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Abstract We consider an individual-based model where agents interact over a random net-
work via first-order dynamics that involve both attraction and repulsion. In the case of all-to-all
coupling of agents in R

d this system has a lowest energy state in which an equal number
of agents occupy the vertices of the d-dimensional simplex. The purpose of this paper is to
sharpen and extend a line of work initiated in [56], which studies the behavior of this model
when the interaction between the N agents occurs according to an Erdős–Rényi random
graph G(N , p) instead of all-to-all coupling. In particular, we study the effect of randomness
on the stability of these simplicial solutions, and provide rigorous results to demonstrate that
stability of these solutions persists for probabilities greater than N p = O(log N ). In other
words, only a relatively small number of interactions are required to maintain stability of
the state. The results rely on basic probability arguments together with spectral properties of
random graphs.

Keywords Swarm equilibria · Consensus and synchronization · Random graphs

1 Introduction

Individual-based models (IBM) have proven exceedingly useful for reproducing a wide vari-
ety of collective behaviors. Each individual in an IBM defines a “particle” that typically
interacts with all other particles according to a specified potential function. The potential
V (s) and the interaction kernel g(s) := −V ′(s) encode the precise dependence of the
interaction on inter-particle distance r (where s := r2/2), or the distance between indi-
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viduals, and therefore widely vary between applications and across disciplines. The mathe-
matics of such particle systems pervades many disciplines: it appears in models that range
from physics, chemistry and biology to control theory and engineering. Classical examples
from physics and chemistry include the distribution of electrons in the Thomson problem
[2,13,14,31,41,51,57] and VSEPR theory. More modern applications in these areas include
protein folding [40,49], colloid stability [28,53,54] and the self-assembly of nanoparticles
into supramolecular structures [22,23,26,60]. In biology, similar mathematical models help
explain the complex phenomena observed in flocking [16,35,55], viral capsids [24,59], locust
swarms [6,18] and colonies of bacteria [17,52] or ants [5]. In engineering, non-local particle
models have been successfully used in many areas of cooperative control [29,58], including
applications to robotic swarming [8,20,21,58].

In each of these disciplines, the most pervasive component of such models consists of the
total contribution from all pairwise isotropic interactions between individuals in the particle
group. A special case of such models consists of N interacting individuals obeying first-order
dynamics under a repulsive-attractive interaction. By repulsive-attractive, we mean that the
interaction kernel g(s) has a single root g(R) = 0 and that g(s) is positive for s < R and
negative otherwise. Under these choices the system of N ordinary differential equations

dxi

dt
=

N∑

j �=i

g

(
1

2
|xi − x j |2

)
(xi − x j ) (1)

governs the evolution of the particles in time.
This model assumes an all-to-all interaction structure between individuals. In other words,

each individual interacts with every other individual in the particle group. This assumption
can prove unrealistic in engineered systems with a large number of particles. In robotics, for
instance, all-to-all communication can prove prohibitively expensive for a large number of
robots, and the all-to-all structure may break due to random communication failures between
individuals as well. We therefore aim to understand how the collective behavior of the particle
system (1) is affected by the presence of a random network structure between individuals. For
simplicity we represent the random network as an Erdős–Rényi random graph, denoted by
G(N , p), that remains fixed throughout time. Given a prescribed number N of vertices and a
prescribed edge probability p, this simple random graph model forms an edge between any of
the

(N
2

)
possible pairs of vertices with equal probability p in a mutually independent manner.

Let E = {ei j }N
i, j=1 denote the adjacency matrix of such an undirected random graph drawn

from G(N , p): for j ≥ i the ei j ∼ B(1, p) denote independent Bernoulli random variables
and e ji = ei j otherwise on the lower triangle. The basic particle model then becomes

dxi

dt
=

N∑

j �=i

ei j g

(
1

2
|xi − x j |2

)
(xi − x j ) (2)

in order to incorporate the random communication network between individuals.
The purely linear case g(s) ≡ 1 of the system (2) appears in studies of consensus and syn-

chronization algorithms on a random graph [25,30,42,43]. Related models also frequently
demand a theoretical understanding how a (possibly dynamic) random network interac-
tion structure affects well-understood, deterministic behaviors such as phase transitions [1],
consensus and synchronization [44,50], and the emergence of collective behavior in locust
swarms [27]. In matrix form the linear version of system (2) reads

dX

dt
= −[L ⊗ Id]X, (3)
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where X = (x1, . . . , xN ) is the vector of all individuals xi ∈ R
d , L is the graph-Laplacian

matrix and ⊗ denotes the Kronecker product. By definition, consensus for this system occurs
if ||xi (t) − x j (t)|| → 0 as t → ∞, and since the graph is undirected consensus will occur
if and only if the graph is connected [7,33,34,36,37,45–48]. Note that the matrix L ⊗ Id
necessarily has a d-dimensional nullspace Nd spanned by “constant” vectors of the form
X = (v, . . . , v) ∈ R

Nd where v ∈ R
d is fixed. The emergence of consensus therefore occurs

if and only if the stability condition

max
{v∈N⊥

d :||v||=1}
−〈v, [L ⊗ Id]v〉 < 0 (4)

holds. In this way spectral properties of systems of the form L ⊗ Id determines the long
time behavior of differential equations. Our analysis of the nonlinear variant (2) proceeds
similarly. We shall analyze the spectral properties of matrices of the form L G̃ ⊗ M, where

G̃ denotes a sub-graph of the interaction structure and M ∈ Md×d denotes a symmetric,
deterministic and positive semi-definite matrix. A stability condition similar to (4) will then
determine long term behavior of the random system (2).

Our motivation for studying random linear systems of this form has its origins in elemen-
tary dynamical systems theory. Specifically, we may analyze the stability of an equilibrium
solution to a system of random, non-linear ordinary differential equations by linearizing
the ODE system about the equilibrium. This linearization process allows us to apply well-
developed techniques from random matrix theory to study properties of random differential
equations. A linear stability analysis of the equilibria of (2) requires performing two tasks.
The first task entails finding those configurations of individuals that lie in equilibrium, i.e.

N∑

j �=i

ei j g

(
1

2
|xi − x j |2

)
(xi − x j ) = 0 ∈ R

d , ∀ 1 ≤ i ≤ N . (5)

The second task couples a linearization of (2) around the equilibrium together with an
analysis of the eigenvalues of the resulting matrix. Even in the deterministic case with all-
to-all coupling, that is when p = 1 and ei j ≡ 1 for all (i, j), describing the equilibria of (2)
can prove quite challenging. The introduction of randomness into the underlying interaction
structure only adds further complications. While the symmetry of the interaction structure
in the all-to-all case permits the description of equilibria by means of analytical formulae in
some cases, the presence of any randomness whatsoever immediately breaks this symmetry.
An analytical description of equilibria proves nearly impossible as a result. In other words, as
soon as the edge probability p < 1 the equilibria of the fully coupled system can destabilize
immediately. This leads to the formation of some other complicated, random equilibrium
configuration (see Fig. 1, top row). As a result, we cannot reduce the study of stability to a
pure random matrix problem since we do not have an adequate description of the equilibrium
itself.

To avoid this difficulty, i.e. the random, non-linear problem of finding equilibria of (2),
we focus our efforts on a special class of equilibria to (2) that satisfy (5) under all possible
realizations of the random graph. We must therefore allow each ei j to be zero or one arbitrarily.
If we allow each ei j to take on the value zero or one arbitrarily, in order to not affect (5) then
we must have

g

(
1

2
|xi − x j |2

)
(xi − x j ) = 0
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Fig. 1 Top row a set of particles equally distributed along a ring defines an equilibrium under all-to-all
coupling. If p < 1 the ring no longer defines an equilibrium and, as p decreases, settle into a random
equilibrium instead (final state shown). Bottom row a simplex defines an equilibrium under all choices of
graphs and also remains stable for relatively small edge probabilities p. Small initial perturbations (not shown)
of the simplex decay and particles reoccupy the original simplex as t → ∞ (final state shown).

for any possible choice of distinct particle indices. As a consequence, for all (i, j) either xi =
x j or |xi −x j | = √

2R where R denotes the root of the interaction kernel. Each of the particles
therefore lie at the vertices of a regular simplex in R

d whose edge length is determined by
R. This restriction, i.e. that the particles lie in equilibrium regardless of their interaction
structure, necessarily reduces our study to the class of so-called simplex configurations. These
simplex configurations generalize the one-dimensional simplex equilibrium or “compromise
solution” studied in [56], so named due to its similarity with the classical consensus-type
algorithms in control theory. This is the particular choice of equilibrium where equal numbers
n = N/2 of particles occupy both vertices of the one dimensional simplex, so that x1 =
· · · = xn = 0 and xn+1 = · · · = xN = √

2R up to a reordering of the particle indices.
Unlike the equilibria of (2) that require the symmetry of all-to-all coupling, these simplex
equilibria do not immediately destabilize with the introduction of randomness. Instead, they
can remain stable even for relatively small values of p (see Fig. 1, bottom row). Moreover,
the stability analysis of these equilibria reduces to a study of the eigenvalues of the matrix
that results by linearizing (2) around the simplex configuration. In this manner, the stability
analysis reduces to a pure random matrix problem.

We refer to the one-dimensional system as a compromise model because the individuals
in the each group (the two vertices of the 1d simplex) prefer to remain at a fixed distance
away from all other individuals; however, their attraction to the other group forces them to
coexist at the same location with half of the total number of individuals in the group. The
equilibrium therefore represents a compromise between these two competing effects. The
associated linear system

κL1 − L2. (6)

also contrasts with the classical consensus case (3); the matrices L1 and L2 equal the graph
Laplacians formed from two subgraphs of the full interaction structure. Given a graph with
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adjacency matrix A, we first form the diagonal matrix D(A) that has the ith row sum of A
as its ith diagonal element. For each k = 1, 2 we define the corresponding (unnormalized)
graph Laplacian as Lk := D(Ak) − Ak, where Ak denotes the adjacency matrix of the kth
subgraph. The first subgraph contains only those edges that do not connect the two groups
and the second subgraph contains only those edges that do connect the two groups.

The system parameter κ in (6) quantifies the balance between intra-group repulsion and
inter-group attraction. It is determined by the distance

√
2R between vertices of the simplex

and the interaction kernel g(s) through the relation

κ := − g(0)

2Rg′(R)
. (7)

If we assume g(0) > 0 and that g(s) has a single root at s = R then κ is always strictly
positive. We can therefore interpret the linear system (6) as a competition between positive
semi-definite Laplacian matrices, with the first term representing repulsion and the second
term representing attraction.

Our interest lies in determining when the stability condition (4) holds for the more general
linear system (6). This question was originially posed in [56], where the authors proved
rigorously that the stability condition (4) holds provided p tends to zero with N in such a
way that

N p = O
(
log3/2 N

)
.

Moreover, the authors in [56] conjecture that stability persists for N p = O(log N ) and
provide a heuristic derivation of this fact. They also conjecture that an explicit threshold for
stability exists given by (8), but again did not prove it rigorously. Our main result provides,
in Sect. 3, a rigorous proof of the following theorem that settles the conjecture from [56] in
the affirmative. We then demonstrate in Sect. 4 how to extend the analysis in order to prove
similar results for higher dimensional simplex configurations, which [56] did not consider.

Main Result 1.1 Let 0 < κ < 1 and let ei j denote the N × N adjacency matrix of an
Erdős–Rényi random graph G(N , p). There exists a constant p0c (independent of N) with
the following property. If

p ≥ (p0c + ε)
log N

N

for some ε > 0 then the stability condition (4) holds for the system (6) asymptotically almost
surely. If

p ≤ (p0c − ε)
log N

N

the stability condition (4) fails for the system (6) asymptotically almost surely. Moreover, p0c

depends on κ through the relation

p0c = 2

2 − κ−κ/(κ+1) (1 + κ)
. (8)

2 Preliminary Material

We first pause to fix our notation, terminology and to collect a few preliminary lemmas
before we proceed with our main results. Capital roman letters such as A, B, C will always
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refer to matrices, while the corresponding lower-case letters ai j , bi j , ci j will denote the
corresponding entries. We reserve Id for the identity matrix, 0 = (0, . . . , 0)t for the zero
vector and 1 = (1, . . . , 1)t for the constant vector. We shall use e1 = (1, 0, 1, 0, . . . , 1, 0)t

to denote the vector in R
2n with n copies of (1, 0)t and use e2 denote the analogous vector

with (0, 1)t repeated n times. The size of each of the preceeding is elucidated by the context
in which it appears. For an n × n symmertic matrix A, we let λi (A) denote its ith eigenvalue
sorted in decreasing order. In other words, we have

λ1(A) ≥ λ2(A) · · · ≥ λn(A), (9)

where each eigenvalue appears according to its algebraic multiplicity.
Given a sequence of measurable events {Wn}∞n=1, each of which lies in some (possibly

different) probability space, we say that the sequence of events {Wn}n≥1 holds asymptotically
almost surely (a.a.s.) if

P(Wn) → 1 as n → ∞.

Here and in what follows, P always denotes the measure on the probability space in which
the relevant event lies. We denote by B(1, p) a Bernoulli random variable with parameter p
and B(n, p) the corresponding Binomial distribution. We use E(X) to denote the mean or
expectation of the random variable X while the notation X ∼ Y signifies that the random
variables X and Y have the same distribution. We reserve E = {ei j } for the random matrix
that corresponds to the adjacency matrix of Erdős–Rényi random graph. Given such a random
graph on n vertices with adjacency matrix E and a symmetric, deterministic matrix M ∈
Md×d(R) we form the generalized adjacency matrix A(M) ∈ Mnd×nd(R) generated by M
according to the formula

A(M) := E ⊗ M, (10)

where A⊗ B denotes the Kronecker product of two matrices. These matrices naturally appear
in the linearization of (2) around the family of simplex equlibria.

Our arguments rely on two types of probabilistic estimates that apply either to a sum of
random variables or to a random matrix when a “mean-zero” hypothesis applies. Roughly
speaking, these estimates allow us to reduce our analysis to the “mean” of these components.
This “mean” is then usually much easier to analyze than the full component itself. Lemma
2.1 below, which states a variant of the well-known Chernoff bound (c.f. [32]), provides the
first result of this type. It furnishes tail estimates on a sum of random variables Xi that satisfy
the bona-fide mean zero hypothesis E(Xi ) = 0 —

Lemma 2.1 (Chernoff Bound) Let X1, . . . , Xm denote discrete, independent random vari-
ables satisfying E(Xi ) = 0 and |Xi | ≤ 1. If E(X2

i ) = σ 2
i and σ 2 ≥ ∑

σ 2
i , then for any

0 ≤ λ ≤ 2σ

P

( ∣∣∣∣∣

m∑

i=1

Xi

∣∣∣∣∣ ≥ λσ

)
≤ 2e−λ2/4. (11)

When dealing with generalized adjacency matrices of the form (32), it proves natural
to decompose a given a vector x ∈ R

nd as x = (x1, . . . , xn)t , where each xi ∈ R
d . The

“mean-zero” hypothesis in this context enforces orthogonality of x ∈ R
nd with respect to the

“constant vectors” vc = (w, . . . , w)t ∈ R
nd , or in other words it holds that

n∑

i=1

xi = 0. (12)
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If we denote the corresponding subset of the unit ball Snd ⊂ R
nd as

Snd
0 :=

{
x :

∑

i

xi = 0,
∑

i

||xi ||22 ≤ 1

}
, (13)

then we may state the second type of probabilistic estimate as follows:

Theorem 2.2 Let α and c0 denote arbitrary positive constants. Let E denote the adjacency
matrix of a random graph from G(n, p), M ∈ Md×d(R) denote an arbitrary symmetric matrix
and A(M) = E ⊗ M the corresponding generalized adjacency matrix. If np > c0 log n then
there exists a constant c = c(α, c0, d, ||M ||2) > 0 so that the estimate

max
(x,y)∈Snd

0 ×Snd
|〈x, Ay〉| ≤ c

√
np (14)

holds with probability at least 1 − n−α .

This theorem represents a generalization (and slight improvement when d = 1) of a theorem
from [19], and its proof follows that of [19] closely. We include it for completeness in the
appendix.

The reductions that these estimates permit allow us to focus our efforts on the “mean”
of the random matrix under consideration. This “mean” essentially consists of weighted
differences between independent binomial distributions. Our method of estimating these
weighted differences requires a few standard facts regarding special functions, namely the
gamma function �(z) and the digamma function �0(z) defined by

�0(z) := d

dz
log �(z).

For the gamma function, we shall use Stirling’s formula both in terms of upper and lower
bounds

1 ≤ �(z + 1)√
2π z(z/e)z

≤ e√
2π

for z ∈ N (15)

and in terms of the asymptotic relation for z ∈ R
+

log �(z + 1) =
(

z + 1

2

)
log z − z + O(1) as z → ∞. (16)

For the digamma function �0(z) we shall use the properties (c.f. [4], [39])

�0(z) is increasing for z > 0 (17)

�0(z + 1) = log z + O

(
1

z

)
as z → ∞ (18)

log z ≤ �0(z + 1) ≤ log(z + 1). (19)

With these preliminaries in place, we may now proceed to formalize and prove our main
results. The next section formalizes the linear stability problem for one-dimensional simplex
equilibria and also proves a sharp threshold for when stability of these solutions holds asymp-
totically almost surely. That is, it resolves conjecture 1.1. Section 4 extends this formalization
and analysis to the higher dimensional case.
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3 Problem Statement in One Dimension

In this section we shall first describe in greater detail the random stability matrix that results
from linearizing (2) around the one-dimensional simplex equilibrium, or the “compromise”
solution. We then proceed with a few preliminary reductions that allow us to determine
stability or instability of this solution by analyzing a random, diagonal matrix instead of the
full stability matrix. We then fully characterize the threshold …etc.

To begin, recall that we obtain the one-dimensional simplex equilibrium by subdividing
a group of N = 2n scalar particles xi ∈ R into two equal-sized groups of n individuals then
placing them a distance R apart:

x1 = · · · = xn = 0 and xn+1 = · · · = xN = R.

As always let E ∈ MN×N (R) denote the adjacency matrix of the G(N , p) random graph
that determines the interaction structure. We partition the adjacency matrix as

E =
(

A B
Bt C

)
, A = At , C = Ct , A, B, C ∈ Mn×n(R)

where A and C correspond to intra-group edges (interactions within the same group) and B
corresponds to inter-group edges (interactions across groups). The resulting stability matrix
L for the compromise equilibrium reads

L = κL1 − L2, L1 =
(

DA − A 0
0 DC − C

)
, L2 =

(
DB −B
−Bt DBt

)
.

For each M ∈ {A, B, Bt , C} the diagonal matrix DM has non-zero elements corresponding
to row sums of M , so that L1 and L2 correspond to positive semi-definite graph Laplacian
matrices. Here 0 < κ < 1 is a system parameter fully determined by g(s), its first derivative
and the distance R between the two compromised groups [c.f. (7)].

The characterization of stability or instability relies on determining when the eigenvalues
of L have the appropriate sign. As 1 always defines an eigenvector with eigenvalue zero,
our interest lies in placing probabilistic bounds on when λ1(L) = 0 and the second-largest
eigenvalue λ2(L) of L is non-positive asymptotically almost surely. This is a necessary
condition for stability of the compromise model. We therefore aim to establish conditions on
p for when the stability condition

max
{v∈1⊥:||v||=1}

〈v, Lv〉 < 0 (20)

holds asymptotically almost surely. The following subsections rigorously establish a critical
threshold p = pc for this stability condition to hold.

3.1 Reduction to the Diagonal Component

Clearly, if L has a positive diagonal entry then λ1(L) > 0 and λ2(L) ≥ 0, so we may reduce
to the case when the diagonal component D of the stability matrix L

D :=
(

κ DA − DB 0
0 κ DC − DBt

)
(21)

has non-positive entries. The following lemma asserts that having λ1(D) ≤ −c1 N p for some
c1 > 0 asymptotically almost surely suffices to guarantee that λ1(L) = 0 and λ2(L) < 0
asymptotically almost surely as well.
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Lemma 3.1 Assume that p = o(1), there exists a c0 > 0 so that N p ≥ c0 log N and a
c1 > 0 so that the diagonal component (21) of L satisfies λ1(D) ≤ −c1 N p asymptotically
almost surely. Then λ2(L) < 0 asymptotically almost surely.

Proof Let V denote the subspace of R
N that consists of mean-zero vectors, i.e. V := {v ∈

R
N : ∑i vi = 0}, and define 10 ∈ V as

10 = 1√
N

(
1

−1

)

for 1 ∈ R
n , and note that ||10||2 = 1. Let v ∈ V satisfy ||v||2 = 1, and note that v decomposes

as

v = α10 + βy for y ∈ V ⊥
0 :=

{
v ∈ R

N :
n∑

i=1

vi =
N∑

i=n+1

vi = 0

}

where ||y||2 = 1 and α2 + β2 = 1. The definition of L1 implies L110 = 0, so that a direct
computation of 〈v, Lv〉 shows that

〈v, Lv〉 = β2〈y, Ly〉 − α2〈10, L210〉 − 2αβ〈10, L2y〉

= β2〈y, Ly〉 − 4α2

N

n∑

i, j=1

bi j − 2αβ〈y, L210〉.

Define the random variables X := ∑n
i, j=1 bi j and Y := 〈y, L210〉. As E(bi j ) = p and the

bi j are independent, it follows that E(X) = n2 p and Var(X) = n2 p(1 − p). The Chernoff
bound (c.f. Lemma 2.1) then implies that

P

(
|X − E(X)| ≥ n

√
np(1 − p)

)
≤ 2e−n/4

for all n sufficiently large, so in particular it holds that X/N = np/2 + O(
√

N p) asymptot-
ically almost surely.

To estimate Y , write y ∈ V ⊥
0 as y = (y1, y2)

t for yi ∈ R
n , then recall that the definition

of L2 = Lt
2 implies

Y := 〈L2y, 10〉 = 1√
N

(〈1, DBy1〉 − 〈1, By2〉 − 〈1, DBt y2〉 + 〈1, Bt y1〉)

It follows by definition that DB1 = B1 and DBt 1 = Bt 1, which then implies

Y = 2√
N

(〈1, Bt y1〉 − 〈1, By2〉) = 2〈10, Ey〉 − 2√
N

(〈1, Ay1〉 − 〈1, Cy2〉).

Applying Theorem 2.2 with d = 1 shows that 〈10, Ey〉 = O(
√

N p) asymptotically almost
surely. Define ỹ1 := (y1, 0)t and 1̃ := (1, 0)t , so that the equality 〈1, Ay1〉 = 〈ỹ1, E 1̃〉
holds. As (ỹ1, 0)t ∈ SN

0 and E ∼ G(N , p), a direct application of Theorem 2.2 with d = 1
suffices to yield |〈1, Ay1〉| = √

nO(
√

np) asymptotically almost surely. A similar argument
demonstrates |〈1, Cy2〉| = √

nO(
√

np) asymptotically almost surely as well. Thus |Y | =
O(

√
np) asymptotically almost surely. That 2αβ ≤ α2 + β2 = 1 then implies

〈v, Lv〉 ≤ β2〈y, Ly〉 − 4α2

N
X − 2αβY ≤ −α2 N p + β2〈y, Ly〉 + O

(√
N p

)

asymptotically almost surely.
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It remains to estimate 〈y, Ly〉. Again write y ∈ V ⊥
0 as y = (y1, y2)

t for yi ∈ R
n , and

recall that ||yi ||2 ≤ 1 and 1 · yi = 0 by definition. Thus

β2〈y, Ly〉 = β2〈y, Dy〉 − β2(1 + κ)(〈y1, Ay1〉 + 〈y2, By2〉) + β2〈y, Ey〉.
As each of y1, y2 and y have zero mean and ||y||2 = 1, it follows from Theorem 2.2 that

β2〈y, Ly〉=β2〈y, Dy〉+O(
√

N p) ≤ λ1(D)||y||22β2+O(
√

N p) ≤ −c1 N pβ2+O(
√

N p).

As a consequence, that α2 + β2 = 1 then implies

max
v∈V :||v||2=1

〈v, Lv〉 ≤ − min{1, c1}N p + O(
√

N p) < 0

asymptotically almost surely. Noting that 1 always defines an eigenvector of L then yields
the desired result. ��
3.2 Estimating the Diagonal

With this reduction in hand, we may now proceed with the task of establishing the hypothesis
λ1(D) ≤ −c1 N p in the preceeding lemma. Each non-zero entry Dii of D has exactly
the same distribution, i.e. a difference of two independent binomial distributions (although
dependencies exist between the diagonal entires themselves due to the undirected graph).
Specifically, we have

dii ∼ κ X − Y

for X, Y ∼ B(n, p) with X and Y independent. We therefore wish to estimate when P(d11 ≥
−c1 N p) holds with probability sufficiently small to apply the union bound over all diagonal
entries. In crude terms, for N p = �(log n) and N = 2n we have that

P(d11 ≥ −c1 N p) ≈ c2(n)e−c0(κ,c1)np, c0(κ, c1) = c0(κ, 0) + o(1) (as c1 → 0)

for some function c0(κ, c1) that depends on κ and c1 and some function c2(n) that grows (or
decays) more slowly in n than any power. A threshold therefore occurs when c0(κ, 0)np =
log n, or in other words when

P(d11 ≥ 0) ≈ c2(n)�

(
1

n

)
.

Indeed, if c0(κ, 0)np ≥ (1 + ε) log n then P(d11 > −c1 N p) ≈ n−(1+ε) and we may apply
the union bound over all 2n diagonal entries. On the other hand, if c0(κ, 0)np ≤ (1−ε) log n
then P(d11 ≥ c1 N p) ≈ n−(1−ε) and the union bound fails. In this case, we expect L to have
positive diagonal entries and therefore instability to occur.

To realize this program, we must have a method for calculating c0(κ, c1) itself. Given
X ∼ B(n, p) and Y ∼ B(n, p), let Z = κ X − Y then define

fn(p, κ, c1) :=P(Z ≥ c1np)=
n∑

i=0

(
n

i

)
pi (1 − p)n−i

�κi−c1np�∑

j=0

(
n

j

)
p j (1 − p)n− j . (22)

As the following lemmas demonstrate, we can estimate fn(p, κ, c1) to the precision needed
by considering only the largest term in the sum. Finding and estimating this term only involves
calculus and a few properties of special functions.
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Lemma 3.2 Suppose that there exists ε > 0 so that

(1 − ε)
log n

n
≤ p ≤ (1 − ε)c0(κ)

log n

n
, c0(κ) := 1

2 − (1 + κ)κ− κ
1+κ

. (23)

If 0 < c1 < κ
1

1+κ is sufficiently small, depending only on (ε, κ), then there exists a universal
constant c′ > 0 so that

fn(p, κ, c1) ≥ c′n−1+ε/2. (24)

Proof For a fixed n > 0, define

i0 := �κ− κ
1+κ np�=δ(n)np, δ(n)=κ− κ

1+κ (1+ε1), ε1 = O

(
1

log n

)
,

j0 := �(1−c1κ
− 1

1+κ )κi0�=γ (n)np, γ (n)=(1−c1κ
− 1

1+κ )κ
1

1+κ (1+ε2), ε2 = O

(
1

log n

)
.

Write
(

n

i

)
pi (1− p)n−i =e�(i) �(i) := log n!−log i !−log(n − i)!+i log

p

1 − p
+n log(1− p),

and note that fn(p, κ, c1) > e�(i0)e�( j0) since the pair (i0, j0) contributes a singleton term
in the sum. Indeed, as

(1 − c1κ
− 1

1+κ )κi0 ≤ κi0 − c1np

it follows that j0 = �(1 − c1κ
− 1

1+κ )κi0� ≤ �κi0 − c1np�. Stirling’s formula (16) for the
factorial and the fact that log(1 − p) = −p + O(p2) together imply that

�(i0) = n log
n

n−i0
−i0 log

i0

n − i0
+ 1

2
log

n

i0(n − i0)
+i0 log

p

1− p
+n log(1− p)+O(1)

= i0 − i0 log
i0

n − i0
− 1

2
log np + i0 log

p

1 − p
− np + O(1),

�( j0) = j0 − j0 log
j0

n − j0
− 1

2
log np + j0 log

p

1 − p
− np + O(1).

The definitions of i0 and j0 combine with these estimates to yield

�(i0) + �( j0) =
[
(1 + κ)κ− κ

1+κ − (2 + c1)
]

np − log np + i0 log
p(n − i0)

i0(1 − p)

+ j0 log
p(n − j0)

j0(1 − p)
+ O(1),=

[
(1 + κ)κ− κ

1+κ − (2 + c1)
]

np − log np

+ np

[
δ(n) log

1

δ(n)
+ γ (n) log

1

γ (n)

]
+ O(np2) + O(1).

From the definitions of δ(n), γ (n), the fact εi = O(log−1 n) and the fact log(1 + εi ) =
O(log−1 n) it follows that

δ(n) log
1

δ(n)
+γ (n) log

1

γ (n)
=c1 log

(
κ

1
1+κ −c1

)
−κ

1
1+κ log

(
1−c1κ

− 1
1+κ

)
+O

(
1

log n

)
,

np

[
δ(n) log

1

δ(n)
+γ (n) log

1

γ (n)

]
=np

[
c1 log

(
κ

1
1+κ −c1

)
−κ

1
1+κ log

(
1−c1κ

− 1
1+κ

)]
+O(1).
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710 J. H. von Brecht et al.

As a consequence,

�(i0) + �( j0) =
[
(1 + κ)κ− κ

1+κ − 2
]

np + h(c1)np − log np + O(1),

h(c1) :=
[
c1 log

(
κ

1
1+κ − c1

)
− κ

1
1+κ log

(
1 − c1κ

− 1
1+κ

)
− c1

]
.

By (23), this implies

�(i0) + �( j0) ≥ (ε − 1) log n + h(c1)np − log np + O(1)

≥ (ε − 1 − |h(c1)|c0(κ)) log n − log np + O(1).

As h(c1) → 0 as c1 → 0, it follows that that fn(p, κ, c1) ≥ exp(�(i0) + �( j0)) ≥
nε/2−1 for all n sufficiently large if c1 is sufficiently small, depending only on ε and κ , as
claimed. ��

For c1 > 0, define

fn(p, κ, c1) :=P(Z ≥−c1np)=
n∑

i=0

(
n

i

)
pi (1 − p)n−i

�κi+c1np�∑

j=0

(
n

j

)
p j (1 − p)n− j . (25)

Lemma 3.3 Suppose that there exist c, ε > 0 so that

np ≥ (1 + ε)c0(κ) log n, c0(κ) := 1

2 − (1 + κ)κ− κ
1+κ

, np ≤ c log n. (26)

If 0 < c1 < 1 − κ is sufficiently small, depending only on (κ, ε, c), then there exists a
universal constant c′ > 0 so that

fn(p, κ, c1) ≤ c′n−1−ε/2. (27)

Proof For x > −1 let H(x) denote the function H(x) := x −(1+x) log(1+x), and note that
H(x) is increasing for x ≤ 0 and is decreasing otherwise. Let 0 < ε0(c0) < 1, 0 < ε1(c0)

denote the unique positive solutions to

H(−ε0) = − 1

c0
, H(ε1) = − 2

c0
.

Let i0 := �(1 − ε0)np� and i1 := �(1 + ε1)np�, and consider first those terms in the sum
(25) that satisfy either i ≤ i0 or i ≥ i1. The fact that

(n
i

) ≤ ni/ i ! and Stirling’s formula (15)
yield
(

n

i

)
pi (1 − p)n−i ≤exp

(
i(1+log np)+(n − i) log(1 − p)−log

√
2π − (i +1/2) log i

)
.

That 0 < p < 1 implies log(1 − p) ≤ −p, which in turn implies
(

n

i

)
pi (1 − p)n−i ≤ exp (�(i)) , �(i) := i(1 + p + log np) − np − log

√
2π − i log i.

Elementary calculus demonstrates that �(i) increases provided i ≤ np. As 0 < (1−ε0) < 1
it follows that i0 ≤ np, which together with the fact that (1 − ε0)np2 < log

√
2π for n

sufficiently large implies
(

n

i

)
pi (1 − p)n−i ≤ exp (� ((1 − ε0)np)) ≤ exp (npH(−ε0))
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for all 1 ≤ i ≤ i0 − 1 and all n sufficiently large. The definition of ε0 and the assumption
(26) then combine to imply

i0−1∑

i=0

(
n

i

)
pi (1 − p)n−i

�κi+c1np�∑

j=0

(
n

j

)
p j (1 − p)n− j

≤
i0−1∑

i=0

n−(1+ε)

�κi+c1np�∑

j=0

(
n

j

)
p j (1 − p)n− j ≤ i0n−(1+ε).

Next consider a term in the sum (25) that satisfies i ≥ i1. As before, the facts that �(i)
decreases for i ≥ i1 and (1 + ε1)np2 < log

√
2π if n is sufficiently large imply

(
n

i

)
pi (1 − p)n−i ≤ exp (�(i)) ≤ exp (�((1 + ε1)np)) ≤ exp (npH(ε1))

for all i ≥ i1 + 1 and n sufficiently large. The definition of ε1 and the assumption (26) then
combine to imply

n∑

i=i1+1

(
n

i

)
pi (1 − p)n−i

�κi+c1np�∑

j=0

(
n

j

)
p j (1 − p)n− j

≤
n∑

i=i1+1

n−2(1+ε)

�κi+c1np�∑

j=0

(
n

j

)
p j (1 − p)n− j ≤ n−(1+2ε).

As i0 = O(log n), it follows as a consequence of these estimates that

fn(p, κ, c1) =
i1∑

i=i0

�κi+c1np�∑

j=0

(
n

i

)
pi (1 − p)n−i

(
n

j

)
p j (1 − p)n− j + O

(
log n

n1+ε

)
.

Now let G(i, j) denote the function,

G(i, j) :=
(

n

i

)
pi (1 − p)n−i

(
n

j

)
p j (1 − p)n− j = e�0(i)e�0( j)

�0(i) := log �(n + 1)+i log
p

1 − p
+n log(1 − p)−(log �(i + 1)+log �(n − i + 1))

and let S denote the constraint set

S := {
(i, j) ∈ R

2+ : (1 − ε0)np ≤ i ≤ (1 + ε1)np, 0 ≤ j ≤ κi + c1np
}
.

For all indices i, j such that (i, j) ∈ S it trivially holds that

G(i, j) ≤ G∗ := max
(i, j)∈S

G(i, j).

As np = O(log n), i0 = O(log n) and i1 = O(log n) it follows that

i1∑

i=i0

�κi+c1np�∑

j=0

(
n

i

)
pi (1 − p)n−i

(
n

j

)
p j (1 − p)n− j ≤ O(log2 n)G∗.

Suppose that the maximum G∗ occurs on the boundary ∂S of the constraint set. This leaves
four cases to consider. In the first two cases, if i = (1 − ε0)np or i = (1 + ε1)np the
preceeding arguments imply that
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712 J. H. von Brecht et al.

G((1 − ε0)np, j) ≤ exp {�(npH(−ε0))} ≤ n−(1+ε),

G((1 + ε1)np, j) ≤ exp {�(npH(ε1))} ≤ n−2(1+ε).

In the third case, i.e. j = 0 and (1 − ε0)np ≤ i ≤ (1 + ε1)np, the maximum satisfies

G(i, 0) ≤ (1 − p)n = elog(1−p)n ≤ e−np ≤ n−(1+ε)c0(κ),

which decays faster than n−(1+ε) due to the fact that c0(κ) > 1 for 0 < κ < 1 by definition.
The final case proves the most difficult. In this remaining case it holds that j = κi + c1np

and that

G(i, κi +c1np) = e�1(i), �1(i) :=2 log �(n+1)+[i(1+κ)+c1np] log
p

1− p

+2n log(1− p)−[
log �(i +1)+log �(κi +c1np+1)+log �(n − i + 1)

+ log �(n − κi − c1np + 1)
]
.

If a maximum of �1(i) occurs between i0 and i1 then the maximum must occur when

(1 + κ) log
p

1 − p
= �0(i + 1) + κ�0(κi + c1np + 1) − κ�0(n − κi − c1np + 1)

−�0(n − i + 1) := χ(i). (28)

Indeed, as �0(z) > 0 increases for z > 0, if a solution i0 < i∗ < i1 to (28) exists then it
is unique and is a maximum of �1(i). Let δ(κ, c1) denote the unique, positive solution to
δ(δκ + c1)

κ = 1 and set iu = 2δ(κ, c1)np. From the digamma estimate (19) it follows that

χ(iu) ≥ log

(
iu(κiu + c1np)κ

(n − κiu − c1np + 1)κ (n − iu + 1)

)

= log

(
p(1+κ) 2δ(κ, c1)(κ2δ(κ, c1) + c1)

κ

(1 − κ2δ(κ, c1)p − c1 p + 1
n )κ (1 − 2δ(κ, c1)p + 1

n )

)

> (1 + κ) log
p

1 − p

for all n sufficiently large. The last inequality follows due to the fact that 2δ(κ, c1)(κ2δ(κ, c1)

+ c1)
κ > 1 is constant in n, so when p = o(1) the coefficient of p1+κ on the left hand side

(which asymptotically equals 2δ(κ, c1)(κ2δ(κ, c1)+ c1)
κ ) always exceeds the coefficient of

p1+κ (which equals one) on the right hand side. As the right hand side, i.e. χ(i), of (28) is
increasing, it follows that i∗ < iu for all n sufficiently large. Defining il := δ(κ, c1)np/2,
it follows in a similar fashion that il < i∗ for all n sufficiently large as well. In particular,
i∗ = �(np). Write i∗ = δ(n)np, and note that the critical point Eq. (28) and the digamma
estimate (19) also imply

log

(
(i∗ + 1)(κi∗ + c1np + 1)κ

(n − κi∗ − c1np)κ (n − i∗)

)
≥ (1 + κ) log

p

1 − p

≥ log

(
i∗(κi∗ + c1np)κ

(n − κi∗ − c1np + 1)κ (n − i∗ + 1)

)
.

These inequalities imply that

(δ(n) + 1
np )(κδ(n) + c1 + 1

np )κ

(1 − κδ(n)p − c1 p)κ (1 − δ(n)p)
≥ 1

(1 − p)κ+1

≥ δ(n)(κδ(n) + c1)
κ

(1 − κδ(n)p − c1 p + 1
n )κ (1 − δ(n)p + 1

n )
.
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From the fact that p = o(1), the fact that np → ∞ and the fact that δ(n) is a bounded
sequence, by passing to the limit in the previous expression it follows that any limit point δ∞
of the sequence δ(n) must satisfy

δ∞ (κδ∞ + c1)
κ ≥ 1 ≥ δ∞ (κδ∞ + c1)

κ .

In particular, δ∞ is the unique solution to δ(κδ + c1)
κ = 1. As any convergent subsequence

of δ(n) must converge to δ(κ, c1), i.e. the unique solution to δ(κδ + c1)
κ = 1, it follows that

in fact δ(n) = δ(κ, c1) + o(1).
Write the value at such a maximum as e�1(i∗) with �1(i∗) defined above. Using Stirling’s

approximation (16) it follows that

�1(i∗) = n log

(
n2

(n − i∗)(n−κi∗ − c1np)

)
+[(1+κ)i∗+c1np] log

p

1 − p

+2n log(1− p)−i∗ log

(
i∗

n − i∗

)
1

2
log

(
n2

i∗(κi∗+c1np)(n−i∗)(n−κi∗−c1np)

)

−(κi∗ + c1np) log

(
κi∗ + c1np

n − κi∗ − c1np

)
+ O(1).

Now recall that i∗ = δ(n)np for δ(n) = δ(κ, c1) + o(1), so that

1

2
log

(
n2

i∗(κi∗ + c1np)(n − i∗)(n − κi∗ − c1np)

)
= − log np + O(1)

n log

(
n2

(n − i∗)(n − κi∗ − c1np)

)
= −n (log(1 − δ(n)p) + log(1 − κδ(n)p − c1 p))

That log(1 − p) = −p + O(p2) and np = O(log n) imply 2n log(1 − p) = −2np + o(1),
which yields

�1(i∗) = O(1) − log np + [δ(n)(1 + κ) + c1 − 2]np

+ [(1 + κ)i∗ + c1np] log
p

1 − p
− i∗ log

(
i∗

n − i∗

)

− (κi∗ + c1np) log

(
κi∗ + c1np

n − κi∗ − c1np

)
.

Appealing to the asymptotic formula (18) for the digamma function then shows

log(i∗)−log(n−i∗) = �0(i∗+1)−�0(n − i∗+1)+O

(
1

i∗

)
+O

(
1

n − i∗

)

× i∗ {log(i∗) − log(n−i∗)}= i∗
{
�0(i∗+1)−�0(n−i∗+1)

}

+O (1) κi∗ {log(κi∗+c1np)−log(n−κi∗−c1np)}
= i∗{κ�0(κi∗+c1np+1)

−κ�0(n − κi∗ − c1np + 1)} + O (1) .

As a consequence, the critical point Eq. (28) implies

i∗ log

(
i∗

n − i∗

)
+ κi∗ log

(
κi∗ + c1np

n − κi∗ − c1np

)
= i∗(1 + κ) log

p

1 − p
+ O(1),

�1(i∗) = [(1 + κ)δ(n) + c1 − 2]np − log np + c1np log

(
1 − κδ(n)p − c1 p

(1 − p)(δ(n)κ + c1)

)
+ O(1).

123



714 J. H. von Brecht et al.

That f (δ) := δ(κδ + c1)
κ increases with δ and f (κ− κ

1+κ ) > 1 implies δ(κ, c1) < κ− κ
1+κ .

The fact that δ(n) = δ(κ, c1) + o(1) and the hypothesis (26) then combine to demonstrate

�1(i∗) ≤
(

− 1

c0(κ)
+ c1(1 − log(κδ(κ, c1) + c1)) + o(1)

)
np ≤ −(1 + 2ε/3) log n

provided c1 is sufficiently small (depending on (ε, κ, c)). Thus, if a maximum i∗ occurs
between i0 and i1 then it must satisfy

G(i∗, κi∗ + c1np) ≤ c′n−(1+ε/2).

As a consequence, in all four cases there exists a c′ > 0 so that the maximum G∗ satisfies
G∗ ≤ c′n−(1+2ε/3).

In summary, provided

G∗ := max
(i, j)∈S

G(i, j) = max
(i, j)∈∂S

G(i, j) (29)

the estimate

fn(p, κ, c1) =
i1∑

i=i0

�κi+c1np�∑

j=0

(
n

i

)
pi (1 − p)n−i

(
n

j

)
p j (1 − p)n− j + O

(
log n

n1+ε

)

≤ O(log2 n)G∗ + O

(
log n

n1+ε

)
≤ O(log2 n)n−(1+2ε/3)

holds for all n sufficiently large. It therefore suffices to establish (29), i.e. that the maximum
of G(i, j) occurs along the boundary ∂S of the constraint set S := {(i, j) : (1 − ε0)np ≤
i ≤ (1 + ε1)np, 0 ≤ j ≤ κi + c1np}. If the maximum G∗ were attained in the interior
of the at some point (i∗, j∗) then both �′

0(i∗) = �′
0( j∗) = 0 would simultaneously hold.

Differentiating �0 shows that this would imply

log
p

1 − p
= �0(i∗ + 1) − �0(n − i∗ + 1), log

p

1 − p
= �0( j∗ + 1) − �0(n − j∗ + 1).

As �0(i +1)−�0(n−i +1) is strictly increasing, this would imply i∗ = j∗ as a consequence.
Moreover, the digamma estimate (19) implies np − 1 ≤ i∗ = j∗ ≤ p(n + 1), which since
κ + c1 < 1 yields in turn

κi∗ + c1np ≤ κ(n + 1)p + c1np = (κ + c1)np + p < np − 1 ≤ j∗

for all n sufficiently large. In other words, (i∗, j∗) /∈ S and the maximum must occur on ∂S.
��

3.3 Proof of the Main Result

We now have all the ingredients necessary to establish the threshold for stability of the
compromise equilibrium. If np ≥ (1 + ε)c0(κ) log n then Lemma 3.3 suffices to guarantee
that each diagonal entry dii of the diagonal component (21) satisfies

dii ≤ −c1 N p

with probability at least 1 − c′n−(1+ε/2). As a consequence, the union bound implies that
there exists c1 > 0 so that

λ1(D) ≤ −c1 N p
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asymptotically almost surely. The reduction furnished by Lemma 3.1 then implies stability
asymptotically almost surely.

The converse direction proves slightly more difficult due to the fact that the diagonal
entries dii exhibit a mild dependence. This dependence results from the undirected graph.
Nevertheless, a standard technique easily adapts to the present situation and allows us to
handle this lack of independence. If np ≤ (1 − ε) log n then a previous result [56] already
implies instability asymptotically almost surely. We therefore may as well assume that (1 −
ε) log n ≤ np ≤ c0(κ)(1 − ε) log n, so that Lemma 24 applies and there exists a c1 > 0
sufficiently small so that

dii ≥ c1np

with probability at least c′n−1+ε/2 for any given diagonal entry. Let Xi := 1{dii ≥c1np} denote
the indicator of such an event and define

N0 :=
n∑

i=1

Xi

as the total number of such events that occur over the first n diagonal entries. Let μ0 :=
E(N0) = n fn(p, κ, c1) denote the expected number of such entries. Chebyshev’s inequality
then implies that (writing fn as shorthand for fn(p, κ, c1)) for any γ > 0 the inequality

P(|N0 − μ0| > γ n fn) ≤ Var(N0)

γ 2n2 f 2
n

(30)

holds. The variance satisfies

Var(N0) =
n∑

i=1

Var(Xi ) + 2
n∑

i=1

∑

j>i

Cov(Xi , X j ) = n fn(1 − fn) + 2
n∑

i=1

∑

j>i

Cov(Xi , X j ),

whereas the covariance satisfies

Cov(Xi , X j ) = P(Xi = 1 ∩ X j = 1) − f 2
n .

Recalling the definition of D in (21) shows that we may decompose

dii = κ

n∑

k=1

aik −
n∑

k=1

bik d j j = κ

n∑

k=1

a jk −
n∑

k=1

b jk,

which obviates the fact that the only dependence between dii and d j j occurs via the entry
ai j ; indeed, the entries {aik}n

k �= j , {a jk}n
k �=i and {bi j }n

i j=1 are independent. With this in mind,
define

d̃i i := κ

n∑

k �= j

aik −
n∑

k=1

bik = dii − κai j

and define d̃ j j similarly. Conditioning on the possible values of ai j ∈ {0, 1} shows

P(Xi = 1 ∩ X j = 1) = P(d̃i i ≥ c1np − κ)P(d̃ j j ≥ c1np − κ)p

+P(d̃i i ≥ c1np)P(d̃ j j ≥ c1np)(1 − p).

123



716 J. H. von Brecht et al.

Note that we may write

P(d̃i i ≥ c1np − κ) =
n∑

i=1

�κi−c1np�∑

j=0

(
n − 1

i − 1

)(
n

j

)
pi−1(1 − p)n−i p j (1 − p)n− j .

As in the proof of Lemma 3.3, there exists an i1 = O(np) sufficiently large so that

n∑

i=1

�κi−c1np�∑

j=0

(
n − 1

i − 1

)(
n

j

)
pi−1(1 − p)n−i p j (1 − p)n− j =

i1∑

i=1

�κi−c1np�∑

j=0

+ O

(
1

n

)

fn =
i1∑

i=1

�κi−c1np�∑

j=0

(
n

i

)(
n

j

)
pi (1 − p)n−i p j (1 − p)n− j + O

(
1

n

)
.

For i = O(np) it holds that
(

n − 1

i − 1

)
pi−1(1 − p)n−i = O(1)

(
n

i

)
pi (1 − p)n−i ,

which implies

P(d̃i i ≥ c1np − κ) ≤ O(1) fn + O

(
1

n

)
.

The fact that {d̃i i ≥ c1np} ⊂ {Xi = 1} implies

P(d̃i i ≥ c1np) ≤ fn,

which yields as a consequence the estimate

P(Xi = 1 ∩ X j = 1) ≤ f 2
n + O(1) f 2

n p + O
( p

n

)
= f 2

n + O(1) f 2
n p.

The last line follows as a consequence of Lemma 24. Substituting this estimate into the
covariance, we conclude that

Var(N0) ≤ n fn + O(1)n2 f 2
n p.

This estimate combines with (30), the fact that np = O(log n) and the fact that fn ≥
c′n−1+ε/2 to show that for any fixed γ > 0 the inequality

P(|N0 − μ0| > γ n fn) ≤ 1 + O(1) log n

γ 2n fn
�

log n

nε/2 (31)

holds. In particular, if γ = 1/2 this yields N0 ≥ n fn/2 asymptotically almost surely. Thus
the stability matrix has at least O(nε/2) positive diagonal entries, and so the compromise
solution is unstable asymptotically almost surely.

4 Problem Statement in Higher Dimensions

We begin this section by describing the stability matrix and the associated linear stability
condition, i.e the analogue of (20), that arises by linearizing (2) around the two-dimensional
simplex. We may then state the general d-dimensional problem as a straightforward gener-
alization of the two-dimensional case.
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The two-dimensional version of the compromise model consists of three equal-sized
groups of individuals that occupy the vertices of a regular, two-dimensional simplex. Specif-
ically, let p1 = (1, 0)t , p2 = (−1/2,

√
3/2)t and p3 = (−1/2,−√

3/2)t denote the vertices
of an equilateral triangle. Let n denotes the number of individuals in each group and let
vi ∈ R

2 denote the position of the i th individual. Without loss of generality, we may order
the individuals in such a fashion so that

v1 = · · · = vn = p1, vn+1 = · · · = v2n = p2, v2n+1 = · · · = vN = p3 N = 3n.

Let G1 = {1, . . . , n}, G2 = {n + 1, . . . , 2n} and G3 = {2n + 1, . . . , N } denote the corre-
sponding partition of the vertices into the three groups. Finally, let

x = (p2 − p1)/|p2 − p1|, y = (p3 − p1)/|p3 − p1|, z = (p2 − p3)/|p2 − p3|.
From an undirected Erdős–Rényi random graph G(N , p) with edges {ei j } and adjacency

matrix E , we first form four 2N ×2N generalized adjacency matrices A(Id), A(xxt ), A(yyt )

and A(zzt ) in such a way so that

A(xxt ) = E ⊗ xxt A(yyt ) = E ⊗ yyt A(zzt ) = E ⊗ zzt A(Id) = E ⊗ Id (32)

where A ⊗ B denotes the Kronecker product of two matrices. In more explicit terms, given
a 2 × 2 symmetric matrix M , we partition A(M) into 2 × 2 blocks Ai j (M):

A(M) =

⎛

⎜⎜⎜⎝

A11(M) A12(M) · · · A1N (M)

A21(M) A22(M) · · · A2N (M)
...

...
. . .

...

AN1(M) AN2(M) · · · AN N (M)

⎞

⎟⎟⎟⎠ . (33)

For j ≥ i we set Ai j (M) = M if ei j = 1 and Ai j = 0 otherwise. For j < i we set
Ai j (M) = At

ji (M), or in other words we define the lower triangle via symmetry. The matrices
A(Id), A(xxt ), A(yyt ) and A(zzt ) constructed in this manner agree with the generalized
adjacency matrices (32) defined via the sub-blocks Id, xxt , yyt and zzt , respectively.

Next, we decompose each generalized adjacency matrix A(M) into 2n×2n blocks Akl(M)

that correspond to the interactions between group Gk and group Gl :

A(M) =
⎛

⎝
A11(M) A12(M) A13(M)

A21(M) A22(M) A23(M)

A31(M) A32(M) A33(M)

⎞

⎠ . (34)

Note that Akl(M) = (Alk(M))t due symmetry. While only a portion of each generalized adja-
cency matrix appears in the linear stability matrix, referencing the full generalized adjacency
matrices will prove useful in deriving estimates. We therefore denote the relevant portions
of each matrix as follows —

B(Id) =
⎛

⎝
A11(Id) 0 0

0 A22(Id) 0
0 0 A33(Id)

⎞

⎠ B(xxt ) =
⎛

⎝
0 A12(xxt ) 0

A21(xxt ) 0 0
0 0 0

⎞

⎠

B(yyt ) =
⎛

⎝
0 0 A13(yyt )

0 0 0
A31(yyt ) 0 0

⎞

⎠ B(zzt ) =
⎛

⎝
0 0 0
0 0 A23(zzt )

0 A32(zzt ) 0

⎞

⎠ .

(35)
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Lastly, using each B(M) we define corresponding generalized Laplacian matrices in the
straightforward way, i.e. by using block-diagonal row sums. In other words, we may define
these matrices by noting that, analogously to A(M), each B(M) decomposes into a 2 × 2
block-matrix structure according to (33). We can therefore define a corresponding block-
diagonal matrix D(M) with 2 × 2 blocks along the diagonal by using row sums of the 2 × 2
blocks in B(M),

Dii (M) =
N∑

j=1

Bi j (M) Di j (M) = 0 if i �= j.

We then define the Laplacian matrix L(M) = D(M)−B(M) for each M ∈ {Id, xxt , yyt , zzt },
and for κ > 0 consider the random stability matrix

L := κL(Id) − (L(xxt ) + L(yyt ) + L(zzt )). (36)

Linearizing (2) around the two-dimensional simplex equilibrium produces a random matrix
of precisely this form.

Like the one-dimensional case, this stability matrix necessarily has a non-trivial nullspace
due to the underlying translation and rotation invariances inherent in the ODE system. Anal-
ogously to (20), we must therefore account for these zero eigenvalues when definining our
notion of stability. For any w ∈ R

2 put vc = (w, w, . . . , w)t ∈ R
2N , i.e. a “constant vector.”

A straightforward computation reveals that Lvc = 0. Additionally, set

vr = (p⊥
1 , . . . , p⊥

1 , p⊥
2 , . . . , p⊥

2 , p⊥
3 , . . . , p⊥

3 )t ∈ R
2N

where each p⊥
i appears exactly n times, and for a given w = (w1, w2)

t ∈ R
2 we define

w⊥ = (−w2, w1)
t . Using the antisymmetry 〈p⊥

i , p j 〉 = −〈p⊥
j , pi 〉 and the definitions of

x, y, z then shows Lvr = 0 as well. If V denotes the subspace spanned by vc and vr , we
therefore wish to know when the stability condition

max
v∈V ⊥,||v||=1

〈v, Lv〉 < 0 (37)

holds asymptotically almost surely.

Remark 4.1 The construction of the stability matrix for the d-dimensional simplex solutions
follows analogously. We let p1, . . . , pd+1 ∈ R

d denote the vertices of a regular simplex
and form kd := d(d + 1)/2 vectors xk, k = 1 · · · kd from all possible differences between
unique pairs of vertices. We then form the corresponding nd × nd generalized adjacency
matrices E ⊗ Id and E ⊗ xkxt

k and construct the Laplacian matrices L(Id) and L(xkxt
k) in

a similar fashion to the two dimensional case. The relevant random matrix L = κL(Id) −∑kd
k=1 L(xkxt

k) necessarily has a kd dimensional nullspace. The first d result from the constant
vectors vc = (w, w, . . . , w)t ∈ R

Nd(d+1) and the remaining d(d−1)/2 vectors vr result from
the total possible independent rotations of the simplex. The stability analysis then proceeds
by estimating the equivalent of (37).

4.1 Reduction to the Diagonal Component

We now turn to the task of establishing the existence of a critical scaling N p = O(log N ) for
stability in the two-dimensional compromise model. As in the one-dimensional case, we first
reduce the task to understanding the (block) diagonal of the corresponding stability matrix.
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Corresponding to the block decomposition (35), we may decompose each of the diagonal
matrices D(Id), D(xxt ), D(yyt ) and D(zzt ) as

D(Id) =
⎛

⎝
D11(Id) 0 0

0 D22(Id) 0
0 0 D33(Id)

⎞

⎠ D(xxt ) =
⎛

⎝
D12(xxt ) 0 0

0 D21(xxt ) 0
0 0 0

⎞

⎠

D(yyt ) =
⎛

⎝
D13(yyt ) 0 0

0 0 0
0 0 D31(yyt )

⎞

⎠ D(zzt ) =
⎛

⎝
0 0 0
0 D23(zzt ) 0
0 0 D32(zzt )

⎞

⎠ .

Recall that we use e1 := (1, 0, 1, 0, . . . , 1, 0)t ∈ R
2n and e2 = (0, 1, 0, 1, . . . , 0, 1)t ∈ R

2n

to denote the vectors comprised of n copies of the vectors (1, 0)t or (0, 1)t , respectively.
Note that by the construction the generalized adjacency matrices and block diagonal matrices
satisfy

Di j (M)ek = Ai j (M)ek ∀M ∈ {
Id, xxt , yyt , zzt} ∀k ∈ {1, 2}. (38)

Note also that an arbitrary unit vector v ∈ R
2N that is orthogonal to all vectors of the form

vc := (w, . . . , w)t , where w ∈ R
2 is arbitrary, decomposes as

v = α1√
6n

⎛

⎝
2e1

−e1

−e1

⎞

⎠ + α2√
2n

⎛

⎝
0
e1

−e1

⎞

⎠ + β1√
6n

⎛

⎝
2e2

−e2

−e2

⎞

⎠+ β2√
2n

⎛

⎝
0
e2

−e2

⎞

⎠+γ

⎛

⎝
w1

w2

w3

⎞

⎠ , (39)

where α2
1 + α2

2 + β2
1 + β2

2 + γ 2 = 1 and each wk ∈ R
2n satisfies

〈wk, e1〉 = 〈wk, e2〉 = 0.

The eigenvector vr of L with eigenvalue zero that arises due to rotation invariance satisfies

vr = 1

2

⎛

⎝
2e2

−e2

−e2

⎞

⎠ +
√

3

2

⎛

⎝
0

−e1

e1

⎞

⎠ ,

so that enforcing 〈v, vr 〉 = 0 for any v of the form (39) imposes the additional relation
β1 = α2 on the coefficients. Thus we can write an arbitrary v ∈ V ⊥ with ||v|| = 1 as

v = α1√
6n

⎛

⎝
2e1

−e1

−e1

⎞

⎠+ β1√
2n

⎛

⎝
0
e1

−e1

⎞

⎠+ β1√
6n

⎛

⎝
2e2

−e2

−e2

⎞

⎠+ β2√
2n

⎛

⎝
0
e2

−e2

⎞

⎠+γ

⎛

⎝
w1

w2

w3

⎞

⎠ (40)

v := α1v1+β1v2+β2v3+γ v4, α2
1 +2β2

1 +β2
2 +γ 2 =1. (41)

We therefore wish to characterize when 〈v, Lv〉 < 0 for any vector v satisfying (40), i.e.
those vectors in the subspace V ⊥ = span(vc, vr )

⊥ with norm one.
We may now follow the proof of lemma 3.1 to extract the dominant components of 〈v, Lv〉.

Write L = κL(Id) − L̃ for

L̃ := L(xxt ) + L(yyt ) + L(zzt ),

and note that (38) implies

L(Id)v = L(Id)v4.
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After some simplification, this yields as a consequence that

〈v, Lv〉 = γ 2〈v4, Lv4〉 − 〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉
−2γ 〈α1v1 + β1v2 + β2v3, L̃v4〉.

Due to (38), a simple computation demonstrates that
√

6n〈v1, L̃v4〉=3〈(A12(xxt )+ A13(yyt ))e1, w1〉−3〈A21(xxt )e1, w2〉−3〈A31(xxt )e1, w3〉.
Now realize that if w̃ = (w1, 0, 0)t and ẽ1 = (0, e1, 0)t then asymptotically almost surely it
holds that

〈w1, A12(xxt )e1〉 = 〈w̃, A(xxt )ẽ1〉 = √
N O(

√
N p) (42)

uniformly for v ∈ V ⊥. The last statement follows as w̃ ∈ Snd
0 , so theorem 2.2 applies. In a

similar fashion we have that asymptotically almost surely

〈A13(yyt )e1, w1〉 = √
N O(

√
N p),

〈A21(xxt )e1, w2〉 = √
N O(

√
N p)〈A31(yyt )e1, w3〉 = √

N O(
√

N p)

uniformly for v ∈ V ⊥, so that 〈v1, L̃v4〉 = O(
√

N p) asymptotically almost surely as well.
Applying this argument twice more, with v2 and v3 in place of v1, suffices to demonstrate
that

〈v2, L̃v4〉 = O(
√

N p), 〈v3, L̃v4〉 = O(
√

N p),

max
v∈V ⊥:||v||=1

〈v, Lv〉 =
(

max
v∈V ⊥:||v||=1

γ 2〈v4, Lv4〉 − 〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2

+β2v3)〉
)

+ O(
√

N p),

asymptotically almost surely, where the last line follows due to the fact that max{|α1|, |β1|,
|β2|, |γ |} ≤ 1 from the normalization requirement α2

1 + 2β2
1 + β2

2 + γ 2 = 1.
We now turn to the second term. To write this quantity in a more tractible fashion, we first

appeal to the following set of identities that follow by direct computation from the definitions
of x, y, z, the relation (38) and the construction of the generalized adjacency matrices—
√

3A12(xxt )e2 + A12(xxt )e1 = 0,
√

3A13(yyt )e2 − A13(yyt )e1 = 0, A23(zzt )e1 = 0,√
3A21(xxt )e2 + A21(xxt )e1 = 0,

√
3A31(yyt )e2 − A31(yyt )e1 = 0, A32(zzt )e1 = 0.

These identities then allow us to simplify the action of L̃ on each of v1, v2, v3, in that we
have

√
6nL̃v1 = 3

(
A12(xxt )e1+ A13(yyt )e1,−A21(xxt )e1,−A31(yyt )e1

)t

√
nL̃v2 = √

2
(

A13(yyt )e1− A12(xxt )e1, A21(xxt )e1,−A31(yyt )e1
)t

√
2nL̃v3 = (

A13(yyt )e2− A12(xxt )e2, A21(xxt )e2+2A23(zzt )e2,−A31(yyt )e2

− 2A32(zzt )e2
)t

.

These formulae, when combined with the previous identities, allow us to compute each
possible combination of 〈vi , L̃v j 〉 solely in terms of easily estimated, element-wise sums of
the adjacency matrix E of the underlying random graph. Specifically, we have that
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2n

3
〈v1, L̃v1〉 = n

2
〈v2, L̃v2〉 = 2n〈v1, L̃v3〉 = 〈e1, A12(xxt )e1〉 + 〈e1, A13(yyt )e1〉

n√
3
〈v1, L̃v2〉 = √

3n〈v3, L̃v2〉 = 〈e1, A13(yyt )e1〉 − 〈e1, A12(xxt )e1〉
2n〈v3, L̃v3〉 = 4〈e2, A23(zzt )e2〉 + 〈e2, A12(xxt )e2〉 + 〈e2, A13(yyt )e2〉. (43)

Note that the construction of the generalized adjacency matrices A(xxt ), A(yyt ) and A(zzt )

implies that

〈e1, A12(xxt )e1〉=
⎛

⎝
n∑

i=1

2n∑

j=n+1

ei j

⎞

⎠ (xt e1)
2 〈e2, A12(xxt )e2〉=

⎛

⎝
n∑

i=1

2n∑

j=n+1

ei j

⎞

⎠ (xt e2)
2

(44)

〈e1, A13(yyt )e1〉=
⎛

⎝
n∑

i=1

3n∑

j=2n+1

ei j

⎞

⎠ (yt e1)
2 〈e2, A13(yyt )e2〉 =

⎛

⎝
n∑

i=1

3n∑

j=2n+1

ei j

⎞

⎠ (yt e2)
2

(45)

〈e2, A23(zzt )e2〉=
⎛

⎝
2n∑

i=n+1

3n∑

j=2n+1

ei j

⎞

⎠ (zt e2)
2, (46)

where ei j denote the edges of the underlying random graph. Following lemma 3.1, if np =
�(log n) then standard concentration of measure arguments (i.e. the Chernoff bound) imply
that

n∑

i=1

2n∑

j=n+1

ei j = n
(

np + O(
√

N p)
)

with probability at least 1 − 2e−n/4. Analogous results hold for the remaining edge sums in
(44). We now substitute this fact, along with the facts that (xt e1)

2 = (yt e1)
2 = 3/4, (xt e1)

2 =
(yt e1)

2 = 1/4 and (zt e2)
2 = 1, into (43) to conclude that

〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉
= −

[
3

2
(α2

1 + 2β2
1 + β2

2 ) + 3

4
(α1 + β2)

2
]

np + O
(√

N p
)

.

This estimate holds with probability at least 1 − ce−n/4 uniformly for v ∈ V ⊥, so that the
subsequent estimate

max
v∈V ⊥:||v||=1

γ 2〈v4, Lv4〉 − 〈α1v1 + β1v2 + β2v3, L̃(α1v1 + β1v2 + β2v3)〉

=
(

max
v∈V ⊥:||v||=1

γ 2〈v4, Lv4〉 −
[

3

2
(α2

1 + 2β2
1 + β2

2 ) + 3

4
(α1 + β2)

2
]

np

)
+ O(

√
N p).

also holds with at least this probability.
It remains to estimate 〈v4, Lv4〉, which we decompose as

〈v4, Lv4〉 = 〈v4, DL v4〉 − 〈v4, BL v4〉.
Here DL := κ D(Id) − (D(xxt ) + D(yyt ) + D(zzt )) denotes the block-diagonal component
of L and BL := −κ B(Id)+ B(xxt )+ B(yyt )+ B(zzt ) denotes the off-diagonal component.
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As in the one dimensional case, we may reduce our analysis of the stability of the two-
dimensional compromise solution to a study of when the largest eigenvalue λ1(DL) of DL

is sufficiently negative. Specifically, suppose there exists a c1 > 0 so that λ1(DL) ≤ −c1 N p
asymptotically almost surely. Then as ||v4|| = 1 it follows that

〈v4, Lv4〉 ≤ −c1 N p − 〈v4, BL v4〉.
In much the same manner as we arrived at (42), it follows from theorem 2.2 that

〈v4, BL v4〉 = O
(√

N p
)

uniformly for v ∈ V ⊥. Combining this with the previous reductions, if N p = �(log N ) and
λ1(DL ) ≤ −c1 N p asymptotically almost surely then

max
v∈V ⊥:||v||=1

〈v, Lv〉 ≤ − min

{
c1,

1

2

}
N p + O

(√
N p

)
< 0

asymptotically almost surely as well. In other words, the two-dimensional simplex configu-
ration is stable.

4.2 Estimating the Diagonal

With these reductions in place, the procedure for determining the threshold follows the
program outlined in the one dimensional case. Given any of the 2 × 2 blocks Dii that
constitute the diagonal component D of the stability matrix, define

fn(p, κ, c1) := P(λ1(Dii ) ≥ c1np).

We may determine the critical probability pc from the relation

fn(pc, κ, 0) = c2(n)�

(
1

n

)
,

where c2(n) denotes a function of n that grows (or decays) more slowly than any power.
This again amounts to a computation involving independent binomial distributions. If p =
(1 + ε)pc then there exists a c1 < 0 so that

fn(p, κ, c1) = O
(
n−1−ε/2) ,

and this implies stability asymptotically almost surely by the previous reductions and the
union bound. Conversely, when p = (1 − ε)pc then

fn(p, κ, c1) ≥ c′n−1+ε/2

for some c1 > 0, and this implies instability asymptotically almost surely.
The principle that underlies the calculation of pc is straightforward. Nevertheless, this

computation can prove quite technical as the one dimensional case shows. For the sake of
brevity, we shall content ourselves with an easily established upper bound on pc for now and
leave a full calculation of the threshold for future work. For 1 ≤ i ≤ n note that

Dii = κ

(
n∑

i=1

ei j

)
Id −

(
2n∑

i=n+1

ei j

)
xxt −

(
3n∑

i=2n+1

ei j

)
yyt ,

E(Dii ) = np(κId − xxt − yyt ). (47)
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The definitions of x and y show that (x − y) yields the eigenvector of E(Dii ) with largest
eigenvalue along with its value

λ1(E(Dii )) =
(

κ − 1

2

)
np.

When np ≥ (1 + ε) log n for some ε > 0, the Chernoff bound yields
∣∣∣∣∣

n∑

i=1

ei j − np

∣∣∣∣∣ ≤ 2
√

(1 + ε)np log n

with probability at least 1 − 2n−(1+ε). As a consequence, the union bound and the triangle
inequality combine to show that with probability at least 1 − O(n−(1+ε)) the estimate

λ1(Dii ) ≤ np

(
κ − 1

2
+ 6

√
log n(1 + ε)/np

)

holds. For 0 < κ < 1/2 fixed and

np >
36(1 + ε) log n

(κ − 1/2)2

it follows that there exists c1 > 0 so that λ1(Dii ) ≤ −c1np with probability at least 1 −
O(n−(1+ε)). Of course, the same estimate holds for λ1(Dii ) when n + 1 ≤ i ≤ N as well.
The union bound then demonstrates that

λ1(D) ≤ −c1np

with probability at least 1 − O(n−ε), which suffices to yield stability asymptotically almost
surely by the previous reductions. We may summarize the preceeding in the following theo-
rem:

Theorem 4.2 Fix 0 < κ < 1/2 and ε > 0. If np(κ − 1/2)2 > 36(1 + ε) log n then the
two dimensional compromise solution, with n = N/3 individuals in each group, is stable
asymptotically almost surely. That is, (37) holds with probability approaching one as n → ∞.

This theorem implies that np = O(log n) suffices to guarantee stability of the two-
dimensional simplex asymptotically almost surely. Using a connectivity-based argument
similar to that used in [56], we may conclude that stability asymptotically almost surely
necessitates np ≥ c log n for some constant c > 0 as well. In other words, the stability
threshold for the two-dimensional simplex configuration exhibits the same critical scaling
np ∝ log n as the one-dimensional case.

5 Conclusion

This paper analyzes the behavior of a large system of interacting particles whose interaction
structure is dictated by an Erdős–Rényi random graph. Specifically, we proved theorems that
yield stability or instability for two types of simplex equilibria as the number of particles
becomes infinite. For the one-dimensional simplex equilibria we rigorously established a
conjecture first formulated in [56], i.e. an explicit formula for the critical probability above
which stability holds asymptotically almost surely. We also established that the threshold
for two-dimensional simplex equilibria exhibits the same critical scaling, with respect to the
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number of particles, as the one-dimensional case. Moreover, these same arguments reduce
complicated stability estimates to a more straightforward estimation of weighted differences
of binomial distributions. This reduction should allow for the calculation of an explicit thresh-
old in the two dimensional setting in a manner analogous to the one-dimensional setting. We
leave an investigation of this threshold for future work, however. We also leave a study of
arbitrary d-dimensional simplex equilibria for future work, although in principle our two-
dimensional arguments generalize in a straightforward way to handle simplicial solutions in
arbitrary dimensions.

We selected the standard Erdős–Rényi random graph model G(N , p) primarily for sim-
plicity and mathematical convenience. Specifically, using G(N , p) provided a good starting
point from which we developed the analytical machinery required to address the types of
problems studied in this paper. While the choice of G(N , p) might prove correct in some
models and applications, it certainly proves inappropriate in many situations as well. Many
real-world social networks and internet graphs exhibit degree statistics that deviate markedly
from the standard Erdős–Rényi model, for instance. Nevertheless, some generalizations of
the Erdős–Rényi model G(N , p) can overcome this difficulty by allowing for arbitrary degree
sequences [9,10]. Moreover, many of the analytical techniques we employed to study G(N , p)

have also been extended to handle generalized G(N , p) models [11,12,38]. We therefore rea-
sonably expect that some verison of our analysis and results should generalize in this setting,
though perhaps in a manner not quite as sharp as Theorem 1.1.

Finally, our present work does not shed light on a number of related but inherently more
complicated problems of interest. A study of random structures that do not lie in equilibrium
under all choices of random graphs, such as the ring-like equilibria in Fig. 1, would likely
require substantially different techniques than those we employed here. Similarly, our tech-
niques likely do not extend in a straightforward way to random interaction models where the
network structure evolves in time. This especially applies if the random graph itself depends
on the temporally evolving position of the agents. This type of random interaction proves
more natural in models of biological flocking [3], for instance. However, using some version
of our methods it might be possible to study emergent behavior and flocking in a Cucker-
Smale type model [15] with a random, but temporally constant, interaction structure between
agents.
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Grant FA9550-10-1-0569. JvB also acknowledges funding from NSF Grant DMS-1312344. The research of
B. Sudakov is supported in part by AFOSR MURI Grant FA9550-10-1-0569, by a USA-Israeli BSF Grant
and by SNSF Grant 200021-149111.

6 Appendix

6.1 Estimates for Generalized Adjacency Matrices

Given a random graph drawn fromG(n, p), let A ∈ Mnd×nd(R)denote an nd×nd generalized
adjacency matrix using any symmetric matrix M ∈ Md×d(R) as a sub-block. In other words,
if E denotes the adjacency matrix of the graph then we have

A = E ⊗ M

for ⊗ denoting the Kronecker product. Let M jk = Mkj , 1 ≤ j ≤ n, j ≤ k ≤ n denote
the i.i.d. matrix-valued random variables corresponding to the edges in the graph, so that
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E(M jk) = pM . For a given a vector x ∈ R
nd consider the partition x = (x1, . . . , xn)t for

xi ∈ R
d , and recall the “mean-zero” hypothesis

n∑

i=1

xi = 0. (48)

If we denote the corresponding subset of the unit ball Snd ⊂ R
nd as

Snd
0 :=

{
x :

∑

i

xi = 0,
∑

i

||xi ||22 ≤ 1

}
,

our aim lies in proving the following generalization of the theorem due to [19]:

Theorem 6.1 Let α and c0 denote arbitrary positive constants. If np > c0 log n then there
exists a constant c = c(α, c0, d, ||M ||2) > 0 so that the estimate

max
(x,y)∈Snd

0 ×Snd
|〈x, Ay〉| ≤ c

√
np (49)

holds with probability at least 1 − n−α .

Note carefully that we only require one of x or y to satisfy the mean zero property (48).
The proof of the theorem essentially reproduces the arguments of [19] by changing a few
scalars to vectors and multiplications to inner products. The first ingredient is the following
lemma:

Lemma 6.2 Fix (x, y) ∈ Snd
0 × Snd and let � = {( j, k) : |〈xk, My j 〉| ≤ √

p/n}. Then
∣∣∣∣∣∣
E

⎛

⎝
∑

( j,k)∈�

〈xk, Mkj y j 〉
⎞

⎠

∣∣∣∣∣∣
≤ ||M ||22

√
np. (50)

Proof As x ∈ Snd
0 it follows that

0 = p
∑

j,k

〈xk, My j 〉 = E

⎛

⎝
∑

( j,k)∈�

〈xk, Mkj y j 〉
⎞

⎠ + p
∑

( j,k)∈�c

〈xk, My j 〉.

By definition, whenever ( j, k) ∈ �c it follows that |〈xk, My j 〉| >
√

p/n. Thus
p|〈xk, My j 〉| <

√
np|〈xk, My j 〉|2 ≤ √

np||M ||22||xk ||22||y j ||22 for any such ( j, k), where
the last inequality follows from Cauchy-Schwarz. Combining these facts yields

∣∣∣∣∣∣
E

⎛

⎝
∑

( j,k)∈�

〈xk, Mkj y j 〉
⎞

⎠

∣∣∣∣∣∣
= p

∣∣∣∣∣∣

∑

( j,k)∈�c

〈xk, My j 〉
∣∣∣∣∣∣
≤ ||M ||22

√
np

∑

j,k

||xk ||22||y j ||22

= ||M ||22
√

np||x||22||y||22
as desired. ��

For a fixed (x, y) ∈ Snd
0 × Snd let S(x, y), L(x, y), U (x, y) denote the random variables

defined as

S(x, y) :=
∑

( j,k)∈�

〈x j , M jkyk〉=
∑

( j,k)∈�
j≤k

〈x j , M jkyk〉+
∑

( j,k)∈�
j>k

〈x j , M jkyk〉 :=U (x, y)+L(x, y).
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Although dependencies exist between L and U due to the undirected graph, when considered
in isolation each random variable is simply a sum of independent indicator random variables.
Indeed, fix any ordering of the indices � ∩ { j ≤ k} and write U (x, y) = ∑

i ui , where the
sum ranges from one to the (deterministic) size of � ∩ { j ≤ k}, and note that each ui is
either zero or 〈x j , Myk〉 with probability (1 − p) or p, respectively. Obviously for L(x, y)

an analogous statement holds.
Note that |ui | ≤ √

p/n by definition of �, and that
∑

i

Var(ui ) = p(1 − p)
∑

�∩{ j≤k}
|〈x j , Myk〉|2 ≤ p||M ||22||x||22||y||22 ≤ p||M ||22.

By applying the Chernoff bound 2.1 to the random variables (ui − E(ui ))/2
√

p/n with the
choices σ 2 = nK ||M ||22/4 and λ2 = nK ||M ||22 these facts imply that for any K ≥ 1 the
estimate

P
(|U (x, y) − E(U (x, y))| ≥ K

√
np||M ||22

) ≤ 2e−K n||M||2/4

holds. A similar argument shows that the same inequality holds for L(x, y) as well. As
S = L + U, the triangle inequality and the union bound yield the estimate

P
(|S(x, y) − E(S(x, y))| ≥ 2K

√
np||M ||22

) ≤ 4e−K n||M||2/4. (51)

Next, given 0 < δ < 1 define the finite grid

T δ :=
{

x ∈
(

δ√
n

Z

)nd

: ||x||2 ≤ 1

}

and its mean-zero variant

T δ
0 :=

{
x ∈

(
δ√
n

Z

)nd

:
∑

i

xi = 0 ||x||2 ≤ 1

}
.

The following lemma allows us to control the norm of A on Snd
0 by controlling 〈x, Ay〉

for pairs of vectors in the finite grid instead:

Lemma 6.3 If |〈x, Ay〉| ≤ c for all (x, y) ∈ T δ
0 × T δ then |〈x, Ay〉| ≤ cd

(1−δ)2 for all

(x, y) ∈ Snd
0 × Snd .

Proof Let z = (1 − δ)x, u = (1 − δ)y and note that
∑

i

zi = 0. (52)

Decompose z as z = z1 + · · · + zd where the non-zero components of zk correspond to the
kth equation in (52); that is, zk contains the kth, (d + k)th, (2d + k)th, etc. components of z
and has zeros elsewhere. As

||z||22 = ||z1||2 + · · · + ||zd ||2 ≤ (1 − δ)2,

the vector in R
n comprised of the non-zero locations of zk has norm less than (1 − δ) and

entries that sum to zero. By lemma 2.3 of [19], each zk is therefore a convex combination of
points of T δ

0 ,

zk =
Jk∑

j=1

θk
j vk

j , θk
j > 0,

Jk∑

j=1

θk
j = 1.
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Summing the zk then shows that there exists an N = J1 + · · · + Jd ∈ N, θl > 0 and vl ∈ T δ
0

so that

z =
N∑

l=1

θlvl ,

N∑

l=1

θl = d.

Lemma 2.3 of [19] also implies that u is a convex combination of points in T δ, so that there
exist M ∈ N, η j > 0 and w j ∈ T δ so that

u =
M∑

j=1

η j w j ,

M∑

j=1

η j = 1.

As a consequence,

(1 − δ)2|〈x, Ay〉| = |〈z, Au〉| =
∣∣∣∣∣∣

N∑

l=1

θl

M∑

j=1

η j 〈vl , Aw j 〉
∣∣∣∣∣∣
≤ c

N∑

l=1

θl

M∑

j=1

η j = cd.

��
An estimate of the total number of points |T δ|, |T δ

0 | in the δ-nets follows from a direct appeal
to claim 2.9 of [19]. As T δ

0 ⊂ T δ and |T δ| ≤ ec(nd) for some constant c that depends on δ,
which follows from claim 2.9 of [19], it follows that |T δ

0 × T δ| ≤ e2c(nd) as well. Applying
the union bound over T δ

0 × T δ , we may therefore summarize the preceeding in the following
lemma:

Lemma 6.4 Given any c > 0 there exists c′ > 0 so that with probability at least 1 − e−cn

the estimate

max
(x,y)∈T δ

0 ×T δ
|S(x, y)| ≤ c′√np (53)

holds.

It remains to estimate, for (x, y) ∈ T δ
0 × T δ , the remaining contribution

H(x, y) := 〈x, Ay〉 − S(x, y) =
∑

( j,k)∈�c

〈x j , M jkyk〉

where we recall �c := {( j, k) : |〈x j , Myk〉| >
√

p/n}. From Cauchy-Schwarz it follows
that

|H(x, y)| ≤ ||M ||2
∑

(k,l)∈�c

||xk ||2||yl ||21{ekl=1}. (54)

Here and in what follows, for an index subset W the notation 1W denotes the indicator
function. If we define the sets

Xi :=
{

k ∈ {1 . . . n} : δ√
n

2i−1 ≤ ||xk ||2 <
δ√
n

2i
}

Yi :=
{

k ∈ {1 . . . n} : δ√
n

2i−1 ≤ ||yk ||2 <
δ√
n

2i
}
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and fix an edge (k, l) corresponding to a non-zero term in the sum (54), then k ∈ Xi and
l ∈ Y j for some (i, j) and an edge (k, l) exists between these two vertex sets. Moreover, as
(k, l) ∈ �c it follows that

√
p/n < |〈xk, Myl〉| ≤ δ2||M ||22i+ j/n ⇒ 2i 2 j >

√
pn

provided we take δ||M ||2 ≤ 1. As a consequence,

|H(x, y)| ≤ δ2||M ||2
∑

i, j
2i 2 j >

√
np

edge(Xi , Y j )
2i 2 j

n
, (55)

where edge(Xi , Y j ) denotes the number of edges between the sets.
To bound (55), we let c1 denote an as-yet-undetermined constant and put

W := {(i, j) : 2i 2 j >
√

np, max{|Xi |, |Y j |} > (n/e)},
then decompose the sum further as

∑

i, j
2i 2 j >

√
np

edge(Xi , Y j )
2i 2 j

n
=
∑

W

edge(Xi , Y j )
2i 2 j

n
+
∑

W c

edge(Xi , Y j )
2i 2 j

n
. (56)

Assuming that each vertex has degree bounded by c1np (c.f. lemma 6.5) then edge(Xi , Y j ) ≤
c1np min{|Xi |, |Y j |}. Thus the first term is bounded by

∑

W

edge(Xi , Y j )
2i 2 j

n
≤ c1e p

∑

W

min{|Xi |, |Y j |} max{|Xi |, |Y j |}2i 2 j

n

≤ c1e
√

np
∑

i, j

22i |Xi |22 j |Y j |n−2.

Noting that

∑

i

|Xi |22i

n
≤ 4δ−2||x||2

∑

j

|Y j |22 j

n
≤ 4δ−2||y||2 (57)

then shows that the first term is O(
√

np) provided the bounded degree property holds. Fortu-
nately, if np > c0 log n for any c0 > 0, this property holds with probability at least 1 − n−α

for any α > 0 provided c1 is sufficiently large:

Lemma 6.5 (Bounded Degree) Let p ≥ c0 log n/n for any c0 > 0 and deg1, . . . , degn
denote the vertex degrees of an Erdős–Rényi random graph G(n, p). For any α > 0 there
exists a c1 = c1(c0, α) > 2 so that

P

(
max

i
degi > c1np

)
≤ 2n−α. (58)

Proof Write degi = ∑
j ei j where ei j denote the edges of the graph. As E(degi ) = np and

Var(degi ) = np(1 − p) ≤ (c1 − 1)np it follows from the Chernoff bound and the union
bound that

P

(
|degi − np| > λ

√
(c1 − 1)np

)
≤ 2e−λ2/4

⇒ P

(
max

i
|degi − np| > λ

√
(c1 − 1)np

)
≤ 2e−λ2/4+log n .
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The choice λ = √
(c1 − 1)np yields

P

(
max

i
|degi − np| > (c1 − 1)np

)
≤ 2e−np(c1−1)/4+log n ≤ 2elog n(1−c0(c1−1)/4).

Taking c1 sufficiently large gives the desired result. ��
Therefore with probability at least 1 − n−α , the first term in (56) is O(

√
np) uniformly

for (x, y) ∈ T δ
0 × T δ as long as the bounded degree property holds. It remains to handle the

second term. From the definition of W c, if V = {1, . . . , n} and 2|V | its power set we need
only consider those sets X ∈ 2|V | with |X | ≤ (n/e),

Vs := {(X, Y ) ∈ 2|V | × 2|V | : max{|X |, |Y |} ≤ n/e}.
Before proceeding, we first need to establish an estimate on the random variable edge(X, Y )

when (X, Y ) ∈ Vs :

Lemma 6.6 For (X, Y ) ∈ Vs let edge(X, Y ) denote the random variable corresponding to
the number of edges from an Erdős–Rényi random graph G(n, p) between X and Y . Let
μ(X, Y ) = E(edge(X, Y )) and M(X, Y ) := max{|X |, |Y |}. Given any α > 0 let k0(X, Y )

denote the unique solution to

k0 log(k0/e) = α + 4

μ
M log

ne

M . (59)

Then

P

(
max

Vs
(edge(X, Y ) − k0(X, Y )μ(X, Y )) > 0

)
≤ n−α. (60)

Proof From the union bound, it follows (through slight abuse of notation) that

P

(
max

Vs
(edge(X, Y ) − k0(X, Y )μ(X, Y )) > 0

)
≤

n/e∑

|X |=1

n/e∑

|Y |=1

( n
|X |)∑

X

( n
|Y |)∑

Y

P (edge(X, Y ) > k0(X, Y )μ(X, Y ))

Using a one-sided concentration inequality (c.f. [32]) for sums of indicator variables,

P(edge(X, Y ) > kμ(X, Y )) ≤ e−k log(k/e)μ(X,Y ),

which is valid for any k > 1, shows that

P(edge(X, Y ) > k0(X, Y )μ(X, Y ))

≤ e−(α+4)M log(ne/M)

since k0 > 1. It therefore follows that

n/e∑

|X |=1

n/e∑

|Y |=1

( n
|X |)∑

X

( n
|Y |)∑

Y

P (edge(X, Y ) > k0(X, Y )μ(X, Y ))

≤
n/e∑

|X |=1

n/e∑

|Y |=1

(
n

|X |
)(

n

|Y |
)

e−(α+4)M log(ne/M)

n/e∑

|X |=1

n/e∑

|Y |=1

exp {|X | log(ne/|X |) + |Y | log(ne/|Y |) − (α + 4)M log(ne/M)} .
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The fact that f (x) := x log(ne/x) is increasing for 1 ≤ x ≤ n then implies

|X | log(ne/|X |) + |Y | log(ne/|Y |) ≤ 2M log(ne/M), M log(ne/M) ≥ 1 + log n.

Combining this with the previous estimate yields

P

(
max

Vs
(edge(X, Y ) − k0(X, Y )μ(X, Y )) > 0

)
≤

n/e∑

|X |=1

n/e∑

|Y |=1

n−(α+2) ≤ n−α

as desired. ��
The definition of k0(X, Y ) and the fact μ(X, Y ) ≤ p|X ||Y | then combine to yield the

following corollary, which provides the basic estimate for the remaining contribution of W c

to the sum.

Corollary 6.7 With probability at least 1 − n−α , the estimate

edge(X, Y ) log
edge(X, Y )

e p|X ||Y | ≤ (α + 4)M(X, Y ) log
ne

M(X, Y )
(61)

holds for all X, Y ∈ Vs.

Estimating the second term in (56)

∑

W c

edge(Xi , Y j )
2i 2 j

n

now proceeds by decomposing into the following cases:

I := W c ∩
{

edge(Xi , Y j ) ≤ e2
√

p/n|Xi ||Y j |2i 2 j
}

IIA := W c ∩ {2i >
√

np 2 j } IIB := W c ∩ {2 j >
√

np 2i }
III := W c \ (I ∪ IIA ∪ IIB) .

On I we have that
∑

I

≤ e2√np
∑

i, j

22i |Xi |22 j |Y j |n−2 = O(
√

np)

due to (57) as before. On IIA and IIB the bounded degree property implies that edge(Xi , Y j ) ≤
c1np|Xi | and edge(Xi , Y j ) ≤ c1np|Y j |, respectively. Therefore

∑

IIA

≤ c1
√

np
∑

IIA

|Xi |22i

n

2 j√np

2i
= c1

√
np

∑

i

|Xi |22i

n

∑

j

2 j√np

2i
1IIA (i, j).

For fixed i let jmax(i) denote the largest j so that (i, j) ∈ IIA. Then

∑

j

2 j√np

2i
1IIA (i, j)≤ 2 jmax(i)√np

2i

∞∑

j=0

2− j ≤2 ⇒
∑

IIA

≤2c1
√

np
∑

i

|Xi |22i

n
= O(

√
np)

(62)

due to (57) once again. By reversing the roles of i and j , a similar argument shows
∑

IIB

= O(
√

np)
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as well. For the remaining set III, let III = IIIi> j ∪ III j>i where the notation signifies
|Y j | ≥ |Xi | on III j>i and vice-versa. We treat the first set and leave the second as an exercise
since it follows analogously. Using the probabilistic estimate (61) as a guide, we decompose
further into

III j>i
A := III j>i ∩

{
4 log

edge(Xi , Y j )

e p|Xi ||Y j | ≥ log
ne

|Y j |
}

III j>i
B := III j>i ∩

{
4 log

edge(Xi , Y j )

e p|Xi ||Y j | < log
ne

|Y j |
}

∩
{

ne

|Y j | ≤ 24 j
}

III j>i
C := III j>i ∩

{
4 log

edge(Xi , Y j )

e p|Xi ||Y j | < log
ne

|Y j |
}

∩
{

ne

|Y j | > 24 j
}

For the first set the estimate (61) implies

∑

III j>i
A

≤ 4(α + 4)
√

np
∑

j

|Y j |22 j

n

∑

i

2i

2 j√np
1

III j>i
A

(i, j) = O(
√

np)

due to the fact that 2 j√np > 2i , the geometric series argument from (62) and the estimate
(57). For the second set note that if (i, j) ∈ III then (i, j) /∈ I, so that the inequality

edge(Xi , Y j ) > e2
√

p/n|Xi ||Y j |2i 2 j

holds on III by definition. This combines with the definition of III j>i
B to imply that

e ≤ e
2i 2 j

√
np

≤ edge(Xi , Y j )

e p|Xi ||Y j | ≤ 2 j ,

which shows that 1 ≤ log
edge(Xi ,Y j )

e p|Xi ||Y j | and that 2i <
√

np as well. The estimate (61) therefore
implies
∑

III j>i
B

≤4(α+4)
∑

III j>i
B

|Y j | log(2 j )2i 2 j

n
≤4(α+4)

√
np

∑

j

|Y j |22 j

n

∑

i

2i

√
np

1
III j>i

B
(i, j)= O(

√
np)

due to the fact that 2i >
√

np, the geometric series argument (62) and the estimate (57),
exactly as before. On the final set the facts that

ne

|Y j | <

(
ne

|Y j |22 j

)2

, 4 ≤ 4 log
edge(Xi , Y j )

e p|Xi ||Y j | < 2 log
ne

|Y j |22 j
< 4 log

ne

|Y j |22 j

imply that edge(Xi , Y j ) ≤ e2np|Xi |2−2 j , whence

∑

III j>i
C

≤ e2√np
∑

i

|Xi |22i

n

∑

j

√
np

2i 2 j
1

III j>i
C

(i, j).

Arguing as before, the fact that 2i 2 j >
√

np gives that each sum over j is bounded by two,
so that applying (57) one final time demonstrates that the sum is O(

√
np).

The following lemma summarizes the preceeding arguments:

Lemma 6.8 Let np > c0 log n for any c0 > 0 and α denote an arbitrary positive constant.
Then there exists a c > 0 independent of n so that with probability at least 1 − n−α the
estimate
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|H(x, y)| ≤ c
√

np (63)

holds for all (x, y) ∈ T δ
0 × T δ .

Combining this with the estimate for S(x, y) and the reduction to the discrete set T δ
0 × T δ

yields the theorem.
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