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ABSTRACT

A Hamilton cycle in a graph Γ is a cycle passing through every vertex

of Γ. A Hamiltonian decomposition of Γ is a partition of its edge set

into disjoint Hamilton cycles. One of the oldest results in graph theory is

Walecki’s theorem from the 19th century, showing that a complete graph

Kn on an odd number of vertices n has a Hamiltonian decomposition.

This result was recently greatly extended by Kühn and Osthus. They

proved that every r-regular n-vertex graph Γ with even degree r = cn for

some fixed c > 1/2 has a Hamiltonian decomposition, provided n = n(c)

is sufficiently large. In this paper we address the natural question of

estimating H(Γ), the number of such decompositions of Γ. Our main result

is that H(Γ) = r(1+o(1))nr/2. In particular, the number of Hamiltonian

decompositions of Kn is n(1+o(1))n2/2.

1. Introduction

A Hamilton cycle in a graph Γ is a cycle passing through each vertex of Γ,

and a graph is Hamiltonian if it contains a Hamilton cycle. Hamiltonicity,

named after Sir Rowan Hamilton who studied it in the 1850s, is one of the most

important and extensively studied concepts in graph theory. It is well known

that deciding Hamiltonicity is an NP-complete problem, and thus one does not

expect a simple sufficient condition for Hamiltonicity for general graphs. Once

Hamiltonicity is established, it is very natural to strengthen such a result by

showing that the graph in question has many edge-disjoint Hamilton cycles, or

even has a Hamiltonian decomposition, which is a partition of the edge set

of the graph into disjoint Hamilton cycles. Clearly a Hamiltonian decomposition

is only possible when Γ is r-regular for some even r. In 1890, Walecki gave a

celebrated construction of a Hamiltonian decomposition of the complete graph

Kn for every odd n. For a description of his construction; see, e.g., [2].

The work of Walecki was extended by various researchers, who proved that

more general families of graphs admit a Hamiltonian decomposition; see, e.g.,

[21, 4, 14, 19, 6] and a survey [3], which gives an overview of many results on

this topic. One of the classical results on Hamiltonicity of graphs is a theorem

of Dirac which says that every n-vertex graph with minimum degree n/2 has a

Hamilton cycle. Recently Kühn and Osthus [19] obtained a far reaching genera-

lization of both Dirac’s result for regular graphs and Walecki’s decomposition.

They proved that every r-regular n-vertex graph Γ with even degree r = cn
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for some fixed c > 1/2 has a Hamiltonian decomposition, provided n = n(c) is

sufficiently large.

The question of estimating the number of Hamilton cycles in various classes

of graphs has also been intensively studied; see, e.g., [13, 10, 7, 16, 12, 8] and

the references therein. However, to the best of our knowledge, so far only few

results have been established on the number of Hamiltonian decompositions;

see, e.g., [9] and the references therein. In this paper we study the first natural

question of this sort, providing counting versions of Walecki’s and Kühn-Osthus’

results. We are interested in H(Γ), the number of Hamiltonian decompositions

of a given r-regular n-vertex graph Γ with even degree r = cn for some fixed

constant c > 1/2.

To upper bound the number of Hamilton cycles in a regular graph, one can

use the standard upper bound for the permanent of a 0-1 matrix proved by

Brégman [5] (solving the famous Minc conjecture). This permanent-based ap-

proach to Hamiltonicity problems was used for the first time by Alon [1] to

bound the number of Hamilton paths in tournaments (see also [11, 16, 12, 15, 8]

for additional applications). Let Sn be the set of all permutations of the set [n].

The permanent of an n× n matrix A is defined as

per(A) =
∑
σ∈Sn

n∏
i=1

Aiσ(i).

Note that when A = AΓ is the 0-1 adjacency matrix of a graph Γ, a summand

in the permanent is 1 if it corresponds to a spanning subgraph of Γ whose

connected components are either cycles or isolated edges, and the summand is

0 otherwise. Therefore, the number of Hamilton cycles in Γ is bounded from

above by per(AΓ). Combining this observation with Brégman’s [5] upper bound,

we see that an r-regular graph has at most (r!)n/r Hamilton cycles. By choosing

any one of these Hamilton cycles and deleting it, we obtain an (r − 2)-regular

graph. The number of Hamilton cycles in the new graph can again be bounded

from above using Brégman’s theorem. Continuing this process and multiplying

all the estimates for regularities r, r − 2, r − 4, . . . we can use Stirling’s formula

to deduce the following upper bound.

Proposition 1.1: For every r = r(n) → ∞, the number of Hamiltonian de-

compositions of an r-regular graph Γ of order n is at most(
(1 + o(1))

r

e2

)nr/2

.
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Our main result is the corresponding lower bound, which together with the

last proposition determines asymptotically the number of Hamiltonian decom-

positions of dense regular graphs.

Theorem 1.2: Let c > 1/2 be a constant and let Γ be an n-vertex r-regular

graph with even degree r ≥ cn. Then the number of Hamiltonian decompositi-

ons of Γ satisfies

H(Γ) = r(1+o(1))rn/2.

In particular the number of Hamiltonian decompositions ofKn is n(1+o(1))n2/2.

1.1. Outline of the proof. Let Γ be an n-vertex r-regular graph with even

degree r ≥ cn and c > 1/2. Let δ be an arbitrary constant δ < 1
2 (c− 1/2) and

let A and B be two subsets of V (Γ) such that |A| ≥ δ2n and |B| ≥ (1/2− δ)n.

Every vertex in A has at least cn − (n − |B|) > δn neighbors in B. Therefore

the number of edges between A and B satisfies

eΓ(A,B) ≥ δn|A|/2 ≥ δ3n2/2.

(If A and B have a nonempty intersection, then eΓ(A,B) counts the edges

inside A∩B with multiplicity one.) Therefore, our main result follows from the

following more general statement (by taking γ = δ3/2 and ε → 0).

Theorem 1.3: For every c > 0 and 0 < ε < 1
10 , there exists δ > 0 such that

for any constant γ > 0 and sufficiently large n the following holds. Let Γ be

an n-vertex r-regular graph with even degree r ≥ cn such that there are at

least γn2 edges between any two subsets A,B ⊆ V (G) satisfying |A| ≥ δ2n and

|B| ≥ (1/2 − δ)n. Then the number of Hamiltonian decompositions of Γ is at

least r(1−5ε)rn/2.

The proof of this statement follows the same general strategy as the proof of

Proposition 1.1. Namely, we remove Hamilton cycles one by one, giving a lower

bound on the number of possibilities at each step. The two additional ingre-

dients we need are a way to construct many Hamilton cycles in a regular graph,

and sufficient conditions for the existence of a Hamiltonian decomposition in a

graph.

The proof consists of three parts. In the first part, we split Γ into three

edge-disjoint spanning graphs G, F , and R. The graph G contains most of the
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edges of Γ, F satisfies a pseudo-randomness condition similar to the expander

mixing lemma, and R is a robust expander, a concept that is defined below.

In the second part, we use some ideas of Ferber, Krivelevich and Sudakov [8]

to repeatedly find Hamilton cycles in G∪F . Their approach, based on the per-

manent of the adjacency matrix, gives us at every step many 2-regular subgraphs

of the current graph which are unions of a small number of cycles. Using edges

of F we can transform each of these subgraphs into a Hamilton cycle. This part

of the proof gives the asymptotic count in the theorem. We stop at some point

when all but a small constant fraction of the edges of G∪F have been covered.

In the third part of the proof, we need to show that the remaining edges of Γ

can be partitioned into Hamilton cycles. Here, we use a recent result of Kühn

and Osthus [19]. Given parameters 0 < ν ≤ τ < 1, a graph G and a set of

vertices S ⊆ V (G), the robust ν-neighborhood of S is the set of vertices that

have at least νn neighbors in S, and is denoted by RNν,G(S). A graph G is a

robust (ν, τ)-expander if

RNν,G(S) ≥ |S|+ νn for all S such that τn ≤ |S| ≤ (1− τ)n.

Note in particular that this is a monotone property under addition of edges.

The following powerful theorem of Kühn and Osthus [19], which they derived

from the corresponding digraph result [18], provides sufficient conditions for a

graph to admit a Hamiltonian decomposition.

Theorem 1.4 (Theorem 1.2 in [19]): For every α > 0 there exists τ > 0

such that for every ν > 0 there exists n0(α, ν, τ) for which the following holds.

Suppose that

• G is an r-regular graph on n ≥ n0 vertices, where r ≥ αn is even, and

• G is a robust (ν, τ)-expander.

Then G has a Hamiltonian decomposition.

Since R is a robust expander, the graph consisting of all remaining edges of

Γ that are not covered by the Hamilton cycles found in the second part satisfies

the conditions of Theorem 1.4, and therefore we can complete our packing of

edge-disjoint Hamilton cycles to a Hamiltonian decomposition of Γ.

Throughout the proof, we sometimes identify a graph with its edge set. For

the sake of clarity of presentation, we omit floor and ceiling signs.
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2. Proof of Theorem 1.3

Given c, γ > 0 and 0 < ε < 1
10 , choose α = 3εc and let τ = τ(α) be as

in Theorem 1.4. Next, choose δ ≤ min(εc/5, τ/2) and set ν = min(δ, εγ/2).

Finally, let n0 = n0(α, ν, τ) be as in Theorem 1.4. Throughout this section we

will always assume that n > n0 and is sufficiently large whenever it is necessary.

We first show how to find three edge-disjoint graphs G, F , and R with the

desired properties.

Lemma 2.1: The edges of Γ can be partitioned into three subgraphs G, F , and

R such that:

• The graph G is d-regular with even degree d ≥ (1− 2ε)r.

• For any two sets A,B ⊆ [n] of sizes |A| ≥ δ2n and |B| ≥ (1/2 − δ)n,

there exist at least n1.6 edges in F between A and B.

• The graph R is a robust (ν, τ)-expander.

Proof. Consider the edge partition of Γ into three edge-disjoint random sub-

graphs F , R∗, and G∗, where every edge gets into F with probability 1/ logn,

into R∗ with probability ε, and into G∗ with probability 1− ε− 1/ logn.

First, we need to find a dense regular spanning subgraph G ⊆ G∗. To do so

we will use the following lemma, which we prove in the Appendix to this paper.

Lemma 2.2: Let ε0, γ0 > 0 be constants, c0 ≥ ε0, and let n be sufficiently large.

Let G∗ be an n-vertex graph whose vertex degrees are all between c0n − n2/3

and c0n+n2/3, such that there are at least γ0n
2 edges between any two subsets

A,B ⊆ V (G∗) satisfying |A| ≥ c0n/3 and |B| ≥ n/2. Then G∗ has a regular

spanning subgraph of degree 2d, where d = 	 (c0−ε0)n
2 
.

We claim that with high probabilityG∗ satisfies the conditions of this Lemma,

with the parameters c0 = (1− ε− 1/ log(n)) r
n and γ0 = γ

2 . Indeed, this follows

from a straightforward application of Chernoff’s inequality and the union bound

after observing that c0/3 > δ2. We apply Lemma 2.2 with ε0 = εr
2n < c0,

obtaining the desired d-regular graph G with d ≥ (1 − 2ε)r.

Next, consider the graph F . Between any two sets A,B ⊆ [n] of sizes

|A| ≥ δ2n and |B| ≥ (1/2 − δ)n, there are at least γn2 edges of Γ. There-

fore, the number of edges between A and B in F is distributed binomially with

parameters |EΓ(A,B)| ≥ γn2 and log−1 n. Using Chernoff-type estimates again,

we can see that the probability of having less than n1.6 edges in F between A
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and B is � 2−2n. Taking a union bound over all pairs of subsets shows that

with high probability Γ has the desired property.

Note that the same argument as above using Chernoff-type estimates and the

union bound implies that with high probability there are at least εγn2/2 edges

of R∗ between any two sets A,B ⊆ [n] of sizes |A| ≥ δ2n and |B| ≥ (1/2− δ)n.

Using this we prove that R∗ is a robust expander. First fix a subset S of

the vertices of R∗ such that δ2n < τn ≤ |S| < n/2, and consider the set B

of vertices of R∗ which have less than νn ≤ εγn/2 neighbors in S. If there

are at least (1/2 − δ)n such vertices, then between B and S there are less

than εγn2/2 edges, contradiction. Therefore the robust ν-neighborhood of S

has size at least (1/2 + δ)n ≥ |S| + νn. Now consider a subset S of size

n/2 ≤ |S| ≤ (1 − τ)n ≤ n − 2δn and let A be the set of vertices of R∗ which

have less than νn ≤ εγn/2 neighbors in S. If there are at least δ2n such

vertices then there are less than εγn2/2 edges between A and S, again obtaining

a contradiction. Therefore the robust ν-neighborhood of S has size at least

n− δ2n ≥ |S|+ νn and so R∗ is a robust (ν, τ)-expander. Finally, define R to

be the union of R∗ together with all the edges from G∗ \G. By monotonicity,

R is a robust expander as well.

As we already mentioned above, our proof proceeds by successively removing

Hamilton cycles from G ∪ F . The following lemma provides a lower bound on

the number of choices in each such step.

Lemma 2.3: Let ε > 0 and let G and F be edge-disjoint graphs on the vertex

set [n] such that the graph G is d-regular with d ≥ εr = εcn and, for any two

sets A,B ⊆ [n] of sizes at least |A| ≥ δ2n and |B| ≥ (1/2−δ)n, there are at least

dn0.6 edges of F between A and B. Then there exist at least (1 + o(1))n(d/e)n

Hamilton cycles H in G ∪ F with the following properties. For each cycle H

there are edge sets EG ⊆ G and EF ⊆ F such that:

• G′ := (G ∪ EF ) \ (H ∪ EG) is (d− 2)-regular.

• F ′ := F \ (H ∪ EF ) has the property that for any A,B ⊆ [n] of sizes

at least |A| ≥ δ2n and |B| ≥ (1/2 − δ)n, there are at least (d − 2)n0.6

edges of F ′ between A and B.

Remark: In order to keep the graph obtained from G after removing the cycle

H regular we need to add and delete some additional edges. This is achieved

by using the sets of edges EG and EF . Note that the resulting graphs G′, F ′,
and H are edge-disjoint.
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Proof. We call a spanning subgraph of G ∪ F a partial HC (for Hamilton

cycle) if one of its components is a path, and all other components are cycles

or isolated edges. We also call a spanning collection of vertex-disjoint cycles

and isolated edges a (≤ 2)-factor. The following claim allows us to reduce

the number of connected components in a 2-factor by concatenating two of its

cycles into a path.

Claim 2.4: Let H be a 2-factor in G ∪ F with more than one cycle. There

exist edges e ∈ (G ∪ F ) \H and e′1, e
′
2 ∈ H such that

H ∪ {e} \ {e′1, e′2}
is a partial HC with one less component (and one less edge) than H .

Proof. Consider an arbitrary cycle C of H on at most n/2 vertices. If |C| < d,

then there exists an edge e ∈ E(G) connecting C with a different component

of H . If |C| ≥ d ≥ εcn ≥ δ2n, then again there exists an edge e ∈ E(F )

connecting C with a different component of H . In both cases, obviously e 
∈ H .

Now any two edges e′1, e
′
2 ∈ E(H) adjacent to different endpoints of e satisfy

the requirements of the claim.

The following technical claim allows us to either extend a path in a partial

HC, thereby reducing the number of connected components, or to close this

path into a cycle.

Claim 2.5: Let H be a partial HC in G ∪ F . Then one of the following holds:

• There exist edges e, e1, e2 ∈ (G ∪ F ) \ H and e′, e′1, e′2 ∈ H such

that H ∪ {e} \ {e′}, or H ∪ {e}, or H ∪ {e, e1, e2} \ {e′, e′1, e′2}, or

H ∪ {e, e1, e2} \ {e′1, e′2} is a partial HC with one less component than

H (and at least as many edges as H).

• There exist edges e1, e2, e3 ∈ (G∪F ) \H , e′1, e
′
2, e

′
3 ∈ H , and f ∈ F \H

such that H ∪{e1, e2, e3, f} \ {e′1, e′2, e′3} is a (≤ 2)-factor in G∪F with

the same number of components as H (and one more edge than H).

Proof. At least one component of H is a path; choose P = v1, . . . , vt to be a

longest such. If v1 or vt have one of their neighbors outside P , say (v1z) ∈ E(G)

with z 
∈ P , then (v1z) connects P to a component D of H with z ∈ D. If D

is an isolated edge, then H ∪ (v1z) satisfies the conditions of the first bullet.

Otherwise, D is a cycle and we can choose an arbitrary edge e′ ∈ E(D) incident

to z, and H ∪ (v1z) \ e′ satisfies the conditions of the first bullet.
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Therefore we can assume that all the neighbors of v1, vt in G lie in P . Then we

will use a variant of the celebrated rotation-extension technique of Pósa [20],

which was developed by the third author together with Vu (see the proof of

Theorem 4.1 in [22]).

We split P into s = 2δ−1 segments I1, . . . , Is of size |P |/s ≤ δn/2 each, and

consider the graph G. By the pigeonhole principle, there exist p, q ∈ [s] such

that v1 has at least d/s ≥ εcδn/2 neighbors in Ip, and vt has at least εcδn/2

neighbors in Iq . If p = q, split Ip further into two segments J1 and J2 such

that the interior of J1, i.e., all its vertices except its endpoints, contain at least

εcδn/5 neighbors of v1, and vt has at least εcδn/5 neighbors in the interior of

J2. If p 
= q, simply set J1 = Ip and J2 = Iq. For every neighbor vi of vt from

the interior of J2, we can rotate the path P keeping its endpoint v1 fixed and

using vi as the pivot. This means that we add the edge (vi, vt), delete the edge

(vi, vi+1), and consider the new path v1, . . . , vi, vt, . . . , vi+1 with endpoints v1

and vi+1. Setting A to be the set of successors of the neighbors of vt in the

interior of J2, then for every a ∈ A, we obtain a (v1, a)-path on the vertex

set V (P ) differing from P in exactly one edge from J2. Similarly, for every

neighbor vj of v1 in the interior of J1, every (v1, a)-path can be further rotated

using the pivot vj . Note that since J1 and J2 are disjoint, all these paths we

constructed using pivots in J1 traverse J2 in the same direction. Therefore the

new endpoints we will obtain do not depend on a. Thus we have constructed

a set B such that for every a ∈ A, b ∈ B, there exists a (b, a)-path in G on

the vertex set V (P ) differing from P in exactly two edges from J1 and J2.

Furthermore, |A|, |B| ≥ εcδn/5 ≥ δ2n, and all these paths traverse all other

segments of P outside of J1 and J2 in the same direction.

If a vertex x ∈ A ∪ B has a neighbor outside V (P ) in F ∪ G, we extend

P similarly to the case discussed above, obtaining a partial HC with one less

component than H (and at least as many edges as H), as desired in the first

bullet of the claim. Therefore we can assume that all the neighbors of vertices

in A∪B in G lie in P . Then for every a ∈ A, b ∈ B and every neighbor v� of a in

G outside of J1 and J2, we can rotate every (b, a)-path further using the pivot v�

to obtain a new endpoint c and a (b, c)-path. Note that, since we did not touch

any edge outside J1 and J2 before and the parts of P outside these intervals are

traversed by all paths in the same direction, the vertex c is determined only by

the neighbor v� of a and does not depend on the other endpoint b. Therefore,

we obtain a set S such that for every b ∈ B and c ∈ S, there exists a (b, c)-path
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v1
b

vj

v� c

vi

a
vt

e′2 e′3 e′1

e2 e1

f e3

Figure 1. An illustration of the second bullet of Claim 2.5: Clo-

sing the partial HC into a (≤ 2)-factor. The edges e1, e2, e3, f

are added and the edges e′1, e
′
2, e

′
3 are deleted. The edge set of

the new cycle is P ∪ {e1, e2, e3, f} \ {e′1, e′2, e′3}.

in G on the same vertex set as P , which differs from P in exactly three edges.

Furthermore, we know that F has an edge between any two subsets of size δ2n

and (1/2 − δ)n. This implies that |NF (A)| ≥ n − (1/2 − δ)n = (1/2 + δ)n.

Therefore

|S| ≥ |NF (A)| − |J1 ∪ J2| ≥ (1/2 + δ)n− δn ≥ n/2.

Similarly we also have that |NF (B)| ≥ (1/2 + δ)n. Thus there exists an edge

f = (b, c) ∈ E(F ) between vertices b ∈ B and c ∈ S. This edge closes the

(b, c)-path into a cycle; see Figure 1. Hence we can use the edge f , together

with the three edges from the rotations of P which produced the (b, c)-path, to

transform a partial HC into a (≤ 2)-factor, satisfying the second bullet of the

claim.

Observation 2.6: For any vertices x, y ∈ [n] and any S ⊆ [n] of size at most

|S|≤n0.6, there exist vertices x1, x2, y1, y2∈ [n]\S such that xx1, yy1, x2y2∈E(G)

and x1x2, y1y2 ∈ E(F ).

Proof. Since G is d-regular with d ≥ εcn ≥ 2δ2n+ n0.6 we can choose disjoint

sets Ax ⊂ NG(x) of size δ
2n and Ay ⊂ NG(y) of size δ

2n which are also disjoint

from S. Further, we denote

Bx = NF (Ax) \ (S ∪ Ax ∪Ay) and By = NF (Ay) \ (S ∪Ax ∪ Ay).

Since, as we already explained above, the neighborhood in F of any set of size

at least δ2n has size at least (1/2 + δ)n, we conclude that |Bx|, |By| > n/2.
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Since G is regular, every subset X of G satisfies |NG(X)| ≥ |X |. Indeed
d|X | =

∑
v∈X

d(v) ≤
∑

u∈NG(X)

d(u) = d|NG(X)|.

Therefore there exists an edge x2y2 in G with x2 ∈ Bx and y2 ∈ By. Choosing

a neighbor x1 ∈ Ax of x2 and a neighbor y1 ∈ Ay of y2 finishes the proof.

We are now ready to complete the proof of Lemma 2.3. Let s∗ =
√
n logn.

To lower bound the number of (≤ 2)-factors with at most s∗ components in G,

we use Corollary 2.8 in [8].

Proposition 2.7 (Corollary 2.8 in [8]): Let α̃ > 0 be a constant and let n be

a positive integer. Suppose that:

• G̃ is a graph on n vertices, and

• G̃ is α̃n-regular.

Then the number of (≤ 2)-factors of G̃ with at most s∗ cycles is (1+o(1))n( α̃ne )n.

Therefore, the number of (≤ 2)-factors with at most s∗ components in G is

at least (1+ o(1))n(d/e)n. Fix one such factor and call it H . We will transform

H into a Hamilton cycle, using edges from G and F . During this process, for

the sake of clarity and convenience we will still use H to denote all the new

factors and partial HC which we obtain from it.

As long as H is not a Hamilton cycle, we will modify it using Claim 2.5 if

it is a partial HC, and Claim 2.4 if H is a 2-factor. Note that, after at most

every two such steps, the number of components in H goes down, and therefore

after at most 2s∗ + 1 iterations we end up with a Hamilton cycle H . Since

the Hamming distance between the original (≤ 2)-factor and the final Hamilton

cycle is O(s∗), the number of possible Hamilton cycles H which we obtain in

this process is at least

(1 + o(1))n(d/e)n

nO(s∗) = (1 + o(1))n(d/e)n.

It remains to construct the edge sets EF and EG, whose role is to keep the

resulting graph regular. We denote

EF = H ∩ F,

and note that |EF | = O(s∗). One by one, for every pair of vertices x, y ∈ [n]

with xy ∈ EF , we apply Observation 2.6 to find vertices x1, x2, y1, y2 such that

xx1, yy1, x2y2 ∈ E(G) and x1x2, y1y2 ∈ E(F ). We choose it so that none of the
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vertices x1, x2, y1, y2 is incident to an edge from EF or a previously chosen edge

from EF . We then add the edges x1x2, y1y2 to EF and the edges xx1, yy1, x2y2

to EG. Since at most O(s∗) edges from EF and EF were chosen before, we can

always put all endpoints of such edges into the set S for the further applications

of Observation 2.6.

We claim that the sets EF and EG together with the Hamilton cycle H satisfy

the requirements of the lemma. Indeed, in constructing F ′ = F \ (H ∪ EF ) we

delete at most O(s∗) = o(n0.6) edges from F , and so the number of edges in F

between two sets A and B of sizes |A| ≥ δ2n and |B| ≥ (1/2− δ)n remains at

least dn0.6−O(s∗) > (d−2)n0.6. In addition, note that G′ = (G∪EF )\(H∪EG)

is (d−2)-regular. In the transition from G to G′, every vertex that isn’t incident

to an edge of EF loses the two edges of H that pass through it. On the other

hand, for every vertex incident to an edge of EF we remove one edge from G∩H

incident to it, and then delete an edge from EG incident to it. The edges from

EF ensure that this doesn’t change the degree of other vertices.

Proof of Theorem 1.3. Fix an edge partition of the graph Γ into graphs G, F ,

and R which satisfy the assertions of Lemma 2.1. Starting with the d0-regular

graph G0 = G with d0 ≥ (1− 2ε)r and the graph F0 = F , we apply Lemma 2.3

repeatedly to remove Hamilton cycles from Gi ∪Fi. After the i’th iteration, we

will have a di-regular graph Gi with di = d0 − 2i and a graph Fi satisfying the

second bullet of Lemma 2.3. Therefore the process can be continued. We stop

after t = d0−εr
2 steps, at which point Gt is an εr-regular graph. The bound

from Lemma 2.3 guarantees that there are at least ((1 + o(1))di

e )
n choices for a

Hamilton cycle in the i’th step. Therefore, this procedure results in at least

t−1∏
i=0

(
(1 + o(1))

di
e

)n

=

(
(1 + o(1))te−t 2

d0/2(d0/2)!

2εr/2(εr/2)!

)n

≥
(
e−r/2 (

(1−2ε)r
2 )!

( εr2 )!

)n

≥ r(1−4ε) rn
2

possible ordered tuples of t edge-disjoint Hamilton cycles.

Let us fix one such collection of t-edge disjoint Hamilton cycles and let R′

denote the union of R and the edges of G ∪ F that do not belong to any of

these cycles. The graph R′ is αn-regular (α = 3εc), since it is obtained from

Γ by deleting t edge-disjoint Hamilton cycles. The graph R′ is also a robust

(ν, τ)-expander, since, as we mentioned before, this property is monotone and R
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satisfies it. Since n ≥ n0, it follows from Theorem 1.4 that R′ admits (at least

one) Hamiltonian decomposition. Together with the above Hamilton cycles it

gives us the desired Hamiltonian decomposition of Γ.

Clearly the same decompositions of Γ can appear in our process in at most

(n−1
2 )! < nn different orderings. Therefore, we have that

H(Γ) ≥ r(1−4ε) rn
2 /nn ≥ r(1−5ε) rn

2 .

3. Concluding remarks and open questions

• A substantial gap remains between the upper bound of Proposition 1.1

and the main result that we prove. We tend to believe that the upper

bound of the proposition is close to the truth, i.e,

H(Γ) =
(
(1 + o(1))

r

e2

)rn/2

for an n-vertex r-regular graph Γ with r = cn, c > 1/2. To prove such

an estimate using our methods, one needs a Hamiltonian decomposition

result for a sparse analogue of robust expanders.

• When the degree r of the graph Γ is odd, the result of Kühn and Osthus

also implies that the edges of Γ can be decomposed into (r − 1)/2 Ha-

milton cycles and a perfect matching. Our proof can be easily adapted

to show that the number of such decompositions is r(1+o(1))rn/2.

• It would be interesting to estimate the number of Hamiltonian decom-

positions of other families of graphs. In particular, Theorem 1.1.3. in [6]

states that for even r ≥ �n
2 �, every r-regular graph on n vertices has a

Hamiltonian decomposition. Can one strengthen our theorem by giving

an accurate estimate of the number of such decompositions for all r,

starting with �n
2 �?

• Finally, our main result can be further generalized to subgraphs of qua-

sirandom graphs. A graph G on n vertices is called (α, β)-regular if its

minimum degree is at least αn− 1 and∣∣∣eG(S, T )|S||T | − α
∣∣∣ ≤ β

for every pair of disjoint sets S, T of size at least βn. It is easy to see

that a complete graph on n vertices is (1, β)-regular for any β > 0.

Another example of such a graph is an αn-regular graph on n vertices



104 R. GLEBOV, Z. LURIA AND B. SUDAKOV Isr. J. Math.

whose nontrivial eigenvalues in absolute value are all o(n); see, e.g.,

the survey [17] for more details. We can obtain the following result

on the number of Hamiltonian decompositions of regular subgraphs of

(α, β)-regular graphs.

Theorem 3.1: For all constants c, α such that c > α/2 there exists

β > 0 such that the following holds. Let Γ be an r-regular subgraph of

an (α, β)-regular graph G such that r = cn is even. Then the number

of Hamiltonian decompositions of Γ satisfies H(Γ) = r(1+o(1))rn/2.

When G is a complete graph Kn this implies Theorem 1.2.

To prove this theorem, using our Theorem 1.3, one needs only to

show that there are at least γn2 edges (for some very small but fixed γ)

between any two subsets A, |A| = δ2n and B, |B| = (1/2− δ)n of V (Γ).

Choose δ � (c − α/2) and β � δ2. If Γ contains two subsets A,B

violating the above condition, then by the regularity of Γ the number of

its edges between A and V (Γ)−B is very close to cn|A|. On the other

hand the graph G, containing Γ, has roughly

α(n− |B|)|A| = α(1/2 + δ)|A|
edges between these sets (which is less), a contradiction. We omit furt-

her calculation.
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Appendix

Proof of Lemma 2.2. The proof uses the same ideas as in [18], Lemma 5.2 and

also [11], Section 3.1.

Let D∗ be a random orientation of G∗, where each edge chooses an orientation

uniformly at random and independently of the other edges. We claim that with

high probability, D∗ satisfies the following.
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• For every vertex v we have the following concentration on the indegrees

and outdegrees:

c0n/2− n2/3 ≤ degin(v) ≤ c0n/2 + n2/3,

c0n/2− n2/3 ≤ degout(v) ≤ c0n/2 + n2/3.

• For every two subsets A,B ⊂ V such that |A| ≥ c0n/3 and |B| ≥ n/2

there are at least γ0n
2/3 edges from A to B, and at least γ0n

2/3 edges

from B to A.

This follows from a straightforward application of Chernoff’s inequality and the

union bound.

Recall that

d =
⌈(c0 − ε0

2

)
n
⌉
.

We construct a subdigraph of D∗ whose indegrees and outdegrees are all equal

to d. By forgetting the orientation of this subgraph we obtain the desired

subgraph of G∗.
Consider the following flow network H . The vertex set is {s, t} ∪ X ∪ Y ,

where X and Y are both copies of V (G∗). We add an edge (x, y) of capacity

1 for every edge (x, y) in D∗. Furthermore, we connect s to all vertices in X

and also connect all vertices in Y to t using edges of capacity d. By the above

discussion and the definition of d, note that the outdegrees of the vertices in

X and the indegrees of the vertices in Y are all at least c0n/2n
2/3 > d and at

most c0n/2 + n2/3. Our aim is to show that there is a flow of value dn in H .

Clearly, the edges used in such a flow will correspond to a subdigraph of D∗

whose indegrees and outdegrees are all d, as desired.

By the Max-Flow-Min-Cut Theorem, it is sufficient to show that the capacity

of every cut is at least dn. Let C ⊂ V (H) such that s ∈ C and t /∈ C, and let

S = C ∩X and T = C ∩ Y . The capacity of the cut defined by C is

d(n− |S|) + e(S, Y \ T ) + d|T |,
which is at least dn if and only if

e(S, Y \ T ) ≥ d|S| − d|T |.
To show that this holds for any S and T , we must consider several cases. Note

that we can assume that |S| > |T |, since otherwise d|S| − d|T | ≤ 0 and we are

done.
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(1) |S| < d: In this case, we have

e(S, Y \ T ) =e(S, Y )− e(S, T )

≥(c0n/2− n2/3)|S| − |S||T |
≥d|S| − d|T |.

(2) |S| − |T | ≥ 4n2/3

ε0
: Here, we use the fact that d is substantially smaller

than the indegrees and outdegrees of the vertices,

e(S, Y \ T ) ≥ e(S, Y )− e(X,T )

≥ (c0n/2− n2/3)|S| − (c0n/2 + n2/3)|T |
= d|S| − d|T |+

(ε0n
2

)
(|S| − |T |)− 2n2/3|T |

≥ d|S| − d|T |.
(3) |S| ≤ (1 − c0/3)n: If |T | ≥ n/2, since |X \ S| ≥ c0n/3, by the second

property of D∗ we have e(X \ S, T ) ≥ γ0n
2

3 . Otherwise, |T | < n/2.

Since, after the above cases, we can assume that |T | ≥ |S| − 4n2/3

ε0
and

|S| ≥ d, we have that |X \ S| ≥ (1 − o(1))n/2 and T ≥ c0n/3. Thus,

again by the second property ofD∗, we have e(X\S, T ) ≥ (1−o(1))γ0n
2

3 .

Indeed, by adding o(n) vertices to X \S we obtain a set of size at least

n/2, and this can change the number of edges to T by at most o(n2).

Hence, in both cases we have e(X \S, T ) ≥ (1−o(1))γ0n
2

3 , and therefore

e(S, Y \ T ) = e(S, Y )− e(X,T ) + e(X \ S, T )

≥ (c0n/2− n2/3)|S| − (c0n/2 + n2/3)|T |+ (1− o(1))
γ0n

2

3

≥ d|S| − d|T |.

(4) S > (1− c0/3)n: Here, by the above we assume that |T | ≥ |S| − 4n2/3

ε0
,

e(S, Y \ T ) = e(X,Y \ T )− e(X \ S, Y \ T )
≥ d|Y \ T | − |X \ S||Y \ T |

≥ d|Y \ T | − |X \ S|
(c0n

3
+

4n2/3

ε0

)

≥ d|Y \ T | − d|X \ S|
= d|S| − d|T |.
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[15] F. Knox, D. Kühn and D. Osthus, Edge-disjoint Hamilton cycles in random graphs,

Random Structures & Algorithms 46 (2015), 397–445.

[16] M. Krivelevich, On the number of Hamilton cycles in pseudo-random graphs, Electronic

Journal of Combinatorics 19 (2012), publication P25.

[17] M. Krivelevich and B. Sudakov, Pseudo-random graphs, in More Sets, Graphs and Num-

bers, Bolyai Society Mathematical Studies, Vol. 15, Springer, Berlin, 2006, pp. 199–262.
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