

Graph complexes

Thomas Willwacher

Homology

- Abundant problem in mathematics:

Classify (some type of objects) up to (equivalence).

Homology

Often classification problems can be recast as follows:

- Collection of vector spaces V_j with linear maps

$$\cdots \to V_{j+1} \xrightarrow{\delta_{j+1}} V_j \xrightarrow{\delta_j} V_{j-1} \xrightarrow{\delta_{j-1}} V_{j-2} \to \cdots$$

...such that $\delta_j \delta_{j+1} = 0$.

- Objects to classify = elements $x \in V_j$ such that $\delta_j x = 0$. (*closed* elements)
- Equivalence: $x \simeq x'$ if there is a $y \in V_{j+1}$ such that $x x' = \delta_{j+1}y$ (\leftarrow *exact* element)
- Can solve classification problem by computing homology

$$H_j = \ker(\delta_j)/\operatorname{im}(\delta_{j+1})$$

Homology

Compress notation:

$$V = \bigoplus_j V_j$$

graded vector space, V_j in degree j

- Linear map of degree -1

$$\delta\colon V\to V$$

such that $\delta^2 = 0$. (V, δ) chain complex

- Homology (graded vector space)

$$H(V) = \ker(\delta)/\operatorname{im}(\delta)$$

Kontsevich's graph complexes

– Chain complex of $\mathbb{Q}\text{-linear}$ combinations of (isomorphism classes of) graphs

– Differential δ : edge contraction

$$\delta \Gamma = \sum_{e \text{ edge}} \pm \underbrace{\Gamma/e}_{\text{contract } e}$$

 $-\delta^2 = 0$, \Rightarrow can compute graph homology $ker\delta/im\delta$.

Kontsevich's graph complexes GC_n

For $n \in \mathbb{Z}$ define

 $GC_n = span_{\mathbb{Q}}^{gr}$ {isomorphism classes of admissible graphs}

with

- Homological degree of vertices: n, of edges: 1 n.
- Admissible:
 - connected
 - all vertices \geq 2-valent
 - no odd symmetries
- Differential: edge contraction

Example

Example for n = 2:

Differential:

Graph homology

- Main (long standing) open problem: Compute the graph homology $H(GC_n) = ker\delta/im\delta$

Zoo of other versions

- Ribbon graphs (R. Penner '88):

- Directed acyclic graphs:

- ...and a couple of others

Origins and applications

Plan for today

- 1. Graph homology: What is known?
- 2. Example of a reduction to graph homology

Graph complexes - state of the art in 2015

- What is known about graph homology?

Cheap information

- Differential does not change loop order \Rightarrow can study pieces of fixed loop order separately
- Have classes in GC_n

$$W_k =$$

(k vertices and k edges)

Theorem (Kontsevich)

$$H(\operatorname{GC}_n) = H(\operatorname{GC}_n^{\geq 3-valent}) \oplus \bigoplus_{k \equiv 2n+1 \mod 4} W_k$$

Cheap information II

Useful because:

- Can obtain degree bounds:
 - Highest degree classes have many vertices (v), few edges
 (e)
 - Trivalence condition: $e \ge \frac{3}{2}v$
 - \Rightarrow upper bound on degree

 $(degree) \le (\#loops)(3 - n) - 3$

Not so cheap results (n=2)

```
Theorem (T.W., Invent. '14)
```

$$H_0(GC_2) \cong \operatorname{grt}_1$$
$$H_{-1}(GC_2) \cong \mathbb{K}$$
$$H_{<-1}(GC_2) \cong 0$$

grt₁: Grothendieck-Teichmüller Lie algebra Theorem (F. Brown, Annals '12)

FreeLie(
$$\sigma_3, \sigma_5, \sigma_7, \dots$$
) \hookrightarrow grt₁

Deligne-Drinfeld conjecture: It is an isomorphism

Computer results

n = 2, degree (\uparrow), loop order (\rightarrow), values $\dim H_j(GC_2)_{k \text{ loops}}$

Other degrees

Theorem (A. Khoroshkin, M. Živković, T.W., 2014)

Graph cohomology classes come in pairs, that kill each other on some page of a spectral sequence.

Cancellations in spectral sequence (even case)

In summary

- Have known series of classes in one degree + their "partners"
- Explains all classes in H(GC_n) in computer accessible regime
- But: Computer cannot see very far

Origins and applications

- Graph complexes are linked to many problems in mathematics
- Today: Only discuss one specific case
- Goal: see interplay algebra topology physics

Topology: Little n-cubes operad

- Space of rectilinear embeddings of *n*-dimensional cubes

$$L_n(k) = \operatorname{Emb}_{rl}(\underbrace{[0,1]^n \sqcup \cdots \sqcup [0,1]^n}_{k \times}, [0,1]^n])$$

- Can glue configuration into another

Topology: Little n-cubes operad

- Obvious relations:
 - Gluing into different slots commutes
 - Nested gluing associative
 - \Rightarrow Operad structure
- L_n: Little n-cubes (balls/disks) operad, or (topological) E_n operad
- Very important and long studied in topology

Physics: (Topological) quantum field theories

Perturbative *n*-dimensional quantum field theory (simplified):

- Want: Expectation value of $O[\Psi] = \iiint f(x_1, \dots, x_r) \Psi(x_1)^{\alpha_1} \cdots \Psi(x_r)^{\alpha_r}$
- Perturbation theory

$$\langle O \rangle = \sum_{\Gamma} c_{\Gamma} \int_{\operatorname{Conf}_{\#\operatorname{vert}(\Gamma)}(\mathbb{R}^n)} f(x_1, \dots, x_r) \omega_{\Gamma}$$

sum is over Feynman diagrams, e.g.,

the integrand is determined by Feynman rules.

Physics: (Topological) quantum field theories

Our case: TFT of AKSZ type (kinetic part = de Rham differential)

- Feynman rules assign to Γ a differential form on $\operatorname{Conf}_{k+r}(\mathbb{R}^n)$:

$$\omega_{\mathsf{\Gamma}} = \bigwedge_{(i,j) \text{ edge}} \Omega_{\mathcal{S}^{n-1}}(x_i - x_j)$$

Link Physics - Topology

The connection is as follows:

– Shrinking cubes links $L_n(r)$ to $Conf_r(\mathbb{R}^n)$

 \Rightarrow can build an equivalent operad out of configuration spaces.

 Assemble linear combinations Feynman diagrams with r "external" vertices into space

 $\operatorname{Graphs}_n(r) = \operatorname{span} \langle \operatorname{Feynman} \operatorname{diag.} w/r \operatorname{ext.} \operatorname{vert.} \rangle$

Link Physics - Topology

- Feynman rules give a map

```
\omega: Graphs<sub>n</sub>(r) \rightarrow \Omega(\operatorname{Conf}_{r}(\mathbb{R}^{n}))
```

Theorem (Kontsevich)

This map is compatible with the operad structure: The Feynman diagrams $Graphs_n$ can be made into a real Suillvan model for L_n .

Link to graph complex

Theorem (T.W.)

 GC_n^* is a Lie algebra and acts on $Graphs_n$, compatibly with the operad structure. This action exhausts all rational automorphisms of L_n up to homotopy.

Physically this action is analogous to a renormalization group action.

An application

- Of particular interest: H₁(GC_n)* and H₀(GC_n)*, controlling obstructions and choices of weak equivalences
- Recall that

Theorem (B. Fresse, T.W.)

The little n-cubes operads are rationally rigid and intrinsically formal for $n \ge 3$.

The End

Thanks for listening!

Peek into high loop orders

How to access high loop orders?

- Computer no way.
- But: Can count graphs and compute Euler characteristic.

Theorem (T.W., M. Živković, Adv. in Math. '15) Define generating functions for numbers of graphs:

$$\mathcal{P}^{\mathit{odd}}(s,t) := \sum_{v,e} \dim ig(\operatorname{GC}^{\mathit{odd}}_{v,e} ig) s^v t^e \quad \mathcal{P}^{\mathit{even}}(s,t) := \sum_{v,e} \dim ig(\operatorname{GC}^{\mathit{even}}_{v,e} ig) s^v t^e \,.$$

There exists an explicit formula.

$$\begin{split} \mathcal{P}^{\text{odd}}(s,t) &:= \frac{1}{\left(-s,(st)^2\right)_{\infty} \left((st)^2,(st)^2\right)_{\infty}} \sum_{j_1,j_2,\cdots \geq 0} \prod_{\alpha} \frac{(-s)^{\alpha j_{\alpha}}}{j_{\alpha}!(-\alpha)^{j_{\alpha}}} \frac{1}{\left((-st)^{\alpha},(-st)^{\alpha}\right)_{\infty}^{j_{\alpha}}} \left(\frac{(t^{2\alpha-1},(st)^{4\alpha-2})_{\infty}}{((-s)^{2\alpha-1}t^{4\alpha-2},(st)^{4\alpha-2})_{\infty}}\right)^{j_{2\alpha-1}/2} \\ & \left(\frac{(t^{\alpha},(st)^{2\alpha})_{\infty}}{\left((-s)^{\alpha}t^{2\alpha},(st)^{2\alpha}\right)_{\infty}}\right)^{2\alpha} \prod_{\alpha,\beta} \frac{1}{(t^{\operatorname{lcm}(\alpha,\beta)},(-st)^{\operatorname{lcm}(\alpha,\beta)})_{\infty}^{\operatorname{gcd}(\alpha,\beta)j_{\alpha}j_{\beta}/2}}, \\ \mathcal{P}^{even}(s,t) &:= \frac{(s,(st)^2)_{\infty}}{\left(-st,(st)^2\right)_{\infty}} \sum_{j_1,j_2,\cdots \geq 0} \prod_{\alpha} \frac{s^{\alpha j_{\alpha}}}{j_{\alpha}!\alpha^{j_{\alpha}}} \frac{1}{((-st)^{\alpha},(-st)^{\alpha})_{\infty}^{j_{\alpha}}} \left(\frac{((-t)^{2\alpha-1},(st)^{4\alpha-2})_{\infty}}{(s^{2\alpha-1}t^{4\alpha-2},(st)^{4\alpha-2})_{\infty}}\right)^{j_{2\alpha-1}/2} \\ & \left(\frac{((-t)^{\alpha},(st)^{2\alpha})_{\infty}}{(s^{\alpha}t^{2\alpha},(st)^{2\alpha})_{\infty}}\right)^{j_{2\alpha}} \prod_{\alpha,\beta} \left((-t)^{\operatorname{lcm}(\alpha,\beta)},(-st)^{\operatorname{lcm}(\alpha,\beta)}\right)_{\infty}^{\operatorname{gcd}(\alpha,\beta)j_{\alpha}j_{\beta}/2} \end{split}$$

where $(a, q)_{\infty} = \prod_{k \ge 0} (1 - aq^k)$ is the q-Pochhammer symbol.

	Even	Odd		Even	Odd
loop order	$\tilde{\chi}_{b}^{even}$	${\tilde \chi}^{odd}_{b}$	loop order	${\widetilde{\chi}}_b^{even}$	${ ilde{\chi}}^{odd}_{b}$
1	0	1	16	-3	6
2	1	1	17	-1	4
3	0	1	18	8	-5
4	1	2	19	12	-14
5	-1	1	20	27	-21
6	1	2	21	14	-11
7	0	2	22	-25	21
8	0	2	23	-39	44
9	-2	1	24	-496	504
10	1	3	25	-2979	2969
11	0	1	26	-412	413
12	0	3	27	38725	-38717
13	-2	4	28	10583	-10578
14	0	2	29	-667610	667596
15	-4	2	30	28305	-28290