Graph complexes

Thomas Willwacher

Homology

- Abundant problem in mathematics:

Classify (some type of objects) up to (equivalence).

Homology

Often classification problems can be recast as follows:

- Collection of vector spaces V_{j} with linear maps

$$
\cdots \rightarrow V_{j+1} \xrightarrow{\delta_{j+1}} V_{j} \xrightarrow{\delta_{j}} V_{j-1} \xrightarrow{\delta_{j-1}} V_{j-2} \rightarrow \cdots
$$

...such that $\delta_{j} \delta_{j+1}=0$.

- Objects to classify $=$ elements $x \in V_{j}$ such that $\delta_{j} x=0$. (closed elements)
- Equivalence: $x \simeq x^{\prime}$ if there is a $y \in V_{j+1}$ such that $x-x^{\prime}=\delta_{j+1} y(\leftarrow$ exact element)
- Can solve classification problem by computing homology

$$
H_{j}=\operatorname{ker}\left(\delta_{j}\right) / \operatorname{im}\left(\delta_{j+1}\right)
$$

Homology

- Compress notation:

$$
V=\bigoplus_{j} v_{j}
$$

graded vector space, V_{j} in degree j

- Linear map of degree -1

$$
\delta: V \rightarrow V
$$

such that $\delta^{2}=0$. (V, δ) chain complex

- Homology (graded vector space)

$$
H(V)=\operatorname{ker}(\delta) / \operatorname{im}(\delta)
$$

Kontsevich's graph complexes

- Chain complex of \mathbb{Q}-linear combinations of (isomorphism classes of) graphs

- Differential δ : edge contraction

$$
\delta \Gamma=\sum_{e \text { edge }} \pm \underbrace{\Gamma / e}_{\text {contract } e}
$$

$-\delta^{2}=0, \Rightarrow$ can compute graph homology ker $\delta / i m \delta$.

Kontsevich's graph complexes GC_{n}

For $n \in \mathbb{Z}$ define
$\mathrm{GC}_{n}=\operatorname{span}_{\mathbb{Q}}^{g r}$ \{isomorphism classes of admissible graphs $\}$
with

- Homological degree of vertices: n, of edges: $1-n$.
- Admissible:
- connected
- all vertices ≥ 2-valent
- no odd symmetries
- Differential: edge contraction

Example

Example for $n=2$:

Differential:

Graph homology

- Main (long standing) open problem: Compute the graph homology $H\left(G C_{n}\right)=$ ker $\delta / i m \delta$

Zoo of other versions

- Ribbon graphs (R. Penner '88):

- Directed acyclic graphs:

- ...and a couple of others

Origins and applications

Topology Physics

 $H\left(\operatorname{Diff}\left(S^{n}\right)\right) \quad \operatorname{Aut}\left(E_{n}\right)$ AKSZ Field theories
Plan for today

1. Graph homology: What is known?
2. Example of a reduction to graph homology

Graph complexes - state of the art in 2015

- What is known about graph homology?

Cheap information

- Differential does not change loop order \Rightarrow can study pieces of fixed loop order separately
- Have classes in GC_{n}

(k vertices and k edges)

Theorem (Kontsevich)

$$
H\left(\mathrm{GC}_{n}\right)=H\left(\mathrm{GC}_{n}^{\geq 3-\text { valent }}\right) \oplus \bigoplus_{k \equiv 2 n+1 \bmod 4} W_{k}
$$

Cheap information II

Useful because:

- Can obtain degree bounds:
- Highest degree classes have many vertices (v), few edges (e)
- Trivalence condition: $e \geq \frac{3}{2} v$
$-\Rightarrow$ upper bound on degree

$$
(\text { degree }) \leq(\# \text { loops })(3-n)-3
$$

Not so cheap results ($\mathrm{n}=2$)

Theorem (T.W., Invent. '14)

$$
\begin{aligned}
H_{0}\left(\mathrm{GC}_{2}\right) & \cong \mathfrak{g r t}_{1} \\
H_{-1}\left(\mathrm{GC}_{2}\right) & \cong \mathbb{K} \\
H_{<-1}\left(\mathrm{GC}_{2}\right) & \cong 0
\end{aligned}
$$

grt $_{1}$: Grothendieck-Teichmüller Lie algebra
Theorem (F. Brown, Annals '12)
$\operatorname{FreeLie}\left(\sigma_{3}, \sigma_{5}, \sigma_{7}, \ldots\right) \hookrightarrow \operatorname{grt}_{1}$
Deligne-Drinfeld conjecture: It is an isomorphism

Computer results
$n=2$, degree (\uparrow), loop order (\rightarrow), values $\operatorname{dim} H_{j}\left(\mathrm{GC}_{2}\right)_{k}$ loops

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7	1	0	0	0	0	0	0	0	0	1				
6	0	0	0	0	0	0	0	0	0	0				
5	0	0	0	0	0	0	0	0	0	0				
4	0	0	0	0	0	0	0	0	0	0				
3	1	0	0	0	0	1	0	1	1	2				
2	0	0	0	0	0	0	0	0	0	0				
1	0	0	0	0	0	0	0	0	0	0	0			
0	0	0	1	0	1	0	1	1	1	1	2	2	3	
-1	1	0	0	0	0	0	0	0	0	0	0	0	0	

Other degrees

Theorem (A. Khoroshkin, M. Živković, T.W., 2014)
Graph cohomology classes come in pairs, that kill each other on some page of a spectral sequence.

Cancellations in spectral sequence (even case)
$n=2$, degree (\uparrow), loop order (\rightarrow)

In summary

- Have known series of classes in one degree + their "partners"
- Explains all classes in $H\left(\mathrm{GC}_{n}\right)$ in computer accessible regime
- But: Computer cannot see very far

Origins and applications

- Graph complexes are linked to many problems in mathematics
- Today: Only discuss one specific case
- Goal: see interplay algebra - topology - physics

Topology: Little n-cubes operad

- Space of rectilinear embeddings of n-dimensional cubes

$$
L_{n}(k)=\operatorname{Emb}_{r l}(\underbrace{[0,1]^{n} \sqcup \cdots \sqcup[0,1]^{n}}_{k x},[0,1]^{n}])
$$

- Can glue configuration into another

Topology: Little n-cubes operad

- Obvious relations:
- Gluing into different slots commutes
- Nested gluing associative
$-\Rightarrow$ Operad structure
- L_{n} : Little n-cubes (balls/disks) operad, or (topological) E_{n} operad
- Very important and long studied in topology

Physics: (Topological) quantum field theories

Perturbative n-dimensional quantum field theory (simplified):

- Want: Expectation value of

$$
O[\Psi]=\iiint f\left(x_{1}, \ldots, x_{r}\right) \Psi\left(x_{1}\right)^{\alpha_{1}} \ldots \Psi\left(x_{r}\right)^{\alpha_{r}}
$$

- Perturbation theory

$$
\langle O\rangle=\sum_{\Gamma} c_{\Gamma} \int_{\operatorname{Conf}_{\# v e r t(\Gamma)}\left(\mathbb{R}^{n}\right)} f\left(x_{1}, \ldots, x_{r}\right) \omega_{\Gamma}
$$

sum is over Feynman diagrams, e.g.,

the integrand is determined by Feynman rules.

Physics: (Topological) quantum field theories

- Our case: TFT of AKSZ type (kinetic part = de Rham differential)

- Feynman rules assign to Γ a differential form on $\operatorname{Conf}_{k+r}\left(\mathbb{R}^{n}\right)$:

$$
\omega_{\Gamma}=\bigwedge_{(i, j) \text { edge }} \Omega_{S^{n-1}}\left(x_{i}-x_{j}\right)
$$

Link Physics - Topology

The connection is as follows:

- Shrinking cubes links $L_{n}(r)$ to $\operatorname{Conf}_{\mathrm{r}}\left(\mathbb{R}^{n}\right)$

\Rightarrow can build an equivalent operad out of configuration spaces.
- Assemble linear combinations Feynman diagrams with r "external" vertices into space
$\operatorname{Graphs}_{n}(r)=\operatorname{span}\langle$ Feynman diag. w/r ext. vert.〉

Link Physics - Topology

- Feynman rules give a map

$$
\omega: \operatorname{Graphs}_{n}(r) \rightarrow \Omega\left(\operatorname{Conf}_{r}\left(\mathbb{R}^{n}\right)\right)
$$

Theorem (Kontsevich)
This map is compatible with the operad structure: The Feynman diagrams Graphs $_{n}$ can be made into a real Suillvan model for L_{n}.

Link to graph complex

Theorem (T.W.)
GC_{n}^{*} is a Lie algebra and acts on Graph_{n}, compatibly with the operad structure. This action exhausts all rational automorphisms of L_{n} up to homotopy.

- Physically this action is analogous to a renormalization group action.

An application

- Of particular interest: $H_{1}\left(\mathrm{GC}_{n}\right)^{*}$ and $H_{0}\left(\mathrm{GC}_{n}\right)^{*}$, controlling obstructions and choices of weak equivalences
- Recall that

Theorem (B. Fresse, T.W.)
The little n-cubes operads are rationally rigid and intrinsically formal for $n \geq 3$.

The End

Thanks for listening!

Peek into high loop orders

How to access high loop orders?

- Computer - no way.
- But: Can count graphs and compute Euler characteristic.

University of

Zurich ${ }^{\text {VH }}$
I•Math Institute of Mathematics
Theorem (T.W., M. Živković, Adv. in Math. '15)
Define generating functions for numbers of graphs:
$P^{\text {odd }}(s, t):=\sum_{v, e} \operatorname{dim}\left(\mathrm{GC}_{v, e}^{\text {odd }}\right) s^{\vee} t^{e} \quad P^{\text {even }}(s, t):=\sum_{v, e} \operatorname{dim}\left(\mathrm{GC}_{v, e}^{\text {even }}\right) s^{\vee} t^{e}$.
There exists an explicit formula.

$$
\begin{aligned}
P^{o d d}(s, t):= & \frac{1}{\left(-s,(s t)^{2}\right)_{\infty}\left((s t)^{2},(s t)^{2}\right)_{\infty}} \sum_{j_{1}, j_{2}, \cdots \geq 0} \prod_{\alpha} \frac{(-s)^{\alpha j_{\alpha}}}{j_{\alpha}!(-\alpha)^{j_{\alpha}}} \frac{1}{\left((-s t)^{\alpha},(-s t)^{\alpha}\right)_{\infty}^{j_{\alpha}}}\left(\frac{\left(t^{2 \alpha-1},(s t)^{4 \alpha-2}\right)_{\infty}}{\left((-s)^{2 \alpha-1} t^{4 \alpha-2},(s t)^{4 \alpha-2}\right)_{\infty}}\right)^{j_{2 \alpha-1} / 2} \\
& \left(\frac{\left(t^{\alpha},(s t)^{2 \alpha}\right)_{\infty}}{\left((-s)^{\alpha} t^{2 \alpha},(s t)^{2 \alpha}\right)_{\infty}}\right)^{j_{2 \alpha}} \prod_{\alpha, \beta} \frac{1}{\left(t^{\operatorname{lcm}(\alpha, \beta)},(-s t)^{\operatorname{lcm}(\alpha, \beta)}\right)_{\infty}^{g \operatorname{gcd}(\alpha, \beta) j_{\alpha} j_{\beta} / 2}}, \\
P^{e v e n}(s, t):= & \frac{\left(s,(s t)^{2}\right)_{\infty}}{\left(-s t,(s t)^{2}\right)_{\infty}} \sum_{j_{1}, j_{2}, \cdots \geq 0} \prod_{\alpha} \frac{s^{\alpha j_{\alpha}}}{j_{\alpha}!\alpha^{j \alpha \alpha}} \frac{1}{\left((-s t)^{\alpha},(-s t)^{\alpha}\right)_{\infty}^{j_{\alpha}}}\left(\frac{\left((-t)^{2 \alpha-1},(s t)^{4 \alpha-2}\right)_{\infty}}{\left(s^{2 \alpha-1} t^{4 \alpha-2},(s t)^{4 \alpha-2}\right)_{\infty}}\right)^{j_{2 \alpha-1} / 2} \\
& \left(\frac{\left((-t)^{\alpha},(s t)^{2 \alpha}\right)_{\infty}}{\left(s^{\alpha} t^{2 \alpha},(s t)^{2 \alpha}\right)_{\infty}}\right)^{j_{2 \alpha}} \prod_{\alpha, \beta}\left((-t)^{\operatorname{lcm}(\alpha, \beta)},(-s t)^{\operatorname{lcm}(\alpha, \beta)}\right)_{\infty}^{\operatorname{gcd}(\alpha, \beta) j_{\alpha} j_{\beta} / 2}
\end{aligned}
$$

where $(a, q)_{\infty}=\prod_{k \geq 0}\left(1-a q^{k}\right)$ is the q-Pochhammer symbol.

University of

Zurich ${ }^{\text {VH }}$
I-Math Institute of Mathematics

	Even	Odd		Even	Odd
loop order	$\tilde{\chi}_{b}^{\text {even }}$	$\tilde{\chi}_{b}^{\text {odd }}$		loop order	$\tilde{\chi}_{b}^{\text {even }}$
1	0	1	16	$\tilde{\chi}_{b}^{\text {odd }}$	
2	1	1	17	-3	6
3	0	1	18	8	4
4	1	2	19	12	-5
5	-1	1	20	27	-21
6	1	2	21	14	-11
7	0	2	22	-25	21
8	0	2	23	-39	44
9	-2	1	24	-496	504
10	1	3	25	-2979	2969
11	0	1	26	-412	413
12	0	3	27	38725	-38717
13	-2	4	28	10583	-10578
14	0	2	29	-667610	667596
15	-4	2	30	28305	-28290

