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ABSTRACT: We consider the following probabilistic model of a graph on n labeled vertices.
Ž .First choose a random graph G n, 1r2 , and then choose randomly a subset Q of vertices of

size k and force it to be a clique by joining every pair of vertices of Q by an edge. The
problem is to give a polynomial time algorithm for finding this hidden clique almost surely
for various values of k. This question was posed independently, in various variants, by
Jerrum and by Kucera. In this paper we present an efficient algorithm for all k)cn0.5, forˇ

0.5Ž .0.5any fixed c)0, thus improving the trivial case k)cn log n . The algorithm is based on
the spectral properties of the graph. Q 1998 John Wiley & Sons, Inc. Random Struct. Alg., 13,

457]466, 1998

1. INTRODUCTION

A clique in a graph G is a set of vertices, any two of which are connected by an
Ž .edge. Let w G denote the maximum number of vertices in a clique of G.

Ž .The problem of determining or estimating w G and that of finding a clique of
maximum size in G are fundamental problems in theoretical computer science.

Ž . w xThe problem of computing w G is well known to be NP-hard 16 . The best known
approximation algorithm for this quantity, designed by Boppana and Halldorsson´
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w x Ž Ž .2 .8 , has a performance guarantee of O nr log n , where n is the number of
vertices in the graph. When the graph contains a large clique, there are better

w x Ž .algorithms, and the best one, given in 3 , shows that if w G exceeds nrkqm,
where k is a fixed integer and m)0, then one can find a clique of size
˜ 3rŽkq1. ˜Ž . Ž . Ž Ž ..V m in polynomial time, where here the notation g n sV f n means, as

Ž . Ž Ž . Ž .c.usual, that g n GV f n r log n for some constant c independent of n.
w x w x w xOn the negative side, it is known, by the work of 5 following 9 and 6 , that for

Ž .some b)0 it is impossible to approximate w G in polynomial time for a graph on
n vertices within a factor of nb, assuming P/NP. The exponent b has since been

w ximproved in various papers, and recently it has been shown by Hastad 13 that it is˚
Ž .in fact larger than 1yd for every positive d , assuming NP does not have

w xpolynomial time randomized algorithms. Another negative result, proved in 1
w x Ž .following 20 , shows that it is impossible to approximate w G for an n vertex

graph within a factor of nrlog7 n by a polynomial size monotone circuit.
These facts suggest that the problem of finding the largest clique in a general

graph is intractable. It is thus natural to study this problem for appropriately
randomly generated input graphs. This is of interest theoretically, and is motivated
by the fact that in real applications the input graphs often have certain random

properties. The study of the performance of algorithms on random input graphs
w xgained popularity recently; see the survey of Frieze and McDiarmid 10 and its

many references.
Ž .Let G n, 1r2 denote the random graph on n labeled vertices obtained by

choosing, randomly and independently, every pair ij of vertices to be an edge with
Žprobability 1r2. It is known that almost surely that is, with a probability that

. Ž . ? Ž .@ u Ž .vapproaches 1 as n tends to infinity , the value of w G is either r n or r n , for
Ž . Ž Ž .. Ža certain function r n s 2qo 1 log n, which can be written explicitly cf., e.g.,2

w x. Ž w x.4 . Several simple polynomial time algorithms see, e.g., 12 find, almost surely,
Ž Ž .. Ž .a clique of size 1qo 1 log n in G n, 1r2 , that is, a clique roughly half the size2

of the largest one. However, there is no known polynomial time algorithm that
Ž .finds, almost surely, a clique of size at least 1qe log n for any fixed «)0. The2

w xproblem of finding such an algorithm was suggested by Karp 17 . His results, as
w xwell as more recent ones of Jerrum 14 , implied that several natural algorithms do

Ž w x.not achieve this goal, and it seems plausible to conjecture see 14 that in fact
there is no polynomial time algorithm that finds, with probability more than a half,

Ž .say, a clique of size bigger than 1qe log n. This conjecture has certain interest-2

w xing cryptographic consequences, as shown in 15 .
The situation may become better in a random model in which the biggest clique

w x Ž .is larger. Following 14 , let G n, 1r2, k denote the probability space whose
Ž .members are generated by choosing a random graph G n, 1r2 and then by placing

w xrandomly a clique of size k in it. As observed by Kucera 18 , if k is bigger thanˇ
'c n log n for an appropriate constant c, the vertices of the clique would almost

surely be the ones with the largest degrees in G, and hence it is easy to find them
efficiently. Can we design an algorithm that finds the biggest clique almost surely if

Ž . w x'k is o n log n ? This problem was mentioned in 18 . Here we solve it, by showing
that for every e)0 there is a polynomial time algorithm that finds, almost surely,

Ž . 1r2the unique largest clique of size k in G n, 1r2, k , provided kGe n . Although
this beats the trivial algorithm based on the degrees only by a logarithmic factor,
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the technique applied here, which is based on the spectral properties of the graph
w xand resembles the basic approach in 3 , is interesting, and may be useful for

tackling related problems as well.

2. THE MAIN RESULT

In this section we describe our algorithm and analyze its performance on graphs
Ž .generated according to the distribution G n, 1r2, k . The results can easily be

extended to similar models of random graphs. Since the trivial algorithm based on
'the degrees solves the clique problem almost surely for k)c n log n , we assume,

Ž .'from now on, that ksO n log n . We also assume, whenever this is needed, that
n is sufficiently large. To simplify the presentation, we omit all floor and ceiling
signs whenever these are not crucial.

2.1. The Basic Algorithm

In this subsection we describe the basic algorithm dealing with a hidden clique of
'size at least 10 n . The algorithm is based on the spectral properties of the

adjacency matrix of the graph. After the analysis of the algorithm in the next
subsection we explain, in Subsection 2.3, how to modify the basic algorithm to
reduce the constant 10 to any positive constant.

Ž .Given a graph Gs V, E , denote by A the adjacency matrix of G, that is, the n
Ž .by n matrix a defined by a s1 if u¨ gE and a s0 otherwise. It isu¨ u, ¨ g V u¨ u¨

well known that since A is symmetric, it has real eigenvalues l G ??? Gl and an1 n

orthonormal basis of eigenvectors ¨ , . . . , ¨ , such that A¨ sl ¨ . The crucial point1 n i i i

of the algorithm is that one can almost surely find a big portion of the hidden
clique from the second eigenvector of A. Since there are several efficient algo-

Žrithms to compute the eigenvectors and eigenvalues of symmetric matrices see,
w x.e.g., 19 , we can certainly calculate ¨ in polynomial time. Our first algorithm is2

very simple and consists of two stages.

Algorithm A.

'Ž . Ž .Input: A graph Gs V, E from the distribution G n, 1r2, k with kG10 n .
1. Find the second eigenvector ¨ of the adjacency matrix of G.2

2. Sort the vertices of V by decreasing order of the absolute values of their
Ž .coordinates in ¨ where equalities are broken arbitrarily and let W be the first k2

vertices in this order. Let Q;V be the set of all vertices of G that have at least
3kr4 neighbors in W.

Output: The subset Q;V.

This completes the description of the algorithm.

2.2. The Properties of the Second Eigenvector

Ž .We claim that almost surely the above algorithm finds the unique clique of size k
in G. To prove this fact we first need to establish some results about the spectrum
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of G. For the analysis of the algorithm we assume that the set of vertices V is
Ž 41, . . . , n , and the hidden clique Q in G consists of the first k vertices of V.

Ž . Ž .Proposition 2.1. Let GsG n, 1r2, k , where kso n ; then almost surely the
eigen¨alues l G ??? Gl of the adjacency matrix A of G satisfy1 n

1( ) Ž Ž ..i l G qo 1 n.1 2

'( ) Ž Ž ..ii l F 1qo 1 n for all iG3.i

Ž w xProof. By the variational definition of the eigenvalues of A see, e.g., 23 , pp.
.99]101 we have that

x tAx x tAx
l s max min s min max ,i t tx x x xdim Fsi xgF , x/0 dim Fsnyiq1 xgF , x/0

where F ranges over all subspaces of Rn of the appropriate dimension. In
particular, l is simply the maximum of x tAxrx t x over all nonzero vectors x.1

Therefore by taking x to be the all 1 vector, we obtain the well-known result
that l is at least the average degree of G. By the known estimates for the bino-1

Ž Ž ..mial distribution, the average degree of G is 1r2qo 1 n almost surely. This
Ž .proves i .

Ž .To prove ii we need the following result about the spectrum of the random
w xgraph, proved by Furedi and Komlos 11 .¨ ´

Lemma 2.2. Let l G ??? Gl be the eigen¨alues of the adjacency matrix of the1 m

Ž .random graph G m, 1r2 ; then almost surely

1r3'< <max l F m qO m log m .Ž .i
iG2

To bound the eigenvalues of the matrix A, we represent the graph G as an edge
Ž .disjoint union of two random graphs. Let G sG k, 1r2 be the random graph on2

the set of vertices of the clique Q. Denote by A the adjacency matrix of the graph,2

which is the union of G together with the remaining nyk isolated vertices.2

Remove all of the edges of G from G and denote by A the adjacency matrix of2 1

the remaining graph G . It is easy to see that G is obtained according to the1 1

Ž .distribution G n, 1r2 . By definition, AsA qA . Denote by u the eigenvector of1 2 i

A corresponding to the largest eigenvalue of A , for is1, 2, respectively. Let Fi i

be the subspace of all vectors that are orthogonal to both u and u . By the1 2

definition of F together with Lemma 2.2, we have that almost surely for any vector
t t t t' 'Ž Ž .. Ž Ž ..xgF, x/0, x A xrx xF 1qo 1 n and x A xrx xF 1qo 1 k . Therefore,1 2

t t tx Ax x A x x A x1 2 's q F 1qo 1 nŽ .Ž .t t tx x x x x x

Ž .for all xgF, x/0, where here we used the fact that kso n . Since dim FGny2,
by the variational definition of the eigenvalues of the matrix A we conclude that

'Ž Ž .. Ž .l F 1qo 1 n for all iG3. This completes the proof of ii . Bi
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The crucial observation for the analysis of the algorithm is that the eigenvector
¨ has most of its weight on the clique. To show this we exhibit a vector z whose2

first k coordinates are considerably larger than the rest of the coordinates and
Ž .prove that it is close to the second eigenvector of A. Let zs z , 1F iFn be thei

5 5vector defined by z snyk if iFk and z syk otherwise. We denote by x thei i

l -norm of a vector x.2

ŽProposition 2.3. In the abo¨e notation almost surely there exists a ¨ector ds d ,i
. 5 5 2 Ž .5 5 2

1F iFn , satisfying d F 1r60 z so that zyd is collinear with the second
eigen¨ector ¨ of A.2

Proof. We use the following lemma.

2 1 35Ž Ž . . 5 Ž Ž ..Lemma 2.4. Almost surely Ay kr2 I z F qo 1 n k.4

Before proving the lemma, we apply it to deduce the existence of d as above. Let
zsc ¨ q ??? qc ¨ be the representation of z as a linear combination of the1 1 n n

eigenvectors ¨ . We show that the coefficients c , c , . . . , c are small compared toi 1 3 n

5 5 Ž Ž . . n Ž .z . Indeed, Ay kr2 I zsÝ c l ykr2 ¨ and thusis1 i i i

2 2nk k
2Ay I z s c l yÝ i iž / ž /2 2is1

2k
2'G 1qo 1 y n c , 1Ž . Ž .Ž . Ý iž /2 i/2

where the last inequality follows from Proposition 2.1, whose assertion holds, as
Ž . Ž .kso n . Define dsc ¨ qc ¨ q ??? qc ¨ . By 1 and Lemma 2.4 it follows that1 1 3 3 n n

n3k 1 1
2 225 5 5 5d s c F 1qo 1 - kn nyk s z ,Ž . Ž .Ž .Ý i 2 60 60'ky2 ni/2 Ž .

'where here we used the fact that kG10 n . On the other hand, zydsc ¨ is2 2

collinear with ¨ . B2

Note that the above discussion supplies an estimate of the second eigenvalue of
5 5 2 5 5 2 2 Ž .5 5 2 Ž .A. Indeed, z y d sc G 59r60 z . By substituting this inequality into 12

we obtain, using Lemma 2.4, that

2 2 21 k 59 k 2 k
3 2 2qo 1 n kGc l y G kn nyk l y G kn l y .Ž . Ž .2 2 2 2ž / ž / ž / ž /4 2 60 2 3 2

Ž .2This implies that l ykr2 Fnr2, thus proving the following corollary.2
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Corollary 2.5. The second eigen¨alue of the matrix A almost surely satisfies the
following inequality:

k n k n
y Fl F q .( (22 2 2 2

'In particular, when kG10 n , l is much bigger than l for all iG3. B2 i

Ž Ž . . Ž . Ž .Proof of Lemma 2.4. Let Ay kr2 I zs t , t , . . . , t . Denote by B m, p the1 2 n

binomial distribution with parameters m and p. By the definition of the matrix A,
we have that the random variable t is given byi

k¡
y1 nyk ykY , 1F iFkŽ . iž /2~t si 2k
q nyk X ykY , kq1F iFn ,Ž .¢ i i2

Ž .where X is a binomially distributed random variable B k, 1r2 , and Y is ai i

Ž . Žbinomially distributed random variable B nyk, 1r2 for iFk, and B nyky1,
. Ž1r2 for i)k. Using the standard estimates for binomial distributions see, e.g.,

w x . Ž . Ž .'4 , Appendix A we get that almost surely Y s nyk r2qO n log n for alli

Ž . Ž .'1F iFk. Therefore almost surely, t sy nyk qO k n log n for all iFk.i
k 2 2 3 3Ž Ž . . Ž . Ž .'Thus Ý t sO k k n log n sO k n log n so n k . To bound the remain-is1 i

ing Ýn t 2 we first modify the expression for t in the following way:iskq1 i i

k nyky1 kq1
t s nyk X y yk Y y y .Ž .i i iž / ž /2 2 2

Then Ýn t 2 can be written as S qS qS , whereiskq1 i 1 2 3

2n k
2

S s nyk X y ,Ž . Ý1 iž /2iskq1

2n nyky1 kq1
2S sk Y y yÝ2 iž /2 2iskq1

n k nyky1 kq1
S sy2k nyk X y Y y y .Ž . Ý3 i iž / ž /2 2 2iskq1

Applying again the standard estimates for binomial distributions, we get that
Ž . Ž . Ž .' 'almost surely, X s kr2 q O k log k and Y s n y k y 1 r2 q O n log ni i

Ž 2Ž . . Ž 3 .for iGkq1. This implies that S sO k nyk n log n so n k and S s2 3
3Ž Ž .Ž . . Ž .' 'O k nyk nyk k log k n log n so n k .

It remains to bound S . By the definition of X , X ykr2 for i)k can be1 i i

viewed as the sum of k independent random variables, each taking values 1r2 and
Ž .2y1r2 with equal probability. This implies that the expected value of X ykr2 isi

Ž .4 Ž 2 .kr4 and the expected value of X ykr2 is O k . Note that X and X arei i j
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independent random variables for i/ j, since they correspond to the edges going
from two different vertices of G to the clique. Thus the expected value m of

n Ž .2 Ž .Ý X ykr2 is ms nyk kr4, and its variance is equal to the sum of theiskq1 i

Ž 2Ž .. Ž 2 .variances, which is O k nyk so m . Therefore by Chebyshev’s Inequality we
Ž Ž ..Ž .2 Ž Ž .. 3obtain that almost surely, S s 1qo 1 nyk ms 1r4qo 1 n k. This com-1

pletes the proof of Lemma 2.4. B

Ž .Let the normalized second eigenvector of A be ¨ s a , 1F iFn . Note that by2 i

Corollary 2.5 it is unique almost surely. Recall that in the algorithm, W is the set of
< <indices that correspond to the k largest values of a , 1F iFn. We use Propositioni

< � 4 <2.3 to show that almost surely Wl 1, . . . , k G5kr6, thus proving that at least
Ž .5r6 of the k largest in absolute value coordinates of the second eigenvector

correspond to the vertices of the clique. Note that one gets the same set of indices
5 5 2

W for every a ¨ , a/0. Consider c ¨ szyd from Proposition 2.3,where d F2 2 2

Ž . 21r60 kn . The number of coordinates of d that are greater in absolute value than
nr3 is at most kr6. Since the coordinates of c ¨ are z yd and z s ??? sz s2 2 i i 1 k

nyk, z s ??? sz syk, we conclude that at least kyk of the first kkq1 n 1

coordinates of c ¨ are greater than nykynr3)nr2, and at least nykyk of2 2 2

the last nyk coordinates are, at most, kqnr3-nr2, where k qk Fkr6. This1 2

< � 4 <implies that Wl 1, . . . , k G5kr6.
To finish the proof of the correctness of the algorithm, we show that every

vertex outside the clique is almost surely adjacent to less than 3kr4 vertices of W.
Ž .Indeed, every edge outside the clique appears in G n, 1r2, k randomly and

independently with probability 1r2. Thus all vertices outside the clique are
Ž Ž ..adjacent, almost surely, to at most 1qo 1 kr2 vertices of the clique. Since W has

at most ky5kr6skr6 vertices not in the clique, it follows that, almost surely,
Ž Ž ..each vertex not in the clique has, at most, 1qo 1 kr2qkr6-3kr4 neighbors

in W. This guarantees that in stage 2 of the algorithm we choose only vertices of
the clique, and choose all of them because every vertex of the planted clique is
adjacent to at least 5kr6 vertices of W, as shown above.

2.3. Reducing the Constant

The main idea in improving the performance of Algorithm A is to consider the
subgraph of G induced on the set V ;V of all common neighbors of some fixed1

number of vertices in the clique Q. Doing this, we achieve two goals simultane-
w xously. First, G V still contains a clique of almost the same size k; second, since1

our graph is random, V is much smaller than V. Thus we improve the ratio1

between the clique and the size of the graph and can now use the algorithm A. For
Ž . � Ž . 4any subset S;V we define N* S s ¨ gV_S: ¨ugE G for all ugS .

Algorithm B.

'Ž . Ž .Input: A graph Gs V, E from the distribution G n, 1r2, k with ksc n .
w Ž .x1. Define ss2 log 10rc q2.2

< <2. For all subsets S;V, S ss do
begin
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w Ž .x3. Run the Algorithm A on the induced subgraph G N* S and denote by
Q the resulting set.S

4. If Q jS is a clique of size k, then QsQ jS and go to 6.S S

end
5. Take Q to be an arbitrary k-subset of V.
6. Output: The subset Q;V.

We claim that for any fixed c, Algorithm B almost surely produces the hidden
clique. To prove this let us first observe that for any fixed subset S;V of size
< < Ž . Ž .S ss, the cardinality of N* S in the random graph G n, 1r2 is a binomially
distributed random variable with parameters nys and 1r2 s. Thus, almost surely,
< Ž . < Ž Ž .. s Ž .N* S s 1qo 1 nr2 for all subsets of vertices of size s in G n, 1r2 . The

< Ž . <addition of a clique of size k can increase N* S only by, at most, kys.
< Ž . < Ž Ž .. s Ž .Therefore N* S s 1qo 1 nr2 almost surely also in G n, 1r2, k .

Since Algorithm B checks all of the subsets of V of size s, in some step it will
< <reach a subset S, S ss, which belongs to the clique Q. At this iteration we almost

< <surely get the hidden clique. Indeed, for a fixed subset S of the clique, S ss, and
Ž . w Ž .xa fixed N* S , the induced subgraph G N* S can be treated as a truly random

Ž < Ž . < . w Ž .xgraph G N* S , 1r2, kys . This is because one can generate G N* S as
follows: first choose a clique Q and fix a subset S of size s in it; then expose the

Ž .edges from S to V_S thus fixing N* S , and then expose all of the edges inside
Ž . < Ž . < Ž Ž .. s w Ž .xN* S . We have N* S s 1qo 1 nr2 , and G N* S contains a clique of size

Ž Ž ..kyss 1qo 1 k. By our choice of s, the size of the hidden clique satisfies
< <'kysG10 N* S . This guarantees that at this iteration the algorithm A will findŽ .

the clique Q_S and proves the correctness of Algorithm B.

3. CONCLUDING REMARKS

We described a polynomial time algorithm that finds, almost surely, the unique
'Ž . Ž .clique of size k in G n, 1r2, k for kGV n . The obvious challenge that remains

is to design efficient algorithms that work, almost surely, for smaller values of k. If
ksn1r2ye for some fixed e)0, even the problem of finding a clique of size at least
Ž . Ž . w x1qe log n in G n, 1r2, k , suggested in 14 , is open and seems to require new2

ideas.
w xAnother interesting version of this problem was suggested by Saks 21 . Suppose

G is a graph on n vertices that has been generated either according to the
Ž . Ž .distribution G n, 1r2 or according to the distribution G n, 1r2, k for, say, ks

n0.49. It is then obvious that an all-powerful prover can convince a polynomial time
verifier deterministically that, almost surely, G has been generated according to the

Ž . Ž .distribution G n, 1r2, k if indeed that was the case . To do so, he simply presents
the clique to the verifier. However, suppose G has been generated according to the

Ž . Ždistribution G n, 1r2 . Can the prover convince the verifier without using random-
.ness, of course that this is the case, almost surely? At the moment we cannot

' 'Ž . Ž Ž .design such a protocol if kso n while for kGV n the verifier can clearly
.convince himself, using Algorithm B .

The spectral properties of a graph encode some detailed structural information
on it. The ability to compute the eigenvectors and eigenvalues of a graph in
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polynomial time provides a powerful algorithmic tool, which has already found
Ž w x w x w x.several applications see, e.g., 2 , 7 , 22 . The spectral approach, and the

techniques developed here, may well have additional algorithmic applications in
the future.
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