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ABSTRACT: We discuss a new algorithmic type of problem in random graphs studying the minimum
number of queries one has to ask about adjacency between pairs of vertices of a random graph
G ∼ G(n, p) in order to find a subgraph which possesses some target property with high probability.
In this paper we focus on finding long paths in G ∼ G(n, p) when p = 1+ε

n for some fixed constant
ε > 0. This random graph is known to have typically linearly long paths.

To have � edges with high probability in G ∼ G(n, p) one clearly needs to query at least �
(

�

p

)
pairs of vertices. Can we find a path of length � economically, i.e., by querying roughly that many
pairs? We argue that this is not possible and one needs to query significantly more pairs. We prove

that any randomised algorithm which finds a path of length � = �

(
log

(
1
ε

)
ε

)
with at least constant

probability in G ∼ G(n, p) with p = 1+ε

n must query at least �

(
�

pε log
(

1
ε

)
)

pairs of vertices. This is

tight up to the log
(

1
ε

)
factor. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 71–85, 2017
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1. INTRODUCTION

Let P be a monotone increasing graph property (that is, a property of graphs that cannot
be violated by adding edges). Suppose that the edge probability p = p(n) is chosen so that
a random graph G drawn from the probability space G(n, p) has P with high probability
(whp). How many queries of the type “is (i, j) ∈ E(G)?” are needed for an adaptive algorithm
interacting with the probability space G(n, p) in order to reveal whp a subgraph G′ ⊆ G
possessing P?

This fairly natural algorithmic setting (see the excellent survey of Frieze and McDiarmid
[10] for an extensive coverage of a variety of problems and results in Algorithmic Theory of
Random Graphs) has been considered implicitly in several papers on random graphs (e.g.
[5, 14]), but apparently has been stated explicitly only in the companion paper [9] of the
authors. Notice that in this framework the issue of concern is not the amount of computation
required for the algorithm to find a target structure, but rather the amount of its interaction
with the underlying probability space.

In the discussion below, we assume some basic familiarity with results about the proba-
bility space G(n, p); the reader is advised to consult monographs [11] and [6] for background
on the subject.

In general, given a monotone property P , what can we expect? If all n-vertex graphs
belonging to P have at least m edges, then the algorithm should get at least m positive
answers to hit the target property with the required absolute certainty. This means that the
obvious lower bound in this case is at least (1 + o(1))m/p queries. Perhaps one of the
simplest graph properties to consider in this respect is connectedness: for any connected
graph G on n vertices a spanning tree can be found after n−1 queries with positive answers
– the algorithm starts with an arbitrary vertex v ∈ V(G), and each time queries the pairs
leaving the current tree until the first edge is found, the tree is then updated by appending this
edge. Thus for the regime where G(n, p) is whp connected (which is when p(n) ≥ ln n+ω(n)

n
with limn→∞ ω(n) = 1), we get an algorithm whp discovering a spanning tree after querying
(1 + o(1))n/p pairs of vertices.

A much more challenging problem is that of Hamiltonicity, i.e., of finding a Hamilton
cycle. In this case the trivial lower bound translates to n positive answers. In [9] we show that
this lower bound is tight by providing an adaptive algorithm interacting with the probability
space G(n, p), which whp finds a Hamilton cycle in G ∼ G(n, p) after obtaining only
(1 + o(1))n positive answers (provided p is above the sharp threshold for Hamiltonicity in
G(n, p)).

Yet another positive example is that of uncovering a giant component in the supercritical
regime p = 1+ε

n . Though this was not the main concern in [14], the second and the third
author presented there a very natural adaptive algorithm (essentially performing the Depth
First Search (DFS) on a random input G ∼ G(n, p)), typically discovering a connected
component of size at least εn/2 after querying εn2/2 vertex pairs.

Upon reviewing these results, the reader may arrive at a conclusion that the above stated
trivial lower bound for this type of problems is nearly tight for almost every natural graph
property. However, this happens not to be the case, and the main qualitative goal of the
present paper is to provide such a negative example, including its analysis. Here we focus
on the property of containing a path of length � in the supercritical regime in G ∼ G(n, p),
that is, when p = 1+ε

n for some fixed constant ε > 0. For this regime, G ∼ G(n, p) is known
to contain whp a path of length linear in n, due to the classical result of Ajtai, Komlós and
Szemerédi [3] (see [14] for a recent simple proof of this fact.) Note that in order to have
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� edges with high probability in G ∼ G(n, p) one needs to query at least �
(

�

p

)
pairs of

vertices. Can we find a path of length � by asking roughly that many queries, as in the case
of Hamiltonicity mentioned above? We show that in this case one actually needs to query
significantly more pairs of vertices:

Theorem 1 . There exists an absolute constant C > 0 such that the following holds. For
every constant q ∈ (0, 1) there exist n0, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and any
n ≥ n0 there is no adaptive algorithm which reveals a path of length � ≥ 3C

ε
ln

(
1
ε

)
with

probability at least q in G ∼ G (n, p), where p = 1+ε

n , by querying at most q�

8640Cpε ln
(

1
ε

) pairs

of vertices.

Notice that [14] presents a simple adaptive DFS algorithm, finding a path of length 1
5ε

2n
with probability at least 1 − exp (�(εn)) in G ∼ G(n, p) after querying only O

(
εn2

)
pairs

of vertices. In fact, if one uses the same algorithm to find a path of length � ≤ 1
5ε

2n in
G ∼ G(n, p) then the same argument shows that such a path is found with probability at

least 1 − exp
(
�

(
�

ε

))
after querying at most O

(
�

pε

)
pairs of vertices. This shows that up to

the �
(
log

(
1
ε

))
factor, Theorem 1 is tight.

The key ingredient of the proof of Theorem 1 is the following result of independent
interest.

Theorem 2 . There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and
p = 1+ε

n we have whp that a graph G ∼ G (n, p) does not contain a set of vertex disjoint
paths of lengths at least C

ε
ln

(
1
ε

)
whose union covers at least 13ε2n vertices.

The rest of this paper is organised as follows. In Section 2 we provide auxiliary lemmas
needed for the proofs of Theorem 1 and 2. In Section 3 we prove Theorem 1 assuming
Theorem 2. In Section 4 we prove Theorem 2. Finally, in Section 5 we discuss some
concluding remarks.

Notation. Our notation is fairly standard. Given a natural number n we use [n] to denote
the set {1, 2, . . . , n}. Moreover, given a set V we use SV to denote the permutation group of
V and

(V
2

)
to denote the set of all (unordered) pairs of elements in V .

Given a subset S of the vertex set of a graph G, G[S] denotes the subgraph of G induced
by the vertices in S, i.e. the graph with vertex set S whose edges are the ones of G between
vertices in S.

A subgraph P of the graph G is called a path if V(P) = {v1, . . . , v�} and the edges of P
are v1v2, v2v3, . . ., v�−1v�. We shall oftentimes refer to P simply by v1v2 . . . v�. We say that
such a path P has length � − 1 (number of edges) and size � (number of vertices).

If G is a graph then the 2-core of G is the maximal induced subgraph of G of minimum
degree at least 2. If no such subgraph exists then the 2-core of G is the empty graph.

Given an ordered set V and a real number p ∈ [0, 1], the binomial random graph model
G(V , p) is a probability space whose ground set consists of all labeled graphs on the vertex
set V . We can describe the probability distribution of G ∼ G(V , p) by saying that each pair
of elements of V forms an edge in G independently with probability p. If V = [n] then we
will abuse notation slightly and use G(n, p) to refer to G([n], p). Given a property P (that
is, a collection of graphs) and a function p = p(n) ∈ [0, 1], we say that G ∼ G(n, p) has
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P with high probability (or whp for brevity) if the probability that G ∈ P tends to 1 as n
tends to infinity.

2. AUXILIARY LEMMAS

2.1. Concentration Inequalities

We need to employ standard bounds on large deviations of random variables. The following
well-known lemma due to Chernoff (commonly known as the “Chernoff bound”) provides
a bound on the upper tail of the Binomial distribution (see e.g. [4, 11]).

Lemma 1. Let X ∼ Bin(n, p) and let μ = E [X]. Then Pr [X ≥ (1 + a)μ] < e− a2μ
3 for

any 0 < a < 3
2 .

The next lemma is a concentration inequality for the edge exposure martingale in G(n, p)

which follows easily from Theorem 7.4.3 of [4].

Lemma 2. Suppose X is a random variable in the probability space G(n, p) such that
|X(G) − X(H)| ≤ C if G and H differ in one edge. Then

Pr
[
|X − E [X]| > Cα

√
n2p

]
≤ 2e− α2

4

for any positive α < 2
√

n2p.

2.2. Galton-Watson Trees and Paths

A Galton-Watson tree is a random rooted tree, constructed recursively from the root where
each node has a random number of children and these random numbers are independent
copies of some random variable ξ taking values in {0, 1, 2, . . .}. We let T denote a (random)
Galton-Watson tree. We view the children of each node as arriving in some random order,
so that T is an ordered, or plane tree.

We consider the conditioned Galton-Watson tree Tt , which is the random tree T condi-
tioned on having exactly t vertices. In symbols, Tt := (T | |T | = t), where, for any tree T ,
|T | denotes its number of vertices.

For a rooted tree T , the depth h(v) of a vertex v is its distance to the root (in particular
the root has depth 0). We define as usual the height of the rooted tree T by H(T) :=
max{h(v) : v ∈ T}. The following lemma which appears in [1] provides essentially optimal
uniform sub-Gaussian upper tail bounds on H(Tt )√

t
for every offspring distribution ξ with

finite variance.

Lemma 3. Suppose that E [ξ ] = 1 and 0 < Var [ξ ] < ∞. Then there exist constants
C, c > 0 (which may depend on ξ ) such that

Pr [H(Tt) ≥ h] ≤ C exp

(
−ch2

t

)

for all h ≥ 0 and t ≥ 1.

Random Structures and Algorithms DOI 10.1002/rsa
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As is well known, the distribution of the tree Tt is not changed if ξ is replaced by another
random variable ξ ′ whose distribution is created from that of ξ by tilting or conjugation (see
e.g. [13]): if for every k ≥ 0 we have Pr

[
ξ ′ = k

] = c′μk Pr [ξ = k] for some μ > 0 and
normalizing constant c′. Thus, we see that Lemma 3 remains true for ξ ∼ Poisson(μ), with
μ > 0, in which case the parameters C, c > 0 are universal constants which do not depend
on the parameter μ. It is also well known (see e.g. Section 6.4 of [7]) that if ξ ∼ Poisson(μ)

then Tt is distributed as a random rooted labelled tree, that is, a tree picked uniformly from
the tt−1 trees on vertices {1, 2, . . . , t} in which one vertex is declared to be the root. From
this we obtain an estimate to be used by us later.

Lemma 4. Given 0 ≤ � ≤ t let pt,� denote the proportion of (rooted) labeled trees on t
vertices which contain a path of length at least �. There exist constants C, ε0 > 0 such that
for any ε ∈ (0, ε0) if � = C

ε
ln

(
1
ε

)
and t0 = 15

ε2 ln
(

1
ε

)
then

∑
�≤t≤t0

pt,� ≤ ε3

Proof of Lemma 4. It follows from Lemma 3 and the considerations above that there exist
constants C′, c′ > 0 such that for every t ≤ t0:

pt,� ≤ C′ exp

(
−c′�2

t

)
≤ C′ exp

(
−c′ (C

ε
ln

(
1
ε

))2

15
ε2 ln

(
1
ε

)
)

= C′ε
c′C2

15 .

Thus, if C >

√
90
c′ and if ε0 is sufficiently small then we see that for any ε ∈ (0, ε0) and for

t ≤ t0 we have pt,� ≤ ε6. Using this we conclude that

∑
�≤t≤t0

pt,� ≤ ε6 · t0 = 15ε4 ln

(
1

ε

)
≤ ε3 ,

provided ε0 is sufficiently small, as claimed.

The next lemma concerns the sizes of Poisson Galton-Watson trees which contain long
paths.

Lemma 5. For ε > 0 let 0 < μ < 1 be such that μe−μ = (1 + ε)e−(1+ε). Given � ≥ 1
consider a Poisson(μ)-Galton-Watson tree T and the random variable

T� :=
{|T | if T contains a path of length at least �

3
0 otherwise ,

where |T | denotes the number of vertices of T . Then there exist constants C, ε0 > 0 such
that for every ε ∈ (0, ε0) and for � = C

ε
ln

(
1
ε

)
we have E [T�] ≤ 14ε3 and Var [T�] ≤ 8

ε3 .

Proof. We have

E [T�] = E [E [T� | |T |]] =
∑
t≥1

Pr [|T | = t] · E [T� | |T | = t] . (1)
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It is well-known (see, e.g., Section 6.6 of [7]) that the size of the Poisson(μ)-Galton-Watson
tree T follows a Borel(μ) distribution, namely,

Pr [|T | = t] = tt−1
(
μe−μ

)t

μ · t! .

Moreover, as discussed in the remarks that follow Lemma 3, if we condition a Poisson(μ)-
Galton-Watson tree on it having exactly t vertices then it is identically distributed to a
random rooted labelled tree on t vertices. Thus, it follows that E [T� | |T | = t] is equal to
t · pt, �

3
, where pt, �

3
denotes the proportion of rooted labeled trees on t vertices which contain

a path of length at least �

3 . Hence, setting t0 := 15
ε2 ln

(
1
ε

)
with foresight, it follows from (1)

that

E [T�] =
∑
t≥1

tt−1
(
μe−μ

)t

μ · t! · t · pt, �
3

≤ 1

μ

∑
t≥ �

3

tt

t! · (1 + ε)t · e−(1+ε)t · pt, �
3

≤ 2
∑
t≥ �

3

e− ε2
3 t · pt, �

3

≤ 2 ·
⎛
⎜⎝ ∑

�
3 ≤t≤t0

pt, �
3

+
∑
t≥t0

e− ε2
3 t

⎞
⎟⎠ , (2)

where in the second inequality we used the facts that tt

t! ≤ et , that 1 + ε ≤ eε− ε2
3 (which

holds since the first terms of the Taylor series expansion of ln(1 + ε) are ε − ε2

2 ) and that
1
μ

≤ 2 provided ε0 is chosen sufficiently small. By Lemma 4 there exist constants C, ε0 > 0
such that the first sum in (2) is at most ε3. Moreover, the second sum in (2) is

∑
t≥t0

e− ε2
3 t = e− ε2

3 t0 · 1

1 − e− ε2
3

≤ ε5 · 6

ε2
= 6ε3 , (3)

where we used the fact that 1
1−e−x ≤ 2

x for x > 0 sufficiently small (which holds since the
first terms of the Taylor series expansion of e−x are 1 − x). Thus, all in all, we conclude that
there exist constants C, ε0 > 0 such that

E [T�] ≤ 2 · (ε3 + 6ε3) = 14ε3

as claimed. Since |T | ∼ Borel(μ) it follows that

Var [T�] ≤ E
[
T 2

�

] ≤ E
[|T |2] = 1

(1 − μ)3
.

If μ ≤ 1 − ε

2 then we can conclude that Var [T�] ≤ 8
ε3 , finishing the proof.

It suffices then to show that μ ≤ 1 − ε

2 provided ε0 is chosen small enough. This is
an immediate consequence of the fairly standard estimate in the theory of random graphs
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that μ = 1 − ε + O(ε2) as ε → 0 (see, e.g. p. 140 of [6]). For the sake of completeness
we provide a brief sketch here. Recall that μ ∈ (0, 1) is defined as being the solution
to μe−μ = (1 + ε)e−(1+ε). Let f : R → R denote the function f (x) = xe−x. Note that
f ′(x) = (1 − x)e−x, which is strictly positive for x ∈ (0, 1). This implies that f is strictly
increasing in (0, 1) and so, in order to show that μ ≤ 1 − ε

2 , it is enough to show that
f (1 − ε

2 ) ≥ (1 + ε)e−(1+ε) = f (μ), provided ε > 0 is small enough. Note that:

f
(

1 − ε

2

)
=

(
1 − ε

2

)
e−(1− ε

2 ) ≥ (1 + ε)e−(1+ε) ⇔
(

1 − ε

2

)
e

3ε
2 ≥ 1 + ε

Since ex = ∑∞
n=0

xn

n! ≥ 1 + x + x2

2 for x ≥ 0, it follows that:

(
1 − ε

2

)
e

3ε
2 ≥

(
1 − ε

2

) (
1 + 3ε

2
+

(
3ε

2

)2

2

)
= 1 + ε + 3ε2

8
− 9ε3

16
.

The latter is at least 1 + ε, if ε > 0 is small enough. Thus, we conclude that μ ≤ 1 − ε

2 , as
claimed.

Lemma 6. Let P = (V , E) be a path of length � and B ⊆ E a set of size |B| ≤ α�, where
α ≥ 1

�
. Let Q denote the graph obtained from P by deleting all the edges in B. Then there

exist vertex disjoint subpaths {Qj}j∈J of Q such that each Qj has length at least 1
3α

and the
subpaths {Qj}i∈J cover at least

(
1
3 − α

)
� vertices of V.

Proof of Lemma 6. Since P is a path, Q consists of a union of vertex disjoint paths {Qj}j∈[k]
for some k ≤ |B|+1 ≤ α�+1. Denoting by �j the length of the path Qj for j ∈ [k], note that

∑
j∈[k]

�j = � − |B| ≥ (1 − α)�. (4)

Moreover, setting J := {j ∈ [k] : �j ≥ 1
3α

} we see that

∑
j/∈J

�j ≤ k · 1

3α
≤ 1

3
� + 1

3α
≤ 2

3
�. (5)

Putting (4) and (5) together we get that

∑
j∈J

�j ≥
(

1

3
− α

)
�.

Thus, it follows that the paths {Qj}j∈J satisfy the desired conditions.

2.3. Properties of Random Graphs

The next lemma provides bounds on the sizes of the largest and second largest connected
components of G ∼ G(n, p) as well as the size of its 2-core when p = 1+ε

n , where ε > 0 is a
small constant. This lemma is a simple consequence of Theorem 5.4 of [11] and Theorem
3 of [15].
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Lemma 7. Let p = 1+ε

n where ε > 0 is a constant. Then there exists a constant ε0 > 0
such that for every ε ∈ (0, ε0) the following holds whp for G ∼ G(n, p):

(a) the largest connected component of G has between εn and 3εn vertices.
(b) the second largest connected component of G has at most 20

ε2 ln n vertices.
(c) the 2-core of the largest connected component of G has at most 2ε2n vertices.

In [8], Ding, Lubetzky and Peres established a complete characterization of the structure
of the giant component C1 of G ∼ G(n, p) in the strictly supercritical regime (p = 1+ε

n with

ε > 0 constant). This was achieved by offering a tractable contiguous model C̃1, i.e. a model
such that every graph property that is satisfied by C̃1 whp is also satisfied by C1 whp. In their
model, C̃1 consists of a 2-core C̃(2)

1 where one attaches to each vertex of C̃(2)

1 one independent
Poisson(μ)-Galton-Watson tree (where 0 < μ < 1 is such that μe−μ = (1 + ε)e−(1+ε)).
In light of this, any graph property that is satisfied whp by the disjoint union of |C̃(2)

1 |
independent Poisson(μ)-Galton-Watson trees must also be satisfied whp by C1 \ C(2)

1 , the
graph obtained from the giant component C1 by removing the edges of its 2-core C(2)

1 . As
one would expect, the random variable |C̃(2)

1 | is tightly concentrated around its expectation,
which agrees with the expected size of the 2-core C(2)

1 of C1. By (c) of Lemma 7 this at most
2ε2n. The next technical lemma which will be useful in the proof of Theorem 2 follows
from the considerations above.

Lemma 8. Let C1 denote the largest connected component of G ∼ G(n, p) for p = 1+ε

n ,

where ε > 0 is fixed, let C(2)

1 denote its 2-core and let C1 \ C(2)

1 denote the graph obtained
from C1 by removing the edges in C(2)

1 . Let 0 < μ < 1 be such that μe−μ = (1 + ε)e−(1+ε)

and consider 2ε2n independent Poisson(μ)-Galton-Watson trees T1, . . . , T2ε2n. Then, for
every � and m (which might depend on n) if whp the disjoint union of T1, . . . , T2ε2n does not
contain a set of vertex disjoint paths of length at least � covering at least m vertices then
the same holds whp for C1 \ C(2)

1 .

3. PROOF OF THEOREM 1

We start this section by repeating the statement of Theorem 1 for the reader’s convenience.

Theorem 1. There exists an absolute constant C > 0 such that the following holds. For
every constant q ∈ (0, 1) there exist n0, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and any
n ≥ n0 there is no adaptive algorithm which reveals a path of length � ≥ 3C

ε
ln

(
1
ε

)
with

probability at least q in G ∼ G (n, p), where p = 1+ε

n , by querying at most q�

8640Cpε ln
(

1
ε

) pairs

of vertices.

Proof of Theorem 1. Suppose Alg is an adaptive algorithm which with probability at least
q finds a path of length � in G ∼ G (n, p), where p = 1+ε

n , after querying at most q�

8640Cpε ln
(

1
ε

)
pairs of vertices. We consider implicitly that Alg takes an ordered vertex set as part of
its input. We shall assume henceforth that n, C > 0 are sufficiently large and ε > 0 is
sufficiently small in order to obtain a contradiction. Note that, by restricting Alg to a set
of n vertices, we get an algorithm which for any n′ ≥ n with probability at least q finds in
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G′ ∼ G(n′, p) a path of length � after querying at most q�

8640Cpε ln
(

1
ε

) pairs of vertices. We

shall abuse notation slightly and call Alg to all these algorithms.

Define n′ :=
(

1 + 720ε2

q

)
n, V0 := [n′], I0 := ∅ and s := 720ε2n

q(�+1)
. For i = 1, . . . , s do the

following:

• Apply Alg to Gi−1 ∼ G (Vi−1, p), where the vertices in Vi−1 are permuted according to
a permutation πi ∈ SVi−1 chosen uniformly at random. Let Li be the graph of all pairs
of vertices queried and let Ki ⊆ Li be the graph of edges present. By the algorithm we
know that Li has at most q�

8640Cpε ln
(

1
ε

) edges. If Ki contains a path of length � then let

Pi be one such path, define Vi := Vi−1 \ V(Pi) and set Ii := Ii−1 ∪ {i}. Otherwise, set
Vi := Vi−1 and Ii := Ii−1.

Observe that |Vs| ≥ n′ − (� + 1)s =
(

1 + 720ε2

q

)
n − 720ε2

q n = n and so we can indeed

apply Alg to Vi−1 for any i ∈ [s]. We define a random graph H with vertex set V0 in the
following way. For every pair of vertices {u, v} ⊆ V0 if {u, v} ∈ E(Li) for some i ∈ [s] then
let i0 be the smallest such index and set {u, v} as an edge of H if and only if {u, v} ∈ E(Ki0).
Consider all the other pairs {u, v} ⊆ V0 as non-edges of H. From the procedure above it
follows that for every {u, v} ⊆ V0 we have independently that

Pr [{u, v} ∈ E(H)] ≤ p = 1 + ε

n
= 1 + ε

n′ · n′

n
=

(1 + ε)
(

1 + 720ε2

q

)
n′ ≤ 1 + 2ε

n′ ,

provided ε ≤ q
1440 . Thus, the graph H can be viewed as a subgraph of a graph sampled from

G
(
n′, 1+2ε

n′
)
. In particular, if with probability at least q2

4 the graph H contains a set of vertex
disjoint paths of length at least C

ε
ln

(
1
ε

)
which cover at least 52ε2n′ vertices then the same

must also hold with probability at least q2

4 in G
(
n′, 1+2ε

n′
)
. However, this would contradict

Theorem 2 and so it suffices to prove the following claim:

Claim . With probability at least q2

4 the graph H contains a set of vertex disjoint paths of
length at least C

ε
ln

(
1
ε

)
which cover at least 52ε2n′ vertices of V0.

Define for each i ∈ Is the graph Hi with vertex set Vi−1 and edge set
(⋃i−1

j=1 E(Lj)
)
∩(Vi−1

2

)
and note that

|E(Hi)| ≤ s · q�

8640Cpε ln
(

1
ε

) ≤ εn2

12C ln
(

1
ε

)
(1 + ε)

≤ ε

6C ln
(

1
ε

) ·
(|Vi−1|

2

)
. (6)

Observe that for each i ∈ Is the set Vi−1 \ Vi consists of the vertex set of a path Pi in the
graph Ki. For each such i set Bi := E(Pi)∩E(Hi) and let Qi denote the graph obtained from
Pi by deleting all the edges in Bi. Note crucially that E(Qi) ⊆ E(H) and that the graphs
{Qi}i∈Is are vertex disjoint.

Consider now the set I :=
{

i ∈ Is : |Bi| ≤ ε

3C ln
(

1
ε

)�

}
. By Lemma 6 it follows that for

any i ∈ I there exist vertex disjoint subpaths {Qj
i}j∈Ji of Qi each of length at least C

ε
ln

(
1
ε

)
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which cover at least

(
1
3 − ε

3C ln
(

1
ε

)
)

� ≥ 1
4 (� + 1) vertices of V(Qi). Thus, if |I| ≥ 1

3 sq then

{Qj
i}i∈I ,j∈Ji forms a collection of vertex disjoint paths in H of length at least C

ε
ln

(
1
ε

)
which

cover at least 1
4 (� + 1) · 1

3 sq = 60ε2n ≥ 52ε2n′ vertices of V0. It suffices to show then that

with probability at least q2

4 we have |I| ≥ 1
3 sq.

Let I ′ := [s] \ I and note that for every i ∈ [s] we have

Pr
[
i ∈ I ′] = Pr [i /∈ Is] + Pr

[
i ∈ I ′ | i ∈ Is

] · Pr [i ∈ Is] . (7)

It is clear from the procedure above that for each i ∈ [s] we have Pr [i ∈ Is] ≥ q. Note
also crucially that, provided i ∈ Is, the path Pi is a randomly mapped path of length �

on the vertex set Vi−1. Indeed, this happens because before the i-th application of Alg we
permuted the vertices of Vi−1 according to a permutation πi ∈ SVi−1 chosen uniformly at
random. Thus, by conditioning on the event that i ∈ Is, on any possible graph Hi satisfying
(6) and on the path π−1

i (Pi), we have for any e ∈ E
(
π−1

i (Pi)
)
:

Pr [πi(e) ∈ E(Hi)] ≤ ε

6C ln
(

1
ε

) ,

and so, by linearity of expectation it follows that:

E [|E(Pi) ∩ E(Hi)|] ≤ ε

6C ln
(

1
ε

)�.

Thus, by Markov’s inequality (see, e.g., [4]) we get that

Pr
[
i ∈ I ′ | i ∈ Is

] ≤ 1

2
,

and so by Eq. (7) we see that for any i ∈ [s] we have Pr
[
i ∈ I ′] ≤ 1− 1

2 Pr[i ∈ Is] ≤ 1− q
2 . It

follows then by linearity of expectation that E
[|I ′|] ≤ s

(
1 − q

2

)
. Hence, again by Markov’s

inequality we conclude that

Pr

[
|I ′| ≥ s

1 + q
2

]
≤ 1 − q2

4
, which implies

q2

4
≤ Pr

[
|I| ≥ sq

2 + q

]
≤ Pr

[
|I| ≥ sq

3

]
.

This completes the proof.

4. PROOF OF THEOREM 2

Theorem 2. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) we have
whp that G ∼ G

(
n, 1+ε

n

)
does not contain a set of vertex disjoint paths of lengths at least

C
ε

ln
(

1
ε

)
whose union covers at least 13ε2n vertices.

Proof of Theorem 2. Let G ∼ G(n, p) where p = 1+ε

n . Let C1 denote the largest connected
component of G, let C(2)

1 denote the 2-core of C1 and let C1 \ C(2)

1 denote the graph obtained
from C1 by deleting the edges in C(2)

1 . For � ≥ 1 consider the following random variables:
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• X� = number of vertices which belong to connected components of G of size at most
20
ε2 ln n containing a path of length at least �.

• Y� = maximum number of vertices covered by vertex disjoint paths of length at least
� in C1.

• Z� = maximum number of vertices covered by vertex disjoint paths of length at least
�

3 in C1 \ C(2)

1 .

By (b) of Lemma 7 it follows that whp X� + Y� is an upper bound on the maximum
number of vertices of G covered by vertex disjoint paths of length at least �. Note that we
may assume that all the paths considered have size at most 2� by splitting larger paths into
several paths of length at least �. Moreover, if P is a path of length at least � in C1 then,
since C1 \ C(2)

1 consists of a disjoint union of trees, there must exist a subpath P′ of the path
P with at least |P|

3 ≥ �

3 vertices which lies in C(2)

1 or in C1 \ C(2)

1 . Since |P| ≤ 6|P′| it follows
that Y� ≤ 6|C(2)

1 | + 6Z�.
By (c) of Lemma 7 we know that whp |C(2)

1 | ≤ 2ε2n, provided ε0 is chosen small
enough. It suffices then to show that there exist constants C, ε0 > 0 such that for every fixed
ε ∈ (0, ε0) and for � := C

ε
ln

(
1
ε

)
we have whp that

X� < ε3n and Z� < 29ε5n.

since in that case we have whp that the maximum number of vertices of G covered by vertex
disjoint paths of length at least � is at most

X� + Y� ≤ X� + 6|C(2)

1 | + 6Z� < ε3n + 6 · 2ε2n + 6 · 29ε5n ≤ 13ε2n.

provided ε0 is chosen sufficiently small. Lemmas 9 and 10 complete the proof.

Lemma 9. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and for
� := C

ε
ln

(
1
ε

)
we have X� < ε3n whp.

Proof of Lemma 9. Given a set S ⊆ [n] of size t, let S�(S) (resp. T�(S)) denote the set of
possible connected graphs (resp. spanning trees) on the vertex set S which contain a path of
length at least �. Let XS denote the indicator random variable of the event that G[S] ∈ S�(S)

and that there are no edges in G between S and [n] \ S. Note that G[S] ∈ S�(S) if and only
if there exists T ∈ T�(S) such that T ⊆ G[S]. Thus, by the union bound we have

E [XS] ≤ |T�(S)| · pt−1 · (1 − p)t(n−t) (8)

where the first term accounts for taking a union bound over all T ∈ T�(S), the second term
accounts for the probability that the edges in T are present in G[S] and the last term accounts
for the probability that none of the edges between S and [n] \ S are present in G. Note that
|T�(S)| does not depend on the set S and is equal to the number of labeled trees on t vertices
which contain a path of length at least �. More specifically, if pt,� denotes the proportion of
labeled trees on t vertices which contain a path of length at least �, then |T�(S)| = pt,� · tt−2.
Observe now that the random variable X� satisfies the following:

X� ≤
20
ε2 ln n∑

t=�

∑
S∈([n]

t )

t · XS.
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We claim that for � := C
ε

ln
(

1
ε

)
, where C > 0 is a large constant, and for some constant

ε0 > 0, if ε ∈ (0, ε0) is fixed then Pr
[
X� ≥ ε3n

] = o(1). To prove this claim we start by
estimating E[X�]. Setting t0 := 15

ε2 ln
(

1
ε

)
, we have by the linearity of expectation and by (8)

that if ε0 is sufficiently small then:

E[X�] ≤
20
ε2 ln n∑

t=�

t ·
(

n

t

)
· pt,� · tt−2 · pt−1 · (1 − p)t(n−t)

≤
20
ε2 ln n∑

t=�

t ·
(en

t

)t · pt,� · tt−2 ·
(

1 + ε

n

)t−1 (
1 − 1 + ε

n

)t(n−t)

≤
20
ε2 ln n∑

t=�

et · t−1 · n · pt,� · eεt− ε2
3 t

1 + ε
· e−(1+ε)t+ (1+ε)t2

n

≤ (1 + o(1))n

�(1 + ε)
·
∑
t≥�

pt,� · e− ε2
3 t

≤ n

14
·
⎛
⎝ ∑

�≤t≤t0

pt,� +
∑
t≥t0

e− ε2
3 t

⎞
⎠ (9)

where in the third inequality we used the fact that (1 + ε)t ≤ eεt− ε2
3 t for sufficiently small

ε > 0. By Lemma 4 there exist constants C, ε0 > 0 such that the first sum in (9) is at most
ε3. Moreover, by (3) the second sum in (9) is at most 6ε3. Thus, all in all, we conclude that
there exist constants C, ε0 > 0 such that

E [X�] ≤ n

14
· (ε3 + 6ε3) = ε3n

2
.

Note that if G and H differ in precisely one edge then |X�(G)−X�(H)| ≤ 40
ε2 ln n because

one edge affects at most two connected components of size at most 20
ε2 ln n. Thus, by Lemma

2 it follows that

Pr
[
X� > ε3n

] ≤ Pr

[
|X� − E[X�]| >

ε3n

2

]
≤ e

−�

(
n

(ln n)2

)
= o(1).

Remark. An alernative approach to the proof of Lemma 9 would be to invoke the so called
symmetry rule (see, e.g., Chapter 5.6 of [11]), postulating that in the supercritical regime
p = 1+ε

n , the subgraph of G ∼ G(n, p) outside the giant component behaves typically as a
random graph with subcritical edge probability. One can then estimate the likely contribution
of paths of length at least � = C

ε
ln

(
1
ε

)
coming from the small components to the total volume

of vertex disjoint paths of length at least � and to show it to be O(ε2n) whp, using a direct
first moment argument. Since we still need to treat the paths residing in the giant component
outside the 2-core (the random variable Z�), we chose to adopt a unified approach using the
machinery of Galton-Watson trees developed in Section 2.2, and to apply it here as well.

Lemma 10. There exist constants C, ε0 > 0 such that for every fixed ε ∈ (0, ε0) and for
� := C

ε
ln

(
1
ε

)
we have Z� < 29ε5n whp.
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Proof of Lemma 10. Recall that Z� counts the maximum number of vertices covered by
vertex disjoint paths of length at least �

3 in C1 \ C(2)

1 . Let 0 < μ < 1 be such that μe−μ =
(1+ε)e−(1+ε) and consider 2ε2n independent Poisson(μ)-Galton-Watson trees T1, . . . , T2ε2n.
By Lemma 8 it suffices for our purposes to show that whp the maximum number of vertices
covered by vertex disjoint paths of length at least �

3 in the disjoint union of T1, . . . , T2ε2n is
less than 29ε5n, for appropriate C, ε0 > 0.

For each 1 ≤ i ≤ 2ε2n consider the following random variable:

Ti,� :=
{|Ti| if Ti contains a path of length at least �

3
0 otherwise

and set T� = ∑2ε2n
i=1 Ti,�. Clearly T� is an upperbound on the maximum number of vertices

covered by vertex disjoint paths of length at least �

3 in in the disjoint union of T1, . . . , T2ε2n. To
finish the proof, we show that whp T� < 29ε5n, provided C, ε0 > 0 are chosen appropriately.

By Lemma 5 we know that there exist constants C, ε0 > 0 such that for every ε ∈ (0, ε0)

and for � = C
ε

ln
(

1
ε

)
we have E

[
Ti,�

] ≤ 14ε3 and Var
[
Ti,�

] ≤ 8
ε3 . Thus, since the random

variables Ti,� are independent, we have that

E [T�] ≤ 14ε3 · 2ε2n = 28ε5n and Var [T�] ≤ 8

ε3
· 2ε2n = 16n

ε
.

Thus, by Chebyshev’s Inequality (see, e.g., [4]) we conclude that

Pr
[
T� ≥ 29ε5n

] ≤ Pr
[|T� − E [T�] | ≥ ε5n

] ≤ Var [T�]

ε10n2
≤ 16

ε11n
= o(1).

5. CONCLUDING REMARKS

We have shown that in order to find a path of length � = �

(
log

(
1
ε

)
ε

)
in G ∼ G (n, p) with

at least some constant probability, where p = 1+ε

n with ε > 0 fixed, one needs to query at

least �

(
�

pε log
(

1
ε

)
)

pairs of vertices. This is close to best possible since a randomised depth

first search algorithm from [14] finds whp a path of length � after querying at most O
(

�

pε

)
pairs of vertices. A natural question, which remains open, is to close the gap between these
bounds. We believe that every adaptive algorithm which reveals whp a path of length � in

G ∼ G(n, p), where p = 1+ε

n with ε > 0 fixed, has to query �
(

�

pε

)
pairs of vertices.

Recall that, to prove our main result, in Theorem 2 we bounded the total number of
vertices covered by vertex disjoint paths of size at least �

(
1
ε

log
(

1
ε

))
in a typical graph

sampled from G(n, p), p = 1+ε

n , by O
(
ε2n

)
. Since a graph G ∼ G(n, p) contains whp a path

of length �(ε2n) (see e.g. [11]), this is best possible up to a multiplicative constant. If one
can show that a similar statement holds for paths of length �

(
1
ε

)
then one can modify our

proof to obtain a �
(

�

pε

)
bound in Theorem 1.

In the proof of Theorem 2 we needed to bound the number of vertices covered by vertex
disjoint paths of a prescribed length � in a random tree of fixed size t (Lemma 5). Our
estimate was a bit wasteful because for trees which contained a path of length � we used
their total number of vertices t instead of the number of vertices covered by vertex disjoint
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paths of length �, which is most likely significantly smaller. A way to fix this is to obtain
good bounds for the following question:

Question. Given a = a(t) ∈ N and b = b(t) ∈ N what is the probability that a random
tree on t vertices contains b vertex disjoint paths, each of length at least a?

Note that, since the diameter of a random tree on t vertices is whp �(
√

t) (see e.g. [1]),
the only interesting regime is when ab ≥ C

√
t for some constant C > 0. Moreover, by

splitting paths of length larger than 2a into smaller subpaths of length at least a, we may
consider only paths of length between a and 2a.

One possible approach to this problem would be through a nice argument of Joyal ([12],
see also [2]). It shows that a random tree T on t vertices can be obtained from a random
map f : [t] → [t] as follows. First we create the directed graph D (possibly with loops) on
vertex set [t] with edges i → f (i) for each i ∈ [t]. Then we look at a maximal set of vertices
M = {i1, . . . , im} ⊆ [t] such that f |M is a permutation. We remove the directed edges inside
M and replace them by the path f (i1) → f (i2) → . . . → f (im) (where i1 < i2 < . . . < im).
By ignoring the orientations of the edges we obtain the desired tree T . Note that, since the
vertices in M form a path in T , we must have |M| = O(

√
t) whp. Moreover, if we have a

path P in T then a moment’s thought reveals that either P has at least |V(P)|
3 vertices in M

or there are |V(P)|
3 vertices of P which form a directed path in D. Thus, it follows that if we

have a collection of b vertex disjoint paths in T each of length between a and 2a then D
contains a collection of vertex disjoint directed paths each of length between a+1

3 and 2a
covering at least (a+1)b

3 − |M| vertices. Since |M| = O(
√

t) whp and since we are interested
only in the case when ab ≥ C

√
t for some large constant C > 0, it follows that in that case

we have, say, at least b
10 such paths. Thus, up to changing a and b by constant multiplicative

factors, it is enough to estimate the probability that the directed graph D obtained from a
random map f : [t] → [t] contains at least b vertex disjoint directed paths, each of length
(at least) a.

We can give a simple upper bound on this probability by taking the union bound over all
collections of b vertex disjoint directed paths of length a. This shows that the probability
that we want to estimate is at most

t!
(t − (a + 1)b)!b!

(
1

t

)ab

= tb

b!
(a+1)b−1∏

i=1

(
1 − i

t

)
≤ eb+b ln(t/b)−((a+1)b

2 )/t .

Unfortunately, this upper bound is not strong enough to allow us to prove Theorem 2 for
paths of length at least �

(
1
ε

)
because when b is roughly a constant and a is close to

√
t

the positive term b ln (t/b) in the exponent is much larger than the negative term
(
(a+1)b

2

)
/t.

Thus, it would be nice to obtain tighter bounds for the probability in question.
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