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Kontsevich’s graph complexes

differential graded vector spaces of Q-linear combinations of
(isomorphism classes of) graphs

+
5
2

Differential δ: edge contraction

δΓ =
∑

e edge

± Γ/e︸︷︷︸
contract e

e
7→

δ2 = 0,⇒ can compute graph homology kerδ/imδ.
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Kontsevich’s graph complexes GCn

For n ∈ Z define

GCn = spangr
Q {isomorphism classes of admissible graphs}

with

Homological degree of vertices: n, of edges: 1 − n.
Admissible:

connected
all vertices ≥ 2-valent
no odd symmetries

Differential: edge contraction
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Example

Example for n = 2:

Differential:

δ = + 2
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Graph homology

Main (long standing) open problem: Compute the graph
homology H(GCn) = kerδ/imδ
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Variant: Hairy graph complexes HGCm,n

HGCm,n = spangr
Q {isomorphism classes of admissible hairy graphs}

, , , .

Vertices have degree n, hairs m, edges 1 − n.

Differential again (non-hair-)edge contraction

H(HGCm,n) : hairy graph homology
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Origins and applications (of GCn, HGCm,n)

Physics: Feynman diagrams of certain topological field
theories (Chern-Simons, more generally AKSZ)

Hairy version contains Vassiliev invariants

Algebra: Computes stable Lie algebra cohomology of
(Q[x1, . . . , xn, p1, . . . , pn], {−,−})

Deformation Quantization

Topology: Deformation theory of little cubes operads TODAY

Rational homotopy of embedding spaces TODAY
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Digression: Other versions

Ribbon graphs (R. Penner ’88): compute H(Mg,n).

”Lie decorated” graphs (Culler–Vogtman ’86, Kontsevich ’92):
compute H(Out(FN)).
Directed acyclic graphs: Lie bialgebras, Quantum Groups
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Little n-cubes operad

Space of rectilinear embeddings of n-dimensional cubes

Ln(k) = Embrl([0, 1]n t · · · t [0, 1]n︸                    ︷︷                    ︸
k×

, [0, 1]n])

1

2

3

Can glue configuration into another

1

2

3
◦3 a b =

1

2

a b
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Little n-cubes operad

Obvious relations:
Gluing into different slots commutes
Nested gluing associative
⇒ Operad structure

Ln : Little n-cubes (balls/disks) operad, or (topological) E top
n

operad

Very important and long studied in topology
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Goodwillie-Weiss embedding calculus

Goal: Space of long knots: Emb(Rm,Rn)

fixed outside compact

Theorem (Goodwillie, Weiss, Dwyer–Hess, Arone–Lambrechts–Volic)

If n −m ≥ 3 then

Emb(Rm,Rn) ' Ωm+1Mapop(Lm, Ln).

Embedding calculus replaces hard topological problem by an
equally hard algebraic problem, that we don’t know how to
solve either.
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Connection to graphs

New goal: Study mapping spaces

Mapop(Lm, Ln)

.... and automorphism groups

Autop(Ln)

(Autop(Ln)→ Mapop(Lm, Ln))
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Operadic mapping spaces through graphs I

Theorem (T.W., Invent. Math 2014)

The graph complex GCn acts on a combinatorial rational model for
the operad Ln, such that

H(Der(Chains(Ln,Q))) � S+ (K[n + 1] ⊕ H(GCn)[n + 1]) [−1−n].

Theorem (B. Fresse, V. Turchin, T.W., in progress)

πj(Autop(Ln)) ⊗ Q � H−j(GCn)

πj(Mapop(Lm, Ln)) ⊗ Q � H−j(HGCm,n)

(for n −m ≥ 2, j ≥ 1)
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Summary

Have replaced hard topological problem by graph homology
problem, that is still notoriously hard and nobody knows how
to solve.

... well, not quite, ...
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Graph complexes - state of the art in 2015

What is known about graph homology?

only low degrees
(computers)

understand some
series of classes

full understanding

Lie decorated
H(Out(Fn))

Ordinary graphs

Ribbon graphs
H(Mg,n)
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Cheap information

GCn and HGCm,n depend only on parity of m, n (up to degree
shifts)⇒ periodicity.

Grading by loop order

Combinatorial degree bounds on graph complex⇒ Can
understand low rational homotopy groups.

Have classes in GCn

Wk =

· · ·

(k vertices and k edges)
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Not so cheap results (n=2)

Study GC2 and GC3 ⇒ understand all GCn

Theorem (T.W., Invent. ’14)

H0(GC2) � grt1

H−1(GC2) � K

H<−1(GC2) � 0

grt1: Grothendieck-Teichmüller Lie algebra

Theorem (F. Brown, Annals ’12)

FreeLie(σ3, σ5, σ7, . . . ) ↪→ grt1

Deligne-Drinfeld conjecture: It is an isomorphism
Thomas Willwacher Graph complexes
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Computer results

n = 2, degree (↑), loop order (→), values dim Hj(GC2)k loops

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 1 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 1 2
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 1 2 2 3
-1 1 0 0 0 0 0 0 0 0 0 0 0 0
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Not so cheap results (n=3)

Have many nontrivial classes in H−3(GC3) from
Chern-Simons theory.

(Vogel, Kneissler) Have a map (conjecturally iso)

K[t , ω0, ...ωp , ...]/〈ωpωq − ω0ωp+q,P〉 → H−3(GC3)
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Computer results

n = 3, degree (↑), loop order (→)

1 2 3 4 5 6 7 8 9 10 11 12
8 1
4 1
0 1
-2 0 0 0 0 0 0 0 0 0 0 0 0
-3 0 1 1 1 2 2 3 4 5 6 8 9
-4 0 0 0 0 0 0 0 0
-5 0 0 0 0 0 0 0 0
-6 0 0 0 0 0 1 1 2
-7 0 0 0 0 0 0 0 0
-8 0 0 0 0 0 0 0 0 0
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Other degrees

How to get information on other degrees?

Idea: Deform differential on graph complex.

δ→ δ + D

such that H(GCn, δ + D) computable. ⇒ Information from
spectral sequence.

Theorem (A. Khoroshkin, M. Živković, T.W., 2014)

There is a spectral sequence E such that E1 � H(GCn) and

E ⇒

K[n − 1] n even

K[n] n odd
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Cancellations in spectral sequence (even case)

n = 2, degree (↑), loop order (→)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 1 0 1
6 0 0 0 0
5 0 0 0 0 0
4 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 1 2
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 1 2 2 3
-1 1 0 0 0 0 0 0 0 0 0 0 0 0
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Cancellations in spectral sequence (odd case)

n = 3, degree (↑), genus (→)

1 2 3 4 5 6 7 8 9 10 11 12
8 1
4 1
0 1
-2 0 0 0 0 0 0 0 0 0 0 0 0
-3 0 1 1 1 2 2 3 4 5 6 8 9
-4 0 0 0 0 0 0 0 0
-5 0 0 0 0 0 0 0 0
-6 0 0 0 0 0 1 1 2
-7 0 0 0 0 0 0 0 0
-8 0 0 0 0 0 0 0 0 0
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In summary

Have known series of classes in one degree + their ”partners”

Explains all classes in H(GCn) in computer accessible regime

But: Computer cannot see very far
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Hairy case

Have a map by adding one hair:

H(GC≥3
n )→ H(GCm,n)[m − 2n + 1]

7→

Theorem (V. Turchin, T.W.)

The above map is an injection in homology for all m, n.
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Hairy case: Spectral sequences

For m even, can deform the differential in two ways, δ + D1,
δ + D2.

Theorem (A. K., V. T., M.Ž.,T. W., in preparation)
For m even we have two spectral sequences E, F, such that
E1 = H(HGCm,n) = F1 and

E ⇒ 0

F ⇒ H(GC≥3
n )
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Computer data, n = m = 2

dimH(HGC2,2), number of hairs (↑), genus (→)
Entry 13 means one class in degree −3.

1 2 3 4 5 6 7 8
9 116 116

8 115

7 112 112

6 111

5 18 111

4 18

3 14 17

2
1 11 11 14 11 11, 14
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Computer data, n = 3, m = 2

dimH(HGC3,2), number of hairs (↑), genus (→)
Entry 13 means one class in degree −3.

1 2 3 4 5 6 7 8
9 16

8
7 15 15 25

6 12

5 12 22 32 52

4 11 11 1−1

3 11 11 21 21 31

2 1−2 1−2

1 1−2 1−2 2−2 2−2, 1−5 1−5
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Computer data, n = 3, m = 2

dimH(HGC2,3), number of hairs (↑), genus (→)
Entry 13 means one class in degree −3.

1 2 3 4 5 6 7 8
9 16

8
7 15 15 25

6 12

5 12 22 32 52

4 11 11 1−1

3 11 11 21 21 31

2 1−2 1−2

1 1−2 1−2 2−2 2−2, 1−5 1−5
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Summary

Problems in several areas of mathematics reducible to graph
homology computation.

Computation of graph homology hard and long standing
problem.

But: Partial results and many classes known due to recent
work.
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Applications and Outlook

Three ”business branches” around graph complexes
1 Reducing other problems in math to graph homology

computations
2 Relating various graph homology theories
3 Obtaining information about graph homology
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A problem in algebraic geometry

M complex mfd. or smooth algebraic variety
Sheaf of multi vectors ∧TM

1 ... algebra under wedge product
2 ... carries compatible Lie bracket⇒ Gerstenhaber algebra
3 ... carries an action of sheaf of diff. forms Ω(M) by contraction

Sheaf cohomology H(∧TM), is a Gerstenhaber algebra, and
carries action by H(ΩM).

Statement/Conjecture of Kontsevich:

Theorem (Dolgushev,Rogers, T.W., Annals of Math. ’15)

Action of odd Chern characters c2n+1 ∈ H(ΩM) compatible with
Gerstenhaber structure on H(∧TM).
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A problem in algebraic geometry II

Relation to graph complexes as follows:
GC2 acts on (resolution of) ∧TM
H0(GC2) � grt1 acts on H(∧TM)

Recall that generators of grt1 = H0(GC2) represented as

σ2j+1 =

· · ·

+ · · ·

Can check that leading term acts as contraction with odd
Chern characters, other terms do not contribute (in
cohomology).
Using description as GC2-action, check that it respects
Gerstenhaber structure on H(∧TM).
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Applications and Outlook

Three ”business branches” around graph complexes
1 Reducing other problems in math to graph homology

computations
2 Relating various graph homology theories
3 Obtaining information about graph homology
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Relations between graph complexes

Consider graph complex of directed acyclic graphs GCdag
n .

Theorem (T.W., Comm. Math. Phys ’15)

One has an isomorphism of Lie algebras H(GCdag
n+1) � H(GCn).

Has applications to Lie bialgebras and (infinite dimensional)
deformation quantization
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Applications and Outlook

Three ”business branches” around graph complexes
1 Reducing other problems in math to graph homology

computations
2 Relating various graph homology theories
3 Obtaining information about graph homology
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Peek into high loop orders

How to access high loop orders?

Computer - no way.

But: Can count graphs and compute Euler characteristic.
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Theorem (T.W., M. Živković, Adv. in Math. ’15)

Define generating functions for numbers of graphs:

Podd(s, t) :=
∑
v ,e

dim
(
GCodd

v ,e

)
sv te Peven(s, t) :=

∑
v ,e

dim
(
GCeven

v ,e

)
sv te .

There exists an explicit formula.

Podd (s, t) :=
1(

−s, (st)2
)
∞

(
(st)2 , (st)2

)
∞

∑
j1 ,j2 ,···≥0

∏
α

(−s)αjα

jα!(−α)jα

1

((−st)α , (−st)α)jα
∞


(
t2α−1 , (st)4α−2

)
∞(

(−s)2α−1 t4α−2 , (st)4α−2
)
∞


j2α−1/2


(
tα , (st)2α

)
∞(

(−s)α t2α , (st)2α
)
∞


j2α ∏

α,β

1(
t lcm(α,β) , (−st)lcm(α,β)

)gcd(α,β)jα jβ/2
∞

,

Peven(s, t) :=

(
s, (st)2

)
∞(

−st , (st)2
)
∞

∑
j1 ,j2 ,···≥0

∏
α

sαjα

jα!αjα

1

((−st)α , (−st)α)jα
∞


(
(−t)2α−1 , (st)4α−2

)
∞(

s2α−1 t4α−2 , (st)4α−2
)
∞


j2α−1/2


(
(−t)α , (st)2α

)
∞(

sα t2α , (st)2α
)
∞


j2α ∏

α,β

(
(−t)lcm(α,β) , (−st)lcm(α,β)

)gcd(α,β)jα jβ/2

∞

where (a, q)∞ =
∏

k≥0

(
1 − aqk

)
is the q-Pochhammer symbol.
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Even Odd
loop order χ̃even

b χ̃odd
b

1 0 1
2 1 1
3 0 1
4 1 2
5 -1 1
6 1 2
7 0 2
8 0 2
9 -2 1
10 1 3
11 0 1
12 0 3
13 -2 4
14 0 2
15 -4 2

Even Odd
loop order χ̃even

b χ̃odd
b

16 -3 6
17 -1 4
18 8 -5
19 12 -14
20 27 -21
21 14 -11
22 -25 21
23 -39 44
24 -496 504
25 -2979 2969
26 -412 413
27 38725 -38717
28 10583 -10578
29 -667610 667596
30 28305 -28290
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The End

Thanks for listening!
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Computer data, n = 3, m = 3
dimH(HGC3,3), number of hairs (↑), genus (→)
Entry 13 means one class in degree −3.

1 2 3 4 5 6 7 8
9 214

8 113 213

7 210 510 18

6 19 29 39, 17 47

5 16 36 66 14

4 15 15 25 35, 13 45, 33

3 12 12 32 42

2 11 11 21 21

1 1−2 1−2 2−2 2−2, 1−5 1−5
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Computer data, n = 2, m = 1
dimH(HGC1,2), number of hairs (↑), genus (→)
Entry 13 means one class in degree −3.

1 2 3 4 5 6 7 8
9 18

8 17 17

7 18 16

6 16 16 16, 17

5 14 15 15, 17 25

4 13 15, 16 16

3 14 14

2 12 15

1 11 11 14 11 11, 14
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