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ABSTRACT: Answering in a strong form a question posed by Bollobás and Scott, in this paper
we determine the discrepancy between two random k-uniform hypergraphs, up to a constant factor
depending solely on k. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 47, 147–162, 2015
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1. INTRODUCTION

A hypergraph H is an ordered pair H = (V , E), where V is a finite set (the vertex set), and
E is a family of distinct subsets of V (the edge set). The hypergraph H is k-uniform if all its
edges are of size k. In this paper we consider only k-uniform hypergraphs. The edge density
of a k-uniform hypergraph H with n vertices is ρH = e(H)/

(n
k

)
. We define the discrepancy

of H to be

disc(H) = max
S⊆V(H)

∣∣∣∣e(S) − ρH

(|S|
k

)∣∣∣∣ , (1)

where e(S) = e(H[S]) is the number of edges in the sub-hypergraph induced by S. The dis-
crepancy can be viewed as a measure of how uniformly the edges of H are distributed among
the vertices. This important concept appears naturally in various branches of Combinatorics
and has been studied by many researchers in recent years. The discrepancy is closely related
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148 MA, NAVES, AND SUDAKOV

to the theory of quasi-random graphs (see [7]), as the property disc(G) = o(|V(G)|2) implies
the quasi-randomness of the graph G.

Erdős and Spencer [9] proved that for k ≥ 2, any k-uniform hypergraph H with n vertices

has a subset S satisfying
∣∣e(S) − 1

2

(|S|
k

)∣∣ ≥ cn
k+1

2 , which implies the bound disc(H) ≥ cn
k+1

2

for k-uniform hypergraphs H of edge density 1
2 . Erdős, Goldberg, Pach and Spencer [8]

obtained a similar lower bound for graphs of edge density smaller than 1
2 . These results

were later generalized by Bollobás and Scott in [3], who proved the inequality disc(H) ≥
ck

√
rn

k+1
2 for k-uniform hypergraphs H, whenever r = ρH(1 − ρH) ≥ 1/n. The random

hypergraphs show that all the aforementioned lower bounds are optimal up to constant
factors. For more discussion and general accounts of discrepancy, we refer the interested
reader to Beck and Sós [2], Bollobás and Scott [3], Chazelle [6], Matoušek [11] and Sós [12].

A similar notion is the relative discrepancy of two hypergraphs. Let G and H be two k-
uniform hypergraphs over the same vertex set V , with |V | = n. For a bijection π : V → V ,
let Gπ be obtained from G by permuting all edges according to π , i.e., E(Gπ ) = π(E(G)).
The overlap of G and H with respect to π , denoted by Gπ ∩ H, is a hypergraph with the
same vertex set V and with edge set E(Gπ ) ∩ E(H). The discrepancy of G with respect to
H is

disc(G, H) = max
π

∣∣∣∣e(Gπ ∩ H) − ρGρH

(
n

k

)∣∣∣∣ , (2)

where the maximum is taken over all bijections π : V → V . For random bijections π ,
the expected size of E(Gπ ) ∩ E(H) is ρGρH

(n
k

)
; thus disc(G, H) measures how much the

overlap can deviate from its average. In a certain sense, the definition (2) is more general
than (1), because one can write disc(H) = max1≤i≤n disc(Gi, H), where Gi is obtained from
the complete i-vertex k-uniform hypergraph by adding n − i isolated vertices.

Bollobás and Scott introduced the notion of relative discrepancy in [4] and showed that for
any two n-vertex graphs G and H, if 16

n ≤ ρG, ρH ≤ 1− 16
n , then disc(G, H) ≥ c · f (ρG, ρH) ·

n
3
2 , where c is an absolute constant and f (x, y) = x2(1 − x)2y2(1 − y)2. As a corollary, they

proved a conjecture in [8] regarding the bipartite discrepancy disc(G, K� n
2 	,
 n

2 �). Moreover,
they also conjectured that a similar bound holds for k-uniform hypergraphs, namely, there

exists c = c(k, ρG, ρH) for which disc(G, H) ≥ cn
k+1

2 holds for any k-uniform hypergraphs
G and H satisfying 1

n ≤ ρG, ρH ≤ 1 − 1
n .

In their paper, Bollobás and Scott also asked the following question (see Problem 12 in
[4]). Given two random n-vertex graphs G and H with constant edge probability p, what
is the expected value of disc(G, H)? In this paper, we solve this question completely for
general k-uniform hypergraphs. Let Hk(n, p) denote the random k-uniform hypergraph on
n vertices, in which every edge is included independently with probability p. We say that an
event happens with high probability, or w.h.p. for brevity, if it happens with probability at
least 1 − n−ω(1), where here and later ω(1) denotes an arbitrary function tending to infinity
together with n.

Theorem 1.1. For positive integers n and k, let N = (n− n
k

k−1

)
. Let G and H be two random

hypergraphs distributed according to Hk(n, p) and Hk(n, q) respectively, where ω(1)

N ≤ p ≤
q ≤ 1

2 .
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DISCREPANCY OF RANDOM GRAPHS AND HYPERGRAPHS 149

1. dense case – If pqN > 1
30 log n, then w.h.p. disc(G, H) = �k

(√
pq
(n

k

)
n log n

)
;

2. sparse case – If pqN ≤ 1
30 log n, let γ = log n

pqN ; then

2.1. if pN ≥ log n
5 log γ

, then w.h.p. disc(G, H) = �k

(
n log n
log γ

)
.

2.2. if pN <
log n

5 log γ
, then w.h.p. disc(G, H) = �k

(
p
(n

k

))
.

The previous theorem also provides tight bounds when p and/or q ≥ 1
2 , as we shall see in

the concluding remarks. The result of Theorem 1.1 in the sparse range is closely related to
the recent work of the third author with Lee and Loh [10]. Among other results, the authors of
[10] show that two independent copies G, H of the random graph G(n, p) with p � √

log n/n

w.h.p. have overlap of order �
(

n log n
log γ

)
, where γ = log n

p2n
. Hence disc(G, H) = �

(
n log n

log γ

)
holds, since in this range of edge probability, n log n

log γ
is larger than the average overlap p2

(n
2

)
.

Our proof in the sparse case borrows some ideas from [10]. On the other hand, one can not
use their approach for all cases; hence some new ideas were needed to prove Theorem 1.1.

It will become evident from our proof that the problem of determining the discrepancy
can be essentially reduced to the following question. Let K > 0, and let X be a binomial
random variable with parameters m and ρ. What is the maximum value of � = �(m, ρ, K)

satisfying P
[
X − mρ > �

] ≥ e−K ? This question is related to the rate function of binomial
distribution. In all cases, the discrepancy in the statement of Theorem 1.1 is w.h.p.

disc(G, H) = �k

(
n · �

(
p

(
n − 1

k − 1

)
, q, log n

))
. (3)

Note that p
(n−1

k−1

)
is roughly the size of the neighborhood of a vertex in the hypergraph G.

The rest of this paper is organized as follows. Section 2 contains a high level outline of our
proof. It also includes the definition of the probabilistic discrepancy discP(G, H). Section 3
contains a list of inequalities and technical lemmas used throughout the paper. In partic-
ular, we demonstrate that discP(G, H) w.h.p. does not deviate too much from disc(G, H).
In Section 4, we establish the upper bound for disc(G, H) based on a similar bound for
discP(G, H). In Section 5, we give a detailed proof of the lower bound for disc(G, H). The
final section contains some concluding remarks. In this paper, the function log refers to the
natural logarithm and all asymptotic notation symbols (�, O, o and �) are with respect to
the variable n. Furthermore, the k-subscripts in these symbols indicate the dependence on
k in the relevant constants.

2. OUTLINE OF THE PROOF

In this section, we describe the main ideas in the proof of Theorem 1.1. In order to determine
disc(G, H), we introduce a related quantity, the probabilistic discrepancy discP(G, H). Let
G and H be two random hypergraphs over the same vertex set V , distributed according to
Hk(n, p) and Hk(n, q), respectively. The probabilistic discrepancy of G with respect to H
is defined by

discP(G, H) = max
π

∣∣∣∣e(Gπ ∩ H) − pq

(
n

k

)∣∣∣∣ ,
Random Structures and Algorithms DOI 10.1002/rsa



150 MA, NAVES, AND SUDAKOV

Fig. 1. Edges of G and H having one vertex in L. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

where the maximum is taken over all bijections π : V → V . In Section 4, we show that
discP(G, H) is w.h.p. very close to disc(G, H), hence, to bound disc(G, H), it suffices to
show corresponding bounds for discP(G, H).

The proof of the upper bound for discP(G, H) is fairly standard. In case (2.2) of the main
theorem, the proof is trivial, as w.h.p. e(G) < 2p

(n
k

)
. For the remaining cases, we remark

that for any fixed permutation π : V → V , the overlap Gπ ∩ H is a random hypergraph dis-
tributed according to Hk(n, pq). The upper bound then follows from a straightforward union
bound argument over all possible permutations π , together with the application of concen-
tration inequalities for the binomial distribution. The remaining details of this particular
argument are presented in Section 4.

The main contribution of the paper is the proof of the lower bound. In Section 5, we show
that w.h.p. there exists a permutation π such that the corresponding overlap e(Gπ ∩ H) is
much bigger than pq

(n
k

)
. Note that e(Gπ ∩ H) > pq

(n
k

)
, so the discrepancy is “positive”

here. In the proof, we fix an arbitrary set L ⊆ V of size |L| = n
k , and restrict the set of

possible permutations to bijections permuting only the elements of L. Then, we gradually
expose the edges (belonging to both G and H) in two rounds. In the first round, we expose
the edges having exactly one vertex in L, while keeping unexposed the edges having zero
or at least two vertices in L. This way, the overall contribution to the discrepancy from the
edges exposed in the first round is exactly the sum of the contributions from each individual
choice of π(x). To be more precise, let R be the set of all (k − 1)-subsets of V \ L; for each
u ∈ L, let NG(u) be the collection of all (k − 1)-sets T ∈ R such that {u} ∪ T is an edge of
G, and let NH(u) be defined similarly; finally, for each pair u, v ∈ L, let codeg(u, v) denote
the size of NG(u) ∩ NH(v). The total number of edges in the overlap Gπ ∩ H having exactly
one vertex in L is precisely the sum∑

x∈L

codeg(x, π(x)). (4)

See Fig. 1 for more details. The size |L| = n
k was appropriately chosen to maximize the

number of edges having precisely one vertex in L. Additionally, we remark that |R| = (n− n
k

k−1

)
,

which is exactly the value of N in the statement of Theorem 1.1. The following inequality
will be used extensively later in the paper. It relates N and the binomial coefficient

(n
k

)
for

large enough n, as

1

3

(
n

k

)
≤ N

n

k
≤ 1

2

(
n

k

)
.

Random Structures and Algorithms DOI 10.1002/rsa



DISCREPANCY OF RANDOM GRAPHS AND HYPERGRAPHS 151

Having found the bijection π with big overlap in the exposed edges (we have not yet
explained how to obtain such bijection), the final step would be to expose the remaining
edges of both hypergraphs (second round exposure) and compute the overall discrepancy.
The potential “loss” in this final step will be w.h.p. much smaller than the “gain” we already
obtained in the previous steps.

It remains to explain how to obtain the bijection π . We define the connection graph
	 = 	(G, H) as follows. The set of vertices of 	 is the union of two disjoint copies of L,
which we will refer to as LG and LH , respectively. We will add an edge between u ∈ LG

and v ∈ LH in 	 when codeg(u, v) is sufficiently large. The notion of large here will vary,
depending on which case (dense or sparse) we are trying to prove. Because of (4), in order
to maximize the overlap, it will suffice to show the existence of a large matching in auxiliary
graph 	.

In the dense case, we prove that we can find a nearly regular subgraph of 	 (i.e., all the
degrees are roughly the same) and thus the existence of the desired bijection π easily follows
from well-known theorem of Vizing. For more details, see Section 5.1. In the sparse case,
the proof is slightly different. To find the matching in 	, we divide LG into chunks, each
having size n2/5. Then, for each chunk in LG, we expose the neighborhoods of its vertices
to R and w.h.p. we show that these neighborhoods can be made disjoint by removing very
few edges. Finally, we start matching the vertices in LH with the vertices in LG. This is
done by exposing the neighborhood of a vertex in LH (one by one, according to an arbitrary
predetermined order), and matching it with a high codegree vertex in LG. The details of this
construction are contained in Section 5.2.

3. AUXILIARY RESULTS

In this section we list and prove some useful concentration inequalities about the binomial
and hypergeometric distributions. In addition, we prove that discP(G, H) (defined in the
previous section) is w.h.p. very close to disc(G, H). Lastly, we prove a corollary from
the well-known Vizing’s Theorem which asserts the existence of a linear-size matching in
nearly regular graphs (i.e., the maximum degree is close to the average degree). We will
not attempt to optimize our constants, preferring rather to choose values which provide a
simpler presentation. Let us start with classical Chernoff-type estimates for the tail of the
binomial distribution (see, e.g., [1]).

Lemma 3.1. Let X =∑l
i=1 Xi be the sum of independent zero-one random variables with

average μ = E[X]. Then for all non-negative λ ≤ μ, we have P[|X − μ| > λ] ≤ 2e− λ2
4μ .

The following lower tail inequality (see [1]) is due to Janson.

Lemma 3.2. Let A1, A2, . . . , Al be subsets of a finite set �, and let R be a random subset
of � for which the events r ∈ R are mutually independent over r ∈ �. Define Xj to be the
indicator random variable of Aj ⊂ R. Let X =∑l

j=1 Xj, μ = E[X], and � =∑i∼j E[Xi ·Xj],
where i ∼ j means that Xi and Xj are dependent (i.e., Ai intersects Aj). Then for any λ > 0,

P[X ≤ μ − λ] < e− λ2
2μ+� .

Random Structures and Algorithms DOI 10.1002/rsa



152 MA, NAVES, AND SUDAKOV

Next, we establish that the difference between disc(G, H) and discP(G, H) is w.h.p. very
small. This difference is, in fact, much smaller than any bound stated in Theorem 1.1. Thus,
to prove bounds for disc(G, H), it suffices to show corresponding bounds for discP(G, H).

Lemma 3.3. Let G and H be two random hypergraphs over the same vertex set V,
distributed according to Hk(n, p) and Hk(n, q), respectively. With probability at least 1 −
4e−√

n, the inequality |disc(G, H) − discP(G, H)| ≤ 2ε holds, where ε = 4n
1
4

√
pq
(n

k

)
.

Proof. Since p
(n

k

) = �(n), applying Lemma 3.1 to the random variable e(G) for λ =
2n

1
4

√
p
(n

k

) ≤ p
(n

k

)
yields

P

[∣∣∣e(G) − p

(
n

k

)∣∣∣ ≤ 2n
1
4

√
p

(
n

k

)]
≥ 1 − 2e−√

n.

Similarly, we have P

[
|e(H) − q

(n
k

)| ≤ 2n
1
4

√
q
(n

k

) ] ≥ 1 − 2e−√
n. Therefore, with proba-

bility at least 1 − 4e−√
n, |ρG − p| ≤ 2n

1
4
(
p/
(n

k

))1/2
and |ρH − q| ≤ 2n

1
4
(
q/
(n

k

))1/2
. But if

|AB − A0B0| ≥ ε1ε2 + |A0|ε2 + |B0|ε1, then either |A − A0| ≥ ε1 or |B − B0| ≥ ε2. Together,
these inequalities imply

∣∣∣∣ρGρH

(
n

k

)
− pq

(
n

k

)∣∣∣∣ ≤ 4
√

pqn + 2pn
1
4

√
q

(
n

k

)
+ 2qn

1
4

√
p

(
n

k

)
≤ 2ε,

completing the proof of the lemma.

In the proof of the dense case of the main theorem we will need a lower bound for the tail
of the hypergeometric distribution. To prove it we use the following well-known estimates
for the binomial coefficient.

Proposition 3.4. Let H(p) = −p log p − (1 − p) log(1 − p) (the binary entropy), then
for any integer m > 0 and real p ∈ (0, 1) satisfying pm ∈ Z we have

√
2π

e2
≤
(

m

pm

)√
mp(1 − p)e−mH(p) ≤ e

2π
.

Proof. This can be derived from Stirling’s formula
√

2πm
(

m
e

)m ≤ m! ≤ e
√

m
(

m
e

)m
.

Lemma 3.5. Let d1, d2, � and N be integers and K be a real parameter such that

1 ≤ d1, d2 ≤ 2N
3 , 1 ≤ K ≤ d1d2

100N and � =
√

d1d2K
N . Then

∑
t≥ d1d2

N +�

(d1
t

)(N−d1
d2−t

)(N
d2

) ≥ e−40K .

Random Structures and Algorithms DOI 10.1002/rsa
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Proof. For convenience, we write f (t) = (d1
t

)(N−d1
d2−t

)
/
(N

d2

)
. In order to show the desired

lower bound of the hypergeometric sum, it suffices to prove that

f (t) ≥ 4e−40K√
d1d2

N + �

,

for every integer t = d1d2
N + θ� with 1 ≤ θ ≤ 2. Indeed, to see this, note that there are at

least ��	 ≥ �

2 integers between d1d2
N + � and d1d2

N + 2� and

� >
1

2

√
�2 + � ≥ 1

2

√
d1d2

N
+ �.

Next we prove the bound for f (t). For our choice of �, the inequality � ≤ d1
15 is true since

� =
√

d1d2K

N
= d1

√
d2

N
· K

d1
≤ d1

√
d2

N
· d2

100N
= d1

10
· d2

N
≤ d1

15
.

Similarly � ≤ d2
15 . Let x = d2

N , y = θ�

d1
and z = θ�

N−d1
. Then t = (x + y)d1 and d2 − t =

(x − z)(N −d1). But 0 < x +y < 1, because 0 < x ≤ 2
3 and 0 < y ≤ 2�

d1
< 1

3 . Furthermore,

0 < x − z < 1, because z
x = θ�N

d2(N−d1)
≤ 3θ�

d2
≤ 2

5 and x ≤ 2
3 . By Proposition 3.4, we have

f (t) =
( d1
(x+y)d1

)( N−d1
(x−z)(N−d1)

)( N
xN

) ≥ 4π 2

e5

√
Re−L,

where L = −d1 · H(x + y) − (N − d1) · H(x − z) + N · H(x) and

R = x(1 − x)N

(x − z)(1 − x + z)(x + y)(1 − x − y)d1(N − d1)
≥ 1

(x + y)d1
≥ 1

2
· 1

d1d2
N + �

.

Here we used z ≤ x for the first the inequality; and we used θ ≤ 2 and the identity
(x + y)d1 = t = d1d2

N + θ� for the second inequality. Because d1y = (N − d1)z = θ� and
log(1 + s) ≤ s, we obtain

L = d1

[
(x + y) log

(
1 + y

x

)
+ (1 − x − y) log

(
1 − y

1 − x

)]
+ (N − d1)

[
(x − z) log

(
1 − z

x

)
+ (1 − x + z) log

(
1 + z

1 − x

)]
≤ d1

[
(x + y)y

x
− (1 − x − y)y

1 − x

]
+ (N − d1)

[
− (x − z)z

x
+ (1 − x + z)z

1 − x

]
= θ� · (y + z) ·

(
1

x
+ 1

1 − x

)
= θ 2�2N3

d1(N − d1)d2(N − d2)
≤ 36K .

Thus we always have f (t) ≥ 4π2√
2e5 · e−36K√

d1d2
N +�

≥ 4e−40K√
d1d2

N +�
, completing the proof.

The next lemma will be used to prove the lower bound in the sparse case of Theorem 1.1
and was inspired by an analogous result in [10].

Random Structures and Algorithms DOI 10.1002/rsa
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Lemma 3.6. For positive integers n and k, let N = (n− n
k

k−1

)
, ω(1)

N ≤ p ≤ q ≤ 1
2 and suppose

that pqN ≤ 1
30 log n. Define γ = log n

pqN . Let N1, . . . , Ns ⊆ B be s ≥ n1/3 disjoint sets of
size (1 + o(1))Np, and consider the random set Bq, obtained by taking each element of B
independently with probability q. Then w.h.p., there is an index i for which

1. |Bq ∩ Ni| ≥ log n
6 log γ

if pN ≥ log n
5 log γ

;

2. Ni ⊆ Bq if pN <
log n

5 log γ
.

Proof. If pN ≥ log n
5 log γ

, let t = log n
6 log γ

. Clearly 1 − q ≥ e−3q/2 when q ≤ 1/2. For a fixed

index i, the probability that |Bq ∩ Ni| ≥ t is at least
(|Ni |

t

)
qt(1 − q)|Ni |−t . Using the bounds(a

b

) ≥ ( a
b )

b for a ≥ b, and 1
30 log n ≥ Npq = log n

γ
, we obtain

(|Ni|
t

)
qt(1 − q)|Ni |−t ≥

(
(1 + o(1))Npq

t

)t

e−2pqN ≥
(

5 log γ

γ

) log n
6 log γ

n−1/15

≥ n−1/6 · n−1/15 ≥ n−0.3.

Hence the expected number of indices i such that |Bq∩Ni| ≥ t is at least sn−0.3 ≥ n1/30. Since
the sets Ni are disjoint, these events are independent for different choices of i. Therefore by
Lemma 3.1 w.h.p. we can find such an index (actually many).

If pN <
log n

5 log γ
, then q = log n

γ pN >
5 log γ

γ
≥ γ −1. Therefore the probability that some

Ni ⊆ Bq is

q|Ni | ≥ γ −(1+o(1))Np ≥ γ
− log n

4 log γ = n−1/4,

and we can complete the proof as in the first case.

The last lemma in this section, which can be easily derived from Vizing’s Theorem, will
be used to find a linear-size matching in nearly regular graphs.

Lemma 3.7. Every graph G with maximum degree �(G), contains a matching of size at
least e(G)

�(G)+1 .

Proof. By Vizing’s Theorem, the graph G has a proper edge coloring f : E(G) →
{1, 2, . . . , �(G) + 1}. For each color 1 ≤ c ≤ �(G) + 1, the edges f −1(c) form a matching
in G. By the pigeonhole principle, there is a color c such that f −1(c) has at least e(G)

�(G)+1
edges.

4. UPPER BOUNDS

In this section we prove the upper bound for the discrepancy in Theorem 1.1. By Lemma 3.3,
it suffices to prove the corresponding bounds for discP(G, H) instead.

Lemma 4.1. Let G and H be as in Theorem 1.1. Then w.h.p. discP(G, H) satisfies the
stated upper bounds of Theorem 1.1.

Random Structures and Algorithms DOI 10.1002/rsa
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Proof. Since the number of edges of G is distributed binomially and p
(n

k

) = �(n), by
Lemma 3.1, we have e(G) < 2p

(n
k

)
with probability at least 1− e−�(n). Since discP(G, H) is

bounded by max
{
e(G), pq

(n
k

)}
, this implies the assertion in the case (2.2) of Theorem 1.1.

For any fixed bijection π : V → V , the number of edges in Gπ ∩ H is distributed

binomially with parameters
(n

k

)
and pq. If pq

(n
k

)
> 4n log n let λ = 2

√
pq
(n

k

)
n log n ≤ pq

(n
k

)
.

Then by Lemma 3.1, the probability that
∣∣e(Gπ ∩ H) − pq

(n
k

)∣∣ > λ is at most 2e−n log n. On

the other hand, if pq
(n

k

) ≤ 4n log n, let γ ′ = 4e n log n
pq(n

k)
≥ e > 1 and λ = 4e2n log n

log γ ′ ≥ 4e2n log n
γ ′ =

epq
(n

k

)
. Since

(a
b

) ≤ ( ea
b

)b
, the probability that e(Gπ ∩ H) > λ is at most

((n
k

)
λ

)
(pq)λ ≤

(
e
(n

k

)
pq

λ

)λ

=
(

4e2n log n

γ ′λ

)λ

=
(

γ ′

log γ ′

)− 4e2n log n
log γ ′

< e−n log n.

In either case, since there are n! possible bijections π : V → V , by the union bound

P [discP(G, H) > λ ] ≤ n! · 2e−n log n ≤ e−n/2,

which finishes the proof of the upper bound in case (1). Since γ (defined in Theorem 1.1)
satisfies γ = �k(γ

′), this implies upper bound in case (2.1) as well. Finally, observe that
we divided the dense and sparse cases in this proof, according to whether pq

(n
k

)
is bigger

(or smaller) than 4n log n, a threshold slightly different than the one used in Theorem 1.1.
This difference is not essential though, as for p, q satisfying both pq

(n
k

) ≤ 4n log n and

pqN ≥ 1
30 log n, we have

√
pq
(n

k

)
n log n = �k

(
4e2n log n

log γ ′
)

.

5. LOWER BOUNDS

In this section we prove the lower bounds in Theorem 1.1. As we previously explained, it
is enough to obtain these bounds for discP(G, H). We divide the proof into two cases. The
first (dense case) will be discussed in the next subsection. The second (sparse case) will
be discussed in subsection 5.2. Throughout the proofs, we assume that k is fixed and n is
tending to infinity.

5.1. Dense Case

Let N = (n− n
k

k−1

)
and let p, q be such that pqN > 1

30 log n. Select an arbitrary set L ⊆ V of
size |L| = n

k . We prove that w.h.p. there exists an L-bijection π : V → V with overlap

e(Gπ ∩ H) ≥ pq

(
n

k

)
+ �k

(
n ·√pqN log n

)
= pq

(
n

k

)
+ �k

(√
pq

(
n

k

)
n log n

)
, (5)

where an L-bijection π : V → V is a bijection from V to V which only permutes the
elements of L, i.e., π(x) = x for all x �∈ L.

We start by describing the construction outlined in Section 2 in more details. From the
random hypergraph G we construct a random bipartite graph G̃ with vertex set LG∪R, where
LG = L and R is the set of all (k−1)-tuples in V \L. Note that |R| = N . The vertices v1 ∈ LG
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and {v2, v3, . . . , vk} ∈ R are adjacent if {v1, v2, . . . , vk} forms an edge in the hypergraph G.
With slight abuse of notation, we view G̃ as a sub-hypergraph of G, containing all edges
e having exactly one vertex in L, i.e. |e ∩ L| = 1. Similarly, from the random hypergraph
H we construct a random bipartite graph H̃ with vertex set LH ∪ R. Figure 1 shows the
resulting bipartite graphs.

Given an L-bijection π : V → V , we divide the edge set of Gπ ∩ H into two sub-
sets: the edge set of G̃π ∩ H̃ and its complement. To prove our result we first expose
the random edges in G̃ and H̃, and show how to find an L-bijection π having over-

lap at least �k

(
n ·√pqN log n

)
more than the expectation. Then we fix such π and

expose all the remaining edges in G and H showing that the contribution of these edges
to Gπ ∩ H does not deviate much from the expected contribution. More precisely, let
eπ = |E((G − G̃)π ) ∩ E(H − H̃)|, then e(Gπ ∩ H) = e(G̃π ∩ H̃) + eπ . Moreover, eπ

is distributed according to Bin(m, pq), where 1
2

(n
k

) ≤ m = (n
k

) − N n
k ≤ (n

k

)
. Thus w.h.p.

|eπ − pqm| <
√

pqm · log n, as Lemma 3.1 shows. Also,
√

pqm · log n �
√

pq
(n

k

)
n log n =

�k

(
n
√

pqN log n
)
. To obtain (5), it is therefore enough to show that w.h.p. there exists an

L-bijection π such that

e(G̃π ∩ H̃) ≥ n

k
·
(

pqN + �k

(√
pqN log n

))
. (6)

since then w.h.p.,

e(Gπ ∩ H) = e(G̃π ∩ H̃) + eπ

≥ n

k
(pqN + �k(

√
pqN log n)) + pqm − √

pqm log n

= n

k
�k(
√

pqN log n) + pq

(
n

k

)
− √

pqm log n

= pq

(
n

k

)
+ �k

(√
pq

(
n

k

)
n log n

)
.

We define an auxiliary bipartite graph 	 = 	(G̃, H̃) as follows. A vertex u ∈ LG survives
if | degG̃(u) − pN | ≤ 2

√
2pN and similarly, a vertex v ∈ LH survives if | degH̃(v) − qN | ≤

2
√

2qN . Let SG and SH be the sets of all surviving vertices of G̃ and H̃, respectively. Let
sG = |SG| and sH = |SH |. The set of vertices of 	 is the union of SG and SH . The edges of
	 are defined by the property

u ∼	 v ⇐⇒ codeg(u, v) ≥ degG̃(u) degH̃(v)

N
+ 10−2

√
pqN log n,

where codeg(u, v) denotes the codegree of u ∈ LG and v ∈ LH , i.e. codeg(u, v) =
|NG̃(u) ∩ NH̃(v)|. The graph 	 has many vertices in both parts, as the following simple
lemma demonstrates

Lemma 5.1. W.h.p. each part of 	 has size at least n
4k .

Proof. Let α be the probability that some vertex u survives in LG. Since pN ≥ 8, we have
that 2

√
2pN ≤ pN . Thus Lemma 3.1 applied to degG̃(u) implies α ≥ 1−2e−2 ≥ 1/2. Since
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the events that vertices survive are independent, sG stochastically dominates the binomial
distribution with parameters n/k and 1/2. Thus, again by Lemma 3.1, w.h.p. sG ≥ n/(4k)

and a similar estimate holds for sH .

To prove (6), we will show that the following two statements hold w.h.p.

a. 	 has a matching M = {(u1, v1), . . . , (ul, vl)} of size l = n
50k ;

b. there exists an L-bijection π such that π(ui) = vi for all i = 1, 2, . . . , l, and,

∑
u∈LG\{u1,u2,...,ul}

codeg(u, π(u)) ≥
(n

k
− l
)

pqN − 2
n

k

√
pqN .

Indeed, for any two adjacent vertices u, v in 	, we have

degG̃(u) degH̃(v)

N
≥ (pN − √

8pN)(qN − √
8qN)

N
≥ pqN − 6

√
pqN .

Thus using (a), (b) and l = n
50k we obtain

e(G̃π ∩ H̃) =
∑
u∈LG

codeg(u, π(u)) ≥
l∑

i=1

codeg(ui, vi) +
(n

k
− l
)

pqN − 2
n

k

√
pqN

≥
l∑

i=1

[
degG̃(ui) degH̃(vi)

N
+ 10−2

√
pqN log n

]
+
(n

k
− l
)

pqN − 2
n

k

√
pqN

≥
l∑

i=1

[
pqN − 6

√
pqN

]
+ n

50k
10−2

√
pqN log n +

(n

k
− l
)

pqN − 2
n

k
·√pqN

≥ n

k

(
pqN + 10−4

√
pqN log n

)
We need the following lemma in order to prove that (b) holds.

Lemma 5.2. Let 0 < α < 1 be any absolute constant. Then with probability at least
1 − e− n

k , any two subsets A ⊆ LG and B ⊆ LH with |A| = |B| = αn
k satisfy

XA,B :=
∑

u∈A,v∈B

codeg(u, v) ≥
(αn

k

)2
pqN − 2α

(n

k

)2√
pqN .

Proof. Let Xw,u,v be the indicator of wu ∈ E(G̃) and wv ∈ E(H̃) for w ∈ R, u ∈ A, v ∈ B.
So XA,B =∑w∈R,u∈A,v∈B Xw,u,v and E[Xw,u,v] = pq. Moreover, Xw,u,v and Xw′ ,u′ ,v′ are dependent

if and only if wu = w′u′ or wv = w′v′. Thus, μ = E[XA,B] = ( αn
k

)2
Npq and

� =
∑

w∈R,u∈A

∑
v,v′∈B

E[Xw,u,v · Xw,u,v′ ] +
∑

w∈R,v∈B

∑
u,u′∈A

E[Xw,u,v · Xw,u′ ,v] = αn

k

(
αn
k

2

)
Npq (p + q),

Random Structures and Algorithms DOI 10.1002/rsa



158 MA, NAVES, AND SUDAKOV

where μ and � are defined as in Lemma 3.2. Let F be the event that there exists at least
one pair of subsets A ⊆ LG, B ⊆ LH with |A| = |B| = αn

k satisfying XA,B < (αn
k )2Npq −

2α( n
k )

2
√

Npq. By the union bound and by Lemma 3.2, we have

P[F] ≤
∑

A∈(LG
αn),B∈(LH

αn)

P

[
XA,B < μ − 2α

(n

k

)2√
Npq

]
≤
( n

k
αn
k

)2

e− (2α( n
k )2

√
Npq)

2

2μ+�

≤
( e

α

) 2αn
k

e−3 n
k ≤ e− n

k ,

since 2μ + � ≤ 4
3

(
αn
k

)3
Npq, α < 1 and α log(e/α) ≤ 1 for all such α.

Let M = {(u1, v1), . . . , (ul, vl)} be a matching satisfying (a) and let A = LG \
{u1, u2, . . . , ul} and B = LH \ {v1, v2, . . . , vl}. Write |A| = |B| = n

k − l = αn
k , where

α = 49
50 . Consider XA,B = ∑

u∈A,v∈B codeg(u, v). Then, by Lemma 5.2, with probability at

least 1 − e− n
k , we have∑

u∈A,v∈B

codeg(u, v) ≥
(n

k
− l
)2

pqN − 2
n

k

(n

k
− l
)√

pqN .

Since the complete bipartite graph with parts A, B is a disjoint union of n
k − l perfect

matchings, by the pigeonhole principle, there exists a matching M ′ between A and B such
that ∑

(u,v)∈M′
codeg(u, v) ≥

∑
u∈A,v∈B codeg(u, v)

n
k − l

≥
(n

k
− l
)

pqN − 2n

k

√
pqN .

Then the matching M ∪ M ′ between LG and LH gives the desired L-bijection π and proves
(b).

To finish the proof we need to establish (a). If 	 is nearly regular, then by Lemma 3.7,
	 would contain a linear-size matching. Unfortunately, it is not clear that this is the case.
However, we will show that it is possible to delete some edges of 	 at random and obtain
a pruned graph 	′, which is nearly regular. Let

f (d1, d2) := P
[
u ∼	 v| degG̃(u) = d1, degH̃(v) = d2

]
,

where |d1−pN | ≤ 2
√

2pN and |d2−qN | ≤ 2
√

2qN . Let f0 be the minimum of f (d1, d2) over
all pairs (d1, d2) in the domain of f . Suppose that f0 ≥ n− 1

2 , which we shall prove later. We
keep each edge uv of 	 in 	′ independently with probability f0

f (d1,d2)
, where d1 = degG̃(u) and

d2 = degH̃(v). Then, we claim that for any vertex u ∈ SG, deg	′(u) is binomially distributed
with parameters sH and f0. Indeed, by definition, P

[
u ∼	′ v| degG̃(u) = d1, degH̃(v) = d2

] =
f0 for all possible d1, d2. Moreover, conditioning on the neighbors of u in G̃ and on the
values of the degrees degH̃(v1), degH̃(v2), . . . , degH̃(vm), the events u ∼	 v1, u ∼	 v2,
. . . , and u ∼	 vm are all independent. Therefore, by definition of 	′, it is easy to see that
u ∼	′ v1, u ∼	′ v2, . . ., and u ∼	′ vm are independent as well. Thus for any u ∈ SG,
deg	′(u) ∼ Bin(sH , f0) and similarly, deg	′(v) ∼ Bin(sG, f0) for all v ∈ SH .

Conditioning on the degrees of all vertices in G̃, H̃, we obtain sets SG and SH , which
w.h.p. satisfy the assertion of Lemma 5.1, i.e., |SG| = sG ≥ n

4k and |SH | = sH ≥ n
4k . Thus

both sGf0 and sHf0 are �k(
√

n). Since all degrees in 	′ are binomially distributed, Lemma 5.1
together with the union bound imply that w.h.p. all vertices u ∈ SG, v ∈ SH satisfy
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sHf0

2
≤ deg	′(u) ≤ 3sHf0

2
and

sGf0

2
≤ deg	′(v) ≤ 3sGf0

2
.

Therefore, the max-degree �(	′) ≤ max
{

3sH f0
2 , 3sGf0

2

}
≤ 3nf0

2k and e(	′) ≥ sGsH f0
2 ≥ n2f0

32k2 .

Thus by Lemma 3.7, 	′ has a matching of size at least e(	′)
�(	′)+1 ≥ n

50k , completing the proof
of (a).

It remains to prove the bound f0 ≥ n− 1
2 . Let K = log n

5000 ≥ 1. Since pN tends to infinity,
p ≤ q ≤ 1/2 and |d1 − pN | ≤ 2

√
2pN , we have 1 ≤ d1 = (1 + o(1))pN ≤ 2N

3 . Similarly
1 ≤ d2 = (1 + o(1))qN ≤ 2N

3 . Also recall that pqN ≥ 1
30 log n, which implies

d1d2

100N
= (1 + o(1))

pqN

100
≥ (1 + o(1))

log n

3000
> K .

Therefore we can apply Lemma 3.5 with � =
√

d1d2K
N >

√
pqN log n

100 . By the definition of
f (d1, d2), we have

f (d1, d2) =
∑

t≥ d1d2
N +

√
pqN log n

100

(d1
t

)(N−d1
d2−t

)(N
d2

) ≥
∑

t≥ d1d2
N +�

(d1
t

)(N−d1
d2−t

)(N
d2

) ≥ e−40K > n− 1
2 .

This completes the proof.

5.2. Sparse Case

In this subsection, we prove the lower bound in the sparse case pqN ≤ 1
30 log n. Note that,

since p ≤ q and
(n

k

) ≤ 3N n
k in this case, we have p ≤ N−1/2+o(1) and pq

(n
k

)
< n log n.

The proof runs along the same lines as that of the dense case differing only in the appli-
cation of Lemma 3.6 to obtain an L-bijection π : V → V whose sum of codegrees∑

u∈LG
codeg(u, π(u)) is large. Suppose first that pN ≥ log n

5 log γ
. Recall that γ = log n

pqN ≥ 30

and thus log n
6 log γ

≥ log n
42 log γ

+ log n
γ

= log n
42 log γ

+ pqN . Also,
√

pqm log n ≤
√

pq
(n

k

)
log n �

log n
42 log γ

n
k . Therefore it is enough to find a bijection π between LG and LH such that∑

u∈LG
codeg(u, π(u)) ≥ (1 + o(1)) n

k · log n
6 log γ

. Using such bijection, together with above

inequalities and m + N n
k = (n

k

)
, we obtain that

e(Gπ ∩ H) =
∑

codeg(u, π(u)) + eπ

≥ (1 + o(1))
n

k

log n

6 log γ
+ pqm − √

pqm log n

≥ (1 + o(1))
log n

42 log γ

n

k
+ pq

(
n

k

)
.

Analogous to the dense case, we define the connection graph 	 = 	(G̃, H̃) for the
sparse case. But the criterion to add edges to 	 is different – u and v are joined if and only
if codeg(u, v) ≥ log n

6 log γ
. Again, our goal is to find a large matching in 	, but the strategy will

be slightly different this time.
Partition the vertices of LG into r = n

ks disjoint sets S1, . . . , Sr each of size s = n2/5.
We will construct π by applying the following greedy algorithm to each set. Let us start
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with S1. The algorithm will reveal the edges emanating from S1 to R in G̃ by repeatedly
exposing the neighborhood of a vertex in S1, one at a time. Throughout this process, we
construct a subset S′

1 ⊆ S1 of size (1 + o(1))|S1| and a family of disjoint sets Nu ⊆ R,
such that each Nu has size (1 + o(1))Np and is contained in the neighborhood of u, for
all u ∈ S′

1. At each step, we pick a fresh vertex u in S1 and expose its neighborhood. If u
has a set of (1 + o(1))Np neighbors which is disjoint from Nw for all w in the current S′

1,
denote this particular set by Nu and put u in the set S′

1; otherwise move to the next fresh
vertex in S1, until there are none left. The union X = ∪w∈S′

1
Nw always has size at most

O(pN · s) ≤ N0.9+o(1). Moreover, every vertex in R \ X is adjacent to u independently with
probability p. Since pN ≥ ω(1) tends to infinity with n, the set of neighbors of u outside
X has size (1 + o(1))|R \ X|p = (1 + o(1))Np with probability 1 + o(1). Thus, there
exists an absolute lower bound p0 = 1 + o(1) such that the event “S′

1 contains u” occurs
with probability at least p0, for all u. Furthermore, conditioned on the sizes of R \ X, these
events are independent for different vertices u. A straightforward coupling argument shows
that the number of elements in S′

1 can be bounded below by a binomial random variable
with s trials and probability p0. Therefore, by Lemma 3.1, w.h.p. |S′

1| = (1 + o(1))|S1|.
Next, we construct the partial matching for S1. Consider the disjoint sets Nu, for u ∈ S′

1,
each of size (1 + o(1))Np. Pick an arbitrary vertex v in LH and expose its neighbors in
H̃ . This is a random subset Nv of R, obtained by taking each element independently with
probability q. Therefore by case (1) of Lemma 3.6, w.h.p there is a vertex u ∈ S′

1 such that
codeg(u, v) ≥ |Nu ∩ Nv| ≥ log n

6 log γ
. Define π(u) = v, remove u from S′

1, remove v from LH

and continue. Note that, as long as there are at least n1/3 vertices remaining in S′
1, we can

match one of them with a newly exposed vertex from LH such that the codegree of this pair
is at least log n

6 log γ
. Once the number of vertices in S′

1 drops below n1/3, leave the remaining
vertices unmatched. W.h.p. we can match a 1 + o(1) fraction of the vertices in S1.

Continue the above procedure for S2, . . . , Sr as well. At the end of the process, we will
have matched a 1 + o(1) fraction of all the vertices in LG with distinct vertices in LH such
that codegree of every matched pair is at least log n

6 log γ
. Therefore the sum of the codegrees of

this partial matching is at least (1 + o(1)) n
k · log n

6 log γ
. To obtain the bijection π , one can match

the remaining vertices in LG and LH arbitrarily.
When pN <

log n
5 log γ

the same proof as above together with case (2) of Lemma 3.6 yields

a bijection π such that
∑

u∈LG
codeg(u, π(u)) ≥ (1 + o(1)) n

k · pN . Since q ≤ 1
2 , p ≥ ω(1)

N

and m = (n
k

)− N n
k , this implies

e(Gπ ∩ H) ≥ (1 + o(1))
n

k
pN + pqm − √

pqm log n

= �k

(
p

(
n

k

))
+ pq

(
n

k

)
.

finishing the analysis of the sparse case.

6. CONCLUDING REMARKS

As we stated in the introduction, Theorem 1.1 also yields tight bounds when p and/or q > 1
2 .

For any G and H, one can check that disc(G, H) = disc(G, H), where H is the complement
of H. Moreover, H is distributed according to Hk(n, 1 − q), hence we can reduce the case
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q > 1
2 to the case q′ = 1 − q ≤ 1

2 ; the same holds when we take the complement of G
instead. We remark that one can determine the discrepancy when p is smaller than ω(1)

N , but
we chose not to discuss this range here, since the proof is similar to the sparse case and it
wouldn’t provide any new insight.

The definition of discrepancy can be rephrased as disc(G, H) = max {disc+(G, H),
disc−(G, H)}, where disc+(G, H) = maxπ e(Gπ ∩ H) − ρGρH

(n
k

)
and disc−(G, H) =

ρGρH

(n
k

)− minπ e(Gπ ∩ H) are the one-sided relative discrepancies. In fact, all the lower
bounds we obtained are for disc+(G, H), and some of them are not true for disc−(G, H).
This is because disc−(G, H) ≤ ρGρH

(n
k

) � pq
(n

k

)
and in the sparse case, pq

(n
k

)
could be

much smaller than disc(G, H). Under the same hypothesis and using similar ideas as in
Theorem 1.1, one can show that

disc−(G, H) =
⎧⎨⎩�k

(√
pq
(n

k

)
n log n

)
if pqN > 1

30 log n;

�k

(
pq
(n

k

))
otherwise.

The last equation is related to the lower tail of the binomial distribution.
It would be interesting to determine the exact dependence on k of the relative discrep-

ancy. It also worth mentioning that there are a substantial number of open problems about
disc(G, H) and its related topics in [4].
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