Graph complexes

Thomas Willwacher

EPFL 24.03.2015

Thomas Willwacher Graph complexes

Definition of graph complexes

- Origins and applications
- Structure of graph homology

Kontsevich's graph complexes

 differential graded vector spaces of Q-linear combinations of (isomorphism classes of) graphs

• Differential δ : edge contraction

$$\delta \Gamma = \sum_{e \text{ edge}} \pm \underbrace{\Gamma/e}_{\text{contract } e}$$

• $\delta^2 = 0$, \Rightarrow can compute graph homology $ker\delta/im\delta$.

Kontsevich's graph complexes GC_n

For $n \in \mathbb{Z}$ define

 $GC_n = span_{\mathbb{Q}}^{gr}$ {isomorphism classes of admissible graphs}

with

- Homological degree of vertices: n, of edges: 1 n.
- Admissible:
 - connected
 - all vertices ≥ 2-valent
 - no odd symmetries
- Differential: edge contraction

Example for n = 2:

Differential:

 Main (long standing) open problem: Compute the graph homology H(GC_n) = kerδ/imδ

Variant: Hairy graph complexes HGC_{*m*,*n*}

 $HGC_{m,n} = span_{\mathbb{Q}}^{gr}$ {isomorphism classes of admissible hairy graphs}

- Vertices have degree n, hairs m, edges 1 n.
- Differential again (non-hair-)edge contraction
- *H*(HGC_{*m*,*n*}) : hairy graph homology

Origins and applications (of GC_n , $HGC_{m,n}$)

- Physics: Feynman diagrams of certain topological field theories (Chern-Simons, more generally AKSZ)
 - Hairy version contains Vassiliev invariants
- Algebra: Computes stable Lie algebra cohomology of (ℚ[x₁,..., x_n, p₁,..., p_n], {−, −}))
- Deformation Quantization
- Topology: Deformation theory of little cubes operads TODAY
- Rational homotopy of embedding spaces TODAY

Digression: Other versions

• Ribbon graphs (R. Penner '88): compute $H(\mathcal{M}_{g,n})$.

- "Lie decorated" graphs (Culler–Vogtman '86, Kontsevich '92): compute H(Out(F_N)).
- Directed acyclic graphs: Lie bialgebras, Quantum Groups

Little n-cubes operad

• Space of rectilinear embeddings of *n*-dimensional cubes

$$L_n(k) = \operatorname{Emb}_{rl}(\underbrace{[0,1]^n \sqcup \cdots \sqcup [0,1]^n}_{k \times}, [0,1]^n])$$

• Can glue configuration into another

Little n-cubes operad

- Obvious relations:
 - Gluing into different slots commutes
 - Nested gluing associative
 - ⇒ Operad structure
- *L_n* : Little *n*-cubes (balls/disks) operad, or (topological) *E_n^{top}* operad
- Very important and long studied in topology

Goodwillie-Weiss embedding calculus

• Goal: Space of long knots: $\overline{\mathrm{Emb}}(\mathbb{R}^m, \mathbb{R}^n)$

Theorem (Goodwillie, Weiss, Dwyer–Hess, Arone–Lambrechts–Volic)

If $n - m \ge 3$ then

$$\overline{\mathrm{Emb}}(\mathbb{R}^m,\mathbb{R}^n)\simeq\Omega^{m+1}\mathrm{Map}_{op}(L_m,L_n).$$

• Embedding calculus replaces hard topological problem by an equally hard algebraic problem, that we don't know how to solve either.

Connection to graphs

New goal: Study mapping spaces

 $\operatorname{Map}_{\operatorname{op}}(L_m, L_n)$

• and automorphism groups

 $\operatorname{Aut}_{\operatorname{op}}(L_n)$

 $(\operatorname{Aut}_{\operatorname{op}}(L_n) \to \operatorname{Map}_{\operatorname{op}}(L_m, L_n))$

Operadic mapping spaces through graphs I

Theorem (T.W., Invent. Math 2014)

The graph complex GC_n acts on a combinatorial rational model for the operad L_n , such that

 $H(\operatorname{Der}(\operatorname{Chains}(L_n,\mathbb{Q}))) \cong S^+ (\mathbb{K}[n+1] \oplus H(\operatorname{GC}_n)[n+1]) [-1-n].$

Theorem (B. Fresse, V. Turchin, T.W., in progress)

$$\pi_j(\operatorname{Aut}_{op}(L_n)) \otimes \mathbb{Q} \cong H_{-j}(\operatorname{GC}_n)$$

$$\pi_j(\operatorname{Map}_{op}(L_m, L_n)) \otimes \mathbb{Q} \cong H_{-j}(\operatorname{HGC}_{m,n})$$

(for $n - m \ge 2, j \ge 1$)

- Have replaced hard topological problem by graph homology problem, that is still notoriously hard and nobody knows how to solve.
- ... well, not quite, ...

Graph complexes - state of the art in 2015

• What is known about graph homology?

only low degrees (computers) \leftarrow Lie decorated $H(Out(F_n))$ understand some series of classes \land Ribbon graphs $H(\mathcal{M}_{g,n})$ full understanding

Cheap information

- GC_n and HGC_{m,n} depend only on parity of m, n (up to degree shifts) ⇒ periodicity.
- Grading by loop order
- Combinatorial degree bounds on graph complex ⇒ Can understand low rational homotopy groups.
- Have classes in GC_n

(k vertices and k edges)

Not so cheap results (n=2)

Study GC_2 and $GC_3 \Rightarrow$ understand all GC_n

Theorem (T.W., Invent. '14)

 $H_0(GC_2) \cong \operatorname{grt}_1$ $H_{-1}(GC_2) \cong \mathbb{K}$ $H_{<-1}(GC_2) \cong 0$

grt1: Grothendieck-Teichmüller Lie algebra

Theorem (F. Brown, Annals '12)

FreeLie($\sigma_3, \sigma_5, \sigma_7, \dots$) \hookrightarrow grt₁

Deligne-Drinfeld conjecture: It is an isomorphism

Computer results

n = 2, degree (\uparrow), loop order (\rightarrow), values dim $H_i(GC_2)_{k \text{ loops}}$ 12 13 14 n Ø n n n n n n n () n n n n Ø n n Ø n n n n n n -1 A A A

Not so cheap results (n=3)

- Have many nontrivial classes in H₋₃(GC₃) from Chern-Simons theory.
- (Vogel, Kneissler) Have a map (conjecturally iso)

$$\mathbb{K}[t,\omega_0,...\omega_p,...]/\langle \omega_p\omega_q-\omega_0\omega_{p+q},P\rangle \to H_{-3}(\mathsf{GC}_3)$$

Computer results

n = 3, degree (\uparrow), loop order (\rightarrow) 4 5 6 -2 f) -3 () -4 N n n -5 Ø n -6 -7 N -8 n n n n

Other degrees

How to get information on other degrees?

• Idea: Deform differential on graph complex.

 $\delta \rightarrow \delta + D$

such that $H(GC_n, \delta + D)$ computable. \Rightarrow Information from spectral sequence.

Theorem (A. Khoroshkin, M. Živković, T.W., 2014)

There is a spectral sequence E such that $E^1 \cong H(GC_n)$ and

$$E \Rightarrow \begin{cases} \mathbb{K}[n-1] & n \text{ even} \\ \mathbb{K}[n] & n \text{ odd} \end{cases}$$

Cancellations in spectral sequence (even case)

Cancellations in spectral sequence (odd case)

- Have known series of classes in one degree + their "partners"
- Explains all classes in H(GC_n) in computer accessible regime
- But: Computer cannot see very far

• Have a map by adding one hair:

$$H(\mathrm{GC}_n^{\geq 3}) \rightarrow H(\mathrm{GC}_{m,n})[m-2n+1]$$

Theorem (V. Turchin, T.W.)

The above map is an injection in homology for all m, n.

Hairy case: Spectral sequences

• For *m* even, can deform the differential in two ways, $\delta + D_1$, $\delta + D_2$.

Theorem (A. K., V. T., M.Ž., T. W., in preparation)

For *m* even we have two spectral sequences E, F, such that $E^1 = H(HGC_{m,n}) = F^1$ and

 $E \Rightarrow 0$ $F \Rightarrow H(GC_n^{\geq 3})$

Computer data, n = m = 2

dim $H(HGC_{2,2})$, number of hairs (\uparrow), genus (\rightarrow) Entry 1₃ means one class in degree -3.

Thomas Willwacher Graph complexes

Computer data, n = 3, m = 2

dim $H(HGC_{3,2})$, number of hairs (\uparrow), genus (\rightarrow) Entry 1₃ means one class in degree -3.

	1	2	3	4	5	6	7	8
9		1 ₆						
8								
7	1 ₅	1 5	2 ₅					
6			1 ₂					
5		1 ₂	2 ₂	3 ₂	5 ₂			
4			1 ₁	1 ₁	1_{-1}			
3	1 ₁	1 ₁	2 ₁	2 ₁	3 ₁			
2					1_2	1_2		
1			1 ₋₂	1_2	2 ₋₂	$2_{-2},1_{-5}$	1 ₋₅	

Computer data, n = 3, m = 2

dim $H(HGC_{2,3})$, number of hairs (\uparrow), genus (\rightarrow) Entry 1₃ means one class in degree -3.

- Problems in several areas of mathematics reducible to graph homology computation.
- Computation of graph homology hard and long standing problem.
- But: Partial results and many classes known due to recent work.

Applications and Outlook

Three "business branches" around graph complexes

- Reducing other problems in math to graph homology computations
- Pelating various graph homology theories
- Obtaining information about graph homology

A problem in algebraic geometry

- M complex mfd. or smooth algebraic variety
- Sheaf of multi vectors $\wedge \mathcal{T}M$
 - ... algebra under wedge product
 - 2 ... carries compatible Lie bracket \Rightarrow Gerstenhaber algebra
 - \odot ... carries an action of sheaf of diff. forms $\Omega(M)$ by contraction
- Sheaf cohomology H(∧TM), is a Gerstenhaber algebra, and carries action by H(ΩM).
- Statement/Conjecture of Kontsevich:

Theorem (Dolgushev, Rogers, T.W., Annals of Math. '15)

Action of odd Chern characters $c_{2n+1} \in H(\Omega M)$ compatible with Gerstenhaber structure on $H(\wedge T M)$.

A problem in algebraic geometry II

Relation to graph complexes as follows:

- GC₂ acts on (resolution of) $\wedge TM$
- $H^0(GC_2) \cong \operatorname{grt}_1$ acts on $H(\wedge \mathcal{T}M)$
- Recall that generators of $grt_1 = H^0(GC_2)$ represented as

- Can check that leading term acts as contraction with odd Chern characters, other terms do not contribute (in cohomology).
- Using description as GC₂-action, check that it respects Gerstenhaber structure on H(∧𝒯M).

Applications and Outlook

Three "business branches" around graph complexes

- Reducing other problems in math to graph homology computations
- Pelating various graph homology theories
- Obtaining information about graph homology

Relations between graph complexes

Consider graph complex of directed acyclic graphs GC^{dag}_n.

Theorem (T.W., Comm. Math. Phys '15)

One has an isomorphism of Lie algebras $H(GC_{n+1}^{dag}) \cong H(GC_n)$.

 Has applications to Lie bialgebras and (infinite dimensional) deformation quantization

Applications and Outlook

Three "business branches" around graph complexes

- Reducing other problems in math to graph homology computations
- Pelating various graph homology theories
- Obtaining information about graph homology

Peek into high loop orders

How to access high loop orders?

- Computer no way.
- But: Can count graphs and compute Euler characteristic.

Theorem (T.W., M. Živković, Adv. in Math. '15)

Define generating functions for numbers of graphs:

$$\mathcal{P}^{odd}(s,t) := \sum_{v,e} \dim \left(\mathrm{GC}_{v,e}^{odd} \right) s^v t^e \quad \mathcal{P}^{even}(s,t) := \sum_{v,e} \dim \left(\mathrm{GC}_{v,e}^{even} \right) s^v t^e \,.$$

There exists an explicit formula.

$$\begin{split} \mathcal{P}^{odd}(s,t) &:= \frac{1}{\left(-s,(st)^2\right)_{\infty} \left((st)^2,(st)^2\right)_{\infty}} \sum_{j_1,j_2,\cdots\geq 0} \prod_{\alpha} \frac{(-s)^{\alpha j_{\alpha}}}{j_{\alpha}!(-\alpha)^{j_{\alpha}}} \frac{1}{\left((-st)^{\alpha},(-st)^{\alpha}\right)_{\infty}^{j_{\alpha}}} \left(\frac{(t^{2\alpha-1},(st)^{4\alpha-2})_{\infty}}{((-s)^{2\alpha-1}t^{4\alpha-2},(st)^{4\alpha-2})_{\infty}}\right)^{j_{2\alpha-1}/2} \\ & \left(\frac{(t^{\alpha},(st)^{2\alpha})_{\infty}}{\left((-s)^{\alpha}t^{2\alpha},(st)^{2\alpha}\right)_{\infty}}\right)^{j_{\alpha}} \prod_{\alpha\beta} \frac{1}{(t^{\operatorname{cm}(\alpha\beta)},(-st)^{\operatorname{cm}(\alpha\beta)})_{\infty}^{\operatorname{ged}(\alpha\beta)j_{\alpha}j_{\beta}/2}}, \\ \mathcal{P}^{even}(s,t) &:= \frac{(s,(st)^2)_{\infty}}{(-st,(st)^2)_{\infty}} \sum_{j_1,j_2,\cdots\geq 0} \prod_{\alpha} \frac{s^{\alpha j_{\alpha}}}{j_{\alpha}!a^{\beta\alpha}} \frac{1}{((-st)^{\alpha},(-st)^{\alpha})_{\infty}^{j_{\alpha}}} \left(\frac{((-t)^{2\alpha-1},(st)^{4\alpha-2})_{\infty}}{(s^{2\alpha-1}t^{4\alpha-2},(st)^{4\alpha-2})_{\infty}}\right)^{j_{2\alpha-1}/2} \\ & \left(\frac{((-t)^{\alpha},(st)^{2\alpha})_{\infty}}{(s^{\alpha}t^{2\alpha},(st)^{2\alpha})_{\infty}}\right)^{j_{2\alpha}} \prod_{\alpha\beta} ((-t)^{\operatorname{cm}(\alpha\beta)},(-st)^{\operatorname{lcm}(\alpha\beta)})_{\infty}^{\operatorname{ged}(\alpha\beta)j_{\alpha}j_{\beta}/2} \end{split}$$

where
$$(a,q)_{\infty} = \prod_{k\geq 0} (1 - aq^k)$$
 is the q-Pochhammer symbol

Thomas Willwacher

Graph complexes

	Even	Odd		Even	Odd
loop order	$\tilde{\chi}_{b}^{even}$	$\tilde{\chi}_{b}^{odd}$	loop order	$\tilde{\chi}_{b}^{even}$	$\tilde{\chi}_{b}^{odd}$
1	0	1	16	-3	6
2	1	1	17	-1	4
3	0	1	18	8	-5
4	1	2	19	12	-14
5	-1	1	20	27	-21
6	1	2	21	14	-11
7	0	2	22	-25	21
8	0	2	23	-39	44
9	-2	1	24	-496	504
10	1	3	25	-2979	2969
11	0	1	26	-412	413
12	0	3	27	38725	-38717
13	-2	4	28	10583	-10578
14	0	2	29	-667610	667596
15	-4	2	30	28305	-28290

Thanks for listening!

Computer data, n = 3, m = 3

dim $H(HGC_{3,3})$, number of hairs (\uparrow), genus (\rightarrow) Entry 1₃ means one class in degree -3.

Computer data, n = 2, m = 1

dim $H(HGC_{1,2})$, number of hairs (\uparrow), genus (\rightarrow) Entry 1₃ means one class in degree -3.

