2 + ‖d∗ω‖2L2 + ‖dξ‖2L2 + ‖ψ‖2W 1,2 .

From now on we adopt the convention that all norms are L2-norms unless
otherwise indicated. In the following the inequality (a + b)2 ≥ a2/2 − b2
will be used in several places. Denote (α,ϕ) = DA,Φ∗(ξ, ω, ψ). Then

‖(α,ϕ)‖20,λ = ‖dξ + d∗ω + (id− π)(i〈ψ, iΓ(·)Φ〉)‖2

+
1

λ2
‖π(i〈ψ, iΓ(·)Φ〉)‖2 +

∥∥∥∥DA
∗ψ − 1

2
ρ+(ω)Φ

∥∥∥∥2

≥ 1

2
‖dξ + d∗ω‖2 − ‖i〈ψ, iΓ(·)Φ〉‖2 +

1

2

∥∥π(i〈ψ, iΓ(·)λ−1Φ〉)
∥∥2

+
1

2

∥∥∥∥DA
∗ψ − 1

2
ρ+(λπ+ω)λ−1Φ

∥∥∥∥2

− 1

4

∥∥ρ+(ω − π+ω)Φ
∥∥2

=
1

2
‖dξ‖2 +

1

2
‖d∗ω‖2 +

1

2

∥∥(PA,λ−1Φ)∗(λπ+ω, ψ)
∥∥2

−‖i〈ψ, iΓ(·)Φ〉‖2 − 1

4

∥∥ρ+(ω − π+ω)Φ
∥∥2

≥ 1

2
‖dξ‖2 +

1

2
‖d∗ω‖2 +

1

2

∥∥(PA,λ−1Φ)∗(λπ+ω, ψ)
∥∥2

−‖Φ‖2L4

(
‖ψ‖2L4 +

∥∥ω − π+ω
∥∥2

L4

)
≥ 1

2
‖dξ‖2 +

1

2
‖d∗ω‖2 +

δ2

2

(
λ2
∥∥π+ω

∥∥2
+ ‖ψ‖2W 1,2

)
−c ‖Φ‖2L4

(
‖ψ‖2W 1,2 + ‖d∗ω‖2

)
≥ δ2

4

(
λ2
∥∥π+ω

∥∥2
+ ‖ψ‖2W 1,2 + ‖dξ‖2 + ‖d∗ω‖2

)
=
δ2

4
‖(ξ, ω, ψ)‖21,λ .

The last but one inequality holds whenever c ‖Φ‖2L4 ≤ δ/4. Here the con-
stant c stems from the previous inequality which is based on the Sobolev
estimates and is independent of A. It follows that DA,Φ(ξ, ω, ψ) can only
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be zero when ‖(ξ, ω, ψ)‖1,λ = 0 and this is only the case for ξ = constant

and ω = 0, ψ = 0. Hence cokerDA,Φ = H0(X, iR) whenever Φ ∈ ker DA is

nonzero and ‖Φ‖2L4 ≤ δ2/4c. 2

Lemma 9.23 Assume p > 2 and let η ∈ Zpreg be a regular crossing pa-
rameter. Then there exists a constant ε > 0 such that if A ∈ A1,p(Γ) and
Φ ∈ ker DA satisfy

‖A−A0‖L4 ≤ ε, 0 < ‖Φ‖L4 ≤ ε,

for some A0 ∈ T̃ (η) then cokerDA,Φ = H0(X, iR).

Proof: If the assertion holds for a connection A0 it also holds for u∗A0

for any u ∈ G0. Since the quotient T (η) = T̃ (η)/G0 is compact it suffices

to prove the lemma for some fixed connection A0 ∈ T̃ (η). By Remark 9.21
there exists a constant δ > 0 such that

‖PA0,Φ0

∗(ω, ψ)‖L2 ≥ δ ‖(ω, ψ)‖W 1,2 (9.7)

for all ω, ψ and all sections Φ0 ∈ ker DA0 with

1

2
≤ ‖Φ0‖L2 ≤ 2. (9.8)

We shall prove that if A ∈ A1,p(Γ) and Φ ∈ ker DA with

‖A−A0‖L4 ≤ ε, ‖Φ‖L2 = 1,

and ε > 0 sufficiently small then

‖PA,Φ − PA0,Φ0‖ <
δ

2
(9.9)

for some Φ0 ∈ ker DA0 which satisfies (9.8). Then the estimate (9.7) con-
tinues to hold with A0,Φ0, δ replaced by A,Φ, δ/2 and so the result follows
from Lemma 9.22.

To find a suitable Φ0 for which (9.9) is satisfied choose some pseudo-
inverse T0 : L2(X,W−)→W 1,2(X,W+) of the operator DA0 so that

DA0
T0DA0

= DA0
, T0DA0

T0 = T0.

(See Proposition B.7 in Appendix B.) Then the section Φ0 ∈W 1,2(X,W+)
defined by

Φ0 = Φ + T0Γ(A−A0)Φ.

lies in the kernel of DA0 . The equation DAΦ = 0 can be written in the
form DA0Φ = −Γ(A−A0)Φ and the elliptic estimate for DA0 implies

‖Φ‖W 1,2 ≤ c1 (‖DA0
‖L2 + ‖Φ‖L2)
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= c1 (‖Γ(A−A0)Φ‖L2 + ‖Φ‖L2)

≤ c1 (‖A−A0‖L4 ‖Φ‖L4 + ‖Φ‖L2)

≤ c2ε ‖Φ‖W 1,2 + c1 ‖Φ‖L2

The last but one inequality is Hölder’s inequality and the last inequality
uses the Sobolev embedding W 1,2 ↪→ L4. With c2ε ≤ 1/2 it follows that

‖Φ‖W 1,2 ≤ 2c1 ‖Φ‖L2 .

Of course, this is obvious for elements in the kernel of an elliptic operator,
but the point here is that the constant c1 depends only on A0 and not
on A. Now the difference Φ− Φ0 can be estimated by

‖Φ− Φ0‖W 1,2 ≤ c3 ‖Γ(A−A0)Φ‖L2

≤ c3 ‖A−A0‖L4 ‖Φ‖L4

≤ c4 ‖A−A0‖L4 ‖Φ‖W 1,2

≤ 2c1c4 ‖A−A0‖L4 ‖Φ‖L2

≤ 2c1c4ε ‖Φ‖L2

≤ 2c1c4ε.

Here c3 is the norm of the operator T0 and the subsequent inequalities use
Hölder’s inequality and the Sobolev embedding W 1,2 ↪→ L4 as before. With
2c1c4ε ≤ 1/2 it follows that Φ0 satisfies (9.8). Moreover,

‖Γ(α)(Φ− Φ0)‖L2 ≤ c5 ‖α‖L4 ‖Φ− Φ0‖W 1,2 ≤ 2c1c4c5ε ‖α‖W 1,p

for α ∈ H1(X, iR),

‖DAϕ−DA0
ϕ‖L2 ≤ c6 ‖A−A0‖L4 ‖ϕ‖W 1,2 ≤ c6ε ‖ϕ‖W 1,p

for ϕ ∈W 1,2(X,W+), and∥∥π+σ+((ϕΦ∗ + Φϕ∗)0)− π+σ+((ϕΦ∗0 + Φ0ϕ
∗)0)

∥∥
Lp
≤ c7ε ‖ϕ‖W 1,p .

for ϕ ∈ W 1,2(X,W+). With ε sufficiently small this shows that A and Φ
satisfy (9.9) as claimed. This proves the lemma. 2

Lemma 9.24 For every p > 2 and every integer k ≥ 0 the set Zk,preg of

regular crossing parameters is open is Zk,p.

Proof: Suppose otherwise that there exists a sequence ην ∈ Zk,p − Zk,preg

converging to a regular crossing η ∈ Zk,preg . The proof of Lemma 9.23 shows
that ην satisfies the conditions (b) and (c) in Definition 9.18. Hence there
exists a sequence
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(Aν ,Φν) ∈ M̃∗(X,Γ, g, ην), cokerDAν ,Φν 6= H0(X, iR).

By Theorem 7.14, assume without loss of generality that

‖Aν −A0‖W 1,p ≤ c (1 + ‖d(Aν −A0)‖Lp) .

Then the proof of Theorem 7.12 shows that the sequence Aν is bounded in
W k+1,p and Φν is bounded in W k+2,p. Passing to a subsequence, we may
assume that Aν converges strongly in L4 and weakly in W k+1,p and Φν
converges strongly in L4 and weakly in W k+2,p. The limits

A = lim
ν→∞

Aν , Φ = lim
ν→∞

Φν

determine a point in the moduli space M̃(X,Γ, g, η) such that

cokerDA,Φ 6= H0(X, iR).

By condition (iii) of Definition 9.18, this implies that Φ = 0. But since Aν
converges to A in the L4-norm, Φν converges to zero in the L4-norm, and
DAνΦν = 0, it follows from Lemma 9.23 that cokerDAν ,Φν = H0(X, iR)
for ν sufficiently large. This is a contradiction, and hence the assumption
that Zk,preg is not an open set in Zk,p must have been false. 2

Lemma 9.25 For every p > 4 and every integer k ≥ 1 the space

N k,p
0 = N k,p

0 (X,Γ, g)

of all pairs (A,Φ) ∈ Ak,p(Γ)×W k,p(X,W+) which satisfy

DAΦ = 0, d∗(A−A0) = 0, Φ 6= 0, π+σ+((ΦΦ∗)0) = 0

is a smooth paracompact separable Banach manifold.

Proof: Recall from Proposition 8.16 that the space N = N k,p of all pairs
(A,Φ) ∈ Ak,p(Γ)×W k,p(X,W+) which satisfy DAΦ = 0, d∗(A−A0) = 0,
and Φ 6= 0, is a smooth Banach manifold. Consider the smooth map

f : N → H2,+(X, iR), f(A,Φ) = π+σ+((ΦΦ∗)0) = 0.

Then N0 = f−1(0) and thus it remains to prove that 0 is a regular value
of f . The linearized operator is given by

df(A,Φ)(α,ϕ) = π+σ+((ϕΦ∗ + Φϕ∗)0).

Moreover, the tangent space TA,ΦN consists of all pairs (α,ϕ) which satisfy

d∗α = 0, DAϕ+ Γ(α)Φ = 0.

The proof that df(A,Φ) is surjective consists of three steps.
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Step 1: Consider the map γ : H → C2×2 defined by (4.1). Then for any
two vectors z, w ∈ C2 with z 6= 0 there exists a unique x ∈ H with

γ(x)z = w.

Denote a = x0 + ix1 and b = x2 + ix3. Then the equation γ(x)z = w
can be written in the form

az1 + bz2 = w1, −b̄z1 + āz2 = w2.

The unique solution (a, b) is given by

a =
z̄1w1 + z2w̄2

|z|2
, b =

z̄2w1 − z1w̄2

|z|2
.

Step 2: For every pair (A,Φ) ∈ Ak,p(Γ) ×W k,p(X,W+) and every ϕ ∈
W k,p(X,W+) with supp(ϕ) ⊂ supp(Φ) there is a pair (α′, ϕ′) ∈ TA,ΦN k,p

with
df(A,Φ)(α′, ϕ′) = π+σ+((ϕΦ∗ + Φϕ∗)0).

By Step 1, there exists a unique 1-form α ∈ W k,p(X,T ∗X ⊗ iR) such
that Γ(α)Φ = −DAϕ. Now choose a section ξ ∈ W k+1,p(X, iR) such that
d∗(α− dξ) = 0 and define

α′ = α− dξ, ϕ′ = ϕ+ ξΦ.

Then α′ and ϕ′ are of class W k,p and, moreover,

DA(ξΦ)− Γ(dξ)Φ = ξDAΦ = 0, (ξΦ)Φ∗ + Φ(ξΦ)∗ = 0.

Hence DAϕ
′ + Γ(α′)Φ = 0 and d∗α′ = 0, i.e. (α′, ϕ′) ∈ TA,ΦN , and

df(A,Φ)(α′, ϕ′) = π+σ+((ϕ′Φ∗ + Φϕ′
∗
)0) = π+σ+((ϕΦ∗ + Φϕ∗)0).

This proves Step 2.

Step 3: The linear operator df(A,Φ) is onto for all (A,Φ) ∈ N k,p.

Choose some nonempty open set U ⊂ supp(Φ) and a smooth nonzero
cutoff-function β : X → [0, 1] with support in U . By Step 2, it suffices to
prove that the map

L2(X,W+)→ H2,+(X, iR) : ϕ 7→ π+σ+(β(ϕΦ∗ + Φϕ∗)0)
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is surjective. We prove that the kernel of the dual operator is zero. Using
the formulae of Lemma 7.4, one obtains for every self-dual harmonic 2-form
ω ∈ H2,+(X, iR),〈

ω, π+σ+(β(ϕΦ∗ + Φϕ∗)0)
〉

=
〈
ω, σ+(β(ϕΦ∗ + Φϕ∗)0)

〉
=

1

2

〈
βρ+(ω), (ϕΦ∗ + Φϕ∗)0

〉
=

1

2

〈
ρ+(βω)Φ, ϕ

〉
.

Here all inner products are real L2-inner products. Now suppose that the
right hand side vanishes for all ϕ. Then ρ+(βω)Φ = 0. Since supp(β) ⊂
supp(Φ) it follows from Step 1 that that βω = 0. Hence ω vanishes on
some open set and, by unique continuation, ω ≡ 0. (See Remark E.9 in
Appendix E.) This proves Step 3.

Thus we have proved that 0 is a regular value of f and hence N0 =
f−1(0) is a submanifold of N . Since N is paracompact and separable, so
is N0. 2

Lemma 9.26 Assume b+ = 1. Then the set Zk,preg of regular crossings is

dense in Zk,p for every p > 4 and every integer k ≥ 0.

Proof: The proof is based on the Sard-Smale theorem B.13 and on the
following three observations.

Observation 1: Consider the map F1 : N k+1,p
0 → Zk,p defined by

F1(A,Φ) = σ+((ΦΦ∗)0)− F+
A .

Then F1 is a Fredholm map and η ∈ Zk,p is a regular value of F1 if and
only if it satisfies condition (a) in Definition 9.18.

Let η be a regular value of F1 and suppose that (A,Φ) ∈M∗(X,Γ, g, η).
Then F1(A,Φ) = η. Recall that (ξ, ω, ψ) = DA,Φ(α,ϕ) if and only if

ω = d+α+ σ+((Φϕ∗ + ϕΦ∗)0), ξ = d∗α, ψ = DAϕ+ Γ(α)Φ.

That (A,Φ) is a regular point for F1 is equivalent to the condition that all
triples of the form (ω, 0, 0) with ω ∈ im d+ lie in the image of DA,Φ. Now
the proof of Lemma 9.25 shows that there exists a pair (α,ϕ) with d∗α = 0,
DAϕ+ Γ(α)Φ = 0, and σ+((Φϕ∗+ϕΦ∗)0) /∈ im d+. Hence all triples of the
form (ω, 0, 0) lie in the image of DA,Φ. But Lemma 8.17 shows that the last
two components of DA,Φ form an operator DA,Φ with cokernel H0(X, iR).
Hence for every pair (ξ, ψ) with ξ of mean value zero there exists an ω such
that (ω, ξ, ψ) ∈ imDA,Φ. This proves the first observation.
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Observation 2: Consider the map F2 : N k+1,p → Zk,p defined by

F2(A,Φ) = −F+
A .

This is a Fredholm map with indexF2 = indexDA + b1. Moreover, η ∈
Zk,p is a regular value of F2 if and only if it satisfies condition (b) in
Definition 9.18.

Note first that F2(A,Φ) = η if and only F+
A +η = 0 and 0 6= Φ ∈ ker DA.

In particular, if η does not lie in the image of F2 then DA is injective for
every A ∈ T̃ (η) and hence the assertion holds vacuously. Secondly, recall
that the tangent space of N k,p at a point (A,Φ) with DAΦ = 0 and Φ 6= 0
consists of all pairs (α,ϕ) ∈ W k,p(X,T ∗X ⊗ iR) × W k,p(X,W+) which
satisfy

d∗α, DAϕ+ Γ(α)Φ = 0.

The differential of F2 at (A,Φ) is obviously given by dF2(A,Φ)(α,ϕ) =
d+α. This is evidently a Fredholm operator. Now the tangent space of Zk,p
is the image of d+ and the operator d+ identifies this with the image of d∗

in Ω1(X, iR), or here in W k+1,p(X,T ∗X ⊗ iR). Hence dF2(A,Φ) is onto if
and only if for every α1 ∈ im d∗ there exists a pair (α0, ϕ) ∈ W k+1,p with
α0 ∈ H1(X, iR) such that

DAϕ+ Γ(α0 + α1)Φ = 0.

But recall from Lemma 8.17 that

imDA +
{

Γ(α)Φ |α ∈W k,p, d∗α = 0
}

= W k,p(X,W−).

This shows that the above condition is equivalent to

imDA +
{

Γ(α)Φ |α ∈ H1(X, iR)
}

= W k,p(X,W−).

This proves that η is a regular value of F2 if and only if it satisfies condi-
tion (b) in Definition 9.18. The assertion about the Fredholm index follows
by examining a regular point (A,Φ). This is left as an exercise.

Observation 3: Consider the Fredholm map F3 : N k+1,p
0 → Zk,p defined

by F3(A,Φ) = −F+
A . Assume that η ∈ Zk,p is a regular value of F3. Then

η satisfies condition (c) in Definition 9.18.

A tangent space of N k+1,p
0 consists of all pairs (α,ϕ) which satisfy

d∗α = 0, DAϕ+ Γ(α)Φ = 0, π+σ+((ϕΦ∗ + Φϕ∗)0) = 0, (9.10)

and the differential of F3 is again given by dF3(A,Φ)(α,ϕ) = d+α. Let η
be a regular value of F3 and suppose, by contradiction, that η does not
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satisfy (c) in Definition 9.18. Then there exists an A ∈ T̃ (η) and a nonzero
section Φ ∈ ker DA such that

α ∈ H1(X, iR),
DAϕ+ Γ(α)Φ = 0

=⇒ π+σ+((ϕΦ∗ + Φϕ∗)0) = 0. (9.11)

Then, in particular, π+σ+((ΦΦ∗)0) = 0 and hence (A,Φ) ∈ N k,p
0 and

η = F3(A,Φ). Since η is a regular value of F3 it follows that for every
α ∈ im d∗ there exists some ϕ ∈W k,p(X,W+) such that (9.10) is satisfied.
In connection with (9.11) this shows that

d∗α = 0,
DAϕ+ Γ(α)Φ = 0

=⇒ π+σ+((ϕΦ∗ + Φϕ∗)0) = 0.

But this is impossible by Lemma 9.25. Hence (9.11) must have been false.
This proves the third observation. It follows from these three observations
that η ∈ Zk,p is a regular crossing parameter if and only if it is a common
regular value of F1, F2 and F3. Since all three maps are C∞ smooth the
lemma follows from the Sard-Smale theorem B.13. 2

Proof of Proposition 9.20: Firstly, it follows from Lemma 9.24 that
the set of regular crossings in Ω2,+

Γ (X, g) is open in the Lp-topology for any
p > 2. That the set of regular crossings is dense in the C∞-topology follows
from Lemma 9.24 and Lemma 9.26. More precisely, given η ∈ Ω2,+

Γ (X, g) ⊂
Zk,p choose, by Lemma 9.26, a regular crossing η′ ∈ Zk,p with

‖η − η′‖Wk,p ≤ 2−(k+1).

Now choose a smooth perturbation ηk ∈ Ω2,+
Γ (X, g) which satisfies

‖η − ηk‖Wk,p ≤ 2−k.

Lemma 9.24 asserts that ηk is still regular if it is sufficiently close to η′.
Thus ηk is a sequence of regular crossings which converges to η in the C∞

topology. This proves that the set of regular crossings is open and dense in
the C∞-topology.

To prove the second assertion fix a number p > 2 and suppose, by
contradiction, that there is a sequence ην ∈W k,p(X,Λ2,+T ∗X⊗ iR)−Zk,p
converging to a regular crossing parameter η ∈ Zk,preg . Then there exists a
sequence

(Aν ,Φν) ∈ M̃∗(X,Γ, g, ην), cokerDAν ,Φν 6= H0(X, iR).

A contradiction is now derived, word by word, as in Lemma 9.24. This
proves the proposition. 2
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9.4 Proof of the wall crossing formula

Choose a regular crossing parameter

η ∈ Ω2,+
Γ (X, g)

and recall that ωg ∈ H2,+(X) denotes the unique self-dual harmonic 2-form
with norm 1 which determines the given orientation of H2,+(X). Consider
the Seiberg-Witten moduli space

M∗({ηt}) =M∗(X,Γ, g, {ηt})

corresponding to the path of perturbations

ηt = η + tiωg, −ε ≤ t ≤ ε.

It follows from the definition of regular crossing and Lemma 9.23 that
cokerDA,Φ = H0(X, iR) for all triples (A,Φ, t) ∈ M̃∗({ηt}) provided that
ε > 0 is sufficiently small. Hence the perturbations {ηt} form a regular
path as defined in the proof of Theorem 7.21. In fact, each ηt is a regular
perturbation and each individual moduli space M∗(ηt) is a smooth man-
ifold for −ε ≤ t ≤ ε which, for t 6= 0, is compact and agrees with M(ηt).
Thus the parametrized moduli space M∗({ηt}) is a cobordism with

∂M∗({ηt}) =M(ηε)−M(η−ε).

It has dimension

dim M∗({ηt}) = indexDA + b1 − 1 ≥ 1.

for A ∈ A(Γ). However, the cobordism will not be compact in general. If

(Aν ,Φν , tν) ∈ M̃∗({ηt}) is a convergent sequence whose limit point does

not lie in M̃∗({ηt}) then tν → 0 and Φν → 0 and Aν converges to a point in

T̃ (η). Hence the difference of the invariants is determined by the structure
of the moduli space near the torus T (η). Let us examine the Seiberg-Witten
equations

d∗(A−A0) = 0,
F+
A + η + itωg = σ+((ΦΦ∗)0),

DAΦ = 0
(9.12)

in a neighbourhood of a connection A ∈ T̃ (η). Note first that if DA is
injective then so is the operator DA′ for every connection A′ ∈ A(Γ) which
is sufficiently close to A (in the L4-norm). Hence (9.12) cannot have any

solutions near such a connection A except for other connections in T̃ (η).
Thus it is interesting to examine the solutions of (9.12) near connections
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A ∈ T̃ (η) for which DA is not injective. This can easily be done globally.
Choose a number δ > 0 such that

(A,Φ) ∈ M̃(ηε) ∪ M̃(η−ε) =⇒ ‖Φ‖2L2 > δ

and consider the moduli space

M̃δ({ηt}) =
{

(A,Φ, t) ∈ M̃({ηt}) | ‖Φ‖2L2 ≥ δ
}
.

As usual, denote the quotient by

Mδ({ηt}) =
M̃δ({ηt})
G0

.

The following observation shows that this is a manifold with boundary for
δ > 0 sufficiently small.

Lemma 9.27 For δ > 0 sufficiently small the moduli space M̃({ηt}) is
transverse to the codimension-1-submanifold of all triples (A,Φ, t) with

‖Φ‖2L2 = δ.

Proof: The tangent space of M̃({ηt}) at a triple (A,Φ, t) consists of all
(α,ϕ, τ) which satisfy

d∗α = 0,
d+α+ iτωg = σ+((Φϕ∗ + Φϕ∗)0),

DAϕ+ Γ(α)Φ = 0.
(9.13)

Transversality is equivalent to the existence of a triple (α,ϕ, τ) in this
tangent space which satisfies

〈ϕ,Φ〉 6= 0.

To see that such a triple exists consider the operator Π+DA,ΦΠ where

Π+

 ξ
ω
ψ

 =

 ξ
ω − π+ω

ψ


and Π denotes the projection onto the orthogonal complement of Φ:

Π

(
α
ϕ

)
=

(
α
ϕ

)
− 〈Φ, ϕ〉
‖Φ‖2L2

(
0
Φ

)
.

We must prove that the cokernel of this operator is given by
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coker
(
Π+DA,ΦΠ

)
= H0(X, iR)⊕H2,+(X, iR). (9.14)

If this holds then the dimension of the space of solutions (α,ϕ, τ) of (9.13)
which satisfy 〈ϕ,Φ〉 = 0 is one less than the dimension of the space of all
solutions of (9.13) and hence there must be one solution with 〈ϕ,Φ〉 6= 0.
To prove (9.14) consider the adjoint operator DA,Φ∗. The formula in the
proof of Lemma 9.22 shows that

ΠDA,Φ∗Π+

 ξ
ω
ψ

 = DA,Φ∗Π+

 ξ
ω
ψ

− 1

2
Π

(
0

ρ+(ω − π+ω)Φ

)
.

The proof of Lemma 9.22 also shows that not only does DA,Φ∗ have kernel
H0(X, iR) but also that there is a uniform estimate

‖(ξ, ω, ψ)‖1,λ ≤ c ‖DA,Φ
∗(ξ, ω, ψ)‖0,λ

whenever Φ is nonzero and ‖Φ‖L4 is sufficiently small where λ = ‖Φ‖L2

and

‖(α,ϕ)‖20,λ =
1

λ2
‖π(α)‖2L2 + ‖α− π(α)‖2L2 + ‖ϕ‖2L2 ,

‖(ξ, ω, ψ)‖21,λ = λ2
∥∥π+ω

∥∥2

L2 + ‖d∗ω‖2L2 + ‖dξ‖2L2 + ‖ψ‖2W 1,2 .

The above formula now shows that∥∥ΠDA,Φ∗Π+(ξ, ω, ψ)−DA,Φ∗Π+(ξ, ω, ψ)
∥∥

0,λ
≤
∥∥ρ+(ω − π+ω)Φ

∥∥2

L2

≤
∥∥ω − π+ω

∥∥2

L4 ‖Φ‖
2
L4

≤ c′ ‖Φ‖2L4 ‖d∗ω‖2L2

≤ c′ ‖Φ‖2L4

∥∥Π+(ξ, ω, ψ)
∥∥

1,λ
.

If ‖Φ‖L4 is sufficiently small we obtain an inequality∥∥Π+(ξ, ω, ψ)
∥∥

1,λ
≤ 2c

∥∥ΠDA,Φ∗Π+(ξ, ω, ψ)
∥∥

0,λ
.

This proves (9.14) and hence the lemma. 2

It follows from Lemma 9.27 that for δ sufficiently small the moduli space
Mδ({ηt}) is a smooth compact manifold with boundary

∂Mδ({ηt}) =M(ηε)−M(η−ε)−Mδ(η).

The third part of the boundary is the quotient

Mδ(η) =

{
(A,Φ, t) ∈ M̃({ηt}) | ‖Φ‖2L2 = δ

}
G0

.
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To prove the theorem we must evaluate the cohomology class c1(L)d over
Mδ(η). To do this it is convenient to first simplify the equation.

Lemma 9.28 For δ > 0 sufficiently small the moduli space Mδ(η) is
cobordant to

M0
δ(η) =

{
(A,Φ) |A ∈ T̃ (η), DAΦ = 0, ‖Φ‖2L2 = δ

}
G0

.

Proof: Note first that the number t can be eliminated from the equa-
tions (9.12). Since

π+ωg = ωg, π+(F+
A + η) = 0

one finds
t = 〈iωg, σ+((ΦΦ∗)0)〉. (9.15)

Hence equation (9.12) is equivalent to

d∗(A−A0) = 0,
F+
A + η = (id− π+)σ+((ΦΦ∗)0),
DAΦ = 0

with t given by (9.15). The cobordism from M0
δ(η) to Mδ(η) is simply

obtained by a homotopy which drives the term on the right to zero. It is
actually a product cobordism with Mλ

δ (η) defined as the moduli space of
solutions of the equations

d∗(A−A0) = 0,
F+
A + η = λ(id− π+)σ+((ΦΦ∗)0),
DAΦ = 0,

‖Φ‖2L2 = δ,

for 0 ≤ λ ≤ 1. That this space is a smooth manifold follows from the
arguments in the proof of Lemmata 9.22 and 9.27. The details are left to
the reader. 2

It follows from Proposition 1.48 and Lemma 9.28 that the integral of
c1(L)d over the moduli space Mδ(η) with

2d = index(DA) + b1 − 2 ≥ 0

is given by ∫
Mδ(η)

c1(L)d =

∫
M0

δ
(η)

c1(L)d =

∫
T
ck(−IND).

Here 2k = b1 and IND ∈ K(T ) is the topological index of the operator
family DAρ over the torus T . This proves Theorem 9.14. Theorem 9.9
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follows by specializing to b1 = 0. In this case T̃ (η) is just a single point Aη
andM0

δ(η) is simply the projective space of ker DAη . Hence the integral is
1 and this proves Theorem 9.9.

Remark 9.29 Equation (9.15) is actually of some interest in its own right.
It illustrates the geometry of the moduli spaceM∗({ηt}) near the singular

set. When A is close to a connection A0 ∈ T̃ (η) then Φ is close to an element
in the kernel of DA0 and hence the local behaviour of the parameter t (as
a function of A and Φ) is determined by the quadratic form

ker DA0
→ H2,+(X, iR) : ϕ 7→ π+σ+((ϕϕ∗)0).

If this form is indefinite then there are solutions inM∗(X,Γ, g, η) converg-
ing to the singular part of the moduli space. On the other hand if, say,
b1 = 0 and this form is definite then Aη is an isolated point and the moduli
space M∗(X,Γ, g, η) is compact. 2

Consider the case where b+ = 1 and

indexDA < 2− b1.

In this case the virtual dimension of the Seiberg-Witten moduli spaces is
negative and hence the moduli spaces for regular perturbations are empty.
A regular crossing can still be defined as in Definition 9.18 and Proposi-
tion 9.20 continues to hold. But a regular crossing is one where the Dirac
operator DA is injective for every A ∈ T̃ (η). The proof of Theorem 9.9
above shows that in this case there are no solutions of the Seiberg-Witten
equations near (Aη, 0) for any perturbation near η which does not lie on
the Γ-wall (in accordance with the fact that regular moduli spaces are
empty). The discussion in Lemma 9.16 shows, however, that the Chern
class ck(−IND) need not be zero and thus Theorem 9.14 does not extend
to the case indexDA < 2− b1.

9.5 Proof of Donaldson’s theorem

The following inequality for characteristic vectors is an immediate conse-
quence of Donaldson’s theorem. By Elkies’ theorem, this inequality is in
fact equivalent to Donaldson’s theorem. A proof using the Seiberg-Witten
equations was found by Kronheimer.

Proposition 9.30. (Kronheimer) Let X be a compact oriented smooth
4-manifold with negative definite intersection form QX . Then every char-
acteristic vector γ ∈ H2(X) = H2(X,Z)/torsion for QX satisfies

|γ · γ| ≥ b2(X). (9.16)
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Proof: Suppose, by contradiction, that there exists a characteristic vector
γ ∈ H2(X) with with |γ ·γ| < b2(X) = rankQX . Since γ ·γ is negative and
the difference |γ · γ| − rankQX is divisible by 8 we have

γ · γ ≥ 8− b2.

By Theorem 5.10, there exists an integral lift c ∈ H2(X,Z) of w2(TX) such
that

c · c ≥ 8− b2.

Let Γ : TX → End(W ) be a spinc structure with c = c1(LΓ). Then the
Dirac operator DA has real Fredholm index

indexDA =
c · c+ b2

4
= 2(k + 1) ≥ 2

for A ∈ A(Γ) and, for every regular perturbation η ∈ Ω2,+
reg (X, g), the

moduli space M∗(η) =M∗(X,Γ, g, η) has dimension

dim M∗(η) =
c · c+ b2

4
+ b1 − 1 = 2k + b1 + 1.

This moduli space is not compact and we examine its structure near the
singular part. As before denote by

T = T (η) =
T̃

G0(x0)

the space of gauge equivalence classes of connections A with F+
A + η =

0. Call a perturbation η regular if it satisfies conditions (a) and (b) in
Definition 9.18:

(a) Every (A,Φ) ∈ M̃∗(X,Γ, g, η) satisfies cokerDA,Φ = H0(X, iR).

(b) For every A ∈ T̃ (η) and every Φ ∈ ker DA with Φ 6= 0 the linear map

H1(X, iR)→ cokerDA : α 7→ πA(Γ(α)Φ)

is surjective.

We shall now digress with two results about regular perturbation pa-
rameters η.

Proposition 9.31 The set of regular crossings is an open and dense set
in Ω2,+(X, iR) with respect to the C∞-topology.
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Lemma 9.32 Assume p > 2 and let η ∈ Lp(X,Λ2,+T ∗X⊗iR) be a regular
parameter. Then there exists a constant ε > 0 such that if A ∈ A1,p(Γ) and
Φ ∈ ker DA satisfy

‖A−A0‖L4 ≤ ε, 0 < ‖Φ‖L4 ≤ ε,

for some A0 ∈ T̃ (η) then cokerDA,Φ = H0(X, iR).

The proofs of these results are similar in spirit and detail to those of
Proposition 9.20 and Lemma 9.23, only much simpler because b+ = 0. The
arguments will not be repeated here. This is the end of the digression.

Proof of Proposition 9.30 continued: Choose a regular perturbation
η and consider the moduli space

Mδ(η) =

{
(A,Φ) ∈ M̃(η) | ‖Φ‖2L2 ≥ δ

}
G0

.

As in the proof of Lemma 9.27 it can be shown that the manifold M̃∗(η) is

transverse to the manifold of all pairs (A,Φ) with ‖Φ‖2L2 = δ whenever δ >
0 is sufficiently small. Hence Mδ(η) is a smooth manifold with boundary

∂Mδ(η) =

{
(A,Φ) ∈ M̃(η) | ‖Φ‖2L2 = δ

}
G0

.

As in Lemma 9.28 this boundary is cobordant to

M0
δ(η) =

{
(A,Φ) |A ∈ T̃ (η), DAΦ = 0, ‖Φ‖2L2 = δ

}
G0

.

The cobordism is again a product cobordism with Mλ
δ (η) defined as the

moduli space of solutions of the equations

d∗(A−A0) = 0,
F+
A + η = λσ+((ΦΦ∗)0),
DAΦ = 0,

‖Φ‖2L2 = δ,

for 0 ≤ λ ≤ 1. As before it follows from the arguments in the proof of
Lemmata 9.22 and 9.27 that this space is a smooth manifold for each λ.
These manifolds are all of dimension

dim Mλ
δ (η) = 2k + b1.

If b1 = 0 then T̃ (η) is a single point Aη and
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M0
δ(η) = P kerDAη .

If indexDAη = 2 thenM0
δ(η) is a single point and so isM1

δ(η) = ∂Mδ(η).
HenceMδ(η) is a compact 1-manifold whose boundary consists of a single
point. Such an object cannot exist. Similarly, if indexDAη = 2(k + 1) > 2
then ∂Mδ(η) has dimension 2k and∫

∂Mδ(η)

c1(L)k =

∫
M0

δ
(η)

c1(L)k = 1.

This is impossible by Stokes’ theorem and it follows, in the case b1 = 0,
that the original assumption that QX not be diagonalizable must have
been false. In the case b1 > 0 recall from Remark 7.25 that the quo-
tient B(Γ) = A(Γ)/G is homotopy equivalent to the torus T = T (η) ∼=
H1(X, iR)/H1(X, 2πiZ) of reducible solutions (see page 305). Recall also
that the orientation of H1 which is required for orienting the moduli space
also determines an orientation of this torus. Denote by

dvolT ∈ Hb1(B(Γ),Z)

the positive generator which evaluates to 1 on the fundamental class of
T ⊂ B(Γ) (compare with Exercise 7.26). Let π : C(Γ) → B(Γ) denote the
canonical projection [A,Φ] 7→ [A]. Then it follows from Proposition 1.49
that ∫

∂Mδ(η)

c1(L)k ∧ π∗dvolT =

∫
M0

δ
(η)

c1(L)k ∧ π∗dvolT

=

∫
T

dvolT

= 1.

This contradicts Stokes’ theorem and hence Proposition 9.30 is proved. 2

Proof of Theorem 9.6: Let X be a compact oriented smooth 4-manifold
with negative definite intersection form QX . If QX were not diagonalizable
then, by Elkies’ theorem 9.5, there would exist a characteristic vector γ
with γ · γ ≥ 8− b2(X), in contradiction to Proposition 9.30. 2

Remark 9.33 Recently, Froyshov generalized the inequality (9.16) to 4-
manifolds with boundary. In [33] he proved that for every rational ho-
mology-3-sphere Y there is a nonnegative integer Fr(Y ) ∈ Z such that
the following holds. If X is a compact oriented smooth 4-manifold with
boundary ∂X = Y and γ ∈ H2(X, ∂X) ∼= H2(X) is a characteristic vector∗

∗Here all homology groups are understood as integral homology modulo torsion. The

exact sequence of the pair (X, ∂X) shows that Hi(X) ∼= Hi(X, ∂X) for i 6= 4 whenever
∂X is a rational homology-3-sphere.
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of the intersection form QX then

|γ · γ| ≥ b2(X)− Fr(Y ). (9.17)

Now the intersection form QX is unimodular and hence decomposes as

QX = m(−1)⊕ Q̃

where Q̃ does not have a vector of square −1. If Q̃ is even then γ̃ = 0 is
a characteristic vector of Q̃ and hence there exists a characteristic vector
γ of QX with |γ · γ| = m = b2(X) − rank Q̃. Hence the inequality (9.17)
implies

rank Q̃ ≤ Fr(Y ).

This shows that only finitely many even forms Q̃ can occur in the intersec-
tion form of a smooth 4-manifold with boundary Y . Froyshov also proves
that the invariant of the Poincaré 3-sphere Y = P is Fr(P ) = 8 and hence
in this case the only even possibilities are Q̃ = 0 and Q̃ = E8. Further-
more, in [34] he proves that if X is simply connected with ∂X = P then
Q̃ is necessarily even. Froyshov’s proof of (9.17) uses the Seiberg-Witten
equations on 4-manifolds with cylindrical ends. 2

9.6 Proof of Furuta’s theorem

Let X be a compact connected smooth spin 4-manifold. Then w2(TX) = 0
and (5.1) shows that the intersection form QX : H2(X,Z)×H2(X,Z)→ Z
is even. An even form is never diagonalizable over the integers and hence, by
Donaldson’s theorem 9.6, the form QX is indefinite. Moreover, by Rohlin’s
theorem 6.27, the signature is divisible by 16. Hence the Hasse-Minkowski
theorem 9.2 shows that the intersection form of X is equivalent to

QX ∼ 2k(−E8)⊕mH

for some integers k ∈ Z and m ≥ 1. If k = 0 there is nothing to prove.
Hence assume, without loss of generality, that k ≥ 1. Moreover, assume
with loss of generality that b1 = 0. The general case can be reduced to this
by surgery along loops (cf. [35]).

Exercise 9.34 Let X be a compact oriented smooth 4-manifold. Use sur-
gery along (nontorsion) loops to prove that there exists a smooth 4-manifold
X ′ which has the same intersection form as X and satisfies b1(X ′) = 0. If
X is spin prove that X ′ is spin. The Enriques surface shows that there need
not be a simply connected smooth 4-manifold with the same intersection
form (see Example 6.28). 2

Fix a spin structure (S, I, J,Γ) on TX as in Definition 5.4. Thus S →
X is a real Riemannian rank-8 bundle, I and J are two anticommuting
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orthogonal complex structures on S, and Γ : TX → End(S) is a bundle
homomorphism which satisfies (4.18) and commutes with both I and J .
Recall that there is a splitting S = S+ ⊕ S− which is invariant under
both I and J and is interchanged by the endomorphisms Γ(v) for v ∈ TX.
Recall also from Lemma 6.6 that there is a unique spin connection ∇ on S
(which commutes with both I and J , preserves the subbundles S±, and is
compatible with the Levi-Civita connection on TX). Denote by

D : C∞(X,S+)→ C∞(X,S−)

the corresponding Dirac operator. Think of (S, I) as a spinc structure. It is
convenient to write the Seiberg-Witten equations for this spinc structure in
real notation and always express the dependence on the complex structure
I explicitly. Thus denote by su(S+, I) the bundle of all endomorphisms
T : S+

x → S+
x which satisfy

T ∗ + T = 0, T I = IT, trace(IT ) = 0. (9.18)

Here T ∗ denotes the adjoint with respect to the real inner product. The
first two conditions mean that T is skew-Hermitian with respect to I and
the last condition says that the complex trace of T vanishes. It is important
to note that every endomorphism T ∈ su(S+, I) also commutes with J .

Lemma 9.35 If T ∈ End(S+) satisfies (9.18) then TJ = JT .

Proof: For any unit vector ζ ∈ S+
x the vectors ζ, Iζ, Jζ, Kζ with K = IJ

form an orthonormal basis of S+
x . Hence

ζζ∗ + (Iζ)(Iζ)∗ + (Jζ)(Jζ)∗ + (Kζ)(Kζ)∗ = 1l

where ζ∗ ∈ Hom(S+
x ,R) is defined by ϕ 7→ ζ∗ϕ = 〈ζ, ϕ〉 for ϕ ∈ S+

x . This
identity can be written in the form

A− IAI − JAJ −KAK = trace(A)1l (9.19)

for A = ζζ∗ ∈ End(S+
x ). Now every symmetric endomorphism of S+

x is a
linear combination of those of the form A = ζζ∗ and hence (9.19) continues
to hold for all symmetric endomorphisms A = A∗ of S+

x . Apply this to
A = IT to obtain T + JTJ = 0 and thus JT = TJ as claimed. 2

The previous result can be expressed in the form su(S+, I) = su(S+, J)
and hence we shall write su(S+) = su(S+, I) = su(S+, J) from now on.
Note also that Γ : TX → End(S) is a spinc structure with respect to both
I and J and hence the induced map

ρ+ : Λ2,+T ∗X → su(S+)
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identifies the skew-Hermitian endomorphisms of S+ (with respect to either
I or J) with the real valued self-dual 2-forms on X. This gives rise to
an alternative proof of Lemma 9.35. The reader should be warned that
throughout this section the notation ζ∗ and A∗ is used for the real adjoint
rather than the complex adjoint as before. Thus what used to be called
(ϕϕ∗)0 will now be ϕϕ∗ − Iϕϕ∗I − 1

2 |ϕ|21l. What used to be the skew-
Hermitian endomorphism i(ϕϕ∗)0 will now be

ϕϕ∗I + Iϕϕ∗ − 1

2
|ϕ|2I ∈ su(S+).

Compose this with the bundle isomorphism ρ+−1
: su(S+)→ Λ2,+T ∗X to

obtain the quadratic map σI : S+ → Λ2,+T ∗X defined by

σI(ϕ) = ρ+−1
(
ϕϕ∗I + Iϕϕ∗ − 1

2
|ϕ|2I

)
This is the explicit formula for what used to be called σ+(i(ϕϕ∗)0). Now a
spinc connection on (S+, I) is of the form∇+αI for some real valued 1-form
α ∈ Ω1(X). The corresponding Dirac operator is given by D + Γ(α)I and
hence the unperturbed Seiberg-Witten equations for the spinc structure
(S, I,Γ) take the form

Dϕ+ Γ(α)Iϕ = 0, d+α+ σI(ϕ) = 0, d∗α = 0. (9.20)

Note, in particular, that the second equation can be written in the form
id+α = −iσI(ϕ) and this corresponds to F+

A = −iσ+(i(ΦΦ∗)0).
Consider the subgroup G = Pin(2) ⊂ Sp(1) which is generated by j and

S1. Explicitly this group is given by

Pin(2) = {cos t+ i sin t | t ∈ R} ∪ {j cos t+ k sin t | t ∈ R} . (9.21)

This group acts naturally on the space Ω1(X)×C∞(X,S+). The action of
j is given by

(α,ϕ) 7→ (−α, Jϕ)

and the action of eit by

(α,ϕ) 7→ (α, eItϕ).

Note that eIt = (cos t)1l + (sin t)I and that the automorphism (α,ϕ) 7→
(−α, Jϕ) is of order 4. It turns out that the space of solutions of (9.20) is
invariant under the action of G. To see this let us introduce the spaces

X = Ω1(X)⊕ C∞(X,S+),
Y = Ω0

0(X)⊕ Ω2,+(X)⊕ C∞(X,S−),
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where Ω0
0(X) denotes the space of smooth real valued functions on X with

mean value zero, and consider the map F : X → Y defined by

F
(
α
ϕ

)
=

 d∗α
d+α
Dϕ

+

 0
σI(ϕ)

Γ(α)Iϕ

 . (9.22)

Then the solution space of (9.20) is the inverse image of zero under F . Now
the group Pin(2) acts on both spaces X and Y and F is equivariant under
this action.

Lemma 9.36 The map F : X → Y is equivariant under the action of
Pin(2). Hence, if (α,ϕ) satisfies (9.20) then so do the pairs (−α, Jϕ) and
(α, eItϕ) for t ∈ R.

Proof: The Dirac operator D commutes with both I and J . Hence

DJϕ+ Γ(α)IJϕ = J(Dϕ+ Γ(−α)Iϕ).

Note here that IJ = −JI and Γ(α)J = JΓ(α). Moreover, denote

AI(ϕ) = ϕϕ∗I + Iϕϕ∗ − 1

2
|ϕ|2I

and observe that

AI(Jϕ) = (Jϕ)(Jϕ)∗I + I(Jϕ)(Jϕ)∗ − 1

2
|ϕ|2I

= −Jϕϕ∗JI − IJϕϕ∗J − 1

2
|ϕ|2I

= Jϕϕ∗IJ + JIϕϕ∗J − 1

2
|ϕ|2JIJ

= JAI(ϕ)J

= −AI(ϕ).

The last identity follows from the fact that AI(ϕ) ∈ su(S+) commutes with
J . This implies σI(Jϕ) = −σI(ϕ) and hence

d+(−α) + σI(Jϕ) = −
(
d+α+ σI(ϕ)

)
This proves the equivariance of F under the action of J . The equivariance
under the action of eit follows from the fact that D commutes with eIt and
that

AI(e
Itϕ) = AI(ϕ).

This proves the lemma. 2
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Proof of Theorem 9.8: We shall only prove the result in the case b1 = 0.
The map F : X → Y extends to a Fredholm map between the Sobolev
completions

X 1,p = W 1,p(X,T ∗X)⊕W 1,p(X,S+),
Yp = Lp0(X)⊕ Lp(X,Λ2,+T ∗X)⊕ Lp(X,S−).

We shall drop the superscripts and throughout this proof denote X = X 1,p

and Y = Yp. The group Pin(2) acts on both spaces and, by Lemma 9.36,
F is equivariant under this action. It was Furuta’s idea to use a global
Kuranishi model as follows. Consider the linear operator

D = dF(0) : X → Y

which is given by the first term on the right in (9.22):

D
(
α
ϕ

)
=

 d∗α
d+α
Dϕ

 .

Choose a sequence of splittings

X = Xn ⊕X ′n, Y = Yn ⊕ Y ′n,

both invariant under the action of I and J , such that ker D ⊂ Xn and the
restriction

Dn : X ′n → Y ′n
is a Banach space isomorphism. Moreover, suppose that Xn and Yn are
finite dimensional and the projection operators

Qn : Y → Y ′n

converge to zero in the strong operator topology. Thus

lim
n→∞

Qn(ξ, ω, ψ) = 0

for all (ξ, ω, ψ) ∈ Y. For example, such splittings can be constructed by
means of a splitting of X into eigenspaces of the operator D∗D and a
splitting of Y into corresponding eigenspaces of DD∗. Now consider the
map ψn : X → X defined by

ψn = idX +Dn−1QnF̂

where F̂ = F − D : X → Y is given by the second column on the right
in (9.22). With b1 = 0 it follows from Theorem 7.12 that the space of
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solutions of (9.20) is compact.∗ Hence there exists a number R > 0 such
that

‖(α,ϕ)‖W 1,p ≥ R =⇒ F(α,ϕ) 6= 0.

Consider the linear operators

dψn(α,ϕ)− idX = Dn−1QndF̂(α,ϕ) : X → X .

It follows from Rellich’s theorem that the operators dF̂(α,ϕ) : X → Y
are uniformly compact in the ball BX3R ⊂ X of radius 3R. Hence, by
Lemma B.12, the operators dψn(α,ϕ)− idX converge to zero in the norm
topology, uniformly on the ball BX3R. Hence there exists an integer n such
that

‖dψn(α,ϕ)− idX ‖L(X ,Y) ≤
1

2
for all (α,ϕ) ∈ BX3R.

By Lemma B.2 this implies that the smooth map ψn is injective on the ball
BX3R with a smooth inverse and

ψn
(
BXR
)
⊂ B3R/2x

X ⊂ ψn
(
BX3R

)
.

Consider the map fn : BXn3R → Yn defined by

fn = (idY −Qn) ◦
(
D + F̂ ◦ ψn−1

)
.

This map is equivariant under the action of Pin(2) and it satisfies the
equation

F ◦ ψn−1 = QnD + fn. (9.23)

If (α,ϕ) ∈ Xn satisfies ‖(α,ϕ)‖W 1,p ≥ 3R/2 then
∥∥ψn−1(α,ϕ)

∥∥
W 1,p ≥

R and hence F ◦ ψn−1(α,ϕ) 6= 0. Moreover, QnD(α,ϕ) = 0 and hence
equation (9.23) shows that fn(α,ϕ) 6= 0. Thus fn never vanishes in BXn2R −
BXn3R/2 and so induces a smooth map

f : (BXn, SXn)→ (BYn, SYn)

defined by

f(α,ϕ) = β (‖α,ϕ‖) fn(2Rα, 2Rϕ) +

(
1− β (‖α,ϕ‖)

)
fn(2Rα, 2Rϕ)

‖fn(2Rα, 2Rϕ)‖
.

Here β : R → R is a cutoff function function satisfying β(r) = 1 for
r ≤ 3/4 and β(r) = 0 for r ≥ 7/8. Here the W 1,p-norm can be chosen

∗The condition b1 = 0 implies that the group G0 of harmonic gauge transformations
is compact, namely it agrees with S1, and thus compactness of the quotient by G0 is

equivalent to compactness of the total space.
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invariant under Pin(2) and then the map f is still equivariant. It is now
interesting to return to the definition of the spaces Xn and Yn. Recall that
the operator D is the direct sum D = D ⊕D+ where

D : W 1,p(X,S+)→ Lp(X,S−)

is the spin Dirac operator and

D+ : W 1,p(X,T ∗X)→ Lp0(X)⊕ Lp(X,Λ2,+T ∗X)

is the self-duality operator. Recall, moreover, that the operator D is equi-
variant under the action of the quaternions. Hence both spaces Xn and Yn
have the form

Xn ∼= Ht ⊕ Rs, Yn ∼= Hr ⊕ Rq

with
indexD = 4(t− r), indexD+ + 1 = s− q

This holds because Dn : X ′n → Y ′n is a Banach space isomorphism. The
index of D+ is given by −b0 − b+ but the b0-term has to be discarded
because the space Y does not include the constant functions. Now recall
that the intersection form of X is given by QX = 2k(−E8) +mH so that

b+ = m, b− = m+ 16k.

Hence

indexD = −σ
4

= 4k, indexD+ + 1 = 1− χ+ σ

2
= −m.

This shows that the spaces Xn and Yn can be identified with

Xn ∼= Hr+k ⊕ Rs, Yn ∼= Hr ⊕ Rs+m.

Both spaces are representations of the group Pin(2). This group acts on R
by j 7→ −1 and eit 7→ 1 and on H in the obvious way using Pin(2) ⊂ H. The
map f is equivariant under this action. There is an induced map between
the balls in the corresponding complexified representations and the next
Proposition shows that such a map can only exist if either k = 0 or m ≥
2k + 1. This proves the theorem. 2

Proposition 9.37. (Furuta) Let

V = Hcr+k ⊕ Cs, W = Hcr ⊕ Cs+m,

and suppose that there exists a smooth map f : (BV, SV ) → (BW,SW )
which is equivariant under the action of Pin(2).∗ Then either k = 0 or

∗As before Pin(2) acts on Hc in the obvious way and acts on C by j 7→ −1 and
eit 7→ 1.
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m ≥ 2k + 1.

This result is reminiscent of the Borsuk-Ulam theorem. The proof was
explained to me by Stefan Bauer. It relies on equivariant K-theory and
we begin with explaining some necessary background. Let G be a compact
Lie group and X be a compact Hausdorff space on which G acts. A G-
equivariant (complex) vector bundle over X is a vector bundle π : E → X
which carries a G-action such that π is equivariant. The group KG(X) is
defined as the set of equivalence classes E	F of pairs of equivariant vector
bundles E → X and F → X under the equivalence relation E 	 F ≡
E′ 	 F ′ iff there exists an equivariant vector bundle H → X such that
E ⊕F ′ ⊕H ∼= F ⊕E′ ⊕H. (Here “∼=” means “equivariantly isomorphic”.)

For a pair A ⊂ X of compact G-spaces the relative KG-group KG(X,A)
is defined as the kernel of the natural homomorphism KG(X/A)→ KG(pt).
In explicit terms KG(X,A) is the set of equivalence classes of pairs E	ϕF
of pairs of equivariant vector bundles E → X and F → X equipped with an
isomorphism ϕ : E|A → F |A. The equivalence relation is E	ϕF ≡ E′	ϕ′F ′
iff there exists an equivariant vector bundle H → X and an isomorphism
ψ : E ⊕ F ′ ⊕H → F ⊕E′ ⊕H which restricts to the obvious isomorphism
ϕ⊕ ϕ′−1 ⊕ id over A.

For every unitary representation V of G there is a natural equivariant
K-theory class

τV ∈ KG(BV, SV )

called the equivariant Thom class. It is defined by

τV = Λ0,evV ∗ 	Γ Λ0,oddV ∗

where Γ : SV → Hom(Λ0,evV ∗,Λ0,oddV ∗) denotes the canonical spinc

structure as introduced in Section 4.7.

Exercise 9.38 Let V be a Hermitian vector space and

Γ : V → End(Λ0,∗V ∗)

be the canonical spinc structure defined by (4.35). If V carries a unitary
G-action show that Γ is equivariant:

Γ(g−1v)g∗τ = g∗Γ(τ)

for v ∈ V , τ ∈ Λ0,∗V ∗, and g ∈ G. 2

Theorem 9.39. (Bott) Let V be a Hermitian vector space which carries
a unitary G-action. Then KG(BV, SV ) is naturally isomorphic to the rep-
resentation ring R(G) via the homomorphism

R(G)→ KG(BV, SV ) : ρ 7→ ρ⊗ τV .
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A proof of this result can be found in Atiyah [4]. It is the only deep
theorem of equivariant K-theory needed in the proof of Proposition 9.37.

Exercise 9.40 Suppose that the group G0 = S1 acts trivially on the Her-
mitian vector spaces V and W and let f : (BV, SV )→ (BW,SW ) be any
smooth map. Prove that the induced map

f∗ : KS1(BW,SW )→ KS1(BV, SV )

satisfies
f∗τW = deg(f)τV

where deg(f) denotes the degree of the induced map of spheres. In partic-
ular, f∗τW = 0 whenever V and W do not have equal dimension. 2

Exercise 9.41 Prove that the representation ring of Pin(2) = 〈j, eit〉 ⊂
Sp(1) is naturally isomorphic to the quotient

R(Pin(2)) ∼=
Z[d, h]

〈d2 = 1, dh = h〉
.

Hint: Denote by d the representation C with j 7→ −1 and eit 7→ 1 and
by h the obvious representation H. Show that the only 1-dimensional com-
plex representations of Pin(2) are 1 and d and that every 2-dimensional
representation has the form

j 7→
(

0 (−1)n

1 0

)
, eit 7→

(
eit 0
0 e−it

)
for some integer n. Denote this representation hn and show that h0 = 1+d,
h1 = h, h−n = hn, and

hnhm = hn+m + hn−m.

Finally, show that every complex representation of Pin(2) has a 1- or 2-
dimensional summand and deduce that R(Pin(2)) is generated by d and h
where the only relations are d2 = 1 and dh = h. 2

Exercise 9.42 (i) Let V be a Hermitian vector space with a unitary G-
action and suppose that the map G × BV → Aut(E0) : (g, x) 7→ ψg(x)
satisfies the cocycle condition

ψh(gx)ψg(x) = ψhg(x)

for x ∈ BV and g, h ∈ G. Prove that there is a map ϕ : BV → Aut(E0)
such that
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ψg(x) = ϕ(gx)−1ψg(0)ϕ(x), ϕ(0) = 1l.

Hint: Consider the cocycles ψλg (x) = ψg(λx) for 0 ≤ λ ≤ 1. Construct the

maps ϕλ : BV → Aut(E0) via

d

dλ
ϕλ = ϕλAλ

where Aλ : BV → End(E0) is defined by

Aλ(x) =
1

Vol(G)

∫
G

Bλg (x)dµ(g), Bλg (x) = ψg(λx)−1 d

dλ
ψg(λx).

Here dµ is a Haar measure on G. Show that

Aλ(x) = Bλg (x) + ψλg (x)−1Aλ(gx)ψλg (x).

(ii) Prove that every equivariant vector bundle E → BV admits an equi-
variant trivialization. Hint: Let Ψx : E0 → Ex be any trivialization and
define

ψg(x) = Ψ−1
gx ◦ g ◦Ψx.

Choose ϕ : BV → Aut(E0) as in (i) and define Φx = ψx◦ϕ(x)−1 : E0 → Ex.
(iii) Prove that there is a natural isomorphism KG(BV ) ∼= R(G). 2

Lemma 9.43. (Furuta) Let f : (BV, SV ) → (BW,SW ) be as in Propo-
sition 9.37 and consider the induced map

f∗ : KG(BW,SW )→ KG(BV, SV ).

Let af ∈ R(Pin(2)) be the unique representation which satisfies

f∗τW = af ⊗ τV

(see Theorem 9.39). If m ≥ 1 then the character θaf : Pin(2)→ R satisfies

θaf (eit) = 0

for every t ∈ R.

Proof: Abbreviate G = Pin(2) and denote by G0 = S1 ⊂ Pin(2) the
identity component. Note that af is a representation of both G and G0. To
avoid confusion we shall use the notation a0

f ∈ R(G0). For any Hermitian
G-vector space V let us denote

λV = Λ0,evV ∗ 	 Λ0,oddV ∗ ∈ R(G)
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and write λ0
V ∈ R(G0) for the induced representation of G0 = S1. In the

case at hand consider the splittings

V = V0 ⊕ V1, W = W0 ⊕W1

where V0 = Cs and W0 = Cs+m denote the respective subspaces which are
fixed under G0 = S1 and consequently V1 = Hcr+k and W1 = Hcr. Note
that f preserves the fixed point sets of G0 and hence there is an induced
map

f0 : (BV0, SV0)→ (BW0, SW0).

This shows that there is a commuting diagram

τW ∈ KG(BW,SW )
f∗−→ KG(BV, SV ) 3 afτV

↓ ↓
τ0
W ∈ KG0

(BW,SW )
f∗−→ KG0

(BV, SV ) 3 a0
fτ

0
V

↓ ↓
λ0
W1
τ0
W0
∈ KG0

(BW0, SW0)
f0
∗

−→ KG0
(BV0, SV0) 3 a0

fλ
0
V1
τ0
V0

.

By Exercise 9.40 the last map is given by multiplication with the degree of
f0 : SV0 → SW0. Hence

λ0
W1

deg(f0) = a0
fλ

0
V1
.

If m ≥ 1 then the spheres SV0 and SW0 have different dimensions and
hence the degree of f0 is zero. This shows that a0

fλ
0
V1

= 0. Examining the

character of λV1
one finds that a0

f = 0 as claimed. 2

Proof of Proposition 9.37: The representation af ∈ R(Pin(2)) of
Lemma 9.43 satisfies

λW = afλV .

This is because KG(BV ) and KG(BW ) are both naturally isomorphic to
R(G) (see Exercise 9.42) and the following diagram commutes

τW ∈ KG(BW,SW )
f∗−→ KG(BV, SV ) 3 afτV

↓ ↓
KG0

(BW )
f∗−→ KG0

(BV )
↘ ↙

λW ∈ R(G) 3 afλV

.

Now one checks easily that

λd = 1− d, λh = 2− h.
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Using the relations d2 = 1 and dh = h one finds

(1− d)2 = (2− h)(1− d) = 2(1− d).

Since λV⊕W = λV λW this implies

λV = 22r+2k+s−1(1− d), λW = 22r+s+m−1(1− d).

Now let us consider the characters. A moment’s thought shows that

θd(j) = −1, θh(j) = 0.

Hence the identity θλW (j) = θaf (j)θλV (j). takes the form

22r+s+m = 22r+2k+sθaf (j).

Since θaf (j) is an integer this implies m ≥ 2k. Moreover, we claim that if
k ≥ 1 then θaf (j) ≥ 2. Firstly, the last equation shows that θaf (j) ≥ 1.
But if θaf (j) = 1 then the constant term of af (as a polynomial in h) has
the form m(1− d) + 1. Since θh(i) = 0 this implies that θaf (i) = 1 which,
by Lemma 9.43, is only possible in the case m = 0. Thus we have proved
that θaf (j) ≥ 2 and this implies

22r+s+m = 22r+2k+sθaf (j) ≥ 22r+2k+s+1.

Hence m ≥ 2k + 1 as claimed. 2

Remark 9.44 It was proved by Stolz that if k ≥ 1 then there exists a
smooth map f : S(Hr+k⊕Rs)→ S(Hr⊕Rs+m) which is equivariant under
the action of j if and only if

m ≥


2k + 1, if k ≡ 0(mod 4),
2k + 1, if k ≡ 1(mod 4),
2k + 2, if k ≡ 2(mod 4),
2k + 3, if k ≡ 3(mod 4).

In particular, this implies that m ≥ 3k when k = 1, 2, 3 and thus recovers
Kronheimer’s result about the 11/8 conjecture in these cases. 2



10

SEIBERG-WITTEN INVARIANTS OF
THREE-MANIFOLDS

10.1 The Seiberg-Witten equations in dimension three

Chern-Simons-Dirac functional

Let Y be a compact oriented smooth 3-manifold and γ : TY → End(W )
be a spinc structure (see page 165). Fix a spinc connection A0 ∈ A(γ) and
consider the Chern-Simons-Dirac functional

CSD : A(γ)× C∞(Y,W )→ R

defined by

CSD(A,Φ) =
1

2

∫
Y

(A0 −A) ∧ (FA + FA0)− 1

2

∫
Y

〈DAΦ,Φ〉dvol (10.1)

for A ∈ A(γ) and Φ ∈ C∞(Y,W ).

Lemma 10.1 The differential of CSD is given by

dCSD(A,Φ)(α,ϕ) = −
∫
Y

FA ∧ α−
∫
Y

(
1

2
〈Φ, γ(α)Φ〉+ 〈DAΦ, ϕ〉

)
dvol

=

∫
Y

(
〈γ(∗FA)− (ΦΦ∗)0, γ(α)〉 − 〈DAΦ, ϕ〉

)
dvol.

for α ∈ Ω1(Y, iR) and ϕ ∈ C∞(Y,W ).

Proof: Every α ∈ Ω1(Y, iR) satisfies∫
Y

(A−A0) ∧ dα =

∫
Y

d(A−A0) ∧ α =

∫
Y

(FA − FA0
) ∧ α.

Hence

dCSD(A,Φ)(α,ϕ) = − 1

2

∫
Y

(FA + FA0
) ∧ α− 1

2

∫
Y

(A−A0) ∧ dα

− 1

2

∫
Y

(〈DAΦ, ϕ〉 − 〈Φ, DAϕ〉)−
1

2

∫
Y

〈Φ, γ(α)Φ〉
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= −
∫
Y

FA ∧ α−
∫
Y

〈(ΦΦ∗)0, γ(α)〉 −
∫
Y

〈DAΦ, ϕ〉

=

∫
Y

〈∗FA, α〉 −
∫
Y

〈(ΦΦ∗)0, γ(α)〉 −
∫
Y

〈DAΦ, ϕ〉

=

∫
Y

〈γ(∗FA)− (ΦΦ∗)0, γ(α)〉 −
∫
Y

〈DAΦ, ϕ〉 .

The second equation uses the formula 〈Φ, γ(α)Φ〉 = 2〈γ(α), (ΦΦ∗)0〉 of
Lemma 7.4. The sign change in the third equation arises from the fact that
the 1-forms α and ∗FA are imaginary valued. 2

It follows from Lemma 10.1 that

dCSD(u∗A, u−1Φ)(α, u−1ϕ) = dCSD(A,Φ)(α,ϕ)

and
dCSD(A,Φ)(dξ,−ξΦ) = 0

for u ∈ G = Map(Y, S1) and ξ ∈ Ω0(Y, iR). Hence the 1-form dCSD de-
scends to the quotient space

C(γ) =
A(γ)× C∞(Y,W )

Map(Y, S1)
.

However, CSD is not invariant under the action of the gauge group but
only under the identity component. Recall that every function u : Y → S1

determines a cohomology class [αu] ∈ H1(Y ;Z) represented by the closed
1-form

αu =
1

2πi
u−1du.

Lemma 10.2 For A ∈ A(Γ), Φ ∈ C∞(Y,W ), and u ∈ Map(Y, S1)

CSD(A,Φ)− CSD(u∗A, u−1Φ) = 2π2[αu] · c1(W )

where · denotes the cup-product followed by evaluation on the fundamental
class of Y .

Proof: The integrand 〈Φ, DAΦ〉 does not change under the transformation
(A,Φ) 7→ (u∗A, u−1Φ). Hence

CSD(A,Φ)− CSD(u∗A, u−1Φ) =
1

2

∫
Y

(u∗A−A0) ∧ (FA + FA0)

− 1

2

∫
Y

(A−A0) ∧ (FA + FA0
)

=
1

2

∫
Y

u−1du ∧ (FA + FA0
)
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=

∫
Y

u−1du ∧ FA0

= 2π2

∫
Y

(
1

2πi
u−1du

)
∧
(
i

π
FA0

)
= 2π2[αu] · c1(W ).

The last equality follows from the fact that 2FA0
is the curvature of a

connection on the line bundle det(W ) and hence iFA0
/π represents the

first Chern class of W . 2

Critical points

Lemma 10.1 shows that a pair (A,Φ) ∈ A(γ)×C∞(Y,W ) is a critical point
of CSD if and only if it satisfies the three dimensional Seiberg-Witten
equations

DAΦ = 0, ∗FA = γ−1((ΦΦ∗)0).

Here we identify TY with T ∗Y and think of γ as an isomorphism T ∗Y ⊗R
C→ End0(W ). Let η ∈ Ω2(Y, iR) and consider the perturbed equation

DAΦ = 0, ∗(FA + η) = γ−1((ΦΦ∗)0). (10.2)

These are the critical points of the perturbed functional CSDη : A(γ) ×
C∞(Y,W )→ R given by

CSDη(A,Φ) = CSD(A,Φ)−
∫
Y

(A−A0) ∧ η.

The perturbation A 7→
∫
Y

(A−A0)∧ η descends to the confiduration space
C(γ) if and only if η is exact. The next lemma shows that (10.2) can only
have solutions if η is closed.

Lemma 10.3 If (10.2) has a solution (A,Φ) then η is closed.

Proof: By Lemma 6.11 (i), γ−1((ΦΦ∗)0) = 〈γ(·)Φ,Φ〉/2 and hence, by
Lemma 6.9,

d∗γ−1((ΦΦ∗)0) =
1

2
〈Φ, DAΦ〉 − 1

2
〈DAΦ,Φ〉 = iIm 〈Φ, DAΦ〉 = 0.

Hence η is closed. 2

The next lemma gives a universal a priori estimate for the critical points
of CSDη.

Lemma 10.4 Every solution (A,Φ) of (10.2) with Φ 6≡ 0 satisfies

sup
X
|Φ|2 ≤ sup

X

(
2|η| − s

2

)
.
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Proof: By Theorem 6.19 and Exercise 4.57 the Weitzenböck formula for
Dirac operators on a 3-manifold has the form

DADAΦ = ∇A∗∇AΦ +
s

4
Φ + γ(∗FA)Φ,

Moreover, as in the proof of Lemma 7.13,

∆|Φ|2 = −2|∇AΦ|2 + 2Re 〈Φ,∇A∗∇AΦ〉 .

Hence the Weitzenböck formula with DAΦ = 0 shows that

∆|Φ|2 ≤ 2Re 〈Φ,∇A∗∇AΦ〉

= − 2 〈Φ, γ(∗FA)Φ〉 − s

2
|Φ|2

= 2 〈Φ, γ(η)Φ− (ΦΦ∗)0Φ〉 − s

2
|Φ|2

≤
(

2|η| − s

2

)
|Φ|2 − |Φ|4.

Now let y0 ∈ Y be a point at which the function y 7→ |Φ(y)|2 attains its
maximum. At such a point ∆|Φ|2 = −

∑
i ∂i∂i|Φ|2 ≥ 0, and hence either

Φ ≡ 0 or

|Φ(y0)|2 ≤ 2|η(y0)| − s(y0)

2
.

This proves the lemma. 2

This result can be used to prove that the set of critical points of CSDη
is compact in the quotient space C(γ). If b1(Y ) > 0 we shall prove that
CSDη is a Morse function for a generic closed perturbation η. Then the
Seiberg-Witten invariant of (Y, γ) can be defined by counting the critical
points of CSDη.

We shall prove that for a generic exact perturbation the set of critical
points with Φ 6= 0

The Hessian

The augmented Hessian of the Chern Simons functional at a critical point
(A,Φ) is the linear operator

HA,Φ :

Ω1(Y, iR)
⊕

Ω0(Y, iR)
⊕

C∞(Y,W )

→

Ω1(Y, iR)
⊕

Ω0(Y, iR)
⊕

C∞(Y,W )

defined by
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HA,Φ

α
ψ
ϕ

 =

 ∗dα+ dψ − γ−1((ϕΦ∗ + Φϕ∗)0)
d∗α− i〈iΦ, ϕ〉

−γ(α)Φ− ψΦ−DAϕ

 . (10.3)

This is a self-adjoint first order elliptic operator.

Remark 10.5 (i) The differential of the gradient

(A,Φ) 7→ grad CS(A,Φ)

is the linear operator(
α
ϕ

)
7→
(
∗dα− γ−1((ϕΦ∗ + Φϕ∗)0)

−DAϕ− γ(α)Φ

)
.

This is the (non-augemted) Hessian of the Chern simons functional and
corresponds to the operator (10.3) with ψ = 0. At a critical point of CS,
the kernel and the cokernel of this operator contain the tangent space of
the gauge orbit of the pair (A,Φ), i.e. all pairs (α,ϕ) which have the form
α = dψ, ϕ = −ψΦ for some ψ ∈ Ω0(Y, iR). Adding these terms to the
Hessian has the effect of removing this part of the cokernel.
(ii) The additional second row in the definition ofHA,Φ makes the extended
Hessian self-adjoint. Its geometric significance is, that d∗α− i〈iΦ, ϕ〉 = 0 if
and only if the pair (α,ϕ) is orthogonal to the tangent space of the gauge
orbit of (A,Φ).
(iii) Let (A,Φ) be a critical point of CS with Φ 6= 0. Then every triple
(α,ψ, ϕ) ∈ ker HA,Φ satisfies ψ = 0. This follows from the identity

HA,ΘHA,Θ

α
ψ
ϕ

 =

 ∆α+ |Φ|2α− 2i〈i∇AΦ, ϕ〉
∆ψ + |Φ|2ψ

DADAϕ+ |Φ|2ϕ− 2∇A,αΦ

 .

See Salamon [108] for a proof. It follows that the kernel of the augmented
Hessian agrees with the kernel of the actual Hessian d2CS(A,Φ) on the
quotient Ω1(Y, iR)× C∞(Y,W )/{(dξ,−ξΦ) | ξ ∈ Ω0(Y, iR)}.
(iv) A critical point (A,Φ) of CS with Φ 6= 0 is called nondegenerate if
the augmented Hessian HA,Φ is injective.
(v) A pair (A, 0) (with Φ = 0) is a critical point of CS if and only if A is
a flat connection, i.e. FA = 0. Note that such critical points only exist if
c1(W ) is a torsion class. In this case the augmented Hessian is the operator

HA,0 =

 ∗d d 0
d∗ 0 0
0 0 DA


The kernel of this operator is the space
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ker HA,0 = H1(Y, iR)⊕H0(Y, iR)⊕ ker DA.

Note here that the term H0(Y, iR) ∼= iR corresponds to the tangent space
of the isotropy subgroup S1. A critical point of the form (A, 0) is called
nondegenerate if H1(Y, iR) = 0 and ker DA = 0.
(vi) Suppose that Y is a rational homology 3-sphere with positive scalar
curvature. Then it follows from Lemma 10.4 that every critical point (A,Φ)
of CS satisfies Φ = 0. Moreover, H2(Y,Z) consists only of torsion classes
and so every line bundle L→ Y admits a flat connection. Since H1(Y, iR) =
0, this flat connection is unique up to gauge equivalence. Moreover, if FA =
0, then the Weitzenböck formula reduces to DADA = ∇A∗∇A + s/4, and in
the case s > 0 this implies that

ker HA,0 = H0(Y, iR).

In summary, if Y is a rational homology 3-sphere Y with positive scalar
curvature, then for every spinc structure γ : TY → End(W ) the Seiberg-
Witten Chern-Simons functional has a unique critical point up to gauge
equivalence, and this critical point is nondegenerate.

Gradient flow lines

It follows from Lemma 10.1 that

grad CS(A,Φ) =

(
∗FA − γ−1((ΦΦ∗)0)

−DAΦ

)
(10.4)

where γ−1 : End0(W ) → Ω1(Y,C) assigns to every traceless Hermitian
endomorphism ofW an imaginary valued 1-form on Y . Hence the (negative)
gradient flow lines of CS are paths R 7→ A(γ)×C∞(Y,W ) : t 7→ (A(t),Φ(t))
which satisfy

Φ̇ = DAΦ, γ(Ȧ+ ∗FA) = (ΦΦ∗)0.

Monopoles on tubes

The purpose of this section is to examine the solutions of the Seiberg-
Witten equations on tubes Y ×R where Y is a compact oriented 3-manifold
without boundary. The results of this section will also be used in the proof
of the Thom conjecture in Section 14.2.

Seiberg-Witten equations on tubes

Remark 10.6 Every spinc structure γ : Y → End(W ) determines a spinc

structure on X = R × Y . This is the map Γ : TX → End(S) with S =
W ⊕W defined by

Γ(τ, v) =

(
0 γ(v) + τ1l

γ(v)− τ1l 0

)
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for v ∈ TY and τ ∈ R. (See the proof of Theorem 5.16.) 2

Exercise 10.7 A 2-form η ∈ Λ2T ∗X on X = R × Y has the form η =
β+α∧dt where α ∈ T ∗Y and β ∈ Λ2T ∗Y . Consider the map ρ : Λ2T ∗X →
End(S), as defined in (4.39) with the spinc structure Γ of Remark 10.6.
Prove that this map is given by

ρ(β + α ∧ dt) =

(
γ(∗β − α) 0

0 γ(∗β + α)

)
for α ∈ T ∗Y and β ∈ Λ2T ∗Y . Deduce that

ρ+(β + α ∧ dt) = γ(∗β − α).

and hence ρ+(β + α ∧ dt) = 0 if and only if β = ∗α. 2

Exercise 10.8 Prove that

∗4(β + α ∧ dt) = − ∗3 α− ∗3β ∧ dt

for α ∈ T ∗Y and β ∈ Λ2T ∗Y . Here ∗4 denotes the Hodge-∗-operator on
X = R × Y and ∗3 denotes the Hodge-∗-operator on Y . Deduce that β +
α ∧ dt is anti-self-dual if and only if β = ∗α. 2

Every spinc structure on Y induces a spinc structure on the 4-manifold
X = R×Y as in Remark 10.6. With this convention a spinc connection on
X has the form A(t) + Ψ(t)dt where A(t) ∈ A(γ) and Ψ(t) ∈ Ω0(Y, iR) for
every t. Thus one can think of the map

t 7→ A(t) + Ψ(t)dt

as a smooth path in A(γ)×Ω0(Y, iR). The Dirac operator for this connec-
tion is given by

Φ 7→ −∇tΦ +DAΦ

for Φ ∈ C∞(R× Y,W ) where

∇tΦ = Φ̇ + ΨΦ.

Throughout Φ̇ abbreviates the t-derivative ∂Φ/∂t = Φ̇. Note that both Φ
and A depend on t but this t-dependence is not mentioned explicitly in the
notation. The curvature form of A+ Ψdt is given by

FA+Ψdt = FA + (dΨ− Ȧ) ∧ dt.

Hence it follows from Exercise 4.57 that the unperturbed Seiberg-Witten
equations on the tube X = R× Y with respect to the product metric take
the form
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∇tΦ = DAΦ, γ(Ȧ− dΨ + ∗FA) = (ΦΦ∗)0. (10.5)

The reader may wish to compare (10.5) with the Seiberg-Witten equations
on flat Euclidean space in Section 8.1.

Temporal gauge

The equation (10.5) is again invariant under gauge transformations. Note
here that a gauge transformation on X is a smooth map u : X → S1

and hence can be thought of as a smooth 1-parameter family of gauge
transformations of Y . The action of such paths

R→ Map(Y, S1) : t 7→ u(t)

is given by
u∗(A,Ψ,Φ) = (u∗A,Ψ + u−1u̇, u−1Φ).

Here the notation u∗ is used ambiguously. On the left it is to be understood
as the action of the entire map t 7→ u(t) whereas on the right it is to be
understood as the pointwise action for every t and could be written more
precisely in the form u(t)∗A(t) etc. However, in each case the meaning
should be clear from the context. The formulae

d

dt
u∗A = u∗Ȧ+ d(u−1u̇),

d

dt
u−1Φ = u−1

(
Φ̇− u−1u̇Φ

)
show that if (A,Ψ,Φ) is a solution of (10.5) then so is u∗(A,Ψ,Φ). The
gauge transformation can obviously be chosen such that Ψ + u−1u̇ = 0.
Hence assume Ψ = 0. Then the equations (10.5) take the form

Φ̇ = DAΦ, γ(Ȧ+ ∗FA) = (ΦΦ∗)0. (10.6)

These are the Seiberg-Witten equations on the tube in temporal gauge.

Energy

Let t 7→ (A(t),Ψ(t),Φ(t)) be a smooth path inA(γ)×Ω0(Y, iR)×C∞(Y,W )
defined on the interval 0 ≤ t ≤ T . The energy of such a path is defined by

E[0,T ](A,Ψ,Φ) =

∫ T

0

∫
Y

(
|∇tΦ|2 + |DAΦ|2 +

∣∣∣Ȧ− dΨ
∣∣∣2)

+

∫ T

0

∫
Y

|γ(∗FA)− (ΦΦ∗)0|2

=

∫ T

0

∫
Y

(
|∇tΦ|2 + |∇AΦ|2 +

s

4
|Φ|2 +

1

4
|Φ|4

)
+

∫ T

0

∫
Y

(∣∣∣Ȧ− dΨ
∣∣∣2 + |FA|2

)
.
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The equality of these two expresssions is a direct consequence of the Weit-
zenböck formula and the identity

∇tDAΦ−DA∇tΦ = γ(Ȧ− dΨ)Φ.

The second expression is the Seiberg-Witten action functional. The next
proposition shows that the solutions of (10.5) are the minima of the energy
functional subject to fixed boundary conditions.

Proposition 10.9 For every smooth path t 7→ (A(t),Ψ(t),Φ(t) in A(γ)×
Ω0(Y, iR)× C∞(Y,W )

E[0,T ](A,Ψ,Φ) =

∫ T

0

∫
Y

|∇tΦ−DAΦ|2

+

∫ T

0

∫
Y

∣∣∣γ(Ȧ− dΨ + ∗FA)− (ΦΦ∗)0

∣∣∣2
+ 2CS(A(0),Φ(0))− 2CS(A(T ),Φ(T )).

Proof: The proof is by direct calculation:

E[0,T ](A,Ψ,Φ)−
∫ T

0

∫
Y

|∇tΦ−DAΦ|2 dvol

−
∫ T

0

∫
Y

∣∣∣γ(Ȧ− dΨ + ∗FA)− (ΦΦ∗)0

∣∣∣2 dvol

= 2

∫ T

0

∫
Y

〈∇tΦ, DAΦ〉dvol

+ 2

∫ T

0

∫
Y

〈γ(Ȧ− dΨ), (ΦΦ∗)0 − γ(∗FA)〉dvol

=

∫ T

0

∫
Y

(
2〈∇tΦ, DAΦ〉+ 〈Φ, γ(Ȧ− dΨ)Φ〉

)
dvol

+ 2

∫ T

0

∫
Y

(Ȧ− dΨ) ∧ FA

=

∫ T

0

∫
Y

(
2 〈∇tΦ, DAΦ〉+ 〈Φ,∇tDAΦ−DA∇tΦ〉

)
+ 2

∫ T

0

∫
Y

Ȧ ∧ FA

=

∫ T

0

∫
Y

(
〈∇tΦ, DAΦ〉+ 〈Φ,∇tDAΦ〉

)
dvol

+

∫ T

0

d

dt

(∫
Y

(A−A0) ∧ (FA + FA0
)

)
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= − 2

∫ T

0

d

dt
CS(A(t),Φ(t)) dt

= 2CS(A(0),Φ(0))− 2CS(A(T ),Φ(T )).

This proves the proposition. 2

Proposition 10.9 plays a crucial role in studying the properties of Sei-
berg-Witten monopoles on 4-manifolds with long necks. This analysis is the
key step in the proof of the generalized Thom conjecture.

The perturbed energy is given by

Eη,[0,T ](A,Ψ,Φ) =

∫ T

0

∫
Y

(
|∇tΦ|2 + |DAΦ|2 +

∣∣∣Ȧ− dΨ
∣∣∣2)

+

∫ T

0

∫
Y

|(ΦΦ∗)0 − γ(∗(FA + η))|2 .

There are two important identities. The first relates this energy to the
Seiberg-Witten action functional (7.2) which on the cylinder Y × [0, T ] is
given by

ESWη,[0,T ](A,Ψ,Φ) =

∫ T

0

∫
Y

(
|∇tΦ|2 + |∇AΦ|2

)
+

∫ T

0

∫
Y

(
s

4
|Φ|2 + |(ΦΦ∗)0 − γ(∗η)|2

)
+

∫ T

0

∫
Y

(∣∣∣Ȧ− dΨ + ∗η
∣∣∣2 + |FA + η|2

)
.

The second identity relates the energy Eη,[0,T ](A,Ψ,Φ) to the Chern-Si-
mons functional CSη.

Exercise 10.10 Let η ∈ Ω2(Y ) be independent of t. Prove that for every
smooth path t 7→ (A(t),Ψ(t),Φ(t)) in A(γ)× Ω0(Y, iR)× C∞(Y,W )

ESWη,[0,T ](A,Ψ,Φ)− Eη,[0,T ](A,Ψ,Φ)

= 2T

∫
Y

|η|2 − 2

∫
Y

(A(T )−A(0)) ∧ η + 2

∫ T

0

∫
Y

dΨ ∧ η

and

Eη,[0,T ](A,Ψ,Φ)

=

∫ T

0

∫
Y

|∇tΦ−DAΦ|2 +

∫ T

0

∫
Y

∣∣∣γ(Ȧ− dΨ + ∗(FA + η))− (ΦΦ∗)0

∣∣∣2
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+ 2CSη(A(0),Φ(0))− 2CSη(A(T ),Φ(T ))− 2

∫ T

0

∫
Y

dΨ ∧ η.

If η is closed the last term vanishes and hence the solutions of the perturbed
Seiberg-Witten equations

∇tΦ = DAΦ, γ(Ȧ− dΨ + ∗(FA + η)) = (ΦΦ∗)0

minimize the energy Eη,[0,T ](A,Ψ,Φ) with respect to variations with fixed
boundary values. Prove that the stationary solutions (A,Φ) (with Ψ = 0
and Ȧ = 0, Φ̇ = 0) satisfy either

sup
X
|Φ|2 ≤ sup

X

(
2|η| − s

2

)
or Φ = 0. 2

10.2 Transversality in dimension three

10.3 Invariants of three-manifolds



11

GLUING THEOREMS

The purpose of this chapter is to give a proof of the connected sum and
blowup axioms for the Seiberg-Witten invariants. Both results are based on
studying the the limiting behaviour of solutions of the Seiberg-Witten equa-
tions for a sequence of metrics which pinch the neck to a point. The proof of
the vanishing theorem is considerably simpler because it only uses compact-
ness, while the proof of the blowup formula requires subtle estimates for the
inverse of the linearized operator. These estimates are Seiberg-Witten ana-
logues of the gluing theorems for ASD instantons by Taubes [114, 115] (see
also Donaldson-Kronheimer [21]). The first section begins with the precise
formulation of the theorems proved in this chapter. Section 11.2 contains
the proof of the vanishing theorem for connected sums where both sum-
mands satisfy b+ ≥ 1. The next four sections are of a preparatory nature.
Section 10.1 examines the Seiberg-Witten equations on tubes Y ×R where
Y is a 3-manifold. Section 11.3 establishes the existence of limit connections
for finite energy solutions on tubes, and Section 11.5 establishes the basic
Fredholm theory for 4-manifolds with cylindrical ends. As a result one can
define Seiberg-Witten invariants for smooth 4-manifolds with boundary (or
cylindrical ends) provided that all the boundary components have metrics
with positive scalar curvature. In the case where the boundary components
are spheres these invariants agree with the invariants of the correspond-
ing closed manifold. The proof relies on the gluing theorem established in
Section 11.6. This gluing theorem also gives rise to a proof of the blowup
formula which is carried out in Section 11.7. We point out that the tech-
niques developed in this chapter will also play an important role in the
definition of Seiberg-Witten Floer homology.

11.1 Seiberg-Witten invariants for connected sums

Theorem 11.1 Suppose that X is a compact oriented 4-manifold diffeo-
morphic to the connected sum X1#X2 where

b+(X1) ≥ 1, b+(X2) ≥ 1,

and b+(X)− b1(X) is odd. Then the Seiberg-Witten invariants of X are all
zero.

This result was announced by Taubes and others in [116] and was also
proved by Witten in his lecture on 6 December 1994 at the Isaac Newton
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Institute in Cambridge. The proof given below was sketched by Donaldson
in [20].

Theorem 11.2 Let X and N be compact oriented smooth 4-manifolds with
b+(X) ≥ 2, b+(N) = 0, b1(N) = 0, and consider the oriented connected
sum X ′ = X#N with spinc structure Γ′ = Γ#ΓN . Suppose that

c · c− 2χ(X)− 3σ(X) + e · e+ b2(N) ≥ 0 (11.1)

where c = c1(LΓ) ∈ H2(X,Z) and e = c1(LΓN ) ∈ H2(N,Z). Then

SW(X ′,Γ′) = SW(X,Γ).

In particular, the basic classes of X ′ have the form c′ = c + e where c ∈
H2(X,Z) is a basic class of X and e ∈ H2(N,Z) is a characteristic vector.

Recall from Donaldson’s theorem 9.6 that the intersection form of N is
diagonalizable over the integers and hence H2(N,Z) has an integral basis
e1, . . . , em with ei · ei = −1. For such a basis the vector e =

∑
i kiei

is characteristic if and only if all the integers ki are odd. Note that any
characteristic vector satisfies

e · e+ b2(N) ≤ 0. (11.2)

The proof of Theorem 11.2 is based on choosing a sequence of metrics
which pinch the neck. Consider a spinc structure Γ′ on X ′ = X#N which
restricts to spinc structures Γ on X and ΓN on N . With c and e denoting
the characteristic classes of the spinc structures Γ and ΓN , respectively, we
obtain that the virtual dimensions of the moduli spaces M′ = M(X ′,Γ′)
and M =M(X,Γ) are related by

dim M′ = dim M+
e · e+ b2(N)

4
.

The last term on the right is the real index of the Dirac operator onN . Since
e satisfies (11.2) it follows that dim M≥ dim M′ and thus condition (11.1)
asserts that both moduli spaces have nonnegative dimension. One can use a
standard gluing argument to show that under this condition SW(X ′,Γ′) =
SW(X,Γ). The gluing argument is due to Taubes [114, 115] in the case of
anti-self-dual instantons with nonabelian structure groups and a proof for
that case can also be found in Donaldson-Kronheimer [21], pp 287–295. For
the Seiberg-Witten case the gluing argument will be described below.

11.2 Proof of the vanishing theorem

The goal of this section is to give a proof of Theorem 11.1 about the van-
ishing of the Seiberg-Witten invariants for connected sums
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X = X1#X2

where b+(X)− b1(X) is odd and b+(X1) ≥ 1, b+(X2) ≥ 1. The proof given
here was outlined by Donaldson in [20]. It is based on choosing a sequence
of metrics gν on the connected sum X1#X2 which pinches the neck to a
point and has the property that the scalar curvature sν is bounded below by
a constant independent of ν. Note, however, that the scalar curvature will
diverge to +∞ near the pinched neck. More precisely, the following remark
shows how to construct a metric on the unit disc in R4 which agrees with
the standard metric outside a ball of radius δ and with the pullback metric
from R × ρS3 under the diffeomorphism x 7→ (ρ log |x|, ρx/|x|) inside a
punctured ball of radius δm for some integer m.

Remark 11.3 Consider the diffeomorphism f : R4−{0} → R×ρS3 given
by

f(x) =

(
ρ log |x|, ρ x

|x|

)
for x 6= 0. The pullback of the standard metric g on R × ρS3 under this
diffeomorphism has the form

f∗g(ξ, η) =
ρ2

|x|2
〈ξ, η〉.

for |x| ≤ ρ2 (see Exercise 2.13). Now choose a function λ : (0, 1] → [1,∞)
which satisfies

λ(r) =

{
ρ/r if r ≤ δm,

1 if r ≥ δ. (11.3)

and consider the metric gλ on R4 − {0} given by

gλ(ξ, η) = λ(|x|)2〈ξ, η〉.

For |x| ≤ δm this metric agrees with the above pullback metric f∗g. By
Lemma 2.16, the scalar curvature of gλ is given by

sλ = 6
∆λ

λ3
= −6

λ′′ + 3λ′/r

λ3
.

One can choose λ decreasing and thus λ′(r) ≤ 0 for all r. It remains to
prove that λ can be chosen such that (11.3) is satisfied and, say,

λ′′(r)

λ(r)
+ 3

λ′(r)

rλ(r)
≤ 1. (11.4)

Here the constant 1 is an arbitrary choice and can be replaced by any
positive number (at the expense of increasing m). We must prove that for
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every δ > 0 there exists a function λ : [0, 1]→ [0,∞) which satisfies (11.3)
and (11.4) for some constant ρ > 0. As in [88] and in the proof of Theo-
rem 2.18, consider the function α = α(r) defined by

λ′

λ
= −α

r
,

λ′′

λ
= −α

′

r
+
α+ α2

r2
.

Then the conditions (11.3) and (11.4) take the form

α′

r
+
α(2− α)

r2
≥ −1, α(r) =

{
1, for r ≤ δm,
0, for r ≥ δ. (11.5)

Introduce the new variable t ≥ 0 via r = δe−t and consider the curve
γ(t) = α(δe−t). Then (11.5) translates into

γ̇ ≤ (2− γ)γ + δ2e−2t

with γ(t) = 1 for t ≥ T = log(δ1−m) and γ(t) = 0 for t ≤ 0. A solution of
the differential equation γ̇ = (2− γ)γ is given by the explicit formula

γ(t) =
2δ2m−2e2t

1 + δ2m−2e2t
.

This function satisfies

γ(0) =
2δ2m−2

1 + δ2m−2
� 1, γ(T ) = γ(log(δ1−m)) = 1.

Perturbing γ slightly near t = 0 and t = T gives a smooth solution of the
required differential inequality provided that m is sufficiently large. 2

Exercise 11.4 Prove that if the metric is constructed with the unper-
turbed function γ(t) in Remark 11.3 then

λ(r) =
r2 + δ2m

r2 + r2δ2m−2
, δm ≤ r ≤ δ,

and hence ρ = δmλ(δm) = 2δm/(1 + δ2m−2). 2

It is convenient to think of the connected sum as follows. Fix two points
x1 ∈ X1 and x2 ∈ X2 and choose a metric gi on Xi which is flat in a neigh-
bourhood of xi. Now construct a sequence of manifolds Xν = X1#νX2 by
removing arbitrarily small discs from X1 and X2, centered at x1 and x2

respectively, modifying the metrics gi as in Remark 11.3 above, and then
identifying two annuli which are isometric to [0, 1]×ρνS3. Given two spinc

structures Γ1 over X1 and Γ2 over X2 one obtains a corresponding sequence
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of spinc structures Γν over Xν by identifying Γ1 and Γ2 in suitable trivi-
alizations over the two annuli. Let us choose a sequence of perturbations
ην on Xν which vanish near the neck and are independent of ν on the
complement of the neck. Any such sequence determines two fixed pertur-
bations η1 and η2 on X1 and X2, respectively, which vanish in the given
neighbourhoods of x1 and x2. By Theorem 7.16 and Remark 8.18, the per-
turbation can be chosen such that the moduli spacesM(X1,Γ1, g1, η1) and
M(X2,Γ2, g2, η2) are regular.

Assume first that the moduli space M(Xν ,Γν , gν , ην) is zero dimen-
sional. We prove that this space must be empty for ν sufficiently large.
Suppose otherwise that for every ν there exists a solution (Aν ,Φν) of the
Seiberg-Witten equations for the metric gν and the perturbation ην . By
Lemma 7.13, the spinors Φν satisfy the inequality

sup
X
|Φν | ≤ −

1

2
inf
X
sν .

where sν denotes the scalar curvature of gν . The previous exercise shows
that there exists a constant c > 0 such that sν(x) ≥ −c for all x ∈ X
and all ν. Hence the Φν are uniformly bounded. Now Aν and Φν restrict
to solutions of the Seiberg-Witten equations on X1 (for the metric g1 and
the perturbation η1) outside any neighbourhood of x1. Hence it follows
from the compactness theorem 7.12 that there exists a subsequence which
converges in the C∞-topology on every compact subset of X1 − {x1} to
a solution (A1,Φ1) of the Seiberg-Witten equations which is defined on
X1 − {x1} and has finite energy. Since g1 is flat and η1 vanishes near x1

the removable singularity theorem 8.6 asserts that A1 and Φ1 extend to a
smooth solution over all of X1. This shows that the moduli space M1 =
M(X1,Γ1, g1, η1) is nonempty. Obviously, the same argument applies to
X2. Now the perturbation η was chosen such that η1 and η2 are regular for
g1 and g2. But the dimension formula shows that

0 = dimM = dimM1 + dimM2 + 1.

Hence one of the moduli spaces must have negative dimension. Since both
moduli spaces are regular it follows that one of them must be empty, a
contradiction. This shows that the assumption thatM(Xν ,Γν , gν , ην) was
nonempty for all ν must have been false. But if there is a metric for which
the moduli space is empty then the Seiberg-Witten invariant is zero. Thus
we have proved that the Seiberg-Witten invariant must vanish whenever
the moduli space is zero dimensional.

A similar argument applies to the cut-down moduli spaces in the higher
dimensional case. More precisely, consider the intersection of the moduli
space M1 with suitable submanifolds of the form
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Nh =

{
[A,Φ]

∣∣∣ ∫
X1

〈h(A),Φ〉dvol = 0

}
⊂ C(Γ1)

where the map h : A(Γ1)→ C∞(X,W+
1 )∗ satisfies

h(u∗A) = u(y)u−1h(A)

for every u : X1 → S1 and some y ∈ X1. The map h can be localized near
y as in Exercise 7.27. Now, as before, dim M = dim M1 + dim M2 + 1
and hence one of the moduli spaces must have dimension strictly smaller
than M. Suppose without loss of generality that

dim M1 < dim M = 2d

and choose d functions h1, . . . , hd : A(Γ1)→ C∞(X,W+
1 )∗ as above which

are localized somewhere on X1 away from x1. Then, for a generic pertur-
bation η1,

M(X1,Γ1, g1, η1) ∩Nh1 ∩ · · · ∩ Nhd = ∅. (11.6)

On the other hand the hi determine functions hi,ν : A(Γν)→ C∞(X,W+
ν )∗

(this is obvious from the explicit construction in Exercise 7.27) and one can
examine the moduli spacesM(Xν ,Γν , gν , ην)∩Nh1,ν

∩ · · · ∩Nhd,ν . If these
were nonempty for all ν then, by taking the limit ν →∞, we would obtain
a contradiction to (11.6). Hence these moduli spaces are empty for large ν
and thus the Seiberg-Witten invariants are zero.

11.3 Existence of limits

This section establishes the existence of limit connections for finite energy
solutions on tubes. We shall assume throughout that Y is a rational ho-
mology 3-sphere, equipped with a Riemannian metric with positive scalar
curvature, and γ : TY → End(W ) is a spinc structure on Y compati-
ble with the given metric. We shall consider finite energy solutions of the
Seiberg-Witten equations on the half-tube Y × [0,∞) in temporal gauge.
These are smooth maps [0,∞) → A(γ) × C∞(Y,W ) : t 7→ (A(t),Φ(t))
which satisfy (10.6) and have finite energy, i.e.

Φ̇ = DAΦ, Ȧ+ ∗FA = γ−1((ΦΦ∗)0),

∫ ∞
0

∫
Y

(∣∣∣Φ̇∣∣∣2 +
∣∣∣Ȧ∣∣∣2) <∞.

(11.7)
The main theorem of this section asserts that any solution of (11.7) con-
verges exponential to a critical point of the Chern-Simons functional as
t→∞.

Theorem 11.5 Let Y be a rational homology 3-sphere with a metric of
positive scalar curvature, and γ : TY → End(W ) be a spinc structure.
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Suppose that [0,∞) → A(γ) × C∞(Y,W ) : t 7→ (A(t),Φ(t)) is a smooth
solution of (11.7). Then there exists a flat connection A0 ∈ A(γ) such that

lim
t→∞

A(t) = A0, lim
t→∞

Φ(t) = 0.

The convergence is exponential in the Ck-norm for every k.

Remark 11.6 Theorem 11.5 continuous to hold for the perturbed Sei-
berg-Witten equations and any spinc structure on any compact Rieman-
nian 3-manifold for which the perturbed Chern-Simons functional has only
nondegenerate critical points. However, the case of rational homology 3-
spheres with positive scalar curvature suffices for our applications. 2

Proof of Theorem 11.5:

11.4 Fredholm theory on four-manifolds with cylindrical ends

This section establishes the basic Fredholm theory for 4-manifolds with
cylindrical ends.

11.5 Seiberg-Witten invariants of four-manifolds with cylindri-
cal ends

11.6 Gluing Seiberg-Witten monopoles

11.7 Proof of the blowup formula
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Part IV

KÄHLER SURFACES AND
SYMPLECTIC MANIFOLDS
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KÄHLER SURFACES

The goal of this chapter is to explain some of the fundamental proper-
ties of the Seiberg-Witten invariants for Kähler surfaces. It was observed
already by Seiberg and Witten that Kähler surfaces with b+ > 1 have
nontrivial invariants corresponding to the canonical class and hence do
not admit metrics of positive scalar curvature. This gave rise to much sim-
pler proofs of earlier theorems by Donaldson distinguishing diffeomorphism
types of smooth 4-manifolds with the same intersection form. Witten also
proved that all Kähler manifolds have simple type. In fact, it was soon re-
alized by several mathematicians (Tian, Yau, Kronheimer, Mrowka, Mor-
rison, Friedman, Morgan) that for minimal Kähler surfaces of general type
the only basic classes are plus and minus the canonical class. This leads
to the important conclusion that up to the sign the canonical class is a
diffeomorphism invariant and thus settles one of the main conjectures by
Friedman and Morgan [29]. Another new result is the theorem by Kotschick
that Kähler surfaces are irreducible in the sense that in any connected sum
decomposition one of the components is a homology 4-sphere (cf [59]). In
fact, this result extends to the symplectic category and it will be discussed
in Chapter 13. LeBrun observed that the only minimal Kähler surfaces
which do admit metrics of positive scalar curvature are CP 2 and ruled sur-
faces [70]. He also extended the Miyaoka-Yau inequality to Einstein mani-
folds with nontrivial Seiberg-Witten invariants [71]. Another link between
the Seiberg-Witten invariants and algebraic geometry is the observation,
made by Bradlow, Taubes and others, that the moduli space of unperturbed
Seiberg-Witten monopoles can be identified with the space of effective divi-
sors. Mrowka used this to compute the Seiberg-Witten invariants for elliptic
surfaces. All these results, except for the irreducibility, will be discussed in
this chapter. The first section gives a brief review of the Enriques-Kodaira
classification. Section 12.1 deals with the special form of the Seiberg-Witten
equations in the Kähler case and describes some fundamental properties of
their solutions.

12.1 The Enriques-Kodaira classification

The classification of Kähler surfaces was established by Enriques and Ko-
daira between the mid thirties and the mid fifties of this century. Key in-
gredients are the canonical bundle K = KX = Λ2,0T ∗X and the Kodaira
dimension
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Kod(X) = lim sup
m→∞

log dim H0(X,OX(mKX))

log m
.

Here OX(mKX) denotes the sheaf of holomorphic sections of K⊗m and
thusH0(X,OX(mKX)) is the space of global holomorphic sections ofK⊗m.
Recall that a Kähler surface is called minimal if it does not contain any
embedded holomorphic 2-sphere C with self-intersection number C · C =
−1. Recall also that a ruled surface is a 2-sphere bundle over a Riemann
surface and that a complex surface X is called elliptic if there exists a
holomorphic map f : X → CP 1 with generic fiber a 2-torus (and finitely
many exceptional fibers). Kodaira and Enriques proved (different parts) of
the following classification theorem. A proof can be found in [45], pp 572,
or [8, 9].

Theorem 12.1 Let X be a minimal Kähler surface. Then the Kodaira
dimension of X is either −∞, 0, 1, or 2. Moreover, the following holds.

(i) Kod(X) = −∞ if and only if X is either CP 2 or ruled.

(ii) Kod(X) = 0 if and only if X is finitely covered by either the 4-torus
or the K3-surface. In this case c1(K) is a torsion class.

(iii) If Kod(X) = 1 then X is elliptic. Moreover, c1(K) is not a torsion
class and

c1(K) · c1(K) = 0.

(iv) If Kod(X) = 2 then

c1(K) · c1(K) > 0

Such surfaces are called of general type.

Here are some more details about the four cases.

The case Kod(X) = −∞
This corresponds to the case where the canonical bundle (and any power of
it) has no holomorphic sections. Minimal Kähler surfaces with this property
are either rational or ruled. Equivalently there exists a Kähler metric with

c1(K) · [ω] < 0,

or a Kähler metric with positive scalar curvature (Yau). Recently, it was
proved by LeBrun that if there is any metric with positive scalar curvature
then X is rational or ruled (see Theorem 12.14 below). Note that there are
three cases c1(K)2 > 0 (CP 2, S2 × S2), c1(K)2 = 0 (S2 bundles over T2),
and c1(K)2 < 0 (S2 bundles over Riemann surfaces of higher genus). In
the first two cases all Kähler structures satisfy c1(K) · [ω] < 0 while in the
last case there are also Kähler structures with c1(K) · [ω] > 0.
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The case Kod(X) = 0

In this case the space H0(X,OX(mKX)) of holomorphic sections of the
m-th tensor power of the canonical bundle has dimension either 0 or 1 for
every m. This is the case when c1(K) is a torsion class and, in particular,

c1(K) · c1(K) = 0, c1(K) · [ω] = 0.

The only Kähler surfaces with this property are finite quotients of either the
4-torus or the K3-surface. Note that b+ is either 3 (T4 or K3) or 1 (finite
quotients of T4 or K3). A specific example is the Enriques surface which
can be described as the quotient of the K3-surface {z0

4 +z1
4 +z2

4 +z3
4} ⊂

CP 3 by the Z2-action z 7→ z̄ (see Example 6.28). It has intersection form
QX = H ⊕ (−E8) and K is a nonzero torsion class with 2K = 0. For
all other Kähler surfaces with Kod(X) = 0 the canonical class is zero.∗

The finite quotients of T4 are called hyperelliptic surfaces. They are
diffeomorphic to T4/Zm with m = 2, 3, 4, 6. To obtain explicit examples
think of T4 as a product of two elliptic curves E = C/Z+ iZ and F = C/Λ
and let Zm act by a translation by z 7→ z + 1/m on E and by rotation
z 7→ e2πi/mz on F . This rotation preserves the lattice Λ = Z + iZ in the
cases m = 2, 4 and the lattice Λ = Z + eπi/3Z in the cases m = 3, 6. For
more details see Beauville [9].

The case Kod(X) = 1

In this case K is a non torsion cohomology class with

c1(K) · c1(K) = 0, c1(K) · [ω] > 0,

and X is an elliptic surface,† i.e. there exists a holomorphic map f : X →
CP 1 whose generic fiber is a 2-torus and with finitely many exceptional
fibers.

Examples with b+ = 1 and b1 = 0 can be constructed by adding
multiple fibers to the Enriques surface and to the rational elliptic surface

CP 2#9CP 2
. The latter manifolds, when simply connected, are known as

Dolgachev surfaces. Recall that simply connected smooth 4-manifolds
with even intersection forms are spin and hence, by Rohlin’s theorem their
signature is divisible by 16. Hence the intersection form QX = H ⊕ (−E8)
cannot occur in the simply connected case.

∗Here one must be careful to distinguish between the canonical divisor K in Pic(X)
which classifies the holomorphic structure of the canonical bundle and the first Chern
class c1(K). In fact K is a nonzero torsion element for all nontrivial finite Kähler quo-

tients of T4 or K3 while c1(K) = 0 in all cases except for the Enriques surface.
†The converse is not true. T2×S2 is an elliptic surface with Kodaira dimension −∞

and the K3-surface is elliptic with Kodaira dimension 0.
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Examples with b+ = 1 and b1 = 2 can be constructed by adding multiple
fibers to S2 × T2. Alternatively, one can obtain examples by considering
quotients of the form X = T2 × Σ/G where Σ is a Riemann surface of
higher genus, and G is a finite group which acts on T2 by tranlations and
on Σ by holomorphic maps such that Σ/G is homeomorphic to S2. Such
surfaces are called sesquielliptic (cf. [9]).

The case Kod(X) = 2

Minimal Kähler surfaces with Kodaira dimension 2 satisfy

c1(K) · c1(K) > 0, c1(K) · [ω] > 0,

and they are called of general type. The only known simply connected
examples with b+ = 1 are the Barlow surfaces with QX = (1)⊕ 8(−1) and
K2 = 1. It is not known whether the moduli space of Barlow surfaces is
connected or indeed whether they are all diffeomorphic.

It is useful to summarize the classification of Kähler surfaces with

b+ = 1, c1(K)2 = 0.

The Hirzebruch signature formula in this case takes the form

9− 4b1 − b− = c1(K)2 = 0.

Since b+ − b1 is odd it follows that b1 is either zero or 2. When b1 = 0 we
have b− = 9 and thus QX is either H ⊕ (−E8) or 1⊕ 9(−1). When b1 = 2
we have b− = 1 and thus QX is either H or (1)⊕ (−1). The following table
summarizes the classification of Kähler surfaces with these properties.

b1 = 0 b1 = 2
c1(K) torsion Enriques surface hyperelliptic surfaces

2c1(K) = 0, c1(K) 6= 0 c1(K) = 0
QX = H ⊕ (−E8) QX = H

c1(K) not torsion Dolgachev surfaces et al S2-bundles over T2

c1(K)2 = 0 c1(K) · [ω] > 0 sesquielliptic surfaces

At the time of writing the only known nonKähler symplectic 4-manifolds
with b+ = 1 and c1(K)2 = 0 satisfy c1(K) = 0 and b1 = 2 and thus
belong into the box on the right upper corner. Such manifolds are discussed
in [23, 24] (see also [86] for a survey). Thus one might ask, for example, the
following

Question: Is every compact symplectic 4-manifold with b+ = 1, b1 = 0,
and c1(K) torsion diffeomorphic to the Enriques surface?
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12.2 The monopole equations in the Kähler case

Let (X,ω, J) be a Kähler surface with the corresponding Kähler metric
g(v, w) = ω(v, Jw). Recall that the tangent bundle carries a canonical
spinc structure

Wcan = Λ0,∗T ∗X, LΓcan
= K∗ = Λ0,2T ∗X

with Γcan : TX → End(Wcan) given by (4.35). Consider the spinc connec-
tion ∇can on Wcan given by (6.8). By Lemma 6.14, the induced connec-
tion on K∗ = LΓcan

agrees with the Levi-Civita connection of the Kähler
metric and the corresponding virtual connection is denoted by Acan ∈
A(Γcan). Its curvature is the 2-form FAcan = 1

2 tracec(R) ∈ Ω2(X, iR)
where R ∈ Ω2(X,End(TX)) denotes the Riemann curvature tensor. Re-
call from Lemma 3.21 that FAcan is of type (1, 1) and represents the class
[iFAcan

/π] = −c1(K) = c1(LΓcan
). Now take the tensor product with a

Hermitian line bundle E → X to obtain

W+
E = (Λ0,0 ⊕ Λ0,2)⊗ E, W−E = Λ0,1 ⊗ E, LΓE = K∗ ⊗ E2

where Λp,q = Λp,qT ∗X. A Hermitian connection B ∈ A(E) induces a spinc

connection ∇A = ∇can + B on WE with corresponding virtual connection
A = Acan +B ∈ A(ΓE) and curvature 2-form FA = FAcan + FB .

Proposition 12.2 In the Kähler case the Seiberg-Witten equations for the
pair (Acan +B,Φ) and the perturbation η ∈ iΩ2,+(X, g) take the form

∂̄Bϕ0 + ∂̄∗Bϕ2 = 0,

2(FB + η)0,2 = ϕ̄0ϕ2, (12.1)

4i(FAcan
+ FB + η)ω = |ϕ2|2 − |ϕ0|2.

where Φ = (ϕ0, ϕ2) ∈ Ω0,0(X,E)× Ω0,2(X,E).

Recall from Section 3.3 that for every 2-form τ ∈ Ω2(X,C) the function
τω : X → C is defined by

ω ∧ τ = τωω ∧ ω.

Thus τω : X → C is the component of τ in the direction ω. The notation
ϕ̄0 has to be handled with care. The section ϕ0 takes values in the line
bundle E and there is no complex conjugation. However, one can either
think of ϕ̄0 as a section of the bundle Ē = E∗ with the reversed complex
structure and interpret the product ϕ̄0ϕ2 as the tensor product, or use the
Hermitian structure on E and define

ϕ̄0ϕ2 = 〈ϕ0∧ϕ2〉

for ϕ0 ∈ Ω0(X,E) and ϕ2 ∈ Ω2(X,E).



368 KÄHLER SURFACES

Proof of Proposition 12.2: Recall from Theorem 6.17 that the Dirac
operator of the connection ∇A is given by 2−1/2DAcan+B = ∂̄B + ∂̄∗B . Hence
the first equation in (12.1) is equivalent to DAΦ = 0. That the last two
equations are equivalent to FAcan

+ FB + η = σ+((ΦΦ∗)0) follows from
Lemma 4.62. 2

A first interesting observation is that for every solution of (12.1) one of
the components ϕ0 and ϕ2 must vanish whenever η ∈ Ω1,1(X).

Proposition 12.3 Suppose that X is connected. Let B ∈ A(E), ϕ0 ∈
Ω0,0(X,E), and ϕ2 ∈ Ω0,2(X,E) satisfy (12.1) with η ∈ Ω1,1 ∩Ω2,+. Then
either ϕ0 = 0 or ϕ2 = 0.

Proof: Apply the operator ∂̄B to the first equation in (12.1) to obtain

∂̄B ∂̄
∗
Bϕ2 = −∂̄B ∂̄Bϕ0 = −F 0,2

B ϕ0 = −1

2
|ϕ0|2ϕ2.

The last equality follows from the second equation in (12.1) and the fact
that η0,2 = 0. Now take the L2-inner product with ϕ2 to obtain∫

X

(
|∂̄∗Bϕ2|2 +

1

2
|ϕ0|2|ϕ2|2

)
dvol = 0.

This shows that

∂̄∗Bϕ2 = 0, ∂̄Bϕ0 = 0, ϕ̄0ϕ2 = 0.

Suppose that ϕ2 does not vanish everywhere. Then ϕ0 must vanish on some
open set. But the pair (ϕ0, 0) is in the kernel of the Dirac operator and
hence, by the unique continuation theorem E.8, ϕ0 must vanish everywhere.
This proves the proposition. 2

Note that the last equation in (12.1) determines which of the two com-
ponents ϕ0 or ϕ2 has to vanish. Integrating the equation over X and using
the fact that dvol = 1

2ω ∧ ω one finds that

‖ϕ2‖2 − ‖ϕ0‖2

2
=

∫
X

|ϕ2|2 − |ϕ0|2

4
ω ∧ ω

=

∫
X

i(FAcan
+ FB + η) ∧ ω

= π(2c1(E)− c1(K)) · [ω] +

∫
X

iη ∧ ω,

where c1(K) = −c1(TX, J). The right hand side is precisely the term
εΓE (g, η) defined by (7.7) and this is relevant in the case b+ = 1. Now
consider the unperturbed case η = 0.
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Corollary 12.4 Suppose that X is connected and let (B,ϕ0, ϕ2) satisfy
(12.1) with η = 0. Then

2c1(E) · [ω] < c1(K) · [ω] =⇒ ϕ0 6= 0, ϕ2 = 0,

2c1(E) · [ω] > c1(K) · [ω] =⇒ ϕ0 = 0, ϕ2 6= 0.

Recall from Proposition 3.38 that c1(K) · [ω] ≥ 0 for every Kähler
surface with b+ > 1. Moreover, by Proposition 3.37, the bundle E can only
have a nonzero holomorphic section if c1(E) · [ω] ≥ 0. Likewise, any 2-form
ϕ2 ∈ Ω0,2(X,E) which satisfies ∂̄∗Bϕ2 = 0 determines a holomorphic section
ofK⊗E∗ and a nonzero such section can only exist if c1(E)·[ω] ≤ c1(K)·[ω].
Thus the unperturbed moduli space M∗(X,ΓE , g) is empty unless

0 ≤ c1(E) · [ω] ≤ c1(K) · [ω].

The midpoint is given by c1(E) · [ω] = 1
2c1(K) · [ω]. If b+ = 1 then this

is precisely the case where E admits a connection B with F+
B = 0 and

thus (B, 0, 0) is a solution of (12.1) with η = 0. Corollary 12.4 asserts
that on the left of this midpoint the solutions have the form (B,ϕ0, 0)
and on the right they have the form (B, 0, ϕ2). Suppose for example that
c1(E) · [ω] < 1

2c1(K) · [ω]. Then ϕ2 = 0 and hence the unperturbed Seiberg-
Witten equations (12.1) reduce to the Vortex equations

∂̄Bϕ0 = 0, F 0,2
B = 0, 4i(FB)ω = τ − |ϕ0|2 (12.2)

where τ = −4i(FAcan
)ω. These equations and their higher rank analogues

were extensively studied by Bradlow [12, 13], Garcia-Prada [36, 37] and
many others, before the Seiberg-Witten equations were discovered. In fact,
during the early work on his thesis Garcia-Prada wrote down the Seiberg-
Witten equations in the general smooth case with spinc structures, but
unfortunately failed to realize the significance of these equations with gauge
group U(1) for 4-manifold topology.

12.3 Duality

It is interesting to examine more closely the relation between the spinc

structure ΓE : TX → End(WE) and its dual Γ̄E : TX → End(W̄E) ob-
tained by reversing the complex structure on WE . This corresponds to
replacing the line bundle E with K ⊗ E∗. Namely, there is a natural iso-
morphism

W̄E −→WK⊗E∗

furnished by the symplectic form ω. Abstractly, for every rank-2 bundle W
with Hermitian structure there is an isomorphism W̄ →W ⊗ det(W )∗ and
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this can be used with W = W+
E and det(W )∗ = K ⊗ E−2 (see page 227) .

It is convenient to identify

W̄E
∼= Λ∗,0T ∗X ⊗ E∗.

With K = Λ2,0T ∗X = Λ2,0 the isomorphism W̄can → Wcan ⊗ K is the
composition Λk,0 → Λ2,2−k → Λ0,2−k ⊗ K for k = 0, 1, 2 where the first
map is induced by the symplectic form ω ∈ Ω1,1(X). More explicitly, given
ϕk ∈ Ω0,k(X,E) denote ϕ̄k ∈ Ωk,0(X,E∗) and then the isomorphism

Ωk,0(X,E∗)→ Ω2,2−k(X,E∗)→ Ω0,2−k(X,K ⊗ E∗)

is given by

ϕ̄k 7→ ϕ̄k ∧
(iω)2−k

(2− k)!
7→ ϕ̃k.

The last map is the obvious one, but it is important to distinguish notation-
ally between Ω2,2−k(X,E∗) and Ω0,2−k(X,K ⊗ E∗). Exercise 3.31 shows
that this isomorphism respects the Hermitian structure.

Proposition 12.5 There is a natural bijection

M(X,ΓE , g, η)→M(X,ΓK⊗E∗ , g,−η)

given by (B,ϕ0, ϕ2) 7→ (−B−2Acan, ϕ̃2, ϕ̃0). Moreover, η is regular for ΓE
if and only if −η is regular for ΓK⊗E∗ and

SW(X,ΓK⊗E∗) = (−1)
σ+χ

4 SW(X,ΓE).

If b+ = 1 then

SW+(X,ΓK⊗E∗) = (−1)
σ+χ

4 SW−(X,ΓE).

Proof: It is convenient to abbreviate Ẽ = K ⊗ E∗, B̃ = −B − 2Acan.
Consider the commutative diagram

Ω0,0(X,E∗)
∧(iω)2/2−→ Ω2,2(X,E∗) −→ Ω0,2(X,K ⊗ E∗)

∂−B ↓ ↓ −∂̄−B∗ ↓ −∂̄
B̃

∗

Ω1,0(X,E∗)
∧iω−→ Ω2,1(X,E∗) −→ Ω0,1(X,K ⊗ E∗)

That the second square commutes is essentially the contents of Proposi-
tion 3.23. That the first square commutes can be expressed in the form
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(∂−Bϕ̄0) ∧ iω = −∂̄∗−B
(
ϕ̄0 ∧ (iω)2/2

)
for ϕ̄0 ∈ C∞(X,E∗). For E = C and B = 0 this is the formula (3.12) in
Lemma 3.32 with σ = ϕ̄0 and k = 2. In general the formula follows by
taking tensor products. There is a similar diagram

Ω2,0(X,E∗) = Ω2,0(X,E∗) −→ Ω0,0(X,K ⊗ E∗)

∂−B
∗ ↓ ↓ −∂̄−B ↓ −∂̄

B̃

Ω1,0(X,E∗)
∧iω−→ Ω2,1(X,E∗) −→ Ω0,1(X,K ⊗ E∗)

That the second square commutes follows again from Proposition 3.23 and
the commutativity of the first square can be expressed in the form

(∂−B
∗ϕ̄2) ∧ iω = −∂̄−Bϕ̄2

for ϕ̄2 ∈ Ω2,0(X,E∗). For E = C and B = 0 this is the formula (3.14) in
Lemma 3.32 with σ = ϕ̄2. Taken together these equations show that

∂̄Bϕ0 + ∂̄∗Bϕ2 = 0 ⇐⇒ ∂̄
B̃
ϕ̃2 + ∂̄∗

B̃
ϕ̃0 = 0.

For the second and third equations in (12.1) just note that

F
B̃

+ FAcan − η = − (FB + FAcan + η) ,

〈ϕ̃2∧ϕ̃0〉 = −〈ϕ0∧ϕ2〉 ∈ Ω0,2(X).

The minus sign here results from the factor (iω)2/2 in the definition of

ϕ̃0 ∈ Ω0,2(X, Ẽ). This proves that

[B,ϕ0, ϕ2] ∈M(X,ΓE , g, η) ⇐⇒ [B̃, ϕ̃2, ϕ̃0] ∈M(X,Γ
Ẽ
, g,−η).

The relation between the signs of the Seiberg-Witten invariants for ΓE and
Γ̄E = ΓK⊗E∗ follows from Proposition 7.31. 2

12.4 The linearized operator

It is interesting to examine the specific form of the linearized equations
in the Kähler case and relate these to the Cauchy-Riemann operator. We
shall only consider the case where ϕ2 = 0. The linearized equations at a
solution (B,ϕ0, 0) have the form

d∗α− i〈iϕ0, τ0〉 = 0,

− 2i(dα)ω − Re (ϕ̄0τ0) = 0,
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∂̄τ0 + ∂̄∗τ2 + α0,1ϕ0 = 0, (12.3)

2(dα)0,2 − ϕ̄0τ2 = 0.

Here the first equation asserts that the triple (α, τ0, τ2) is L2-orthogonal
to the orbit of (B,ϕ0, 0) under the action of the gauge group. (See Re-
mark 8.19.) Recall from Corollary 3.28 that

d∗α = 2iIm (∂̄∗α0,1), −2i(dα)ω = 2Re (∂̄∗α0,1).

Moreover, note that 〈iϕ0, τ0〉 = Im (ϕ̄0τ0). Thus the first two equations
in (12.3) can be expressed in complex notation

2∂̄∗α1 − ϕ̄0τ0 = 0

where α1 = α0,1 ∈ Ω0,1(X). This shows that the linearized operator has
the form

DB,ϕ :

Ω0,0(X,E)
⊕

Ω0,1(X)
⊕

Ω0,2(X,E)

−→

Ω0,0(X)
⊕

Ω0,1(X,E)
⊕

Ω0,2(X)

where

DB,ϕ

 τ0
α1

τ2

 =

 ∂̄∗α1 − ϕ̄0τ0/2
∂̄Bτ0 + ∂̄∗Bτ2 + α1ϕ0

∂̄α1 − ϕ̄0τ2/2


for τ0 ∈ Ω0,0(X,E), α1 ∈ Ω0,1(X), and τ2 ∈ Ω0,2(X,E). In the following
it will be convenient to think of the cokernel as the quotient of the target
space by the image of DB,ϕ (rather than the orthogonal complement of
the image). Let O denote the structure sheaf of X and EB the sheaf of
holomorphic sections of the bundle E with holomorphic structure ∂̄B . Thus

Hj(X,O) =
ker ∂̄

im ∂̄
, Hj(X, EB) =

ker ∂̄B
im ∂̄B

.

Consider the map mϕ : Hj(X,O) → Hj(X, EB) induced by multiplica-
tion with the holomorphic section ϕ0. Note here that the map Ω0,j(X)→
Ω0,j(X,E) : α 7→ αϕ0 intertwines the ∂̄ operators, i.e.

∂̄B(αϕ0) = (∂̄α)ϕ0

and hence there is an induced map on cohomology. Note, however, that
the map α 7→ αϕ0 will not in general preserve the space of harmonic
forms. The following lemma was stated by Mrowka in one of his lectures in
Montréal [97].
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Lemma 12.6. (Mrowka) Let B ∈ A(E) and 0 6= ϕ0 ∈ C∞(X,E) with
F 0,2
B = 0 and ∂̄Bϕ0 = 0. Then there is an exact sequence

0 −→ H0(X,O)
mϕ−→ H0(X, EB) −→ ker DB,ϕ

−→ H1(X,O)
mϕ−→ H1(X, EB) −→ cokerDB,ϕ

−→ H2(X,O)
mϕ−→ H2(X, EB) −→ 0.

Proof: Assume without loss of generality that X is connected. Then
the map mϕ : H0(X,O) → H0(X, EB) is obviously injective. The first
nontrivial case is the following.

Step 1: Exactness at H0(X, EB).

The map H0(X, EB)→ ker DB,ϕ is given by

s 7→

 s− fϕ0

∂̄f
0


where the function f : X → C is chosen such that

d∗df + |ϕ0|2f = ϕ̄0s. (12.4)

This equation is equivalent to

∂̄∗∂̄f − ϕ̄0
s− fϕ0

2
= 0

and hence the triple (s − fϕ0, ∂̄f, 0) belongs to the kernel of DB,ϕ. More-
over, the kernel of the map H0(X, EB)→ kerDB,ϕ consists precisely of the
constant multiples of ϕ0.

Step 2: Exactness at ker DB,ϕ.

The next map in the exact sequence is given by

ker DB,ϕ → H1(X,O) :

 τ0
α1

0

 7→ [α1]

where [α1] ∈ H1(X,O) denotes the equivalence class of α1 ∈ ker ∂̄. That
this map is well defined follows from the fact that τ2 = 0 for every triple
(τ0, α1, τ2) ∈ ker DB,ϕ. To see this apply the operator ∂̄B to the degree-1
component of DB,ϕ(τ0, α1, τ2) to obtain

0 = ∂̄B ∂̄
∗
Bτ2 + (∂̄α1)ϕ0 = ∂̄B ∂̄

∗
Bτ2 +

1

2
|ϕ0|2τ2.
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The first equation uses the fact that F 0,2
B = 0 and ∂̄Bϕ0 = 0. The second

equation uses the formula ∂̄α1 = ϕ̄0τ2/2. It follows that τ2 = 0 as claimed.
Hence the kernel of DB,ϕ consists of all triples (τ0, α1, 0) which satisfy

∂̄Bτ0 + α1ϕ0 = 0, ∂̄α1 = 0, ∂̄∗α1 = ϕ̄0τ0/2. (12.5)

The condition ∂̄α1 = 0 shows that the above map is well defined. Exactness
at ker DB,ϕ is now almost obvious. [α1] = 0 is the zero cohomology class if
and only if there exists a function f : X → C with α1 = ∂̄f . It then follows
from the the first equation in (12.5) that ∂̄B(τ0 + fϕ0) = 0 and hence

s = τ0 + fϕ0 ∈ H0(X, EB).

Moreover,
0 = 2∂̄∗α1 − ϕ̄0τ0 = d∗df + |ϕ0|2f − ϕ̄0s.

This shows that f satisfies (12.4) and hence (τ0, α1, 0) satisfies (12.5) with
α1 ∈ im ∂̄ if and only if it belongs to the image of the map H0(X, EB) →
ker DB,ϕ.

Step 3: Exactness at H1(X,O).

To show that the composition is zero, just note that if (τ0, α1, 0) ∈
ker DB,ϕ then

α1ϕ0 = −∂̄Bτ0 ∈ im ∂̄B .

Conversely, suppose that β ∈ Ω0,1(X) satisfies

β ∈ ker ∂̄, βϕ0 ∈ im ∂̄B .

We must prove that there exists a function f : X → C such that α1 = β+∂̄f
is the degree-1 component of some element in the kernel of DB,ϕ. First
choose any section s ∈ C∞(X,E) with

∂̄Bs+ βϕ0 = 0.

Then choose f : X → C such that

d∗df + |ϕ0|2Re f = ϕ̄0s− 2∂̄∗β

and note that the triple  τ0
α1

0

 =

 s− fϕ0

β + ∂̄f
0


satisfies (12.5) and hence belongs to the kernel of DB,ϕ.
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Step 4: Exactness at H1(X, EB).

The map H1(X, EB)→ cokerDB,ϕ is induced by

τ1 7→

 0
τ1
0

 .

First we must prove that this induces a well defined map of the quotient
spaces, i.e. if τ1 = ∂̄Bτ0 then (0, τ1, 0) ∈ imDB,ϕ. The key observation is
that all vectors of the form (α0, 0, 0) with α0 ∈ Ω0,0(X) are contained in
the image of DB,ϕ. To see this let f : X → C be the unique solution of

d∗df +
1

2
|ϕ0|2f = 2α0

and define
τ0 = −fϕ0, α1 = ∂̄f, τ2 = 0.

Then

∂̄∗α1 − ϕ̄0τ0/2 = α0, ∂̄Bτ0 + α1ϕ0 = 0, ∂̄α1 = 0,

and hence DB,ϕ(τ0, α1, 0) = (α0, 0, 0).
Now let τ1 ∈ Ω0,1(X,E) with ∂̄Bτ1 = 0. Then the class [τ1] ∈ H1(X, EB)

lies in the image of the map mϕ : H1(X,O) → H1(X, EB) if and only if
there exist α1 ∈ Ω0,1(X) and τ0 ∈ Ω0,0(X,E) such that

τ1 = ∂̄Bτ0 + α1ϕ0, ∂̄α1 = 0. (12.6)

For such a pair τ0, α1 we obtain 0
τ1
0

 =

 ∂̄∗α1 − ϕ̄0τ0/2
∂̄Bτ0 + α1ϕ0

∂̄α1

+

−∂̄∗α1 + ϕ̄0τ0/2
0
0

 ∈ imDB,ϕ.

This proves both that the map H1(X, EB) → cokerDB,ϕ is well defined
and that the composition H1(X,O) → H1(X, EB) → cokerDB,ϕ is zero.
Conversely, suppose that

τ1 ∈ ker ∂̄B , (0, τ1, 0) ∈ imDB,ϕ.

Then there exist sections τ0 ∈ Ω0,0(X,E), α1 ∈ Ω0,1(X), τ2 ∈ Ω0,2(X,E)
such that

∂̄∗α1 = ϕ̄0τ0/2, τ1 = ∂̄Bτ0 + ∂̄∗Bτ2 + α1ϕ0, ∂̄α1 = ϕ̄0τ2/2.
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Since τ1 ∈ ker ∂̄B we obtain

0 = ∂̄Bτ1 = ∂̄B ∂̄
∗
Bτ2 + (∂̄α1)ϕ0 = ∂̄B ∂̄

∗
Bτ2 +

1

2
|ϕ0|2τ2.

This implies ∂̄∗Bτ2 = 0 and hence α1, τ0, and τ1 satisfy (12.6). Thus [τ1]
belongs to the image of the map mϕ : H1(X,O)→ H1(X, EB).

Step 5: Exactness at cokerDB,ϕ.

The map cokerDB,ϕ → H2(X,O) is given byα0

τ1
α2

 7→ [
α2 +

ϕ̄0τ2
2

]
where τ2 ∈ Ω0,2(X,E) is the unique solution of

∂̄B ∂̄
∗
Bτ2 +

1

2
|ϕ0|2τ2 = ∂̄Bτ1 − α2ϕ0. (12.7)

We first prove, in one stroke, that this map is well defined and that the
composition is zero. Hence assume that [α0, τ1, α2] is in the image of the
map H1(X, EB) → cokerDB,ϕ. This means that it is a sum of a vector in
the image of DB,ϕ and one of the form (0, η, 0) with ∂̄Bη = 0. Thus there
exist sections τ0 ∈ Ω0,0(X,E), α1 ∈ Ω0,1(X) and τ2 ∈ Ω0,2(X,E) such that

τ1 − ∂̄∗Bτ2 − α1ϕ0 ∈ ker ∂̄B (12.8)

and
α2 = ∂̄α1 − ϕ̄0τ2/2, α0 = ∂̄∗α1 − ϕ̄0τ0/2. (12.9)

As before consider the term ∂̄Bτ1 to obtain

∂̄Bτ1 = ∂̄B ∂̄
∗
Bτ2 + (∂̄α1)ϕ0 = ∂̄B ∂̄

∗
Bτ2 +

1

2
|ϕ0|2τ2 + α2ϕ0.

Hence τ2 satisfies (12.7) and, moreover, α2 + ϕ̄0τ2/2 = ∂̄α1. This shows
that [τ0, α1, τ2] belongs to the kernel of the map cokerDB,ϕ → H2(X,O).
Conversely, let α0, τ1, α2 be given with

[α2 + ϕ̄0τ2/2] = 0 ∈ H2(X,O)

where τ2 is defined by (12.7). Choose α1 ∈ Ω0,1(X) with

α2 +
1

2
ϕ̄0τ2 = ∂̄α1.

Then it follows from (12.7) that τ1, τ2, and α1 satisfy (12.8). Moreover, by
definition of α1, the first equation in (12.9) is satisfied. Let α′0 ∈ Ω0,0

0 (X)
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be defined by the right hand side of the second equation in (12.9). Then the
triple (α′0, τ1, α2) satisfies both (12.8) and (12.9). Moreover, the proof of
Step 4 shows that (α′0−α0, 0, 0) ∈ imDB,ϕ. Hence [α0, τ1, α2] = [α′0, τ1, α2]
belongs to the image of the map H1(X, EB)→ cokerDB,ϕ. This completes
the proof of Step 5.

Step 6: Exactness at H2(X,O).

The composition is obviously zero, because (12.7) asserts that ϕ0(α2 +
ϕ̄0τ2/2) ∈ im ∂̄B . Conversely, let α2 ∈ Ω0,2(X) be given such that α2ϕ0 =
∂̄Bτ1 for some τ1 ∈ Ω0,1(X,E). Then the unique solution of (12.7) is ob-
viously τ2 = 0 and hence [α2] is the image of [0, τ1, α2] under the map
cokerDB,ϕ → H2(X,O). This proves exactness at H2(X,O). Finally, the
map mϕ : H2(X,O)→ H2(X, EB) is obviously surjective. This proves the
lemma. 2

Remark 12.7 For Kähler surfaces the cohomology groups H1(X, iR) and
H2,+(X, iR) carry natural orientations. In the case of H2,+(X, iR) the
canonical orientation is determined by the isomorphism

H2,+(X, iR)→ iRω ⊕H0,2(X) : τ 7→ τωω ⊕ τ0,2

of Proposition 3.38. In the case of H1 the orientation is determined by
identifying it with H0,1 via α 7→ α0,1. Equivalently, it is given by the
complex structure

α 7→ ∗(α ∧ ω) = −α ◦ J
or by the canonical symplectic form

Ω(α, β) = −
∫
X

α ∧ β ∧ ω

for α, β ∈ H1(X, iR). (See Exercise 3.31.) Here the minus sign is chosen
because the forms are imaginary valued. These orientations give rise to
an orientation of the determinant line bundle Det → C(ΓE) defined by
DetB,Φ = det(DB,Φ). On the other hand the exact sequence in Lemma 12.6
also gives rise to a natural orientation of this determinant bundle because
all the terms in the sequence (except for the kernel and cokernel) carry
natural complex structures. The reader may check that both constructions
give rise to the same orientation of Det. 2

Exercise 12.8 Prove that the L2-adjoint of DB,ϕ is the operator

D∗B,ϕ :

Ω0,0(X)
⊕

Ω0,1(X,E)
⊕

Ω0,2(X)

−→

Ω0,0(X,E)
⊕

Ω0,1(X)
⊕

Ω0,2(X,E)
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given by

DB,ϕ∗
α0

τ1
α2

 =

 ∂̄∗Bτ1 − α0ϕ0/2
∂̄α0 + ∂̄∗α2 + ϕ̄0τ1
∂̄Bτ1 − α2ϕ0/2


for α0 ∈ Ω0,0(X), τ1 ∈ Ω0,1(X,E), and α2 ∈ Ω0,2(X). Prove that α0 = 0
for every triple (α0, τ1, α2) ∈ ker DB,ϕ∗. Express the maps

H1(X, EB)→ cokerDB,ϕ → H2(X,O)

in the exact sequence of Lemma 12.6 in terms of the kernel of DB,ϕ∗. 2

12.5 Nontriviality of the invariants

The following theorems establish nontriviality of the Seiberg-Witten invari-
ants for Kähler surfaces.

Theorem 12.9. (Seiberg-Witten) Let X be a Kähler surface with b+ >
1. Then X has Seiberg-Witten invariants

SW(X,Γcan) = 1, SW(X,ΓK) = (−1)
σ+χ

4 . (12.10)

Moreover, if SW(X,ΓE) 6= 0 then c1(E) can be represented by a harmonic
2-form of type (1, 1) and

0 ≤ c1(E) · [ω] ≤ c1(K) · [ω]. (12.11)

Equality can only occur if E = 0 or E = K.

Theorem 12.10. (Seiberg-Witten) Let X be a Kähler surface with b+ =
1. Then X has Seiberg-Witten invariants

SW+(X,Γcan) = 1, SW−(X,ΓK) = (−1)
σ+χ

4 . (12.12)

Moreover,

SW+(X,ΓE) 6= 0 =⇒ c1(E) · [ω] ≥ 0

with equality if and only if E = C and

SW−(X,ΓE) 6= 0 =⇒ c1(E) · [ω] ≤ c1(K) · [ω].

with equality if and only if E = K.
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Remark 12.11. (Signs) Recall that the definition of the Seiberg-Witten
invariant as an integer depends on a choice of orientation of

H0(X)⊕H1(X)⊕H2,+(X)

(see page 238). In Theorem 12.9 the formula SW(X,Γcan) = 1 is obtained
by choosing the standard orientation of the cohomology of X which is
induced by the Kähler structure as in Remark 12.7. Similarly in Theo-
rem 12.10. 2

Proposition 12.12. (Witten) Every compact Kähler surface with b+ >
1 has simple type.

Remark 12.13 Theorem 12.9 shows that if X is a Kähler surface with
b+ > 1 and c1(K) · [ω] = 0 then c1(K) = 0. Moreover, in this case c = 0
is the only basic class. The only examples of such manifolds are the 4-
torus and the K3-surface. (See Theorem 12.1 below.) On the other hand
it follows from Theorem 12.10 that if b+ = 1 and b1 = 0 then c1(K) 6= 0.
Otherwise it would follow from Theorem 12.10 that SW±(X,Γcan) is equal
to ±1 in contradiction to the wall crossing formula of Theorem 9.9. Thus,
for example, the canonical class of the Enriques surface X = K3/Z2 must
be the unique nontrivial torsion class. 2

Theorem 12.9 proves, for example, that the hypersurface Xd ⊂ CP 3 of
odd degree d > 4 is not diffeomorphic to the manifold

X ′d = `CP 2#mCP 2

where

` =
d3 − 6d2 + 11d− 3

3
, m =

2d3 − 6d2 + 7d− 3

3

even though, by Freedman’s theorem, these manifolds are homeomorphic.
(See Proposition 3.66 for the Betti numbers of Xd.) The reason is that,
by Theorem 12.9 the manifold Xd has nontrivial Seiberg-Witten invari-
ants while those of X ′d are all zero. The latter can be proved by either
applying the vanishing theorem for connected sums in Section 11.2 or by
using Proposition 7.32 in conjunction with the fact that the manifolds X ′d
admit metrics of positive scalar curvature. (See Theorem 2.18 and Corol-
lary 2.19.) Note in fact that Xd does not admit a metric of positive scalar
curvature. This is only the simplest example of its kind. Over the past ten
years vast classes of examples of smooth 4-manifolds of given homotopy
type have been found whose diffeomorphism types can be distinguished by
Donaldson’s invariants. (See for example the work of Fintushel-Stern [27],
Gompf [40], Gompf-Mrowka [41], Friedman-Morgan [29], Kotschick [59] and
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the references therein.) Most of these results - in fact all of them if Witten’s
conjecture is true - can be proved with the Seiberg-Witten invariants.

Another consequence of the nontriviality of the Seiberg-Witten invari-
ants is the new theorem that Kähler surfaces are indecomposable. The proof
requires blowup formulae for the invariants (see Section 11.7 below). More-
over, the result extends to the symplectic category and it will be discussed
in Chapter 13.

Proof of Theorem 12.9: If SW(X,ΓE) 6= 0 then the moduli space
M(X,Γ, g, iλω) is nonempty for any λ ∈ R. Thus there exists a solution
(B,ϕ0, ϕ2) of (12.1) with η = iλω. By Proposition 12.3 one of the compo-
nents ϕ0 and ϕ2 is zero and the argument prceding Corollary 12.4 shows
that ϕ2 = 0 and ϕ0 6= 0 whenever λ > 0 is sufficiently large. Hence the bun-
dle E with holomorphic structure ∂̄B has a nonzero holomorphic section
ϕ0. It then follows from Proposition 3.37 that c1(E) · [ω] ≥ 0 with equality
if and only if E = C is the trivial bundle. The corresponding statement for
K ⊗ E∗ follows from Proposition 12.5.

To prove that the Seiberg-Witten invariant for the trivial bundle E = C
is 1 consider the perturbation

η = −F+
Acan

+ iπλω, λ > 0.

By Proposition 12.3, one of the components ϕ0 and ϕ2 must vanish. This
cannot be ϕ0 because the last equation in (12.1) now takes the form

4i(dB)ω = 4πλ+ |ϕ2|2 − |ϕ0|2

and the integral of the term on the left vanishes. Hence ϕ2 = 0 and a pair
B ∈ Ω1(X, iR), ϕ0 ∈ C∞(X,C) satisfies (12.1) if and only if

∂̄Bϕ0 = 0, (dB)0,2 = 0, 4i(dB)ω = 4πλ− |ϕ0|2. (12.13)

These equations have an obvious solution

B = 0, ϕ0 ≡
√

4πλ. (12.14)

Here are two proofs of uniqueness up to gauge equivalence.

Argument 1: If B and ϕ0 satisfy (12.13) then, by Proposition 3.25,

0 = 2∂̄∗B ∂̄Bϕ0 = dB
∗dBϕ0 − 2i(dB)ωϕ0.

Take the inner product with ϕ0 to obtain

‖dBϕ0‖2L2
=

∫
X

2i(dB)ω|ϕ0|2dvol
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=

∫
X

2i(dB)ω

(
|ϕ0|2 − 4πλ

)
dvol

= − 1

2

∫
X

(
|ϕ0|2 − 4πλ

)2

dvol.

The second identity follows from the fact that the integral of the function
(dB)ω over X is zero. It follows that dBϕ0 = 0 and |ϕ0|2 ≡ 4πλ and
this implies that B = u−1du and ϕ0(x) = u(x)−1

√
4πλ for some function

u : X → S1.

Argument 2: Suppose that B and ϕ0 satisfy (12.13). Then ϕ0 never van-
ishes because otherwise the zero set of ϕ0 would be a divisor which deter-
mines a nonzero first Chern class. Hence consider the functions

u = |ϕ0|−1ϕ0 : X → S1, θ = log |ϕ0| : X → R.

Recall that ∂̄u∗B(u−1ϕ0) = 0. This equation can be written in the form

∂̄(u−1ϕ0) + (u∗B)0,1u−1ϕ0 = 0.

With u−1ϕ0 = |ϕ0| = eθ it follows that (u∗B)0,1 = −e−θ∂̄eθ = −∂̄θ and,
since u∗B is an imaginary valued 2-form, this implies

u∗B = ∂θ − ∂̄θ.

Thus
dB = d(u∗B) = ∂̄∂θ − ∂∂̄θ = −2∂∂̄θ

and, by Corollary 3.29,

2i(dB)ω = −4i(∂∂̄θ)ω = d∗dθ.

With |ϕ0| = eθ the last equation in (12.13) gives

d∗d(2θ) + e2θ = 4πλ.

This is the Kazdan-Warner equation and, by Theorem D.1, the obvious
solution e2θ(x) = 4πλ is the only one. Hence u∗B = 0 and u−1ϕ0 =

√
4πλ

as claimed.

That the solution (12.14) is regular follows from Lemma 12.6. In the ex-
act sequence all the maps Hj(X,O)→ Hj(X, EB) are isomorphisms under
our assumptions and hence the kernel and cokernel of DB,ϕ are zero. This
shows that SW(X,Γcan) = ±1 and it remains to consider the orientations.
The moduli space is zero dimensional and so we must determine the sign
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ν(B,ϕ0, 0) associated to the canonical solution. Recall from page 238 that
this sign is determined by trivializing the determinant line bundle over the
path of operators t 7→ DB,tϕ. The above argument shows that these oper-
ators are bijective for t > 0 and hence there is a single crossing at t = 0.
(See Proposition A.10.) More explicitly, the discussion in Section 12.4 shows
that the operator DB,tϕ is given by

DB,tϕ

 τ0
α1

τ2

 =

 ∂̄∗α1

∂̄Bτ0 + ∂̄∗Bτ2
∂̄α1

+ t
√

4πλ

−τ0/2α1

−τ2/2

 (12.15)

where
√

4πλ = ϕ0 = ϕ̄0. The operator DB,0 is given by the first column on
the right in (12.15) and its kernel and cokernel are given by

ker DB,0 = H0,0(X)⊕H0,1(X)⊕H0,2(X),

cokerDB,0 = H0,0(X)⊕H0,1(X)⊕H0,2(X).

Note here that E = C is the trivial bundle. The kernel and cokernel are
even dimensional and their dimensions are equal. Thus the contributions
from the crossing numbers is +1 and it remains to examine what is called
σ(Ḋ0) ∈ det(D0) in Proposition A.10. This number can be described as
follows. The operator ḊB,0 is given by the second column on the right
in (12.15). Consider the restriction of this operator to the kernel of DB,0
followed by the projection onto the cokernel. This composition is an iso-
morphism and the sign of σ(ḊB,0) is determined by whether or not this iso-
morphism is orientation preserving. Examining the last column in (12.15)
we find that the operator is complex linear and hence orientation preserv-
ing and hence σ(ḊB,0) ∈ det(DB,0) is given by the complex orientation.
Together with the +1 from the crossing numbers we obtain ν(B,ϕ0, 0) = 1
and hence SW(X,Γcan) = 1 as claimed. The assertion about SW(X,ΓK)
follows from Proposition 12.5. 2

Proof of Theorem 12.10: The proof of nontriviality of the invariants
in Theorem 12.9 did not actually use the fact that b+ > 1 and carries
over word by word to the case b+ = 1. Let E → X be a line bundle with
SW+(X,ΓE) 6= 0 and suppose that c1(E) · [ω] ≤ 0. Then

εΓE (g, iλω) = π (c1(K)− 2c1(E)) · [ω] + λ

∫
X

ω ∧ ω > 0

whenever 2λVol(X) + πc1(K) · [ω] > 0. Hence there exists a solution
(B,ϕ0, ϕ2) of (12.1) with η = iλω. By Proposition 12.3, one of the compo-
nents ϕ0 or ϕ2 must be zero. The formula preceding Corollary 12.4 shows
that
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‖ϕ2‖2 − ‖ϕ0‖2 = 2π(2c1(E)− c1(K)) · [ω]− 2λ

∫
X

ω ∧ ω < 0

and hence ϕ2 = 0. This shows that the bundle E with holomorphic struc-
ture ∂̄B has a nonzero holomorphic section. Since c1(E) · [ω] ≤ 0 it follows
from Proposition 3.37 that E = C is the trivial bundle. This proves the
first assertion. The second follows from Proposition 12.5. 2

Proof of Proposition 12.12: The proof relies on the generalized ad-
junction inequality by Kronheimer and Mrowka proved in Theorem 14.1
in Chapter 14 below. Nontriviality of the invariant SW(X,ΓE) implies, by
Proposition 12.3 with η = iπλω for some large constant λ > 0, that E
carries a holomorphic structure ∂̄B with a nonzero holomorphic section.
Thus the cohomology class c1(E) can be represented by an effective divisor
D =

∑
imiVi via

c1(E) =
∑
i

miPD([Vi]).

Each Vi is the image of a holomorphic curve ui : Σi → X where Σi is
a connected Riemann surface of genus gi. The proof now relies on the
following three observations.

(i) If i 6= j then Vi · Vj ≥ 0 with equality if and only if Vi ∩ Vj = ∅.
(ii) The genus gi of Σi is given by

2gi − 2 = Vi · Vi + c1(K) · Vi − 2di

where di ≥ 0 is the number of double points of a nearby immersed pseudo-
holomorphic curve. This number is zero if and only if ui is an embedding.

(iii) If Vi · Vi ≥ 0 then it follows from the Kronheimer-Mrowka generalized
adjunction inequality, proved in Chapter 14 below, that

0 ≤ c1(E) · Vi ≤ c1(K) · Vi.

This is because there exists a nearby embedded 2-manifold which represents
the homology class [Vi] and has genus gi+di. Thus, by Theorem 14.1 below,

c1(K) · Vi = 2(gi + di)− 2− Vi · Vi ≥ |(c1(K)− 2c1(E)) · Vi| .

This is equivalent to the required inequality.

Now if Vi · Vi < 0 then it follows from (i) and (ii) that

c1(E) · Vi ≤ miVi · Vi ≤ −2− Vi · Vi ≤ c1(K) · Vi.

Hence the inequality c1(E) ·Vi ≤ c1(K) ·Vi holds in all cases. Multiply this
by mi and take the sum over i to obtain
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c1(E) · c1(E) ≤ c1(K) · c1(E).

This is equivalent to the inequality

c · c ≤ c1(K) · c1(K)

for the class c = c1(LΓE ) = 2c1(E) − c1(K). But the converse inequality
must hold because the moduli space has nonnegative dimension dimM =
(c · c− c1(K) · c1(K))/4. This proves the proposition. 2

12.6 Positive scalar curvature

Suppose that X is a Kähler surface which admits a metric of positive scalar
curvature. Then it must satisfy b+ = 1 since otherwise all the Seiberg-
Witten invariants would be zero. In [70] LeBrun proved that the only min-
imal Kähler surfaces which admit metrics of positive scalar curvature are
CP 2 and ruled surfaces. That minimal surfaces with a Kähler metric of
positive scalar curvature are rational or ruled is an older theorem by Yau
(cf [127]). The proof uses some classification theory for Kähler surfaces as
discussed in Section 12.1.

Theorem 12.14. (LeBrun) Let X be a minimal Kähler surface. Then
the following are equivalent.

(i) X is diffeomorphic to either CP 2 or a ruled surface.

(ii) X admits a Kähler metric with positive scalar curvature.

(iii) X admits a metric with positive scalar curvature.

The proof relies on the following elementary but important observation.
Recall that H2,+(X) carries a natural orientation and that, for any Rie-
mannian metric g, ωg denotes the unique self-dual harmonic 2-form which
has norm 1 and determines the given orientation of H2,+. Note that if g is
a Kähler metric then ωg = ω is the corresponding Kähler form.

Lemma 12.15 Let X be a smooth compact 4-manifold with b+ = 1 and
c ∈ H2(X,Z) be a nontorsion cohomology class such that

c · c ≥ 0.

Then c · ωg 6= 0 for any Riemannian metric g on X.

Proof: Denote by c̄ ∈ H2(X) = H2(X,Z)/torsion the equivalence class of
c. Then c̄ = (c ·ωg)[ωg] + c̄0 where c̄0 ∈ H2,−(X). If c ·ωg = 0 then, since c
is not a torsion class, c̄ = c̄0 6= 0 and thus c · c < 0 in contradiction to the
assumption. This proves the lemma. 2

Proof of Theorem 12.14: That (i) implies (ii) is a standard construction
in Kähler geometry. For the Fubini-Study metric on CP 2 see Example 3.49.
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The obvious product metric on Σ× CP 1 is Kähler and has positive scalar
curvature whenever the radius of the 2-sphere is sufficiently small. The
(unique) nontrivial 2-sphere bundle over Σ can be constructed as a quotient
H× CP 1/Γ with the standard Kähler structure on the upper halfplane H
and CP 1 again with small radius. (See e.g. [85], Example 6.30.) That (ii)
implies (iii) is obvious.

That (iii) implies (i) follows from Theorem 12.10. More precisely, since
X has positive scalar curvature the moduli spaceM(X,Γcan, g, η) is empty
for small η. But Theorem 12.10 asserts that SW+(X,Γcan) = 1 and hence
these empty moduli spaces correspond to the invariant SW−(X,Γcan) = 0.
This means that εΓcan(g, 0) < 0 and since εΓcan(g, 0) = πc1(K) · [ωg] it
follows that

c1(K) · [ωg] < 0

for some metric g. It follows immediately that c1(K) is not a torsion class
and this rules out the case of Kodaira dimension zero. There are two cases.
First suppose

c1(K) · c1(K) < 0.

Then it follows from Theorem 12.1 that Kod(X) = −∞ and, moreover,
that X is a ruled surface. (If X = CP 2 then c1(K) · c1(K) > 0.) Secondly
assume

c1(K) · c1(K) ≥ 0.

Since c1(K) is not a torsion class it follows from Lemma 12.15 that c1(K) ·
[ωg] < 0 for every metric and hence, in particular,

c1(K) · [ω] < 0

for every Kähler form ω. This implies again that X has Kodaira dimension

Kod(X) = −∞

and it follows from Theorem 12.1 (iv) that X is diffeomorphic to CP 2 or a
ruled surface. This proves the theorem. 2

Remark 12.16 In [30] Friedman and Morgan proved that every Kähler
surface with positive scalar curvature is a blowup of either CP 2 or a ruled
surface. This was extended by Ono and Ohta [101] and, independently, by
Liu [74] to the symplectic category. 2

In [32] it was proved by Friedman and Qin that the Kodaira dimen-
sion of a Kähler surface is a diffeomorphism invariant. Shortly afterwards
Kronheimer found a proof which is based on the Seiberg-Witten invariants.

Theorem 12.17. (Friedman-Qin) If two minimal Kähler surfaces are
diffeomorphic then they have the same Kodaira dimension.
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Proof: Let X and Y be two diffeomorphic minimal Kähler surfaces. As-
sume first that Kod(X) = −∞. Then X admits a metric of positive scalar
curvature and so does Y . By Theorem 12.14, Y is rational or ruled and
so Kod(Y ) = −∞. (Thus there are no fake Kähler structures on ruled
surfaces.) This shows that Kod(X) ≥ 0 if and only if Kod(Y ) ≥ 0.

Under the assumption Kod(X) ≥ 0 the classification theorem 12.1
shows that Kod(X) = 2 if and only if c1(K)2 = 2χ(X) + 3σ(X) > 0.
This is clearly a topological condition and hence Kod(X) = 2 if and only
if Kod(Y ) = 2.

Now assume b+ ≥ 3. Then Theorem 12.1 shows that Kod(X) = 0 if
and only if KX = 0. But this means that c = 0 is the only basic class
of X. If this is the case then 0 is the only basic class of Y and it follows
from Theorem 12.9 that KY = 0 and thus Kod(Y ) = 0. This shows that
Kod(X) = 0 if and only if Kod(Y ) = 0.

Thus it remains to consider Kähler surfaces with b+ = 1 and Kodaira
dimension 0 or 1. These surfaces satisfy c1(K)2 = 0 and they are listed
in the table in Section 12.1. In this table the surfaces with Kod(X) = 1

are obtained from the Enriques surface or from CP 2#9CP 2
by logarithmic

transforms and they are obviously not diffeomorphic to the finite quotients
of T4 or K3 which have Kodaira dimension Kod(X) = 0. This proves the
theorem. 2

We note here that the Seiberg-Witten invariants give rise to an alterna-
tive proof of the Miyaoka-Yau inequality (cf [128]) which was found by
LeBrun (cf [71]). The proof assumes the existence of an Einstein metric.

Theorem 12.18. (Miyaoka-Yau) Let X be a compact Kähler surface
which admits an Einstein metric. Then the first and second Chern classes
of TX satisfy

c1 · c1 ≤ 3c2.

Proof: Assume first that b+ > 1. Then, by Theorem 12.9, SW(X,Γcan) 6=
0 and c1(LΓcan

) · c1(LΓcan
) = 2χ + 3σ. Hence it follows from LeBrun’s

theorem 7.34 that

3σ ≤ χ.

With c1 · c1 = 2χ + 3σ and χ = c2 this is equivalent to the Miyaoka-
Yau inequality. Now suppose b+ = 1 and s ≤ 0. Then, by Theorem 12.10,
SW+(X,Γcan) 6= 0 and, moreover,

c1(LΓcan) · [ω] = −c1(K) · [ω] ≤ 0.

The last inequality follows from the fact that, by (3.17),

−c1(K) = c1(TX) =
1

2π
[ρω] =

s

8π
[ω]
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with s ≤ 0. This shows again that X satisfies the assumptions of Theo-
rem 7.34. This leaves the case of Einstein manifolds with positive scalar cur-
vature. Any such manifold has a positive definite Ricci tensor (Lemma 2.7)
and hence satisfies

b1 = 0, b+ = 1.

(See Exercise 2.31 for b1 = 0 and Proposition 7.32 for b+ = 1.) Under these
conditions the Miyaoka-Yau inequality is obviously satisfied. 2

Remark 12.19 It was proved by Tian that the only Kähler–Einstein sur-
faces with positive scalar curvature are CP 2, CP 1 × CP 1, and the k-fold
blowup of CP 2 with 3 ≤ k ≤ 8 (cf [122]). 2

Exercise 12.20 Show that CP 2#CP 2
is a nontrivial CP 1-bundle over

CP 1 and that CP 2#2CP 2
is diffeomorphic to (CP 1 × CP 1)#CP 2

. Hint:

Identify CP 2#2CP 2
with the submanifold

X = {([z0 : z1 : z2], [x0 : x1], [y1 : y2]) |x0z1 = z0x1, y1z2 = z1y2}

of CP 2 × CP 1 × CP 1. See also Exercise 9.4 and Example 6.34 in [85]. 2

12.7 Minimal surfaces of general type

The goal of this section is to prove that for minimal Kähler surfaces of
general type the only basic classes are ±c1(K). In [126] Witten attributes
this result to Tian, Yau, Kronheimer, Mrowka, Morrison, Friedman, and
Morgan. We give two proofs. The first is due to Kronheimer [62] and the
second was explained by Mrowka in a lecture in Montréal [97].

Theorem 12.21 Let (X, J, ω) be a minimal Kähler surface with

b+ > 1, c1(K) · c1(K) > 0.

Then the only basic classes are c = ±c1(K).

Proof 1: The first proof relies on the observation that the first Chern
class of the canonical bundle K of a minimal surface can be represented by
a differential form τ of type (1, 1) such that

τ(v, Jv) ≥ 0

for all v ∈ TX. To prove this one uses sufficiently many holomorphic sec-
tions s0, s1, . . . , sN of a sufficiently large power Km of the canonical bundle
K such that at every point x ∈ X at least one of the sections sj is nonzero.
Consider the holomorphic map

X → CPN : x 7→ f(x) = [z0 : · · · : zN ]
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where z ∈ CN+1 is a nonzero vector such that zisj(x) = zjsi(x) for all
i, j. The pullback of the bundle H → CPN (with fiber Hom(`,C) over
` ∈ CPN ) is the bundle Km. Hence the required 2-form on X is obtained
by pulling back the curvature 2-form of a connection on H.

This shows that the form τ lies in the closure of the Kähler cone. More
precisely, for ε > 0 the form τ +εω is a Kähler form on X. Hence the result
of Theorem 12.9 holds for this form and hence it holds for τ . This means
that every basic class c = c1(LΓ) = 2e−c1(K) satisfies 0 ≤ [τ ]·e ≤ [τ ]·c1(K)
and hence

−[τ ] · c1(K) ≤ [τ ] · c ≤ [τ ] · c1(K).

Since τ represents the class c1(K) it follows that

|c1(K) · c| ≤ c1(K) · c1(K).

By the Hodge index theorem 3.39,

(c1(K) · c1(K))(c · c) ≤ |c1(K) · c|2 ≤ (c1(K) · c1(K))2.

Since c1(K) · c1(K) > 0 this implies

c · c ≤ c1(K) · c1(K).

However, the Seiberg-Witten invariants can only be nonzero if the virtual
dimension of the moduli space is nonnegative, i.e.

c · c ≥ 2χ(X) + 3σ(X) = c1(K) · c1(K).

Thus c · c = c1(K) · c1(K). It follows again from the Hodge index theorem
that c and c1(K) are linearly dependent and hence c = ±c1(K). This proves
the theorem. 2

Proof 2: The second proof assumes the existence of a Kähler-Einstein
metric. By Yau’s theorem a minimal Kähler surface of general type ad-
mits such a metric if and only if there exists no embedded holomorphic
sphere with self-intersection number −2 (see Remark 3.65). Recall from
Section 3.7 that (X, J, ω) is a Kähler-Einstein manifold if the Ricci-form
ρω is a constant multiple of ω. The constant is s/4 and hence

c1(TX) =
1

2π
[ρω] =

s

8π
[ω]

(see (3.17)). This implies that the canonical class c1(K) = −c1(TX) satis-
fies

c1(K) · c1(K) =
s2

64π2

∫
X

ω ∧ ω =
s2Vol(X)

32π2
.
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In particular, by the general type assumption, s must be nonzero. Now sup-
pose that SW(X,ΓE) 6= 0. Then, by Proposition 7.33, the class c1(LΓE ) =
2c1(E)− c1(K) satisfies

c · c ≤ s2Vol(X)

32π2
= c1(K) · c1(K).

On the other hand, since the moduli space has nonnegative dimension, we
must have c · c ≥ c1(K) · c1(K) as above. But this implies, by Propo-
sition 7.33, that there exists a solution (B,ϕ0, ϕ2) of the unperturbed
Seiberg-Witten equations (12.1) with η = 0 such that |ϕ0|2 + |ϕ2|2 = −s/2.
Since either ϕ0 or ϕ2 vanishes this is only possible if E = C or E = K.
Thus the only basic classes are c1(LΓcan) = −c1(K) and c1(LΓK ) = c1(K).
This proves the theorem. 2

Corollary 12.22 Let X be a minimal Kähler surface with b+ > 1 and
c1(K) · c1(K) > 0. Then the canonical class c1(K) is a diffeomorphism
invariant up to a change of sign. In other words, if f : X → Y is a
diffeomorphism between minimal Kähler surfaces of general type with b+ >
1 then f∗c1(KY ) = ±c1(KX).

Proof: Theorem 12.21 and Exercise 7.37. 2

12.8 Monopoles and divisors

Before the Seiberg-Witten invariants were discovered it was proved by
Bradlow [12] that the moduli space of vortex pairs associated to a complex
line bundle E over a compact Kähler manifold X (of arbitrary dimension)
can be naturally identified with the space of effective divisors represent-
ing the first Chern class of E. For Riemann surfaces this was proved in-
dependently by Garcia-Prada [36] and the result was extended to higher
dimensional bundles by Okonek and Teleman [100]. Now the discussion
in section 12.2 shows that the unperturbed Seiberg-Witten moduli space
M(X,ΓE , g) can be identified with the moduli space of vortex pairs of the
bundle E and this gives rise to the following result.

Proposition 12.23. (Bradlow) Let (X,ω, J, g) be a Kähler surface and
E → X be a Hermitian line bundle. If

0 ≤ c1(E) · [ω] <
c1(K) · [ω]

2
+ λVol(X)

with λ ∈ R then there is a natural bijection

M(X,ΓE , g, iπλω) ∼= Diveff(X, c1(E)).

If c1(K) · [ω]/2 +λVol(X) < c1(E) · [ω] ≤ c1(K) · [ω] then there is a natural
bijection M(X,ΓE , g, iπλω) ∼= Diveff(X, c1(K)− c1(E)).
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Proof: Recall that the space of effective divisors can be naturally iden-
tified with the space of isomorphism classes of pairs (∂̄, ϕ0). Here ∂̄ :
C∞(X,E) → Ω0,1(X,E) is an integrable Cauchy-Riemann operator and
ϕ0 : X → E is a holomorphic section, i.e.

∂̄ ◦ ∂̄ = 0, ∂̄ϕ0 = 0.

(See Appendix F for more details.) By Proposition 3.15, every Cauchy-
Riemann operator has the form ∂̄ = ∂̄B for a unique Hermitian connection
B ∈ A(E). The condition ∂̄ ◦ ∂̄ = 0 now takes the form F 0,2

B = 0 (see

Proposition 3.16). Hence Diveff(X, c1(E)) is the space of complex gauge
equivalence classes of pairs (B,ϕ0) where B ∈ A(E) and ϕ0 ∈ C∞(X,E)
with

F 0,2
B = 0, ∂̄Bϕ0 = 0. (12.16)

Such a pair determines a solution of (12.1) with η = iπλω if and only if

4i(FAcan + FB)ω = 4πλ− |ϕ0|2. (12.17)

We must prove that, up to unitary gauge equivalence, there is exactly one
such pair in every complex gauge equivalence class. Hence fix a pair (B,ϕ0)
which satisfies (12.16). Then a real gauge transformation of the form u = eθ

with θ : X → R acts on the pair (B,ϕ0) by

u∗B −B = ∂̄θ − ∂θ, u∗ϕ0 = e−θϕ0.

The reader may check that ∂̄u∗B(u∗ϕ0) = e−θ∂̄Bϕ0 and hence the pair
(u∗B, u∗ϕ0) still satisfies (12.16). Now (u∗B, u∗ϕ0) satisfies (12.17) if and
only if

4i(Fu∗B)ω + |u∗ϕ0|2 = 4πλ− 4i(FAcan
)ω.

Since

Fu∗B − FB = d(u∗B −B) = d(∂̄θ − ∂θ) = 2∂∂̄θ

this is equivalent to

8i(∂∂̄θ)ω + e−2θ|ϕ0|2 = 4πλ− 4i(FB + FAcan)ω

Lemma 3.32 asserts that the Laplace-Beltrami operator of the Kähler met-
ric g is given by ∆gθ = −4i(∂∂̄θ)ω and hence (12.17) is equivalent to

∆g(−2θ) + e−2θ|ϕ0|2 = 4πλ− 4i(FB + FAcan
)ω. (12.18)

This is the Kazdan-Warner equation and the integral of the term on the
right is given by
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∫
X

(
4πλ−4i(FB+FAcan

)ω

)
= 4π

(
λVol(X)+

c1(K) · [ω]

2
−c1(E)·[ω]

)
> 0.

Hence it follows from Theorem D.1 that (12.18) has a unique solution
θ : X → R. This proves the first assertion. The second follows from the
first and the proof of Proposition 12.5. 2

Remark 12.24 Recall from the second proof of Theorem 12.21 that if
(X, J, ω) is a Kähler-Einstein surface of general type then the unperturbed
Seiberg-Witten equations (12.1) for ΓE do not have any solutions unless
E = C or E = K or the moduli space has negative virtual dimension
c1(E) · c1(E) − c1(E) · c1(K) < 0. Hence Proposition 12.23 shows that if
X is a Kähler-Einstein surfaces of general type then a holomorphic line
bundle E → X with

0 < c1(E) · [ω] <
c1(K) · [ω]

2
, c1(E) · c1(E) ≥ c1(E) · c1(K)

has no holomorphic sections. Equivalently, the Poincaré dual homology
class β = PD(c1(E)) ∈ H2(X,Z) cannot be represented by holomorphic
curves. 2

Proposition 12.23 can be viewed as a nonlinear version of Theorem 3.40
in Section 3.5 which relates holomorphic structures on a line bundle E →
X to the moduli space Aω(E)/G(E) of Hermitian Yang-Mills connections
on E. As in that case there are interesting connections with symplectic
geometry. The space A(E)× C∞(X,E) carries a natural symplectic form

Ω((b, θ), (b′, θ′)) = −
∫
X

b ∧ b′ ∧ ω +

∫
X

〈iθ, θ′〉dvolX

for b, b′ ∈ Ω1(X, iR) = TBA(E) and θ, θ′ ∈ C∞(X,E). This form is ob-
viously nondegenerate and closed and it is compatible with the complex
structure

(b, θ) 7→ (∗(b ∧ ω), iθ).

Now consider the set N ⊂ A(E) × C∞(X,E) of all pairs (B,Θ) which
satisfy

F 0,2
B = 0, ∂̄BΘ = 0.

This is a complex and hence symplectic submanifold of A(E)×C∞(X,E)
whose tangent space at (B,Θ) consists of all (b, θ) which satisfy ∂̄b0,1 =
0 and ∂̄Bθ + b0,1Θ = 0. With ∗(b ∧ ω) = −b ◦ J it follows easily that
this space is invariant under the complex structure. Now the gauge group
G = Map(X,S1) acts on N by Hamiltonian symplectomorphisms and the
moment map µ : N → Ω0(X, iR) is given by
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µ(B,Θ) = 2(FB + FAcan
)ω − i|Θ|2/2.

Here we identify the Lie algebra Ω0(X, iR) = Lie(G) with its dual via the
standard L2-inner product. Hence the Seiberg-Witten moduli space can be
identified with the Marsden-Weinstein quotient

M(X,ΓE , g, iπλω) = µ−1(−2πiλ)/G = N//G.

On the other hand the set Diveff(X, c1(E)) of effective divisors can be
naturally identified with the quotient of X by the action of the complexified
gauge group Gc = Map(X,C∗):

Diveff(X, c1(E)) = N/Gc.

Proposition 12.23 asserts that there is a natural bijection between these
two quotients, in analogy to Theorem 3.40 and to various similar problems
in finite dimensional geometric invariant theory.

12.9 Elliptic surfaces

Let X be a minimal Kähler surface with b+ > 1 and b1 = 0. Recall from
Proposition 3.63 that any such surface satisfies c1(K)2 ≥ 0. If c1(K)2 > 0
then Theorem 12.21 asserts that the only basic classes are plus and minus
the canonical class. Hence assume

c1(K) · c1(K) = 0.

The computation of the Seiberg-Witten invariants for this case is based
on the relation between monopoles and divisors established in Proposi-
tion 12.23. Recall that the geometric genus is defined by

pg = dimc H2,0(X) =
b+ − 1

2
.

(See Proposition 3.38.) As a first model case it is interesting to consider
the elliptic surface V−1 obtained from CP 2 by blowing up 9 distinct points.
This surface obviously satisfies b+ = 1 and it is not minimal. But it is a
standard model from which minimal elliptic surfaces with b+ > 1 can be
constructed.

Example 12.25 Consider the surface

V−1 = CP 2#9CP 2
.

Obviously its Euler characteristic and signature are given by χ(V−1) = 12
and σ(V−1) = −8. Denote by E1, . . . , E9 the exceptional divisors and by
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S ⊂ V−1 a lift of the standard 2-sphere CP 1 ⊂ CP 2 to V−1 (assuming that
none of the nine points lie on CP 1). Then the homology classes [S] and
[Ei] generate H2(V−1,Z) with

S · S = 1, Ei · Ei = −1.

and all the other intersection numbers are zero. The first Chern class of
the tangent bundle satisfies c1(TX) ·S = 3 and c1(TX) ·Ei = 1 and hence
the canonical class c1(KV−1) = −c1(TX) is given by

c1(KV−1
) = PD (−3[S]− [E1]− · · · − [E9])) .

This class obviously satisfies c1(KV−1) · c1(KV−1) = 0.
There is a (singular) fibration V1 → CP 1 with the generic fiber a 2-

torus and finitely many exceptional fibers. An explicit representation of
V−1 as an elliptic fibration over CP 1 can be obtained by considering a
pencil of cubics in CP 2 passing through nine distinct points of intersection
and blowing up each of these nine points. Then the lifts of these cubics

to V−1 = CP 2#9CP 2
do not intersect and this gives rise to a projection

V−1 → CP 1 with T2 as the generic fiber. Denote by F ⊂ V−1 the generic
fiber with its complex orientation. Then

c1(KV−1) = PD(−[F ]).

To see this note that each of the nine exceptional divisors intersects each
generic fiber in exactly one point while a generic line which does not meet
those nine points intersects F in exactly three points. All these intersections
are transverse with intersection number +1. (For more details see Griffiths
and Harris [45] or [85], Example 6.26.) 2

Example 12.26 An interesting fact is that theK3-surface can be obtained
as the fiber connected sum V0 = V−1#T2V−1. To see this just note that the
Euler characteristic and signature are additive under taking fiber connected
sums over a torus. Hence χ(V0) = 24 and σ(V0) = −16 which characterizes
K3-surfaces. 2

Example 12.27 Consider the elliptic surface Vk → CP 1 with geometric
genus, Euler characteristic, and signature given by

pg(Vk) = k + 1, χ(Vk) = 12(k + 2), σ(Vk) = −8(k + 2).

Thus V0 is the K3-surface and the general surface Vk can be constructed
as a fiber connected sum Vk = Vk−1#T2V−1. Denote by F ⊂ Vk the generic
fiber with its complex orientation. Then the canonical bundle K = KVk →
Vk has first Chern class
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c1(KVk) = PD(k[F ]).

For k = −1 this was proved in Example 12.25 and for the K3-surface V0

see (3.24) in Proposition 3.66. For k ≥ 1 the formula follows by examining
the fiber connected sums. It is interesting to note that if E → Vk denotes
the line bundle with first Chern class c1(E) = PD([F ]) then the dimension
of the space of holomorphic sections of E⊗m is

dimc H0(Vk, E
⊗m) =

{
m+ 1 if m ≥ 0,

0 if m < 0.

(See Griffiths and Harris [45] for details.) 2

Let us return to the general case where X is a Kähler surface with
b1 = 0. Although the main result of this section is perhaps most interesting
for minimal elliptic surfaces, neither minimality nor ellipticity is required
for the proof. Moreover, we also allow for the case b+ = 1. Let E → X be
a Hermitian line bundle and B ∈ A(E) be a connection on E with F 0,2

B =
0. Since b1 = 0 it follows from Theorem 3.40 that up to complex gauge
equivalence there is only one such connection. Consider the corresponding
Dolbeault-de Rham complex

Ω0,0(X,E)
∂̄B−→ Ω0,1(X,E)

∂̄B−→ Ω0,2(X,E)

with cohomology groups

H0,j(X,E) = Hj(X, EB) =
ker ∂̄B
im ∂̄B

∼= ker ∂̄B ∩ ker ∂̄∗B .

Since the complex isomorphism class of the operator ∂̄B is independent
of B so are the cohomology groups H0,j(X,E) and we shall denote their
dimensions by hj = hj(E) = dimc H0,j(X,E) for j = 0, 1, 2. Recall from
the Hirzebruch-Riemann-Roch theorem 3.42 that the Euler characteristic
of this complex is given by

χ(X,E) = h0 − h1 + h2 =
c · c− σ

8

where c = 2c1(E)− c1(K). Since Kähler surfaces with b+ > 0 have simple
type the only interesting case is where c · c − σ = 2χ + 2σ = 4(1 + b+) =
8(pg + 1) and hence

χ(X,E) = pg + 1.

On the other hand b+ = 1 is equivalent to pg = 0 and in this case the
assumption that the moduli space has nonnegative dimension can be ex-
pressed in the form χ(X,E) ≥ 1. The following theorem was proved by
Mrowka in [98].
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Theorem 12.28. (Mrowka) Let X be a Kähler surface with b1 = 0 and
E → X be a Hermitian line bundle Denote hj = dim H0,j(X,E). If pg > 0
and χ(X,E) = pg + 1 then

SW(X,ΓE) = (−1)h
0−1

(
pg − 1
h0 − 1

)
if h1 − h2 < 0 < h0,

and SW(X,ΓE) = 0 otherwise. If pg = 0 then

SW+(X,ΓE) =

{
1, if h0 > 0, χ(X,E) ≥ 1,
0, otherwise.

Exercise 12.29 Prove that the formula in Theorem 12.28 is in agreement
with Theorem 12.9. What are the numbers h0, h1, h2 in the case of the
trivial bundle E = C and the canonical bundle E = K? 2

Example 12.30 Consider the elliptic surface Vk with pg(Vk) = k + 1
discussed in Example 12.27 and recall that the canonical class c1(K) is
Poincaré dual to k[F ] where F ⊂ Vk denotes a generic fiber. Let E → Vk
be the line bundle with first Chern class

c1(E) = PD(q[F ])

and denote hj(qF ) = dimc H0,j(X,E). Since F · F = 0 it follows from the
Hirzebruch-Riemann-Roch theorem that

χ(X, qF ) = pg + 1 = k + 2.

Recall from Example 12.27 that the dimension of the space H0(X,E) of
holomorphic sections of E is given by h0(qF ) = q + 1 for q ≥ 0 and is zero
otherwise. Since h2(qF ) = h0(K − qF ) = h0((k − q)F ) it follows that

h0(qF ) = q + 1, h1(qF ) = 0, h2(qF ) = k − q + 1,

whenever 0 ≤ q ≤ k. Hence Theorem 12.28 shows that

SW(Vk,ΓqF ) = (−1)q
(
k
q

)
, 0 ≤ q ≤ k. (12.19)

All the other invariants are zero. Note, in particular, that c = 0 is the
only basic class of the K3-surface V0 in agreement with Theorem 12.9. For
general k the Donaldson series is given by

DVk
((

1 +
u

2

)
eh
)

= eh·h/2
(
eF − e−F

2

)k
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= 22+ 7χ+11σ
4 eh·h/2

k∑
q=0

(−1)q
(
k
q

)
eqF ·h.

The first term is an older calculation of Donaldson’s invariants while the
second expression comes from the computation of the Seiberg-Witten in-
variants. The reader may check that both formulae agree and hence confirm
Witten’s conjecture in this case. 2

The proof of Theorem 12.28 rests on the following general principle.
Suppose that f : X → Y is a smooth Fredholm map between paracompact
separable Banach manifolds X and Y which satisfies the following.

(i) Y is connected.

(ii) f has Fredholm index 0.

(iii) f−1(K) is compact for every compact set K ⊂ Y .

(iv) The determinant line bundle Det→ X with fiber

Detx = det(df(x)) = Λmax ker df(x)⊗ Λmax ker df(x)∗

is orientable.

Given an orientation of the bundle Det → X it follows from the Sard-
Smale theorem that the map f has a well-defined degree defined by

deg(f) = deg(f ; y) =
∑

f(x)=y

νf (x)

for every regular value y where νf (x) = ±1 is the sign obtained by com-
paring the obvious orientation of the line Detx = det(df(x)) = R with the
one induced by the bundle Det. As in the finite dimensional case it follows
from standard arguments in differential topology (e.g. Milnor [90]) that the
degree of f is independent of the regular value used to define it. If Y is
not connected then the number deg(f ; y) depends only on the component
of the regular value y. (See Appendices A and B for more details.) Now
suppose that y0 ∈ Y is not a regular value of f but that the preimage

M0 = f−1(y0)

is a smooth finite dimensional compact orientable manifold with tangent
space TxM0 = ker df(x) for x ∈M0. Then the cokernels of df(x) are of con-
stant dimension for x ∈M0 and form a vector bundle coker df →M0 with
fiber coker df(x) over x ∈M0. This is called the obstruction bundle. Fix
an orientation of M0. Then the orientation of Det determines an orientation
of the obstruction bundle coker df and we denote by e(coker df) ∈ H∗(M0)
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the corresponding Euler class. The next proposition asserts that the degree
of f agrees with the pairing of the Euler class of the obstruction bundle
with the fundamental class of the zero set.

Proposition 12.31 Under the above assumptions

deg(f) =

∫
M0

e(coker df).

Proof: For simplicity let us assume that both X and Y are Banach spaces
and y0 = 0. For Y this is no restriction at all (just choose a local chart
near y0) But for X the extension of the following argument to the general
case requires the construction of a local exponential map near M0 which we
leave to the reader. It is useful to choose a smooth family of pseudo-inverses

M0 → L(Y,X) : x 7→ Tx

of the operators Dx = df(x) so that

DxTxDx = Dx, TxDxTx = Tx.

Such operators exist locally. Then one can use a partition of unity to obtain
operators which satisfy DxSxDx = Dx. Finally define Tx = SxDxSx. This
operator family gives rise to complements

Ex = imTx, Fx = ker Tx

of ker Dx and imDx:

X = ker Dx ⊕ Ex, Y = imDx ⊕ Fx.

Note that Dx : Ex → imDx is bijective and that the open set

Uδ = {x+ ξ |x ∈M0, ξ ∈ Ex, ‖ξ‖ < δ}

is a tubular neighbourhood of M0 for δ > 0 sufficiently small. Now choose
a smooth section s of the bundle F →M0:

s : M0 → Y, s(x) ∈ Fx

which is transverse to the zero section. Let β : [0, δ] → [0, 1] be a smooth
cutoff function with β(r) = 1 near r = 0 and β(r) = 0 near r = δ. Now
define ϕ : X → Y by

ϕ(x+ ξ) = s(x)β(‖ξ‖), x ∈M0, ξ ∈ Ex, ‖ξ‖ ≤ 0,

and by ϕ(x) = 0 for x /∈ Uδ. If the Banach space X is uniformly convex then
this function is smooth and the operators dϕ(x) all have a finite dimensional
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range. As in finite dimensional differential topology it is now easy to see
that the degree of the function f + tϕ : X → Y is independent of t and
hence

deg(f) = deg(f + ϕ).

The next step is to prove that the zero set of f + ϕ agrees with the zero
set of the section s. Firstly, (f + ϕ)−1(0) ⊂ U and, secondly,

f(x+ ξ) + ϕ(x+ ξ) = 0 ⇐⇒ ξ = 0, ϕ(x) = 0

for x ∈M0 and ξ ∈ Ex with ‖ξ‖ < δ. To see this note first that the vector

s(x)β(‖ξ‖) +Dxξ = f(x) + df(x)ξ − f(x+ ξ)

satisfies a quadratic estimate

‖s(x)β(‖ξ‖) +Dxξ‖ ≤ c‖ξ‖2.

Now s(x) ∈ Fx and Dxξ ∈ imDx lie in complementary subspaces and the
restriction of Dx to Ex is injective. Since ξ ∈ Ex we obtain the estimate

‖ξ‖ ≤ c′‖Dxξ‖ ≤ c′′‖ξ‖2 ≤ c′′δ‖ξ‖.

With c′′δ < 1 this is only possible if ξ = 0 and thus s(x) = 0. It is also
easy to check that the crossing index νs(x) of x as a zero of s agrees with
the index νf+ϕ(x) associated to x as a zero of f + ϕ. Hence

deg(f + ϕ) =
∑

f(x)+ϕ(x)=0

νf+ϕ(x) =
∑

x∈M0, s(x)=0

νs(x) =

∫
M0

e(F ).

This proves the proposition. 2

Proof of Theorem 12.28: Consider the Banach manifold N k,p intro-
duced in Proposition 8.16. In the Kähler case this manifold consists of all
triples B ∈ Ak,p(E), ϕ0 ∈W k,p(X,E), ϕ2 ∈W k,p(X,Λ0,2T ∗X ⊗E) which
satisfy ∂̄Bϕ0 + ∂̄∗Bϕ2 = 0, d∗(B −B0) = 0, and (ϕ0, ϕ2) 6= (0, 0). Let

Wk−1,p ⊂W k−1,p(X,R)⊕W k−1,p(X,Λ0,2T ∗X)

denote the complement of the Γ-wall. More explicitly, the Banach space
on the right can be identified with the space of imaginary valued self-dual
2-form of class W k−1,p via η 7→ (iηω, η

0,2) and the Γ-wall consists of all η
for which there exists a connection B ∈ Ak,p(E) with (FB + η)ω = 0 and
(FB + η)0,2 = 0. Now consider the smooth Fredholm map

F1 : N k,p →Wk−1,p
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defined by

F1

 B
ϕ0

ϕ2

 =

(
−i(FAcan + FB)ω + (|ϕ2|2 − |ϕ0|2)/4

−F 0,2
B + ϕ̄0ϕ2/2

)
.

This map is invariant under the obvious action of S1 on N k,p (by rotating
the fibers of E) and hence descends to a map

F1 : N k,p/S1 →Wk−1,p.

Remark 8.20 asserts that this map is proper. Moreover, the proof of The-
orem 7.16 shows that F1 is a Fredholm map (see page 294). In the case
χ(X,E) = pg + 1 this map has index zero. If, moreover, b+ > 1 then the
Banach manifold Wk−1,p is connected and thus the map F1 has a well
defined degree. By definition, this agrees with the Seiberg-Witten invariant

SW(X,ΓE) = deg(F1).

In the case b+ = 1 the space Wk−1,p has two components and the two
corresponding degrees of F1 are the two invariants SW±(X,ΓE) provided

that χ(X,E) = 1. In fact, for every η ∈ Wk−1,p the preimage F1
−1

(η)
agrees with the Seiberg-Witten moduli space for the perturbation η.

For the proof of Theorem 12.28 it suffices to consider the case c1(E) ·
[ω] ≥ 0 since otherwise the invariant is zero. Choose λ > 0 such that

0 ≤ c1(E) · [ω] <
c1(K) · [ω]

2
+ λVol(X). (12.20)

If b+ = 1 then, under this assumption, the perturbation η = iπλω will de-
termine the invariant SW+(X,ΓE). More generally, for any value of b+, the
condition (12.20) guarantees that every solution (B,ϕ0, ϕ2) of the Seiberg-
Witten equations with η = iπλω satisfies ϕ2 = 0. By Proposition 12.23,
the moduli space of these solutions can be identified with the set of ef-
fective divisors in the cohomology class c1(E). Because the bundle E has
a unique holomorphic structure this is simply the projective space of the
space H0(X, E) of holomorphic sections of E:

F1
−1

(iπλω) = Diveff(X, c1(E)) = PH0(X, E) = P.

This is evidently a manifold and we must prove that the kernel of the
linearized map dF1(B,ϕ) agrees with the tangent space of P. It suffices
to prove that the kernel has the right dimension h0 − 1 and we must then
examine the cokernel bundle over P.
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It is useful to recall from the proof of Theorem 7.16 that the kernel and
cokernel of dF1(B,ϕ) are naturally isomorphic to the kernel and cokernel
of the operator DB,ϕ discussed in Section 12.4:

ker dF1(B,ϕ0, 0) ∼= ker DB,ϕ, coker dF1(B,ϕ0, 0) ∼= cokerDB,ϕ

(see page 294). The cokernel can easily be determined from the exact se-
quence of Lemma 12.6. Since b1 = 0 the term H1(X,O) vanishes and,
since there is a unique holomorphic structure on E, the cohomology groups
Hj(X, EB) are independent of B. Hence Lemma 12.6 gives rise to the exact
sequence

0
mϕ→ H1(X, EB)→ cokerDB,ϕ → H2(X,O)

mϕ→ H2(X, EB)→ 0.

Let us now consider the S1-action and denote the cokernel bundle with fiber
cokerDB,ϕ over the equivalence class of a pair [B,ϕ] ∈ P by cokerD. (For
equivalent pairs (B,ϕ) and (B,ϕ′) the corresponding cokernels of DB,ϕ
and DB,ϕ′ are to be identified via the S1 action.) Denote by H → P the
anti-canonical bundle with c1(H) ∈ H2(P,Z) the positive generator of the
cohomology. Since S1 rotates the fibres of E we obtain an exact sequence
of vector bundles over P:

0→ H ⊗H1(X, E)→ cokerD → H2(X,O)→ H ⊗H2(X, E)→ 0.

With pg = rankH2(X,O) and hj = rankHj(X, E) it follows that the
dimension of P and the rank of the kernel and cokernel bundles are given
by∗

dimP = rank kerD = h0 − 1, rank cokerD = pg + h1 − h2.

This shows that the kernel of the linearized operator agrees with the tangent
space of P. Moreover, the total Chern class of the bundle cokerD is given
by

c(cokerD) = c(H)h
1−h2

= (1 + c1(H))h
1−h2

.

If pg > 0 then the assumption χ(X,E) = pg + 1 guarantees that the
rank of the cokernel bundle agrees with the dimension of P and we must
evaluate the top Chern class on P. Note also that the condition pg > 0
implies h1 − h2 < h0 − 1 = dim P. There are three cases to consider.
Firstly, if h0 = 0 then P = ∅ and hence the invariant is zero. Secondly,
if 0 ≤ h1 − h2 < h0 − 1. then the top Chern class of the cokernel bundle

∗To obtain the formula for the kernel of D use either the first part of the exact
sequence in Lemma 12.6 or the formula indexD = χ(X,E)− pg − 1.
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vanishes and hence so does the invariant. Thus the only case in which the
invariant can be nontrivial is

h1 − h2 < 0 ≤ h0 − 1.

In this case the integral of the top Chern class is the coefficient of zh
0−1 in

the power series (1 + z)−(h2−h1) with z = c1(H). The exercise below shows
that this coefficient is given by

SW(X,ΓE) = (−1)h
0−1

(
h0 + h2 − h1 − 2

h0 − 1

)
= (−1)h

0−1

(
pg − 1
h0 − 1

)
.

This proves the theorem in the case pg > 0. In the case pg = 0 we assume
χ(X,E) ≥ 1 and hence

0 ≤ rank cokerD = h1 − h2 ≤ h0 − 1 = dim P.

If h0 = 0 then the invariant is zero. Hence assume h0 ≥ 1. If χ(X,E) = 1
then h1 − h2 = h0 − 1 ≥ 0 and in this case top Chern class is given by
zh

0−1 giving SW+(X,ΓE) = 1. If χ(X,E) > 1 then the moduli space has
positive dimension and a generic section of the bundle cokerD → P cuts
out a submanifold of P which is cobordant to this moduli space. Thus the
invariant SW+(X,ΓE) is given by the integral of the top Chern class of
cokerD multiplied by an appropriate power of the canonical generator z =
c1(H) ∈ H2(P,Z). A moment’s thought shows that the resulting invariant
is SW+(X,ΓE) = 1 unless h0 = 0. This proves the theorem. 2

Exercise 12.32 Given a ≥ 1 prove that

(1 + z)−a =

∞∑
n=0

(−1)n
(
a+ n− 1

n

)
zn.

Corollary 12.33 Let X be a Kähler surface with b1 = 0 and suppose that
there is a splitting K = E ⊗ F into holomorphic line bundles with

h0(E) > 0, h0(F ) > 0, max{h0(E), h0(F )} > h1.

where h1 = h1(E) = h1(F ). Then

χ(X,O) ≥ χ(X,E), pg > 0.

Moreover, if χ(X,O) = χ(X,E) and h1 > 0 then h0(E) = h0(F ) and h1

is even.

Proof: Abbreviate h0 = h0(E), h2 = h2(E) = h0(F ) and assume without
loss of generality that h2 > h1. Moreover, note that χ(X,O) = pg + 1.
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The assumption h0 > 0 guarantees, by Proposition 12.23, that the Seiberg-
Witten moduli space is nonempty for a suitable perturbation η = πiλω.
The proof of Theorem 12.28 shows that the linearized operator satisfies

dim cokerD = pg + h1 − h2, dim ker D = h0 − 1.

Hence the assumption h1 < h2 implies pg > 0. Now suppose that

pg < χ(X,E)− 1.

or, equivalently, c1(E)2 > c1(E) · c1(K). Then the Seiberg-Witten moduli
space has positive dimension. Moreover, the argument in the proof of The-
orem 12.28 shows that this moduli space is cobordant to a submanifold of
P cut out by a generic section of the cokernel bundle. Now the condition
h2 > h1 guarantees that the top Chern class of this bundle is nonzero.
More precisely, as in the proof of Theorem 12.28, this class is given by

cpg+h1−h2(cokerD) = (−1)pg+h1−h2

(
pg − 1

pg + h1 − h2

)
zpg+h1−h2

where z ∈ H2(P,Z) is the positive generator. Multiplying this class by a
suitable power of z and integrating over P we obtain a nonzero Seiberg-
Witten invariant in contradiction to the fact that X has simple type. Hence
the bundle E must satisfy pg ≥ χ(X,E)− 1 > 0. Let us now suppose that

pg = χ(X,E)− 1.

Then, by Theorem 12.28, the Seiberg-Witten invariant of ΓE is given by

SW(X,ΓE) = (−1)h
0−1

(
pg − 1
h0 − 1

)
.

Proposition 12.5 shows that the invariants SW(X,ΓE) and SW(X,ΓK⊗E∗)
are related by a factor (−1)pg+1. Since hj(E) = h2−j(K ⊗ E∗), by Serre
duality, it follows that

SW(X,ΓE) = (−1)h
0−h1−1

(
pg − 1

h0 − h1 − 1

)
if h1 − h0 < 0 < h2.

Comparing the two expressions for SW(X,ΓE) we find that they can only
be equal if h1 is even and if either h1 = 0 or h0 = h2. In the latter case we
have (h0 − 1) + (h0 − h1 − 1) = pg − 1 and so the two binomial coefficients
agree. This proves the corollary. 2

Remark 12.34 (i) If X and E satisfy the assumptions of Corollary 12.33
with
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χ(X,O) = χ(X,E), h0(E) /∈ {1, pg}

then the formula of Theorem 12.28 shows that the Seiberg-Witten invariant
of ΓE is nonzero and not equal to ±1. By Theorem 12.21 and Theorem 14.9
below, X cannot be the blowup of a surface of general type. Since pg > 0 it
follows from the Enriques-Kodaira classification that X must be the blowup
of an elliptic surface.

(ii) Let X be a minimal Kähler surface with b1 = 0 and suppose that E
satisfies the assumptions of Corollary 12.33 with

χ(X,O) = χ(X,E), c1(E) /∈ {0, c1(K)}.

Then it follows again from Theorem 12.28 that the Seiberg-Witten invariant
of ΓE is nonzero. Since E is neither the trivial nor the canonical bundle,
Theorem 12.21 asserts that X is not of general type and hence must be
elliptic. It was pointed out to me by Stefan Bauer that this also follows from
elementary arguments which do not use the Seiberg-Witten invariants. 2

It is quite easy to construct minimal surfaces of general type in which
there exists a nontrivial splitting K = E ⊗ F such that h0(E) > 0 and
h0(F ) > 0 as well as max{h0(E), h0(F )} > h1 but with pg + 1 > χ(X,E).
Examples are singular fibrations over CP 1 whose generic fibres are surfaces
of genus at least 2. Elliptic surfaces form the borderline case where such a
splitting exists with pg+1 = χ(X,E). The splitting of the canonical bundle
is also related to the factorization problem discussed in the next section.

12.10 Factorization

In [126] Witten proposed the following strategy for computing the invari-
ants for Kähler surfaces. Choose a spinc structureWE = Wcan⊗E with non-
trivial Seiberg-Witten invariants. By Proposition 12.3 the class e = c1(E)
can be represented by a harmonic 2-form τ of type (1, 1). This implies that
every connection B ∈ A(E) and every harmonic 2-form ζ of type (0, 2)
satisfy ∫

X

F 2,0
B ∧ ζ =

∫
X

FB ∧ ζ = −2πi

∫
X

τ ∧ ζ = 0.

The second equality follows from the fact that ζ is closed and FB + 2πiτ
is exact. The first and last equality follow from the fact that the exterior
product of two forms of non-complementary type vanishes pointwise. Now
consider a perturbation of the form

η = −F+
Acan

+
ζ − ζ̄

2

where ζ ∈ H0,2(X) is a harmonic 2-form of type (0, 2). Then the Seiberg-
Witten equations take the form



404 KÄHLER SURFACES

∂̄Bϕ0 + ∂̄∗Bϕ2 = 0,

2F 0,2
B = ϕ̄0ϕ2 − ζ, (12.21)

4i(FB)ω = |ϕ2|2 − |ϕ0|2.

As before, apply the operator ∂̄B to the first equation in (12.21) to obtain

−∂̄B ∂̄∗Bϕ2 =
1

2
|ϕ0|2ϕ2 −

1

2
ϕ0ζ

and hence

−
∫
X

∣∣∂̄∗Bϕ2

∣∣2 dvol =
1

2

∫
X

(
|ϕ0|2|ϕ2|2 − 〈ζ, ϕ̄0ϕ2〉

)
dvol.

Now use the fact that F 0,2
B is orthogonal to ζ to obtain∫

X

∣∣∣F 0,2
B

∣∣∣2 dvol =
1

2

∫
X

〈
F 0,2
B , ϕ̄0ϕ2 − ζ

〉
dvol

=
1

2

∫
X

〈
F 0,2
B , ϕ̄0ϕ2

〉
dvol

=
1

4

∫
X

〈ϕ̄0ϕ2 − ζ, ϕ̄0ϕ2〉

= − 1

2

∫
X

∣∣∂̄∗Bϕ2

∣∣2 dvol.

Hence every solution (B,ϕ0, ϕ2) of (12.21) must satisfy

F 0,2
B = 0, ∂̄Bϕ0 = 0, ∂̄∗Bϕ2 = 0.

This shows that the Seiberg-Witten equations can be interpreted as a fac-
torization problem. Think of the 2-form ζ̄ ∈ Ω2,0(X) as a holomorphic
section of the canonical bundle K = Λ2,0T ∗X. The equations ∂̄Bϕ0 = 0
and ∂̄∗Bϕ2 = 0 show that ϕ0 is a holomorphic section of the bundle E and
ϕ̄2 is a holomorphic section of K⊗E∗. The latter follows from the fact that
ϕ2 is self-dual and hence 0 = ∂̄∗Bϕ2 = − ∗ ∂B ∗ ϕ2 = − ∗ ∂Bϕ2. (See also
the proof of Proposition 12.5.) Hence the problem of finding the solutions
of the Seiberg-Witten equations is reduced to the problem of factorizing ζ̄
into

ζ̄ = ϕ0ϕ̄2, ϕ0 ∈ H0(X,E), ϕ̄2 ∈ H0(X,K ⊗ E∗).

In [126] Witten gives a formula for the sign attached to every such factor-
ization. This gives rise to a method for computing the invariants.
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Exercise 12.35 In [126] Witten uses an alternative argument to show
that F 0,2

B = 0 for all solutions of (12.21). He considers the action E(Acan +
B,Φ; η) of a solution and notes that it is invariant under the transformation

(B,ϕ0, ϕ2, ζ) 7→ (A,ϕ0,−ϕ2,−ζ).

Moreover, the minimum value of the action remains unchanged and hence
this transformation preserves the space of solutions of the equation (12.21).
It follows that solutions can only exist if F 0,2

B = 0. Carry out the details of
this argument. 2



13

SYMPLECTIC FOUR-MANIFOLDS

The purpose of this chapter is to describe some of the recent new ad-
vances in 4-dimensional symplectic topology which arose from the Seiberg-
Witten invariants, mainly through the work of Taubes. Shortly after the
new invariants were discovered he realized that symplectic four-manifolds
have nontrivial Seiberg-Witten invariants and this immediately led to the
solution of a longstanding conjecture concerning the nonexistence of sym-
plectic structures on certain 4-manifolds. This result can also be used to
prove that for every symplectic structure on the 4-torus the tangent bundle
admits a symplectic trivialization. Another consequence is the extension of
the Thom conjecture to the symplectic category. Taubes’ deepest theorem
along these lines concerns the relation between the Seiberg-Witten and
the Gromov invariants and can be viewed as an existence theorem for J-
holomorphic curves. This result can be combined with the work of Gromov
and McDuff to derive far-reaching consequences concerning the topology
of symplectic 4-manifolds. One such consequence is Kotschick’s irreducibil-
ity theorem. Another is the theorem by Liu and Ohta-Ono that symplectic
4-manifolds which admit a metric of positive scalar curvature must be blow-
ups of rational or ruled surfaces. Taubes himself proved that symplectic 4-
manifolds with b+ ≥ 2 have simple type, satisfy c1(K) ·c1(K) ≥ 0, and that
they are minimal in the smooth category if and only if they are minimal in
the symplectic category. He also showed that there is a unique symplectic
structure on CP 2 (with given volume and up to diffeomorphism). These
and a number of other results will be proved below.

Many of these results can be viewed as symplectic versions of theorems
about Kähler manifolds. For example, Taubes’ existence theorem about
pseudoholomorphic curves resembles Proposition 12.23 about the relation
between the Seiberg-Witten equations and divisors. Also many of the re-
sults relating the topology of the manifold to properties of the canonical
class (such as c1(K) · [ω] < 0 implies rational or ruled) have this flavour. A
notable exception is the result that for minimal Kähler surfaces of general
type plus and minus the canonical class are the only basic classes. This the-
orem has no symplectic analogue. Thus symplectic 4-manifolds share many
of the features of Kähler surfaces while in other respects they seem to have
quite different properties. For example, Gompf proved that every finitely
generated group is the fundamental group of a symplectic 4-manifold and
Gompf and Mrowka constructed large classes of symplectic manifolds which
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are not homotopy equivalent to Kähler or even complex surfaces. On the
other hand there are recent examples of smooth 4-manifolds with nontriv-
ial Seiberg-Witten invariants which do not admit any symplectic struc-
ture [60]. Thus the question whether symplectic 4-manifolds are closer to
Kähler surfaces or to general smooth 4-manifolds still seems to be far from
understood.

This chapter begins with a discussion of the existence question for sym-
plectic structures. Section 13.2 discusses Taubes’ theorem about the non-
triviality of the Seiberg-Witten invariants for symplectic 4-manifolds. His
existence theorem for J-holomorphic curves is discussed in Section 13.3
along with some of its consequences. Section 13.4 is devoted to the irre-
ducibility of symplectic 4-manifolds and Section 13.5 to some of the new
results about rational and ruled surfaces by Ohta-Ono and Li-Liu. Sec-
tion 13.6 gives a proof of Taubes’ theorems about the nontriviality of the
invariants and Section 13.7 gives an outline of Taubes’ existence proof for
J-holomorphic curves.

13.1 Existence of symplectic structures

A symplectic structure on a 4-manifold X is a closed nondegenerate
2-form ω. The nondegeneracy condition can be expressed as ω ∧ω 6= 0 and
hence the cohomology class [ω] ∈ H2(X,R) satisfies

[ω] ∪ [ω] 6= 0.

Recall also that every symplectic form ω is compatible with some almost
complex structure J on TX (i.e. g(v, w) = ω(Jv,w) is a Riemannian met-
ric) and that the space J (X,ω) of such almost complex structures is con-
tractible (see for example [85]). Thus any symplectic manifold carries two
cohomology classes [ω] ∈ H2(X,R) and c = c1(TX) ∈ H2(X,Z). In 4
dimensions the class c satisfies

〈c, α〉 = α · α(mod 2) (13.1)

for α ∈ H2(X,Z) (see Lemma 1.45) and, by the Hirzebruch signature the-
orem,

c · c = 2χ(X) + 3σ(X). (13.2)

Here · denotes the cup-product evaluated on the fundamental class of X.
Conversely, every cohomology class c ∈ H2(X,Z) which satisfies these con-
ditions is the first Chern class of some almost complex structure on X.
The next proposition shows that the isomorphism class of J is uniquely
determined by c, however, there are always at least two homotopy classes
of almost complex structures in each isomorphism class.
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Proposition 13.1. (Wu) Let X be a compact oriented smooth 4-mani-
fold. There is a one-to-one correspondence between isomorphism classes
of almost complex structures on X which are compatible with the orien-
tation and integral cohomology classes c ∈ H2(X,Z) which satisfy (13.1)
and (13.2).

Proof: For every class c ∈ H2(X,Z) which satisfies (13.1) and (13.2) there
exists a complex vector bundle E → X of rank 2 such that

c1(E) = c, 〈c2(E), [X]〉 = χ(X).

As a real vector bundle E is characterized, up to isomorphism, by its Euler
class and the Stiefel-Whitney and Pontryagin classes. For every complex
vector bundle and the tangent bundle of every orientable 4-manifold the
odd Stiefel-Whitney classes vanish. For real rank-4 bundles the 4-th Stiefel-
Whitney class agrees with the mod-2 reduction of the Euler class. Thus the
only remaining classes are the second Stiefel-Whitney class, the Euler class,
and the first Pontryagin class. These are related to the Chern classes by

w2(E) = c1(E)(mod 2), e(E) = c2(E), p1(E) = c1(E)2 − 2c2(E).

By (13.1) the second Stiefel-Whitney class of E agrees with that of TX and,
since 〈c2(E), [X]〉 = χ(X), the Euler classes agree. Now the Hirzebruch
signature theorem for compact 4-manifolds asserts that

σ(X) =
1

3
〈p1(TX), [X]〉.

Hence (13.2) shows that the first Pontryagin class of E agrees with that
of TX. Since all three classes agree E and TX must be isomorphic as real
vector bundles. Hence TX carries an almost complex structure with the
required Chern class c. Now if J and J ′ are two almost complex structures
on TX with c1(TX, J) = c1(TX, J ′) then, since the second Chern classes
already agree, these bundles must be isomorphic as complex vector bundles
(see Exercise 1.43). Hence there exists a real bundle isomorphism Φ : TX →
TX such that ΦJ = J ′Φ. This proves the proposition. 2

Example 13.2 Consider the 4-manifold

X = `CP 2#mCP 2

with intersection form QX = `(1)⊕m(−1) and

χ(X) = 2 + `+m, σ(X) = `−m.

Denote by α1, . . . , α`, β1, . . . , βm the obvious generators of H2(X,Z) and
by a1, . . . , a`, b1, . . . , bm their Poincaré duals. Thus ai · aj = −bi · bj = δij
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and ai · bj = 0. Any integral 2-dimensional cohomology class on X is of the
form

c =
∑̀
i=1

λiai +

m∑
j=1

µjbj .

This class satisfies (13.1) if and only if all the numbers λi and µj are odd.
Now 2χ(X) + 3σ(X) = 4 + 5`−m and hence c satisfies (13.2) if and only if

∑̀
i=1

λi
2 −

m∑
j=1

µj
2 = 4 + 5`−m. (13.3)

By Proposition 13.1, X admits an almost complex structure which is com-
patible with the given orientation if and only if there exist odd integers λi
and µj which satisfy (13.3). Since the square of an odd integer is congruent
to 1 mod 8 an odd solution of (13.3) can only exist if 4 + 4` is divisible by
8 and hence if ` is odd. On the other hand if ` is odd then the odd vectors

λ = (3, 1, 3, 1, . . . , 3), µ = (1, . . . , 1)

solve (13.3). Hence the connected sum `CP 2 + mCP 2
admits an almost

complex structure compatible with its orientation if and only if ` is odd. 2

Remark 13.3 The condition (13.1) asserts that the first Chern class c =
c1(TX, J) ∈ H2(X,Z) of an almost complex 4-manifold is a characteristic
vector for the intersection form of X. It is a general result about unimodular
quadratic forms that for any such vector the number c · c−σ is divisible by
8. In the case of almost complex 4-manifolds this follows also from the fact
that the number (c ·c−σ(X))/8 is the complex index of the Dirac operator
associated to the standard spinc structure (see Theorem 6.22). Now the
condition (13.2) shows that

c · c− σ(X)

8
=
σ(X) + χ(X)

4
=

1 + b+ − b1
2

.

Hence b+ − b1 is odd for every almost complex 4-manifold. 2

Exercise 13.4 Prove that every simply connected smooth 4-manifold with
b+ odd admits an almost complex structure compatible with the orienta-
tion.

In summary, there are two obvious necessary conditions for the exis-
tence of a symplectic structure on an orientable 2n-dimensional manifold
X, namely the existence of a cohomology class a ∈ H2(X,Z) such that
a ∪ a 6= 0 and the existence of an almost complex structure. In dimension
4 this leads to the following fundamental existence question for symplectic
structures.



410 SYMPLECTIC FOUR-MANIFOLDS

Question 1: Let X be a compact smooth 4-manifold. Suppose that X car-
ries two cohomology classes a ∈ H2(X,R) and c ∈ H2(X,Z) such that
a∪a 6= 0 and c satisfies (13.1) and (13.2). Does X carry a symplectic form
ω such that a = [ω] and c = c1(TX, J) for J ∈ J (X,ω)?

This question has recently been answered in the negative by Donaldson
via his construction of symplectic submanifolds. In the spring of 1994 he
proved the following theorem. (See [18], [19] and the discussion in [85],
Chapter 4.)

Theorem 13.5. (Donaldson) Let (X,ω) be a compact symplectic mani-
fold such that the cohomology class [ω] ∈ H2

DR(X) admits an integral lift.
Let a ∈ H2(X,Z) be such a lift. Then for every sufficiently large inte-
ger k there exists a codimension-2 symplectic submanifold Σk ⊂ X which
represents the Poincaré dual of the cohomology class ka.

Donaldson actually proves that the inclusion Σk ↪→ X induces an iso-
morphism of the homotopy groups πi for i < n − 1 where dim X = 2n.
In particular the manifold Σk is connected whenever X is. In dimension
4 this result can be combined with the minimal genus theorem of Kron-
heimer and Mrowka to obtain obstructions to the existence of symplectic
structures. For example, let Xd ⊂ CP 3 be a complex hypersurface of CP 3

of degree d ≥ 4 and ω ∈ Ω2(Xd) be a symplectic form on Xd with corre-
sponding Chern class c1 ∈ H2(Xd,Z). Then it follows from Theorem 13.5
and Theorem 14.1 that either c1 = 0 and d = 4 or

[ω] · c1(TX) < 0.

In particular, c1 cannot be a positive multiple of the class [ω] ∈ H2(Xd,Z).
The same assertion holds for the standard 4-torus X = T4. On these man-
ifolds there are plenty of cohomology classes c ∈ H2(X,Z) which satisfy
the conditions (13.1) and (13.2). One obvious example (in the case d > 4)
is the class c = −c1 where c1 is the first Chern class of the standard com-
plex structure. Donaldson’s theorem asserts that this class cannot be the
first Chern class of an almost complex structure which is compatible with
a symplectic form on Xd in the same cohomology class as the standard
symplectic structure. In view of these results one might ask the following
stronger question.

Question 2: Is there a smooth 4-manifold X which carries two cohomology
classes a ∈ H2(X,R) and c ∈ H2(X,Z) satisfying (13.1), (13.2), and
a ∪ a 6= 0, but which does not carry any symplectic form at all?

A natural first candidate for such a manifold would be

X = CP 2#CP 2#CP 2.
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By Example 13.2 this manifold carries an almost complex structure and
a suitable cohomology class a. However, nobody had found a symplectic
form on X and, up until very recently, nobody could prove that such a
form cannot exist. In November 1994 Taubes finally settled this question
using the Seiberg-Witten invariants (cf. [116] and [117]).

Remark 13.6 On any compact smooth 4-manifold there are at least two
homotopy classes of almost complex structures for any cohomology class c ∈
H2(X,Z) which satisfies (13.1) and (13.2) (see Proposition 5.25). Hence one
might ask the refined question which homotopy classes of almost complex
structures and cohomology classes a ∈ H2(X,R) with a ∪ a 6= 0 can be
realized by symplectic forms. 2

13.2 New results from the Seiberg-Witten invariants

Most of the new theorems about symplectic 4-manifolds arising from the
Seiberg-Witten invariants are due to Taubes. Before describing his theo-
rems let us first recall some preliminary facts about spinc structures on sym-
plectic 4-manifolds. There is a canonical spinc structure Wcan = Λ0,∗T ∗X
associated to any compatible almost complex structure J ∈ J (X,ω). Ev-
ery other spinc structure can be obtained from this one by tensoring with
a line bundle E → X. Denote WE = Wcan ⊗ E with the corresponding
spinc structure ΓE : TX → End(WE). The characteristic line bundle LΓE

is isomorphic to K∗ ⊗ E2 where K = Λ2,0T ∗X is the canonical bundle
associated to J . The correspondence ΓE 7→ c1(E) determines a bijection
from isomorphism classes of spinc structures to H2(X,Z).

Remark 13.7 Recall that the symmetry Γ 7→ Γ̄ of complex conjugation
is given by the correspondence

Γ̄E ∼= ΓK⊗E∗ .

This is because the bundle Wcan ⊗ K = Λ0,∗T ∗X ⊗ K is isomorphic to
W̄can = Λ∗,0T ∗X. The details are as in the Kähler case. (See Section 12.3.)
In particular, it follows as in Proposition 12.5 that

SW(X,ΓK⊗E∗) = (−1)
σ+χ

4 SW(X,ΓE)

whenever b+ ≥ 2 and

SW+(X,ΓK⊗E∗) = (−1)
σ+χ

4 SW−(X,ΓE).

whenever b+ = 1. 2

The following results are the analogues of Theorems 12.9 and 12.10 for
the symplectic case.
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Theorem 13.8. (Taubes) Let (X,ω) be a symplectic 4-manifold with its
orientation given by the volume form ω ∧ω and assume that b+ ≥ 2. Then
X has Seiberg-Witten invariants

SW(X,Γcan) = 1, SW(X,ΓK) = (−1)
χ+σ

4 .

Moreover, if E → X is a complex line bundle with nonzero Seiberg-Witten
invariants SW(X,ΓE) 6= 0 then the first Chern class satisfies

0 ≤ c1(E) · [ω] ≤ c1(K) · [ω].

If equality holds then either E = C or E = K.

Theorem 13.9. (Taubes) Let (X,ω) be a symplectic 4-manifold with its
orientation given by the volume form ω ∧ω and assume that b+ = 1. Then
X has Seiberg-Witten invariants

SW+(X,Γcan) = 1, SW−(X,ΓK) = (−1)
σ+χ

4 .

Moreover,

SW+(X,ΓE) 6= 0 =⇒ c1(E) · [ω] ≥ 0

with equality if and only if E = C and

SW−(X,ΓE) 6= 0 =⇒ c1(E) · [ω] ≤ c1(K) · [ω].

with equality if and only if E = K.

Remark 13.10 As in the Kähler case the formula SW(X,Γcan) = 1 is
valid if the cohomology H0(X) ⊕ H1(X) ⊕ H2,+(X) is equipped with its
canonical orientation induced by an almost complex structure J ∈ J (X,ω)
which is compatible with ω. (See Remark 13.35 below for more details about
this orientation.) Sometimes it is useful to express this explicitly in the form

SW(X,ΓJ , orJ) = 1

whenever b+ ≥ 2 and J is compatible with some symplectic form. The
other assertions can be reformulated similarly. 2

Theorem 13.8 implies that symplectic 4-manifolds with b+ ≥ 2 do not
admit metrics of positive scalar curvature (see Proposition 7.32). On the
other hand the manifolds

X = `CP 2#mCP 2

do admit such metrics and hence do not admit any symplectic structure
unless either ` = 1 or m = 1 (in which case a symplectic structure does
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exist for obvious reasons). On the other hand these manifolds always admit
a cohomology class a ∈ H2(X,R) with a ∪ a 6= 0 and, by Example 13.2,
they admit an almost complex structure (compatible with some orienta-
tion) whenever either ` or m is odd. More generally, by Theorem 11.1, the
Seiberg-Witten invariants of any connected sum X = X1#X2 must vanish
provided that b+(Xj) ≥ 1 for j = 1, 2 and b+(X) − b1(X) is odd. Hence
no such manifold admits a symplectic structure. Kotschick extended this
result and proved that, at least in the simply connected case, symplectic
4-manifolds with b+ ≥ 2 are irreducible (see Theorem 13.28 below). An-
other immediate consequence of Theorem 13.8 is the following result about
symplectic 4-manifolds with vanishing first Chern class.

Corollary 13.11. (Taubes) Let X be a compact oriented smooth 4-man-
ifold with b+ ≥ 2. Assume that X admits a symplectic structure ω, com-
patible with its orientation, such that c1(TX, J) = 0 for J ∈ J (X,ω).
Then every symplectic form ω′ on X which is compatible with the given
orientation satisfies c1(TX, J ′) = 0 for J ′ ∈ J (X,ω′).

Proof: By Theorem 13.8, the only basic class is zero. 2

Corollary 13.12. (Taubes) If ω is any symplectic structure on the 4-
torus T4 then c1(TX, J) = 0 for J ∈ J (T4, ω). The same holds for sym-
plectic structures on the K3-surface which are compatible with the standard
orientation.

Remark 13.13 In [15] Connolly, Lé Hông, and Ono obtained further re-
strictions on the almost complex structures which can be compatible with
symplectic forms. Their results are based on the observation that two al-
most complex structure J0 and J1 on a 4-manifold X which have the same
first Chern class c1(TX, J0) = c1(TX, J1) may not be homotopic even
though, by Proposition 13.1, they are isomorphic.∗ In fact, it was observed
by Donaldson in [16] that there is a natural involution

p : π0(J (X))→ π0(J (X))

which preserves the first Chern class and reverses the cohomological orien-
tation of X as defined in Remark 13.35 below. Let us temporarily denote
by ΓJ the canonical spinc structure of the almost complex structure J and
by SW(X,ΓJ) the corresponding Seiberg-Witten invariant defined with the

∗Recall from Proposition 5.25 that for every spinc structure Γ : TX → End(W ) with

c2(W+) = 0 the components of the set J (TX,Γ) of almost complex structures J on
TX whose canonical spinc structure ΓJ is isomorphic to Γ are given by

π0(J (TX,Γ)) ∼= Z2 ⊕
H3(X,Z)

H1(X,Z) ∪ c1(W+)
.
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orientation of Remark 13.35 induced by J . Consider two almost complex
structures J, J ′ ∈ J (X) such that

[J ′] = p([J ]).

In [15] Connolly, Lé Hông, and Ono show that the spinc structure ΓJ′ is
isomorphic to ΓJ . Since the cohomological orientation of X induced by J ′

is opposite to that induced by J it follows that

SW(X,ΓJ′ , orJ′) = −SW(X,ΓJ , orJ).

Hence Theorem 13.8 shows that in the case b+ ≥ 2 the structures J and J ′

cannot both be compatible with symplectic forms. A similar reasoning in
the case b+ = 1 shows that if J and J ′ are compatible with symplectic forms
ω and ω′, respectively, then these forms determine opposite orientations of
H2,+(X) and the wall-crossing number is SW+(X,ΓJ)−SW−(X,ΓJ) = 2.
See [15] for further details. 2

Another corollary of Theorem 13.8 is obtained by combining it with
the adjunction formula for symplectic submanifolds and the adjunction
inequality of Kronheimer and Mrowka in Theorem 14.1. This gives rise to
a proof of the generalized Thom conjecture for symplectic 4-manifolds with
b+ ≥ 2. Moreover, by Theorem 13.9, the proof of Theorem 14.2 for the case
b+ = 1 generalizes immediately to the symplectic category. In [73] Li and
Liu give a proof which is based on the wall-crossing formula. For b+ ≥ 2
the result is due to Kronheimer-Mrowka [66] and Taubes [116].

Theorem 13.14. (Thom conjecture) Let (X,ω) be a compact symplec-
tic 4-manifold and Σ ⊂ X be a compact oriented embedded surface with

Σ · Σ > 0,

∫
Σ

ω > 0.

Then
2g(Σ)− 2 ≥ Σ · Σ + c1(K) · Σ.

In particular, 2-dimensional symplectic submanifolds C ⊂ X with C ·C ≥ 0
minimize the genus in their respective homology classes.

Proof: Theorem 13.8 and Theorem 14.1 for the case b+ ≥ 2. Theorem 13.9
and the proof of Theorem 14.2 in Section 14.2 for the case b+ = 1. 2

Proposition 13.15. (Kronheimer-Mrowka-Taubes) Let X be a com-
pact symplectic 4-manifold with b+ ≥ 2 and C ⊂ X be a 2-dimensional
symplectic submanifold with C · C ≥ 0. Then c1(K) · C ≥ 0 and every line
bundle E → X with SW(X,ΓE) 6= 0 satisfies

0 ≤ c1(E) · C ≤ c1(K) · C.
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Proof: Since [ω] ·C > 0 the homology class of C is not torsion. Hence, by
Theorem 14.1,

c1(K) · C = 2g − 2− C · C ≥ c1(LΓE ) · C = 2c1(E) · C − c1(K) · C.

This shows that c1(E) · C ≤ c1(K) · C. The inequality c1(E) · C ≥ 0
follows by replacing E with K ⊗ E∗. Consider the case E = C to obtain
c1(K) · C ≥ 0. 2

Example 13.16 Neither of the assumptions C · C ≥ 0 and b+ ≥ 2 in
Proposition 13.15 can be removed. If X = CP 2 and C = CP 1 then b+ = 1

and C ·C = 1 but c1(K) ·C = −3. If X ′ = X#CP 2
is obtained by blowing

up a point in a Kähler surface X and C = E is the exceptional divisor then
C · C = −1 and c1(K) · C = −1. 2

Consider the case where C is the symplectic submanifold of Theo-
rem 13.5 which represents the class [C] = PD(k[ω]). Then Proposition 13.15
yields the second assertion of Theorem 13.8. However, the proof given by
Taubes in [117] and the one given below is by a direct argument from the
Seiberg-Witten equations and does not rely on Theorem 13.5.

Proposition 13.15 and the second assertion of Theorem 13.8 can be
interpreted in two ways, either as a restriction on the cohomology classes
c = c1(E) with nontrivial Seiberg-Witten invariants, or as a restrictions
on symplectic manifolds with c1(K) · [ω] < 0. Since c1(K) = −c1(TX, J)
the latter includes the so-called monotone symplectic manifolds which
satisfy c1(TX, J) = λ[ω] for J ∈ J (X,ω) with λ > 0. Such manifolds must
satisfy b+ = 1. In fact, it was shown by Ohta and Ono in [101] that the
only monotone symplectic 4-manifolds are the del Pezzo surfaces S2 × S2

and CP 2 with up to eigth points blown up. The following two remarks
summarize some further consequences of Theorem 13.9 for symplectic 4-
manifolds with b+ = 1.

Remark 13.17 Let (X,ω) be a compact symplectic 4-manifold with b+ =
1 and b1 = 0 and suppose that c1(K) is a torsion class. Then the wall-
crossing formula show that

SW+(X,ΓE) + SW+(X,ΓK−E) = 1.

With E = C this shows that c1(K) 6= 0. Now if c1(E) is a torsion class then
Theorem 13.9 shows that SW+(X,ΓE) can only be nonzero if c1(E) = 0.
Hence for every torsion class c1(E) it follows that either c1(E) = 0 or
c1(E) = c1(K). This shows that c1(K) is the only nonzero torsion class in
H2(X,Z) and hence, by the universal coefficient theorem, H1(X,Z) = Z2.
Moreover, the Hirzebruch signature formula shows that b− = 9 and so
QX = H ⊕ (−E8). In summary,
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2c1(K) = 0, c1(K) 6= 0, QX = H ⊕ (−E8), H1(X,Z) = Z2.

The only known example with these properties is the Enriques surface (see
Example 6.28). 2

Remark 13.18 Let (X,ω) be a compact symplectic 4-manifold with b+ =
1 and b1 = 2 and suppose that c1(K) is a torsion class. Then the wall cross-
ing formula in Theorem 9.14 with c = −c1(K) shows that SW−(X,Γcan) =
SW+(X,Γcan) = 1. Hence SW+(X,ΓK) = 1 and, since c1(K) · [ω] = 0 it
follows from Theorem 13.9 that

c1(K) = 0, QX = H.

The Kähler examples here are the hyperelliptic surfaces (see Section 12.1)
and nonKähler examples were found by Fernández et al in [24, 23]. See also
the survey in [86]. 2

13.3 Existence of J-holomorphic curves

Much more powerful consequences for symplectic 4-manifolds can be ob-
tained by combining the Seiberg-Witten invariants with Gromov’s invari-
ants which are obtained by counting embedded J-holomorphic curves of
higher genus. In his seminal paper [47] Gromov discovered that J-holo-
morphic curves form a powerful tool for the study of symplectic manifolds.
(An exposition of the foundations of the theory can be found in McDuff-
Salamon [84].) In [107] Ruan developed these ideas further and defined the
higher genus Gromov invariants for general symplectic manifolds. Recently
Taubes extended the construction of Ruan to take account of disconnected
J-holomorphic curves in symplectic 4-manifolds (cf. [120]). This extension
is naturally related to the Seiberg-Witten invariants. In [119] and [120]
Taubes proved the following remarkable theorem. The result can be viewed
as the symplectic version of Proposition 12.23 about the relation between
Seiberg-Witten equations and divisors in the Kähler case.

Theorem 13.19. (Taubes) Let (X,ω) be a symplectic 4-manifold with
its orientation given by the volume form ω ∧ω/2. Assume that b+ ≥ 2. Let
E → X be a complex line bundle with nontrivial Seiberg-Witten invariants

SW(X,ΓE) 6= 0.

Then there exists an embedded symplectic submanifold C ⊂ X which rep-
resents the class

[C] = PD(c1(E)).

Moreover, every component Ci of C satisfies

c1(K) · Ci ≤ g(Ci)− 1 ≤ Ci · Ci. (13.4)
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If E = C is the trivial bundle then C is the empty curve. In the case b+ = 1
this result continues to hold for line bundles E → X with SW+(X,ΓE) 6= 0.

It is of some interest to examine the inequality (13.4) in more detail. Any
embedded J-holomorphic curve C ⊂ X satisfies the adjunction formula

2g − 2 = α · α+ c1(K) · α.

where g is the genus of C and α = [C] ∈ H2(X,Z). On the other hand, the
moduli space of connected embedded J-holomorphic curves in the homol-
ogy class has dimension

dim MGr(X, J ;α) = α · α− c1(K) · α

for a generic almost complex structure J . Here the complex structure
on the surface is allowed to vary. Now the symplectic submanifolds con-
structed in the proof of Theorem 13.19 are all J-holomorphic curves for
some J ∈ J (X,ω) which are stable in the sense that they persist under
small perturbations of J . Hence the corresponding moduli spacesMGr(αi)
for αi = [Ci] must have nonnegative dimension for each component Ci.
Thus Ci · Ci ≥ c1(K) · Ci and combining this with the adjunction formula
2gi−2 = Ci ·Ci+c1(K) ·Ci one obtains (13.4). The proof of Theorem 13.19
goes beyond the scope of this book. We will give an outline of Taubes’ ar-
guments in Section 13.7.

Here we shall prove some of the consequences of Theorem 13.19. Re-
call that a compact symplectic 4-manifold (X,ω) is called minimal if it
does not contain any symplectically embedded sphere with self-intersection
number −1. If such a sphere does exist then X decomposes as a connected

sum of some symplectic 4-manifold (X ′, ω′) with CP 2
(see [85], Chapter 6).

By induction, every compact symplectic 4-manifold is a connected sum of

a minimal one with finitely many copies of CP 2
. A first consequence of

Theorem 13.19 is obtained by combining the result with positivity of inter-
sections for J-holomorphic curves.

Corollary 13.20. (Taubes) Let X be a minimal symplectic 4-manifold
and E,E′ → X be two complex line bundles. Assume that either b+ ≥
2, SW(X,ΓE) 6= 0, SW(X,ΓE′) 6= 0, or b+ = 1, SW+(X,ΓE) 6= 0,
SW+(X,ΓE′) 6= 0. Then

c1(E) · c1(E′) ≥ 0.

In particular, every minimal symplectic 4-manifold with b+ ≥ 2 satisfies

c1(K) · c1(K) ≥ 0

or, equivalently, 3σ(X) + 2χ(X) ≥ 0.
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Proof: By Theorem 13.19, the Poincaré duals of both classes c1(E) and
c1(E′) can be represented by symplectic submanifolds

C = C1 ∪ · · · ∪ CN , C ′ = C ′1 ∪ · · · ∪ C ′N ′ .

In [120] Taubes actually proves that the Ci and C ′j are all stable embedded
J-holomorphic curves in X for some generic almost complex structure J
and hence satisfy (13.4):

g(Ci)− 1 ≤ Ci · Ci, g(C ′j)− 1 ≤ C ′j · C ′j .

With this convention (choosing the Ci and C ′j to be J-holomorphic) it may
be necessary to allow for repeated copies of embedded J-holomorphic tori
with self-intersection number zero. Since X is minimal it does not contain
any embedded J-holomorphic sphere with self-intersection number −1 and
hence Ci · Ci ≥ 0 and C ′j · C ′j ≥ 0 for all i and j. This implies Ci · C ′j ≥ 0
whenever Ci = C ′j . On the other hand, if the curves Ci and C ′j are distinct
then it follows from the positivity of intersections for J-holomorphic curves
that

Ci · C ′j ≥ 0.

This is obvious when the two curves intersect transversally. Moreover, each
nontransverse intersection point is isolated (see for example Lemma 2.2.2
in [84]) and contributes a positive number (at least 2) to the intersection
index (see McDuff [79] and Micallef-White [89] for details). Hence it follows
that

c1(E) · c1(E′) =

N∑
i=1

N ′∑
j=1

Ci · C ′j ≥ 0.

Note that the assertion for E = E′ does not require the positivity of inter-
sections. The assertion about c1(K) follows as the special case E = E′ = K,
by Theorems 13.8 and 13.9. 2

Corollary 13.21. (Taubes) Let X be a minimal symplectic 4-manifold
with b+ ≥ 2 and

c1(K) · c1(K) = 0.

Then every homology class PD(c1(E)) with SW(X,ΓE) 6= 0 can be repre-
sented by a disjoint union of symplectically embedded tori with self-inter-
section number 0. In particular, this holds for E = K.

Proof: For E = K this follows immediately from the proof of Corol-
lary 13.20. For the general case suppose that PD(c1(E)) is represented by
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a symplectic submanifold C = C1 ∪ · · · ∪ CN whose components Ci sat-
isfy (13.4). Then

c1(K) · Ci ≤ g(Ci)− 1 ≤ c1(E) · Ci.

Now use Proposition 13.15 to obtain equality:

Ci · Ci = c1(K) · Ci = c1(E) · Ci = g(Ci)− 1.

Minimality shows that Ci · Ci ≥ 0 for all i. If c1(K) = 0 then obviously
Ci · Ci = 0 and g(Ci) = 1 for all i. If c1(K) 6= 0 let T ⊂ X be one of
the embedded symplectic tori which represent the Poincaré dual of c1(K).
Then, by Proposition 13.15,

0 ≤ c1(E) · T ≤ c1(K) · T = 0.

Since this holds for all the tori T whose union represents PD(c1(K)) it
follows that c1(E) · c1(K) = 0 and hence c1(K) · Ci = 0 for all i. This
proves the corollary. 2

Corollary 13.22. (Taubes) Every symplectic 4-manifold with b+ ≥ 2
has SW-simple type.

Proof: Suppose SW(X,ΓE) 6= 0. Then, by duality, SW (X,ΓK−E) 6= 0
and hence, by Corollary 13.20, c1(K−E)·c1(E) ≥ 0. On the other hand the
dimension of the moduli space is dim M(X,ΓE) = c1(E −K) · c1(E) ≥ 0
and hence this dimension is zero. 2

The next corollary shows that if X and Y are diffeomorphic symplectic
4-manifolds then X is minimal if and only if Y is minimal.

Corollary 13.23. (Taubes) Let X be a compact symplectic 4-manifold
with b+ ≥ 2. Suppose that X contains a smoothly embedded sphere S with

S · S = −1.

Then X contains a symplectically embedded sphere C ⊂ X with C ·C = −1
and either [C] = [S] or [C] = −[S]. Moreover, in this case c1(K) · [S] = ±1.

Proof: If there exists an embedded 2-sphere S with self-intersection num-
ber −1 then X is diffeomorphic to some connected sum

X ∼= X ′#CP 2
.

To see this note that the boundary of a tubular neighbourhood N of S
is diffeomorphic to the 3-sphere and that N itself is diffeomorphic to the
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complement of a ball in CP 2 with reversed orientation. Choose spinc struc-

tures Γ′ on X ′ and Γk on CP 2
by restricting the canonical spinc structure

Γcan on X = X ′#CP 2
to the two summands. Thus

Γcan = Γ′#Γk.

and the (odd) label k was chosen such that c1(LΓk) = ke where e =
PD([S]). Then it follows from Theorem 13.8 and Theorem 11.2 that

SW(X ′,Γ′) = SW(X,Γcan) = 1.

Abbreviate M = M(X,Γcan), M′ = M(X ′,Γ′), c = c1(LΓcan
), and c′ =

c1(LΓ′). Since c · c = c′ · c′− k2, χ(X) = χ(X ′)− 1, and σ(X) = σ(X ′) + 1,
we have

dim M = dim M′ − k2 − 1

4
.

If k 6= ±1 it would follow that c̃ = c ± e were a basic class for X with
a positive dimensional moduli space and hence X would not have simple
type in contradiction to Corollary 13.22. Thus k = ±1. Assume first that
k = −1 and thus

Γcan = Γ′#Γ−1

with c1(LΓcan) = −c1(K) = c′ − e. Let E → X be the complex line bundle
with first Chern class c1(E) = e = PD([S]). Then

ΓE = Γcan ⊗ E ∼= Γ′#(Γ−1 ⊗ E) ∼= Γ′#Γ1

with c1(LΓE ) = 2c1(E)− c1(K) = c′ + e. Hence, by Theorem 11.2,

SW(X,ΓE) 6= 0,

and it follows from Theorem 13.19 that the class [S] = PD(c1(E)) can be
represented by an embedded symplectic submanifold C = C1 ∪ · · · ∪ CN .
As before

Ci · Ci = c1(K) · Ci = c1(E) · Ci = g(Ci)− 1.

But now the sum of the self-intersection numbers is −1 and so one of the
components is a symplectically embedded sphere of self-intersection num-
ber −1. Let this be C1 and consider the union C ′ = C2 ∪ · · · ∪ CN . Then
C ′ · C ′ = C ′ · C = c1(K) · C ′ = 0. One can show, using successive reflec-
tion diffeomorphisms localized near embedded spheres with self-intersection
numbers minus one, that the homology class Aν := [C]− ν[C ′] can be rep-
resented by a smoothly embeddeded sphere for every ν ∈ Z. Hence, by the
above argument, the class Aν can be represented by an embedded symplec-
tic submanifold for every ν ∈ Z. This implies C ′ = ∅ and [C1] = [S]. This
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proves the corollary in the case k = −1. A similar argument in the case
k = +1 with S replaced by −S shows that in that case the class −[S] can
be represented by a symplectically embedded sphere with self-intersection
number −1. This proves the corollary. 2

Corollary 13.24. (Taubes) Up to diffeomorphism there is a unique sym-
plectic structure on CP 2 with volume 1.

Proof: Let e = PD([CP 1]) and choose a line bundle E → CP 2 with
c1(E) = e. Then, by Example 9.11, SW+(CP 2,ΓE) = 1. Fix a symplectic
form ω on CP 2 and suppose without loss of generality that

∫
CP 1 ω = 1.

(Otherwise replace ω by −ω and note that there is a diffeomorphism
of CP 2 inducing the reflection on H2.) Let J ∈ J (X,ω) be compati-
ble with ω and denote by ΓJ the canonical spinc structure of J . Then
SW+(CP 2,ΓJ) = 1 (because the two orientations of H2,+ agree) and hence
c1(TCP 2, J) = 3e = c1(TCP 2, J0). Since SW+(X,ΓE) = 1 there exists a
symplectic submanifold C ⊂ CP 2 representing the class [CP 1]. This curve
must be connected (any two components would have nonzero intersection
number) and the adjunction formula 2g−2 = C ·C−c1(TCP 2, J) ·C = −2
shows that it is a sphere. Hence [CP 1] can be represented by a symplec-
tically embedded sphere C. Under this condition Gromov proved in [47]
that there exists a diffeomorphism ψ : CP 2 → CP 2 such that ψ∗ω is the
standard symplectic structure on CP 2. 2

Remark 13.25 At the time of writing it seems to be an open question
whether there is a symplectic 4-manifold (X,ω) which is homeomorphic,
but not diffeomorphic, to CP 2. If the volume is normalized to 1 then it
follows from the Hirzebruch signature formula and Theorem 13.29 below
that such a manifold must satisfy c1(TX, J) = −3[ω] for J ∈ J (X,ω). 2

Exercise 13.26 Use the wallcrossing formula to compute the Seiberg-
Witten invariants of a fake symplectic homotopy CP 2, i.e. a compact sym-
plectic 4-manifold (X,ω) which is homeomorphic to CP 2 and satisfies
c1(TX, J) = −3[ω] for J ∈ J (X,ω). 2

13.4 Irreducibility

Definition 13.27 A compact smooth 4-manifold X is called irreducible
if in every connected sum decomposition X ∼= X1#X2 one of the summands
is a homotopy 4-sphere.

Theorem 13.28. (Kotschick) Every simply connected minimal symplec-
tic 4-manifold with b+ ≥ 2 is irreducible.

Proof: It follows from Theorem 11.1 that in any connected sum decompo-
sition of X one of the summands has a negative definite intersection form.
Hence assume

X = X ′#N
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where QN is negative definite. We must prove that b2(N) = 0. Suppose
otherwise that b2(N) > 0. Then, by Donaldson’s theorem 9.6, the intersec-
tion form of N is diagonalizable. By Theorem 11.2 and Theorem 13.8, there
exists a basic class c′ ∈ H2(X ′,Z) and a characteristic vector e ∈ H2(N,Z)
such that the canonical class of X is given by

−c1(K) = c′ + e.

One argues as in the proof of Corollary 13.23 that

e · e+ b2(N) = 0.

(The left hand side is necessarily nonpositive, and if it were negative then
there would exist a basic class c = c′+ ẽ for X with a positive dimensional
moduli space.) Now choose a basis e1, . . . , e` of H2(N,Z) with respect to
which QN has diagonal form. Thus ei · ej = −δij and e =

∑
i εiei where

εi = ±1. Suppose without loss of generality that

e = −e1 − · · · − e`

and consider the class e′ = e1 − e2 − · · · − e`. Then, by Theorem 11.2, the
class

2e1 − c1(K) = c′ + e′

is a basic class for X and hence, by Theorem 13.19, the Poincaré dual of
e1 can be represented by an embedded symplectic submanifold and one
argues as in the proof of Corollary 13.23 that this must be a sphere (or else
there exists a nontorsion homology class with zero self-intersection number
which is also represented by a sphere, in contradiction to Theorem 14.1.)
Hence there exists a symplectically embedded sphere with self-intersection
number −1 in contradiction to the assumption of minimality. This proves
the theorem. 2

In the non-simply connected case Kotschick proved that in every con-
nected sum decomposition X ∼= X1#X2 one of the summands is a homol-
ogy 4-sphere whose fundamental group has no nontrivial finite quotient. In
full generality, the conjecture that minimal compact symplectic 4-manifolds
are irreducible seems to be still open at the time of writing.

13.5 Rational and ruled surfaces

Before the Seiberg-Witten invariants were discovered Gromov’s techniques
of pseudoholomorphic curves were used by McDuff in [77] to prove that
every minimal symplectic 4-manifold which contains a symplectically em-
bedded 2-sphere with nonnegative self-intersection number is a rational or
ruled surface. At the time such embedded spheres were hard to come by.
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Now Taubes’ theorem 13.19 is a powerful existence result for J-holomorphic
curves which can be combined with McDuff’s theorem to round off the ear-
lier results and give a more complete picture of rational and ruled surfaces.
This concerns both the question of uniqueness of symplectic structures and
that of finding topological criteria under which a minimal symplectic 4-ma-
nifold is rational or ruled. The following theorem was proved by Liu [74]
and, independently, by Ohta-Ono [101]. Liu and Ohta-Ono actually prove
the stronger result that every symplectic 4-manifold which admits a metric
of positive scalar curvature is a blowup of a rational or ruled surface. In [101]
Ohta and Ono also show that every monotone symplectic 4-manifold∗ is
diffeomorphic to a del-Pezzo surface (i.e. to either S2×S2 or CP 2 with up
to eight points blown up).

Theorem 13.29. (Liu,Ohta-Ono) Let X be a minimal symplectic 4-ma-
nifold. Then the following are equivalent.

(i) X admits a metric of positive scalar curvature.

(ii) X admits a symplectic structure ω with c1(K) · [ω] < 0.

(iii) X is either rational or ruled.

Theorem 13.30. (Liu) Let X be a minimal symplectic 4-manifold with
c1(K) · c1(K) < 0. Then X is a ruled surface.

This result was conjectured by Gompf in [40]. The proofs of both theo-
rems will be given below. An immediate consequence of these results is that
for a generic almost complex structure there do not exist any J-holomorphic
spheres in a minimal symplectic 4-manifold which is not rational or ruled
(see [86]).

Corollary 13.31 Let X be a minimal symplectic 4-manifold which is not
rational or ruled. Then there exists a set J0(X,ω) ⊂ J (X,ω) of compatible
almost complex structures which is of the second category in the sense of
Baire (a countable intersection of open and dense sets) and has the property
that for every J ∈ J0(X,ω) X contains no J-holomorphic spheres.

Proof: In [78] McDuff proved that if there exists an immersed J-ho-
lomorphic sphere C ⊂ X with c1(TX) · C = −c1(K) · C ≥ 2 then X
must be rational or ruled. Since every J-holomorphic curve u : S2 → X
can be perturbed to an immersed sphere by a change in J this rules out
all J-holomorphic spheres with Chern number at least 2. Moreover, J-
holomorphic spheres with c1(TX) · C ≤ 0 form moduli spaces of negative
virtual dimension and hence there cannot be such spheres for a generic J .
This leaves the possibility of J-holomorphic spheres C with c1(K)·C = −1.

∗A symplectic manifold is called monotone if the cohomology class [ω] is a positive
multiple of the first Chern class c1(TX, J) for a compatible almost complex structure
J ∈ J (X,ω).
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If these are embedded then C · C = −1 and this contradicts minimality.
On the other hand, if they are not embedded, then the adjunction formula
shows that C ·C ≥ 0. Moreover, by Theorem 13.30, we have c1(K)·c1(K) ≥
0 and the curve C satisfies c1(K) · C < 0 and [ω] · C > 0. Since b+ = 1 it
follows easily that c1(K) · [ω] < 0. Hence Theorem 13.29 shows that X is
rational or ruled, a contradiction. 2

The following theorem addresses the uniqueness question for symplectic
structures on ruled surfaces. We shall only state the result and refer the
reader for the proof to the original papers by [73] by Li-Liu and [68] by
Lalonde-McDuff.

Theorem 13.32. (Li-Liu,Lalonde-McDuff) Let X be a 2-sphere bun-
dle over a Riemann surface. Then for any two symplectic structures ω0

and ω1 which represent the same cohomology class [ω0] = [ω1] there exists
a diffeomorphism ψ : X → X such that ω0 = ψ∗ω1. More generally, any
two symplectic forms on X are equivalent up to deformation and diffeo-
morphism.

The second statement was established first by Li-Liu [73] and the first
was then proved by Lalonde-McDuff [68]. By Moser’s theorem, it suffices
to prove that any two symplectic forms on a ruled surface in the same
cohomology class can be connected by a path of cohomologous symplectic
forms. The deformation equivalence is easier to prove once a holomorphic
sphere with self-intersection number zero has been found. Under this as-
sumption the deformation equivalence was established by McDuff in [77].
Her argument enlarges the base and thus changes the cohomology class of
the symplectic form. The argument by Li-Liu establishes the existence of
the holomorphic sphere.

The paper [73] by Li-Liu contains further results about symplectic 4-
manifolds with b+ = 1 which we shall not discuss in detail. For example
they prove that Corollary 13.23 (about symplectically embedded spheres
with self-intersection number −1) continues to hold in the case b+ = 1
provided that c1(K) ·S = ±1. This implies the extension of Theorem 13.32
to blowups of rational or ruled surfaces with standard canonical class. The
proofs of Theorems 13.29 and 13.30 are based upon the following lemma.

Lemma 13.33. (Liu,Ohta-Ono) If X is a minimal symplectic 4-mani-
fold and there exists a line bundle E → X with

SW+(X,ΓE) 6= 0, c1(E) · c1(E) + c1(K) · c1(E) < 0

then X is rational or ruled.

Proof: By Theorem 13.19, the class PD(c1(E)) can be represented by a
symplectic submanifold C = C1 ∪ · · · ∪ CN . Since Ci · Ci = c1(E) · Ci the
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adjunction formula reads 2g(Ci)−2 = c1(E) ·Ci+c1(K) ·Ci. Take the sum
over all i to obtain

N∑
i=1

(2g(Ci)− 2) = c1(E) · c1(E) + c1(K) · c1(E) < 0.

Hence one of the components Ci is a sphere. Since X is minimal this com-
ponent has nonnegative self-intersection number. Under these conditions it
was proved by McDuff that X is rational or ruled (cf. [77]). 2

Proof of Theorem 13.30: The argument given here was explained to me
by McDuff. For any class e ∈ H2(X,Z) denote by w(e) the wall-crossing
number of the spinc-structure ΓE with c1(E) = e, namely

w(e) =
1

k!

∫
T

(
1

4

∫
X

Ω ∧ Ω ∧ (K − 2e)

)k
where 2k = b1(X). Here, and throughout the proof, we denote the canonical
class by K (instead of c1(K)). Note first that, by Corollary 13.20, we have
SW+(X,ΓK) = SW−(X,Γcan) = 0 and hence w(0) = 1. This shows that
not all wall-crossing numbers are zero and hence the set

H =
{
a1 ∪ a2 | ai ∈ H1(X,Z)

}
⊂ H2(X,Z)

contains a nontorsion element whenever b1 6= 0. We now claim that there
exists a class a ∈ H2(X,Z) such that

a · a = 0, K · a < 0, (13.5)

q(2p− 1)|K · a|+ (p2 − p)K ·K ≥ 0 =⇒ w(pK − qa) 6= 0. (13.6)

Note here that the dimension of the moduli space for the spinc structure
ΓpK−qa is given by

dim M(X,ΓpK−qa) = (pK − qa) · (pK − qa)−K · (pK − qa)

= (p2 − p)K ·K + q(2p− 1)|K · a|.

In the case b1 = 0 condition (13.6) is automatically satisfied and the exis-
tence of a class a which satisfies (13.5) is an easy exercise. In the case b1 > 0
choose a nonzero class a ∈ H and note that, by Lemma 9.15, Ω∧Ω∧ a = 0
and a ∧ a = 0. Hence

w(pK − qa) = w(pK)

=
1

k!

∫
T

(
1

4

∫
X

Ω ∧ Ω ∧ (1− 2p)K

)k
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= (1− 2p)kw(0)

= (1− 2p)k.

Thus we have found a class a which satisfies (13.5) and (13.6). Now for
any class e ∈ H2(X,Z) the wall-crossing formula of Theorem 9.14 can be
expressed in the form

SW+(X,Γe) + (−1)kSW+(X,ΓK−e) = w(e).

Hence if w(e) 6= 0 then one of the invariants SW+(X,Γe), SW+(X,ΓK−e)
is nonzero.

We shall prove that for some values of p and q the class

e = pK − qa

satisfies the requirements of Lemma 13.33. Let us first consider the class
e = a. For this class the moduli space has positive dimension and hence,
by (13.6), w(a) 6= 0. Hence either SW+(X,Γa) 6= 0 or SW+(X,ΓK−a) 6= 0.
If the invariant for a is nonzero, then the class e = a satisfies the require-
ments of Lemma 13.33 and hence X is rational or ruled. Hence assume

SW+(X,Γa) = 0, SW+(X,ΓK−a) 6= 0.

If 3K · a− 2K ·K > 0 then the class e = K − a satisfies the requirements
of Lemma 13.33 and again we are done. Hence assume

3K · a− 2K ·K ≤ 0.

Abbreviate

s = |K ·K|, t = |K · a|, λ =
s

t
≤ 3

2
.

We must find p and q such that e = pK − qa satisfies

e · e+K · e < 0, e · e−K · e ≥ 0 (13.7)

(as well as SW+(X,Γe) 6= 0). If p > 1 then these inequalities can be
expressed in the form

2p+ 1

p2 + p
<
λ

q
≤ 2p− 1

p2 − p
. (13.8)

Equivalently f(p) ≤ λ/q ≤ f(p−1) where f(p) = (2p+1)/(p2+p) is strictly
decreasing with f(1) = 3/2. Hence for every q ≥ 1 there exists a unique
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p ≥ 2 for which the inequality (13.8) is satisfied. For any such values of p
and q the class e = pK − qa satisfies (13.7). Moreover, w(e) 6= 0 and hence
either SW+(X,Γe) 6= 0 or SW+(X,ΓK−e) 6= 0. We must exclude the latter.
To see this recall that SW+(X,ΓK−a) 6= 0. Hence if SW+(X,ΓK−e) 6= 0
then, by Corollary 13.20, (K − a) · (K − e) > 0. By a simple computation

(K − e) · (K − a) = (p− 1)s− (p+ q − 1)t.

We must find p and q which satisfy (13.8) and for which the last number
is negative, i.e.

λ <
p+ q − 1

p− 1
. (13.9)

This will be satisfied if (13.8) holds and

q(2p− 1)

p2 − p
<
p+ q − 1

p− 1
.

But this last inequality is equivalent to q < p. However, for every q ≥ 1 the
unique p for which (13.8) holds is at least 2 and hence

5

3
≤ 2p+ 1

p+ 1
< λ

p

q
≤ 3

2

p

q
.

Hence p/q > 10/9 > 1 and thus q < p as required. Having found p and
q which satisfy (13.8) and (13.9) we conclude that the class e = pK − qa
satisfies the requirements of Lemma 13.33 and hence X is rational or ruled.
2

Proof of Theorem 13.29: That (iii) implies both (i) and (ii) is obvious.
We prove that (i) implies (ii). By Theorem 13.9, SW+(X,Γcan) 6= 0. Hence
it follows as in the proof of Theorem 12.14 for the Kähler case that

K · [ωg] < 0

for every metric g with positive scalar curvature. In particular, K is not a
torsion class. If K ·K < 0 then, by Theorem 13.30, X is rational or ruled
and thus satisfies (ii). Hence assume K · K ≥ 0. Under this assumption
Lemma 12.15 shows that K · [ωg] < 0 for every metric g and, in particular,
K · [ω] < 0 for the symplectic form ω.

We prove that (ii) implies (iii). Again it suffices to assume K ·K ≥ 0.
Under this condition the identity K ·K = 9− 4b1 − b− ≥ 0 forces b1 to be
either 0 or 2. There are five cases to consider.

Case 1: b1 = 0 and QX is odd (Example: X = CP 2).

In this case QX = (1) ⊕ m(−1) with m ≤ 9. Choose corresponding
generators α, β1, . . . , βm of H2 with α ·α = 1, α ·βj = 0, and βi ·βj = −δij .
Assume
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K = λα+
∑
i

µiβi, [ω] = α+
∑
i

εiβi

where λ and µi are odd integers and
∑
i ε

2
i < 1. Examining K ·K = 9−m =

λ2 −
∑
i µ

2
i we find λ2 ≥ 9. Moreover, since [ω] · K < 0 we must have

λ ≤ −3. (It is an easy consequence of the Cauchy-Schwarz inequality that
if λ > 0 then K · [ω] > 0.) Now consider the spinc structure Γα = ΓE with
c1(E) = α. This class satisfies α · [ω] = 1 > K · [ω] and hence it follows from
Theorem 13.9 that SW−(X,Γα) = 0. Since the moduli space has positive
dimension α · α − K · α > 0 the wall-crossing formula of Theorem 9.9
asserts that SW+(X,Γα) = 1. Since α · α + K · α = 1 + λ < 0 it follows
from Lemma 13.33 that X is rational or ruled.

Case 2: b1 = 0 and QX = H (Example: X = S2 × S2).

Choose classes α, β ∈ H2(X,Z) such that α ·α = β ·β = 0 and α ·β = 1.
Since K · [ω] suppose without loss of generality that

K = λα+ µβ, [ω] = α+ εβ

where λ < 0 and µ < 0 are even integers and ε > 0. Now argue as in
Case 1 that α · [ω] = ε > K · [ω] and hence SW−(X,Γα) = 0. Since
α ·α−K ·α = −µ > 0 it follows again from the wall-crossing formula that
SW+(X,Γα) = 1 and finally, since α · α + K · α = µ < 0, Lemma 13.33
asserts that X is rational or ruled.

Case 3: b1 = 0 and QX = (−E8)⊕H (Example: Enriques surface, but not
with positive scalar curvature).

In this case choose additional generators γ1, . . . , γ8 of H2 corresponding
to −E8. Thus γi ·γi = −2 and γi ·γj = 0, 1 according to the Dynkin diagram.
Now argue as above with

K = λα+ µβ +

8∑
i=1

νiγi, [ω] = α+ εβ +

8∑
i=1

δiγi.

where λ, µ, νi are even integers and ε > 0. Since K · K = 0 and K is
not torsion we have λµ > 0. It follows easily from the Cauchy-Schwarz
inequality (for the γ-part of K and [ω]) that∣∣∣∣∣∣

8∑
i,j=1

δiνjγi · γj

∣∣∣∣∣∣ ≤ 2
√
λµε ≤ ε|λ|+ |µ|.

Hence the condition K · [ω] < 0 implies that λ < 0 and µ < 0. (The H-
part of the product K · [ω] dominates the E8-part and hence determines the
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sign.) Now consider the spinc structure Γα with characteristic class K−2α.
This class again satisfies

α · [ω] = ε > K · [ω], α · α−K · α = −µ > 0

and it follows as in Step 2 that SW−(X,Γα) = 0 and SW+(X,Γα) = 1.
Since α · α + K · α = µ < 0 Lemma 13.33 implies that X is rational or
ruled. On the other hand, no rational or ruled surface has intersection form
(−E8) ⊕H and hence there is no manifold with positive scalar curvature
which has this intersection form.

Case 4: b1 = 2 and QX is odd (Example: nontrivial S2-bundle over T2).

In this case we must have K ·K = 0 and b− = 1. To see this note that,
since K · [ω] < 0, we have SW−(X,Γcan) = SW+(X,ΓK) = 0 and hence
not all the wall crossing numbers are zero. Hence not all the cup-products
of two classes in H1(X,Z) can vanish. Any such nonzero cup-product is
a class in H2 with square zero and hence b− ≥ 1. Since 0 ≤ K · K =
9 − 4b1 − b− = 1 − b− it follows that b− = 1 and K · K = 0 as claimed.
Thus QX = (1)⊕ (−1). Choose α, β with α · α = 1, β · β = −1, α · β = 0.
Then, by reversing the sign of α and β if necessary, we have

K = λα+ λβ, [ω] = α+ εβ

where λ < 0 and −1 < ε < 1. (As in Case 2 the α-coefficients of K and ω
must have opposite sign.) Now consider the spinc structure Γe correspond-
ing to the class

e = α− β.

Since e · [ω] = 1 + ε > 0 > K · [ω] it follows again that SW−(X,Γe) = 0.
Moreover,

e · e = 0, K · e = 2λ < 0.

and hence the moduli space has positive dimension. Now, since the wall
crossing number of K is nonzero the class α+ β cannot be in H and hence
e = α − β ∈ H. Thus it follows as in the proof of Theorem 13.30 that
the wall-crossing number of e agrees with that of K and hence is 1. Thus
SW+(X,Γe) = 1. Moreover, e · e+K · e = 2λ < 0 and hence Lemma 13.33
shows that X is rational or ruled.

Case 5: b1 = 2 and QX is even (Example: X = T2 × S2).

In this case b− = 1, K ·K = 0, and QX = H. Choose α, β as in Case 2
with α ·α = β ·β = 0 and α ·β = 1. Then K is a nonzero multiple of either
α or β. Suppose, without loss of generality

K = λα, [ω] = α+ εβ
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where λ < 0 and ε > 0. Consider the spinc structure Γβ . First note that
β · β = 0 > K · β and hence the moduli space has positive dimension.
Moreover, as in Case 4, β ∈ H and hence the wall-crossing number of Γβ is
w(K−2β) = w(K) = 1. Since β ·[ω] = 1 > K ·[ω] we have SW−(X,Γβ) = 0
and SW+(X,Γβ) = 1. With β · β + K · β = λ < 0 it follows again from
Lemma 13.33 that X is rational or ruled. This completes the proof of the
theorem. 2

Proof of Theorem 13.32: The proof of Theorem 13.29 shows that for
every symplectic structure ω on a ruled surface X there exists a symplecti-
cally embedded 2-sphere with nonnegative self-intersection number. Under
these conditions it was proved by McDuff in [77] that ω is deformation
equivalent to a standard symplectic structure. 2

Note that the proofs in this section reflect the divison into positive
curvature (sphere), zero curvature (torus), and negative curvature (higher
genus) for both complex curves and Kähler surfaces. Even though the ra-
tional and ruled surfaces belong to the positive scalar curvature group there
is a natural further subdivision into

the positive case K ·K > 0: CP 2, S2 × S2 (Cases 1 and 2 in the proof
of Theorem 13.29),

the elliptic case K · K = 0: Sphere bundles over T2 (Cases 4 and 5 in
the proof of Theorem 13.29),

general type K · K < 0: Sphere bundles over surfaces of higher genus
(Theorem 13.30).

13.6 Proofs of Taubes’ theorems

Let us begin by examining the Seiberg-Witten equations in the symplectic
case. Given a symplectic 4-manifold (X,ω) with J ∈ J (X,ω) consider the
canonical spinc structure Γcan : TX → End(Wcan) with Wcan = Λ0,∗T ∗X
and LΓcan = K∗. Consider the spinc connection ∇can on Wcan introduced
in (6.8). Recall from Lemma 6.16 that the induced connection on K∗ =

LΓcan
is given by ∇̃ and, as in the Kähler case, denote the corresponding

virtual connection on LΓcan

1/2 = K−1/2 by Acan. Its curvature is the 2-form

FAcan = 1
2 tracec(R̃) ∈ Ω2(X, iR). where R̃ ∈ Ω2(X,End(TX)) denotes the

curvature tensor of the connection ∇̃ on TX. By Lemma 3.21,

FAcan
(u, v) = − i

4
trace(JR(u, v)) +

i

16
trace(J [∇uJ,∇vJ ]). (13.10)

Recall that the second term on the right is of type (1, 1).
Now take the tensor product with a Hermitian line bundle E → X with

a connection B ∈ A(E). Thus consider the bundles

W+
E = (Λ0,0 ⊕ Λ0,2)⊗ E, W−E = Λ0,1 ⊗ E, LΓE = K∗ ⊗ E2.
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where Λp,q = Λp,qT ∗X. The corresponding spinc connection on WE is
given by ∇A = ∇can +B and the induced connection on the virtual bundle
LΓE

1/2 = K−1/2 ⊗E is given by A = Acan +B where Acan ∈ A(K−1/2) is
the connection associated to the standard spinc structure. The curvature
2-form of the connection A = Acan +B is given by FA = FAcan + FB . The
Seiberg-Witten equations for this connection take the following form.

Proposition 13.34 In the symplectic case the Seiberg-Witten equations
for the pair (Acan + B,Φ) and the perturbation η ∈ Ω2,+(X, g) take the
form

∂̄Aϕ0 + ∂̄∗Aϕ2 = 0,

2(FAcan + FB + η)0,2 = ϕ̄0ϕ2, (13.11)

4i(FAcan + FB + η)ω = |ϕ2|2 − |ϕ0|2.

where Φ = (ϕ0, ϕ2) ∈ Ω0,0(X,E)× Ω0,2(X,E).

As in the Kähler case this result follows immediately from Theorem 6.17
and Lemma 4.62. The only difference is that in the Kähler case the curva-
ture FAcan

is of type (1, 1) and so the corresponding term does not appear in
the second equation of (12.1). In order to specify the sign in the definition
of the Seiberg-Witten invariants it is necessary to specify an orientation of
H1(X, iR)⊕H2,+(X, iR). In the Kähler case this is quite obvious, since H1

for example carries a natural complex structure α 7→ ∗(α ∧ ω) = −α ◦ J .
In the symplectic case, however, the situation is slightly more complicated.
For example, H1 need not be even dimensional.

Remark 13.35. (Orientation) If (X,ω) is a compact connected sym-
plectic 4-manifold then the cohomology group

H0(X, iR)⊕H1(X, iR)⊕H2,+(X, iR)

admits a canonical orientation. To see this fix an almost complex structure
J ∈ J (X,ω) and consider the operator family

Dt : Ω0,1(X)→ Ω0,0(X)⊕ Ω0,2(X)

defined by

Dtτ1 = (∂̄∗τ1, ∂̄τ1 − tτ̄1 ◦NJ/4)

where NJ : TX ⊗ TX → TX denotes the Nijenhuis tensor of J . For t = 0
this operator is complex linear and for t = 1 it is isomorphic to the self-
duality operator D+ = d∗ ⊕ d+ (see the proof of Corollary 3.43 and the
discussion thereafter). More precisely, there is a commutative diagram
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Ω0,1(X)
D1−→ Ω0,0(X)⊕ Ω0,2(X)

↓ ↓
Ω1(X, iR)

D+

−→ Ω0(X, iR)⊕ Ω2,+(X, iR)

where the vertical isomorphisms are given by τ1 7→ τ1 − τ̄1 and (τ0, τ2) 7→
(2iIm τ0, i(Re τ0)ω + τ2 − τ̄2). The commutativity of the diagram can be
expressed in the explicit form

d∗β = 2iIm ∂̄∗β0,1, (dβ)ω = iRe (∂̄∗β0,1), (dβ)0,2 = ∂̄β0,1 +
1

4
β1,0 ◦NJ .

for β ∈ Ω1(X, iR) with τ1 = β0,1. (See Corollary 3.28 and Proposition 3.16.)
Now the determinant line of the complex linear operator D0 carries a natu-
ral orientation and trivializing the determinant line bundle along the path
t 7→ Dt gives an orientation of det(D1). Since ker D1 = H1(X, iR) and
cokerD1 = H0(X, iR)⊕H2,+(X, iR) this gives the required orientation of
H0⊕H1⊕H2,+. A simple homotopy argument shows that this orientation
is independent of the choice of the almost complex structure J ∈ J (X,ω)
used to define it. 2

The proofs of Theorems 13.8 and 13.9 are much the same as in the
Kähler case. Taubes’ original papers [116] and [117] contain a more com-
plicated argument. The simplification in the proof below was indicated by
Taubes in [118].

Proof of Theorems 13.8 and 13.9: Let E → X be a line bundle and
consider the twisted spinc structure WE = Λ0,∗T ∗X ⊗E. As in the Kähler
case, consider the perturbation

η = iF̃+ + πλω

with λ > 0. In the Kähler case λ was any positive number, but in the
symplectic case λ will be chosen large. The Seiberg-Witten equations take
the form

∂̄Bϕ0 + ∂̄∗Bϕ2 = 0,

2F 0,2
B = ϕ̄0ϕ2, (13.12)

4i(FB)ω = 4πλ+ |ϕ2|2 − |ϕ0|2.

The difference from the Kähler case lies in the formula

∂̄B ∂̄Bϕ0 = F 0,2
B ϕ0 −

1

4
(∂Bϕ0) ◦NJ

of Proposition 3.16. In order to deal with the additional term involving the
Nijenhuis tensor it will be necessary to choose λ large. It is convenient to
introduce the rescaled sections
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ψ0 =
1√
λ
ϕ0, ψ2 =

1√
λ
ϕ2.

as in Taubes [118]. Then (13.12) takes the form

∂̄Bψ0 + ∂̄∗Bψ2 = 0,

1

λ
2F 0,2

B = ψ̄0ψ2, (13.13)

1

λ
4i(FB)ω = 4π + |ψ2|2 − |ψ0|2.

In the symplectic case a solution (B,ψ0, ψ2) of (13.13) satisfies

0 =
∥∥∂̄Bψ0 + ∂̄∗Bψ2

∥∥2

=
∥∥∂̄Bψ0

∥∥2
+
∥∥∂̄∗Bψ2

∥∥2
+ 2

〈
∂̄B ∂̄Bψ0, ψ2

〉
= 2

∥∥∂̄Bψ0

∥∥2
+ 2

〈
F 0,2
B ψ0, ψ2

〉
− 1

2
〈(∂Bψ0) ◦NJ , ψ2〉

= 2
∥∥∂̄Bψ0

∥∥2
+ λ

∥∥ψ̄0ψ2

∥∥2 − 1

2
〈(∂Bψ0) ◦NJ , ψ2〉

and hence

2
∥∥∂̄Bψ0

∥∥2
+ λ

∥∥ψ̄0ψ2

∥∥2
=

1

2
〈(∂Bψ0) ◦NJ , ψ2〉 . (13.14)

Here all norms and inner products are L2-norms and L2-inner products
on X. Now recall the formula 2∂̄∗B ∂̄Bψ0 = dB

∗dBψ0 − 2i(FB)ωψ0, from
Proposition 3.25. Take the inner product with ψ0 and use the formula∫

X

2i(FB)ωdvol =

∫
X

i(FB)ωω ∧ ω =

∫
X

ω ∧ iFB = 2π[ω] · c1(E)

to obtain

2
∥∥∂̄Bψ0

∥∥2
= ‖dBψ0‖2 −

∫
X

|ψ0|22i(FB)ωdvol

= ‖dBψ0‖2 − 8π2[ω] · c1(E) +

∫
X

(
4π − |ψ0|2

)
2i(FB)ω

= ‖dBψ0‖2 − 8π2λ[ω] · c1(E)

+
λ

2

∫
X

(
4π − |ψ0|2

) (
4π + |ψ2|2 − |ψ0|2

)
= ‖dBψ0‖2 + 2πλ ‖ψ2‖2 +

λ

2

∫
X

(
4π − |ψ0|2

)2
− λ

2

∥∥ψ̄0ψ2

∥∥2 − 8π2[ω] · c1(E).
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Inserting this formula into (13.14) gives

‖dBψ0‖2 +
λ

2

∥∥ψ̄0ψ2

∥∥2
+ 2πλ ‖ψ2‖2 +

λ

2

∫
X

(
4π − |ψ0|2

)2
= 8π2[ω] · c1(E) +

1

2
〈(∂Bψ0) ◦NJ , ψ2〉 .

The last term on the right is the bad one. It vanishes in the Kähler case
but in the symplectic case it is not possible to control its sign. However, if
λ is sufficiently large, this term can be estimated by the positive terms on
the left. The inequality ab ≤ δ

2a
2 + 1

2δ b
2 gives

1

2
〈(∂Bψ0) ◦NJ , ψ2〉 ≤ δ ‖dBψ0‖2 +

c

δ
‖ψ2‖2

for any δ > 0. In the case πλ ≥ c/δ this leads to

(1− δ) ‖dBψ0‖2 +
λ

2

∥∥ψ̄0ψ2

∥∥2
+
(

2πλ− c

δ

)
‖ψ2‖2 +

λ

2

∫
X

(
4π − |ψ0|2

)2
≤ 8π2[ω] · c1(E). (13.15)

It follows that the Seiberg-Witten equations (13.13) cannot have any so-
lutions with the perturbation 2πλ > c/δ unless [ω] · c1(E) ≥ 0. Hence, in
the case b+ > 1 the first Chern class of every complex line bundle E → X
with nonzero Seiberg-Witten invariants SW(X,ΓE) 6= 0 must satisfy

[ω] · c1(E) ≥ 0.

The same holds in the case b+ = 1 if SW+(X,ΓE) 6= 0. Moreover, if
[ω] · c1(E) = 0 then any solution must satisfy

dBψ0 = 0, |ψ0| =
√

4π, ψ2 = 0.

In particular, this shows that the bundle E has a nonvanishing section
ψ0 and hence admits a trivialization. By duality, if either b+ > 1 and
SW (X,ΓE) 6= 0 or b+ = 1 and SW−(X,ΓE) 6= 0 then [ω] · c1(E) ≤
[ω] · c1(K) and equality implies that E is isomorphic to K. This proves
the second assertion of Theorems 13.8 and 13.9. For the trivial bundle
E = X × C the conclusion is that every solution of (13.13) has the form

u∗B = 0, u−1ψ0 =
√

4π, ψ2 = 0 (13.16)

where u = |ψ0|−1ψ0 : X → S1. Hence the moduli space M(X,Γ, g, η)
for the standard spinc structure consists of a single point. To complete
the proof of Theorems 13.8 and 13.9 it remains to show that this point is
regular and to examine the orientations.
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The linearized operator

Consider the standard solution B = 0, ψ0 =
√

4π, ψ2 = 0. Lineariz-
ing (13.13) we obtain

d∗β − λi〈iψ0, τ0〉 = 0,

2i(dβ)ω + λRe (ψ̄0τ0) = 0,

∂̄τ0 + ∂̄∗τ2 + β0,1ψ0 = 0, (13.17)

2(dβ)0,2 − λψ̄0τ2 = 0,

for β ∈ Ω1(X, iR), τ ∈ Ω0,0(X), τ2 ∈ Ω0,2(X). The first equation expresses
the condition that the triple (β, τ0, τ2) is orthogonal to the tangent space of
the orbit of (B,ϕ0, 0) under the action of the gauge group with respect to
the inner product of the norm ‖β‖2+λ‖τ0‖2+λ‖τ2‖2. As in the Kähler case
it follows from Corollary 3.28 that the first two equations are equivalent to

∂̄∗β − λ

2
ψ̄0τ0 = 0.

Moreover, in the symplectic case we have, by Proposition 3.16,

(dβ)0,2 = (dβ0,1)0,2 + (dβ1,0)0,2 = ∂̄β0,1 +
1

4
β1,0 ◦NJ

Denote τ1 = β0,1 so that τ̄1 = β1,0 and recall that ψ0 =
√

4π and B = 0.
Then the linearized operator has the form

D = D1 :

Ω0,0(X)
⊕

Ω0,1(X)
⊕

Ω0,2(X)

−→

Ω0,0(X)
⊕

Ω0,1(X)
⊕

Ω0,2(X)

where

Dt

 τ0
τ1
τ2

 =

 ∂̄∗τ1
∂̄τ0 + ∂̄∗τ2

∂̄τ1

+ t

 −
√
πλτ0√

4πτ1
−τ̄1 ◦NJ/4−

√
πλτ2


for τi ∈ Ω0,i(X,E) and 0 ≤ t ≤ 1. We prove that the operator Dt is bijective
for 0 < t ≤ 1 provided that λ is sufficiently large. To see this suppose that
τ = (τ0, τ1, τ2) is in the kernel of Dt. Then

t
√
πλτ0 = ∂̄∗τ1, t

√
πλτ2 = ∂̄τ1 − tτ̄1 ◦NJ/4,

and
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t
√
πλ(∂̄τ0 + ∂̄∗τ2) + 2πλt2τ1 = 0.

Inserting the first two equations into the third we find

∂̄∂̄∗τ1 + ∂̄∗∂̄τ1 + 2πλt2τ1 = t∂̄∗(τ̄1 ◦NJ/4).

Take the L2-inner product with τ1 to obtain∥∥∂̄∗τ1∥∥2
+
∥∥∂̄τ1∥∥2

+ 2πλ ‖tτ1‖2 = 〈∂̄τ1, tτ̄1 ◦NJ/4〉
≤ c

∥∥∂̄τ1∥∥ ‖tτ1‖
≤ 1

2

∥∥∂̄τ1∥∥2
+
c2

2
‖tτ1‖2

If 2πλ > c2/2 then this implies that τ1 = 0 and hence τ0 = 0 and τ2 = 0.
This shows that the unique solution of the Seiberg-Witten equations (13.13)
is regular for λ > 0 sufficiently large and hence SW(X,Γcan) = ±1 (respec-
tively SW+(X,Γcan) = ±1 in the case b+ = 1). In view of Remark 13.35 the
discussion of orientations is similar to the Kähler case and will be omitted.
2

13.7 Relation with the Gromov invariants

The goal of this section is to explain the main ideas of Taubes’ proof
of Theorem 13.19 about the existence of J-holomorphic curves from the
Seiberg-Witten invariants. We begin with the following result about the
behaviour of the solutions of (13.13) for λ→∞. The proof is based on the
estimate (13.15) in the case where [ω] · c1(E) > 0.

Proposition 13.36 There exist constants c > 0 and λ0 > 0 such that
every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 satisfies the inequalities

∥∥∂̄Bψ0

∥∥2
+
∥∥∥∇̃Bψ2

∥∥∥2

≤ c

λ
, ‖ψ2‖2 +

∥∥ψ̄0ψ2

∥∥2 ≤ c

λ2
, (13.18)

8π2[ω] · c1(E)− c

λ
≤ ‖∂Bψ0‖2 +

λ

2

∫
X

(
4π − |ψ0|2

)2
≤ 8π2[ω] · c1(E) +

c

λ
. (13.19)

Proof: Using the identity 2∂̄B ∂̄
∗
Bψ2 = ∇̃B

∗
∇̃Bψ2 + 2i(FB + 2FAcan

)ωψ2

from Proposition 3.25 one obtains

2
∥∥∂̄∗Bψ2

∥∥2
=
∥∥∥∇̃Bψ2

∥∥∥2

+
λ

2

∫
X

|ψ2|4 + 2πλ ‖ψ2‖2



RELATION WITH THE GROMOV INVARIANTS 437

− λ

2

∥∥ψ̄0ψ2

∥∥2
+

∫
X

4i(FAcan
)ω|ψ2|2.

Inserting this and the above formula

∥∥∂̄Bψ0

∥∥2
= ‖∂Bψ0‖2 + 2πλ ‖ψ2‖2 +

λ

2

∫
X

(
4π − |ψ0|2

)2
− λ

2

∥∥ψ̄0ψ2

∥∥2 − 8π2[ω] · c1(E) (13.20)

into

2
∥∥∂̄Bψ0

∥∥2
+ 2

∥∥∂̄∗Bψ2

∥∥2
+ 2λ

∥∥ψ̄0ψ2

∥∥2
= 〈(∂Bψ0) ◦NJ , ψ2〉

(see (13.14)) one obtains the inequality

(1− δ) ‖∂Bψ0‖2 +
∥∥∂̄Bψ0

∥∥2
+
∥∥∥∇̃Bψ2

∥∥∥2

+ λ
∥∥ψ̄0ψ2

∥∥2

+
λ

2

∫
X

((
4π − |ψ0|2

)2
+ |ψ2|4

)
+
(

4πλ− c

δ

)
‖ψ2‖2 (13.21)

≤ 8π2[ω] · c1(E)

for 0 < δ ≤ 1 which slightly strengthens (13.15). Now write the for-
mula (13.20) in the form

‖∂Bψ0‖2 −
∥∥∂̄Bψ0

∥∥2 − λ

2

∥∥ψ̄0ψ2

∥∥2
+ 2πλ ‖ψ2‖2

+
λ

2

∫
X

(
4π − |ψ0|2

)2
dvol = 8π2[ω] · c1(E),

multiply this equation by (δ − 1), and add it to (13.21) to obtain

∥∥∂̄Bψ0

∥∥2
+
∥∥∥∇̃Bψ2

∥∥∥2

+ λ
∥∥ψ̄0ψ2

∥∥2

+
λ

2

∫
X

(
|ψ2|4 + δ(4π − |ψ0|2)2

)
+
(

2πλ− c

δ

)
‖ψ2‖2

≤ δ8π2[ω] · c1(E)

for 0 < δ ≤ 1. With δ = c/πλ this implies (13.18). Finally, (13.19) follows
from (13.18) and (13.20). This proves the proposition. 2

If SW(X,ΓE) 6= 0 then there must be a solution (B,ψ0, ψ2) for every
λ and it is interesting to consider the limit λ → ∞. As Taubes points out
in [118], the section ψ0 of E would like to be equal to

√
4π everywhere

as λ gets large while the section ψ2 of K∗ ⊗ E would like to be zero. But
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ψ0 cannot be nonzero everywhere unless E is trivial. Thus the geometric
picture is that ψ0 will converge to

√
4π almost everywhere in X but will

be zero somewhere. In [118] Taubes investigates the behaviour of the zero
sets

Cλ = ψ0
−1(0) ⊂ X

as λ→∞. Heuristically, the first inequality in (13.18) suggests that ψ0 will
look more and more like a holomorphic section as λ → ∞. Recall that in
the Kähler case either ψ0 or ψ2 must vanish, and for large λ this can only
be ψ2. Examining (13.20) we find that in the Kähler case the constant c
in (13.19) can be chosen to be zero provided that λ is sufficiently large. If
there were a pointwise estimate of the form

|∂̄Bψ0| < |∂Bψ0|

on the zero set Cλ of ψ0 then it would follow immediately that Cλ is a
symplectic submanifold representing the Poincaré dual of e = c1(E). Any
such submanifold is a J-holomorphic curve for some J ∈ J (X,ω). Note,
however, that if the almost complex structure J is fixed arbitrarily then
there may not be any embedded J-holomorphic curves representing the
class PD(e). (Think of a Kähler situation where every divisor representing
e is singular.) On the other hand, for a generic almost complex structure all
J-holomorphic curves representing PD(e) will be embedded. In his proof
of Theorem 13.19 in [119] Taubes proceeds as follows.

Step 1: Pointwise estimates

The first step is to give pointwise estimates for the solutions of (13.13).
Some of these estimate can be interpreted as a pointwise version of Propo-
sition 13.36.

Proposition 13.37. (Taubes) There exist constants c > 0 and λ0 > 0
such that every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 satisfies the
following pointwise inequalities∗

|ψ0|2 ≤ 4π +
c

λ2
, |ψ2|2 ≤

c

λ

(
4π − |ψ0|2 +

c

λ2

)
, (13.22)

|F+
B | ≤

λ√
8

(
4π − |ψ0|2

)
+ c, (13.23)

∗Taubes denotes the connection on E by a, the section of E by α, and the (0, 2)-form

with values in E by β. Moreover, he calls the scaling parameter r and rescales such that

α→ 1 almost everywhere. Thus

r = 4πλ, α = ψ0/
√

4π, β = ψ2/
√

4π, a = B

in Taubes’ notation and his generic constants are called z instead of c.
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|F−B | ≤
λ√
8

(
1 +

c√
λ

)(
4π − |ψ0|2

)
+ c, (13.24)

|dBψ0|2 + λ|∇̃Bψ2|2 ≤ cλ
(

4π − |ψ0|2 +
c

λ2

)
. (13.25)

The proof of (13.22) is quite similar to the proof of Proposition 13.36.
The key idea is to use (13.13) and the identities

2∂̄∗B ∂̄Bψ0 = dB
∗dBψ0 − 2i(FB)ωψ0,

∂̄B ∂̄
∗
Bψ2 =

1

2
∇̃B
∗
∇̃Bψ2 + i(FB + 2FAcan)ωψ2

from Proposition 3.25 to prove that the function uδ = 4π−|ψ0|2−|ψ2|2/δ+
cδ/λ satisfies the pointwise inequality

d∗duδ + λ|ψ0|2uδ ≥ 0

(for λ sufficiently large and δ = c′/λ) with equality only possible at points
where uδ > 0. It follows that uδ cannot have a negative minimum and
hence uδ ≥ 0 which proves (13.22). The inequality for F+

B follows easily
from (13.22) and the pointwise identity

|F+
B |

2 =
λ2

8

(
(4π − |ψ0|2)2 + 2(4π + |ψ0|2)|ψ2|2 + |ψ2|4

)
.

To prove this identity use (13.13), the formula F+
B = (F+

B )ωω+F 0,2
B +F 2,0

B

and the fact that |ω|2 = 2 and |F 0,2
B | = |F 2,0

B |. The estimate for F−B is
considerably harder to establish. Both (13.24) and (13.25) are based on
examining the expression d∗du + |ψ0|2u for u = |F−B |2, respectively u =

|dBψ0|2 + λ|∇̃Bψ2|2. These proofs involve the following energy inequality.

Lemma 13.38. (Taubes) There exist constants c > 0 and λ0 > 0 such
that every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 satisfies the inequality

2π[ω] · c1(E)− c

λ
≤ λ

2

∫
X

∣∣4π − |ψ0|2
∣∣ ≤ 2π[ω] · c1(E) +

c

λ
. (13.26)

Proof: Use the identity 2π[ω] · c1(E) =
∫
X

(2iFB)ωdvol, the third equa-
tion in (13.13), and the inequality ‖ψ2‖2 ≤ c/λ of Proposition 13.36 to
prove (13.26) with the absolute value signs removed. Then use (13.22). 2

Step 2: Monotonicity

The second and crucial step of the proof is a so-called monotonicity for-
mula for the local energy
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EU (ψ0) =
λ

2

∫
U

∣∣4π − |ψ0|2
∣∣ .

This formula gives estimates for the local energy over small geodesic balls
Br(x) ⊂ X of radius r centered at x.

Proposition 13.39. (Taubes) There exist constants c > 0, λ0 > 0, and
δ > 0 such that every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 satisfies
the following.

(i) If 1/4λ ≤ r2 ≤ δ then EBr(x)(ψ0) ≤ cr2.

(ii) If 1/4λ ≤ r2 ≤ δ and |ψ0(x)| ≤
√
π then EBr(x)(ψ0) ≥ r2/c.

Sketch of proof: The proof is based on an inequality of the form

EBr ≤
r

2
(1 + cr)

(
1 +

c√
λ

)
d

dr
EBr + cr4. (13.27)

This inequality should be read essentially in the form ε(r) = EBr is approx-
imately smaller than rε′(r)/2. The proof involves the curvature estimates
in Proposition 13.37. The key identity is

λ

2

∫
U

(4π − |ψ0|2 + |ψ2|2)dvol =

∫
∂U

θ ∧ iFB

where dθ = ω in U . By (13.22), this leads to the inequality

λ

2

∫
Br(x)

∣∣4π − |ψ0|2
∣∣dvol ≤

∫
∂Br(x)

θ ∧ iFB +
cr4

λ
.

It is here where the precise estimate of the curvature in (13.23) and (13.24)
with the factor λ/

√
8 is needed in order to obtain the factor r/2 in (13.27).

More precisely, the inequalities (13.23) and (13.24) imply

|FB | ≤
λ

2

(
1 +

c√
λ

) ∣∣4π − |ψ0|2
∣∣+
√

2c

and the 1-form θ can be chosen such that

|θ| ≤ r

2
(1 + cr).

Inserting these two inequalities in the previous one gives (13.27).
To integrate (13.27) consider the function

f(r) =
2

1 + c/
√
λ

log

(
c+

1

r

)
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and note that (13.27) implies

d

dr

(
ef(r)ε(r)

)
≥ −cef(r)r3

where ε(r) = EBr and the constant c is adjusted appropriately. Now in-
tegrate the last inequality from r0 = λ−1/2 to r and use the estimate
1/cr2 ≤ ef(r) ≤ c/r2 for λ−1/2 ≤ r ≤ δ to obtain

ε(r) ≥ r2

c

ε(r0)

r0
2
− r4.

Then (i) follows from the energy inequality of Lemma 13.38. The proof of
the lower bound in (ii) involves the estimate (13.25) on the derivatives (if
|ψ0| stays away from

√
4π at x then it does so in a uniform neighbourhood

of radius approximately λ−1/2). For further details see [119]. 2

The monotonicity estimate is the crucial step in the proof. It implies,
roughly speaking, that the zero set of ψ0 can be covered by approximately
Nρ ≤ c/ρ2 balls of radius ρ whenever 1/

√
λ ≤ ρ ≤ ρ0 and it follows that

these zero sets are of Hausdorff dimension 2 and satisfy a uniform bound
on their 2-dimensional Hausdorff measure.

Corollary 13.40. (Taubes) There exist constants c > 0, λ0 > 0, ρ0 > 0
such that every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 satisfies the
following. For every ρ > 0 with

1√
λ
< ρ < ρ0

the set
Z(ψ0) =

{
x ∈ X | |ψ0(x)|2 < π

}
can be covered by Nρ ≤ c/ρ2 geodesic balls of radius ρ.

Proof: Let N be the maximal number of disjoint balls of radius ρ/2
centred at points in ψ0

−1(0). Let Bi = Bρ/2(xi) be N such balls. Then it
follows from Proposition 13.39 that EBi(ψ0) ≥ ρ2/4c and hence

Nρ2

4c
≤

N∑
i=1

EBi(ψ0) ≤ EX(ψ0) ≤ 2π[ω] · c1(E) + 1.

The last inequality follows from Lemma 13.38 with λ sufficiently large. This
shows that N ≤ c′/ρ2. Moreover, since N was chosen maximal, it follows
that the balls Bρ(xi) cover the set ψ0

−1(0). 2

In particular, Corollary 13.40 can be used to prove a refined estimate of
the curvature, namely that F−B satisfies the same estimate as F+

B in (13.23).
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Proposition 13.41. (Taubes) There exist constants c > 0 and λ0 > 0
such that every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 satisfies the
following pointwise inequality

|F±B | ≤
λ√
8

(
4π − |ψ0|2

)
+ c.

Step 3: The zero set of ψ0

In this step Taubes proves an exponential decay estimate for the solutions
of (13.13) with large λ away from the zero set of ψ0. This estimate has the
following form.

Proposition 13.42. (Taubes) There exist constants c > 0 and λ0 > 0
such that for every solution (B,ψ0, ψ2) of (13.13) with λ ≥ λ0 the function
u : X → R defined by

u = λ2|ψ2|2 + λ|∇̃Bψ2|2 + |dBψ0|2 + λ(4π − |ψ0|2) + |FB |

satisfies the inequality

u(x) ≤ cλ exp

(
−
√
λ

c
d(x, ψ−1

0 (0))

)

for all x ∈ X.

Note first that for d(x, ψ−1
0 (0)) ≤ 1/

√
λ the result follows immediately

from the pointwise estimates in Proposition 13.37. For d(x, ψ−1
0 (0)) ≥ 1/

√
λ

Taubes proves that the function

v = λ2|ψ2|2 + cλ|∇̃Bψ2|2 + c′|dBψ0|2

with suitable constants c′ > c > 1 satisfies an estimate

d∗dv +
λ

16
v ≤ 0. (13.28)

The key tool for proving this inequality is a local analysis of the perturbed
Seiberg-Witten equations over R4 = C2. With the standard complex and
symplectic structures on C2 these are the vortex equations and they have
model solutions whose zero sets are the zero sets of complex polynomials in
two variables. The result is proved by comparing the solutions on X with
these model solutions. The main conclusion is that for every δ > 0 there
exists a constant cδ > 0 such that

|ψ0(x)|2 < 4π − δ =⇒ d(x, ψ0
−1(0)) <

cδ√
λ
.
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This eventually leads to a proof of the estimate (13.28). With (13.28) es-
tablished one can use a comparison argument to obtain the exponential
decay for v. The estimate for the last two terms in u can then be reduced
to that of v.

Step 4: Convergence

Choose a sequence λn → ∞ and let (Bn, ψ0,n, ψ2,n) be a corresponding
sequence of solutions of (13.13). In [119] Taubes considers the sequence of
currents (linear functionals) Fn : Ω2(X)→ R defined by

Fn(τ) =
i

2π

∫
X

FBn ∧ τ

for τ ∈ Ω2(X). Consider Fn as a linear functional on the space of continuous
differential forms with the L∞ norm. The corresponding norm of Fn is given
by

‖Fn‖ = sup
06=τ∈Ω2(X)

Fn(τ)

‖τ‖L∞
.

It follows easily from Proposition 13.41 and Lemma 13.38 that the sequence
Fn is bounded in this norm, namely

‖Fn‖ ≤
1

2π
‖FBn‖L1

≤ λ

4π

∫
X

∣∣4π − |ψ0,n|2
∣∣dvol +

c

λ

≤ [ω] · c1(E) +
2c

λ
.

Here the second inequality uses the exponential decay estimate of Propo-
sition 13.42 with u = |FB |. By Alaoglu’s theorem, Fn has a subsequence
(still denoted by Fn) which converges in the weak-∗-topology. Thus there
exists a current F : Ω2(X)→ R (continuous with respect to the L∞-norm)
such that

F(τ) = lim
n→∞

i

2π

∫
X

FBn ∧ τ

for every τ ∈ Ω2(X). It follows quite easily from Corollary 13.40 and Propo-
sition 13.42 that this current is supported in a set of Hausdorff dimension
2 and that F has type (1, 1), i.e. that F(τ) = 0 for all forms τ of type (0, 2)
or (2, 0).∗ Taubes then proves that F has positive intersection number with

∗One is tempted to try to prove this by using the identity 2FB
0,2 = λψ̄0ψ2 and

the L2-estimate (13.18) in Proposition 13.36. However, this will only give a uniform

bound on Fn(τ) for τ ∈ Ω0,2(X) rather than convergence to zero. To obtain the re-

quired convergence to zero one needs the more subtle exponential decay estimates of
Proposition 13.42.
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every pseudoholomorphic disc whose boundary lies outside the support of
F . The intersection number can be defined by evaluating F on a differen-
tial form which is supported near the disc and restricts to a volume form
with volume 1 on every fiber of the normal bundle. The proof that this
number is positive is highly nontrivial and requires the full power of the
earlier estimates.

Step 5: Existence of a J-holomorphic curve

The final task is to show that under these conditions the support of F is a
pseudoholomorphic curve. This means that there exists a Riemann surface
Σ (not necessarily connected) and a J-holomorphic curve u : Σ→ X such
that

F(τ) =

∫
Σ

u∗τ

for every τ ∈ Ω2(X). This result is true for any current F which is sup-
ported in a closed set C of finite 2-dimensional Hausdorff measure and has
positive intersection numbers with pseudoholomorphic discs. This is essen-
tially a regularity theorem for C. One first shows that C is the image of
a continuous map u : Σ → X (locally), secondly that this map can be
chosen Lipschitz continuous, thirdly that C has an open and dense set of
differentiable points, fourthly that TxC is a complex subspace of (TxX, J)
at every regular point, and finally one has to analyse the structure of C
near the singular set. We shall not discuss the details of these arguments
which are all carefully explained in [119].

The Gromov invariants

The higher genus Gromov invariants for general (semi-positive) symplec-
tic manifolds were first defined by Ruan in [107]. In [120] Taubes extended
Ruan’s construction to include disconnected curves and take proper account
of multiply covered tori of self-intersection number zero. A detailed exposi-
tion of the genus-zero invariants can also be found in McDuff-Salamon [84].
Here is a very sketchy outline of the definition of these invariants.

Fix a Riemann surface Σ of genus g and consider the moduli space

MGr(X, J ;α, g)

of all equivalence classes of pairs [u, j] where j ∈ J (Σ) is a complex struc-
ture on Σ and u : Σ → X is a (j, J)-holomorphic map which represents
the class α. The equivalence relation is given by the obvious action of the
diffeomorphism group Diff(Σ) on Map(Σ, X)× J (Σ). If

2g − 2 = c1(K) · α+ α · α (13.29)

the map u : Σ→ X is an embedding for every pair [u, j] ∈MGr(X, J ;α, g).
Standard Fredholm theory as in [84] asserts that, for a generic almost
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complex structure J ∈ J (X,ω), the space of parametrized J-holomorphic
curves u : Σ → X (with a fixed complex structure j ∈ J (Σ)) is a smooth
manifold of dimension 4−4g−2c1(K)·α. Varying j increases the dimension
by 6g− 6, i.e. the dimension of Teichmüller space. Hence the moduli space
has dimension

dim MGr(X,J ;α, g) = 2g − 2− 2c1(K) · α.

As was observed by Gromov [47] this formula continues to hold in the cases
g = 1 and g = 0. If g and α satisfy (13.29) then the dimension formula can
be expressed as

dim MGr(X,J ;α, g) = α · α− c1(K) · α = 2d(α). (13.30)

Note that this agrees with the dimension of the Seiberg-Witten moduli
space MSW(X,ΓE) whenever α = PD(e). However, in general the zero
set of the section ψ0 might not be connected. Suppose that it consists of
N components C1, . . . , CN . It is then necessary to consider J-holomorphic
curves defined on a disconnected Riemann surface Σ = Σ1 ∪ · · · ∪ ΣN .
Suppose that the components Σi have genera gi and that these satisfy the
condition

N∑
i=1

(2gi − 2) = c1(K) · α+ α · α (13.31)

The corresponding moduli space

MGr(X, J ;α, g1, . . . , gN )

is defined as before as the moduli space of unparametrized embedded
J-holomorphic curves Σ → X. Note, in particular, that the diffeomor-
phism type of Σ may interchange components. If αi denotes the homol-
ogy class represented by u(Σi) then αi · αj = 0 for i 6= j and the di-
mension of MGr(X, J ;α, g1, . . . , gN ) is the sum of the dimensions of the
MGr(X, J ;αi, gi). The individual dimensions are αi · αi − c1(K) · αi and
their sum is α · α− c1(K) · α. Now consider the space

MGr(X, J ;α) =
⋃
gi

MGr(X, J ;α, g1, . . . , gN )

where the union runs over all N and all N -tuples (g1, . . . , gN ) which sat-
isfy (13.31). Since only finitely many homology classes can be represented
by J-holomorphic curves it follows that only finitely many of these spaces
are nonempty. They all have the same dimension and thus

dim MGr(X, J ;α) = α · α− c1(K) · α.



446 SYMPLECTIC FOUR-MANIFOLDS

The crucial compactness theorem asserts that if the moduli space is zero
dimensional then it is a finite set. The proof is based on Gromov’s compact-
ness theorem. Even if the complex structure j on Σ is fixed holomorphic
spheres in X can bubble off and thus a sequence of curves may converge
to a so-called cusp-curve. (A bouquet of J-holomorphic curves with J-
holomorphic spheres attached to a base curve.) However, such cusp-curves
form again moduli spaces of strictly lower dimension, and if the original
moduli space was zero-dimensional then the spaces of cusp-curves have neg-
ative dimension and hence must be empty (see [84] and [107] for details).
Now in the case at hand the complex structure on Σ is allowed to vary and
thus more complicated degenerations can occur. One example is a curve of
genus g degenerating into a curve of genus g − 1 with a self-intersection.
However, one can show again that all the resulting moduli spaces of such
generalized cusp-curves have smaller dimension and must again be empty.
The remaining difficulty is to consider moduli spaces of J-holomorphic tori
with self-intersection number zero. This can only occur when

α · α = c1(K) · α = 0

and then the moduli space MGr(X, J ; kα) is zero-dimensional for all k.
In this case it is important to take proper account of multiply covered tori
and in [120] Taubes explains in detail how to do this. His counting principle
for multiply covered tori involves interesting new ideas. He considers four
different operators, labelled by the elements of H1(C,Z2) and defined by
twisting the Cauchy-Riemann operator with a real line bundle over C whose
first Stiefel-Whitney class is the given element of H1(C,Z2). Associated to
these operators there is a map

δC : H1(C,Z2)→ Z2

defined by a certain mod(2)-spectral flow. Taubes then defines an integer
ν(C,m) depending on this map δC and the multiplicity m ≥ 1. This in-
teger represents the contribution of the m-fold cover of C to the Gromov
invariant. In the case m = 1 this integer ν(C, 1) = ±1 is the standard sign
associated to C. Now consider a J-holomorphic curve

C =

N∑
i=1

miCi

with mi = 1 unless Ci is a torus with Ci · Ci = 0 and define

ν(C) =

N∑
i=1

ν(Ci,mi).
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For every α ∈ H2(X,Z) with d(α) = 0 the set of such curves representing
the class α is finite and the Gromov invariant is defined by

Gr(X,α) =

N∑
i=1

ν(Ci,mi).

In [120] Taubes proves that, with his definition of ν(Ci,mi), this number
is independent of the choice of the generic almost complex structure J ∈
J (X,ω) used to define it and that it depends only on the isotopy class
of the symplectic form ω. In the case d(α) > 0 Taubes proves a similar
theorem for J-holomorphic curves passing through d(α) given points in X.

The Gromov invariant can be regarded as an integer valued function

Gr : H2(X,Z)→ Z

which vanishes for classes with d(α) < 0. Similarly, the Seiberg-Witten
invariant can be regarded as a map

SW : H2(X,Z)→ Z

which assigns an integer SW(X,ΓE) to each cohomology class e = PD(E).
In [119, 120, 121] Taubes proved that

SW = Gr ◦ PD.

The first striking observation is that the moduli spaces MSW(X,ΓE) and
MGr(X, J ; PD(c1(E))) have the same dimension. Secondly, Theorem 13.19
shows how the solutions of the Seiberg-Witten equations generate J-holo-
morphic curves C in the homology class [C] = PD(c1(E)). In [121] Taubes
proves the converse and shows how embedded J-holomorphic curves C can
be used to construct solutions of the Seiberg-Witten (13.13) for large λ.
His idea is, roughly, to use the vortex equations on C (with a single zero)
and glue them in on the normal bundle of the J-holomorphic curve C. He
thus obtains the following beautiful theorem.

Theorem 13.43. (Taubes) For every compact symplectic 4-manifold X
and every nontrivial line bundle E → X the Seiberg-Witten invariant of
the spinc structure ΓE agrees with the Gromov invariant of the Poincaré
dual of the first Chern class of E:

SW(X,ΓE) = Gr(X,PD(c1(E))).
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EMBEDDED SURFACES

This chapter gives a proof of the generalized adjunction inequality by
Kronheimer and Mrowka. An important ingredient in the proof is the
blowup formula for the Seiberg-Witten invariants proved in Chapter 11.
The proof is based on the study of Seiberg-Witten monopoles on tubes
R × Y where Y is a compact 3-manifold (see Section 10.1). The first sec-
tion gives an overview over the main theorems and Section 14.2 contains
the proofs.

14.1 The generalized adjunction formula

It has been a longstanding conjecture in Kähler geometry that complex
curves C in compact Kähler surfaces X should minimize the genus in their
respective homology classes. The genus of such a curve is given by the
adjunction formula

2g(C)− 2 = C · C + c1(K) · C

where K = Λ2,0T ∗X denotes the canonical bundle with c1(K) = −c1(TX).
Hence the conjecture can be restated in the form

2g(Σ)− 2 ≥ Σ · Σ + c1(K) · Σ

for every embedded surface Σ ⊂ X, complex or not, which is homologous
to a complex curve. This conjecture is attributed to Thom for the case X =
CP 2. In 1993 it was confirmed by Kronheimer and Mrowka for a large class
of Kähler manifolds X with b+ ≥ 2 but not, at the time, for CP 2 (cf. [63],
[64], [65]). With the advent of the Seiberg-Witten invariants Kronheimer
and Mrowka quickly realized that these give rise to much simpler proofs
which can be extended to the case b+ = 1 (cf. [66]). Later on Taubes
observed that these results extend to the symplectic category (cf. [116],
[117], [118]). All these results require the assumption Σ · Σ ≥ 0 which so
far nobody has been able to remove.

The next theorem is the generalized adjunction inequality. It is the
Seiberg-Witten version of the earlier theorem by Kronheimer and Mrowka
relating the genus of embedded surfaces to the D-basic classes (see Theo-
rem 7.40). The following theorem was proved by Kronheimer and Mrowka in
November 1994 (cf [66]) and independently by Morgan, Szabó, and Taubes
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(cf [96]). A version of this result for immersed spheres (which does not re-
quire the assumption of nonnegative self-intersection number) was proved
by Fintushel and Stern (cf [27]).

Theorem 14.1. (Kronheimer-Mrowka) Let X be a smooth compact
oriented 4-manifold with b+ − b1 odd and b+ ≥ 2. Moreover, let Γ : TX →
End(S) be a spinc structure with nonzero Seiberg-Witten invariants

SW(X,Γ) 6= 0

and Σ ⊂ X be a compact oriented embedded surface with self-intersection
number

Σ · Σ ≥ 0.

Moreover, if Σ is a 2-sphere suppose that the homology class [Σ] ∈ H2(X,Z)
is not a torsion class. Then

2g(Σ)− 2 ≥ Σ · Σ + |c1(LΓ) · Σ|. (14.1)

Note the obvious example of an embedded 2-sphere which is homolo-
gous to zero. Any such sphere has self-intersection number zero and satisfies
c1(LΓ) · Σ = 0 for every spinc structure Γ. It does not satisfy the inequal-
ity (14.1). Note also that the genus inequality in Theorem 14.1 can also
be interpreted as a vanishing theorem for the Seiberg-Witten invariants.
Namely, if a cohomology class c = c1(LΓ) violates the inequality (14.1) for
some embedded surface Σ then the corresponding Seiberg-Witten invariant
must be zero.

The proof of Theorem 14.1 will be given in Section 14.2. It is an im-
mediate consequence that embedded complex curves in Kähler surfaces
minimize the genus in their respective homology classes. Before stating
this result let us consider the case b+ = 1. In [66] Kronheimer and Mrowka
proved the Thom conjecture for the projective plane. Their proof can be
combined with some elementary surgery arguments to obtain the following
result. A proof, in this generality, will appear in a forthcoming paper by
Morgan, Szabó, and Taubes [96]. The proof of Theorem 14.2 given below is
based on the techniques of Kronheimer and Mrowka and generalizes (word
by word) to the symplectic category.

Theorem 14.2. (Morgan-Szabo-Taubes) Let X be a compact Kähler
surface with b+ = 1 and Σ ⊂ X be a compact oriented embedded surface
satisfying

Σ · Σ ≥ 0,

∫
Σ

ω > 0.

Then
2g(Σ)− 2 ≥ Σ · Σ + c1(K) · Σ. (14.2)
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Note that the condition [ω] · Σ > 0 cannot be removed. If [ω] · Σ < 0
then one gets the inequality 2g(Σ) − 2 ≥ Σ · Σ − c1(K) · Σ and there are
examples where c1(K)·Σ > 0 and equality holds. (Consider for example the
sphere in CP 2 representing the class −H.) It is an immediate consequence
of Theorems 14.1 and 14.2 that holomorphic curves in Kähler surfaces with
nonnegative self-intersection number minimize the genus in their respective
homology classes. This is the generalized Thom conjecture and various
different proofs were given by Kronheimer-Mrowka [66], Morgan-Szabó-
Taubes [96], and Mrowka-Ozsváth-Yu [99].

Corollary 14.3. (Generalized Thom conjecture) Let X be a compact
Kähler surface and C ⊂ X be an embedded (nonconstant) complex curve
with

C · C ≥ 0

Then every embedded surface Σ ⊂ X which represents the same homology
class as C has genus

g(Σ) ≥ g(C).

Proof: Any embedded complex curve satisfies

2g(C)− 2 = C · C + c1(K) · C,
∫
C

ω > 0.

In particular, the homology class of C is never a torsion class. In the case
b+ = 1 the result now follows immediately from (14.2) in Theorem 14.2. If
b+ > 1 then, by Theorem 12.9, SW(X,Γcan) = 1 and c1(LΓcan

) = −c1(K).
Hence in this case the inequality (14.1) in Theorem 14.1 implies (14.2) and
this proves the corollary. 2

Corollary 14.4. (Kronheimer–Mrowka) Let Σ ⊂ CP 2 be an embedded
surface representing the homology class [Σ] = d[CP 1] ∈ H2(CP 2,Z) with
d > 0. Then

g(Σ) ≥ (d− 1)(d− 2)

2
.

Remark 14.5 Assume b+ > 1. Then, as a byproduct of the proof of Corol-
lary 14.3, one obtains the inequality

0 ≤ c1(E) · C ≤ c1(K) · C

for every holomorphic curve C ⊂ X with C · C ≥ 0 and every line bundle
E → X with SW(X,ΓE) 6= 0. To see this just note that

c1(K) · C = 2g − 2− C · C ≥ |c1(LΓE ) · C|.

With c1(LΓE ) = 2c1(E)− c1(K) the required inequality follows. 2
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No counterexample is known to the assertion that complex curves min-
imize the genus in their homology class. This should hold in full generality
without any restriction on the self-intersection number.

The minimal genus as an invariant

In [97] Mrowka suggested the definition of a function km : H2(X,Z) → Z
by

km(α) = min
[Σ]=α

2g(Σ)− 2− Σ · Σ

where the minimum is over all compact connected oriented embedded sur-
faces representing the class α. This function has the following property.

Lemma 14.6. (Mrowka) If α · α ≥ 0 then

km(nα) ≤ n km(α).

for every positive integer n.

Proof: Let Σ ⊂ X be a compact connected oriented embedded surface
representing the class [Σ] = α. Suppose that km(α) = 2g(Σ) − 2 − Σ · Σ.
Then the normal bundle νΣ → Σ has degree

deg(νΣ) = α · α = Σ · Σ.

Now any oriented real rank-2 bundle of degree N over a Riemann surface
admits a section which intersects the zero section in precisely N points such
that all intersection points are transverse with positive intersection number.
Moreover, the intersection points can be prescribed. A simple induction
argument then shows that for any positive integer n there exist n different
sections s1, . . . , sn : Σ → νΣ intersecting pairwise in precisely N points
with positive intersection number. These give rise to n different surfaces
S1, . . . , Sn, all representing the class α, such that Si and Sj intersect in
precisely N = α · α points with intersection number 1 whenever i 6= j.
Moreover each surface Sj has the same genus as Σ. Consider the embedded
surface Σn obtained from the surfaces Si by removing all the n(n− 1)N/2
intersection points. This surface has genus

g(Σn) = ng(Σ) +
n(n− 1)

2
Σ · Σ + 1− n.

Moreover, Σn represents the class nα and hence has self-intersection num-
ber

Σn · Σn = n2 Σ · Σ.

These two identities give

2g(Σn)− 2− Σn · Σn = n(2g(Σ)− 2− Σ · Σ) = n km(α). 2
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Suppose now that b+ > 1 and b+ − b1 is odd and that X has nontriv-
ial Seiberg-Witten invariants. Then Theorem 14.1 shows that km(α) ≥ 0
for every α ∈ H2(X,Z) with α · α ≥ 0. In [97] Mrowka posed the ques-
tion whether the function km is a norm (at least on the set of classes α
with nonnegative self-intersection number). Alternatively, he suggested to
consider the function

KM(α) = lim inf
n→∞

km(nα)

n
. (14.3)

Theorem 14.1 shows that there are finitely many cohomology classes

K1, . . . ,Ks ∈ H2(X,Z),

namely the SW-basic classes, such that

KM(α) ≥ max
i
|Ki · α|. (14.4)

Is it possible that this estimate is sharp? For example, if X is a Kähler
surface with b+ > 1 then the estimate is sharp for all classes α which can
be represented by embedded holomorphic curves. Moreover, in this case
the maximum is given by K · α where K denotes the canonical class.

Exercise 14.7 Suppose that the classes α1 and α2 can be represented by
connected oriented embedded surfaces Σ1 and Σ2, respectively, such that

km(αi) = |χ(Σi)| − αi · αi

and Σ1 and Σ2 intersect transversally with each intersection point con-
tributing intersection number 1. Prove that under these conditions

km(α1 + α2) ≤ km(α1) + km(α2).

Prove also that
KM(λα) = |λ|KM(α)

for every λ ∈ Z and every α ∈ H2(X,Z). 2

Remark 14.8 The above definition is reminiscent of Thurston’s norm
Th : H2(Y,Z)→ Z on the homology of a 3-manifold Y defined by

Th(α) = min
[Σ]=α

|χ(Σ)|.

As above the minimum is over all compact oriented embedded surfaces
Σ ⊂ Y which represent the homology class α, are possibly disconnected,
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and do not contain any component diffeomorphic to the 2-sphere. Thurston
proved that the function Th is a norm, that is

Th(α) ≥ 0, Th(α+ β) ≤ Th(α) + Th(β), Th(λα) = |λ|Th(α)

for α, β ∈ H2(X,Z) and λ ∈ Z. Moreover, Gabai proved that there exist
cohomology classes τ1, . . . , τs ∈ H2(X,Z) such that

Th(α) = max
i
|τi · α|.

These classes τi are in fact the Euler classes of taut foliations of Y . 2

Blowup formula

The following blowup formula for the Seiberg-Witten invariants is due to
Morgan-Szabó-Taubes and is a special case of Theorem 11.2 proved in
chapter 11. This result can be viewed as a generalization of the fact that
the symplectic or Kähler structures of a 4-manifold are preserved when

taking connected sums with CP 2
.

Theorem 14.9. (Morgan-Szabó-Taubes) Let X be a compact oriented
smooth 4-manifold with b+(X) ≥ 2 and consider the connected sum

X ′ = X#CP 2
.

Denote by e = PD([S]) ∈ H2(X ′,Z) the Poincaré dual of the fundamental

class of the standard 2-sphere S ⊂ CP 2
. If c ∈ H2(X,Z) is a basic class

for X and k ∈ Z is an odd integer with

d(c) +
1− k2

8
≥ 0

where 8d(c) = c · c− 2χ(X)− 3σ(X) then

c′ = c+ ke ∈ H2(X ′,Z)

is a basic class for X ′. Conversely, every basic class in H2(X ′,Z) is of this
form.

The proof of the inequality g(Σ) ≥ g(C) in Corollary 14.4 can be carried
out without relying on the blowup formula of Theorem 14.9. Instead one can
use the blowup construction in the Kähler category (see for example [85],
Chapter 6) and examine the canonical class K ′ of the blown up manifold
X ′. This approach will be used in the proof of Theorem 14.2.

14.2 Proof of the Thom conjecture

The proofs of Theorems 14.1 and 14.2 are based on the following proposition
which is concerned with the Seiberg-Witten monopole equations on X for a
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sequence of metrics with long necks. More precisely, let Σ ⊂ X be a compact
oriented embedded smooth 2-manifold with trivial normal bundle, i.e.

Σ · Σ = 0.

Write

X = X1 ∪Y X2

where X1 is a closed tubular neighbourhood of Σ and X2 is the closure
of X − X1. Since Σ · Σ = 0 it follows that the boundary Y = ∂X1 is
diffeomorphic to the product Σ × S1. For any T > 0 choose a metric g
on X which in a neighbourhood of Y is a product metric on Y × (−ε, ε).
Suppose further that the corresponding metric on Y = S1×Σ is a product
metric with a constant curvature metric on Σ. Now stretch the neck, i.e.
consider a family of metrics gT on X with respect to which X is isometric
to the manifold

XT = X1 ∪ [0, T ]× Y ∪X2

with the obvious product metric on the tube [0, T ] × Y . The following
proposition is due to Kronheimer and Mrowka as are all the results in this
section. However, the proof given below differs slightly from the one in [66].

Proposition 14.10 Suppose that the moduli space M(XT ,ΓT , gT ) of un-
perturbed Seiberg-Witten monopoles is nonempty for every sufficiently large
T > 0. Then either

2g(Σ)− 2 ≥ |c1(LΓ) · Σ|

or c1(LΓ) · Σ = 0.

Proof: Let (AT ,ΦT ) be a Seiberg-Witten monopole on XT with the metric
gT and perturbation η = 0. It satisfies the a priori estimate

sup
XT

|ΦT |2 ≤ −
1

2
inf
XT

s

of Lemma 7.13. Note in particular that the infimum of the scalar curvature
s on XT is indpendent of T . Moreover, it follows from Proposition 7.3 that
the Seiberg-Witten action of the pair (AT ,ΦT ) is given by

E(AT ,ΦT ) =

∫
XT

(
|∇AT ΦT |2 +

s

4
|ΦT |2 +

1

4
|ΦT |4 + |FAT |

2

)
dvol

= −π2c1(LΓ)2.

Here c1(LΓ)2 denotes the cup-product of c1(LΓ) with itself, evaluated on
the fundamental class of X. Now consider the restriction of the solution
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(AT ,ΦT ) to the tube [0, T ]×Y . Assume without loss of generality that this
solution is in temporal gauge. Then

Φ̇T = DAT ΦT , γ(ȦT + ∗FAT ) = (ΦTΦ∗T )0 .

By Proposition 10.9 (with η = 0) the energy of (AT ,ΦT ) on [0, T ] × Y
agrees with the Seiberg-Witten action ESW on this domain and hence

E(AT ,ΦT ; [0, T ]× Y ) = E(AT ,ΦT ;XT )− E(AT ,ΦT ;X1 ∪X2)

= −π2c1(LΓ)2 − E(AT ,ΦT ;X1 ∪X2)

≤ −π2c1(LΓ)2 − 1

4

∫
X1∪X2

(
s|ΦT |2 + |ΦT |4

)
= −π2c1(LΓ)2 +

1

16

∫
X1∪X2

(
s2 − (s+ |ΦT |2)2

)
≤ −π2c1(LΓ)2 +

1

16

∫
X

s2dvol.

Hence there is a uniform upper bound for the energy

E(AT ,ΦT ; [0, T ]× Y ) = 2

T∫
0

∫
Y

(∣∣∣Φ̇T ∣∣∣2 +
∣∣∣ȦT ∣∣∣2)dvol dt ≤ c.

Now there is a refinement of the compactness theorem 7.12 which asserts
that every sequence of solutions of the Seiberg-Witten equations (Aν ,Φν)
on a noncompact manifold X, with the property that the functions Φν sat-
isfy a uniform L∞-estimate, has a subsequence which up to gauge equiva-
lence converges uniformly with all derivatives on every compact subset of
X. Apply this theorem to the manifold (0, 1)×Y and a family of solutions
AT (sT + t),ΦT (sT + t), 0 ≤ t ≤ 1, where sT is chosen such that

E(AT ,ΦT ; [sT , sT + 1]× Y ) ≤ c

T
.

Such an sT exists for obvious reasons whenever T is an integer. The refined
compactness theorem now asserts that there exists a sequence Tν → ∞
and a sequence of gauge transformations uν : (0, 1) × Y → S1 such that
(uν
∗Aν , uν

−1u̇ν , uν
−1Φν) converges uniformly with all derivatives on every

compact subset of (0, 1) × Y . Here Aν(t) = ATν (sTν + t) and Φν(t) =
ΦTν (sTν + t). The limit

A = lim
ν→∞

uν
∗Aν , Ψ = lim

ν→∞
uν
−1u̇ν , Φ = uν

−1Φν
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is a solution of (10.5) with η = 0 on the domain (0, 1)× Y which has zero
energy. Hence

Ȧ = dΨ, ∇tΦ = 0, DAΦ = 0, γ(∗FA) = (ΦΦ∗)0.

This shows that for each t the pair (A(t),Φ(t)) is a critical point of the
Chern-Simons functional. Here the metric on Y = Σ × S1 was chosen
arbitrarily. The argument is valid for any metric.

It is important to note that the bundle W → Y was obtained by re-
stricting the bundle W+ → X to the boundary Y = Σ × S1 of a tubular
neighbourhood of Σ. Hence evaluating the first Chern class of W on a slice
Σ = Σ× {eiθ} gives the number

c1(W ) · Σ = c1(LΓ) · Σ.

Now recall that the metric was chosen to be of constant curvature on Σ.
By rescaling if necessary, assume without loss of generality that the area
of Σ is 1. In other words the metric on Σ is chosen to be a Kähler-Einstein
metric with Ricci form ρω = (s/2)ω where ω is the volume form on Σ with∫

Σ
ω = 1. For the factor s/2 see Lemma 2.7. Recall that the form (2π)−1ρω

represents the first Chern class of TΣ and hence

2− 2g =

∫
Σ

c1(TΣ) =
1

2π

∫
Σ

ρω =
s

4π

∫
Σ

ω =
s

4π
.

This shows that the scalar curvature of Σ, and hence of Y = Σ× S1, is

s = 4π(2− 2g).

By Lemma 10.4 the solution (A,Φ) of (10.2) satisfies either Φ = 0 or

sup
Y
|FA| =

1

2
sup
Y
|Φ|2 ≤ −s

4
= π(2g − 2).

Assume first that Φ 6= 0. Since the first Chern class of the bundle W is
represented by the 2-form iFA/π, it follows that

|c1(W ) · Σ| =
∣∣∣∣∫

Σ

iFA
π

∣∣∣∣ ≤ supY |FA|
π

= 2g − 2.

This is the required inequality. If Φ = 0 then FA = 0 and hence

c1(LΓ) · Σ = c1(W ) · Σ = 0.

This proves the proposition. 2
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Proof of Theorem 14.1: The proof consists of three steps.

Step 1: The theorem holds when Σ · Σ = 0 and c1(LΓ) · Σ 6= 0.

Since SW(X,Γ) 6= 0 the moduli space M(XT ,ΓT , gT ) is nonempty for
every T > 0. Since c1(LΓ) · Σ 6= 0 it follows from Proposition 14.10 that
2g(Σ)− 2 ≥ |c1(LΓ) · Σ|. This proves Step 1.

Step 2: The theorem holds when Σ · Σ > 0.

Assume without loss of generality that

c1(LΓ) · Σ ≥ 0.

Otherwise replace Γ by Γ̄. Now consider the connected sum

X ′ = X#`CP 2

with ` = Σ ·Σ. Denote by S1, . . . , S` ⊂ X ′ the embedded spheres represent-

ing the generators of the second homology groups of the ` copies of CP 2
.

Then
Si · Si = −1

for every i and Si · Sj = 0 for i 6= j. Consider the connected sum

Σ′ = Σ#S1# · · ·#S`.

This is an embedded surface of the same genus as Σ and it has self-inter-
section number

Σ′ · Σ′ = Σ · Σ− ` = 0.

Over X ′ consider the spinc structure Γ′ : TX ′ → End(W ′) which over X
agrees with Γ and satisfies

c1(LΓ′) · Si = 1.

Then it follows from Theorem 14.9 that SW(X ′,Γ′) 6= 0. Moreover,

c1(LΓ′) · Σ′ = `+ c1(LΓ) · Σ = Σ · Σ + c1(LΓ) · Σ.

By assumption this number is positive. Hence Step 1 shows that

2g(Σ)− 2 = 2g(Σ′)− 2

≥ c1(LΓ′) · Σ′

= Σ · Σ + c1(LΓ) · Σ
= Σ · Σ + |c1(LΓ) · Σ|.

This proves Step 2.
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Step 3: The theorem holds when Σ · Σ = 0 and c1(LΓ) · Σ = 0.

It remains to prove that under these hypotheses Σ cannot be a sphere.
Assume, by contradiction, that Σ is a sphere with

Σ · Σ = 0, c1(LΓ) · Σ = 0.

Then, by assumption, the homology class [Σ] is not a torsion class. The con-
tradiction is obtained by the following beautiful trick due to Kronheimer
and Mrowka [65]. First note that there exists a connected embedded Rie-
mann surface T such that

T · Σ > 0, T · T > 0.

The corresponding homology class exists for algebraic reasons and every
2-dimensional homology class can be represented by an embedded surface.
(See the footnote on page 28.) Assume that T intersects Σ transversally.
Any intersection point with negative intersection index can be removed by
the following procedure. Given any pair x± ∈ T ∩ Σ of intersection points
with opposite intersection indices, choose a path γ : [−1, 1] → Σ which
runs from x− to x+ and meets T only at the endpoints. A neighbourhood
of this path can be embedded into R4 such that Σ corresponds to the
(x0, x1)-plane, the path γ corresponds to an interval on the x1-axis, and T
corresponds to two planes parallel to the (x2, x3)-plane through the points
x1 = −1 and x1 = +1 with x0 = 0. These two planes are equipped with
opposite orientations. Connect them by a tube around the x1-axis in the
(x1, x2, x3)-subspace and cut out the two discs in T centered at x1 = ±1,
x2 = x3 = 0. This procedure does not change the homology class of T ,
removes the two intersection points, and increases the genus of T by 1.
After this surgery the submanifold T intersects Σ in T ·Σ points and each
intersection index is +1. Now construct a submanifold Σm in the homology
class

[Σm] = [T ] +m[Σ]

as follows. By assumption the normal bundle of Σ is trivial. Choose m
disjoint copies of Σ which differ by small parallel translations in the direc-
tion of a nonzero normal vector field and then smooth out the intersection
points of these copies with T . This gives rise to an embedded surface Σm
with

Σm · Σm = T · T + 2mT · Σ.

Moreover, joining T with a copy of Σ increases the genus by Σ · T − 1.
Hence the genus of Σm is g(Σm) = g(T ) +mT · Σ−m and thus

2g(Σm)− Σm · Σm = 2g(T )− T · T − 2m.
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On the other hand c1(LΓ) · Σm = c1(LΓ) · T and with m sufficiently large
it follows that

2g(Σm)− 2 < Σm · Σm + c1(LΓ) · Σm.

Since Σm · Σm > 0, this contradicts the second part of the proof. Hence
the original assumption that Σ be a sphere must have been false. This
completes the proof of Theorem 14.1. 2

Proof of Theorem 14.2: The proof consists of four steps.

Step 1: The theorem holds when

Σ · Σ = 0, c1(K) · Σ > 0,

and
(c1(K) + PD([Σ])2 > 0, (c1(K) + PD([Σ]) · [ω] > 0.

Consider the metric gT on the manifold XT = X1 ∪ [0, T ]× Y ∪X2 as
in Step 1 in the proof of Theorem 14.1. This need not be a Kähler metric.
Denote by ωT the unique 2-form on XT which is self-dual and harmonic
with respect to gT , has L2-norm 1 (also with respect to gT ), and represents
the orientation of H2,+(X) which is determined by the Kähler structure.
Since the class c1(K) + PD([Σ]) has positive square it follows from the
Hodge index theorem that

1 ≤ (c1(K) + PD([Σ])) · (c1(K) + PD([Σ])) ≤ ((c1(K) + PD([Σ])) · [ωT ])2

for every T > 0. In particular, the product (c1(K) + PD([Σ])) · [ωT ] cannot
change sign and hence

(c1(K) + PD([Σ])) · [ωT ] ≥ 1

for every T . Now ωT is a self-dual harmonic 2-form with respect to gT and
hence satisfies

∆TωT = 0, ‖ωT ‖L2(XT ,gT ) = 1.

Here ∆T denotes the Hodge Laplacian on XT associated to the metric gT .
Now a standard elliptic bootstrapping argument (using cutoff functions on
the cylindrical part [0, T ]×Y ) shows that for every integer ` there exists a
constant c` > 0 such that

‖ωT ‖W `,2([s,s+1]×Y ) ≤ c`

for every T and every s ∈ [0, T − 1]. This shows that for every sequence
Tν →∞ there is a subsequence Tν′ →∞ and a sequence sν′ ∈ [0, Tν′ − 1]
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such that ωT ′ν converges to zero on the domain [sν′ , sν′ + 1]×Y in, say, the
C1-norm. Hence

lim
T→∞

∫
Σ

ωT = 0

and it follows that c1(K) · [ωT ] > 0 for T sufficiently large. With c1(Γcan) =
−c1(K) this gives

εΓcan
(gT , 0) = πc1(K) · [ωT ] > 0.

By Theorem 12.10, SW+(X,Γcan) = 1 and hence M(XT ,Γcan, gT ) is non-
empty for large T . By Proposition 14.10, either 2g − 2 ≥ |c1(K) · Σ| or
c1(K) ·Σ = 0. The latter is ruled out by assumption and hence the former
must hold. This proves Step 1.

Step 2: The theorem holds when

Σ · Σ > 0, Σ · Σ + c1(K) · Σ > 0,

and

(c1(K) + PD([Σ]))2 > 0,

∫
Σ

ω + c1(K) · [ω] > 0.

The proof relies on the blowup construction in the Kähler category and
is similar to the proof of Step 2 in Theorem 14.1. Let ` = Σ · Σ > 0 and
consider the manifold

X ′ = X#`CP 2
, Σ′ = Σ#S̄1# · · ·#S̄`,

where the Si denote the exceptional divisors (with their orientations as
holomorphic curves) and S̄i indicates the reversed orientation. More ex-
plicitly, one can think of X ′ as the manifold X with ` balls of (sufficiently
small) radius r > 0 removed and the resulting boundary 3-spheres identi-
fied, via the Hopf map, with 2-spheres of area πr2. Thus∫

Si

ω′ = πr2

for every i where ω′ denotes the Kähler form on X ′ (see [85], Chapter 6,
for more details). Denote by c1(K) ∈ H2(X ′,Z) the lift of the canonical
class of X to X ′. Then the canonical class of X ′ is given by

c1(K ′) = c1(K)−
∑̀
i=1

ei
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where ei = −PD([Si]) ∈ H2(X ′,Z) satisfies ei · Si = 1 and ei · Sj = 0 for
i 6= j. Note that

PD([Σ′]) = PD([Σ]) +
∑̀
i=1

ei

where we again identify the class PD([Σ]) ∈ H2(X,Z) with its lift to X ′.
Thus c1(K ′) + PD([Σ′]) = c1(K) + PD([Σ]) and this shows that

Σ′ · Σ′ = 0, c1(K ′) · Σ′ = Σ · Σ + c1(K) · Σ > 0,

and
(c1(K ′) + PD([Σ′]))2 = (c1(K) + PD([Σ]))2 > 0,

(c1(K ′) + PD([Σ′])) · ω′ = (c1(K) + PD([Σ])) · ω > 0.

Hence it follow from Step 1 that

2g(Σ)− 2 = 2g(Σ′)− 2 ≥ c1(K ′) · Σ′ = Σ · Σ + c1(K) · Σ.

This proves Step 2.

Step 3: The theorem holds when

Σ · Σ > 0,

∫
Σ

ω > 0.

Recall from the proof of Lemma 14.6 that for every integer n ≥ 1 there
exists an oriented embedded surface Σn with

[Σn] = n[Σ]

and
2g(Σn)− 2− Σn · Σn = n(2g(Σ)− 2− Σ · Σ)).

For n sufficiently large the surface Σn satisfies the requirements of Step 2
and hence

2g(Σn)− 2− Σn · Σn ≥ c1(K) · Σn = n c1(K) · Σ.

This proves Step 3.

Step 4: The theorem holds when

Σ · Σ = 0,

∫
Σ

ω > 0.
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The proof is similar to that of Step 3 in Theorem 14.1. As in that case
choose an embedded surface T with

T · T > 0, T · Σ > 0.

and such that T intersects Σ transversally in precisely N = T · Σ distinct
points, each contributing +1 to the intersection number. As before consider
the surface Σm = T#mΣ with self-intersection number

Σm · Σm = T · T + 2mT · Σ

and genus
g(Σm) = g(T ) +mg(Σ) +mT · Σ−m.

At this point the proofs diverge because the surface Σ in the proof of
Theorem 14.1 had genus 0. Now the surface Σm satisfies the requirements
of Step 3 for m > 0 sufficiently large and hence

0 ≤ 2g(Σm)− 2− Σm · Σm − c1(K) · Σm

= m

(
2g(Σ)− 2− c1(K) · Σ

)
+ 2g(T )− 2− T · T − c1(K) · T.

This proves Step 4 and the theorem. 2
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VORTEX EQUATIONS OVER RIEMANN SURFACES

15.1 Vortex pairs

Let Σ be a compact oriented Riemann surface and γ : TΣ → End(W )
be a spinc structure. Thus W is a rank-2 Hermitian vector bundle and γ
satisfies the usual equations (4.18). Denote by A(Σ) = A(Σ, γ) the space of
spinc connections on W which are compatible with the Levi-Civita connec-
tion on Σ. Recall from Section 6.1 that the tangent space of A(Σ) is and
affine space whose parallel vector space is the space Ω1(Σ, iR) of imaginary
valued 1-forms on Σ. Throughout I shall use A ∈ A(Σ) as a label for the
corresponding spinc connection ∇A : C∞(Σ,W )→ Ω1(Σ,W ).

Recall from Section 4.4 that W carries a natural complex structure
I ∈ C∞(Σ,End(W )), different from the standard structure i, which in a
local positively oriented orthonormal frame e1, e2 of TΣ is given by

I = γ(e2)γ(e1).

This structure is independent of the choice of the orthonormal frame and
agrees with the automorphism Γ(ε) in the discussion defore Lemma 4.40.
Thus the subbundles W± ⊂W of positive and negative spinors are the ±i
eigenspaces of I. In other words the endomorphism I has the form

I =

(
i 0
0 −i

)
with respect to the splitting W = W+⊕W−. Note that changing the metric
on Σ within the same conformal class does not affect the complex structure
I.

Consider the space A(Σ)× C∞(Σ,W ) of pairs (A,Θ) where A ∈ A(Σ)
is a spinc connection on W and Θ : Σ → W is a section. This manifold
carries a natural symplectic structure Ω given by

Ω((α, θ), (β, τ)) = −
∫

Σ

α ∧ β +

∫
Σ

〈Iθ, τ〉dvolΣ

for α, β ∈ Ω1(Σ, iR) = TAA(Σ) and θ, τ ∈ C∞(Σ,W ). It also carries a
natural complex structure

(α, θ) 7→ (∗α, Iθ)
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which is compatible with this symplectic form in the sense that the pairing
Ω((α, θ), (∗β, Iτ)) defines the standard L2 inner product on Ω1(Σ, iR) ×
C∞(Σ,W ).

A complex submanifold

Denote by Θ0 ∈ W+ and Θ1 ∈ W− the two components of Θ ∈ W .
Consider the set

B(Σ) ⊂ A(Σ)× C∞(Σ,W )

of all pairs (A,Θ) which satisfy

DAΘ = 0, Θ0 6= 0, Θ1 = 0 (15.1)

where DA : C∞(X,W ) → C∞(X,W ) denotes the Dirac operator associ-
ated to the spinc connection ∇A.

Proposition 15.1 The space B(Σ) is a complex, and hence symplectic,
submanifold of A(Σ)× C∞(Σ,W ).

Proof: The formal tangent space T(A,Θ)B(Σ) consists of all pairs (α, θ) ∈
Ω1(Σ, iR)× C∞(Σ,W ) which satisfy

DAθ + γ(α)Θ = 0, θ1 = 0. (15.2)

This space is invariant under the complex structure (α, θ) 7→ (∗α, Iθ) be-
cause

DAI + IDA = 0, γ(∗α) = γ(v)I = −Iγ(v).

Moreover, the space B(Σ) is indeed a submanifold. To see this consider the
operator D : Ω1(Σ, iR)× C∞(Σ,W+)→ C∞(Σ,W−) given by

D(α, θ0) = DAθ0 + γ(α)Θ0.

Its L2-adjoint operator D∗ : C∞(Σ,W−) → Ω1(Σ, iR) × C∞(Σ,W+) has
the form

D∗τ1 =

(
iRe 〈iγ(.)Θ0, τ1〉

D∗Aτ1

)
.

It is a simple exercise to check that

DD∗τ1 = DAD
∗
Aτ1 + |Θ0|2τ1.

This operator is invertible whenever Θ0 6= 0. Hence, in an appropriate
Sobolev space setting, it follows from the implicit function theorem that
B(Σ) is a (Banach or Fr’echet) submanifold of A(Σ) × C∞(Σ,W ) whose
tangent space at (A,Θ0) consists of the solutions of (15.2). The analytical
details are standard and can be safely left to the reader. 2
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Symplectic quotients

It is interesting to examine the symplectic geometry of the space A(Σ) ×
C∞(Σ,W ) more closely. The gauge group G(Σ) = Map(Σ, S1) acts on this
space by linear symplectomorphisms

(A,Θ) 7→ (u∗A, u−1Θ)

for A ∈ A(Σ) and Θ ∈ C∞(Σ,W ). The formula

Du∗A(u−1Θ) = u−1DAΘ

shows that the complex submanifold B(Σ) is invariant under this action.
The infinitesimal action is generated by the vector fields Xξ on A(L) ×
C∞(Σ,W ) defined by

Xξ(A,Θ) = (−dξ, ξΘ)

for ξ ∈ Ω0(Σ, iR) = Lie(G(Σ)). The next lemma shows that the vector
fields Xξ are all Hamiltonian.

Lemma 15.2 The vector field Xξ is generated by the Hamiltonian function
Hξ : A(Σ)× C∞(Σ,W )→ R given by

Hξ(A,Θ) = −
∫

Σ

ξ

(
FA +

|Θ1|2 − |Θ0|2

2
iω

)
.

Here ω ∈ Ω2(Σ) denotes the volume form of the given Riemannian metric.

Proof: For A ∈ A(Σ), α ∈ Ω1(Σ, iR), and Θ, θ ∈ C∞(Σ,W )

Ω(Xξ(A,Θ), (α, θ)) =

∫
Σ

dξ ∧ α+

∫
Σ

〈ξIΘ, θ〉ω

= −
∫

Σ

ξdα+

∫
Σ

Im ξ〈iIΘ, θ〉ω

= −
∫

Σ

ξdα+

∫
Σ

Im ξ (〈Θ1, θ1〉 − 〈Θ0, θ0〉)ω

= −
∫

Σ

ξ

(
dα+ 〈Θ1, θ1〉iω − 〈Θ0, θ0〉iω

)
= dHξ(A,Θ)(α, θ).

This proves the lemma. 2

Identify the dual of the Lie algebra Lie(G(Σ)) = Ω0(Σ, iR) with the
space of 2-forms Lie(G(Σ))∗ = Ω2(Σ, iR) via the obvious pairing. Then
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Lemma 15.2 shows that the moment map of the action of G(Σ) on A(Σ)×
C∞(Σ,W ) is the map

µ : A(Σ)× C∞(Σ,W )→ Ω2(Σ, iR)

given by

µ(A,Θ) = FA +
|Θ1|2 − |Θ0|2

2
iω.

Note that µ(u∗A, u−1Θ) = µ(A,Θ). The moment map of the action on
B(Σ) is simply the restriction of µ. It is interesting to consider the Marsden-
Weinstein quotient

Md(Σ) = B(Σ)//G(Σ) = µ−1(0)/G(Σ).

Here d = c1(W+) · [Σ] denotes the degree of the line bundle W+ → Σ. The
set µ−1(0) consists of the pairs (A,Θ0) ∈ A(Σ)×C∞(Σ,W+) which satisfy

DAΘ0 = 0, ∗iFA = −|Θ0|2

2
, Θ0 6= 0. (15.3)

The quotient space Md(Σ) is called the moduli space of vortex pairs. It
turns out that this space is a compact smooth finite dimensional manifold
of real dimension 2d. It carries a natural symplectic and complex structure.
However, the space itself as well as its symplectic and complex structures
depend on the metric on Σ. It will be shown below that, as the metric
on Σ varies without changing the volume form, the different symplectic
structures on Md(Σ) can be naturally identified. In other words, there is
a natural symplectic connection on the bundle over the space of metrics
on Σ with fixed volume form whose fibers are the spaces Md(Σ). Another
important fact is that, via the zero-sets of the sections Θ0, the spaceMd(Σ)
can be naturally identified with the d-fold symmetric product of the surface
Σ provided that 1 ≤ d ≤ g − 2 where g is the genus of Σ. This will also be
proved below.

Relation with Cauchy-Riemann operators

A Riemannian metric on Σ determines a volume form ω and hence a com-
plex structure J on Σ (see Example 3.1). Hence TΣ is a complex vector
bundle over Σ. Its dual bundle

K = T ∗Σ = Λ1,0T ∗Σ

is the canonical bundle with Chern number c1(K) = 2g − 2 = −c1(TΣ)
where g = g(Σ) denotes the genus.

Lemma 15.3 There is a natural isomorphism W− → K∗ ⊗W+.
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Proof: First note that
γ(Jv)θ = γ(v)Iθ

for v ∈ TzΣ and θ ∈Wz. To see this assume without loss of generality that
|v| = 1. Then the vectors v, Jv form a positively oriented orthonormal basis
of TzΣ and hence γ(v)γ(Jv)θ = −Iθ for θ ∈ Wz. Since γ(v)∗ = γ(v)−1 =
−γ(v) the equation follows. Now consider the isomorphism W− → K∗ ⊗
W+ : θ1 7→ λθ1 given by

λθ1(v) = − 1√
2
γ(v)θ1

for θ1 ∈ W−z and v ∈ TzΣ. The formula γ(Jv)θ1 = −iγ(v)θ1 for θ1 ∈ W−z
shows that the 1-form λθ1 : TzΣ→W+

z is complex anti-linear as required.
The inverse isomorphism K∗ ⊗W+ →W− is given by the formula

θ1 =

√
2

|v|2
γ(v)λ(v)

for v ∈ TzΣ−{0} and λ ∈ K∗z⊗W+
z . Here the vector |v|−2γ(v)λ(v) ∈W−z is

independent of the choice of v. The reader may check that the isomorphism
θ1 7→ λθ1 is unitary. This proves the Lemma. 2

It is sometimes useful to denote

W+ = E, W− = K∗ ⊗ E.

Thus the sections of W → Σ correspond to pairs (θ, λ) consisting of a
section of E and a (0, 1)-form on Σ with values in E:

C∞(Σ,W ) = C∞(Σ, E)⊕ Ω0,1(Σ, E).

This reproves the fact that, up to isomorphism, any spinc structure on Σ
can be obtained from the standard spinc structure C ⊕ K∗ by tensoring
with a line bundle E → Σ (see Theorem 5.8). The Levi-Civita connection
on Σ determines a connection on K and hence, with the trivial connection
on the trivial bundle C, a spinc connection ∇A0 on the standard spinc

structure W0 = C ⊕ K∗ Think of the label A0 as a connection on the
line bundle det(W0)1/2 = K−1/2. The space A(Σ) of spinc connections on
W = W0 ⊗ E, compatible with the Levi-Civita connection on Σ, can be
identified with the space of connections on det(W )1/2 = K−1/2 ⊗ E. The
elements of A(Σ) = A(K−1/2 ⊗ E) will be denoted by A0 + A where A0

is the standard connection on K−1/2 and A ∈ A(E). Theorem 6.17 shows
that the Dirac operator DA+A0

is given by

1√
2
DA0+A =

(
0 ∂̄∗A
∂̄A 0

)
.
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In the 2-dimensional case this can be checked easily by direct calculation.

Remark 15.4 In terms of the splitting W = E ⊕K∗ ⊗ E the symplectic
form on the space A(E)⊕C∞(Σ, E)⊕Ω0,1(Σ, E) can now be expressed in
the form

Ω((α, θ, λ), (α′, θ′, λ′)) = −
∫

Σ

α ∧ α′ +
∫

Σ

(
〈iθ, θ′〉 − 〈iλ, λ′〉

)
dvolΣ

for θ, θ′ ∈ C∞(Σ, E) and λ, λ′ ∈ Ω0,1(Σ, E). 2

INSERT:
0. EXAMPLES OF SOLUTIONS
1. VORTEX EQUATIONS ARE EQUIVALENT TO SYMMETRIC

PRODUCTS OF Σ
2. RATIONAL COHOMOLOGY OF SYMMETRIC PRODUCTS AND

THE ACTION OF THE MAPPING CLASS GROUP
3. SYMPLECTIC CONNECTION ON THE BUNDLE OVER THE

MODULI SPACE OF COMPLEX STRUCTURES ON Σ WHOSE FIBER
IS THE SYMMETRIC PRODUCT

4. RELATION BETWEEN HOLOMORPHIC CURVES IN SYMMET-
RIC PRODUCT AND SEIBERG-WITTEN MONOPOLES ON Σ× C.

15.2 Symmetric products

15.3 A symplectic connection

15.4 Holomorphic curves and Seiberg-Witten monopoles

15.5 Boundary value problems

Let Y be a compact Riemannian 3-manifold with boundary ∂Y = Σ
equipped with a spinc structure γ : TY → End(W ). With the spinc struc-
ture fixed denote by A(Y ) = A(Y, γ) the space of spinc connections on W
which are compatible with the Levi-Civita connection on TY . Recall from
Section 10.1 that there is a natural 1-form F on the spaceA(Y )×C∞(Y,W )
defined by

F(A,Θ;α, θ) = −
∫
Y

FA ∧α−
1

2

∫
Y

〈Θ, γ(α)Θ〉dvolY −
∫
Y

〈DAΘ, θ〉dvolY

for α ∈ Ω1(Y, iR) and θ ∈ C∞(Y,W ). If the boundary is nonempty then this
1-form is not closed. Its differential is given by the formula in Lemma 15.5
below. Denote Σ = ∂Y and consider the restricted bundle W |Σ and the
restriction γ : TΣ → End(W ). This defines a spinc structure on Σ. For
y ∈ Σ denote by ν(y) ∈ TyY the outward unit normal and consider the
complex structure on the bundle W → Σ defined by

I = −γ(ν) ∈ C∞(Σ,End(W )).
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Then I = γ(e2)γ(e1) for every positively oriented orthonormal basis e1, e2

of TΣ. Hence I depends only on the surface Σ and not on the ambient
manifold Y . Moreover, I agrees with the complex structure considered in
Section 15.1. Let ι : Σ → Y denote the inclusion of the boundary and
consider the restriction map

r : A(Y )× C∞(Y,W )→ A(Σ)× C∞(Σ,W )

defined by

r(A,Θ) = (ι∗A,Θ ◦ ι)

for A ∈ A(Y ) and Θ ∈ C∞(Y,W ).

Lemma 15.5 The differential of the 1-form F on A(Y ) × C∞(Y,W ) is
given by

dF = r∗Ω.

Proof: Linearizing the 1-form F gives rise to the formally self-adjoint
operator DA,Φ : Ω1(Y, iR) × C∞(Y,W ) → Ω1(Y, iR) × C∞(Y,W ) defined
by

〈DA,Θ(α, θ), (β, τ)〉 =
d

dt

∣∣∣∣
t=0

F(A+ tα,Θ + tθ;β, τ)

=
d

dt

∣∣∣∣
t=0

−
∫
Y

FA+tα ∧ β

− d

dt

∣∣∣∣
t=0

∫
Y

〈DA+tα(Θ + tθ), τ〉dvolY

− 1

2

d

dt

∣∣∣∣
t=0

∫
Y

〈Θ + tθ, γ(β)(Θ + tθ)〉

= −
∫
Y

dα ∧ β −
∫
Y

〈θ, γ(β)Θ〉

−
∫
Y

〈DAθ + γ(α)Θ, τ〉dvolY

=

∫
Y

〈
∗dα− γ−1((Θθ∗ + θΘ∗)0), β

〉
dvolY

−
∫
Y

〈DAθ + γ(α)Θ, τ〉dvolY .

Here 〈·, ·〉 denotes either the inner product on T ∗Y or the real inner product
on W . Thus the operator DA,Θ is given by

DA,Θ(α, θ) =

(
∗dα− γ−1((Θθ∗ + θΘ∗)0)

−DAθ − γ(α)Θ

)
.
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(Compare this with the formula (10.4) for the gradient of the Chern-Simons
functional.) Here γ−1 is to be understood as a fiberwise linear isomorphism
End0(W )→ T ∗Y ⊗C which assigns to every traceless endomorphism of Wy

a complex valued real linear functional TyY → C. If the endomorphism is
Hermitian then the linear functional is imaginary valued. For two sections
θ, τ ∈ C∞(Y,W ) there is a natural vector field v = v(θ, τ) ∈ Vect(Y )
defined by

v(θ, τ) =

3∑
j=1

〈γ(ej)θ, τ〉 ej

in a local orthonormal frame e1, e2, e3 of TY . Note that any other vector
field w ∈ Vect(Y ) satisfies the pointwise identity

〈v(θ, τ), w〉 = 〈γ(w)θ, τ〉 .

Moreover, the covariant divergence of v(ϕ,ψ) is given by

div(v(θ, τ)) = 〈DAθ, τ〉 − 〈θ,DAτ〉 .

To see this just note that the divergence of any vector field v =
∑
i viei

is given by div(v) =
∑
i ∂ivi + div(ei)vi and calculate the right hand side.

The details of this are left to the reader. Now the differential of F is given
by

dF(A,Θ)((α, θ), (β, τ))

= 〈DA,Θ(α, θ), (β, τ)〉 − 〈(α, θ), DA,Θ(β, τ)〉

= −
∫
Y

dα ∧ β +

∫
Y

α ∧ dβ

−
∫
Y

(
〈DAθ, τ〉 − 〈θ,DAτ〉

)
dvolY

= −
∫
Y

d(α ∧ β)−
∫
Y

div(v(θ, τ))dvolY

= −
∫

Σ

α ∧ β −
∫

Σ

〈v(θ, τ), ν〉dvolΣ

= −
∫

Σ

α ∧ β −
∫

Σ

〈γ(ν)θ, τ〉dvolΣ

= −
∫

Σ

α ∧ β +

∫
Σ

〈Iθ, τ〉dvolΣ.

Here the fourth equality is Stokes’ theorem (see the hint in Exercise 2.36).
2



Part V

APPENDIX





APPENDIX A

FREDHOLM THEORY

This appendix gives an introduction to linear Fredholm theory. The
first section discusses the basic stability properties of Fredholm operators.
It includes a brief exposition of the topological index as a K-theory class.
Section A.2 is devoted to the determinant line bundle over the space of
Fredholm operators. This material plays a crucial role in proving that mod-
uli spaces are orientable and for finding a canonical orientation. The final
section derives an explicit formula for the trivialization of the determinant
bundle along a path of Fredholm operators in terms of a crossing number
(in the case of index zero).

A.1 Linear Fredholm operators

A bounded linear operator D : X → Y between Banach spaces is called a
Fredholm operator if it has finite dimensional kernel, closed range, and
finite dimensional cokernel Y/imD. The index of a Fredholm operator D
is defined by

indexD = dim ker D − dim cokerD.

Here the kernel and cokernel are to be understood as real vector spaces. If D
is a complex linear Fredholm operator between complex Banach spaces then
it is important to distinguish between the real and the complex Fredholm
index. Obviously, the real Fredholm index is twice the complex Fredholm
index. The following lemma plays an important role in establishing the
Fredholm property for a given linear operator D.

Lemma A.1 Let X,Y, Z be Banach spaces. Assume that D : X → Y is
a bounded linear operator and K : X → Z is a compact operator. Assume
that there is a constant c > 0 such that

‖x‖X ≤ c (‖Dx‖Y + ‖Kx‖Z) (A.1)

for x ∈ X. Then D has closed range and finite dimensional kernel.

Proof: To prove that the kernel of D is finite dimensional it suffices to
show that the unit ball in kerD is compact. To see this choose a bounded
sequence xν ∈ X such that

‖xν‖ ≤ 1, Dxν = 0.
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Since xν is bounded there exists a subsequence (still denoted by xν) such
that Kxν converges. Since xν ∈ kerD it follows from the estimate (A.1)
that xν is a Cauchy sequence. Since X is complete the subsequence con-
verges.

Now assume without loss of generality that D is injective. Otherwise
replace X by a complement of kerD. Such a complement exists by the
Hahn-Banach theorem: Pick a basis x1, . . . , xN of kerD and choose x∗k ∈ X∗
such that 〈x∗k, xj〉 = δjk. Then X0 = {x ∈ X | 〈x∗1, x〉 = · · · = 〈x∗N , x〉 = 0}
is the required complement.

Let y ∈ cl(imD). Then there exists a sequence xν ∈ X such that

y = lim
ν→∞

Dxν .

We prove first that xν is bounded. Otherwise, passing to a subsequence,
we may assume that ‖xν‖ converges to ∞. Then the sequence

ξν = ‖xν‖−1xν

is of norm 1 and Dξν converges to 0. Passing to a further subsequence
we may assume that Kξν converges. In view of (A.1) ξν is a Cauchy se-
quence. The limit ξ = limν→∞ ξν is of norm 1 and Dξ = 0, a contradiction.
Hence the sequence xν is bounded. It follows again from the compactness
of K, estimate (A.1), and the completeness of X that xν has a converging
subsequence. Let x be its limit. Then y = Dx. 2

Corollary A.2 Let X and Y be Banach spaces and D : X → Y be a
bounded linear operator with closed range and finite dimensional kernel.

(i) For every compact operator K : X → Y the operator D + K also has
closed range and finite dimensional kernel.

(ii) There exists a constant ε > 0 such that if P : X → Y is a bounded
linear operator with ‖P‖ < ε then D + P has closed range and finite di-
mensional kernel.

Proof: Suppose dim kerD = n and choose a bounded linear operator
K0 : X → Rn such that the restriction of K0 to ker D is a vector space
isomorphism. Then the operator X → Y ⊕Rn : x 7→ (Dx,K0x) is injective
and has closed range. Hence, by the open mapping theorem, there exists a
constant c > 0 such that

‖x‖X ≤ c (‖Dx‖Y + ‖K0x‖Rn) .

Hence for any compact operator K : X → Y we have

‖x‖X ≤ c (‖(D +K)x‖Y + ‖Kx‖Y + ‖K0x‖Rn) .
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Similarly, if ‖P‖ < 1/c, then

‖x‖X ≤
c

1− c‖P‖
(‖(D + P )x‖Y + ‖K0x‖Rn) .

Hence the assertions follows from Lemma A.1. 2

Corollary A.3 Let X and Y be Banach spaces and D : X → Y be a
bounded linear operator with closed range and finite dimensional cokernel.

(i) For every compact operator K : X → Y the operator D + K also has
closed range and finite dimensional cokernel.

(ii) There exists a constant ε > 0 such that if P : X → Y is a bounded
linear operator with ‖P‖ < ε then D + P has closed range and finite di-
mensional cokernel.

Proof: D has closed range if and only if D∗ has closed range and it has
finite dimensional cokernel if and only if D∗ has finite dimensional kernel.
Hence the result follows from Corollary A.2. 2

A bounded linear operator D : X → Y is Fredholm if and only if it
is invertible modulo a compact operator. This means that there exists a
bounded linear operator T : Y → X such that both DT − 1l and TD − 1l
are compact operators.∗ If both D : X → Y and T : Y → Z are Fredholm
operators then so is TD : X → Z and

indexTD = indexD + indexT. (A.2)

A bounded linear operator D : X → Y is Fredholm if and only if its dual
operator D∗ : Y ∗ → X∗ is. Their indices are related by

indexD∗ = −indexD.

The most important properties of Fredholm operators are related to their
stability under perturbations. The assertions about the Fredholm property
follow immediately from Corollaries A.2 and A.3. The assertions about the
index are easy exercises.

Theorem A.4 Let D : X → Y be a Fredholm operator

(i) If K : X → Y is a compact operator then D+K is a Fredholm operator
and index (D +K) = indexD.

(ii) There exists a constant ε > 0 such that if P : X → Y is a bounded
linear operator with ‖P‖ < ε then D + P is a Fredholm operator and
index (D + P ) = indexD.

∗To prove the existence of T use the construction of a pseudo-inverse in Proposi-
tion B.7. To prove the converse use Lemma A.1.
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The last statement asserts that the set of Fredholm operators is open
with respect to the uniform operator topology and the index is constant
on each component.

The topological index

Here is a brief discussion of the index bundle or the topological index
of a family of Fredholm operators as a K-theory class. For a full exposition
the reader is referred to the original work of Atiyah in [3, 4]. Let X and Y be
complex Banach spaces and M be a finite dimensional compact manifold.
Suppose that

D : M → L(X,Y )

is a smooth map such that D(p) is a complex linear Fredholm operator
for every p ∈ M . If D(p) is surjective for all p then the kernels form a
vector bundle ker D → M. Local trivializations can be found by choosing
a pseudo-inverse T0 : Y → X of D0 = D(p0) and considering the projection
ker D(p)→ ker D(p0) : x 7→ x− T0D0x. (See Proposition B.7.) In general,
when D is neither injective nor surjectve, it is interesting to consider the
formal difference

IND(D) = ker D 	 cokerD ∈ K(M)

That this is a well defined element in the K-theory of M can be seen as
follows. It is easy to construct a smooth map Φ : M → L(CN , Y ) for N
sufficiently large such that the operator

D(p)⊕ Φ(p) : X ⊕ CN → Y

is surjective for every p. Just do this locally in the neighbourhood of a point
and use cutoff functions. Hence there is a vector bundle ker (D ⊕ Φ)→M
and the topological index of D can be defined as the K-theory class

IND(D) = ker (D ⊕ Φ)	 CN ∈ K(M).

That the right hand side is independent of Φ is an easy exercise. When D
is onto just note that the bundle ker(D) ⊕ CN is naturally isomorphic to
ker (D ⊕ Φ). In the general case consider D ⊕ Φ ⊕ Ψ where Ψ is another
such map. The reader may check that the topological index of the adjoint
operator is given by

IND(D∗) = −IND(D).

The notation IND(D) = ker D 	 cokerD can now be justified as follows.
If the kernel and cokernel of D are of constant dimension and form actual
vector bundles overM choose a bundle E →M such that cokerD⊕E = CN
is the trivial bundle. Then there exists a map Φ : CN → Y such that
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ker Φ = E and D ⊕Φ is always onto. Hence ker (D ⊕Φ) = ker D ⊕E and
thus

IND(D) = ker D ⊕ E 	 CN = ker D 	 cokerD

as claimed. Another important observation is the fact that the K-theory
class IND(D) ∈ K(M) is invariant under homotopy and hence under
compact perturbations. Thus

IND(D +K) = IND(D)

for every map K : M → K(X,Y ) into the space of compact operators.
These facts follow directly from the definition of the topological index via
stabilization. Finally, note that there is an obvious generalization to Banach
space bundles E → M and F → M with D(p) : Ep → Fp a Fredholm
section of the bundle of linear operators. If the corresponding definition of
the topological index is applied to the finite dimensional case then

IND(D) = E 	 F.

This can be seen either by noting that the zero map is a compact pertur-
bation, or by stabilizing with CN = F ⊕F ′ and D′ : E⊕F ′⊕F → F given
by D′(x, y, y′) = y −Dx. Then kerD′ ∼= E ⊕ F ′.

A.2 Determinant line bundles

Let X and Y be Banach spaces and denote by F(X,Y ) the space of all
Fredholm operators D : X → Y . The determinant of a Fredholm operator
D ∈ F(X,Y ) is defined as the 1-dimensional real vector space

det(D) = Λmax(ker D)⊗ Λmax(ker D∗).

Our goal is to show that as D varies the vector spaces det(D) fit together
to form a locally trivial line bundle. Hence it is important to keep track of
the isomorphisms which identify different 1-dimensional vector spaces.

Think of the real line R as a 1-dimensional real vector space. For any
two 1-dimensional real vector spaces V and W we shall use the notation
V = W to mean that the spaces are naturally isomorphic. This means that
there is an obvious choice of isomorphism between them. For example, if
V is 1-dimensional there is a natural isomorphism

V ⊗ V ∗ → R : v ⊗ v∗ 7→ v∗(v).

This notion of natural isomorphism can be more precisely expressed in the
language of category theory. Denote by V the category of 1-dimensional real
vector spaces and isomorphisms. Two functors F0,F1 : C → V are called



478 FREDHOLM THEORY

naturally isomorphic if there exists a functor T : Ob(C) → Mor(V)
which assigns to every object A ∈ Ob(C) a vector space isomorphism T (A) :
F0(A)→ F1(A) such that T (B) ◦F0(T ) = F1(T ) ◦ T (A) for A,B ∈ Ob(C)
and T ∈ Mor(A,B). In all our examples the isomorphism T (A) is obvious
and we shall simply use the notation F0(A) = F1(A). The reader may
check that the notation V ⊗ V ∗ = R is an example of this convention.

The highest exterior power ΛmaxV of a finite dimensional vector
space V is the space of equivalence classes v1 ∧ . . .∧ vn of ordered n-tuples
in V , where dim V = n. Two such n-tuples v1∧. . .∧vn and w1∧. . .∧wn are
equivalent iff either both form a basis and the induced isomorphism of V
has determinant 1, or both n-tuples consist of linearly dependent vectors.
Hence a nonzero vector in ΛmaxV determines an orientation of V . When V
has dimension 0 we define ΛmaxV = R.

The tensor product V ⊗W of two 1-dimensional real vector spaces
V and W is the space of equivalence classes v⊗w of ordered pairs (v, w) ∈
V ×W where λv ⊗ w = v ⊗ λw for all λ ∈ R. Thus v1 ⊗ w1 = v2 ⊗ w2

iff there exists a number λ ∈ R such that either (v1, w2) = λ(v2, w1) or
(v2, w1) = λ(v1, w2). It follows that there is a natural isomorphism

V ⊗W = Λ2(V ⊕W )

and hence
ΛmaxV ⊗ ΛmaxW = Λmax(V ⊕W )

for any two finite dimensional real vector spaces V and W .
For every finite dimensional real vector space V there is a natural iso-

morphism
ΛmaxV ⊗ Λmax(V ∗) = R

is given by (v1 ∧ . . . ∧ vn)⊗ (v∗1 ∧ . . . ∧ v∗n) 7→ det(v∗k(vj)). This is a nonde-
generate pairing and hence Λmax(V ∗) = (ΛmaxV )∗. Since the positioning
of the parentheses makes no difference we shall use the notation ΛmaxV ∗.
This is the space of volume forms on V . Conversely, every isomorphism
ΛmaxV ⊗ ΛmaxW → R induces an isomorphism ΛmaxV → ΛmaxW ∗.

Lemma A.5 Let V be a finite dimensional vector space and W ⊂ V be a
linear subspace. Then there is a natural isomorphism

ΛmaxV = ΛmaxW ⊗ Λmax(V/W ).

Proof: Let N = dim V and n = dim W . Denote by B(V,W ) the set of
all bases v1, . . . , vN of V whose first n elements span W . For v ∈ V denote
[v] = v +W . The map B(V,W )→ ΛmaxW ⊗ Λmax(V/W ) defined by

(v1, . . . , vN ) 7→ (v1 ∧ . . . ∧ vn)⊗ ([vn+1] ∧ . . . ∧ [vN ])

induces the required isomorphism. 2
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Theorem A.6 The space

det(X,Y ) = {(D,σ) |D ∈ F(X,Y ), σ ∈ det(D)}

is a line bundle over F(X,Y ).

Proof: We must prove that the space det(X,Y ) admits a local trivializa-
tion in a neighborhood of every Fredholm operator D ∈ F(X,Y ). Assume
first that D is onto. Then there is an estimate

‖y∗‖Y ∗ ≤ c ‖D
∗y∗‖X∗ .

Hence the operator D+P : X → Y is onto whenever P is sufficiently small.
By Theorem A.4 both operators D and D + P have the same Fredholm
index and hence their kernels are of the same dimension. Now choose a right
inverse T : Y → X of D so that DT = 1lY . Then there is an isomorphism

ker (D + P )→ ker D : x 7→ x+ TPx

whenever P is sufficiently small. Hence the kernels of D + P form a lo-
cally trivial vector bundle over F(X,Y ) in a neighborhood of a surjective
Fredholm operator.

We now reduce the general case to the surjective case. First observe
that given any Fredholm operator D0 : X → Y there exists a positive
integer N and an injective linear map Φ : RN → Y such that the operator
D0 ⊕ Φ : X ⊕ RN → Y defined by

D0 ⊕ Φ(x, ζ) = D0x+ Φζ

is surjective. To see this let N = dim cokerD0 and choose y1, . . . , yN ∈ Y
which span a complement of the range of D0 in Y . Then the linear map
Φζ =

∑
j ζjyj is as required.

Let D : X → Y be a Fredholm operator such that D ⊕ Φ is onto and
consider the exact sequence

0 −→ ker D −→ ker (D ⊕ Φ) −→ imD ∩ im Φ −→ 0

where the second map is ker D → ker (D ⊕ Φ) : x 7→ (x, 0) and the third
map is ker (D ⊕ Φ) → imD ∩ im Φ : (x, ξ) 7→ Φξ = −Dx. This sequence
shows that there is a natural isomorphism

imD ∩ im Φ =
ker (D ⊕ Φ)

ker D

and hence, by Lemma A.5,
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Λmax ker (D ⊕ Φ) = Λmax(ker D)⊗ Λmax(imD ∩ im Φ). (A.3)

We claim that Λmax(imD∩ im Φ) is naturally isomorphic to Λmax(ker D∗).
To see this note first that, since Φ : RN → Y is injective, Λmaxim Φ = R.
Now use Lemma A.5 for the inclusion imD ∩ im Φ ⊂ im Φ to obtain

Λmax(imD ∩ im Φ) = Λmax

(
im Φ

imD ∩ im Φ

)∗
= Λmax

(
Y

imD

)∗
= Λmax(ker D∗).

Here the second isomorphism uses the fact that imD + im Φ = Y . The
last isomorphism uses the fact that the dual space of a quotient Y/Y1

agrees with the annihilator of Y1 in Y ∗. With Y1 = imD this annihilator is
given by the kernel of D∗. Thus we have proved that Λmax(imD ∩ im Φ) ∼=
Λmax(ker D∗). Combining this isomorphism with (A.3) we obtain

det(D) = Λmax(ker D)⊗ Λmax(ker D∗) = Λmax ker (D ⊕ Φ) = det(D ⊕ Φ)

as required. 2

Exercise A.7 Let D : X → Y be a Fredholm opertor and Φ : RN → Y
be a linear map (not necessarily injective) such that D ⊕ Φ is onto.

(i) Prove that dim kerD∗ + dim (imD ∩ im Φ) = N .

(ii) Given a basis x1, . . . , xk of ker D and a basis y∗1 , . . . , y
∗
` of kerD∗ prove

that there exists a basis ζ1, . . . , ζN of RN and vectors ξ`+1, . . . , ξN ∈ X
such that

〈y∗i ,Φζj〉 = δij , i, j = 1, . . . , `,
Dξj + Φζj = 0, j = `+ 1, . . . , N,

det(ζ1 · · · ζN ) = 1.

Prove that the map Λmax(ker D)⊗Λmax(ker D∗)→ Λmax ker (D⊕Φ) given
by

(x1 ∧ . . . ∧ xk)⊗ (y∗1 ∧ . . . ∧ y∗` )

7→ (x1, 0) ∧ . . . ∧ (xk, 0) ∧ (ξ`+1, ζ`+1) ∧ . . . ∧ (ξN , ζN )

is a well defined linear isomorphism.

(iii) Prove that the isomorphism det(D)→ det(D ⊕ Φ) of (ii) agrees with
the one constructed in the proof of Theorem A.6. 2
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Exercise A.8 Assume N = 1 so that Φ : R → Y is given by Φt = ty for
some vector y ∈ Y . Assume that both D : X → Y and D⊕Φ : X⊕R→ Y
are onto. Choose a vector ξ ∈ X such that

Dξ + y = 0

Prove that the map Λmax ker D → Λmax ker (D ⊕ Φ) given by

x1 ∧ . . . ∧ xk 7→ (x1, 0) ∧ . . . ∧ (xk, 0) ∧ (ξ, 1)

is the isomorphism of Exercise A.7. 2

A.3 Crossing numbers

To gain a better understanding of the line bundle det(X,Y )→ F(X,Y ) we
shall interprete trivializations of this line bundle along a path D : [0, 1]→
F(X,Y ) as a crossing number in the case of Fredholm index zero. Denote

F0(X,Y ) = {D ∈ F(X,Y ) | indexD = 0}

and for each integer k ≥ 0 consider the subset

F0
k (X,Y ) = {D ∈ F(X,Y ) | indexD = 0, dim ker D = k}

of Fredholm operators of index 0 with k-dimensional kernel. This is a
submanifold of codimension k2. The tangent space at the operator D ∈
F0
k (X,Y ) is given by

TDF0
k (X,Y ) = {P ∈ L(X,Y ) |Px ∈ imD for all x ∈ ker D} .

A complement of this space is the space of linear operators from the kernel
of D to a complement of the image of D. The union

F0

1(X,Y ) =
⋃
k≥1

F0
k (X,Y )

is a kind of stratified subvariety of codimension 1 whose complement (in
the space of Fredholm operators of index zero) is the space of invertible
operators.

Now consider a path [0, 1] → F0(X,Y ) : t 7→ Dt with invertible end-
points D0 and D1. Assume that the path is continuously differentiable (in
the strong operator topology) and define the operator Ḋt : X → Y by

Ḋtx =
d

dt
Dtx
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for x ∈ X. Call a point t ∈ [0, 1] a crossing if ker Dt > 0. A crossing is
called regular if

x ∈ ker Dt, Ḋtx ∈ imDt =⇒ x = 0.

This means that Ḋt maps the kernel of Dt bijectively onto a complement
of imDt. A simple crossing is a regular crossing t with Dt ∈ F0

1 (X,Y ).
Note that the operator Dt+s is invertible for small s whenever t is a regular
crossing. Hence every regular crossing is isolated. If t 7→ Dt is a path with
only regular crossings we define the crossing index to be the number

µ({Dt}) =
∑
t

dim ker Dt. (A.4)

We shall prove that the mod 2 reduction of this number is a homotopy
invariant and determines the sign of the map det(D0) → det(D1) arising
from a trivialization of the determinant line bundle det(X,Y ) along the
path t 7→ Dt. More precisely, consider the line bundle

L = {(t, σ) | t ∈ [0, 1], σ ∈ det(Dt)}

over the unit interval. A trivialization of this line bundle gives rise to an
isomorphism det(D0) → det(D1). Since the 1-dimensional vector space
det(Dt) inherits a norm from X and Y , this isomorphism can be chosen
uniquely as an isometry. Since det(D0) = det(D1) = R this isomorphism is
given by multiplication with a real number of modulus 1 which we denote
by

ν({Dt}) ∈ {±1}.

Proposition A.9 Let [0, 1]→ F0(X,Y ) : t 7→ Dt be a continuously differ-
entiable path with invertible endpoints D0 and D1 and only regular cross-
ings. Then any trivialization of the determinant line bundle over this path
gives rise to an isomorphism det(D0) = R→ det(D1) = R of sign

ν({Dt}) = (−1)µ({Dt}) =
∏
t

(−1)dim ker Dt . (A.5)

Here the product runs over all crossings t. In particular, the crossing index
mod 2 is invariant under homotopies with fixed endpoints.

Proof: Let us consider a path t 7→ Dt with a single crossing at t = 0. By
choosing a suitable splitting of X and Y we may assume without loss of
generality that X = Y = X0 ⊕ Rk and

D0 =

(
1l 0
0 0

)
, Ḋ0 =

(
A 0
B 1l

)
.
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Consider the linear map Φ : Rk → Y = X0⊕Rk given by Φz = (0, z). Then
we have

Dt ⊕ Φ =

(
1l + tA 0 0
tB t1l 1l

)
+O(t2).

Hence a trivialization of the kernels of the operators Dt ⊕ Φ is given by
embeddings ιt : Rk → X ⊕ Rk = (X0 ⊕ Rk)⊕ Rk of the form

ιt =

 0
1l
−t1l

+O(t2).

Here the two upper blocks represent theX-component of ker (Dt⊕Φ) ⊂ X⊕
Rk while the third block represents the Rk-component. Thus the induced
map

Rk → ker (D−ε ⊕ Φ)→ ker (Dε ⊕ Φ)→ Rk

is given by −1l+O(ε). This map is orientation reversing if k is odd and ori-
entation presrving if k is even. This proves the formula (A.5) in the case of
a single regular crossing. The general case is an obvious consequence. More-
over, it is an obvious consequence of the crossing formula (A.5) that the
crossing index mod 2 is a homotopy invariant. This proves the proposition.
2

It is also interesting to consider paths [0, 1]→ F0(X,Y ) : t 7→ Dt where
the operators D0 and D1 are not invertible. Suppose that the crossings at
t = 0 and t = 1 are regular. This means that the linear operator Ḋ0 maps
the kernel of D0 bijectively onto a complement of the image of D0

imD0 ⊕
{
Ḋ0ξ | ξ ∈ ker D0

}
= Y,

and similarly for D1. It follows that the operators Ḋ0 and Ḋ1 determine
nonzero elements

σ(Ḋ0) ∈ det(D0), σ(Ḋ1) ∈ det(D1)

which can be defined as follows. Choose bases ξ1, . . . , ξk of ker D0 and
η1, . . . , ηk of ker D0

∗ such that

〈ηi, Ḋ0ξj〉 = δij

and define

σ(Ḋ0) = (ξ1 ∧ . . . ∧ ξk)⊗ (η1 ∧ . . . ∧ ηk) ∈ det(D0).

It is easy to see that this vector is independent of the choice of the bases.
If D0 is invertible we use the convention σ(Ḋ0) = 1 ∈ det(D0) = R and
similarly for D1.
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Proposition A.10 Let [0, 1] → F0(X,Y ) : t 7→ Dt be a continuously
differentiable path with only regular crossings. Then a trivialization of the
determinant bundle gives rise to an isomorphism

det(D0)→ det(D1) : σ(Ḋ0) 7→ ν({Dt})σ(Ḋ1)

where
ν({Dt}) =

∏
0≤t<1

(−1)dim ker Dt .

Here the product runs over all crossings t including the one at t = 0 but
excluding the one at t = 1.

Proof: Let us first consider paths with a single crossing at t = 0. Given
any linear map Φ : Rk → Y such that D0⊕Φ is onto we must examine the
composition

det(D0)→ Λmax ker(D0)→ Λmax ker(Dε ⊕ Φ)→ ΛmaxRk = R

where the second map arises from a trivialization of the vector bundle
Lt = ker (Dt⊕Φ) and the last map is induced by the obvious isomorphism
ker(Dε ⊕ Φ) → Rk : (ξ, z) 7→ z. The first map arises from the fact that
imD0 ⊕ im Φ = Y and can be explicitly described as follows. If η1, . . . , ηk
is a basis of ker D∗, choose a dual basis y1, . . . , yk ∈ im Φ and define

Λmax ker D0
∗ → R : η1 ∧ . . . ∧ ηk 7→

1

det(Φ−1y1, . . . ,Φ−1yk)
.

This map is easily seen to be linear. If ξ1, . . . , ξk ∈ kerD0 and η1, . . . , ηk ∈
ker D0

∗ are chosen as above with 〈ηi, Ḋ0ξj〉 = δij , and Φ : Rk → Y is
defined by

Φz =

k∑
j=1

zjḊ0ξj

then the map Λmax ker D0
∗ → R sends η1∧ . . .∧ηk to 1. Hence in this case

the map det(D0)→ Λmax ker D0 sends σ(Ḋ0) to ξ1 ∧ . . . ∧ ξk.
Now assume that Dt = D0 + tḊ0. Then

ker (Dt ⊕ Φ) =
{

(ξ, z) ∈ X × Rk | ξ ∈ ker D0, zj = −t〈ηj , Ḋ0ξ〉
}

A trivialization of these kernels on the interval [0, 1] gives rise to the map

ker D0 → Rk : ξ 7→ −

 〈η1, Ḋ0ξ〉
...

〈ηk, Ḋ0ξ〉

 .
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Hence the map ker D0 → Rk sends the basis ξ1, . . . , ξk to minus the stan-
dard basis of Rk. Hence the resulting map Λmax → R sends ξ1 ∧ . . .∧ ξk to
(−1)k. Since the first map det(D0)→ Λmax ker D0 sends σ(Ḋ0) to ξ1∧ . . .∧
ξk the proposition is proved in the case of an affine path Dt = D0 + tḊ0.
The general case is an easy consequence since Dt − D0 − tḊ0 = O(t2).
Thus we have proved that the crossing at t = 0 contributes the factor
(−1)dim ker D0 to the map det(D0) → det(D1). That the crossing at t = 1
does not contribute follows from the same argument with t replaced by −t.
The contributions of the intermediate crossings 0 < t < 1 are given by
Proposition A.9. This completes the proof. 2

Exercise A.11 Prove that the formula of Proposition A.10 is consistent
with reversing time, i.e. compare the paths t 7→ Dt and t 7→ D1−t. 2

Remark A.12 If X = Y = H is an infinite dimensional Hilbert space
then it is easy to construct a loop of Fredholm operators of index zero
with crossing number 1. Choose an orthonormal basis e0, e1, e2, . . .. For
0 ≤ t ≤ 1/2 define At ∈ L(H) to be a rotation by angle 2πt in the
(e2j , e2j+1)-planes for j ≥ 0 so that A0 = id and A1/2 = −id. Then for
1/2 ≤ t ≤ 1 define At ∈ L(H) to be a rotation by angle 2πt in the
(e2j−1, e2j)-planes for j ≥ 1 so that

A1x = −〈e0, x〉e0 +

∞∑
j=1

〈ej , x〉ej .

Now connect A1 to the identity by a straight line. The resulting loop t 7→ At
has a single crossing with crossing index one. Hence the determinant bundle
over the space of Fredholm operators on H (of index zero) does not admit
a trivialization. 2

Exercise A.13 Construct a loop of surjective Fredholm operators of in-
dex 1 whose kernels form a Moebius band. The existence of such a loop
shows that the above correspondence between trivializations of determinant
bundles and crossing numbers does not have an obvious generalization to
operators of nonzero Fredholm index. 2

Exercise A.14 Suppose that X and Y are complex Banach spaces and
[0, 1] → F(X,Y ) : t 7→ Dt is a path of Fredholm operators which are all
complex linear. Then the one dimensional real vector space det(Dt) inherits
a natural orientation from the complex structures of ker Dt and ker Dt

∗.
Prove that any trivialization of the real line bundle⋃

t

det(Dt)

gives rise to an orientation preserving isomorphism
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det(D0)→ det(D1).

Hints: Consider the complex line bundle

detc(X,Y ) −→ Fc(X,Y )

whose fiber over a complex linear Fredholm operator D ∈ Fc(X,Y ) is the
1-dimensional complex vector space

detc(D) = Λmax
C ker D ⊗C Λmax

C ker D∗.

Here D∗ : Y ∗ → X∗ denotes the real adjoint operator and if J : X → X is
multiplication by i then the complex structure on X∗ is given by the dual
operator J∗ : X∗ → X∗. Show that the proof of Theorem A.6 carries over
to the complex category and hence detc(X,Y ) is a locally trivial complex
line bundle over Fc(X,Y ). Now for every finite dimensional complex vector
space V there is a natural quadratic map

Λmax
C V → Λmax

R V : τ 7→ in(−1)
n(n−1)

2 τ ∧ τ̄ .

where τ̄ ∈ Λmax
C V̄ . Here V̄ denotes the vector space with the opposite

complex structure and both Λmax
C V and Λmax

C V̄ are natural linear subspaces
of Λmid

R V ⊗ C. With these conventions the above map sends v1 ∧ . . . ∧ vn
to v1 ∧ (Jv1) ∧ . . . ∧ vn ∧ (Jvn). 2



APPENDIX B

TRANSVERSALITY

This appendix provides the necessary analytical background material
for the proof that moduli spaces form smooth finite dimensional manifolds.
The first section is devoted to the inverse and implicit function theorems
on infinite dimensional Banach spaces. The Kuranishi model can be viewed
as a kind of extension of the implicit function theorem which reduces the
local analysis of the zero set of a Fredholm map near a singular point to
a finite dimensional model. This is discussed in Section B.2 along with
Furuta’s technique for obtaining a global Kuranishi model. As in the finite
dimensional case the theorem of Sard plays a crucial role in proving the
existence of a regular value. Smale’s extension of this result to the infinite
dimensional setting is proved in Section B.3. The final section deals with
applications to transversality problems.

B.1 Implicit function theorem

Let X and Y be Banach spaces and f : X → Y be a smooth map. For every
x ∈ X denote by df(x) : X → Y the differential of f at x. If this operator
is bijective then its inverse df(x)−1 : Y → X is a bounded linear operator
by the open mapping theorem. The inverse function theorem asserts that
f has a local inverse near every point x at which df(x) is invertible. Denote
by BXr (x) the open ball of radius r centered at x in the Banach space X.
Abbreviate BXr = BXr (0).

Theorem B.1. (Inverse function theorem) Let f : X → Y be con-
tinuously differentiable. Suppose that the linearized operator D = df(x0) :
X → Y has a bounded inverse. Choose constants c > 0 and δ > 0 such that∥∥D−1

∥∥ ≤ c, ‖df(x)−D‖ ≤ 1

2c

for ‖x− x0‖X < δ. Then the following holds.

(i) The restriction of f to U = BXδ (x0) is injective and f(U) = V is an
open set in Y containing the ball BYδ/2c(f(x0)).

(ii) The inverse map f−1 : V → U is continuously differentiable with
df−1(y) = df(f−1(y))−1 for y ∈ V . Moreover, if f is of class C` for some
integer ` then so is f−1.

(iii) If x1, x2 ∈ BXδ (x0) then ‖x1 − x2‖ ≤ 2c ‖f(x1)− f(x2)‖ .



488 TRANSVERSALITY

Lemma B.2 Let X be a Banach spaces and ψ : X → X be a continuously
differentiable map such that ψ(0) = 0 and

‖1l− dψ(x)‖ ≤ γ

for all x ∈ X with ‖x‖ < R for some constant γ < 1. Then the restriction
of ψ to BR is injective, ψ(BR) is an open set, and ψ−1 : ψ(BR) → BR is
continuously differentiable with dψ−1(y) = dψ(ψ−1(y))−1. Moreover,

BR(1−γ) ⊂ ψ (BR) ⊂ BR(1+γ).

Proof: Consider the map ϕ = id− ψ : X → X. Then ‖dϕ(x)‖ ≤ γ for all
x ∈ X with ‖x‖ < R and hence ϕ is a contraction:

‖ϕ(x1)− ϕ(x2)‖ ≤ γ ‖x1 − x2‖ .

This implies

‖ψ(x1)− ψ(x2)‖ ≤ ‖x1 − x2‖+ ‖ϕ(x1)− ϕ(x2)‖ ≤ (1 + γ) ‖x1 − x2‖ ,

‖ψ(x1)− ψ(x2)‖ ≥ ‖x1 − x2‖ − ‖ϕ(x1)− ϕ(x2)‖ ≥ (1− γ) ‖x1 − x2‖

for x1, x2 ∈ BR. The first inequality shows that ψ(BR) ⊂ BR(1+γ) and the
second inequality shows that ψ is injective on BR. Now let y ∈ BR(1−γ)

and consider the map x 7→ ϕ(x)+y. This is a contraction of the closed ball
of radius R − ε where ‖y‖ = (1 − γ)(R − ε). Hence it has a unique fixed
point x with ‖x‖ ≤ R − ε. But the equation ϕ(x) + y = x is equivalent to
ψ(x) = y. This shows that BR(1−γ) ⊂ ψ(BR).

Now let y = ψ(x) with x ∈ BR. Choose ε > 0 such that Bε(x) ⊂ BR.
Then

Bε(1−γ)(ψ(x)) ⊂ ψ(Bε(x)) ⊂ ψ(BR)

and hence the set ψ(BR) is open. The same argument with ε arbitrarily
small shows that ψ−1 is continuous. It remain to prove that ψ−1 is continu-
ously differentiable. To see this fix a point x0 ∈ BR and denote y0 = ψ(x0),
D = dψ(x0). Then ‖1l−D‖ ≤ γ and hence D has an inverse

D−1 =

∞∑
k=0

(1l−D)k,
∥∥D−1

∥∥ ≤ 1

1− γ
.

Since ψ is continuously differentiable there exists, for every ε > 0, a δ > 0
such that if x ∈ BR with ‖x− x0‖ < δ/(1− γ) then

‖ψ(x)− ψ(x0)−D(x− x0)‖ ≤ ε(1− γ)2 ‖x− x0‖ .
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Choose δ so small that Bδ(y0) ⊂ ψ(BR). Then ‖y − y0‖ < δ implies x =
ψ−1(y) ∈ BR and ‖x− x0‖ < δ/(1− γ). Hence∥∥ψ−1(y)− ψ−1(y0)−D−1(y − y0)

∥∥ =
∥∥D−1 (y − y0 −D(x− x0))

∥∥
≤ 1

1− γ
‖ψ(x)− ψ(x0)−D(x− x0)‖

≤ ε(1− γ) ‖x− x0‖
≤ ε ‖y − y0‖ .

This shows that ψ−1 is differentiable at y0 with dψ−1(y0) = D−1 =
dψ(ψ−1(y0))−1. 2

Proof of Theorem B.1: Assume without loss of generality that x0 = 0
and f(0) = 0. Consider the map ψ : U = BXδ → X given by

ψ(x) = D−1f(x).

Its differential satisfies 1l− dψ(x) = 1l−D−1df(x) = D−1(D − df(x)) and
hence

‖1l− dψ(x)‖ ≤ c‖D − df(x)‖ ≤ 1

2

for x ∈ BXδ . Hence it follows from Lemma B.2 with R = δ and γ = 1/2 that
ψ has a continuously differentiable inverse on BXδ with ψ(BXδ ) an open set
containing BXδ/2. Thus

f(BXδ ) = Dψ(BXδ ) ⊃ DBXδ/2 ⊃ B
Y
δ/2c

and the required inverse of f is given by f−1(y) = ψ−1(D−1y). It is con-
tinuously differentiable and the formula df−1(y) = df(f−1(y))−1 follows
easily from the chain rule. Since df is continuous so is df−1. This proves (i)
and (ii) with ` = 1. The last assertion in (ii) follows by induction. To
prove (iii) note that

‖x1 − x2‖ ≤ 2 ‖ψ(x1)− ψ(x2)‖ ≤ 2c ‖f(x1)− f(x2)‖ .

Here the first inequality is taken from the proof of Lemma B.2 and the
second follows from the fact that f = D ◦ ψ and ‖D−1‖ ≤ c. 2

A smooth map f : X → Y between Banach spaces is called Fredholm
if the linearized operator df(x) : X → Y is Fredholm for every x ∈ X.
Since the Fredholm index is invariant under small perturbations the index
of df(x) is independent of the choice of x. It will be denoted by index f .
For any smooth map f : X → Y , Fredholm or not, a vector y ∈ Y is called
a regular value of f if df(x) : X → Y is onto and has a right inverse for
every x ∈ f−1(y). The implicit function theorem asserts that f−1(y) is a
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smooth manifold for every regular value of f . Moreover, if f is a Fredholm
map then the dimension of f−1(y) is finite and agrees with the Fredholm
index of f .

Theorem B.3. (Implicit function theorem) If f : X → Y is of class
C` and y is a regular value of f then

M = f−1(y) ⊂ X

is a C` Banach manifold. If, moreover, f is a Fredholm map then M is
finite dimensional and

dim M = index f.

If x0 ∈ M then, by assumption, the operator D = df(x0) : X → Y is
surjective and has a right inverse T : Y → X such that DT = idY . The
existence of such an inverse is equivalent to the existence of a splitting

X = ker D ⊕ imT.

Here ker D consists of the solutions of the linearized equation df(x0)ξ = 0
and we expect the space of solutions of the full nonlinear equations to look
like the kernel of D locally near x0. More precisely, the implicit function
theorem asserts that there exists a smooth map ϕ : ker D → Y with
dϕ(0) = 0 such that

f(x) = 0 ⇐⇒ x = x0 + ξ + Tϕ(ξ), Dξ = 0

for x near x0. (See Figure B.1.) The implicit function theorem also asserts
that if x0 is an approximate solution of f(x0) ' 0 and the inverse of f is
uniformly bounded near x0 then there exists a true solution of f(x) = 0
near x0. More precisely, we have the following result.

Fig. B.1. Implicit function theorem

Proposition B.4 Let f : X → Y be a continuously differentiable map
between Banach spaces. Suppose that D = df(x0) : X → Y is onto with a
right inverse T : Y → X such that
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‖T‖ ≤ c, ‖df(x)−D‖ ≤ 1

2c
(B.1)

whenever ‖x− x0‖ ≤ δ. Suppose further that x1 ∈ X satisfies

‖f(x1)‖ < δ

4c
, ‖x1 − x0‖ <

δ

8
. (B.2)

Then there exists a unique x ∈ X such that f(x) = 0, x − x1 ∈ imT , and
‖x− x0‖ ≤ δ. Moreover, ‖x− x1‖ ≤ 2c ‖f(x1)‖ .

Proof: Consider the map ψ : X → X defined by

ψ(x) = x+ T (f(x)−Dx).

Then 1l− dψ(x) = −T (D − df(x)) and hence, by (B.1),

‖1l− dψ(x)‖ ≤ c‖df(x)−D‖ ≤ 1/2

for ‖x − x0‖ < δ. By Lemma B.2, ψ maps Bδ(x0) bijectively onto some
open set in X with Bδ/2(ψ(x0)) ⊂ ψ(Bδ(x0)). Now, by (B.2),

‖x1 − TDx1 − ψ(x0)‖ = ‖ψ(x1)− ψ(x0)− Tf(x1)‖
≤ 2‖x1 − x0‖+ c‖f(x1‖
≤ δ/2.

Hence there exists a unique x ∈ Bδ(x0) with ψ(x) = x1−TDx1. The latter
is equivalent to f(x) = 0 and x− x1 ∈ ker (1l− TD) = imT . Moreover, the
proof of Lemma B.2 shows that

‖x− x1‖ ≤ 2‖ψ(x)− ψ(x1)‖ = 2‖Tf(x1)‖ ≤ 2c‖f(x1)‖.

This proves the proposition. 2

Proof of Theorem B.3: Suppose that T is a right inverse of D = df(x0)
where f(x0) = 0. Then (B.1) is satisfied for c ≥ 1 sufficiently large and
δ > 0 sufficiently small. Moreover, if ξ ∈ ker D with ‖ξ‖ ≤ δ/8 then
x1 = x0 + ξ satisfies (B.2). Hence for any such ξ there exists a unique
x ∈ Bδ(x0) with

f(x) = 0, x− x0 − ξ ∈ imT.

Since T is injective there exists a unique ϕ(ξ) ∈ Y such that

x = x0 + ξ + Tϕ(ξ).

Let ψ be as in the proof of Proposition B.4. Then
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ϕ(ξ) = Dψ−1(x0 − TDx0 + ξ)−Dx0. (B.3)

To see this note that ψ(x) = x0 − TDx0 + ξ and hence x0 + ξ + Tϕ(ξ) =
ψ−1(x0 − TDx0 + ξ). Now apply D to both sides of the equation and use
DT = idY . By Theorem B.1, ϕ is of class C`. The formula dϕ(0) = 0 is a
simple exercise. Moreover, if ‖x− x0‖ < ε = δ/8(1 + c‖D‖) and f(x) = 0,
write x−x0 = ξ+Tη with ξ ∈ ker D and η ∈ Y . Then ξ = (1l−TD)(x−x0)
and hence ‖ξ‖ < δ/8 and thus η = ϕ(ξ). This shows that f−1(0) ∩ Bε(x0)
is the image of the C`-chart ξ 7→ x0 + ξ + Tϕ(ξ) defined on some open
subset of ker D. This proves Theorem B.3. 2

In the Banach space setting the existence of a right inverse does not
follow from the fact that D is onto. Such a right inverse exists if and only
if the kernel of D has a complement in X. In particular, every surjective
Fredholm operator has a right inverse. This generalizes to operators of the
form D ⊕ L : X ⊕ Z → Y defined by

D ⊕ L(x, z) = Dx+ Lz

where D : X → Y is Fredholm.

Lemma B.5 Assume D : X → Y is a Fredholm operator and L : Z → Y
is a bounded linear operator such that D ⊕ L : X ⊕ Z → Y is onto. Then
D⊕L has a right inverse. Moreover, the projection Π : ker(D⊕L)→ Z is
a Fredholm operator with ker Π ∼= ker D and coker Π ∼= cokerD and hence

index Π = indexD.

Proof: Choose a complement X1 of ker D in X and finitely many vectors
z1, . . . , zN ∈ Z such that Lz1, . . . , LzN span a complement of imD in Y .
Then a right inverse of D ⊕ L is the operator

Y → X ⊕ Z : y 7→

(
x,

N∑
ν=1

λνzν

)

where x and λ1, . . . , λN are chosen such that

x ∈ X1, y = Dx+

N∑
ν=1

λνLzν .

Now ker Π = ker D ⊕ 0 and im Π = L−1(imD) and hence

Z

im Π
=

Z

L−1(imD)
=

imL

imD ∩ imL
=

Y

imD
.

The second isomorphism is induced by L and the last equality follows from
the fact that imD + imL = Y . 2
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Exercise B.6 Let X be an infinite dimensional Banach space. In contrast
to the finite dimensional case a C∞ smooth function ϕ : X → R which
vanishes outside the unit ball need not be bounded (even though every point
in X has a neighbourhood in which the function is bounded). Construct an
example of an unbounded smooth function with support in the unit ball.
Hint: There is an infinite sequence of pairwise disjoint balls of radius 1/4
which are all contained in the unit ball of radius 1. 2

B.2 The Kuranishi model

The Kuranishi model gives a local description for the zero set of a smooth
map f : X → Y between two Banach spaces. Assume that f(0) = 0 and
denote D = df(0) : X → Y. By assumption, D is a bounded linear operator.
A pseudo-inverse of D is a bounded linear operator T : Y → X which
satisfies

TDT = T, DTD = D.

The next proposition gives a necessary and sufficient criterion for the ex-
istence of a pseudo-inverse. It shows, in particular, that every Fredholm
operator admits a pseudo-inverse.

Proposition B.7 A bounded linear operator D : X → Y admits a pseudo-
inverse if and only if D satisfies the following

(i) D has closed range,

(ii) The kernel of D has a complement in X.

(iii) The image of D has a complement in Y .

Proof: Assume first that D satisfies (i), (ii) and (iii), denote

X0 = ker D, Y1 = imD,

and choose complements X1 and Y0 so that

X = X0 ⊕X1, Y = Y0 ⊕ Y1.

Then X1 and Y1 are Banach spaces and the restriction of D to X1 deter-
mines a bijective bounded linear operator D1 : X1 → Y1. The reader may
check that the operator T : Y → X defined by

T (y0 + y1) = D1
−1y1

for y0 ∈ Y0 and y1 ∈ Y1 is a pseudo-inverse. Conversely, if T : Y → X is a
pseudo-inverse of D then the required complements are given by

X1 = imT, Y0 = ker T.
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To see this just note that

P = TD : X → X, Q = DT : Y → Y

are projection operators with imP = imT , ker P = ker D and imQ =
imD, ker Q = ker T . This proves the proposition. 2

Remark B.8 Let G be a compact Lie group acting on the Banach spaces
X and Y by strongly continuous maps G → L(X) : g 7→ Φg and G →
L(Y ) : g 7→ Ψg. Suppose that D : X → Y is an equivariant bounded
linear operator. If D admits a pseudo-inverse then it admits an equivariant
pseudo-inverse. To see this note that if T is any pseudo-inverse of D then
the operator

Tg = ΦgTΨg
−1

is also a pseudo-inverse. Hence the average

S =

∫
G

Tg dµ(g),

with respect to the Haar measure dµ on G with Vol(G) = 1, is equivariant
and satisfies DSD = D. It follows that the operator

R = SDS =

∫
G

∫
G

TgDTh dµ(g)dµ(h)

is an equivariant pseudo-inverse of D. 2

Theorem B.9. (Kuranishi) Let X and Y be Banach spaces and f : X →
Y be a smooth map such that f(0) = 0. Suppose that the operator D =
df(0) : X → Y has a pseudo-inverse T : Y → X and denote

Y0 = ker T.

Then there exist an open neighbourhood U of 0 in X, a local diffeomorphism
g : U → g(U) ⊂ X, and a smooth map f0 : U → Y0 such that

f ◦ g(x) = Dx+ f0(x)

for x ∈ U and

g(0) = 0, dg(0) = 1l, f0(0) = 0, df0(0) = 0.

Moreover, if f is equivariant with respect to the action of some compact Lie
group G on X and Y then the maps g and f0 can be chosen equivariant.
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Proof: Consider the smooth map ψ : X → X defined by

ψ(x) = x+ T (f(x)−Dx).

This map satisfies
ψ(0) = 0, dψ(0) = 0.

Hence it follows from the inverse function theorem B.1 that ψ has a local
inverse defined on some open neighbourhood U of 0. Define g : U → X and
f0 : U → Y0 by

g = ψ−1, f0 = (1l−DT ) ◦ f ◦ ψ−1.

Then the formula

Dψ(x) = Dx+DT (f(x)−Dx) = DTf(x)

shows that
D = DT ◦ f ◦ ψ−1

and hence

f ◦ g = f ◦ ψ−1 = D + (1l−DT ) ◦ f ◦ ψ−1 = D + f0.

If f is equivariant choose an equivariant pseudo-inverse T of D (see Re-
mark B.8). Then the above formulae show that g and f0 are also equivari-
ant. This proves the theorem. 2

Remark B.10 Let g and f0 be as in Theorem B.9. Then the local zero
set of f near x = 0 can be identified with the zero set of f0 : U ∩X0 → Y0

where X0 = ker D:

f−1(0) ∩ g(U) = {g(x) |x ∈ U, Dx = 0, f0(x) = 0} .

To see this just note that f0(x) ∈ Y0 where Y0 is a complement of the image
of D and hence

Dx+ f0(x) = 0 ⇐⇒ Dx = 0, f0(x) = 0.

This observation is particularly interesting when D is a Fredholm operator.
In this case the kernel and cokernel of D are finite dimensional and hence
f0 : X0 → Y0 is a smooth map between finite dimensional vector spaces. 2

Remark B.11 If f = D + f̂ where f̂ : X → Y is a quadratic map then
the proof of Theorem B.9 shows that

g−1 − 1l = T ◦ f̂ , f0 ◦ g−1 = (1l−DT ) ◦ f̂

are quadratic maps. 2
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Global Kuranishi model

It is sometimes interesting to find a global Kuranishi model. Such models
were used by Furuta in his proof of the 10/8-conjecture. (See Chapter 9.)
The following discussion explains Furuta’s construction in a more abstract
setting. Suppose that

Pn : X → X, Qn : Y → Y

are sequences of projection operators such that

DPn = QnD, TQn = PnT, imQn ⊂ imD, ker D ⊂ ker Pn,

and

lim
n→∞

Pnx = 0, lim
n→∞

Qny = 0

for all x ∈ X and y ∈ Y . Then one can define the functions ψn, gn, fn as
in the proof of Theorem B.9 with P = TD replaced by Pn and Q = DT
replaced by Qn. Thus

ψn(x) = x+ TQn(f(x)−Dx).

and

gn = ψn
−1, fn = (1l−Qn) ◦

(
D + (f −D) ◦ ψn−1

)
.

One checks easily as in the proof of Theorem B.9 that

f ◦ gn = QnD + fn

and that the zero set of f on gn(Un) is the image of the zero set of the
restriction fn : Xn → Yn where Xn = ker Pn and Yn = ker Qn. Thus

f−1(0) ∩ gn(Un) = {gn(x) |x ∈ Xn ∩ Un, fn(x) = 0} .

Here the set Un ⊂ X is the domain of the inverse of ψn. The key point is
that if the operators df(x)−D are uniformly compact then these domains
will in the limit fill out the whole Banach space X. To see this note that

dψn(x) = 1l− TQn(df(x)−D).

If f is of class C1 then the map X → L(X,Y ) : x 7→ df(x)−D is continuous
in the uniform operator topology. Moreover the sequence Qn converges to
zero in the strong operator topology and since the operators df(x)−D are
uniformly compact it follows that the composition Qn(df(x)−D) converges
to zero in the norm topology.
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Lemma B.12 Let X, Y , Z be Banach spaces and Qn : Y → Z be a
sequence of bounded linear operators such that

lim
n→∞

Qny = 0

for all y ∈ Y . Moreover, let {Kα}α∈A be a collection of bounded linear
operators Kα : X → Y , indexed by a set A, such that the set

B = {Kαx |α ∈ A, x ∈ X, ‖x‖ ≤ 1} ⊂ Y

has compact closure. Then

lim
n→∞

sup
α
‖QnKα‖L(X,Z) = 0.

Proof: By the uniform boundedness principle, there exists a constant
c > 0 such that

‖Qn‖L(Y,Z) ≤ c
for every n. Given ε > 0 cover the set B by finitely many balls of radius
ε/2c centered at y1, . . . , yN . Now choose n0 ∈ N such that

‖Qnyj‖Z ≤
ε

2

for j = 1, . . . , N and n ≥ n0. Given α ∈ A and x ∈ X with ‖x‖ ≤ 1 choose
a j with ‖yj −Kαx‖ ≤ ε/2c. Then

‖QnKαx‖ ≤ ‖Qn‖ ‖Kαx− yj‖+ ‖Qnyj‖ ≤ c ‖Kαx− yj‖+
ε

2
≤ ε.

Hence ‖QnKα‖ ≤ ε for α ∈ A and n ≥ n0. This proves the lemma. 2

Now suppose that the operators df(x) − D are uniformly compact in
the ball of radius R. Then the previous lemma shows that there exists an
integer n such that

‖x‖ ≤ R =⇒ ‖1l− dψn(x)‖ ≤ 1/2.

Lemma B.2 now shows that ψn has an inverse on the entire ball of radius
R with

ψn(BR(1−γ)/(1+γ)) ⊂ BR(1−γ) ⊂ ψn (BR) .

This will be of particular interest if the zero set of f is contained in the
ball of radius R(1− γ)(1 + γ)−1.

B.3 Sard-Smale theorem

The following infinite dimensional version of Sard’s theorem is due to
Smale [113].
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Theorem B.13. (Sard-Smale) Let X and Y be separable Banach spaces
and U ⊂ X be an open set. Suppose that f : U → Y is a C∞ smooth
Fredholm map. Then the set

Yreg = {y ∈ Y | im df(x) = Y for all x ∈ U with f(x) = y}

of regular values of f is of the second category in the sense of Baire (a
countable intersection of open and dense sets).

The separability condition is essential. A Banach space X is called sep-
arable if it admits a dense sequence. Since every metric space is paracom-
pact so is every Banach space. This means that every open cover of X
admits a locally finite refinement. In the separable case every locally finite
cover is countable.∗ Since the existence of a countable refinement implies
the existence of a countable subcover this proves the following.

Proposition B.14 Let X be a separable Banach space. Then every open
cover of X admits a countable subcover.

Proof of Theorem B.13: By Proposition B.14 it suffices to prove that
every point x ∈ U admits a closed neighbourhood V such that the set
of regular values of the restriction f |V is open and dense in Y . Assume
without loss of generality that 0 ∈ U and consider a local Kuranishi model

f ◦ g = D + f0

near x = 0 where D = df(0), T : Y → X is a pseudo-inverse of D, g : W →
X is a local diffeomorphism defined in a bounded closed neighbourhood W
of 0 and f0 : W → ker T is a smooth map. Recall that there are splittings

X = X0 ⊕X1, Y = Y0 ⊕ Y1

with
X0 = ker D, X1 = imT, Y0 = ker T, Y1 = imD.

Think of g : W → X as a coordinate chart on X and write the equation
f(g(x)) = y in the form

y0 = f0(x0, x1), y1 = D1x1,

for x = x0 + x1 ∈ W with xi ∈ Xi. Here D1 : X1 → Y1 denotes the
restriction of D to X1. It follows from this description that y = y0 + y1 is
a regular value of f |g(W ) if and only if y0 is a regular value of the map

∗If the cover {Uα}α is locally finite and {xi}i is a dense sequence then the set of

pairs (α, i) with xi ∈ Uα is countable. Since every Uα contains some point xi the map
(α, i) 7→ α is surjective.
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x0 7→ f0(x0, D1
−1y1)

defined on the closed set of all x0 ∈ X0 with x0 + D1
−1y1 ∈ W . Hence it

follows from the finite dimensional version of Sard’s theorem that the set
of regular values of f |g(W ) is dense in Y . We prove that this set is open.
Let yν = yν,0 + yν,1 ∈ Y be a sequence of singular values of f |g(W ) which
converges to y. Choose xν ∈ W with f(g(xν)) = yν such that df(g(xν)) is
not surjective. Then the sequence xν,1 = TDxν = Tyν converges and, since
W is bounded, the sequence xν,0 = xν−TDxν ∈ ker D is bounded. Passing
to a subsequence we may assume that xν,0 converges as well, and hence, so
does xν = xν,0 +xν,1. Since W is closed, the limit point x = limν→∞ xν lies
again in W and f(g(x)) = y. Moreover, df(g(x)) is the limit of operators
with a nontrivial cokernel and hence cannot be surjective. Hence y is a
singular value of f |g(U0). This shows that the set of regular values of the
restriction f : g(W ) → Y is open and dense in Y . Thus the theorem is
proved. 2

Recall that in Sard’s theorem for finite dimensional manifolds the de-
gree of smoothness required depends on the difference of the dimensions
of the source manifold X and the target manifold Y . In the above proof
this theorem is applied to the function f0 : ker D → cokerD. Hence The-
orem B.13 continues to hold for functions of class C` for some finite, but
sufficiently large, number ` which depends on the Fredholm index of f0.
More precisely, ` must nmust be at least 1 and ` ≥ index(f0) + 2.

B.4 Thom-Smale transversality

Let X be an n-dimensional smooth manifold and

π : E → X

be an m-dimensional real vector bundle. A smooth section f : X → E is
said to be transversal to the zero section if the linear map

Df(x) = Π(x) ◦ df(x) : TxX → Ex

is onto for every zero x ∈ X of f . Here df(x) : TxX → T(x,f(x))E denotes
the differential of f and Π(x) : T(x,0)E → Ex denotes the projection onto
the vertical subspace Ex ⊂ T(x,0)E. This projection is well defined since the
tangent space T(x,0)E at a point (x, 0) in the zero section splits naturally
as T(x,0)E = TxX ⊕ Ex.

Proposition B.15 If f is transversal to the zero section then the set

M(f) = {x ∈ X | f(x) = 0}

is a submanifold of X of dimension n−m. The tangent space to M(f) at
x is given by TxM(f) = ker Df(x).
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The proof is an application of the implicit function theorem and reduces
to a simple exercise in local coordinates which is left to the reader. Now let
Z be an N -dimensional manifold (the parameter space) and

π : E → X × Z

be a real vector bundle of rank m. Let F : X ×Z → E be a section of this
bundle and denote by ιz : X → X × Z the inclusion ιz(x) = (x, z). Think
of Ez = ιz

∗E as the restriction of E to X × {z} and consider the section
fz = ιz

∗F : X → Ez defined by

fz(x) = F (x, z).

If F is transversal to the zero section then the space

M(F ) = {(x, z) ∈ X × Z |F (x, z) = 0}

is a manifold of dimension n − m + N . It intersects X × {z} in the set
M(fz).

Proposition B.16 Assume that F : X ×Z → E is transversal to the zero
section. Then z ∈ Z is a regular value of the projection π :M(F ) → Z if
and only if fz is transversal to the zero section.

Proof: The differential of F at a zero (x, z) ∈ M(F ) can be written as a
sum

DF (x, z)(ξ, ζ) = Dfz(x)ξ +DzF (x, z)ζ

for ξ ∈ TxX and ζ ∈ TzZ. Since F is transversal to the zero section this
map is onto for every (x, z) ∈ M(F ). By Proposition B.16 the tangent
space toM(F ) at (x, z) is the set of all pairs (ξ, ζ) ∈ TxX×TzZ such that

Dfz(x)ξ +DzF (x, z)ζ = 0. (B.4)

Now the differential dπ(x, z) : T(x,z)M(F )→ TzZ is just the map (ξ, ζ) 7→
ζ. Hence dπ(x, z) is onto if and only if for every η ∈ TzZ there exists a
ξ ∈ TxX such that (B.4) is satisfied. But this means that

imDzF (x, z) ⊂ imDfz(x).

By assumption imDzF (x, z) + imDfz(x) = Ex. Hence dπ(x, z) is onto if
and only if Dfz(x) is onto. This proves the proposition. 2

If M(F ) satisfies the second axiom of countability (can be covered by
an atlas consisting of countably many charts) then it follows from Sard’s
theorem that the set Zreg of regular values of π is of the second category
in the sense of Baire (a countable intersection of open and dense sets).
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In particular the set is dense. By Propositions B.15 and B.16 M(fz) is
a manifold for every z ∈ Zreg. Moreover, the following proposition shows
that, if the parameter manifold Z is connected, then for any two regular
values z0 and z1 the manifolds Mz0 and Mz1 are cobordant.

Proposition B.17 Assume that fz0 and fz1 are transversal to the zero
section. Denote by Z the set of all smooth paths z : [0, 1]→ Z with z(0) = z0

and z(1) = z1. There exists a set Zreg ⊂ Z of the second category in the
sense of Baire such that for every z = {zt} ∈ Z the space

M({zt}) = {(t, x) | t ∈ [0, 1], F (x, zt) = 0}

is a smooth manifold of dimension n−m+ 1 with boundary

∂M({zt}) =M(z1)−M(z0).

Here the minus sign indicates the reversal of orientation.

Proof: Denote by Z` the space of C`-paths z : [0, 1]→ Z with z(0) = z0

and z(1) = z1. Then there is a vector bundle

E` → [0, 1]×X ×Z`

whose fiber over (t, x, {zt}) is the space Ex,zt . This bundle has a section

F : [0, 1]×X ×Z` → E`

given by F(t, x, {zt}) = F (x, zt). We prove that this map is transverse to
the zero section: if F(t, x, {zt}) = 0 then the differential DF(t, x, {zt}) :
R× TxX × T{zt}Z → Ex,zt is given by

DF(t, x, {zt})(τ, ξ, {ζt}) = DF (x, zt)(ξ, ζt + τ żt).

For t = 0 and t = 1 this operator is surjective as a function of ξ alone, and
for other values of t it is surjective as a function of ξ and ζ because ζt can
be choosen arbitrarily. Hence F is transverse to the zero section and its
zero set is therefore an infinite dimensional Banach manifold

M` =
{

(t, x, {zt}) ∈ [0, 1]×X ×Z` |F (x, zt) = 0
}
.

This is a kind of universal manifold which incorporates all paths in Z`.
The obvious projection

π : M` → Z`

is a Fredholm map between separable Banach manifolds with Fredholm
index
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indexπ = n−m+ 1.

In fact, Lemma B.5 shows that the kernel of dπ has dimension at most
n+ 1 and the cokernel has dimension at most m. Hence it follows from the
Sard-Smale theorem B.13 that, for ` sufficiently large, the set

Z`reg

of regular values of π is of the second category in the sense of Baire. It
follows from the same argument as in Proposition B.16 that for every {zt} ∈
Z`reg the section [0, 1]×X → E : (t, x) 7→ F (x, zt) is transverse to the zero
section. Its zero set is the required manifold M({zt}). This proves the
proposition in the C` category.

The C∞ statement can easily be reduced to the C` statement by an
argument which is due to Taubes. Denote by

Zreg

the set of all paths {zt} ∈ Z for which the section [0, 1]×X → E : (t, x) 7→
F (x, zt) is transverse to the zero section. Similarly, for every compact set
K ⊂ X denote by

ZK,reg

the set of those paths {zt} ∈ Z for which the section [0, 1] × K → E :
(t, x) 7→ F (x, zt) is transverse to the zero section. Then

Zreg =
⋂
K

ZK,reg

and this is a countable intersection since X can be exhausted by a sequence
of compact sets. We claim that each set ZK,reg is open and dense. Opennes
is an obvious consequence of the compactness of K. To prove that ZK,reg

is dense in Z consider first the set Z`K,reg defined in a similar way in the

C`-category. This set is open in Z` with respect to the C` topology and,
since Z`reg ⊂ Z`K,reg it is also dense. This implies that the set ZK,reg is
dense in Z. To see this approximate a given smooth path z = {zt} ∈ Z by
a sequence of paths zν ∈ Z`K,reg and then approximate zν by a C∞ smooth
path z′ν . Then

z′ν ∈ Z`K,reg ∩ Z = ZK,reg

converges to z. Thus we have proved that the sets ZK,reg are all open and
dense in Z. Hence Zreg ⊂ Z is a countable intersection of open and dense
sets as required. 2

There are important generalizations of these ideas to situations where
the manifolds X and Z as well as the fibers of the vector bundle E are
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infinite dimensional. In many cases the operator Dfz(x) : TxX → E(x,z)

(differentiation with respect to x) is a Fredholm operator and the resulting
moduli spaces M(fz) are finite dimensional manifolds whose dimension
is the Fredholm index of the operator Dfz(x). In contrast the operator
DzF (x, z) : TzZ → E(x,z) (differentiation with respect to the parame-
ter) will in general not be Fredholm but have a dense range. In other
words one must prove that the parameter manifold Z is sufficiently rich
to guarantee that the operator DF (x, z) is always onto. It then follows
from Lemma B.5 that the operator DF (x, z) has a right inverse and by
Theorem B.3 the space M(F ) is an infinite dimensional Banach manifold.
The proof of Proposition B.16 generalizes word by word to the infinite di-
mensional situation and shows that fz is transversal to the zero section
for every regular value z of the projection π : M(F ) → Z. Finally, the
Sard-Smale theorem B.13 is required to prove that the set of regular values
of π is of the second category in the sense of Baire.



APPENDIX C

ELLIPTIC REGULARITY

This appendix gives an introduction to the theory of second order el-
liptic partial differential equations on Euclidean space. The first section
explains the necessary background material about Sobolev spaces, embed-
ding theorems, and interpolation and product estimates. The second section
gives a sketch of the proof of regularity for the weak L2 solutions of an ellip-
tic equation with Dirichlet boundary conditions. Section C.3 gives a proof
of the Calderón-Zygmund inequality and Section C.4 shows how this can be
used to establish the Lp-theory for general second order elliptic operators.
The regularity theorems play a central role in establishing the Fredholm
properties of elliptic operators between suitable Sobolev spaces. Excellent
references for the material of this appendix are Gilbarg-Trudinger [39] and
Simon [111].

C.1 Sobolev spaces

Let Ω ⊂ Rn be an open set. Throughout C∞(Ω̄) denotes the space of restric-
tions of smooth functions on Rn to Ω̄ and C∞0 (Ω) the space of smooth com-
pactly supported functions on Ω. We begin by mentioning two fundamen-
tal inequalities for smooth compactly supported functions u, v : Rn → R,
namely, Hölder’s inequality

‖uv‖L1 ≤ ‖u‖Lp ‖v‖Lq

for 1/p+ 1/q = 1 and Young’s inequality

‖u ∗ v‖Lp ≤ ‖u‖L1 ‖v‖Lp .

Here

u ∗ v(x) =

∫
Rn
u(x− y)v(y) dy

denotes the convolution and

‖u‖Lp =

(∫
Rn
|u|p

)1/p

denotes the Lp-norm for 1 ≤ p <∞.
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Weak derivatives

Let u : Ω → R be locally (Lebesgue) integrable and fix a multi-index
ν = (ν1, . . . , νn). A locally integrable function uν : Ω → Rn is called the
weak derivative of u corrsponding to ν if∫

Ω

u(x)∂νϕ(x) dx = (−1)|ν|
∫

Ω

uν(x)ϕ(x) dx

for all ϕ ∈ C∞0 (Ω). The weak derivative, if it exists, is (almost everywhere)
uniquely determined by u and we write

∂νu := uν .

The divergence theorem shows that every Ck-function u : Ω→ R has weak
derivatives up to order k and these agree with the strong derivatives.

Fix an integer k ≥ 1 and a number 1 ≤ p ≤ ∞. The Sobolev space
W k,p

loc (Ω) is defined as the set of function u ∈ Lploc(Ω) for which all the weak
partial derivatives ∂νu of order |ν| = ν1 + · · ·+ νn ≤ k exist and are locally
p-integrable (respectively locally bounded in the case p = ∞). Denote by

W k,p(Ω) the space of all functions u ∈ W k,p
loc (Ω) with ∂νu ∈ Lp(Ω) for

|ν| ≤ k. The W k,p-Sobolev-norm of u ∈W k,p(Ω) is defined by

‖u‖k,p =

∫
Ω

∑
|ν|≤k

|∂νu(x)|p dx

1/p

.

For k = 0 let W 0,p(Ω) = Lp(Ω) denote the standard Lp-space. The symbol

W k,p
0 (Ω) denotes the closure of C∞0 (Ω) in W k,p(Ω).

Exercise C.1 Prove that W k,p(Ω) is a Banach space, and is reflexive for

1 < p <∞. Prove that W k,p
0 (Ω) is separable for 1 ≤ p <∞. Hint: Think of

W k,p(Ω) as a closed subspace of Lp(Ω,RN ) for a suitable integer N . Every
closed subspace of a Banach space is complete. Every closed subspace of
a reflexive Banach space is reflexive. For separability use the fact that
every smooth function u : Ω → R can be approximated by a sequence of
polynomials with rational coefficients, where the convergence is uniform for
each derivative on every compact set. 2

Mollifiers

Let ρ : Rn → R be a smooth nonnegative function such that

supp ρ ⊂ B1,

∫
Rn
ρ = 1.

For δ > 0 denote
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ρδ(x) = δ−nρ(δ−1x).

Given a locally integrable function u : Ω→ R define

uδ(x) = ρδ ∗ u(x) =

∫
Bδ(x)

ρδ(x− y)u(y) dy (C.1)

for x ∈ Ωδ. Here Bδ(x) denotes the open ball of radius δ about x and

Ωδ =
{
x ∈ Ω | B̄δ(x) ⊂ Ω

}
.

The function uδ : Ωδ → R is smooth and the smoothing operator u 7→ uδ
is called a mollifier. If u ∈W k,p

loc (Ω) then it is a simple consequence of the
definition of weak derivatives that the (strong) derivatives of uδ are given
by the mollified (weak) derivatives of u:

∂α(ρδ ∗ u) = ρδ ∗ ∂αu. (C.2)

Hence Young’s inequality asserts that

‖uδ‖Wk,p(Ωδ)
≤ ‖u‖Wk,p(Ω) (C.3)

Now one checks easily that for every continuous function f : Ω → R the
function ρδ ∗ f converges to f uniformly on compact sets as δ → 0. Since
the continuous functions form a dense subset of Lploc(Ω) for 1 ≤ p < ∞
it follows from the uniform estimate (C.3) that fδ converges to f in the
Lp-norm over compact subsets of Ω whenever f ∈ Lploc(Ω). Combining this
with (C.2) one finds that

lim
δ→0
‖u− uδ‖Wk,p(K) = 0 (C.4)

for every u ∈W k,p
loc (Ω), every compact subset K ⊂ Ω, and every p ∈ [1,∞).

Approximation by smooth functions

Our next goal is to prove that for a large class of domains Ω ⊂ Rn the
Sobolev space W k,p(Ω) can be identified with the completion of C∞(Ω̄)
with respect to the W k,p-norm. An open set Ω ⊂ Rn is called a Lipschitz
domain if the boundary can locally be represented as the graph of a Lip-
schitz function. Explicitly, this means that for every x ∈ ∂Ω there exist a
neighbourhood U of x, a unit vector ξ ∈ Sn−1, and a Lipschitz continuous
function f : ξ⊥ → R such that f(0) = 0 and

∂Ω ∩ U = {x+ η + f(η)ξ | η ∈ ξ⊥, |η| < δ}

for some δ > 0. The motivation for this definition lies in the following
observation.
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Exercise C.2 Let Ω ⊂ Rn be a bounded Lipschitz domain. Show that for
every function u ∈ W k,p(Ω) there exists a sequence of open sets Ωj ⊂ Rn
and a sequence of functions uj ∈W k,p(Ωj) such that

Ω̄ ⊂ Ωj , lim
j→∞

‖uj − u‖Wk,p(Ω) = 0.

Hint: Use the fact that

lim
t→0

∫
Ω

|f(x− tξ)− f(x)|p dx = 0

for f ∈ Lp(Rn) and ξ ∈ Rn. This holds obviously for continuous functions
and for Lp-functions since continuous functions are dense in Lp. 2

Proposition C.3 If Ω ⊂ Rn is a bounded Lipschitz domain then C∞(Ω̄)
is dense in W k,p(Ω).

Proof: If u ∈ W k,p(Ω) and ε > 0 then, by Exercise C.2, there exists
a function v ∈ W k,p(Ω′) with Ω̄ ⊂ Ω′ such that ‖u− v‖Wk,p(Ω) < ε/2.

By (C.4), there exists a δ > 0 such that

‖ρδ ∗ v − v‖Wk,p(Ω) ≤ ε/2.

Hence ‖ρδ ∗ v − u‖Wk,p(Ω) ≤ ε and this proves the proposition. 2

The previous proposition shows that for Lipschitz domains the Sobolev
space W k,p(Ω) can also be defined as the completion of the space C∞(Ω̄)
with respect to the W k,p-norm.

Poincaré’s inequality

It is somewhat less than obvious that a function u ∈W 1,p(Ω) whose deriva-
tives all vanish must be constant on every component of Ω. The proof
requires the following fundamental estimate.

Lemma C.4. (Poincaré’s inequality) Let 1 < p <∞ and Ω ⊂ Rn be a
bounded open domain. Then for u ∈W 1,p

0 (Ω)

‖u‖Lp(Ω) ≤ diam(Ω) ‖∇u‖Lp(Ω) .

If Ω = Qn = (0, 1)n is the unit square then every u ∈ W 1,p(Ω) with∫
Qn

u = 0 satisfies

‖u‖Lp(Qn) ≤ n ‖∇u‖Lp(Qn) .

Proof: It suffices to prove the first statement for u ∈ C∞0 (Ω). Suppose
without loss of generality that Ω ⊂ {xn > 0} and 0 ∈ ∂Ω. Then
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u(x) =

∫ xn

0

∂nu(x1, . . . , xn−1, t) dt.

Since |xn| ≤ diam(Ω) it follows from Hölder’s inequality that

|u(x)|p ≤ diam(Ω)p−1

∫ ∞
0

|∂nu(x1, . . . , xn)|p dt.

Now integrate both sides over Rn−1 × [0,diam(Ω)] to obtain∫
Ω

|u|p ≤ diam(Ω)p
∫

Ω

|∂nu|p.

This proves the first assertion. The second assertion is proved by induction
over n. For n = 1 the estimate is an easy exercise. Hence assume that the
estimate is proved for n ≥ 1 and let u ∈ C∞(Qn+1) be of mean value zero.
Define

v(t) =

∫
Qn

u(x1, . . . , xn, t) dx1 · · · dxn.

Since v ∈ C∞(Q1) has mean value zero∫ 1

0

|v(t)|p dt ≤
∫ 1

0

|v̇(t)|p dt ≤
∫
Qn+1

|∂n+1u|p dx.

The last step follows from Hölder’s inequality. By induction hypothesis, we
have ∫

Qn
|u(x, t)− v(t)|p dx ≤ np

∫
Qn
|∇u(x, t)|p dx

for every t. Integrate over t to obtain ‖u− v‖Lp ≤ n ‖∇u‖Lp . Combining
this with the previous estimate gives ‖u‖Lp(Qn+1) ≤ (n+ 1) ‖∇u‖Lp(Qn+1) .
This proves the second statement for smooth functions. In the general case
it follows from Proposition C.3. 2

Corollary C.5 Let Ω ⊂ Rn be a bounded open domain and u ∈ W 1,p(Ω)
with weak derivatives ∂u/∂xj ≡ 0 for j = 1, . . . , n. Then u is constant on
each connected component of Ω (after redefining u on a set of measure zero
if necessary). If, moreover, u ∈W 1,p

0 (Ω) then u = 0 almost everywhere.

Proof: By Lemma C.4, u is locally constant, in the sense that each point
x ∈ Ω has a neighbourhood Ux in which u is almost everywhere equal to
its mean value cx = (Vol(Ux))−1

∫
Ux
u. Now on each component of Ω the

local mean value cx is independent of x. 2

The previous corollary can also be obtained as a consequence of the
next exercise which shows that for any open set Ω ⊂ Rn the Sobolev
space W 1,∞

loc (Ω) can be naturally identified with the space C0,1
loc (Ω) of locally

Lipschitz continuous functions on Ω.
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Exercise C.6 (i) If u ∈ L1
loc(Ω) prove that uδ(x) converges to u(x) for

almost every x ∈ Ω.

(ii) Show that C0,1
loc (Ω) ⊂ W 1,∞(Ω). Hint: Let u : Ω → R be locally

Lipschitz continuous and fix a vector ξ ∈ Rn. Prove that the sequence
uj(x) = j(u(x − ξ/j) − u(x)) has a subsequence which converges weakly
in L2(K) for every compact subset K ⊂ Ω. Prove that the limit function
uξ : Ω → R is the weak derivative of u in the direction ξ, i.e.

∫
Ω
uξϕ =

−
∫

Ω
u〈∇ϕ, ξ〉 for all ϕ ∈ C∞0 (Ω). Prove that uξ is locally bounded.

(iii) Show that W 1,∞(Ω) ⊂ C0,1
loc (Ω). Hint: If u ∈W 1,∞

loc (Ω) prove that for
δ > 0 the functions uδ = ρδ ∗ u are locally Lipschitz continuous with the
Lipschitz constant c = supBr+δ(x) |∇u| over Br(x). Now use (i) to prove
that u is locally Lipschitz continuous (possibly after redefining it on a set
of measure zero). 2

Extension

Define the Hölder norm

‖u‖Cµ = sup
x,y∈Ω

|u(x)− u(y)|
|x− y|µ

+ sup
x∈Ω
|u(x)|

for 0 < ε ≤ 1 and
‖u‖Ck,µ =

∑
|ν|≤k

‖∂νu‖Cε .

Denote by Ck,µ(Ω) the space of all Ck-functions u : Ω → R with finite
Hölder norm ‖u‖Ck,µ . A Ck,µ-diffeomorphism is a bijective map ψ :
U → V (between open sets in Rn) such that both ψ and ψ−1 are of class
Ck,µ. An open set Ω ⊂ Rn is called a Ck,µ-domain if every point x ∈ ∂Ω
has a neighbourhood U ⊂ Rn which is Ck,µ-diffeomorphic to some open
set V ⊂ Rn in such a way that U ∩ ∂Ω is identified with V ∩ (Rn−1×{0}).
Note that every Lipschitz domain is a C0,1-domain but not vice versa.

Proposition C.7 Let Ω ⊂ Rn be a bounded Ck−1,1-domain and Ω′ ⊂ Rn
be an open set with Ω̄ ⊂ Ω′. Then there exists a bounded linear operator
E : W k,p(Ω)→W k,p

0 (Ω′) such that Eu|Ω = u for every u ∈W k,p(Ω).

Exercise C.8 This exercise shows that the Sobolev space W k,p is pre-
served by composition (on the right) with Ck−1,1-diffeomorphisms.

(i) Show that u ∈ W k+1,p(Ω) if and only if u ∈ W 1,p(Ω) and the weak
derivatives ∂iu = ∂u/∂xi lie in W k,p(Ω) for i = 1, . . . , n.

(ii) If u ∈W k,p(Ω) and v ∈W k,∞(Ω) show that uv ∈W k,p(Ω) and

‖uv‖k,p ≤ c ‖u‖k,p ‖v‖k,∞

where the constant c depends only on k and n.
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(iii) Let Ω,Ω′ ⊂ Rn be bounded open domains and ψ : Ω̄′ → Ω̄ be a Ck−1,1-
diffeomorphism (that is ψ is the restriction of a Ck−1,1-diffeomorphism
between suitable open neighbourhoods of the closures). Show that if u ∈
W k,p(Ω) then u ◦ ψ ∈W k,p(Ω) and

‖u ◦ ψ‖Wk,p(Ω′) ≤ c ‖u‖Wk,p(Ω)

where the constant c is independent of u. Hint: Use (i), (ii), and Exer-
cise C.2. Prove this by induction over k. 2

Proof of Proposition C.7: The proof is taken from [39]. First consider
the case Ω = Hn = {xn > 0} and define the extension operator E0 :
Ck−1,1(Hn)→ Ck−1,1(Rn) by

E0u(x1, . . . , xn−1, xn) =

k∑
i=1

ciu(x1, . . . , xn−1,−xn/i)

for xn ≤ 0 where the constants c1, . . . , ck are chosen such that

k∑
i=1

ci

(
−1

i

)m
= 1, m = 0, . . . , k − 1.

One checks easily that the derivatives up to order k − 1 match on the
boundary, that if u(x) = 0 for |x| ≥ R then E0u(x) = 0 for |x| ≥ kR, and
that for compactly supported functions there is an estimate

‖E0u‖Wk,p(Rn) ≤ c0 ‖u‖Wk,p(Hn) .

Now for any bounded Ck−1,1-domain Ω choose an open cover

Ω̄ ⊂ U0 ∪ . . . ∪ UN

with Ū0 ⊂ Ω and open sets U ′1, . . . , U
′
N with

Ūj ⊂ U ′j ⊂ Ω′

such that there exist Ck−1,1-diffeomorphisms ψj : U ′j → Bk(0) with

ψj(Uj) = B1(0), ψj(U
′
j ∩ Ω) = Bk(0) ∩Hn.

Then choose a partition of unity βj : Rn → [0, 1] such that

suppβj ⊂ Uj ,
n∑
j=1

βj(x) = 1 for x ∈ Ω.
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Define E : Ck−1,1(Ω)→ Ck−1,1
0 (Ω′) by

Eu = β0u+

N∑
j=1

[E0(βju ◦ ψj−1)] ◦ ψj .

It follows easily from Exercise C.8 that E extends to a bounded linear
operator from W k,p(Ω)→W k,p

0 (Ω′). 2

Sobolev embedding theorems

A function with weak derivatives need not be continuous. Consider for
example the function

u(x) = |x|−α

with α ∈ R in the domain Ω = B1 = {x ∈ Rn | |x| < 1}. Then ∂ju =
−αxj |x|−α−2. (This holds pointwise for x 6= 0 and in the sense of weak
derivatives whenever α < n− 1.) By induction,

|∂νu(x)| ≤ cν |x|−α−|ν|.

Now the function x 7→ |x|−β is integrable on B1 if and only if β < n. Hence
the derivatives of u up to order k will be p-integrable whenever αp+kp < n.
If kp < n choose 0 < α < n/p−k to obtain a function which is in W k,p(B1)
but not continuous at 0. For kp > n this construction fails and, in fact, in
this case every W k,p-function is continuous.

Theorem C.9 Let Ω ⊂ Rn be a bounded Lipschitz domain and suppose
that kp > n and 0 < µ = k − n/p < 1. Then there exists a constant c > 0
such that

‖u‖C0,µ ≤ c ‖u‖Wk,p

for u ∈ C∞(Ω̄). The inclusion W k,p(Ω) ↪→ C0(Ω̄) is compact.

Theorem C.10 Let Ω ⊂ Rn be a bounded Lipschitz domain and suppose
that kp < n. Then there exists a constant c > 0 such that

‖u‖Lnp/(n−kp) ≤ c ‖u‖Wk,p

for u ∈ C∞(Ω̄). If q < np/(n − kp) then the inclusion W k,p(Ω) ↪→ Lq(Ω)
is compact.

These are the Sobolev embedding theorems. The compactness statement
in Theorem C.10 is known as Rellich’s theorem. Proofs can be found in
Gilbarg-Trudinger [39] for example. The main ideas will be indicated below.
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In particular, Theorem C.9 shows that if Ω ⊂ Rn is a bounded Lipschitz
domain then

C∞(Ω̄) =

∞⋂
k=1

W k,p(Ω)

for 1 ≤ p ≤ ∞.

Exercise C.11 Show that the inclusion W 1,2(Rn) ↪→ L2(Rn) is not com-
pact. 2

Exercise C.12 The case kp = n is the socalled Sobolev borderline
case. If Ω ⊂ Rn is a Lipschitz domain then there is a continuous inclusion
W k,p(Ω) ↪→ C0(Ω̄) for kp > n but not for kp ≤ n. Construct a sequence
of function uj ∈ W 1,n(Rn) on the unit disc Bn = {x ∈ R2 | |x|2 < 1} such
that

uj(0) = 1, lim
j→∞

‖uj‖W 1,n = 0.

Deduce that W 1,n(Ω) 6⊂ C0(Ω) for any open set Ω ⊂ Rn. Hint: Consider
the function u(x) = log |x|/ log δ, δ ≤ |x| ≤ 1, with u(x) = 1 for |x| ≤ δ. 2

Exercise C.13 This exercise shows that the assumption of a Lipschitz
domain in Theorem C.10 cannot be removed. Consider the bounded open
set Ω ⊂ R2 defined by

Ω =

{
(x, y) ∈ R2 | 0 < x < 1, 0 < y <

1

2

}
∪
∞⋃
m=0

{
(x, y) ∈ R2 | 1

22m+1
< x <

1

22m
,

1

2
≤ y < 1

}
.

Show that the embedding W 1,2(Ω) ↪→ L2(Ω) is not compact. Find a smooth
function u ∈W 1,2(Ω) such that u /∈ Lq(Ω) for any q > 2. 2

The assertions of Theorems C.9 and C.10 for k ≥ 2 follow easily from
the case k = 1. Moreover, in view of Proposition C.7, it suffices to prove
these results for W 1,p

0 (Ω).

Lemma C.14 Every u ∈ C∞0 (Rn) satisfies the estimates

sup
x 6=y

|u(x)− u(y)|
|x− y|µ

≤ c ‖∇u‖Lp , sup |u| ≤ c (‖u‖Lp + ‖∇u‖Lp)

for p > n and µ = 1− n/p, where c = 2n+1ωn
−1/p ((p− 1)/(p− n))

1−1/p
.

Here ωn denotes the area of the unit sphere Sn−1 ⊂ Rn.
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Proof: First suppose that B ⊂ Rn is a bounded convex set with nonempty
interior and u : B → R is a smooth function with mean value zero. Then u
satisfies the inequality

|u(x)| ≤ dnωn
nV ωn1/p

(
p− 1

p− n

)1−1/p

d1−n/p ‖u|Lp(B) , (C.5)

where d = diam(B) and V = Vol(B). To see this note first that, since∫
B
u = 0,

u(x) =
1

V

∫
B

∫ 1

0

〈∇u(x+ t(y − x)), x− y〉 dtdy.

Hence

V |u(x)| ≤
∫
|y|≤d

∫ 1

0

|∇u(x+ ty)| |y| dtdy

=

∫ d

0

rn−1

(∫
|η|=1

∫ 1

0

|∇u(x+ trη)| rdtdS(η)

)
dr

=

∫ d

0

rn−1

(∫
|y|≤r

|y|1−n |∇u(x+ y)| dy

)
dr

≤ dn

n

∫
B

|y − x|1−n |∇u(y)| dy

≤ dn

n

(∫
|y|≤d

|y|q−nq dy

)1/q

‖∇u‖Lp(B) .

The last step follows from the Hölder inequality with 1/p + 1/q = 1. The
integral can be easily computed and one obtains (C.5). Now apply (C.5) to
the case B = Br(x0) with x0 = 1

2 (x+ y) and r = 1
2 |x− y|. Then d = |x− y|

and dnωn/nV = 2n. Hence, with

uB =
1

V

∫
B

u,

one obtains

|u(x)− y(y)| ≤ |u(x)− uB |+ |uB − u(y)|

≤ 2n+1

ωn1/p

(
p− 1

p− n

)1−1/p

|x− y|1−n/p ‖∇u‖Lp

for every smooth function u : Rn → R. This proves the first assertion of
the lemma. The second inequality is left as an exercise. 2
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Lemma C.15 Assume p < n. Then every u ∈ C∞0 (Rn) satisfies the esti-
mates

‖u‖Lnp/(n−p) ≤
np− p√
n(n− p)

‖∇u‖Lp .

Proof (due to Nirenberg): The identity

u(x) =

∫ xi

−∞
∂iu(x1, . . . , xi−1, t, xi+1, . . . , xn) dt

shows that

|u(x)|n/(n−1) ≤
n∏
i=1

(∫ ∞
−∞
|∂iu(x)|dxi

)1/(n−1)

.

Integrating over x1, . . . , xn and in each step using the generalized Hölder
inequality

‖v1 · · · vm‖L1 ≤ ‖v1‖Lm · · · ‖vm‖Lm
with m = n− 1 one finds

‖u‖Ln/(n−1) ≤
n∏
i=1

(∫
|∂iu|

)1/n

≤ 1

n

n∑
i=1

∫
|∂iu| ≤

1√
n

∫
|∇u|.

This proves the lemma for p = 1. To prove it in general consider the
Ln/(n−1)-norm of the function

v = |u|α, α =
np− p
n− p

.

Since
|∇v| = α|u|α−1|∇u|, αn

n− 1
=

np

n− p
,

one obtains(∫
|u|np/(n−p)

)1−1/n

≤ α√
n

∫
|u|α−1|∇u|

≤ α√
n

(∫
|u|αq−q

)1/q (∫
|∇u|p

)1/p

≤ α√
n

(∫
|u|np/(n−p)

)1−1/p(∫
|∇u|p

)1/p

.

The second estimate is Hölder’s inequality with 1/p+ 1/q = 1 and the last
estimate uses the identity αq − q = np/(n− p). This proves the lemma in
the general case. 2
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Proof of Theorems C.9 and C.10: By Lemma C.14, there is an inclu-
sion W 1,p

0 (Ω) ↪→ C0,1−n/p(Ω) for p > n and hence, by the Arzela-Ascoli the-
orem, the inclusion W 1,p

0 (Ω) ↪→ C0(Ω̄) is compact whenever Ω is bounded.
Similarly, by Lemma C.15, there is an inclusionW 1,p

0 (Ω) ↪→ Lq(Ω) for p < n
and q = np/(n − p). That this inclusion is compact for bounded domains
Ω and q < np/(n− p) requires a separate argument. The inequality

‖u‖Lq ≤ ‖u‖
λ
L1 ‖u‖1−λLnp/(n−p) ,

1

q
= λ+

1− λ
np/(n− p)

,

for q < np/(n− p) shows that it suffices to prove that the inclusion

ι : W 1,p
0 (Ω) ↪→ L1(Ω)

is compact for bounded domains. To see this denote by

Sδ : L1(Ω)→ L1(Ω)

the smoothing operator
Sδf = ρδ ∗ f.

By the Arzela-Ascoli theorem, Sδ is compact. Namely, if ui is a bounded
sequence in L1(Ω) then the sequence Sδui ∈ C0(Ω̄) is bounded and equicon-
tinuous and so has a subsequence which converges in C0(Ω̄) and hence in
L1(Ω). It follows that the composition

Sδ ◦ ι : W 1,p
0 (Ω)→ L1(Ω)

is compact. Moreover, integrating the inequality

|u(x)− uδ(x)| =

∣∣∣∣∣
∫
|y|≤1

ρ(y)

∫ δ

0

〈∇u(x− ty), y〉 dtdy

∣∣∣∣∣
≤
∫
|y|≤1

ρ(y)

∫ δ

0

|∇u(x− ty)| dtdy

one finds
‖u− Sδu‖L1 ≤ δ ‖u‖L1 ≤ δVol(Ω)1−1/p ‖∇u‖Lp

for u ∈ W 1,p
0 (Ω). This shows that the operators Sδ ◦ ι : W 1,p

0 (Ω) → L1(Ω)
converge to ι in the uniform operator topology as δ → 0 and hence the limit
operator ι is compact. This proves Theorems C.9 and C.10 with W k,p(Ω)

replaced by W k,p
0 (Ω), but without any condition on the domain Ω. To prove

the results in the stated form one simply combines the corresponding em-
bedding theorems for W k,p

0 with the extension theorem (Proposition C.7).
This last step is left to the reader. 2
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Interpolation

To gain an intuitive understanding of Sobolev spaces it is often useful to
think of a W k,q-function as having k−n/q continuous derivatives. Then the
Sobolev embedding theorem C.10 can be phrased in the form that there is
a continuous inclusion W k,q ↪→ W j,p whenever W k,q-functions have more
derivatives than W j,p-functions, i.e. j ≤ k and j − n/p ≤ k − n/q. Care
must be taken in the borderline case k− n/q = 0. A proof of the following
interpolation inequality can be found, for example, in [28].

Proposition C.16. (Gagliardo-Nirenberg) Let Ω ⊂ Rn be a bounded
open domain with Ck boundary. Suppose that j, k ≥ 0 are integers with
j < k and 1 ≤ p, q, r ≤ ∞ with k − n/q + n/r ≥ 0 and

j − n

p
= λ

(
k − n

q

)
+ (1− λ)

(
−n
r

)
,

j

k
≤ λ ≤ 1.

If (k − j)q = n assume also that λ 6= 1. Then there exists a constant c > 0
such that

‖u‖W j,p ≤ c ‖u‖λWk,q ‖u‖1−λLr

for u ∈W k,q(Ω).

Product estimates

The case kp > n should be viewed as the good case where everything works;
for example, composition with a smooth function and products.

Proposition C.17 Assume kp > n. Then there exists a constant c =
c(k, p) > 0 such that

‖uv‖Wk,p ≤ c (‖u‖Wk,p ‖v‖L∞ + ‖u‖L∞ ‖v‖Wk,p)

‖f ◦ u‖Wk,p ≤ c (‖f‖Ck + 1) ‖u‖Wk,p

for u, v ∈ C∞(Ω̄) and f ∈ Ck(R).

The proof of Proposition C.17 is a straighforward exercise. It makes
use of Hölder’s inequality and of the general interpolation inequality of
Gagliardo-Nirenberg in Proposition C.16.

Proposition C.18 Assume kp > n and f ∈ C∞(R). Then the map

W k,p(Ω)→W k,p(Ω) : u 7→ f ◦ u

is a C∞-map of Banach spaces.

The following proposition contains some more refined product esti-
mates.
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Proposition C.19 Fix two constants p, q ≥ 1 and integers j, k, n ≥ 1.
Assume throughout that j ≤ k and j − n/p ≤ k − n/q. Then the following
holds.

(i) If j − n/p < k − n/q < 0 then there exists a constant c > 0 such that

‖fg‖W j,p ≤ c ‖f‖Wk,q ‖g‖W j,r

for f, g ∈ C∞0 (Rn) where r > p is defined by

j − n

p
= k − n

q
+ j − n

r
.

(ii) If j − n/p = k − n/q < 0 then there exists a constant c > 0 such that

‖fg‖W j,p ≤ c ‖f‖Wk,q (‖g‖W j,n/j + ‖g‖L∞)

for f, g ∈ C∞0 (Rn).
(iii) If k−n/q = 0 then for every ε > 0 there exists a constant c = c(ε) > 0
such that

‖fg‖W j,p ≤ c ‖f‖Wk,q ‖g‖W j,p+ε

for f, g ∈ C∞0 (Rn).
(iv) If k − n/q > 0 then there exists a constant c > 0 such that

‖fg‖W j,p ≤ c ‖f‖Wk,q ‖g‖W j,p

for f, g ∈ C∞0 (Rn).

Proof: Let α and β be multi-indices with |α| = i and |β| = j − i. Let
s ≥ 1 and t ≥ 1 be defined by

i− n

s
= k − n

q
,

1

s
+

1

t
=

1

p
. (C.6)

Since i − n/s = k − n/q < 0 it follows that s < ∞ and since j − n/p <
k − n/q = i− n/s ≤ j − n/s it follows that s > p. Hence p < t <∞. Now
t satisfies

j − i− n

t
= j − n

r
.

Hence there are Sobolev embeddings W k,q ↪→ W i,s and W j,r ↪→ W j−i,t

and, by Hölder’s inequality,∥∥(∂αf)(∂βg)
∥∥
Lp
≤ ‖f‖W i,s ‖g‖W j−i,t ≤ c ‖f‖Wk,q ‖g‖W j,r .

Take the sum over all multi-indices α and β with |α| + |β| = k to obtain
the required estimate (i).
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To prove (ii) assume that kq < n and j − n/p = k − n/q < 0. If s, t are
defined by (C.6) as before and r is as in (i) then r = n/j and p ≤ s < ∞.
However, care must be taken when i = j. This is the only case where
s = p and hence t = ∞. In this case W j,r = W j,n/j does not embed into
W j−i,t = L∞ and one obtains

‖(∂αf)g‖Lp ≤ ‖f‖W j,p ‖g‖L∞ ≤ c ‖f‖Wk,q ‖g‖L∞

for |α| = j. This proves (ii).
Now assume kq = n and proceed as before with |α| = i, |β| = j− i, and

s = n/i, t = np/(n− ip). Then p ≤ s ≤ ∞ and the case s =∞ occurs with
i = 0. In this case∥∥f(∂βg)

∥∥
Lp
≤ ‖f‖Lp(p+ε)/ε ‖g‖W j,p+ε ≤ c ‖f‖Wk,q ‖g‖W j,p+ε

for |α| = j. The other cases can be treated as in (i), (ii). This proves (iii).
For kq > n the argument is as above with s = n/i and t = np/(n− ip).

Then 1/s+ 1/t = 1/p as before and

i− s

n
= 0 < k − n

q
, j − i− n

t
= j − n

p
.

Hence there is a Sobolev embedding W k,q ↪→ W i,s but there only is an
inclusion W j,p ↪→ W j−i,t as long as t 6= ∞. The latter case may occur
if ip = n and s = p. However, this can be resolved by choosing s > p
and t = sp/(s − p) but with s so close to p that there is still an inclusion
W k,q ↪→W i,s The rest of the argument is as before and is left to the reader.
This proves the lemma. 2

Trace theorems

It is somewhat nontrivial to understand the restriction of functions with
weak derivatives to lower-dimensional submanifolds. For example the ob-
vious fact that the restriction of a Ck-function to a hyperplane is also of
class Ck has no analogue in the realm of Sobolev spaces. A W k,p-function
loses derivatives when restricted to the boundary.

Proposition C.20 For 1 < p < ∞ and Ω ⊂ Rn with smooth boundary
there exists a constant c = c(p,Ω) > 0 such that

‖u‖Lp(∂Ω) ≤ c ‖u‖
1−1/p
Lp(Ω) ‖u‖

1/p
W 1,p(Ω) .

for every u ∈ C∞(Ω̄).

Proof: For x ∈ ∂Ω let ν(x) denote the outward unit normal vector. Choose
a smooth function f : Ω→ Rn such that f(x) = ν(x) for x ∈ ∂Ω. Then
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∂Ω

|u|p =

∫
Ω

div(f |u|p)

=

∫
Ω

(
(divf)|u|p + p〈f,∇u〉u|u|p−2

)
≤ c1

∫
Ω

|u|p−1 (|u|+ |∇u|)

≤ c1

(∫
Ω

|u|p
)(p−1)/p(∫

Σ

(|u|+ |∇u|)p
)1/p

≤ c2 ‖u‖p−1
Lp ‖u‖W 1,p .

The last but one estimate follows from Hölder’s inequality. 2

Proposition C.21 Assume ∂Ω is a smooth manifold and let u ∈W k,p(Ω).

Then u ∈W k,p
0 (Ω) if and only if ∂νu vanishes on ∂Ω for |ν| ≤ k − 1.

Proof: If u ∈W k,p
0 (Ω) then Proposition C.20 shows that ∂νu vanishes on

∂Ω for |ν| ≤ k− 1. The proof of the converse is an exercise with hints. It is
enough to consider the case k = 1. Assume that u ∈ W 1,p(Ω) vanishes on
∂Ω. Choose a family of smooth cutoff functions βδ : Ω → [0, 1] such that
βδ(x) = 1 for d(x, ∂Ω) > δ and βδ(x) = 0 for d(x, ∂Ω) < δ/2. Now prove
that βδu converges to u in the W 1,p-norm as δ tends to zero. The tricky
part is the estimate

‖(∇βδ)u‖Lp(Ω) ≤ c ‖∇u‖Lp(Ω\Ωδ)

where Ωδ = {x ∈ Ω |Bδ(x) ⊂ Ω} and c is independent of u and δ. Finally
use the convolution with ρδ/4 as in (C.1) to approximate u by smooth
functions with compact support. 2

C.2 Elliptic regularity: L2-theory

Consider the linear second order differential operator

L = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
(C.7)

where the aij : Rn → R are smooth functions with aij = aji. This operator
is called uniformly elliptic if there exists a constant µ > 0 such that

µ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤
1

µ
|ξ|2 (C.8)

for all x, ξ ∈ Rn. On a compact set Q this holds if and only if the matrix
with entries aij(x) is positive definite for all x ∈ Q. It is interesting to
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consider the corresponding bilinear form B : W 1,2
0 (Ω) ×W 1,2

0 (Ω) defined
by

B(u, v) =

∫
Ω

∑
i,j

∂u

∂xi
aij

∂v

∂xj
(C.9)

for u, v ∈ W 1,2
0 (Ω). Integration by parts shows that B(u, ϕ) = 〈u, Lϕ〉

for u, ϕ ∈ C∞0 (Ω). Since both sides of the equation depend continuously
on u with respect to the W 1,2-norm the identity continues to hold for all
u ∈W 1,1

0 (Ω). Hence u ∈W 1,2
0 (Ω) is a weak solution of Lu = f if and only

if

B(u, ϕ) = 〈f, ϕ〉 (C.10)

for all ϕ ∈ C∞0 (Ω). Now the ellipticity condition (C.8) shows that B(u, u) ≥
µ ‖∇u‖2L2 and hence, by Poincaré’s inequality in Lemma C.4

B(u, u) ≥ δ ‖u‖2W 1,2 (C.11)

for every u ∈ W 1,2
0 (Ω), provided that δ > 0 is chosen sufficiently small.

This is the Gȧrding inequality. It shows, for example, that every weak
solution u ∈W 1,2

0 (Ω) of Lu = 0 must vanish. Thus, for every f ∈ L2(Ω) the
equation Lu = f has at most one weak solution u ∈W 1,2

0 (Ω). On the other
hand, it follows from the Riesz representation theorem (for the functional
ϕ 7→ 〈f, ϕ〉 on the Hilbert space W 1,2

0 (Ω) with inner product B) that such
a weak solution exists. The central problem is to prove that every weak
solution is regular (i.e. is of class W k+2,2 whenever f is of class W k,2).

Theorem C.22. (Interior regularity) Let Ω ⊂ Rn be a bounded open
domain with smooth boundary and L be an elliptic operator on Ω with
Ck+1-coefficients satisfying (C.8). Suppose that u ∈ W 1,2

loc (Ω) is a weak

solution of Lu = f with f ∈W k,2
loc (Ω), i.e.

B(u, ϕ) = 〈f, ϕ〉

for all ϕ ∈ C∞0 (Ω). Then u ∈W k+2,2
loc (Ω) and Lu = f . Moreover, for every

compact subset K ⊂ Ω and every integer k ≥ 0, there exists a constant
c = c(K,Ω, L, k) > 0 such that

‖u‖Wk+2,2(K) ≤ c
(
‖Lu‖Wk,2(Ω) + ‖u‖L2(Ω)

)
for u ∈W k+2,2

loc (Ω).

Lemma C.23 Let Ω and L be as in Theorem C.22 (with k = 0) and let
B : W 1,2

loc (Ω)×W 1,2
0 (Ω)→ R be defined by (C.9). Then there exists a family
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of constants cK,Ω > 0, one for every compact subset K ⊂ Ω, such that the

following holds. If u ∈W 1,2
loc (Ω) satisfies the inequality

B(u, ϕ) ≤ A ‖ϕ‖L2

for all ϕ ∈W 1,2
0 (Ω) and some constant A > 0, then u ∈W 2,2

loc (Ω) and

‖u‖W 2,2(K) ≤ cK,Ω
(
A+ ‖u‖L2(Ω)

)
for every compact subset K ⊂ Ω.

Proof: The proof consists of four steps.

Step 1: We can assume without loss of generality that u has compact
support.

Let ζ : Ω→ [0, 1] be a cutoff function which is equal to 1 on some given
compact subset K ⊂ Ω and vanishes near ∂Ω. Then there is a constant
c > 0, depending only on ζ and L, such that

|B(ζu, ϕ)−B(u, ζϕ)| ≤ c ‖u‖W 1,2 ‖ϕ‖L2

for all u ∈ W 1,2
loc (Ω) and all ϕ ∈ C∞0 (Ω). Step 1 follows immediately from

this inequality inequality. The proof of the inequality is left to the reader.

Step 2: Suppose that u : Ω → R has compact support, extend u to Rn by
u(x) = 0 for x /∈ Ω, and define the difference quotient

uh(x) =
u(x+ he`)− u(x)

h

where e` denotes the standard basis vector in Rn. This difference quotient
has the following properties:

(i) (u+ v)h = uh + vh.

(ii) (uv)h = uhṽ + uvh where ṽ(x) = v(x+ he`).

(iii) ∂ν(uh) = (∂νu)h.

(iv)
∫

Ω
uvh = −

∫
Ω
u−hv for h sufficiently small.

(v) If u ∈W k,p(Ω) has compact support then∥∥uh∥∥
Wk−1,p(Ω)

≤ ‖u‖Wk,p(Ω)

for h sufficiently small.

(vi) If there exist constants δ > 0 and c > 0 such that
∥∥uh∥∥

Wk,p(Ω)
≤ c

for |h| < δ then ∂`u ∈W k,p(Ω) and ‖∂`u‖Wk,p(Ω) ≤ c.
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These are standard observations and the proofs are straight forward.
The last assertion follows from Alaoglu’s theorem: Every bounded sequence
in a reflexive Banach space has a weakly convergent subsequence. Applying
this to the sequence uhi with hi → 0 we obtain a subsequence converging
weakly to the weak derivative ∂`u.

Step 3: For u, ϕ ∈W 1,2
0 (Ω) and h sufficiently small we have

B̃(uh, ϕ) +B(u, ϕ−h) = −
∫

Ω

∑
i,j

(∂iϕ)(aij)
h(∂ju),

where B̃(u, v) =
∫

Ω
(∂iu)ãij(∂ju) with ãij(x) = aij(x+ he`).

The proof uses the rules of Step 2 and is left as an exercise.

Step 4: There exist constants c > 0 and ε > 0 such that∥∥uh∥∥
W 1,2 ≤ c (A+ ‖u‖W 1,2)

for |h| < ε.

This is the crucial step of the proof. From Step 3 we have an inequality

B̃(ϕ, uh) ≤ A
∥∥ϕ−h∥∥

L2 + c1 ‖ϕ‖W 1,2 ‖u‖W 1,2 ≤ ‖ϕ‖W 1,2 (A+ c1 ‖u‖W 1,2)

for all ϕ ∈ C∞0 (Ω) and all sufficiently small constants h ∈ R. Here the con-
stant c1 > 0 depends on the C1-norm of the coefficients aij . Now fix h such
that uh is supported in Ω and choose a sequence ϕν ∈ C∞0 (Ω) converging
to uh in the W 1,2-norm. Then in the limit we obtain the inequality

B̃(uh, uh) ≤
∥∥uh∥∥

W 1,2 (A+ c1 ‖u‖W 1,2) .

On the other hand it follows from the Gȧrding inequality (C.11) that

δ
∥∥uh∥∥2

W 1,2 ≤ B(uh, uh).

Combining these last two inequalities we find∥∥uh∥∥
W 1,2 ≤ δ−1 (A+ c1 ‖u‖W 1,2) .

This proves Step 4. The result now follows immediately from Step 4 and
Step 2 (vi). 2

Proof of Theorem C.22: For k = 0 the assertion follows immediately
from Lemma C.23 with A = ‖Lu‖L2(Ω) = ‖f‖L2(Ω) . Now suppose, by
induction, that the result has been proved for some k ≥ 0. Then we know
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that u ∈ W k+2,2
loc (Ω). In particular, ∂`u ∈ W 1,2

loc (Ω) satisfies the following
crucial identity

B(∂`u, ϕ) +B(u, ∂`ϕ) = −
∫

Ω

∑
i,j

(∂iu)(∂`aij)(∂jϕ).

Since f ∈WK+1,2
loc (Ω), we can integrate by parts and obtain

B(∂`u, ϕ) =

∫
Ω

ϕ

(
∂`f +

∑
i,j

∂j((∂iu)(∂`aij))

)
=

∫
Ω

ϕf ′,

for all ϕ ∈ C∞0 (Ω), where f ′ ∈ W k,2
loc (Ω). Hence the induction hypothesis

shows that ∂`u ∈W k+2,2
loc (Ω). Moreover, applying the induction hypothesis

to the compact subset K ⊂ Ω′ where Ω′ is an open set with Ω′ ⊂ Ω, we
obtain the estimate

‖∂`u‖Wk+2,2(K) ≤ c1

(
‖f ′‖Wk,2(Ω′) + ‖∂`u‖L2(Ω′)

)
≤ c2

(
‖f‖Wk+1,2(Ω′) + ‖u‖Wk+2,2(Ω′)

)
≤ c3

(
‖f‖Wk+1,2(Ω) + ‖u‖L2(Ω)

)
.

This proves the theorem. 2

Theorem C.24. (Boundary regularity) Let Ω ⊂ Rn be a bounded open
domain with smooth boundary and L be an elliptic operator on Ω with Ck+1-
coefficients satisfying (C.8). Suppose that u ∈ W 1,2

0 (Ω) is a weak solution
of Lu = f with f ∈W k,2(Ω), i.e.

B(u, ϕ) = 〈f, ϕ〉

for all ϕ ∈ C∞0 (Ω). Then u ∈W k+2,2(Ω) and Lu = f . Moreover, for every
integer k ≥ 2, there exists a constant c = c(Ω, L, k) > 0 such that

‖u‖Wk+2,2(K) ≤ c
(
‖Lu‖Wk,2(Ω) + ‖u‖L2(Ω)

)
for u ∈W k+2,2(Ω) ∩W 1,2

0 (Ω).

We will not give a proof of this result. It can easily be established with
the same techniques as Theorem C.22. The difficult part of the proof is
again the case k = 1. The rest follows by induction as above. The main
idea is to localize the argument and change coordinates near a boundary
point such that ∂Ω ∼= Rn−1 in the new coordinates. In these new coordi-
nates the operator is still elliptic and one can again employ the difference
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quotient technique to establish the existence of the n − 1 additional tan-
gential derivatives, i.e. ∂i∂ju ∈ L2 for all j and all i ≤ n − 1. The only
missing derivative is the second derivative ∂n∂nu in the direction normal
to the boundary, and it follows from the equation Lu = f that ∂n∂nu ∈ L2.
The details of these arguments will not be carried out here.

Corollary C.25 The operator

L : W k+2,2(Ω) ∩W 1,2
0 (Ω)→W k,2(Ω)

is bijective. Moreover, for every smooth function f : Ω̄ → R there exists a
unique smooth solution u : Ω̄ → R of the equation Lu = f which vanishes
on the boundary (Dirichlet boundary condition).

Proof: Given f ∈ L2(Ω) choose u ∈ W 1,2
0 (Ω) such that B(u, ϕ) = 〈f, ϕ〉

for all ϕ ∈ W 1,2
0 (Ω). Then, by Theorem C.22, if f ∈ W k,2(Ω) then u ∈

W k+2,2(Ω). This shows that L is onto. Injectivity is obvious. Moreover, if
f is smooth then u ∈ W k,2(Ω) for all k. Hence, by Proposition C.21, u is
smooth and vanishes on the boundary. 2

C.3 The Calderón-Zygmund inequality

Denote by

∆ = − ∂2

∂x1
2
− ∂2

∂x2
2
· · · − ∂2

∂xn2

the Laplace-operator on Rn. A C2-function u : Ω→ R on an open set Ω ⊂
Rn is called harmonic if ∆u = 0. Harmonic functions are real analytic.
(If n = 2 then a function is harmonic iff it is locally the real part of a
holomorphic function.) Harmonic functions are characterized by the mean
value property

u(x) =
n

ωnr2

∫
Br(x)

u(ξ) dξ, Br(x) ⊂ Ω.

Here ωn = 2πn/2Γ(n/2)−1 is the volume of the unit sphere in Rn. In par-
ticular, ω2 = 2π.

The fundamental solution of Laplace’s equation is

K(x) =

{
(2π)−1 log |x|, n = 2,
(2− n)−1ω−1

n |x|2−n, n ≥ 3.

Its first and second derivatives are given by

Kj(x) =
xj

ωn|x|n
, Kjk(x) =

nxjxk
ωn|x|n+2

, Kjj(x) =
nx2

j − |x|2

ωn|x|n+2

where Kj = ∂K/∂xj and Kjk = ∂2K/∂xj∂xk. In particular, ∆K = 0. The
function K and its first derivatives Kj are integrable on compact sets while
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the second derivatives are not. Hence ∂j(K ∗ f) = Kj ∗ f for compactly
supported functions f : Rn → R but there is no such formula for the second
derivatives. Moreover, since neither K nor its derivatives are integrable on
Rn, care must be taken for functions f which do not have compact support.

Every compactly supported C2-function u : Rn → R satisfies

u = K ∗∆u

and ∂ju = Kj ∗∆u, where ∗ denotes convolution. Conversely,

∆(K ∗ f) = f, ∆(Kj ∗ f) = ∂jf

for f ∈ C∞0 (Rn) (see [53]). This is Poisson’s identity. In general K ∗ f
will not have compact support. Let f ∈ L1

loc(Ω) and call u ∈ L1
loc(Ω) a

weak solution of ∆u = f if∫
Ω

u∆ϕ =

∫
Ω

fϕ

for ϕ ∈ C∞0 (Ω). Similarly call u ∈ L1
loc(Ω) a weak solution of ∆u = ∂jf

with f ∈ L1
loc if ∫

Ω

u∆ϕ = −
∫

Ω

f∂jϕ

for ϕ ∈ C∞0 (Ω).

Lemma C.26 Let u, f ∈ L1(Rn) with compact support.

(i) u is a weak solution of ∆u = f if and only if u = K ∗ f .

(ii) u is a weak solution of ∆u = ∂jf if and only if u = Kj ∗ f .

Proof: If u = K ∗ f then∫
u∆ϕ =

∫
(K ∗ f)∆ϕ =

∫
f(K ∗∆ϕ) =

∫
fϕ

for ϕ ∈ C∞0 (Rn). Conversely, suppose that u is a weak solution of ∆u = f .
Choose ρδ : Rn → R as in (C.1). Then∫

(∆ρδ ∗ u)ϕ =

∫
u(ρδ ∗∆ϕ) =

∫
f(ρδ ∗ ϕ) =

∫
(ρδ ∗ f)ϕ

for every ϕ ∈ C∞0 (Rn). Hence ∆ρδ ∗ u = ρδ ∗ f. Since ρδ ∗ u ∈ C∞0 (Rn)
ρδ ∗u = K ∗ρδ ∗f. Take the limit δ → 0 to obtain u = K ∗f. This proves (i).
The proof of (ii) is similar and is left to the reader. 2
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Theorem C.27. (Calderón-Zygmund inequality) For 1 < p < ∞
there exists a constant c = c(n, p) > 0 such that

‖∇(Kj ∗ f)‖Lp ≤ c ‖f‖Lp (C.12)

for f ∈ C∞0 (Rn) and j = 1, . . . , n.

This theorem is the fundamental estimate for the Lp-theory of elliptic
operators. We include here a proof following Gilbarg and Trudinger [39].
The proof requires the following three lemmata. The first is the case p = 2.

Lemma C.28 The estimate (C.12) holds for p = 2 with c = 1.

Proof: Since u(x) = Kj ∗ f(x)→ 0 as |x| → ∞ we have

‖∇u‖2L2 = 〈u,∆u〉 = 〈u, ∂jf〉 = −〈∂ju, f〉 ≤ ‖∇u‖L2 ‖f‖L2 .

Divide both sides by ‖∇u‖L2 to obtain the required estimate. 2

For any measurable function f : Rn → R define

µ(t, f) =
∣∣{x ∈ R2 | |f(x)| > t}

∣∣
for t > 0 where |A| denotes the Lebesgue measure of the set A.

Lemma C.29 For 1 ≤ p <∞ and f ∈ Lp(Rn)

tpµ(t, f) ≤
∫
|f(x)|p dx = p

∫ ∞
0

sp−1µ(s, f) ds.

Moreover, µ(t, f + g) ≤ µ(t/2, f) + µ(t/2, g).

Proof: Integrate the function F : Rn+1 → R defined by F (x, t) = ptp−1

for 0 ≤ t ≤ |f(x)| and F (x, t) = 0 otherwise. 2

Apply the previous Lemma to the function ∂k(Kj ∗f). By Lemma C.28,

‖∂k(Kj ∗ f)‖L2 ≤ ‖f‖L2

and hence

µ(t, ∂k(Kj ∗ f)) ≤ 1

t2

∫
|f(x)|2 dx (C.13)

The next lemma establishes a similar inequality with the L2-norm on the
right replaced by the L1-norm. Theorem C.27 is then proved by intepolation
for 1 < p < 2.

Lemma C.30 There exists a constant c = c(n) > 0 such that every func-
tion f ∈ L2(Rn)∩L1(Rn) satisfies the following estimate for j, k = 1, . . . , n:

µ(t, ∂k(Kj ∗ f)) ≤ c

t

∫
|f(x)| dx.
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Proof: The proof has three steps. We abbreviate Tf := ∂k(∂jK ∗ f).

Step 1. There exists a constant c = c(n) > 0 such that the following
holds. Let B be a countable union of closed cubes Qi ⊂ Rn with disjoint
interiors. Suppose that h ∈ L1(Rn) has support in B and satisfies∫

Qi

h = 0

for every i. Then

µ(t, Th) ≤ c
(

Vol(B) +
1

t
‖h‖L1

)
.

Denote by hi ∈ L1(Rn) the function which is equal to h on Qi and equal
to zero on Rn \ Qi. Let qi be the center of Qi and suppose that Qi has
sidelength 2ri. Then the maximal distance of any point in Qi to qi is

√
nri.

Hence, for x /∈ Qi, we have

|Thi(x)| =
∣∣∣∣∫
Qi

(∂kKj(x− y)− ∂kKj(x− qi))hi(y) dy

∣∣∣∣
≤ max

y∈Qi
|∂kKj(x− y)− ∂kKj(x− qi)| ‖h‖L1(Qi)

≤
√
nri max

y∈Qi
|∇∂kKj(x− y)| ‖h‖L1(Qi)

≤ c1ri max
y∈Qi

1

|x− y|n+1
‖h‖L1(Qi)

≤ c1ri
d(x,Qi)n+1

‖h‖L1(Qi)
.

(We denote by c1, c2, c3 constants which depend only on n.) Let

Pi :=
{
x ∈ Rn | |x− qi| < 2

√
nri
}
⊃ Qi.

Then d(x,Qi) ≥ |x− qi| −
√
nri for x ∈ Rn \ Pi. Hence∫

Rn\Pi
|Thi| dx ≤ c1ri

∫
|x|>2

√
nri

dx

(|x| −
√
nri)

n+1 ‖h‖L1(Qi)

= c1ri

∫ ∞
2
√
nri

ωnρ
n−1 dρ

(ρ−
√
nri)n+1

‖h‖L1(Qi)

≤ c1ωn2n−1ri

∫ ∞
√
nri

dρ

ρ2
‖h‖L1(Qi)

= c2 ‖h‖L1(Qi)
.
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Hence, with A :=
⋃
i Pi we obtain∫

Rn\A
|Th| dx ≤

∑
i

∫
Rn\Pi

|Thi| dx ≤ c2
∑
i

‖h‖L1(Qi)
= c2 ‖h‖L1 .

Since Vol(A) ≤
∑
i Vol(Pi) = c3

∑
i Vol(Qi) = c3Vol(B), it follows that

tµ(t, Th) ≤ tVol(A) + t |{x ∈ Rn \A | |Th(x)| > t}|

≤ tVol(A) +

∫
Rn\A

|Th(x)| dx

≤ c4 (tVol(B) + ‖h‖L1) ,

where c4 := max{c2, c3}. This proves Step 1.

Step 2. Let f ∈ L2(Rn)∩L1(Rn) and t > 0. Then there exists a count-
able collection of closed cubes Qi ⊂ Rn with disjoint interiors satisfying the
following.

(i) tVol(Qi) < ‖f‖L1(Qi)
≤ 2ntVol(Qi) for every i.

(ii) |f(x)| ≤ t for almost every x ∈ Rn \B, where B :=
⋃
iQi.

For k ∈ Zn and ` ∈ Z denote

Q(k, `) :=
{
x ∈ Rn | 2−`ki ≤ xi ≤ 2−`(ki + 1), i = 1, . . . , n

}
.

Let
Q := {Q(k, `) | k ∈ Zn, ` ∈ Z}

and Q0 ⊂ Q be the set of all Q ∈ Q satisfying

tVol(Q) < ‖f‖L1(Q)

and
Q ( Q′ ∈ Q =⇒ ‖f‖L1(Q′) ≤ tVol(Q′).

Then every decreasing sequence of cubes in Q contains at most one element
of Q0. Hence every Q ∈ Q0 satisfies assertion (i) and any two cubes in Q0

have disjoint interiors. Now let

B :=
⋃

Q∈Q0

Q.

Then

x ∈ Rn \B, x ∈ Q ∈ Q =⇒ 1

Vol(Q)
‖f‖L1(Q) ≤ t.

(Otherwise take a maximal cube Q ∈ Q that satisfies tVol(Q) < ‖f‖L1(Q)

and contains x. This cube would belong to Q0 and so x ∈ B.) Thus we
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have proved that, for every x ∈ Rn \ B, there is a sequence of decreasing
cubes Q` ∈ Q containing x such that Vol(Q`)

−1‖f‖L1(Q`) ≤ t. Hence it
follows from Lebesgue’s differentiation theorem that |f(x)| ≤ t for almost
every x ∈ Rn \B. This proves Step 2.

Step 3. We prove the lemma.

Fix a constant t > 0, let the Qi be as in Step 2, and denote B :=
⋃
iQi.

Then, by Step 2, tVol(B) ≤ ‖f‖L1 . Define g, h : Rn → R by

g(x) :=

{
f(x), for x /∈ B,

Vol(Qi)
−1
∫
Qi
f, for x ∈ Qi, h := f − g.

Then ‖g‖L1 ≤ ‖f‖L1 and ‖h‖L1 ≤ 2 ‖f‖L1 . Moreover, h vanishes in Rn \B
and has mean value zero in each cube Qi. Hence h satisfies the requirements
of Step 1. Hence there exists a constant c, depending only on n, such that

µ(t, Th) ≤ c
(

Vol(B) +
1

t
‖h‖L1

)
≤ 3c

t
‖f‖L1 .

Moreover, it follows from Step 2 that |g(x)| ≤ 2nt for almost every x ∈ Rn.
Hence, by Lemma C.29,

µ(t, Tg) ≤
‖g‖2L2

t2
≤

2n ‖g‖L1

t
≤

2n ‖f‖L1

t
.

Combining these inequalities we obtain from Lemma C.29 that

µ(2t, Tf) ≤ µ(t, Tg) + µ(t, Th) ≤ 2n+1 + 6c

2t
‖f‖L1 .

This proves Lemma C.30. 2

Proof of Theorem C.27: First assume 1 < p < 2. Let f : Rn → R be a
smooth function with compact support. Then by Lemma C.29∫

Rn
|∂k(Kj ∗ f)(x)|p dx = p

∫ ∞
0

tp−1µ(t, ∂k(Kj ∗ f)) dt

≤
(
pc

∫ 1

0

tp−2 dt+ p

∫ ∞
1

tp−3 dt

)
‖f‖L1

=

(
pc

p− 1
+

p

2− p

)
‖f‖Lp .

Here we have used Lemma C.30 for t < 1 and (C.13) for t > 1. This proves
the estimate for 1 < p < 2. For 2 < p < ∞ we use duality. Let 1 < q < 2
such that 1/p+ 1/q = 1. Then
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g(x)∂k(Kj ∗ f)(x) dx =

∫
∂k(Kj ∗ g)(x)f(x) ≤ c ‖f‖Lp ‖g‖Lq

and hence ‖∂k(Kj ∗ f)‖Lp ≤ ‖f‖Lp . 2

C.4 Elliptic regularity: Lp-theory

Theorem C.31. (Elliptic estimate) Let 1 < p < ∞, k ≥ 0 be an inte-
ger, and Ω ⊂ Rn be an open domain. Let L be a uniformly elliptic differen-
tial operator of the form (C.7) on Ω. Then for every compact subset Q ⊂ Ω
there exists a constant c > 0 such that

‖u‖Wk+2,p(Q) ≤ c
(
‖Lu‖Wk,p(Ω) + ‖u‖Lp(Ω)

)
for u ∈ C∞(Ω̄). Moreover, the inequality continues to hold for Q = Ω if u
vanishes on the boundary.

Proof: We prove the inequality for k = 0. The general case then follows
easily by induction. Assume first that L has constant coefficients. Then, by
change of variables, we may assume that L = ∆ is the standard Laplacian.
Choose an open neighborhood U of Q such that cl(U) ⊂ Ω. Let β ∈ C∞0 (Ω)
be a smooth cutoff function such that β(x) = 1 for x ∈ U . Then, by
Theorem C.27, the function v = K ∗ β∆u satisfies an estimate

‖v‖W 2,p(U) ≤ c1 ‖β∆u‖Lp(Ω) ≤ c2 ‖∆u‖Lp(Ω) .

The function v − u is harmonic in U . By the mean value property for
harmonic functions there exists a constant c3 > 0 such that

‖v − u‖W 2,p(Q) ≤ c3 ‖v − u‖Lp(U) ≤ c3
(
‖v‖Lp(U) + ‖u‖Lp(U)

)
.

Hence

‖u‖W 2,p(Q) ≤ ‖v‖W 2,p(Q) + ‖v − u‖W 2,p(Q)

≤ c4

(
‖v‖W 2,p(U) + ‖u‖Lp(U)

)
≤ c5

(
‖∆u‖Lp(Ω) + ‖u‖Lp(Ω)

)
.

This proves the result (for k = 0) in the case of constant coefficients.
Moreover, the constant c5 depends continuously on the coefficients and
hence can be chosen independent of them as long as (C.8) is satisfied. Next
we prove that there exist constants c > 0 and r > 0 such that for every
point x0 ∈ Q we have

supp(u) ⊂ Br(x0) =⇒ ‖u‖W 2,p ≤ c (‖Lu‖Lp + ‖u‖Lp) . (C.14)
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We have already proved that this holds (with a uniform constant c) if L
is replaced by the operator L0 with constant coefficients a0ij ≡ aij(x0). In
general, the inequality (C.14) follows from the fact that

‖L0u− Lu‖Lp ≤ ε ‖u‖W 2,p + c′ ‖u‖Lp

whenever r > 0 is sufficiently small. Note here that the first order terms
can be estimated by the interpolation inequality

‖u‖W 1,p ≤ c ‖u‖1/2W 2,p ‖u‖1/2Lp

of Proposition C.16 (with p = q = r, j = 1, k = 2). This proves (C.14) and
the result for k = 0 now follows by a standard partition of unity argument
which is left to the reader.

To prove the result with Q = Ω and u vanishing on ∂Ω cover the
boundary by finitely many coordinate charts which map ∂Ω to a hyper-
plane. Then use a reflection argument to prove the estimate for operators
which in these coordinates have constant coefficients. More precisely, u is
a smooth function on xn ≥ 0 which vanishes on xn = 0 then the function

u(x1, . . . , xn−1,−xn) = −u(x1, . . . , xn)

is twice continuously differentiable and hence satisfies the required esti-
mate for operators with constant coefficients. The general case can then be
reduced to that of constant coefficients by the same arguments as above.
This proves the inequality for k = 0. For general k it follows by a standard
induction argument involving an estimate for LDu − DLu where D is a
first order differential operator given by differentiation in the direction of
a vector field which is tangent to ∂Ω. 2

Theorem C.32. (Elliptic regularity) Fix constants 1 < p, q < ∞ with
1/p + 1/q = 1. Let Ω and L be as in Theorem C.31. If u ∈ W 1,p

0 (Ω) is a
weak solution of Lu = f with f ∈ W k,p(Ω), i.e. 〈u, Lϕ〉 = 〈f, ϕ〉 for all
ϕ ∈ C∞0 (Ω), then u ∈W k+2,p(Ω).

Proof: We only prove the result for p ≥ 2. The case p ≤ 2 can be reduced to
this by duality. This argument will be omitted. Given f ∈W k,p(Ω) choose
a sequence fi of smooth functions converging to f in the W k,p-norm. Then,
by Corollary C.25, there exists a unique smooth function ui : Ω̄→ R which
satisfies Lui = fi and vanishes on the boundary. Moreover, Theorem C.31
shows that there is an estimate

‖ui‖Wk+2,p(Ω) ≤ c
(
‖fi‖Wk,p(Ω) + ‖ui‖Lp(Ω)

)
Hence ui has a subsequence converging weakly in W k+2,p(Ω). Call the
limit u0. Then u0 ∈ W k+2,p(Ω) and Lu0 = f . Hence B(u − u0, ϕ) =
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〈u−u0, Lϕ〉 = 0 for all ϕ ∈ C∞0 (Ω) and, by choosing a sequence ϕi → u−u0

in W 1,2
0 (Ω), we obtain u = u0. 2

Remark C.33 In view of Lemma A.1 and Rellich’s theorem the estimate
of Theorem C.31 shows that the operator

L : W k+2,p(Ω) ∩W 1,p
0 (Ω)→W k,p(Ω)

has finite dimensional kernel and closed range. The elliptic regularity theo-
rem is equivalent to the assertion that this operator has finite dimensional
cokernel. In fact, it follows that the operator is bijective. 2

Remark C.34 Elliptic regularity for systems of PDEs can easily be re-
duced to Theorem C.31 whenever the highest order terms have diagonal
form. 2

Corollary C.35 Let Ω ⊂ Rn be a bounded open set with smooth boundary.
Assume u ∈W k,p(Ω) with k ≥ 1. The following are equivalent.

(i) u ∈W 1,p
0 (Ω).

(ii) u vanishes on ∂Ω.

(iii) There exists a sequence uν ∈ C∞(Ω̄) such that

lim
ν→∞

‖uν − u‖Wk,p = 0, uν |∂Ω = 0.

In particular, the intersection W k,p(Ω)∩W 1,p
0 (Ω) is a closed linear subspace

of W k,p(Ω).

Proof: Proposition C.21 and the proof of Theorem C.32. 2



APPENDIX D

THE KAZDAN-WARNER EQUATION

Let X be a compact connected oriented Riemannian n-manifold and
denote by ∆ = d∗d the Laplace-Beltrami operator. The Kazdan-Warner
equation has the form

∆u+ euh = f. (D.1)

Here f and h are given real valued functions on X and the goal is to find
a solution u : X → R.

Theorem D.1. (Kazdan-Warner) Fix a constant p > n/2. Let h, f ∈
Lp(X) such that

inf
X
ϕ ≥ 0 =⇒

∫
X

hϕ ≥ 0

for every test function ϕ ∈ C∞(X) and∫
X

f > 0,

∫
X

h > 0.

Then (D.1) has a unique solution u ∈W 2,p(X,R). Moreover, if h is smooth
then so is u.

Note that the condition
∫
X
f > 0 is necessary for the existence of a

solution u because the function ∆u always has mean value zero.
The kernel of the Laplace operator ∆ : W 2,p(X) → Lp(X) consists

of the constant functions and hence is 1-dimensional. Moreover its range
consists of all functions with mean value zero. Hence the restriction of ∆
to the space of functions of mean value zero is invertible. In conjunction
with the Sobolev embedding theorem W 2,p(X) ↪→ C0(X) for p > n/2 this
proves the following.

Lemma D.2 For every p > n/2 there exists a constant c0 = c0(X, p) > 0
such that the following holds. For every f0 ∈ Lp(X) with

∫
X
f0 = 0 there

exists a unique solution u0 ∈W 2,p(X) of

∆u0 = f0,

∫
X

u0 = 0.

This solution satisfies ‖u0‖L∞ ≤ c0 ‖f0‖Lp .
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The assertion of Theorem D.1 can easily be reduced to the case where
f is constant. To see this let

A =
1

Vol(X)

∫
X

f

and denote by u0 ∈W 2,p(X) the unique solution of

∆u0 = f −A,
∫
X

u0 = 0.

Then a function v ∈ W 2,p(X) satisfies ∆v + heu0ev = A if and only u =
u0 +v satisfies (D.1). Moreover, the function h is nonnegative with positive
mean value if and only if the function heu0 has the same property. Hence
it remains to prove Theorem D.1 for the equation

∆u+ euh2 = A (D.2)

where A is a positive constant. Here the square is introduced for conve-
nience of the exposition.

Consider the open set

H =

{
h ∈ Lp/2(X)

∣∣∣ ∫
X

h2 > 0

}
⊂ Lp/2(X)

and denote by

U =
{

(h, u) ∈ H ×W 2,p(X) |∆u+ euh2 = A
}

the space of solutions of (D.2). The next lemma shows that this space is a
Banach manifold.

Lemma D.3 The space U ⊂ Lp/2(X) × W 2,p(X) is a smooth Banach
manifold and the projection

π : U → H

defined by π(h, u) = h is a local diffeomorphism near every point in U .

Proof: Consider the smooth map F : Lp/2(X) × W 2,p(X) → Lp(X)
defined by

F(h, u) = ∆u+ euh2 −A.

Its differential is given by

dF(h, u)(ĥ, û) = ∆û+ euh2û+ 2euhĥ.
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Since the function euh2 is not identically zero it follows that the operator

∆ + euh2

is invertible. To see this note first that this operator is Fredholm and has
index zero. (In the L2 setting it is self-adjoint.) Hence it suffices to prove
injectivity. Assume that û ∈W 2,p(X) satisfies

∆û+ euh2û = 0.

Take the inner product with û to obtain∫
X

(
|dû|2 + eu |hû|2

)
= 0.

It follows that û vanishes on a set of positive measure, namely where h is
nonzero. Moreover, dû ≡ 0 and hence û is constant. By the previous remark
this constant must be zero. Hence the operator ∆ + euh2 is invertible for
every pair (h, u) ∈ H×W 2,p(X). Moreover, it is easy to see that dF(h, u)
has a right inverse whenever h 6≡ 0.

This shows that 0 is a regular value of F and so, by Theorem B.3, the
space

U = F−1(0) ⊂ Lp/2(X)×W 2,p(X)

of solutions of (D.2) is a Banach manifold. Its tangent space at (h, u) is the
kernel of dF(h, u):

T(h,u)U =
{

(ĥ, û)
∣∣∣∆û+ euh2û+ 2euhĥ = 0

}
.

Now the linearized projection operator

dπ(h, u) : T(h,u)U → Lp(X)

is given by (ĥ, û) 7→ ĥ. This operator is bijective if and only if for every

ĥ ∈ Lp/2(X) there exists a unique û ∈W 2,p(X) such that (ĥ, û) ∈ T(h,u)U .
This follows again from the invertibility of the operator ∆ + euh2. Now
the inverse function theorem B.1 shows that every pair (h, u) ∈ U has a
neighbourhood V such that the restriction of π to V is a diffeomorphism
V → π(V) ⊂ H. 2

The next lemma is the key to the proof of Theorem D.1. It gives an a
priori estimate for the solutions of (D.2).

Lemma D.4 There exists a function ϕ : [0,∞)2 → (0,∞), depending only
on X and p, such that
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‖u‖L∞ ≤ ϕ
(∥∥h2

∥∥
Lp
,

1

Vol(X)

∫
X

h2

)
for every solution (h, u) of (D.2).

Remark D.5 The proof of Lemma D.4 shows that

ϕ(t, B) =

∣∣∣∣log

(
A

B

)∣∣∣∣+ 2c0AVol(X)1/p + 2
c0At

B
exp

(
4
c0At

B

)
where

t =
∥∥h2
∥∥
Lp
, B =

1

Vol(X)

∫
X

h2

and c0 > 0 is as in Lemma D.2. Note that

BVol(X)1/p ≤ t.

This can be restated in the form that the Lp norm of the mean value is
bounded above by the Lp norm of the original function. The proof uses the
Hölder inequality. 2

Proof of Lemma D.4: The lemma is proved in four steps.

Step 1 If u, h ∈ C∞(X) satisfy (D.2) then

u(x) ≤ 4
c0At

B
+ log

(
A

B

)
for every x ∈ X. Here t and B are as in Remark D.5.

The function h0 = h2 − B has mean value zero and hence there is a
unique function v0 ∈ C∞(X) such that

∆v0 = −h0 = B − h2,

∫
X

v0 = 0.

By Lemma D.2, this function satisfies

‖v0‖L∞ ≤ c0 ‖h0‖Lp ≤ c0
(∥∥h2

∥∥
Lp

+BVol(X)1/p
)
≤ 2c0t.

I claim that

u(x) ≤ log

(
A

B

)
+
A

B
(v0(x) + 2c0t) (D.3)

for all x ∈ X. The assertion of Step 1 is an immediate consequence of (D.3).
To prove (D.3) consider the function
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wε(x) = log

(
A+ ε

B

)
+
A+ ε

B
(v0(x) + 2c0t)− u(x).

Choose a point xε ∈ X at which this function attains its minimum:

wε(xε) = inf
X
wε, ∆wε(xε) ≤ 0.

The last inequality holds because the positive definite Laplace-Beltrami
operator agrees at a minimum with minus the ordinary Laplace operator
(i.e. minus the sum of the second derivatives in an orthonormal frame.)
Now

0 ≥ ∆wε(xε)

=
A+ ε

B
∆v0(xε)−∆u(xε)

=
A+ ε

B

(
B − h(xε)

2
)

+ eu(xε)h(xε)
2 −A

= ε+ h(xε)
2

(
eu(xε) − A+ ε

B

)
.

This implies that h(xε) 6= 0 and

u(xε) < log

(
A+ ε

B

)
.

Hence wε(xε) > 0 and so wε(x) > 0 for all x ∈ X. The limit ε → 0 gives
the required inequality (D.3).

Step 2 If u, h ∈ C∞(X) satisfy (D.2) then the function A−euh2 has mean
value zero. The unique solution u0 ∈ C∞(X) of

∆u0 = A− euh2,

∫
X

u0 = 0

satisfies

‖u0‖L∞ ≤ c0AVol(X)1/p +
c0At

B
exp

(
4
c0At

B

)
.

By Lemma D.2

‖u0‖L∞ ≤ c0
∥∥A− euh2

∥∥
Lp
≤ c0AVol(X)1/p + c0te

supu.

Hence the assertion follows from Step 1.
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Step 3 If h, u, and u0 are as in Step 2 then

u = u0 − log

(
1

AVol(X)

∫
X

eu0h2

)
and

‖u‖L∞ ≤ 2 ‖u0‖L∞ +

∣∣∣∣log

(
A

B

)∣∣∣∣ .
Since ∆(u−u0) = 0 it follows that u = u0 + c for some constant c. The

value of the constant is determined by the fact that the function A−eu0+ch2

has mean value zero. Hence

c = − log

(
1

AVol(X)

∫
X

eu0h2

)
as claimed. Now observe that

exp (−‖u0‖L∞)h2 ≤ eu0h2 ≤ exp (‖u0‖L∞)h2.

Integrating this over X gives rise to the inequality

exp (−‖u0‖L∞)
B

A
≤ 1

AVol(X)

∫
X

eu0h2 ≤ exp (‖u0‖L∞)
B

A
.

Taking logarithms one finds

|c| ≤ ‖u0‖L∞ +

∣∣∣∣log

(
A

B

)∣∣∣∣ .
Since u = u0 + c this proves Step 3.

Step 4 Proof of the lemma.

It follows from Step 2 and Step 3 that every smooth solution (h, u)
of (D.2) with h 6≡ 0 satisfies

‖u‖L∞ ≤
∣∣∣∣log

(
A

B

)∣∣∣∣+ 2 ‖u0‖L∞

≤
∣∣∣∣log

(
A

B

)∣∣∣∣+ 2c0AVol(X)1/p + 2
c0At

B
exp

(
4
c0At

B

)
= ϕ(t, B).

This proves the lemma for smooth solutions (h, u).



THE KAZDAN-WARNER EQUATION 539

Now suppose, by contradiction, that there is a pair (h0, u0) ∈ U with

‖u0‖L∞ > ϕ

(∥∥h2
0

∥∥
Lp
,

1

Vol(X)

∫
X

h2
0

)
.

Consider the projection π : U → H and let H → W 2,p(X) : h 7→ uh be
a local inverse which assigns to every h ∈ Lp/2(X) near h0 the unique
solution u = uh of (D.2) near u0. This map is continuous and hence

‖uh‖L∞ > ϕ

(∥∥h2
∥∥
Lp
,

1

Vol(X)

∫
X

h2

)
for h sufficiently close to h0. Choose a smooth function h near h0. Then, by
elliptic regularity, the function u is also smooth and hence the inequality
contradicts the first part of the proof. 2

Proof of Theorem D.1: Consider the projection

π : U → H

of Lemma D.3. Lemma D.4 shows that the set π−1(h) of solutions u ∈
W 2,p(X) of (D.2) for a given function h is compact. To see this just note
that every sequence uν ∈ π−1(h) satisfies a uniform estimate

sup
ν
‖uν‖L∞ ≤ c1.

Since ∆uν = A − euνh2 it follows from the Calderón-Zygmund inequality
for the Laplace-Beltrami operator that

sup
ν
‖uν‖W 2,p ≤ c2.

By the Arzela-Ascoli theorem, the inclusion W 2,p(X) ↪→ C0(X) is a com-
pact operator. Hence there exists a subsequence, still denoted by uν , which
converges in the sup-norm. Since uν is a solution of (D.2) it follows again
from the Calderón-Zygmund inequality that uν converges in the W 2,p-
norm. This proves compactness. On the other hand, by Lemma D.3 the
points in π−1(h) are isolated with respect to the W 2,p-norm. This shows
that π−1(h) is a finite set for every h.

Now for any smooth path

[0, 1]→ H : t 7→ ht

consider the space

M = {(t, u) | 0 ≤ t ≤ 1, (ht, u) ∈ U} .
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It follows by the same arguments as above that M is compact. Moreover,
by Lemma D.3, M is a smooth 1-manifold and the obvious projection
M → [0, 1] is a covering fibration. Hence

#π−1(h0) = #π−1(h1).

This shows that the number of points in π−1(h) is independent of h ∈ H.
To show that this number is 1 just consider the constant function h(x) ≡ 1.
Then the equation

∆u+ eu = A

has an obvious solution
u(x) ≡ logA.

We must prove that this is the only solution. To see this consider, for any
solution u, a point x0 ∈ X where u attains its maximum. At this point

0 ≤ ∆u(x0) = A− eu(x0).

Hence eu(x0) ≤ A and so
eu(x) ≤ A

for all x ∈ X. On the other hand the formula ∆u = A− eu shows that∫
X

(A− eu) = 0

and this implies eu(x) ≡ A as claimed. 2



APPENDIX E

UNIQUE CONTINUATION

The goal of this appendix is to prove that every section in the kernel of
the Dirac operator which vanishes on some open set must vanish everywhere
(provided that the manifold is connected). This result can be proved with
Aronszajn’s theorem [2]. However, the techniques of Agmon and Nirenberg
in [1] give rise to a much simpler proof which uses the first order nature
of the equation. Apparently, this proof does not carry over to second order
operators such as the Laplacian. The methods described in this appendix
were also used by Donaldson and Kronheimer in [21], pp 150–152, to prove
a unique continuation theorem for anti-self-dual instantons.

E.1 The Agmon-Nirenberg theorem

Let H be a Hilbert space and A(t) be a family of (unbounded) symmet-
ric operators on H with domains dom(A(t)) ⊂ H. The operators A(t)
are not required to be self-adjoint although in the main applications they
will be and, moreover, their domains will be independent of t. However,
in some interesting cases these operators are symmetric with respect to
time-dependent inner products. This case will be dealt with in Section E.2
while applications to the Dirac operator are discussed in Section E.3. The
following theorem is a special case of a result by Agmon and Nirenberg [1].

Theorem E.1. (Agmon-Nirenberg) Let H be a real Hilbert space and
A(t) : dom(A(t)) → H be a family of symmetric linear operators. Assume
that x : [0, T ]→ H is continuously differentiable in the weak topology such
that x(t) ∈ dom(A(t)) and

‖ẋ(t)−A(t)x(t)‖ ≤ c1 ‖x(t)‖ (E.1)

for every t ∈ [0, T ], where ẋ(t) ∈ H denotes the time derivative of x.
Assume further that the function t 7→ 〈x(t), A(t)x(t)〉 is also continuously
differentiable and satisfies

d

dt
〈x,Ax〉 − 2〈ẋ, Ax〉 ≥ −c2 ‖Ax‖ ‖x‖ − c3 ‖x‖2 . (E.2)

Then the following holds.

(i) If x(0) = 0 then x(t) = 0 for all t ∈ [0, T ].
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(ii) If x(0) 6= 0 then x(t) 6= 0 for all t ∈ [0, T ] and, moreover,

log ‖x(t)‖2 ≥ log ‖x(0)‖2 −

(
2
〈x(0), A(0)x(0)〉
‖x(0)‖2

+
b

a

)
eat − 1

a
− 2c1t

where a = 2c2 and b = 2c1
2 + c2

2/2 + 2c3.

Remark E.2 In the applications discussed here the operators A(t) are
self-adjoint differential operators on some compact manifold. The inequal-
ity (E.1) allows for lower order perturbations which are not self-adjoint.
The general version of Theorem E.1 in [1] allows for highest order pertur-
bations which are not self-adjoint, but which are, in a precise quantitative
way, dominated by the self-adjoint part. This more general version of the
theorem is not needed for the applications to the Dirac operator. 2

Remark E.3 Assume, for example, that the operators A(t) are all self-
adjoint with time-independent domain V = dom(A(t)) ⊂ H. Then V is a
Hilbert space in its own right and the operators A(t) are all bounded linear
operators from V to H. Assume that the map [0, T ]→ A(t) is continuously
differentiable in the weak operator topology. Then a function

x ∈ C1([0, T ], H]) ∩ C0([0, T ], V )

satisfies the requirements of Theorem E.1 if and only if

〈Ȧx, x〉 ≥ −c2 ‖Ax‖ ‖x‖ − c3 ‖x‖2

and (E.1) holds. The reader may check that under these assumptions the
function t 7→ 〈A(t)x(t), x(t)〉 is continuously differentiable. 2

The idea of the proof of Theorem E.1 is to use the convexity of the
function t 7→ log ‖x(t)‖2. The key step is the following lemma.

Lemma E.4 Let A(t) and x(t) be as in Theorem E.1 and define

ϕ(t) = log ‖x(t)‖2 −
∫ t

0

2〈x(s), ẋ(s)−A(s)x(s)〉
‖x(s)‖2

ds

for 0 ≤ t ≤ T wherever x(t) 6= 0. Then ϕ is twice continuously differentiable
and

ϕ̈+ a |ϕ̇|+ b ≥ 0

where a = 2c2 and b = 2c1
2 + c2

2/2 + 2c3.

Proof: Define f(t) = ẋ(t) − A(t)x(t) and note that the derivative of the
function ϕ is given by
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ϕ̇ =
2〈x, ẋ〉
‖x‖2

− 2〈x, f〉
‖x‖2

=
2〈x,Ax〉
‖x‖2

.

Hence

ϕ̈ =
2 d
dt 〈Ax, x〉
‖x‖2

− 4〈Ax, x〉〈ẋ, x〉
‖x‖4

≥ 4〈Ax,Ax+ f〉 − 2c2 ‖Ax‖ ‖x‖ − 2c3 ‖x‖2

‖x‖2
− 4〈Ax, x〉〈Ax+ f, x〉

‖x‖4
.

Here the second step follows from the inequality (E.2) and the identity
ẋ = Ax + f . The terms on the right hand side can now be organized as
follows

ϕ̈ ≥ 4

‖x‖2

(
‖Ax‖2 − 〈Ax, x〉

2

‖x‖2

)
+

4

‖x‖2

〈
Ax− 〈Ax, x〉

‖x‖2
x, f

〉

− 2c2
‖Ax‖
‖x‖

− 2c3.

=
4

‖x‖2

∥∥∥∥∥Ax− 〈Ax, x〉‖x‖2
x

∥∥∥∥∥
2

+
4

‖x‖2

〈
Ax− 〈Ax, x〉

‖x‖2
x, f

〉

− 2c2
‖Ax‖
‖x‖

− 2c3.

Now abbreviate

ξ =
x

‖x‖
, η =

Ax

‖x‖
.

Then ϕ̇ = 2〈ξ, η〉 and the previous inequality can be written in the form

ϕ̈ ≥ 4 ‖η − 〈η, ξ〉ξ‖2 + 4

〈
η − 〈η, ξ〉ξ, f

‖x‖

〉
− 2c2 ‖η‖ − 2c3

≥ 4 ‖η − 〈η, ξ〉ξ‖2 − 2 ‖η − 〈η, ξ〉ξ‖ 2 ‖f‖
‖x‖

− 2c2 ‖η‖ − 2c3

≥ 2 ‖η − 〈η, ξ〉ξ‖2 − 2 ‖f‖2

‖x‖2
− 2c2 ‖η‖ − 2c3

≥ 2 ‖η − 〈η, ξ〉ξ‖2 − 2c1
2 − 2c2 ‖η‖ − 2c3.

The last but one inequality uses the fact that αβ ≤ α2/2 + β2/2 and the
last inequality uses ‖f‖ ≤ c1‖x‖.

To obtain the desired inequality

ϕ̈+ a |ϕ̇|+ b ≥ 0
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it remains to prove that

2 ‖η − 〈η, ξ〉ξ‖2 − 2c1
2 − 2c2 ‖η‖ − 2c3 ≥ −a |ϕ̇| − b.

Since ϕ̇ = 2〈ξ, η〉 this is equivalent to

c2 ‖η‖ ≤ ‖η − 〈η, ξ〉ξ‖2 +
a

2
|〈η, ξ〉|+

(
b

2
− c12 − c3

)
.

Now the norm squared of η can be expressed in the form

‖η‖2 = u2 + v2, u = ‖η − 〈η, ξ〉ξ‖ , v = |〈η, ξ〉| .

Hence the desired inequality has the form

c2
√
u2 + v2 ≤ u2 +

a

2
v +

(
b

2
− c12 − c3

)
.

But since c2
√
u2 + v2 ≤ c2u + c2v and c2u ≤ u2 + c2

2/4 this is satisfied
with a/2 = c2 and b/2− c12 − c3 = c2

2/4. This proves the lemma. 2

Lemma E.5 Let ϕ,ψ : [0, T ] → R be twice continouously differentiable
functions which satisfy

ϕ̈+ a|ϕ̇|+ b ≥ 0, ψ̈ + a|ψ̇|+ b = 0

for two constants a, b > 0. If

ψ(0) ≤ ϕ(0), ψ̇(0) ≤ ϕ̇(0)

then ψ(t) ≤ ϕ(t) for all t ∈ [0, T ].

Proof: Consider the function ρ(t) = ϕ(t) − ψ(t). This function is twice
continuously differentiable on [0, T ] and satisfies

ρ̈+ a|ρ̇| = ϕ̈− ψ̈ + a|ϕ̇− ψ̇|
≥ ϕ̈− ψ̈ + a|ϕ̇| − a|ψ̇|
≥ 0

and ρ(0) ≥ 0, ρ̇(0) ≥ 0. This implies ρ̇(t) ≥ 0 for all t ∈ [0, T ]. Suppose
otherwise that there exists a time 0 < t1 ≤ T such that ρ̇(t1) < 0. Let
t0 ≥ 0 be the largest time less than t1 such that ρ̇(t0) = 0. Then ρ̇(t) < 0
for t0 < t ≤ t1 and hence

d

dt

(
e−atρ̇(t)

)
= e−at (ρ̈(t)− aρ̇(t)) = e−at (ρ̈(t) + a |ρ̇(t)|) ≥ 0
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for t0 ≤ t ≤ t1. This shows that e−atρ̇(t) ≥ ρ̇(t0) ≥ 0 for all t ∈ [t0, t1] in
contradiction to the assumption. Hence ρ̇(t) ≥ 0 for all t ∈ [0, T ] and, since
ρ(0) ≥ 0, it follows that ρ(t) ≥ 0 for all t. This proves the lemma. 2

Proof of Theorem E.1: Let x(t) and A(t) be as in Theorem E.1 and
ϕ(t), a, b as in Lemma E.4. Assume first that x(0) 6= 0 and let t1 > 0 such
that x(t) 6= 0 for all t ∈ [0, t1]. Then the function ϕ(t) is defined on the
interval [0, t1]. Consider the function

ψ(t) = ϕ(0)−
(
|ϕ̇(0)|+ b

a

)
eat − 1

a
+
bt

a
.

This function satisfies

ψ̇(t) = −
(
|ϕ̇(0)|+ b

a

)
eat +

b

a
, ψ̈(t) = −a

(
|ϕ̇(0)|+ b

a

)
eat.

Hence ψ̇(t) ≤ 0 for all t ∈ [0, t1] and ψ̈ + a|ψ̇| + b = ψ̈ − aψ̇ + b = 0.
Moreover, ψ(0) = ϕ(0) and ψ̇(0) = −|ϕ̇(0)| ≤ ϕ̇(0). Hence it follows from
Lemma E.5 that ψ(t) ≤ ϕ(t) for all t ∈ [0, t1]. Now the formula

log ‖x(t)‖2 = ϕ(t) +

∫ t

0

2〈x(s), ẋ(s)−A(s)x(s)〉
‖x(s)‖2

ds ≥ ψ(t)− 2c1t

shows that

‖x(t)‖2 ≥ e−c1t+ψ(t) (E.3)

for every t ∈ [0, t1]. This implies x(t) 6= 0 for all t ∈ [0, T ]. Suppose other-
wise that there is a t0 > 0 such that x(t) 6= 0 for 0 ≤ t < t0 and x(t0) = 0.
Then the function x(t) must satisfy the estimate (E.3) for 0 ≤ t < t0 and
hence x(t) cannot converge to zero as t → t0. This contradiction shows
that x(t) 6= 0 for all t ∈ [0, T ] and (E.3) holds on the entire interval. This
proves (ii). Statement (i) follows by reversing time. More precisely, note
that the functions

y(t) = x(T − t), B(t) = −A(T − t)

satisfy all the requirements of Theorem E.1. Hence if y(0) 6= 0 then y(T ) 6= 0
or, conversely, y(T ) = 0 implies y(0) = 0. This means that x(0) = 0 implies
x(T ) = 0. Since this holds for any interval [0, T ] the theorem is proved. 2

E.2 Time-dependent inner products

There are interesting applications to operator families A(t) on a Hilbert
space which are self-adjoint with respect to a time-dependent family of



546 UNIQUE CONTINUATION

inner products which are all compatible with the standard inner product
on H. Any such family of inner products can be expressed in the form

〈x, y〉t = 〈Q(t)x,Q(t)y〉 (E.4)

for some invertible bounded linear operators Q(t) : H → H. Without loss of
generality one can consider operators Q(t) which are self-adjoint. Assume
throughout that these operators satisfy the following conditions.

(H1) The operator Q(t) is self-adjoint for every t and there exists a con-
stant δ > 0 such that

δ ‖x‖ ≤ ‖Q(t)x‖ ≤ δ−1 ‖x‖

for all x ∈ H and t ∈ [0, T ]. Moreover, the map [0, T ] → L(H) : t 7→ Q(t)
is continuously differentiable in the weak operator topology and there exists
a constant c0 > 0 such that ∥∥∥Q̇(t)

∥∥∥
L(H)

≤ c0

for all t ∈ [0, T ].

Example E.6 Let X be a compact oriented smooth manifold equipped
with a time-dependent family of Riemannian metrics gt. Then the Hilbert
space

H = L2(X)

of L2 functions on X is independent of the choice of the metric. However,
the inner product on H does depend on gt. Declare the inner product
induced by g0 to be the standard inner product on H. For every t and
every x ∈ X let Pt(x) : TxX → TxX be the unique endomorphism which
is symmetric and positive definite with respect to g0 and satisfies

gt(v, w) = g0(Ptv, Ptw)

for v, w ∈ TxX. Then the volume forms of g0 and gt are related by

dvolt = det(Pt)dvol0.

Hence the two inner products on H = L2(X) are related by the pointwise
multiplication operator Qt : L2(X)→ L2(X) given by

f 7→ Qtf =
√

det(Pt)f.

Now let A(t) = ∆t be the Laplace-Beltrami operator of the metric gt.
This operator is self-adjoint with respect to the inner product induced by
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the volume form dvolt of the metric gt. The domain of ∆t is the Sobolev
space W 2,2(X). This space is independent of the metric and is preserved by
the operators Qt (whenever the metrics are of class C2 say). Note, however,
that only the L2-inner products are related by the operator Qt but not the
W k,2 inner products for k ≥ 1. The reader may also note that this example
easily generalizes to the Hilbert space of L2-sections of a bundle E → X
where the inner products on both E and TX vary with t. 2

Theorem E.7 Let H be a real Hilbert space and Q(t) ∈ L(H) be a family
of (bounded) self-adjoint operators on H which satisfy (H1). Let A(t) :
dom(A(t)) → H be a family of (unbounded) linear operators such that
A(t) is symmetric with respect to the inner product (E.4). Assume that
x : [0, T ]→ H is continuously differentiable in the weak topology such that
x(t) ∈ dom(A(t)) and

‖ẋ(t)−A(t)x(t)‖t ≤ c1 ‖x(t)‖t (E.5)

for every t ∈ [0, T ]. Assume further that the function t 7→ 〈x(t), A(t)x(t)〉t
is also continuously differentiable and satisfies

d

dt
〈x(t), A(t)x(t)〉t − 2〈ẋ(t), A(t)x(t)〉t (E.6)

≥ −c2 ‖A(t)x(t)‖t ‖x‖t − c3 ‖x(t)‖2t

for every t ∈ [0, T ]. Then the following holds.

(i) If x(0) = 0 then x(t) = 0 for all t ∈ [0, T ].

(ii) If x(0) 6= 0 then x(t) 6= 0 for all t ∈ [0, T ] and, moreover,

log ‖x(t)‖2t ≥ log ‖x(0)‖2t −

(
2
〈x(0), A(0)x(0)〉t

‖x(0)‖2t
+
b

a

)
eat − 1

a
− 2c̃1t

where a = 2c̃2 and b = 2c̃21 + c̃22/2 + 2c̃3 with

c̃1 = c1 +
c0
δ
, c̃2 = c2 +

2c0
δ
, c̃3 = c3.

Proof: The result can easily be reduced to Theorem E.1. Define

Ã = QAQ−1, x̃ = Qx, f̃ = Q̇x+Qf

with dom(Ã(t)) = Q(t)dom(A(t)) where f = ẋ − Ax as before. Then the
operator A(t) is symmetric with respect to the inner product (E.4) if and
only if Ã(t) is symmetric with respect to the standard inner product. (More-
over, one can easily check that A(t) is self-adjoint with respect to (E.4) if
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and only if Ã(t) is self-adjoint with respect to the standard inner product.
However, this is not needed for the proof.) It also easy to see that

ẋ = Ax+ f ⇐⇒ ˙̃x+ Ãx̃ = f̃ .

It remains to show that under the assumptions of Theorem E.7 the triple
Ã, x̃, f̃ satisfies the requirements of Theorem E.1 with suitably modified
constants c̃i. Firstly, note that

‖f̃‖ = ‖Q̇x+Qf‖ ≤ c0 ‖x‖+ ‖f‖t ≤ c0δ
−1 ‖x‖t + c1 ‖x‖t

and hence x̃ satisfies (E.1) with c1 replaced by c̃1 = c1 + c0/δ. Secondly,
the function

t 7→ 〈x̃(t), Ã(t)x̃(t)〉 = 〈x(t), A(t)x(t)〉t

is continuously differentiable and a simple calculation shows that

d

dt
〈x̃, Ãx̃〉 − 2〈 ˙̃x, Ãx̃〉 =

d

dt
〈x,Ax〉t − 2〈ẋ, Ax〉t + 2〈Q̇x,QAx〉.

Hence

d

dt
〈x̃, Ãx̃〉 − 2〈 ˙̃x, Ãx̃〉 ≥ −c2 ‖Ax‖t ‖x‖t − c3 ‖x‖

2
t − 2‖Q̇x‖‖Ãx̃‖

≥ −c2 ‖x̃‖ ‖Ãx̃‖ − c3 ‖x̃‖2 − 2c0δ
−1 ‖x̃‖ ‖Ãx̃‖.

This shows that x̃ satisfies (E.2) with c2 and c3 replaced by c̃2 = c2 +2c0/δ
and c̃3 = c3. Hence x̃ and Ã satisfy the requirements of Theorem E.1 and
this proves Theorem E.7. 2

E.3 Application to Dirac operators

The goal of this section is to use Theorem E.7 in order to derive a unique
continuation theorem for the solutions of the Dirac equation. Let X be
a connected Riemannian manifold of real dimension m which is equipped
with a spinc structure

Γ : TX → End(W ).

It is not necessary here to assume that Γ is an irreducible representation
of the bundle of Clifford algebras. Hence the rank of the Hermitian vector
bundle W may be bigger than 2n when m = 2n or m = 2n + 1. In par-
ticular, this includes bundles of the form W = S ⊗ E where S → X is a
minimal spin or spinc representation and E → X is any Hermitian vector
bundle. We shall consider spinc connections on W which are compatible
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with any connection on TX, not necessarily with the Levi-Civita connec-
tion. Moreover, it is convenient to work with connections on W of class
W 1,p with

p > m = dim X.

More precisely, fix a reference connection A0 on W which is compatible
with the Levi-Civita connection and denote by

A1,p(Γ)

the space of all connections A on W which have the form A = A0 +a where
a ∈W 1,p(X,End(W )) and there exists a b ∈W 1,p(X,End(TX)) such that

[a(u),Γ(v)] = Γ(b(u)v)

for all u, v ∈ TxX. For every A ∈ A1,p(Γ) denote by DA : W 1,p(X,W ) →
Lp(X,W ) the corresponding Dirac operator. Recall that this operator is
defined by

DAΦ =

m∑
i=0

Γ(ei)∇A,eiΦ

for any local orthonormal frame e1, . . . , em. Recall from Lemma C.23 that
any Φ ∈ W 1,p(X,W ) in the kernel of the Dirac operator is necessarily of
class W 2,p. The proof carries over to manifolds of arbitrary dimension and
general spinc representations.

The restriction p > m is chosen for technical reasons. The unique con-
tinuation theorem should remain valid for connections of class W 1,p with
any p > m/2, however, for p ≤ m the connection potential is no longer
continuous and this leads to complications in the proof. Namely, the treat-
ment of the general case would require an extension of Theorem E.7 which
allows for solutions of the inequality ‖ẋ(t)−A(t)x(t)‖ ≤ V (t) ‖x(t)‖ where
the function V is not bounded but lies in some space Lp([0, T ], H). How-
ever, for the purposes of this book the following theorem suffices.

Theorem E.8 Let X be a connected Riemannian manifold of real dimen-
sion m equipped with a spinc structure Γ : TX → End(W ). Assume that
the metric and the spinc structure are of class C3. Let A ∈ A1,p(X) for
some p > m and suppose that Φ ∈ W 2,p(X,W ) is a solution of the Dirac
equation

DAΦ = 0.

If Φ vanishes on some open set then Φ(x) = 0 for all x ∈ X.

Proof: Assume first that m = 2n is even. We shall prove that for every
compact set K ⊂ X there exists a number ε > 0 such that if Φ vanishes
in a neighbourhood of a point x0 ∈ K then Φ vanishes in Bε(x0). This
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implies immediately that the set of points x ∈ X such that Φ vanishes in
a neighbourhood of x is closed. This set is obviously open and so it must
either be empty or coincide with X.

The constant ε will simply be any number smaller than the minimal
injectivity radius on the set K. Near any point x0 ∈ K choose local geodesic
polar coordinates. This coordinate chart identifies the ball of radius ε in
R2n, centered at the origin, with the geodesic ball Bε(x0). The chart is of
class C2 whenever the metric is of class C3. It determines a metric gij(x)
on R2n (of class C2) with respect to which the straight lines t 7→ tx are
geodesics for all x ∈ R2n. In such coordinates the ordinary sphere of radius
r centered at zero agrees with the geodesic sphere. Denote by gr the metric
on S2n−1 induced by the embedding x 7→ rx and rescaled to standard
size by the factor 1/r2. Thus the inner product of two tangent vectors
ξ, η ∈ TxS2n−1 = x⊥ with respect to this metric is given by

〈ξ, η〉r = ξT g(rx)η.

The metric on R2n in polar coordinates (0,∞)×S2n−1 → R2n : (r, x) 7→ rx
is then given by

g = dr ⊗ dr +
1

r2
gr.

In particular the radial vector field ∂/∂r has unit length.
Now choose a local Hermitian trivialization of the bundle W+. In this

trivialization the fibers of W+ are simply identified with CN for some
integer N > 0 and Φ is just map R2n → CN . Consider the maps

ϕr : S2n−1 → CN

defined by
ϕr(x) = Φ(rx), |x| = 1.

Use the unit radial vector field −∂/∂r to identify the bundle W− with
W+, i.e. −Γ(∂/∂r) maps the given frame of W+ to a reference frame of
W−. Thus the fibres of both W+ and W− are identified with CN . In this
trivialization the spinc structure is a map R2n → Hom(R2n,CN×N ) (of
class C2) denoted by Γ(x; ξ) ∈ CN×N for x, ξ ∈ R2n. Here ξ ∈ R2n is to be
understood as the tangent vector at x and the map ξ 7→ Γ(x; ξ) is linear
and satisfies the usual condition (4.18). Note that the radial vector field is
just given by x 7→ x and thus our choice of frame for W− means that

Γ(x;x) = −1l.

Consider the spinc structure Γr : TS2n−1 → CN×N on S2n−1 defined by

Γr(x; ξ) = Γ(rx; ξ)
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for ξ ∈ TxS2n−1 = x⊥.
Let ∇ = ∇A0

be the fixed reference connection on W+ (in the given
local coordinates and local trivialization) which is compatible with the
Levi-Civita connection. Assume without loss of generality that this con-
nection is in radial gauge. (Otherwise change the local frame of W+.) The
corresponding Dirac operator on the sphere of radius r is denoted by Dr

and is given by

Drϕr(x) =

2n−1∑
i=1

Γ(rx; ei)∇eiϕr(x)

for any local orthonormal frame e1, . . . , e2n−1 of TxS
2n−1 = x⊥ with re-

spect to the inner product gr(x) = g(rx). This operator is self-adjoint with
respect to the metric gr. With these conventions the Dirac equation on R2n

takes the form
∂

∂r
ϕr =

1

r
Drϕr. (E.7)

The factor 1/r arises from the fact that all the derivatives of ϕr(x) = Φ(rx)
with respect to x carry a factor r which has to be cancelled in order to
obtain the original Dirac equation.

Let a =
∑
j a(x)dxj be the spinc connection with

aj ∈W 1,p(R2n,CN×N ).

The induced connection on the sphere of radius r is the endomorphism
valued 1-form

ar =

2n∑
j=1

aj(rx)dxj

on S2n−1 with corresponding zeroth order perturbation term

Γr(ar) :=

2n∑
j=1

Γ(rx; ej)a(rx; ej).

Also denote by br : S2n−1 → CN×N the radial part of the 1-form a given
by

br(x) =

2n∑
j=1

aj(rx)xj

Then the perturbed Dirac equation takes the form

∂

∂r
ϕr + brϕr =

1

r
Drϕr + Γr(ar)ϕr. (E.8)
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It is convenient to rewrite this equation with the new time coordinate
t = log(r) ∈ (−∞, log ε). Thus r = et and the equation (E.8) takes the
form

∂

∂t
ϕ(t) = D(t)ϕ(t) +B(t)ϕ(t) (E.9)

where
D(t) = Dexp(t), ϕ(t) = ϕexp(t)

and B(t) : S2n−1 → CN×N is given by

B(t) = exp(t)
(
Γexp(t)(aexp(t))− bexp(t)

)
.

Recall that the operator D(t) : C∞(S2n−1,CN )→ C∞(S2n−1,CN ) is self-
adjoint with respect to the metric gexp(t) and this metric is continuously
differentiable as a function of t. The reasoning of Example E.6 shows in
fact that the corresponding multiplication operators Q(t) satisfy the hy-
pothesis (H1) of Section E.2.

The assumption p > m guarantees that the functions aj : R2n → CN×N
are uniformly bounded (in the ball of radius ε) and hence there exists a
constant c1 > 0 such that

sup
t<log(ε)

‖B(t)‖L∞(S2n−1) ≤ c1. (E.10)

Now consider the function

(−∞, log ε)→ L2(S2n−1,CN ) : t 7→ ϕ(t).

By assumption, the original function Φ is of class W 2,p on R2n and since
p > 2n this implies that Φ is continuously differentiable as a function on
R2n. Hence the function t 7→ ϕ(t) with values in L2 is also continuously
differentiable. Moreover, by (E.9) and (E.10),

‖ϕ̇(t)−D(t)ϕ(t)‖L2 = ‖B(t)ϕ(t)‖L2 ≤ c1 ‖ϕ(t)‖L2 .

This shows that ϕ satisfies the condition (E.5) of Theorem E.7.
To check the condition (E.6) consider the function

t 7→ 〈ϕ(t), D(t)ϕ(t)〉L2 =

∫
S2n−1

〈ϕ(t), D(t)ϕ(t)〉dvolt

where dvolt denotes the volume form of the metric gexp(t) on S2n−1. That
this function is continuously differentiable follows from the fact that the
map t 7→ D(t)ϕ(t) (with values in L2(S2n−1,CN )) is continuous in the
norm topology and that, for every fixed section θ ∈ L2(S2n−1,CN ), the
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map t 7→ D(t)θ is continuously differentiable in the norm topology with
derivative Ḋ(t)θ. Consider the formula

d

dt
〈ϕ,Dϕ〉L2 − 2〈ϕ̇,Dϕ〉L2 = 〈ϕ, Ḋϕ〉L2 + 〈ϕ, Q̇Dϕ〉L2,g0

. (E.11)

This equation is to be understood pointwise for every t. The last term
simply involves the derivatives of the metric and hence does not cause any
problems. The first term on the right concerns the variation of the operator
D(t) with time. To give a formula for this variation note that the local frame
ej(t, x) as well as the spinc structure Γ(etx; ξ) and the spinc connection ∇t
depend on t. Their time derivatives will be denoted by

Γ̇et(x; ξ) =
d

dt
Γ(etx; ξ), ėj(t, x) =

d

dt
ej(t, x), ∇̇ξ =

∂

∂t
∇ξ −∇ξ

∂

∂t

for a fixed x ∈ S2n−1 and a fixed tangent vector ξ ∈ TxS2n−1. With these
conventions the operator Ḋ(t) is given by

Ḋ(t) =

2n−1∑
i=1

(
Γ̇et(ei)∇ei + Γet(ėi)∇ei + Γet(ei)∇̇ei + Γet(ei)∇ėi

)
.

Here the dependence on the point x ∈ S2n−1 is dropped in the notation.
This formula shows that∥∥∥Ḋ(t)θ

∥∥∥
L2
≤ c ‖θ‖W 1,2 ≤ c2 ‖D(t)θ‖L2 + c3 ‖θ‖L2 . (E.12)

for every θ : S2n−1 → CN . The equations (E.11) and (E.12) together show
that condition (E.6) of Theorem E.7 is satisfied with H = L2(S2n−1,CN ),
A(t) replaced by D(t), x(t) replaced by ϕ(t), and Q(t) determined by the
metric gexp(t) on S2n−1.

Since the original section Φ : R2n → CN vanishes in some neighbour-
hood of the origin it follows that

ϕ(t) = 0, t < −T,

for T sufficiently large. Hence, by Theorem E.7, ϕ(t) = 0 for all t ∈
(−∞, log ε] and this shows that Φ vanishes in the ε-ball about zero. This
proves the theorem in the case where X has even dimension 2n. The odd
case can easily be reduced to the even case by considering the manifold
X × R. Namely, every solution of the Dirac equation on X defines a so-
lution of the corresponding Dirac equation on X × R which is translation
invariant in the R-direction. This proves Theorem E.8. 2
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Remark E.9 In [21], pp 150–152, Donaldson and Kronheimer used a sim-
ilar technique to prove a unique continuation theorem for anti-self-dual
instantons on a connected 4-manifold X. For example, let A be a connec-
tion (of class W 1,p with p > 4) on a principal G-bundle P → X where G is
a compact Lie group. Let ω ∈ Ω2,+(X, gP ) be a self-dual Lie algebra valued
2-form (of class W 2,p) which satisfies

d∗Aω + dAξ = 0

for some section ξ ∈ Ω0(X, gP ) (also of class W 2,p). If ω and ξ vanish on
some open set then they must vanish everywhere. This can be reduced to
Theorem E.7 with the same techniques as in the proof of Theorem E.8
(see [21] for details). In particular, when G = S1, this means that an anti-
self-dual harmonic 2-form which vanishes on some open set must vanish
everywhere. 2

The result of the previous remark as well as Theorem E.8 can also be
proved with Aronszajn’s theorem [2]. Here is a statement of that theorem
which applies to general second order elliptic differential equations.

Theorem E.10. (Aronszajn) Let Ω ⊂ Rn be a connected open set and
L be an elliptic operators on Ω of the form

L = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)

with coefficients aij ∈ C2,1(Ω) satisfying

δ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ δ−1|ξ|2

for x ∈ Ω, ξ ∈ Rn, and some constant δ > 0. Let u = (u1, . . . , uN ) ∈
W 2,2(Ω,RN ) and suppose that there exists a constant M > 0 such that

|Luν(x)| ≤M
N∑
µ=1

(|uµ(x)|+ |∇uµ(x)|) (E.13)

for ν = 1, . . . , N and almost every x ∈ Ω. If u has a zero of infinite order
then u ≡ 0 in Ω.

A zero of infinite order is a point x0 ∈ Ω such that for every integer
k > 0 there exists a constant ck with∫

Br(x0)

|u| ≤ ckrk
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for r ≤ 1. The technique of proof of Theorem E.10 goes back to Carle-
man [14]. It is based on the generalized Carleman inequality∫

Rn

(
|u(x)|2

|x|2α+4
+
|∇u(x)|2

|x|2α+2

)
dx ≤ c

∫
Rn

|Lu(x)|2

|x|2α
dx (E.14)

for smooth functions u : Rn−{0} → R with compact support where the con-
stant c is independent of u and α. A self-contained proof of Theorem E.10
can be found in Kazdan [56].

In the case of anti-self-dual harmonic 2-forms Theorem E.10 can be
used for a single scalar equation where L is the Laplace-Beltrami operator
on X. In the case of the Dirac equation use the Weitzenböck formula and
apply Theorem E.10 to the Bochner Laplacian L = ∇∗∇ in a suitable local
frame in which the highest order term is of diagonal form. Note that the
lower order terms involve the curvature of the connection A and hence the
resulting unique continuation theorem requires connections with bounded
curvature. Thus the result obtained is weaker than Theorem E.8 which
holds for connections with curvature in Lp where p > m = dim X.

Remark E.11 In special cases there are stronger results for second order
equations. For example in [52] Jerison and Kenig proved a unique contin-
uation theorem for equations of the form

∆u+ V u = 0

where

∆ = −
n∑
j=1

∂2

∂x2
j

is the standard Laplacian in Rn and V ∈ Ln/2. (In contrast, Aronszajn’s
theorem requires V to be bounded.) This is the strongest possible result
of its kind because for p < n/2 it is easy to find potential functions of
class Lp which do not have the unique continuation property. (Hint: Try

the function u(x) =
∏
i e
−|xi|−ε .) For general second order elliptic operators

the corresponding statement seems to be an open question. The papers [38]
by Garofalo and Lin and [56] by Kazdan treat general second order elliptic
operators but allow only for isolated singularities of the potential V . 2



APPENDIX F

LINE BUNDLES AND DIVISORS

The goal of this appendix is to explain some backround material from
algebraic geometry necessary for the understanding of divisors on com-
plex manifolds. The first section discusses some elementary facts about
holomorphic functions of several complex variables. Section F.2 deals with
algebraic properties of the ring of convergent power series, and Section F.3
proves Hilbert’s Nullstellensatz. Section F.4 deals with analytic hypersur-
faces. Section F.5 discusses basic properties of the multiplicity function mf

which assigns to each point in the domain of a holomorphic function f the
order of the point as a zero of f . Section F.6 is devoted to divisors and
Section F.7 to line bundles. Excellent references are Atiyah-MacDonald [5],
Bochner-Martin [10], and Griffiths-Harris [45].

F.1 Several complex variables

Consider the ring O = nO of convergent power series in n complex vari-
ables. A power series has the form

f(z) =
∑
ν

aνz
ν

where the sum runs over all multi-indices ν = (ν1, . . . , νn) and convergent
means that there exists a real number r > 0 such that the series converges
uniformly and absolutely in the domain |z| ≤ r. It follows from elementary
analysis that O is a ring and that f ∈ O is invertible if and only if f(0) 6= 0.
Invertible elements are called units. For every f ∈ nO we shall denote by
dom f ⊂ Cn the domain of (absolute) convergence.

Using Cauchy‘s integral formula and Abel’s lemma one can prove that
every holomorphic function f : U → C on some open set U ⊂ Cn can
locally be represented as a power series

f(z + ζ) = fz(ζ) =
∑
ν

aνζ
ν , aν =

∂νf(z)

ν!
.

This implies that if f vanishes to infinite order at some point z ∈ U then
f vanishes in some neighbourhood of z. Hence the set of all points z ∈ U
at which f vanishes to infinite order is open and closed. This implies the
following.
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Theorem F.1. (Identitätssatz) Let U ⊂ Cn be a connected open set
and f : U → C be a holomorphic function which vanishes to infinite order
at a point z0 ∈ U . Then f(z) = 0 for all z ∈ U .

Consider the map

m : nO → N

which assigns to every convergent power series f ∈ nO the order of ζ = 0
as a zero of f . Thus m(f) = 0 for every unit f and otherwise m = m(f)
is the unique positive integer such that the coefficients aν of f vanish for
|ν| ≤ m−1 and there is at least one nonzero coefficient with |ν| = m. Thus

m(f) = min {m ∈ Z | ∃ν 3 |ν| = m, aν 6= 0} . (F.1)

The next lemma shows that m is a homomorphism from the multiplicative
semigroup of power series to the additive semigroup of nonnegative integers.
Note that convergence is not required for this result.

Lemma F.2 If f, g ∈ nO then

m(fg) = m(f) +m(g).

Proof: For every positive integer m denote by Im ⊂ Nn the set of multi-
indices ν with |ν| = m. Consider the convolution pairing

CI` × CIm → CI`+m : (a, b) 7→ a ∗ b

defined by

(a ∗ b)ν =
∑
|λ|=`

aλbν−λ

for |ν| = `+m. We must prove that this pairing is nondegenerate, that is,
a 6= 0 and b 6= 0 imply a ∗ b 6= 0. To see this consider the polynomials

ϕ(z) =
∑
|λ|=`

aλζ
λ, ψ(z) =

∑
|µ|=m

bµζ
µ.

Then the condition a ∗ b = 0 is equivalent to ϕ(ζ)ψ(ζ) ≡ 0. Suppose a 6= 0
and choose a point ζ ∈ Cn with ϕ(ζ) 6= 0. Then ψ vanishes in a neigh-
bourhood of ζ and hence, by Theorem F.1, must vanish everywhere. Hence
b = 0. This proves nondegeneracy and the assertion of the lemma is an
immediate consequence. 2

Exercise F.3 Prove that for every f ∈ nO there exist constants c > 0 and
δ > 0 such that |f(ζ)| ≤ c|ζ|m(f) for every ζ ∈ Cn with |ζ| ≤ δ. 2
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F.2 Unique factorization

A convergent power series p ∈ nO is called irreducible if p = fg implies
that either f or g is a unit. It is called a prime if p|fg implies that p|f or
p|g. Obviously, every prime is irreducible. The converse is a nontrivial fact
which is equivalent to the following fundamental theorem.

Theorem F.4 Every nonunit f ∈ nO is a product of finitely many primes.

It is obvious from the definition of prime that the factorization into
primes is unique up to order and multiplication by units. Likewise, it is
obvious from the definition of irreducible that every nonunit f factors into
finitely many irreducibles.∗ Moreover, the existence of factorizations into
primes is equivalent to the uniqueness for factorizations into irreducibles.
Rings with this property are called unique factorization domains or
briefly factorial. Every principal ideal domain has this property, however,
for n > 1 the ring nO is no longer a principal ideal domain. Unique factor-
ization domains have the following properties.

Lemma F.5. (Gauss) If R is factorial then so is R[x].

Lemma F.6 If R is factorial and u, v ∈ R[x] are relatively prime then
there exist relatively prime polynomials α, β ∈ R[x] and a nonzero element
0 6= γ ∈ R such that

αu+ βv = γ.

The proof of Theorem F.4 is by induction over n. It is based on the no-
tion of a Weierstrass polynomial of order m in z0, that is, a convergent
power series ω ∈ n+1O of the form

ω(z0, z) = z0
m +

m∑
j=1

ajz0
m−j

where the aj = aj(z1, . . . , zn) are nonunits, i.e. aj(0) = 0. A convergent
power series f ∈ n+1O is called distinguished in z0 of order m if it
satisfies

f(z0, 0, . . . , 0) = z0
m · f0(z0)

where f0(0) 6= 0. It is easy to see that any nonzero convergent power series
can be brought into this form by a linear change of coordinates in Cn+1.
In fact one can find such coordinates simultaneaously for any countably
subset of n+1O.†

∗If f is not a unit and is not irreducible then there exist nonunits f1 and f2 such
that f = f1f2. Now continue by induction. Since m(f1) +m(f2) = m(f) and m(fi) > 0
this process must terminate after finitely many steps.
†For every f ∈ nO the set of unit vectors ζ ∈ S2n−1 ⊂ Cn, for which the function

t 7→ f(tζ) (in one complex variable) is nonzero, is open and dense in S2n−1.
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Theorem F.7. (Weierstrass preparation theorem) Suppose that f ∈
n+1O is distinguished of order m in z0. Then f decomposes uniquely in the
form f = ω · e where ω is a Weierstrass polynomial of order m and e is a
unit.

Theorem F.8. (Weierstrass division theorem) If ω is a Weierstrass
polynomial of degree m then for every f ∈ n+1O there exists a g ∈ n+1O
and a polynomial r ∈ nO[z0] such that

f = gω + r, deg r < m.

Exercise F.9 Let f ∈ n+1O be a Weierstrass polynomial in z0. Prove that
f is irreducable in n+1O if and only if it is irreducible in nO[z0]. Prove that
two Weierstrass polynomials f, g ∈ n+1O are coprime in n+1O if and only
if they are coprime in nO[z0]. Hint: If f ∈ n+1O is distinguished in the
variable z0 then so are the factors fi ∈ n+1O in any decomposition f =
f1 · · · fk. Thus each factor in a decomposition of a Weierstrass polynomial
is a product of a Weierstrass polynomial and a unit. 2

Proof of Theorem F.4: Suppose, by induction, that nO is factorial and
let ω ∈ n+1O. By Theorems F.7 and F.8 we may assume without loss of
generality that ω is a Weierstrass polynomial. Thus ω is a polynomial in z0

with coefficients in R = nO. Moreover, it is a prime in this ring if and only
if it is prime in n+1O. Hence the result follows from Gauss’s lemma F.5.
For more details see [45], p 10, or [55], p 81. 2

Lemma F.10 Suppose that f, g ∈ nO are relatively prime. Then fz and
gz are relatively prime for z sufficiently small.

Proof: Replace n by n+1 and assume without loss of generality that f and
g are both Weierstrass polynomials in z0. Then f and g are relatively prime
in the polynomial ring nO[z0] and, by Lemma F.6, there exist α, β ∈ nO[z0]
such that

αf + βg = γ, 0 6= γ ∈ nO.

Now suppose that f(z0, z) = 0 and g(z0, z) = 0 and that fz0,z and gz0,z
have a common factor h which is not a unit. Then h divides γz and this
implies h ∈ nO. Since h divides fz0,z and vanishes at 0 it follows that
f(z0 + ζ0, z) = 0 for ζ0 sufficiently small. But for z sufficiently small this
is impossible because f is a Weierstrass polynomial in z0. This proves the
lemma. 2

A ring R is called Noetherian if every nonempty set of ideals in R has
a maximal element. An equivalent condition is that every ideal I ⊂ R is
finitely generated (as a module overR). This means that there exist finitely
many elements a1, . . . , ak ∈ I such that every a ∈ I can be expressed in
the form a =

∑
i fiai with fi ∈ R.



560 LINE BUNDLES AND DIVISORS

Theorem F.11 The ring nO is Noetherian.

Proof: The proof is by induction over n. For n = 0 the ring 0O = C is
obviously Noetherian. Hence assume that nO is Noetherian for some n ≥ 0
and let I ⊂ n+1O be an ideal. By a generic linear change of coordinates,
we may assume without loss of generality that I contains some element
f which is distinguished of order m in z0. For any such element it is a
consequence of the Weierstrass division theorem that the map

(nO)m → n+1O
f · nO

: (a0, . . . , am−1) 7→
m∑
j=1

ajz0
m−j

is an isomorphism of free nO-modules. By the induction hypothesis the
ideal Ī = I/f · nO ⊂ n+1O/f · nO is finitely generated. Let f̄1, . . . , f̄k be
generators and denote f0 = f . Then f0, f1, . . . , fk generate I. 2

F.3 Nullstellensatz

Given an ideal I ⊂ nO denote by

V(I) = {z ∈ Cn | f(z) = 0 ∀ f ∈ I with z ∈ dom f}

the common zero set. For any (Zariski) closed subset V ⊂ Cn denote by

I(V) = {f ∈ nO | ∃ε > 0 3 f |V∩Bε = 0}

the ideal of all power series which vanish on V (intersected with some
nighbourhood of zero). The radical of an ideal I ⊂ nO is defined by

√
I =

{
f ∈ nO | ∃ k ≥ 1 3 fk ∈ I

}
.

The next theorem is Hilbert’s Nullstellensatz. It asserts that the radical of
I agrees with the ideal of power series which vanish on V(I).

Theorem F.12. (Nullstellensatz) For every ideal I ⊂ nO

I(V(I)) =
√
I.

In particular, if p ∈ nO is irreducible then p|f if and only if f vanishes on
the zero set of p (intersected with some neighbourhood of zero).

A nontrivial ideal I ⊂ R is called irreducible if it cannot be expressed
as the intersection of two ideals which are both not equal to I. It is called
prime if fg ∈ I implies that either f ∈ I or g ∈ I. It is called primary
if fg ∈ I implies that either f ∈ I or g ∈

√
I. It follows easily from the

definitions that if I is a primary ideal then
√
I is a prime ideal and that
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every prime ideal is irreducible. In [5], Chapter 7, it is proved that in a
Noetherian ring every ideal is a finite intersection of irreducible ideals and
every irreducible ideal is primary. Thus in a Noetherian ring R the radical
of an ideal I is the intersection of all prime ideals J ⊂ R with I ⊂ J :

√
I =

⋂
I⊂J
J prime

J . (F.2)

This shows that it suffices to prove Hilbert’s Nullstellensatz for prime ideals
I ⊂ nO. Any such ideal is generated by finitely many primes p1, . . . , pk ∈
nO.∗ Geometrically, one can think of V(I) as the common zero set of the
pi and the Nullstellensatz asserts that every f ∈ nO which vanishes on this
common zero set can be expressed in the form f =

∑k
i=1 fipi.

An ideal I ⊂ nO is called regular if there exists an integer k with
0 ≤ k ≤ n− 1 and power series fk+1, . . . , fn ∈ I such that

0 6= f ∈ I =⇒ ∂f

∂zj
6≡ 0 for some j > k (F.3)

and, for each j, the power series fj is distinguished of order j in the variable
zj and is independent of the variables zj+1, . . . , zn. By the Weierstrass
preparation theorem, we may assume without loss of generality that each
fj is a Weierstrass polynomial in zj with coefficients in j−1O. (In the case
j = 1 we use the convention 0O = C.) It follows easily by induction that for
every ideal I ⊂ nO, which is not zero and not equal to nO, there exists a
linear transformation Ψ ∈ GL(n,C) such that the ideal J = {f ◦Ψ | f ∈ I}
is regular.†

Proof of Theorem F.12: In view of (F.2) and the above remarks it
suffices to prove the result for regular prime ideals. Hence assume that there
exist an integer k with 0 ≤ k ≤ n − 1 and power series fk+1, . . . , fn ∈ I
such that (F.3) holds and each fj is a Weierstrass polynomial in zj with
coefficients in j−1O, i.e.

fj(z) = zj
mj +

mj−1∑
ν=0

ajν(z1, . . . , zj−1)zj
ν , j = k + 1, . . . , n, (F.4)

∗Given any finite set of generators, use the prime factorization property to replace
these generators by suitable prime factors. Exercise: Show that the prime generators of

I are determined uniquely up to multiplication by units.
†First choose any nonzero element fn ∈ I and apply a transformation such that fn is

distinguished in zn. If all nonzero elements of I satisfy ∂nf 6≡ 0 we are done. Otherwise

choose a nonzero element fn−1 ∈ I with ∂nfn−1 ≡ 0 and apply a linear transformation
of the variables z1, . . . , zn−1 after which fn−1 is distinguished in zn−1. Now proceed by

induction.
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where mj > 0 and aj ∈ j−1O vanishes at the origin. Assume without loss
of generality that the fj are irreducible. Otherwise replace fj by one of its
prime factors which, by Exercise F.9, can be chosen to be a Weierstrass
polynomial in zj with coefficients in j−1O. We claim first that

I = 〈fk+1, . . . , fn〉.

Suppose, by contradiction, that there exists an element f ∈ I which
is coprime to fk+1, . . . , fn. Then an easy induction argument, based on
Lemma F.6 and the Weierstrass division theorem, shows that there exist
power series αk+1, . . . , αn, β ∈ nO such that

n∑
j=k+1

αjfj + βf = γ, 0 6= γ ∈ kO. (F.5)

Since γ is a nonzero element of I this contradicts (F.3). Thus we have
proved that I is generated by the fj .

Now suppose, by contradiction, that I 6= I(V(I)) and choose a pow-
erseries f ∈ I(V(I)) − I. Then f is coprime to fj for all j and hence,
as above, there exist power series αj , β ∈ nO such that (F.5) holds. Thus
γ ∈ kO ⊂ nO is a power series in the variables z1, . . . , zk which van-
ishes on V(I) ∩ Bε(0) for some ε > 0. A moment’s thought shows that
for each sufficiently small vector x = (z1, . . . , zk) ∈ Ck there exists a
point y = (zk+1, . . . , zn) ∈ Cn−k such that |y| < ε/2 and z = (x, y) ∈
V(I). Namely, given z1, . . . , zj with k ≤ j < n choose zj+1 such that
fj+1(z1, . . . , zj+1) = 0. Hence γ(x) = 0 for every sufficiently small vector
x ∈ Ck and thus γ ≡ 0, condradicting (F.5). This proves the theorem. 2

F.4 Analytic varieties

The local case

A subset V ⊂ Cn is called a local analytic variety in Cn at zero
if there exist an open neighbourhood U ⊂ Cn of zero and finitely many
power series f1, . . . , fk ∈ nO such that U ⊂ dom fj for all j and V =
{z ∈ U | f1(z) = · · · = fk(z) = 0} . If I = 〈f1, . . . , fk〉 denotes the ideal gen-
erated by the fj then V ∩U = V(I)∩U and, conversely, the Nullstellensatz

asserts that the ideal
√
I can be recovered from V as the set of all power

series f ∈ nO which vanish on V ∩ U for some neighbourhood U of zero,
namely

√
I = I(V). Two local analytic varieties V1 and V2 at zero are

called equivalent if there exists an open neighbourhood U ⊂ Cn of zero
such that V1 ∩ U = V2 ∩ U . Obviously, equivalent varieties give rise to
the same ideal I(V1) = I(V2). Thus there is a one-to-one correspondence
between equivalence classes of local analytic varieties in Cn at zero and
ideals I ⊂ nO which agree with their radical

√
I = I. The empty variety
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corresponds to I = nO and the total space V = Cn to I = {0}. Denote by
[V] the equivalence class of a local analytic variety at zero. Note that these
equivalence classes form a lattice with lattice operations

[V1] ∩ [V2] = [V1 ∩ V2], [V1] ∪ [V2] = [(V1 ∪ V2) ∩ U ]

for a sufficiently small neighbourhood U of zero. One can think of the set
of radical ideals as the dual lattice with operations (I1, I2) 7→

√
I1 + I2

and (I1, I2) 7→ I1 ∩ I2:

I(V1 ∩ V2) =
√
I(V1) + I(V2), I(V1 ∪ V2) = I(V1) ∩ I(V2).

A local analytic variety V is called irreducible if it does not decompose
as a union [V] = [V1] ∪ [V2] of two local analytic varieties which are both
not equivalent to V. Equivalently, the corresponding ideal I = I(V) cannot
be expressed as the intersection I = I1 ∩ I2 of two ideals which are both
not equal to I. But this means that I(V) is irreducible. Since in a Noethe-
rian ring every irreduducible ideal I =

√
I is prime, we have proved the

following.

Proposition F.13 Let V ⊂ Cn be a local analytic variety at zero. Then V
is irreducible if and only if I(V) is a prime ideal.

Proposition F.14 Every local analytic variety V ⊂ Cn at zero decomposes
uniquely into a finite union of irreducible subvarieties.

Proof: Proposition F.13 and (F.2). 2

Exercise F.15 A local analytic variety V ⊂ Cn at zero is called nonsin-
gular (at zero) if there exist generators f1, . . . fk of I(V ) such that the
linear functionals df1(0), . . . , dfk(0) on Cn are linearly independent. Prove
that if this holds then I is a prime ideal and the fi are irreducible. Show that
a nonempty local analytic hypersurface V ⊂ Cn at zero with I(V) = 〈f〉 is
nonsingular iff m(f) = 1 and singular iff m(f) > 1, where m(f) is defined
by (F.1). 2

Let V ⊂ Cn be an irreducible local analytic variety at zero. The codi-
mension of V is defined as the minimal number of generators of the ideal
I = I(V). A local analytic variety of codimension 1 is called an analytic
hypersurface. In this case I = I(V) = 〈f〉 is a principal ideal. The next
lemma characterizes generators of radical ideals.

Lemma F.16 Let I = 〈f〉 ⊂ nO be a principal ideal. Then the following
are equivalent.

(i) I =
√
I.

(ii) f = p1 · · · pk is a product of irreducibles which are pairwise relatively
prime.
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(iii) There exists a vector ω = (ω1, . . . , ωn) ∈ Cn such that f and
∑
j ωj∂jf

are relatively prime.

Proof: We prove that (i) is equivalent to (ii). Let f = pa1
1 · · · p

ak
k be the

prime decomposition of f . If aj > 1 for some j then p1 · · · pk ∈
√
I − I.

Conversely, suppose that aj = 1 for all j and let g ∈
√
I. Then gm is

divisible by f for some m ∈ N and hence gm is divisible by pj for all j.
Since each pj is irreeducible, g is divisible by pj for all j. Since the pj are
pairwise relatively prime, g is divisible by p1 · · · pk = f . Hence g ∈ I.

We prove that (ii) implies (iii). Abbreviate D =
∑n
j=1 ωj∂j and choose

ω ∈ Cn such that Dpi 6≡ 0 for all i ∈ {1, . . . , k}. Then pi does not divide
Dpi for all i. This implies that pi does not divide

Df =

k∑
i=1

(Dpi)
∏
i′ 6=i

pi′

for all i. Hence f and Df are relatively prime.
We prove that (iii) implies (ii). If (ii) does not hold and f = pa1

1 · · · p
ak
k

is the prime decomposition of f then ai > 1 for some i. Hence pi divides
Df =

∑
j ωj∂jf for all ω ∈ Cn and thus (iii) does not hold. This proves

the lemma. 2

For f ∈ nO and U ⊂ dom f we denote

V(f, U) = {z ∈ U | f(z) = 0} ,

Vs(f, U) = {z ∈ U | f(z) = 0, df(z) = 0} .

Proposition F.17 Let V ⊂ Cn be a local analytic hypersurface and f ∈
nO be a generator of I(V). Then the following holds.

(i) The set V(f, U) − Vs(f, U) is dense in V(f, U) for every sufficiently
small neighbourhood U ⊂ dom f of zero.

(ii) The set U −V(f, U) is connected for every sufficiently small connected
neighbourhood U of zero.

(iii) If f is irreducible and relatively prime to g ∈ nO then for every ε > 0
there exists a neighbourhood U ⊂ Bε(0) of zero such that V(f, U)−Vs(fg, U)
is connected.

Proof: By assumption the ideal I = I(V) = 〈f〉 agrees with it radical
√
I.

By Lemma F.16, there exists a vector ω = (ω1, . . . , ωn) ∈ Cn such that f
and Df =

∑n
j=1 ωj∂jf are relatively prime. By Lemma F.10, fz and Dfz

are relatively prime for z sufficiently small. Hence, by the Nullstellensatz,
there is a sequence zν → z with f(zν) = 0 and Df(zν) 6= 0. This proves (i).
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To prove (ii) choose a connected neighbourhood U ⊂ dom f of zero and,
for every multi-index ν, define the set

Vν(f, U) = {z ∈ U | ∂νf(z) = 0, ∃ j 3 ∂j∂
νf(z) 6= 0} .

These are a complex codimension-1 submanifolds and their union contains
V(f, U). Thus V(f, U) is contained in the union of at most countably many
complex codimension-1 submanifolds of U . Since U is connected it follows
by a standard transversality argument that U − V(f, U) is connected.

To prove (iii) let us assume that I(V) is a principal ideal with an ir-
reducible generator f and let g ∈ nO be relatively prime to f . We must
prove that there exists a neighbourhood U ⊂ Cn of zero such that the set
V(f, U) − Vs(fg, U) is connected. To see this let us assume, without loss
of generality, that f and g are Weierstrass polynomial in zn of positive
degree. Then f is relatively prime to both g and ∂nf , hence to their prod-
uct, and hence to ∂n(fg). Thus, by Lemma F.6, there exist polynomials
α, β ∈ n−1O[zn] such that

αf + β∂n(fg) = γ, 0 6= γ ∈ n−1O. (F.6)

Denote z′ = (z1, . . . , zn−1). Choose a small connected neighbourhood U ′ ⊂
Cn−1 of zero which is contained in the domain of convergence of all the
power series appearing in (F.6) and let U ⊂ Cn be a corresponding product
neighbourhood. Note that if z = (z′, zn) ∈ V ∩ U with γ(z′) 6= 0 then
f(z) = 0 and g(z)∂nf(z) = ∂n(fg)(z) 6= 0 and thus, in particular, z ∈
V(f, U)− Vs(fg, U). We claim that V(f, U)− γ−1(0) is connected. To see
this let

V ′ ⊂ V(f, U)− γ−1(0)

be one of the components and consider the projection∗

V ′ → U ′ − γ−1(0) : z = (z1, . . . , zn) 7→ z′ = (z1, . . . , zn−1).

This is a covering fibration and, by (i), the base is connected. Hence the
number of points in the fiber is independent of the choice of the base point.
Let this number be ` and consider the function

f ′(z) =
∏̀
j=1

(zn − wj(z′))

where for each z′ ∈ U ′ with γ(z′) 6= 0 the points w1(z′), . . . , w`(z
′) ∈ C

are the unique zn-coordinates with (z′, wj(z
′)) ∈ V ′. If z = (z′, zn) ∈ U

∗With slight abuse of notation, we denote by γ−1(0) both the set of all z′ ∈ U ′ with
γ(z′) = 0 and the set of all z = (z′, zn) ∈ U with γ(z′) = 0.
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with γ(z′) 6= 0 then the construction shows that f ′(z) = 0 if and only if
z ∈ V ′. Moreover f ′ is holomorphic wherever defined and bounded. Using
the Weierstrass preparation theorem for γ and the Cauchy integral formula
one can show that under these hypotheses f ′ extends to a holomorphic
function on U ′. The zero locus of this extension is precisely the closure of V ′.
In particular, V(f ′, U) ⊂ V(f, U) and hence, by Hilbert’s Nullstellensatz,
some power of f is divisible by f ′. Since f is irreducible, this implies that
f ′ is equal to some power of f up to multiplication by a unit. (The power
is 1 but this is immaterial.) Hence V(f ′, U) = V(f, U) and so

V(f, U)− γ−1(0) = V ′

is connected. It follows that V(f, U)−Vs(fg, U) is also connected provided
that U is chosen sufficiently small. To see this note first that f does not
vanish on the line z = (0, zn) and hence does not divide γ. Thus f and γ
are relatively prime and, by Lemma F.10, fz and γz′ are relatively prime
for z = (z′, zn) sufficiently small. Hence no power of γz′ is divisible by
fz. By the Nullstellensatz, this shows that every point z ∈ V which is
sufficiently close to zero can be approximated by a sequence zν = (z′ν , zn,ν)
with γ(z′ν) 6= 0 and f(zν) = 0. It follows that every point z ∈ V(f, U) −
Vs(fg, U) can be connected by a short path in V(f, U)−Vs(fg, U) to a point
in V(f, U)−γ−1(0). Hence V(f, U)−Vs(fg, U) is connected, as claimed. 2

The global case

Let X be a complex manifold. For x ∈ X denote by XOx = Ox the ring of
(equivalence classes of) local holomorphic functions on X defined in some
neighbourhood of x. Two such holomorphic functions are equivalent if they
agree in some neighbourhood of x. Given any holomorphic chart near x this
ring can be naturally identified with the ring nO of convergent power series.
In particular, Ox is factorial and there is a semigroup homomorphism

mx : Ox → N

defined as in (F.1). A closed subset V ⊂ X is called an analytic hyper-
surface if for every point x ∈ V there exists a neighbourhood U of x and a
nonzero local holomorphic function f : U → C such that V ∩ U = f−1(0).
As an element of Ox the local holomorphic function f decomposes as
f = p1

a1 · · · pkak for irreducibles p1, . . . , pn ∈ Ox. Obviously, the zero locus
of f agrees with that of f0 = p1 · · · pk. Moreover, by Hilbert’s Nullstellen-
satz, f0 is minimal in the sense that every f ∈ Ox which vanishes on V
near x is divisible by f0 in Ox. Such a function f0 : U0 → C is called a
defining function for V at x. In other words the variety V determines
a principal ideal

Ix = Ix(V ) ⊂ Ox
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at every point x ∈ X which is defined as the set of all equivalence classes
of holomorphic maps f : U → C which are defined in some neighbourhood
U ⊂ X of x and vanish on U ∩ V . Note that Ix ⊂ Ox is always nonzero
and is a proper ideal if and only if x ∈ V . Any defining function f of V at
x is a generator of Ix and the number mx(f) is independent of the choice
of the generator. This determines a map mV : X → N defined by

mV (x) = inf
f∈Ix(V )

mx(f). (F.7)

Call x a smooth point of V if mV (x) = 1 and a singular point if
mV (x) > 1. Denote the singular part by

Vs = {x ∈ V |mV (x) > 1} .

Thus x is a smooth point of V iff df(x) 6= 0 for some (and hence every)
defining function f ∈ Ox. It follows that the smooth points form a complex
codimension-1 submanifold V − Vs ⊂ X. By Proposition F.17 (i), the set
V −Vs is dense in V .∗ The following theorem introduces the crucial notion
of irreducible analytic hypersurfaces. The proof follows [45], p 21/22.

Theorem F.18 Let X be a complex manifold and V ⊂ X be an analytic
hypersurface. Then the following are equivalent.

(i) V − Vs is connected.

(ii) If V1, V2 ⊂ X are analytic hypersurfaces with V1 ∪ V2 = V then either
V1 = V or V2 = V .

If these conditions are satisfied then V is called irreducible. Moreover,
every analytic hypersurface of a compact complex manifold decomposes
uniquely into finitely many irreducible ones.

Proof: We prove that (i) implies (ii). If (ii) does not hold then V = V1∪V2

is the union of two analytic hypersurfaces V1 and V2 neither of which is
equal to V . Then V −Vs can be expressed as the disjoint union of the three
subsets

V − Vs = (V1 − (Vs ∪ V2)) ∪ (V2 − (Vs ∪ V1)) ∪ (V1 ∩ V2 − Vs).

The first two subsets are obviously open in V − Vs. Moreover, V1 − V2 and
V2 − V1 are nonempty and, since V − Vs is dense in V and V1 and V2 are
closed, it follows that V1 − (Vs ∪ V2) and V2 − (Vs ∪ V1) are nonempty. We
claim that the third subset V1 ∩ V2 − Vs is open in V − Vs. To see this let

∗Let f ∈ Ox be a defining function for V at x. By Proposition F.17 (iii), the set

V(f, U)−Vs(f, U) is dense in V(f, U) for every sufficiently small neighbourhood U of x.
Since Vs ∩ U ⊂ Vs(f, U) there exists a sequence xν ∈ V − Vs converging to x.



568 LINE BUNDLES AND DIVISORS

x ∈ V1 ∩ V2 − Vs and let f1, f2, f ∈ Ox be defining functions of V1, V2, V ,
respectively. Then f1f2 ∈ Ix(V ) and hence f divides f1f2. Moreover, since
m(f) = 1, f is a prime and hence divides either f1 or f2. Suppose f divides
f1. Then there exists a neighbourhood U of x such that V ∩ U ⊂ V1 ∩ U
and hence V ∩ U = V1 ∩ U . This implies that Ix(V1) = Ix(V ) ⊂ Ix(V2),
hence f2 divides f , and since 0 < m(f2) ≤ m(f) = 1 this implies that
f2 and f differ by a unit. Thus Ix(V1) = Ix(V ) = Ix(V2) and so there
exists a neighbourhood U of x such that V1 ∩U = V2 ∩U . This shows that
the set V1 ∩ V2 − Vs is open in V − Vs. Thus we have decomposed the set
V − Vs into three open subsets, two of which are nonempty. Hence V − Vs
is disconnected.

We prove that (ii) implies (i). We argue indirectly, and assume that
V − Vs is disconnected. We claim that the closure of each component is
again an analytic hypersurface. More precisely, fix a component V ′ of V −Vs
and consider its closure

cl(V ′) ⊂ V ′ ∪ Vs.

We must prove that this set admits a defining function at each point x ∈
cl(V ) ∩ Vs. To construct such a function let us choose a local defining
function f : U → C for V in some neighbourhood of x. Let f = f1 · · · fk
be a prime factorization of f and suppose that the factors fj all converge
in U . By Proposition F.17 (iii), with f replaced by fi and g replaced by
the product of the other factors, the set V(fi, U) − Vs(f, U) is connected
(for a suitably chosen neighbourhood U). Moreover, Proposition F.17 (ii)
shows that the zero locus of fi is the closure of V(fi, U) − Vs(f, U). Thus
a local defining function for cl(V ′) is the product f ′ of those fi whose zero
locus V(fi, U) − Vs(f, U) is contained in V ′. This shows that cl(V ′) is an
analytic hypersurface. Since V −Vs is disconnected it follows that V is the
union of two distinct analytic hypersurfaces V1 and V2.

The same argument shows that if X is compact then V − Vs has only
finitely many components. Let V ′ be the closure of such a component.
Then V ′ is an analytic hypersurface and V ′s ⊂ Vs. By assumption V ′ − Vs
is connected. Moreover, the proof of Proposition F.17 shows that every
point in V ′ − V ′s can be connected by a short path to a point in V ′ − Vs.
Hence V ′ − V ′s is connected and thus V ′ is irreducible. This proves the
theorem. 2

Proposition F.19 Let X be a compact complex surface. Then V ⊂ X is
an irreducible analytic hypersurface if and only if there exists a compact
connected Riemann surface Σ and a holomorphic map u : Σ→ X such that
V = u(Σ). Moreover, Vs is a finite set for every analytic hypersurface V .

Proof: It suffices to prove this locally. Hence let f ∈ 2O be a convergent
power series in the variables x and y and assume without loss of generality
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that f is a Weierstrass polynomial in y. Choose polynomials α, β ∈ 1O[y]
such that (F.6) is satisfied for some nonzero power series γ = γ(x):

α(x, y)f(x, y) + β(x, y)
∂f

∂y
(x, y) = γ(x).

Then x = 0 is an isolated zero of γ and hence (x, y) = (0, 0) is an isolated
singularity of V = f−1(0). The intersection of the complement V −{(0, 0)}
with a sufficiently small polydisc D2 decomposes into finitely many com-
ponents corresponding to the irreducible factors of f . Suppose first that
V − {(0, 0)} is connected and consider the covering projection

π : V − {(0, 0)} → C− {0}, π(x, y) = x.

Suppose that this is an m-fold cover. Then there exists a holomorphic map
ϕ : D → C2 defined on a sufficiently small disc D ⊂ C centered at zero
such that ϕ(D − {0}) = V − {(0, 0)} ∩D2 and

π ◦ ϕ(z) = zm.

To see this just note that the projection π has a local holomorphic inverse
near every point and hence any such map ϕ is uniquely determined its value
at a single point. A simple covering argument shows that ϕ exists globally
and that the restriction toD−{0} is a bijection onto (V−{(0, 0)})∩D2. This
defines a local complex manifold structure on (V − Vs) ∪ {pt}. In general,
if V − {(0, 0)} has several components, one such chart is required for each
component, i.e. for each irreducible factor in a local defining function.

Conversely, we must prove that the image of any local holomorphic
map u : (C, 0) → (C2, 0) is the zero locus of some holomorphic function
f : (C2, 0) → (C, 0). Consider the equations x = u1(z) and y = u2(z).
Suppose that z = 0 is a zero of ui with order mi where m = m1 ≤ m2.
Thus u1(z) = (zv1(z))m where v1(0) 6= 0. Replacing z by zv1(z) we may
assume without loss of generality that

x = u1(z) = zm, y = u2(z).

Then the function
f(x, y) =

∏
zm=x

(y − u2(z))

is continuous and is holomorphic where x 6= 0. Hence it extends to a holo-
morphic map on a neighbourhood of (0, 0) and its zero locus is obviously
the image of u. The proof of irreducibility is left as an exercise. 2

F.5 Multiplicity

Let U ⊂ Cn be an open set. Denote by O(U)∗ the set of all holomorphic
functions f : U → C which do not vanish on any open subset of U . There is
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a natural semigroup homomorphism O(U)∗ → Map(U,N) : f 7→ mf which
assigns to f ∈ O(U)∗ the multiplicity map

mf (z) = m(fz) = min {|ν| | ∂νf(z) 6= 0} .

Note that the points with mf (z) = 1 form a codimension-1 complex sub-
manifold of U and that the set of points with mf (z) = 0 is open.

Proposition F.20 Let U ⊂ Cn be a connected open set and f : U → C
and g : U → C be holomorphic maps. Then the following are equivalent.

(i) mf (z) ≤ mg(z) for all z ∈ U .

(ii) For every compact subset K ⊂ U there exists a constant c > 0 such
that |g(z)| ≤ c|f(z)| for z ∈ K.

(iii) There exists a holomorphic function u : U → C such that g = uf .

Proof: Obviously (iii) implis (ii). We prove that (ii) implies (i). Suppose,
by contradiction, that there exists a point z ∈ U with mg(z) < mf (z).
Denote by ψ the homogeneous polynomial of order m = mg(z) determined
by the partial derivatives of g of order m at z. By assumption, ψ is nonzero.
Choose ζ ∈ Cn with ψ(ζ) 6= 0 and note that |ψ(tζ)| = |ψ(ζ)| |t|m for t ∈ C.
By Exercise F.3, there exist constants c > 0 and ε > 0 such that

|f(z + tζ)| ≤ c|t|m+1, |g(z + tζ)− ψ(tζ)| ≤ c|t|m+1

for |t| ≤ ε. With ε sufficiently small it follows that |g(z + tζ)| ≥ δ|t|m and
hence

|g(z + tζ)|
|f(z + tζ)|

≥ δ

c|t|
for |t| ≤ ε. This contradicts (ii).

Next we prove that (i) implies (iii). By Theorem F.1, it suffices to
show that u exists locally. Near a point z ∈ U consider the power series
fz, gz ∈ nO. If m(fz) = 0 then fz(0) 6= 0 and so (iii) is satisfied near zero
with uz = gz/fz. Hence suppose that m(fz) > 0 and thus neither fz nor
gz are units. By Theorem F.4, choose a prime factorization

fz = p1
a1 · · · pkak .

Then pj(ζ) = 0 implies fz(ζ) = 0, hence mg(z + ζ) ≥ mf (z + ζ) > 0, and
hence gz(ζ) = 0. By Hilbert’s Nullstellensatz F.12, gz is divisible by pj .
Hence the prime decomposition of gz has the form

gz = p1
b1 · · · pkbkh

for some h ∈ nO which is either a unit or is not divisible by pj for any j.
Now it follows again from Hilbert’s Nullstellensatz that, for each j, there
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exists a point ζ ∈ Cn with pj(ζ) = 0 and pi(ζ) 6= 0 for i 6= j and h(ζ) 6= 0.
At this point ζ we have, by Lemma F.2,

mf (z + ζ) = ajmpj (ζ), mg(z + ζ) = bjmpj (ζ).

Since mpj (ζ) > 0 this implies bj ≥ aj . This proves the result locally. The
global statement follows immediately from unique continuation. 2

Meromorphic functions

A meromorphic function on X is a function v : dom(v) → C, defined
on an open and dense subset dom(v) ⊂ X, such that for every x ∈ X there
exists a neighbourhood U of x and two holomorphic functions f, g : U → C
such that

v(x) = f(x)/g(x)

for x ∈ U∩dom(v). The choice of the domain is immaterial. The intersection
of two domains is is still open and dense and if two meromorphic functions
v1 and v2 agree on the intersection of their domains then they agree on
any point to which they can be continuously extended. Hence from now
on, with slight abuse of notation, we shall write v : X → C even if v is
not defined on all of X. Note that every meromorphic function v : X → C
determines a multiplicity map mv : X → Z defined by

mv(x) = mf (x)−mg(x)

for x ∈ X where f, g : U → C are as above. By Lemma F.2, the number
mv(x) is independent of the choice of the holomorphic functions f and g.
Note that the multiplicity map mv is defined at every point of X regardless
of whether or not v is defined at this point. As a matter of fact, the value
of mv(x) is of particular interest at those points where v is undefined. It
follows from Proposition F.20 that v extends continuously at a point x0

if and only if mv(x) ≥ 0 in some neighbourhood of x0.∗ Call x a pole of
order m if mv(x) = −m and a zero of order m if mv(x) = m. Note
that v : X → C is everywhere defined, and hence holomorphic, if and only
if mv(x) ≥ 0 for all x ∈ X. However, this is not a very interesting case
because on a compact complex manifold all global holomorphic functions
are constant (by the maximum principle).

F.6 Divisors

Definition F.21. (Weil divisor) A divisor on a complex manifold X is
formal sum

∗mv(x) ≥ 0 does not imply that x belongs to the maximal domain of v. Consider the
basic example v(z1, z2) = z1/z2.
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D =
∑̀
j=1

mjVj

where 0 6= mj ∈ Z and the Vj are distinct irreducible hypersurfaces.

Definition F.22 A divisor on a complex manifold X is a map m : X → Z
such that for every point x ∈ X there exists a neighbourhood U of x and
two holomorphic functions f, g : U → C such that

m(x) = mf (x)−mg(x)

for x ∈ U .

Associated to every Weil divisor D =
∑
jmjVj is a function

m =
∑̀
j=1

mjmVj : X → Z

where mVj is defined by (F.7). This function m evidently satisfies the re-
quirements of Definition F.22. Namely given any point x ∈ X choose a
neighbourhood U with defining functions fj : U → C for the varieties Vj
and define

f =
∑
mj>0

mjfj , g =
∑
mj<0

mjfj .

Conversely, suppose that m : X → Z is a divisor in the sense of Defini-
tion F.22 and consider the set

V = cl ({x ∈ X |m(x) 6= 0}) .

This set is a complex hypersurface. To see this fix a point x ∈ X and
choose functions f, g : U → C near x with m = mf − mg. Choose local
prime decompositions

f = f1
a1 · · · fsas , g = g1

b1 · · · gtbt (F.8)

in Ox Assume without loss of generality that the fi and gj are pairwise
relatively prime at x and hence, by Lemma F.10, at each point in U if
U is chosen sufficiently small. We shall prove that V ∩ U agrees with the
zero locus V(fg, U) = {x ∈ U | f(x)g(x) =}. Firstly, if y ∈ V ∩ U then
m(y) =

∑
i aimfi(y) −

∑
j bjmgj (y) 6= 0, hence one of the functions fi or

gj vanishes at y, and hence y ∈ V(fg, U). Conversely, it follows from the
coprime assumption on the fi and gj that (fg)y is a defining function for
V(fg, U) at y for every y ∈ U . Hence, if y ∈ V(fg, U)−Vs(fg, U) then y is a
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regular zero of one of the functions fi or gj and all the others do not vanish
at y. This implies m(y) 6= 0 and hence y ∈ V . By Proposition F.17 (ii),
this shows that V(fg, U) = clU (V(fg, U)− Vs(fg, U)) ⊂ V . Thus we have
proved that V ∩U = V(fg, U) and hence V is a hypersurface. It also follows
that either mf (x) 6= 0 or mg(x) 6= 0 (or both) at every point of V .

By Theorem F.18, V decomposes uniquely as a union of finitely many
distinct irreducible hypersurfaces

V =
⋃̀
j=1

Vj .

The Vj are the closures of the components of V − Vs. We claim that m is
constant on Vj−Vs. First note that, by definition of Vj , this set is connected
and hence it suffices to prove that m is locally constant. Let x ∈ Vj − Vs
and choose any defining function fj for Vj at x. Moreover, choose f and
g near x such that they are relatively prime and satisfy m = mf − mg.
Recall that either mf (x) 6= 0 or mg(x) 6= 0. If they are both nonzero and
relatively prime then x ∈ Vs in contradiction to our assumption. Hence
assume without loss of generality that mf (x) 6= 0 and mg = 0 near x. If
fj(y) = 0 for y near x then x ∈ V , hence m(y) = mf (y) 6= 0, and hence
f(y) = 0. Since fj is a defining function for Vj this shows that fj divides
f . Write f = fj

mju for some positive integer mj where u is not divisible
by fj . Then u must be a unit because otherwise x would not be a smooth
point of V . Hence mf (y) = mjmfj (y) = mj for all y near x. Thus we have
proved that m is constant on Vj − Vs for every j. Denote this constant by
mj . Then mj is a nonzero integer and

m =
∑̀
j=1

mjmVj .

This equation is satisfied on V − Vs, by definition of mj . In a neighbour-
hood of a singularity this formula can be proved again by choosing prime
decompositions (F.8) of f and g. Then, if fr(y) = 0 for some y ∈ Vj − Vs
near x and some r, we must have ar = mj > 0 and all the other factors
of f and g are nonzero at this point y. Similarly, if gr(y) = 0 for some
y ∈ Vj − Vs near x then br = −mj > 0 and again all the other factors of g
and f are nonzero at this point. Thus each Vj with mj > 0 is the common
zero set of finitely many fr with ar = mj and thus mVj is the sum of the
corresponding functions mfr . Similarly, each Vj with mj > 0 is the common
zero set of finitely many gr with br = −mj and thus mVj is the sum of the
corresponding functions mgr . This proves that the formula m =

∑
jmjmVj

continues to hold on the singular set. Thus we have proved that the two
definitions F.21 and F.22 are equivalent. Moreover, Proposition F.20 shows
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that Definition F.22 is equivalent to the following.

Definition F.23. (Cartier divisor) A divisor on a complex manifold
X is a system {Uα, fα/gα}α where {Uα}α is an open cover of X, fα :
Uα → C and gα : Uα → C are holomorphic functions which do not vanish
on any open subset of Uα, and there exist nowhere vanishing holomorphic
functions uβα : Uα ∩ Uβ → C such that

fβ/gβ = uβαfα/gα (F.9)

on Uα ∩ Uβ.

Theorem F.1 shows that quotient fα/gα in the above definition is de-
fined on a dense open subset of Uα. Hence the functions uβα in (iii) are
uniquely determined by the divisor {Uα, fα/gα}α. Moreover these functions
form a cocycle in the sense that

uγβuβα = uγα, uαα = 1.

Here the first equation holds on the domain Uα∩Uβ∩Uγ . Two Cartier divi-
sors {Uα, fα/gα}α and {Vβ , ϕβ/ψβ}β are called equivalent if their union is
a divisor, i.e. if for every pair α, β there exists a nonvanishing holomorphic
function vβα : Uα ∩ Vβ → C∗ such that ϕβgα = vβαfαψβ . The equivalence
of the two definition is given by the correspondence

m(x) = mfα(x)−mgα(x) (F.10)

for x ∈ Uα. It follows from Lemma F.2 that m(x) is independent of α
and hence determines a well-defined divisor in the sense of definition F.22.
Moreover, two equivalent Cartier divisors obviously determine the same
function m. The converse follows from Proposition F.20. Namely, given
a divisor m : X → Z choose an open cover {Uα}α of X such that on
each Uα there exist nonzero holomorphic functions fα, gα : Uα → Z which
satisfy (F.10). Then, by Lemma F.2,

mfαgβ = mfα +mgβ = mfβ +mgα = mfβgα

on Uα ∩ Uβ and hence the existence of the functions uβα follows from
Proposition F.20. Throughout denote by

Div(X) = {Weil divisors} ∼=
{Cartier divisors}

equivalence

the set of divisors. The reader may check that divisors form a group. In the
case of Weil divisors this is obvious because these are simply defined as the
elements of the free abelian group generated by algebraic hypersurfaces. In



LINE BUNDLES 575

the case of multiplicity functionsm : X → Z the group operation is addition
and the neutral element is m(x) ≡ 0. In the case of Cartier divisors the
group operation is given by choosing a common refinement of the two open
covers and multiplying the functions. The neutral element is the divisor
with open cover Uα = X consisting of a single set with fα(x) = 1 and
gα(x) = 1. Note that this diviser is equivalent to any other Cartier divisor
for which fα and gα never vanish. The inverse of a divisor is given by
interchanging fα and gα. The group of divisors carries a natural partial
order. The nonnegative cone consists of the effective divisors.

Definition F.24 A divisor m : X → Z is called effective if m(x) ≥ 0 for
all x ∈ X. The corresponding Weil divisor D =

∑
jmjVj is effective iff

either mj > 0 for all j or D = ∅. A Cartier divisor {Uα, fα/gα}α is called
effective if gα = 1 for all α. The semigroup of effective divisors is denoted
by Diveff(X).

That the two definitions of effective are equivalent under the above cor-
respondence follows again from Proposition F.20. Obviously, if {Uα, fα}α
is an effective Cartier divisor, then the corresponding multiplicity func-
tion m, defined by (F.10), is nonnegative. Conversely, if m : X → Z is a
nonnegative divisor and g, h : U → C are two holomorphic functions with
m|U = mg − mh, then mg ≥ mh and hence, by Proposition F.20, there
exists another holomorphic function f : U → C such that g = fh. By
Lemma F.2, m|U = mg −mh = mf . This shows that there is an effective
Cartier divisor {Uα, fα}α with m|Uα = mfα for all α.

F.7 Line bundles

Associated to every Cartier divisor {Uα, fα/gα}α there is a natural holo-
morphic line bundle

E → X.

Explicitly this line bundle can be defined as the set of equivalence classes
[x, z, α] with x ∈ Uα and z ∈ C where

[x, z, α] ≡ [x, uβα(x)z, β]

whenever x ∈ Uα ∩ Uβ with uβα : Uα ∩ Uβ → C∗ defined by (F.9). A
holomorphic section of E can be described as a collection of holomorphic
maps vα : Uα → C which satisfy

vβ = uβαvα. (F.11)

The section s : X → E is then given by s(x) = [x, vα(x), α] for x ∈
Uα. Comparing (F.9) and (F.11) one finds that holomorphic sections of E
determine global meromorphic functions v : X → C via
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v(x) = vα(x)gα(x)/fα(x). (F.12)

for x ∈ Uα. Note that the right hand side is only defined where fα(x) is
nonzero and that it is independent of α, i.e. if x ∈ Uα ∩Uβ with fα(x) 6= 0
and fβ(x) 6= 0 then the two expressions for v(x) agree. It follows immedi-
ately from the definitions that the multiplicity function of v satisfies

mv(x) +m(x) ≥ 0 (F.13)

for all x ∈ X. Conversely, if v : X → C is a meromorphic function whose
multiplicity function satisfies (F.13) then it follows from Proposition F.20
that the meromorphic function vα = vfα/gα extends to a holomorphic
function on Uα for every α and hence v is of the form (F.12). Thus there is
a one-to-one correspondence of holomorphic sections of E and meromorphic
functions on X which satisfy (F.13). The space of holomorphic sections of
E is commonly denoted by H0(X,E) and thus we have

H0(X,E) ∼= {v : X → C | v is meromorphic, mv +m ≥ 0} .

An interesting case is when the constant function v(x) = 1 determines a
holomorphic section of E. Since m1(x) = 0 this is the case if and only
if m(x) ≥ 0 for all x, i.e. when m is an effective divisor. Thus effective
divisors are in one-to-one correspondence to isomorphism classes of pairs
(E, s) where E → X is a holomorphic line bundle and s : X → E is a
nonzero holomorphic section:

Diveff(X) ∼=
{

(E, s) |E → X hol. line bundle, 0 6= s ∈ H0(X,E)
}

isomorphisms
.

The section s associated to an effective divisor {Uα, fα}α is determined by
the functions vα = fα.

Sometimes it is convenient to denote the line bundle associated to the
divisor m : X → Z by Em. This is slightly inaccurate since m does not
actually determine a line bundle but only an isomorphism class (unless one
wants to use a maximal open covering). Note that the correspondence

Div(X)→ Pic(X) : m 7→ Em

is a surjective group homomorphism from divisors to the Picard group
Pic(X) of isomorphism classes of holomorphic line bundles. The group op-
eration for line bundles is given by the tensor product and the neutral
element is the trivial bundle C.

There is an induced group homomorphism

Div(X)→ H2(X,Z) : m 7→ c1(Em).
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Consider for example the case where m(x) is either 0 or 1 at each point
x ∈ X. Then m is the indicator function of a complex submanifold Vm ⊂ X
of codimension 1 and the cohomology class c1(Em) is the Poincaré dual of
the fundamental class of Vm:

c1(Em) = PD([Vm]).

The general situation is more complicated but it is still possible to make
sense of this formula. For example, if X is a complex surface then, by
Proposition F.19, every irreducible hypersurface Vi is the image of a holo-
morphic map ui : Σi → X and hence carries a fundamental cycle. In this
case

c1(Em) =
∑
i

miPD([Vi]), m =
∑
i

mimVi . (F.14)

Given a cohomology class e ∈ H2(X,Z) denote the set of divisors with first
Chern class e by

Div(X, e) = {divisors m with c1(Em) = e} .

Similarly, Diveff(X, e) denotes the set of effective divisors m : X → Z with
c1(Em) = e. One can think of E as a fixed complex vector bundle with
first Chern class e and then Diveff(X, e) can be identified with the set of
isomorphism classes of pairs (∂̄, s) where ∂̄ : Ωk(X,E) → Ωk+1(X,E) is
a Cauchy-Riemann operator with ∂̄ ◦ ∂̄ = 0 and s : X → E is a nonzero
section in the kernel of ∂̄:

Diveff(X, e) ∼=
{

(∂̄, s) | ∂̄ ◦ ∂̄ = 0, ∂̄s = 0, s 6= 0
}

gauge equivalence
.

Here a smooth complex gauge transformation u : X → C∗ acts on a pair
(∂̄, s) by u∗(∂̄, s) = (u−1 ◦ ∂̄ ◦ u, u−1s).
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15. Frank Conolly, Lé Hông Vân, and Kaoru Ono, Almost complex structures

which are compatible with Kähler or symplectic structures, Preprint, 1996.
16. S.K. Donaldson, The orientation of Yang-Mills moduli spaces and 4-manifold

topology, J. Diff. Geom. 26 (1987), 397–428.
17. S.K. Donaldson, Polynomial invariants of smooth four-manifolds, Topology

29 (1990), 257–315.
18. S.K. Donaldson, Yang-Mills invariants of four manifolds. In Geometry of

low-dimensional manifolds, Vol. 1: Gauge theory and algebraic surfaces (ed.
S.K. Donaldson and C.B. Thomas), pp. 5–40. London Mathematical Society
Lecture Notes 150, Cambridge University Press, 1990.

19. S.K. Donaldson, Symplectic submanifolds and almost complex geometry,
Preprint, University of Oxford, 1995.

20. S.K. Donaldson, The Seiberg-Witten equations and 4-manifold topology,
Bulletin Amer. Math. Soc. 33 (1996), 45–70.



REFERENCES 579

21. S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds,
Oxford University Press, 1990.

22. N. Elkies, A characterization of the Zn lattice, Math. Res. Letters 2 (1995),
321–326.

23. M. Fernández, M. Gotay, and A. Gray, Compact parallelizable 4-dimensional
symplectic and complex manifolds, Proceedings of the American Mathemat-
ical Society , 103, (1988), 1209–12.

24. M. Fernández and A. Gray, Compact symplectic solvmanifolds not admit-
ting complex structures, Geom. Dedicata 34 (1990), 295–299.

25. R. Fintushel and R. Stern, Donaldson invariants of 4-manifolds with simple
type, J. Diff. Geom. 42 (1995), 577–633.

26. R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds,
Preprint.

27. R. Fintushel and R. Stern, Immersed spheres in 4-manifolds and the im-
mersed Thom conjecture, Proceedings of the Gökova Geometry-Topology
conference 1994, edited by S. Akbulut, T. Önder, and R. Stern, Turkish
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irreducible, 567
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irreducible, 563

singular, 563
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blowup formula, 354, 453
boundary condition
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spinc representation, 141
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Cauchy-Riemann operator, 63, 203
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Clifford algebra, 112
table of, 116
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connection, 8
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∇̃ on symplectic manifold, 68
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Riemannian, 9

spin, 193
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scalar, 38
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determinant bundle, 477
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Dirac operator, 193
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index, 211, 212

on symplectic manifold, 198
on three-manifold, 196

topological index, 213
Weitzenböck formula, 205

Dirichlet boundary condition, 524

divergence, 47
divisor

and Seiberg-Witten equations, 389
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Dolbeault cohomology, 76

Dolgachev surface, 365

Donaldson invariants, 263
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Einstein metric, 40
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finitely generated
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four-manifold

almost complex, 407
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spin, 152

symplectic, 407

simple type, 419
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transverse, 33

index, 473

map, 489
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regular value, 489

operator, 473

topological index, 476

Fubini-Study metric, 93

Gȧrding inequality, 520

Gauge group, 192

gauge group

based, 249
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gauge transformation

harmonic, 175

geometric genus, 80

Gromov invariant, 444–447
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Yang-Mills connection, 81

Hessian
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Einstein, 90
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Lipschitz domain, 506

minimal

Kähler surface, 94

of general type, 101

symplectic manifold, 417

minimal genus, 450
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Miyaoka-Yau inequality, 260
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removable singularities, 271
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Rohlin’s theorem, 215
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energy, 223

on tubes, 349–352

equations, 222
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pointwise estimates, 438
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blowup formula, 354, 453
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elliptic surfaces, 392
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