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Introduction

Our moduli space M consists of triples (f,w,ws), where f is a quadratic rational map from
the Riemann sphere C to itself and w1,we are the critical points of f. A point w in C has
exact preperiod (m, k) under f if there exist integers m > 0 and k£ > 1 which are minimal
such that f,,41(w) = fm(w). Here f, denotes the n' iterate of f.

The moduli space is essentially an affine surface. The subset M, j of triples (f, w1, w2) where

wy has exact preperiod (m, k) under f is an algebraic curve inside M.

Conjecture (Pink). The curves M,, j are irreducible and given by explicit polynomials which

are irreducible.

Our aim is to find these explicit polynomials. For technical reasons, we work with an open set
N inside M, i, obtained by removing the finitely many triples which additionally satisfy
f(wa2) € {w1,w2}. The definition of preperiodicity gives one closed and finitely many open
conditions. Using this we derive a recursive formula for polynomials C,,  that describe ./\fm,k.
Due to the open conditions, the zero locus of each Cp,; contains certain curves N, ;s for
smaller integers m’ < m and k¥’ < k. The polynomial that defines the Zariski closure of one of
these curves by a single closed condition is the unique factor of C,, ;, which is not a factor of
any other (), ;. This property is analogous to that of cyclotomic polynomials as factors of
™ — 1. Our main result is the existence of a similar unique factorisation. In preparation for
this result, we determine all greatest common divisors and certain divisibility relations. These
are key to the proof that the explicit decomposition does indeed yield polynomial factors. We
also briefly discuss the relations between these factors and give a condition under which their

zero loci are equal to the Zariski closure of the curves.

The principal prerequisite for this bachelor thesis is elementary algebra as covered in an
undergraduate course. In addition, some familiarity with very basic notions of algebraic

geometry may be helpful.




1 Basic Notions and Notation

We will often identify the Riemann sphere C:=Cu {oo} with the complex projective line
P! := CP!. This is the subset of C? consisting of all pairs of complex numbers (a, 3) # (0, 0)
modulo the equivalence relation (a, 8) ~ (A, AB) for any A € C*. We denote elements of P!
by [a : (]. Following standard conventions, the points 0 and oo in C are identified with the
points [0 : 1] and [1 : 0] respectively, and for 3 # 0, we identify [ : 8] in P! with 3 in C. The
following vocabulary is that used by Silverman in [4].

A quadratic rational map from the Riemann sphere to itself is a map

a1z + Bz +n
aox? + Pox + Y2

f:@—)@,x»—)

with coefficients a1, ag, 51, 82,71, 72 in C such that (i) @y and ag are not both zero and (ii)
numerator and denominator have no nontrivial common factors as polynomials. This gives

rise to a holomorphic map from the projective line to itself:
FiP =P [y = [aa® + Bray + ny? : aer® + Bary + 1297

By setting fo := id and f,41 := f o f, for nonnegative integers n, we let f, denote the nt*
iterate of f.

The (forward) orbit of a point w in C under f is the set Of(w) := {fulw) | n > 1}. For
integers m > 0 and k > 1, we call w a preperiodic point under f with preperiod (m,k) if w
satisfies the equation fy,1r(w) = fim(w). In this case, the orbit Oy (w) is finite. If m and k are
minimal with respect to this equation, then we say that w has exact preperiod (m, k). When
w has preperiod (0, k), i.e. when w satisfies fi(w) = w, we say w is k-periodic. If k is minimal
with this property, then w has exact period k.

A critical point of f is a point w € C at which the derivative of f vanishes. Every quadratic
rational map has precisely two critical points!, which we denote by w; and ws.

The (strictly) postcritical orbit of f is the union Of(wi) U Of(ws) of the orbits of the two
critical points of f. We say f is postcritically finite if this set is finite.

The map f is a 2-to-1 branched covering with exactly one nontrivial covering automorphism,

which we denote by ;. This is a Mobius transformation with the following properties:
(1.1) (i) o7 =id (i) foor=f (i) of(w) =w <= w € {wi,wa}

Since f is branched at its two critical points, the postcritical orbit contains at least two distinct
elements f(wy) and f(wz). Our aim is to determine for which quadratic rational maps the
orbit of the first critical point is finite. In order to do so, we first need an appropriate moduli

space.

'This can be shown, for example, by using the Riemann-Hurwitz formula, cf. Silverman [4, Cor. 1.2.]




2 The Moduli Space M

Let us first look at triples (f,w1,ws) consisting of a quadratic rational map f together with
an ordered list of its critical points. The group PSLy(C) of Mdbius transformations acts on

the space of these triples via conjugation:

Vi € PSLy(C) : o.(f,wi,w2) = (o fou™ !, p(wr), p(wa)).

We define as our moduli space the set of all such conjugacy classes. We denote this set by M

and its elements by (f, w1, ws2). We now want to find a more specific description of M.

Proposition 2.1. Every conjugacy class in M contains a representative of the form (f,0,00).

For every such triple, the nontrivial covering automorphism oy of f is given by
of(z) = —x
and f is of the form

f(z) = M

= 214 where ad — By # 0.

Conversely, any f of this form yields an element (f,0,00) € M.

Proof. The action of PSLs(C) on P! is sharply 3-transitive. This implies that, in particular,
for any triple (f,w,ws) there exists a Mdbius transformation ¢ such that ¢(w;) = 0 and
¢(wz) = 0o. Thus, each conjugacy class in M contains a representative of the form (f,0, c0).
The critical points 0 and co of f are precisely the fixed points of the nontrivial covering
automorphism oy, which is a Mdébius transformation. Therefore, it must be of the form

of(x) = Az for some A € C*. But JJ% = id is only satisfied if A = 1. Since o is nontrivial,

we thus conclude that of(x) = —x.
We have that f(x) = f(os(x)) = f(—=). This identity can only hold if f has no linear terms
ox+8

in z. Thus f is of the form Furthermore, (o, () is not a multiple of (v, d) by definition

yx246
of a quadratic rational map. Thus, ad — 8y cannot vanish.

For the converse, let f be given by f(x) = £ 8 with ad— B~ # 0. Considering the derivative

yx2+48
df (z) = %, we see that df (x) = 0 if and only if z = 0 or © = co. In other words, the
points 0 and oo are the two critical points of f. O

Let N denote the set of conjugacy classes (f,wi,ws) that satisfy f(ws) # wi,ws and let N
denote that of all (f,wy,ws) satisfying f(w1) # wi,ws. Then M\ (N UN) is the set of

(fiwi,we) with {f(w1), f(we)} = {w1,wa}.

Statements (i),(ii) and (v) of the next proposition are mentioned in a more general setting in
the proof of [2, Prop. 1.8] and in [2, Prop. 1.4].




Section 2 The Moduli Space M

Proposition 2.2. The subsets N and N' of the moduli space are characterised as follows:

(i) Every pair (a,b) € C?\ diag(C) defines an element <"”2+“ 0,00) in N and an element

x2+b7
2 .
(EtE,0,00) in N7,

zQJra
CEQ _;’_b )

0,00), each for a unique pair (a,b) in

(ii) Conversely, every conjugacy class in N contains a representative ( 0,00) and every

! : . ax+1
element of N’ admits a representative (beH,

C? \ diag(C).

(iii) The intersection N NN’ is the set of conjugacy classes (iii‘;, 0, 00) with ab # 0.

(iv) Every element of the complement of N in N is of the form ((cx?® 4+ 1)*1,0,00) for a

unique ¢ € C* and some sign. Conversely, every ¢ € C* defines an element of this set.
(v) The set M\ (N UN") consists of precisely the two conjugacy classes (x+2,0, 00).

Proof. We will prove (i) and (ii) for N. The proofs for N’ are analogous.
(i) Let f be given by f(x) = zii‘; with a # b in C. By Proposition 2.1, this yields an element
(f,0,00) € M. Furthermore, we have that f(co) = 1. Thus, the pair (a,b) € C?\ diag(C)

defines a conjugacy class (f,0,00) in N.

(ii) For any conjugacy class (f,w1,ws) € N, the points wi,ws and f(wy) are distinct. Thus, we
can uniquely define a M&bius transformation ¢ by requiring that p(w;) = 0 and ¢(wz) = 00
and o(f(wz)) = 1. This yields a representative (f,0,00) with f(co0) = ¢(f(ws)) = 1. By
Proposition 2.1, this f is of the form f(z) = ‘f‘yizig with ad — 87 nonzero. Since ¢ is unique,
so are the coefficients of f. Furthermore, we have 1 = f(c0) = /7, and thus a@ = . This

implies that f(z) = zif;i? = iii{g;z with 8/a # §/a, as claimed.

(iii) Using (i),(ii) and the fact that f(wi) # wi,ws for any element (f,wy,ws) of N7, we
find that (f,wi,ws) lies in N NN if and only if (f,wy,ws) = (f(z)= iii‘;,o,o@ for a pair
(a,b) € C?\ diag(C) and f(0) = a/b # 0,00. The last equation is equivalent to ab # 0.

(iv) The complement of A in A/ consists of all (f, w1, ws) that satisfy f(wz) € {wi, w2} and
f(w1) # wi,ws. By (ii), we have (f,wy,ws) = (f(m):‘g;fjﬂ,o, oo) for unique a and b. More-
over, f(o0) = a/b € {0,00}. From this we deduce that f(x) = (ax? + 1) or (bx? + 1)}
with a,b € C*. Conversely, for any ¢ € C*, the maps fi(z) = (cz? 4+ 1)*! clearly satisfy

J+(o0) € {0,00} and f1(0) # 0,00. Thus c yields elements (f+,0,00) in N7\ N.

(v) The elements of M \ (N UN”) are precisely the conjugacy classes (f,wi,ws) such that
{f(w1), f(w2)} = {w1,ws}. By Proposition 2.1, the map f is conjugate to f(x) = :izig with
ad — By # 0. Moreover f satisfies f(oco) = a/y and f(0) = $/6. From these properties we

conclude that f(z) = $2? or gw_z. Thus, (f,w;,ws) = (#¥2,0, 00) for some sign. O
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Remark 2.3. Statements (i) and (ii) of Proposition 2.2 give bijections N <+ C? \ diag(C)
and N’ < C?\ diag(C).

Statement (iv) tells us that the complement of A/ in M is in bijection with two copies of C,
if we additionally assign 0 to (2%2,0, co).

From Statement (v), we see that M is equal to the union of N, N7 and the two points
(x*2,0,00). Thus, we find that M is essentially an affine surface. This can be made precise,

see for example [1, Lemma 6.1].

We now want to describe subsets of M consisting of (f,w;i,ws) such that the forward orbit

of the first critical point under f is finite of a given form.




3 The Curves in M

Let (f,w1,w2) represent an element of M, with covering automorphism o . Consider the orbit
Of(w1) = O(w1) of the first critical point under f. This is a finite set when wy is preperiodic.
More specifically, if wy has exact preperiod (m + 1,k) for m,k > 1, then the orbit O(w;) has
cardinality m + k. Since f~1(f(w1)) = {w1}, the equation fr 1(wi) = f(w1) is equivalent to
fr(w1) = wi. In other words, wy has preperiod (1, k) if and only if it is k-periodic.

We define M ; as the subset of M of all conjugacy classes whose first critical point has exact
period k. For all m,k > 1, we denote by M,, ;. the subsets consisting of all conjugacy classes

with a first critical point of exact preperiod (m + 1, k).

Claim 3.1. Forallm >0 and k> 1:

Mo = {(f,wi,w2) € M| frpir(wi) = op(fm(wr)) and f(wr), ..., fmir(wr) all distinct}.

Proof. A direct computation using the properties of o shows that o o fop-1) = pooyso oL

Thus, if the equation f,,1r(w1) = of(fm(w1)) holds for f, then it also holds for any conjugate.

The claim now follows from the equivalence:

Jmtkr1(@1) = fms1(w1) = figk(w1) = op(fm(wr)) or fnrk(wi) = fim(wi).

The first direction is due to the fact that f~'(f(w)) = {w,0(w)} for any point w € C. The
converse follows by applying f to both sides of each equation and using Properties (1.1.ii)

and (1.1.iii) of the covering automorphism. O

For all m > 0 and k£ > 1, define
(3.2) Nk := M NN

This is the subset of M,, ;, of elements (f,wi,ws) that additionally satisfy f(w2) # w1, wo.
Claim 3.3. For each m >0 and k > 1, the complement of N in M, . is a finite set.

Proof. By Proposition 2.2 (iv) and (v), the complement of A/ in M is the set of conjugacy
classes of the form {(cz? 4+ 1)*1,0, 00) for ¢ € C* or of the form (z*2 0, 0c). By Proposition
2.1, the associated covering automorphism is z + —x. For f(x) = ca? + 1, the iterate f,
evaluated at 0 is a polynomial in ¢ of degree 2" — 1, with leading coefficient 1 and constant
term 1. Therefore, the expression F, ;(c) := fim4£(0) + fin(0) is a polynomial in ¢ of degree
2m+k 1, with vanishing constant term. Thus, assigning 0 € C to (22,0, c0), we get a bijection

between the set
{(9:2,0,00)} U {(c:c2 +1,0,00) | c € C* and fr,1£(0) = — £ (0)}

and the zero locus of Fj, ;. in C, where c is now an abstract variable. But F}, ; is a univariate
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polynomial which cannot vanish identically due to its degree. Thus F, ; has only finitely

many zeros, which implies that the above set is finite. A similar argument shows that for

g(xz) = (cz® + 1)7!, the analogous set is also finite. Since M, is contained in the set
{(f,wi,w2) € M | frngr(wi) = o¢(fm(w1))}, it follows that M,, ; \ N is a finite union of
finite sets and thus itself finite. O

Claim 3.3 implies that any findings we make regarding N, j hold for all but finitely many
points in M,, 1, namely the conjugacy classes of maps that satisfy f(wz) € {w1,w2}. Since
each M,, j is defined by one closed and finitely many open conditions, using the fact that M
is essentially an affine surface as discussed in Remark 2.3, we can identify each set Nm,k with
an algebraic curve in C?\ diag(C). From here on, we will work with representatives (f,0, c0)
e
The set of curves NV, 1 contains information on how the preperiodicity of a first critical point

of elements in NV, where f(z) = and of(z) = —z.
varies as a function of a and b. So we will consider a and b as abstract variables and search
for polynomials P,  in Z[a,b] whose zero locus in C? \ diag(C) is equal to the Zariski closure

of the curve N, .




4 The defining Polynomials

Let R := Z]a,b] denote a polynomial ring over the integers, and set R :=17Z [a,b, ﬁ}
The projective line P'(S) over an R-algebra S consists of pairs of relatively prime elements

(z,y) € S x S modulo the relation (z,y) ~ (uz,uy) for any u € S*.

Consider any ring homomorphism ¢ : R — S, f +— ¢f. We obtain a quadratic morphism
ofPYS) = PYS), [z:y] — [mQ—i—@ayQ : xz—i—‘pbyQ] )

This is well-defined, because a # b everywhere in R. We define polynomials in R by the

recursion

2 2
po =0, Pnt1 =Dy, +aq
(41) n+ n n

g0 =1, Gni1 = P2+ bg?.

By identification, we have f,([0 : 1]) = [pn : qn] = f]’—: = fn(0). Therefore, the following

equivalence holds:

(4‘2) fm+k:(0) = Uf(fm(O)) = _fm(o) < Pmtkdm T PmAmik = 0.

For all m > 0 and k£ > 1, we define the polynomial

(4‘3) Cm,k ‘= Dm+kqm + PmGmk-
This leads to the identity

(4.4)
Nm’k = {(a, b) € C? \ diag((C) | Cm,k =0 and Ym' <m, VK <k, (m', k') # (m,k): Cm’,k’ 75 0}

As we can see from this description of N, i, the curve is a subset of the zero locus of C,
in C? \ diag(C). The next step is to find the common divisors of any two Crnie and Chyr g
Then we can define a new polynomial cleared of all common divisors, and the zero locus of

this new polynomial will still contain the curve Ny, k.




5 The Divisibility Relations

In this rather technical section, we will determine the greatest common divisor of any two
polynomials C,, 1, and Cy, s In order to do so, we first establish certain divisibility relations.
Unless otherwise specified, all such relations and greatest common divisors [ged] will be in R.

First, note that every ring homomorphism ¢ from R to an arbitrary ring S induces a map

¢ PHR) = PYS), [ y] — [p(x) : o(y)].

Using the same notation as in the previous section, for any such ¢ the definition of C, s

yields
(5.1) Vm >0, k>1: “Cpir=0 < ?fn1%(0) = =% fn(0).
To start with, we will concentrate on the case m = 0. Here, we have

Vk>1: Cox = prqo + pogr = Dk
and hence,
(5.2) Vk>1: sOpk =0 < Ska(()) =0.

Claim 5.3. For all k > 1, the polynomials py, and qi are congruent modulo (b — a).

Proof. Since a = b mod (b — a), we have py = ¢; mod (b — a). By induction on k we find
that pr+1 = pi + agi = pi + bgi = qr+1 mod (b — a). O
Claim 5.4. For all k > 1, neither px nor qx is a multiple of b — a.

Proof. By Claim 5.3, it is sufficient to prove this claim for pi. We proceed by induction.

The statement is clearly true for p; = a. Claim 5.3 implies that
Pe+1 = pi + agi = (1+ a)p; mod (b — a).

Thus pgy1 #Z 0 mod (b — a) by induction hypothesis. O

Claim 5.5. For all k > 1, both ged(pg, qx) and ged(pr, mod 2, g, mod 2) are equal to 1.

Proof. For k = 1, we have the identity ged(pi,q1) = ged(a,b) = 1. For k£ > 1, note that
qx — pr = (b—a)gi_,. Therefore,
_ _ 2\ (b=a)tpr 2
ged(pe, ax) = ged(pr, ar — pr) = ged(pr, (b — a)ge—1) = " ged(pr, gi—1)
= ged(p_1 + adi_1, Gt—1) = ged(Pi_1, Gh—1) = ged(Pr—1,qx-1)* = 1,

by induction. The proof of the second part of the statement is analogous. O
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Claim 5.6. For all divisors £ of k > 1, the polynomial py divides py.

Proof. Let ¢ : R — R/(p;) be the projection map. Using Equivalence (5.2), we know that
¥pe = 0 implies ? fy(0) = 0. Since ¢ divides k, this in turn implies that ¥ f;(0) = 0. Therefore
“pr, = 0, again using Equivalence (5.2). Thus py lies in the ideal Rp; and Claim 5.4 implies
that pg lies in Rpy, so p, divides pi in R. O

Lemma 5.7. For all k, k' > 1, the greatest common divisor of py and py is Pged(k k) -

Proof. Set h := ged(pg,pr) in R and ¢ := ged(k, k). From Claim 5.6 we know that py
divides h. For the converse, that h divides py, we proceed by induction on max{k,k’}. The
statement is clear for k = k'. For k # K/, let ¢ : R — R/(h) be the projection map and
without loss of generality, assume k > k’. Suppose that the claim holds for all k < k. Since
pr and py both lie in Rh, we have that ?f1(0) =0 and ¥ fi»(0) = 0. From this we deduce

0="f(0) =% fr_p (*fir (0)) = ¥ fr—r(0),

which implies that ?p;_js = 0. Therefore py_g lies in Rh and thus in Rh, again by Claim
5.4. So h divides py_j in R. But ged(k — k', k') = ged(k, k'), and k — k' < k, so by induction
hypothesis we have py = ged(pg_ir, pr). Hence h divides py and we conclude that h = p,. [

Now that we have found the greatest common divisor for the case m = 0, we can move on to
the general case m > 0. This will take a little more effort, because the results differ for the

three cases ged(Cp i, i), 8¢d(Co s Crn i) and ged(Cry oy Crns ).
Claim 5.8. The polynomial Cy, 1 is not a multiple of b — a for any m,k > 1.

Proof. We proceed by induction on m. Recall that ¢ = px, # 0 mod (b — a) by Claims 5.3
and 5.4. Therefore,

Crik = Pr41q1 + P1Gkt1 = 2p1Pk 41 = 2apgy1 Z 0 mod (b — a).

For m > 1, suppose that Cp,—1 1 = 2Pm—1Pm+k—1 # 0 mod (b — a). Recall from the proof of
Claim 5.4 that py = (1 +a)p?_, mod (b — a). Thus,

2Cm,k = Q(perka + pmqm+k) = 4pmpm+k = 4(1 + a)pizfl(l + a)p3n+k—1
=(1+a)*4p2 1Pty = (1+ a)QC',Zn_Lk # 0 mod (b — a). O

Claim 5.9. For all m,k > 1, the polynomial pgeq(m, k) divides Cpy .
Proof. Using Lemma 5.7 and the identity ged(m, m + k) = ged(m, k), we see that
Pgcd(m,k) = Pged(m4+-k,k) — ng(pm+k7pm)-

Therefore Pgcd(m,k) divides ppmikdm + Pmlmik = Cm,k- 0

10
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Lemma 5.10. For allm, k, k" > 1, the greatest common divisor of C, j, and pys is Pged(m,k k') -

Proof. Set ¢ := ged(m, k, k') and h := gcd(Cpy g, par)- Let ¢ : R — R/(h) be the projection
map. We know that p, divides both pgeq(m k) and py by Claim 5.6 and that pgeq(m k) divides
Cpm k. by Claim 5.9. Therefore p, divides both C,, ; and py and thus also h. To prove the

converse, that h divides py, we proceed by induction on max{k, k'}.

If k =K', then ¢ = ged(m, k) and h = ged(Chy, i, pi). Using Equivalences (5.1) and (5.2), we
know that

@Cm,k: =0 = gDfm-&-k:(o) = _Sofm(o)
fpp =0 — #,(0) = 0.

Together this implies
<pfm(0) = <me(§9fk(0)) = gDfm-i-k(o) = _<pfm(0)’

hence ¥ f,,,(0) = 0 or oo.

If f,(0) = oo, then g, = 0 and thus g, lies in Rh. Since b — a does not divide g, by
Claim 5.4, we find that h divides g, in R. It follows that p, also divides q,,. Moreover py
divides p,,, by Claim 5.6, since ¢ is a divisor of m. Hence p,; divides ged(pm, g¢m) in R. But
gcd(pm, gm) = 1 by Claim 5.5, so this is not possible. Therefore, ¥ f,,(0) = 0 and equivalently
?pr = 0. S0 py, lies in Rh and thus in R by Claim 5.4. Hence h divides ged(pp, pi) = pe-

For the case k > K/, suppose the claim is true for any k < k. We know that
PCmk =0 and *pp =0 = “f,11(0) = =¥ f,,(0) and ?f(0) = 0.
It follows that
7 fm(0) = % ik (0) = frntk—t (* fir (0)) = frnsk—r (0).

This implies that ?Cy, i = 0. So Cy, j—p lies in Rh and thus in Rh using Claim 5.8. There-
fore h divides ged(Chy, ki, par) and by induction hypothesis ged(Cop k—k/, Pr/) = Pged(m, k—k! k')
Since ged(m, k — k', k') = ged(m, k, k') = £, we conclude that h divides py.

For the case k' > k, note that

“prr = 0 and @Cm,k =0 = (pfm-&-k-I—k’(O) = @fm+k(@fk’(0)) = Lpfm+k(0) = _Safm(o)‘

Therefore C), p1+5r = 0. Since k + k' > k', we can reduce to the previous case, which yields
that ged(Crn ik Pi') = Pged(m bk k') = Pe in R. Moreover h divides both C, 1 and py.
Therefore h divides py, and we conclude that h = py. ]

11
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Lemma 5.11. For all m,k, k" > 1, the greatest common divisor of Cp, i, and C, i is given

by Crged(k i)~ In particular Cp, ¢ divides Cpy . for any divisor £ of k.

Proof. Set ¢ := gcd(k, k') and consider the projection map ¢ : R — R/(Cy, ). We know
that ¥C,y, ¢ = 0 implies ¥ f,,4¢(0) = =¥ f,,(0), and since ¢ divides both k and &, this implies
both

Y fnsk(0) =¥ frnpe(0) = =¥ fm(0)
? gt (0) = ¥ frnge(0) = =¥ fin (0).

Therefore owJg =0 and ow,k' = 0. So Cy, ¢ divides both Cy, , and C,, 5 in R, and thus in
R by Claim 5.8. Hence Cy, ¢ divides ged(Chy i, Crn i) in R.

For the converse, set h := gcd(Chy iy O i) and let ¢ - R — ];?/(h) be the projection map.
Then

POk = Crmp =0 = P frnik(0) = ¥ froq (0) = =¥ fm(0)

= ?frntk+1(0) = ? frniwr+1(0) = % fr11(0).

S0 # fim+1(0) is both k- and k’-periodic. But then ¥ f,,,41(0) must also be ¢-periodic. Therefore,

? fmte4100)) = ? frn1(0) = frngnre(0) = 7 frnix(0) = =% £ (0)
? finak0(0) = 2 fin0(0) = ?finye(0) = =¥ f1(0).

Hence ?Cl, ¢ = 0. So Cp, ¢ lies in Rh and thus in Rh, again by Claim 5.8. We conclude that
h=Che. O

Lemma 5.12. For all m,m',k, k" > 1 with m # m/, the greatest common divisor of Cp,
and Cpy g 15 equal 0 Pyeq(m,m’ kk') -

Proof. Without loss of generality, let m’ > m (otherwise switch (m, k) and (m/,k")). Set
h := ged(Cp, Cow pr) and £ := ged(m,m’, k,k'). Recall that peeqmk) divides Cp,x and
Pged(m’ k) divides Cyy pr, both by Claim 5.9, and py = ged(Pged(m,k)» Pged(m’ k7)) by Lemma
5.7. This implies that p, divides h.

For the converse, let ¢ : R — R/(h) be the projection map. Then

POk =0 = #frnik(0) = =¥ fn(0)
- gDfm’—o—k(o) = SOfm’—m(Sofm+k(0)) = SDfm’—m(_C'Dfm(o)) = Lpfm’—m(sofm(o)) = SDfm,(o).

From this we see that f,, is k-periodic and thus ? f,, 1k (0) = © £,/ (0).

12



Section 5 The Divisibility Relations

But we also have

PCrrir =0 = frr (0

) = _gofm/(o)
— P 41(0) = 2 fr11(0)

= Stk (0) = ¥ fra i (0) = =% fro (0).

S0 # finr(0) = =% f,,/(0), which means that # f,,,/(0) = 0 or co.

If ¢ f,,/(0) = 0o, then ?¢uy = 0, 50 ¢,y lies in Rh and thus in Rh by Claim 5.4. But now py
divides both g, and p,,, so py divides ged(py, gny) = 1, which is not possible. Therefore
¥ frr(0) = 0 and we deduce that p,, lies in Rh.

Consequently, using Lemma 5.10, we find that h = ged(h, pry) = ged(Cp i, ot > Pr?) =
gcd(Cr k, 8¢d(Crr 17, P ) = €ed(Con ks Pged(m? k7)) = Pged(m k,ged(m! k) = Pe- O

Now that we have determined all relevant divisiblity relations, we can define new polynomials
by clearing the polynomials C,, ; of their common divisors with each py: For k > 1, define
Pp— . Py— Cm7k
(5.13) Dy = Co and form >1: Dy, = ————,
Pgcd(m,k)
which are again polynomials in R by Claim 5.9. This construction ensures that D, and
D, ;v no longer share nontrivial divisors for m # m/, whereas the divisibility relation found

in Lemma 5.11 is maintained:

Claim 5.14. For allm >0 and k, k' > 1, the greatest common divisor of Dy i and Dy, j is

gwen by Dy, ocd(k, k') -

Proof. For m = 0, this is Lemma 5.7. For m > 0, set £ := ged(m, k, k') and hy := }%.

Recall that by Lemma 5.11 we have Cp, seq(ki) = 8¢d(Crk, Cmpr). We also know that py
divides Cm,gcd(k,k’) by Claim 5.9. ThllS,

Cm C / Cm Cm /

Dy ged(o) = —mEd®R) _ o ( k. Cmp

be

> = ged (D b, Do o i) -
Dbre Dbe

Furthermore, note that

Lemma

ged (Cm,gcd(k,k’)upgcd(m,k)) 510 PLo_
De De

ged (D ged(kr)s k) = 1

and similarly for hy. Hence, Dy, geq(r, i) = ged (Dmkhk, Dm,k/hk/) = gcd(Dpy i, D). O

13



6 The Factorisation

The zero loci of our new polynomials D, ;. still each contain the corresponding curve Nm,k.
We want to find a decomposition of each D,, ;, into a product of polynomials B,, 4, where the
index d ranges over all divisors of k, and such that the zero locus of B,, ;. is equal to the Zariski

closure of AV, . The following number theoretic facts will be useful for this factorisation.
Definition 6.1. The Mdbius function pu(n) is defined for all integers n > 1 by
1 ifn=1

pw(n) =< (=1)% if n = py---pg, where p1,...,py are k distinct primes

0 otherwise.

The Mobius function has the following summation properties:

Lemma 6.2. The following holds for alln > 1:

1 ifn=1
0 S /)=y =4 "
d\n d|n 0 an > 1,
(ii) for any divisor k of n :
1 ifn=k

o opn/dy= > pld/k) =

{d: k|d[n} {d: k|d|n} 0 ifn>Ek.

The idea of the first part of the proof is taken from Rassias [3, Thm. 2.2.3].

Proof. (i) Since n/d is a divisor of n for each divisor d of n, the first equality is just a
reordering of the summands. For the second equality, note that the statement is true for
n = 1, because p(1) = 1. For n > 1, let n = p{* -- ‘pzk be the prime factorisation of n. By
definition of the M&bius function, the only non-vanishing terms in the sum are the p(d) for
the squarefree divisors d of n, i.e. those of the form d = p‘ef = -pi’“ with £1,... 4, € {0,1}.

Hence,
k
Su@ =3 (§)0 =a-vt=o
din =0

(ii) If k£ divides d and d divides n, we can write d = d'k and n = nk for some d’,n’ > 1. Thus,

the equality follows applying (i) to

Yo ouln/d) = p'/d) =Y wd)= Y ud/k). O

{d: k|d|n} &'\n’ &'|n/ {d: k|d|n}

Lemma 6.2 leads to the M&bius inversion formula, which we state in its multiplicative version.

14



Section 6 The Factorisation

Lemma 6.3 (Multiplicative Mobius Inversion Formula). Let f,g be maps from Z=! into a

multiplicative abelian group. Then the following equivalence holds for any n > 1:

=[17@ <= r)=]]g(@".

din din

Proof. The statement is clearly true for n = 1. For n > 1, suppose that the left-hand side
of the equivalence holds. Then

Loty =TL(TLroo)™" = T
dn  Kld dn k|d
= H H f(k w(n/d) _ Hf Z{d k|d|n} #(1/d) L“erzz?s f(n).

k|n {d: k|d|n} k|n

For the converse, we have

[Tr@) =TTTTat ™ =TT I otk =gtk = s 249 = g(n),

din din k|d k|n {d: k|d|n} k|n

again using Lemma 6.2 (ii) for the last equality. O

Lemma 6.4. For every sequence (ar)r>1 of nonnegative integers with the property
(65) agcd(hk/) = min{ak,ak/} fOT’ all k‘, ]{2/ > 1,

the following holds:
(i) The index set {k > 1| ap > 0} is either empty or of the form Z='kqy for some ko > 1.
(ii) For ko from (i), the sequence (ak, — ak,)e>1 15 nonnegative and satisfies (6.5).

(ili) For each k > 1, the sum by := 3y p(k/k)ay is nonnegative.

(iv) If each ay, only takes values in {0,1}, then by, =1 and by, = 0 for every k # ko.

Proof. (i) Set S :={k > 1] a; > 0} and suppose S is nonempty. Property (6.5) implies that
forall k, k' € S and all £ > 1, both k¢ and ged(k, k') lie in S. Let kg > 1 be the smallest integer
such that ag, > 0. Pick an element s € S. Then s > kg and we can write s = fko +r for some
¢>1and 0 <r < kg. Then ged(r, lko) = ged(s — Lk, lko) = ged(s, lko) € S. By minimality
of kg, we conclude that r = 0. Therefore, each element of S is a multiple of kg, i.e. S = Z= k.

(ii) Since (6.5) holds for the sequence (ag)r>1, we have ag, > ay, for all £ > 1 and

Aged(6,0)ko — Oho = Qged (ko ko) — Tk = MIN{ @k, Qprgy } — Ay = min{agk, — ary, apky — agy }-

15



Section 6 The Factorisation

(iii) We proceed by induction on k. If k = 1, we find that by = p(1)a; > 0. Suppose that the
claim holds for any k¥’ < k and any nonnegative sequence satisfying (6.5). Note that ap = 0
for all k¥ ¢ S. Thus, by = D (ko [k} w(k/E ay vanishes if k ¢ S, and by, = p(1)ag, > 0.
If ko < k € S, write k = (kg for some ¢ > 1. For all ¢/ > 1, set ap := apg, — ag,. By (ii),
this defines a sequence of nonnegative integers satisfying (6.5). By Lemma 6.2 (i), the sum
> ¢ (¢/ ) vanishes. Therefore,

b = baky = Y (b)) awky = Y p(b/€)apny — ary, Y u(l/l) = p(t/)ap = be.

o) o) ol o)

We can thus assume without loss of generality that ky > 1 (otherwise replace the sequence
(ar)k>1 by (ax — a1)k>1). Then ¢ < k, so we can apply the induction hypothesis to by and
conclude that by = by, = l;g > 0.

(iv) If ap € {0,1} for each £/, then k' € S if and only if apy = 1. Thus, using Lemma 6.2 (ii),

s 1 k= ko
o= ulk/Kaw= > ulk/k) “E
K[k s 0 k# ko.

O

Proposition 6.6. There exist unique polynomials By, q for all m > 0 and d > 1 such that
for each k> 1:

Dm,k = H Bm,d-
dlk

Proof. Consider the rational functions By, q = [[4 Dfn(yi/ " e Q(a,b), which satisfy the
stated equality by the Mdbius inversion formula. We will show that they are in fact polyno-
mials. Since R is a factorial ring, this is equivalent to ord; (B, 4) > 0 for all primes 7 € R.
Let m be an irreducible polynomial in R, fix m > 0 and set aj := ordg(Dy,) for all
k > 1. Since each D, is a polynomial, each a; is nonnegative. Moreover, we have
Dy ged(k ey = 8¢A(Dm e, Dy pr) for all k, k" > 1 by Claim 5.14. This implies that the se-
quence (ax)g>1 satisfies ageqr, iy = min{ag, ap:} for all k, & > 1. Thus, we can apply Lemma
6.4 (iii) to find

0rdr(Bpm,a) = > orde (D) u(d/k) = appu(d/k) > 0. O
k|d k|d
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7 The Factors

In this section we will prove that, under certain conditions, the polynomials B,, 4 found in
Proposition 6.6 are pairwise coprime. This implies that the zero locus of B, j not only con-
tains, but is in fact equal to the Zariski closure of Ny, 1.
Without any additional requirements on the polynomials, we already have:
Claim 7.1. For all m,m’ > 0 and k, k" > 1 the following holds:

(i) Ifm 75 m’, then ng(Bm,k; Bm’,k’) =1.

(ii) If kt k" and k' 1 k, then ged(By g, Bmy) = 1.

Proof. (i) If m # m/, then ged(Co ko, Cov i) = Pged(m,m’ kk7) = 8cA(Pged(m.k)s Pecd(m’ k7)) for
any k, k" > 1 by Lemmata 5.12 and 5.7. Therefore ged(Dyy, i, Dy i) = 1 by construction and
in particular, ged(By, 4, Bim.a) = 1 for all divisors d of k and d’ of £’

(ii) By Claim 5.14, we have gcd (D i, Dy k) = Dy ged(k,k)> Which by Proposition 6.6 is the

ged (HBM, I1 Bmvd/> = I Bue

dk d'|k' 0| ged(k,k')

same as

Dividing both sides by the left-hand side yields

gcd (H | Bm,d,) —1

d|k d’ |k’
ik’ d'tk
Since k does not divide k' and vice versa, these products cannot be trivial. This implies in

particular that ged(By, k, B w) = 1. O
For the remaining case that m = m’ and either k|k" or k|k, we only get a conditional result.

In a factorial ring, we say a polynomial g is reduced if it is squarefree, i.e. if there is no

irreducible polynomial whose square divides g.
Claim 7.2. Let A be a factorial ring and g € Alx,y]. If ged (g, %) =1, then g is reduced.

Proof. Suppose g is not reduced. Since A is factorial, so is A[z,y|, and there exist some
h,m € Alz,y] such that r is irreducible and g = hw?. Then we have gg = 772 Oh .+ 2hmgy Or o and
thus

oh on

ged (9, gi) = ged (hﬂ2,7r2a + Qhﬂ'%> = mged (h7r Wgh

since 7 is not a unit in Az, y]. O

+2h—) L1,

17



Section 7 The Factors

Claim 7.3. Fach py is reduced.

Proof. Let £ > 1 and note that %L; = %(pil + aq%il) = q,i1 mod 2. Also, recall that
ged(pr mod 2, g mod 2) = 1 by Claim 5.5. Therefore,

0
ged (pk mod 2, —apk mod 2) = gcd (pi,l + aq,%,l mod 2, q,%fl mod 2)
a

2
= ged <pz_1 mod 2, q,%_l mod 2) = ged <pk,1 mod 2, gr_1 mod 2) =1.

Since R is a factorial ring, we can apply Claim 7.2 and find that p; mod 2 is reduced. More-
over, content(pr) = 1 and the total degree of py is equal to that of px mod 2. Using Gauss’

Lemma, we conclude that pg is reduced. ]

This leads to the following statement for m = 0 :
Claim 7.4. For alld > d >1:ged(Bog, Boar) = 1.

Proof. Let m be prime in R. Recall from the proof of Proposition 6.6 that for d > 1, we
can write ordr(Bo,q¢) as the sum 3, ordx(px)u(d/k) and apply Lemma 6.4 to the sequence
(ordx(pk))k>1. By Claim 7.3, each pj is reduced, thus ord,(py) only takes values in {0,1}.
Using Lemma 6.4 (i) and (iv), we find that ord.(Box,) = 1 if ko exists, and for all d # ko,
ords(Bo,¢) = 0. From this we conclude that ged(By 4, Bo,a) = 1 for all d > d’ > 1. O

Claim 7.5. If each C,, . is reduced, then the polynomials B,, 4 are pairwise coprime.

Proof. We have already shown in Claim 7.1 that the ged is trivial if m # m/. If each Cy,

is reduced, then so is each Dy, = 5 Od’:”“k). Thus, by the same arguments as in the proof of
ged(m,
Claim 7.4, we find that the statement is also true for m = m/. O

We believe that each C,, ) is reduced and that the polynomials B,, 4 are all irreducible.
We have found that both holds for the first 55 polynomials with indices 0 < m < 10 and
1 < k <10 satisfying m + k < 10. For explicit calculations and results, consult the appendix.
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Appendix - Maple calculations

Calculate the iterates fn(0)=[p-n:q-n] of the critical point 0 by recursion.
> p := proc (n::nonnegint) option remember;
if n = 0 then O
else p(n-1)~2+a*q(n-1)"2 fi;
end proc:

if n = 0 then 1
else p(n-1) "2+bxq(n-1)"2 fi;

>
>
>
> q := proc (n::nonnegint) option remember;
>
>
> end proc:

The equation f_(m+k)(0) = sigma(f.m(0)) for any m,k> 1 is equivalent to
[p(m+k):q(m+k)] = - [p(m) : q(m)], which is equivalent to the vanishing of the
polynomial C_(m.k):=p_(m+k)*q-m + p-m*q_(m+k)

> C := proc (m::nonnegint, k::nonnegint) option remember;

> if m = 0 then p(k)

> else p(mt+k)*q(m)+p(m)*q(m+k) £fi;

> end proc:

Define new polynomials D_(m,k) by clearing C_(m,k) of common factors with C_(0,k’)
> DD := proc (m::nonnegint, k::nonnegint) option remember;
> if m = O then p(k)
> else if divide(C(m,k), C(0,gcd(m,k)), ’temp’) then temp;
> else printf("problem at (%d,%d)",m,k); fi; fi; end proc:

The factorisation of D_(m.k) is given by D_(m,k)=]];B-(m,d)
with(numtheory) :

B := proc (m::nonnegint, k::nonnegint) option remember;

if k = 1 then DD(m,k)

else if

divide(DD(m,k), mul( B(m,d), d in (divisors(k)\{k}) ),’temp’)
then B(m,k) := temp;

else printf("problem at (%d,%d)",m,k); fi; fi;

end proc:

vV V.V V V V V V
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Appendix

Maple Calculations

This proc outputs true if the input polynomial is reduced, and otherwise false.

> IsSquareFree :=

vV V.V V V

end proc:

proc(f)

local fact,expo,i;

fact := sqrfree(f)[2];
expo := max(0,seq(fact[i][2],i=1.
if expo<=1 then true else false fi;

.nops (fact)));

Check if the polynomials C_(m,k) are reduced for all indices with m+k < nmax, k=1,...,nmax

> nmax := 10;

> seq(seq(print([m,k,IsSquareFree(C(m,k))]),m=0..nmax-k) ,k=1..nmax) ;

[0, 1, true]
[1,1, true]
(2,1, true]
[3, 1, true]
[4,1, true]
[5, 1, true]
6,1, true]
[7,1, true]
[8, 1, true]
9,1, true]
[0, 2, true]

Output the factors

> nmax := 6; K1

(1,2, true]
(2,2, true]
3,2, true]
4,2, true]
[5,2, true]
6,2, true]
[7,2, true]
8,2, true]
[0, 3, true]
[1,3, true]
[2, 3, true]

B_(0,k) for k=1,...
:= seq(print([0,k,B(0,k)]),

[3, 3, true]
[4,3, true]
[5, 3, true]
6, 3, true]
[7,3, true]
[0, 4, true]
[1,4, true]
(2,4, true]
(3,4, true]
[4,4, true]
[5,4, true]

,JAmax

0,1, 4]

0,2,b% + a]

(6,
[
1,
2,
3,
[4,
[
[0,
1,
2,
3,

6,4, true]
0,5, true]
1,5, true]

5, true]

5, true]
4,5, true]
5,5, true]
0,6, true]
1,6, true]
2,6, true]
3,6, true]

. .nmax) ;

[0,3,0% + 2a%® + ab* + a* + 2a%? + 6]
(0,4, + 620 + 11 a*® + 240" + 2a%0° + 6.a°b® + 7a®b* + 4a*b° + 34315

+a® +2a"b 4 5a°? +4a°0® + 3a** + 34" + 36°* + a°

[0,5,% + 14a%6%" + ab®® + 79 a*b** + 24 a3b% + 2a%%° + 234 050! + 174 45>
+42 a*b® + 5a>b** + 403 a®b'® + 560 a"b* + 324 a®0?° + 64 a°b?" + 14 a*p??
+432 a'%b'5 4903 a?b'% + 1086 a®b'7 4424 ¢7b'8 + 132 a5 + 26 a°b%° + 308 a'2b'2 4 768 1413
+1712 a0 41344 2615 +621 a®b'6 +208 a"b'" +44 aSb'® +150 a'4b? + 374 013010 +1294 o 2p1!
+1962 ab'2 4+ 1510 a3 4 806 a”b™ + 270 a®b™® + 69 4750 + 49 ¢1606 + 104 0107 + 528 a14b®
+1224 a3b? + 1780 260 + 1496 a1 b + 848 40012 + 312 4”03 4+ 94 a¥b'* + 10 o803 + 13 ' "b*
+124 a'00% +360 a'°b5 4848 a'4b” +1308 a'30% + 1152 a'20? + 792 01510 + 284 ¢ 10b1 + 114 ¢p12
+a20 + 14 a'8p% + 56 a1 703 + 154 a10b* + 456 a15b° + 688 a4b% + 712 a13b” + 598 01268 + 208 al1p?
+116 a'%010 + 54 +6 a'8b+ 58 a'"b? + 142 a'6b + 272 aOb* + 324 a0 + 340 a 300 + 124 o207
+94aMb8 +12a'8 + 16 a'7b + 87 a'%b? + 80 a'Pb? + 152 a*b* + 48 a13b° + 60 4265 + 1547
+6a'0b + 48 a'®b% + 8 a1*b? + 28 a'3b* + 7 a6 + 8 alh? + a15]
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(0,6, + 284D — ab®? + 3504?08 + a?b°° + 2586a50*® + 306a°b¢ 4 30a?b?" + 3a3p*®
+12613a8b*2 4 4176a7b* + 666a°b** + 88a°b™ + 7a*b10 + 429964163 + 2793300
+8130a%b* + 1444a7b*2 + 210a%6*3 + 17a°b* + 10592742636 + 11469841637 + 56559410638
+152446°b% + 3073a86%0 4 474a7b*! 4 350562 4 19268844633 + 314574a'303* + 24356002530
+101456a 1636 4 284860637 + 62684538 + 92242637 4 764740 4 262700a63° + 60116045631
+687287ab32 + 43074643033 + 17327462034 + 51588a'163° + 11403a'0636 + 17620637
+155a3b38 + 27152648627 + 8203184 7H?® + 1316432a'50%° 4 1196768a'°6>° + 6908764 4b3!
428203703532 + 8570242633 + 19688a' 163+ + 31804063 + 2984”636 + 214771a%°p%4
+812000a2b%> + 17497494826 + 22233200 70?7 + 1814818a'66%® + 1026624425
442348604630 + 133880a'3b3! + 31645a'2632 + 545601032 + 53640034 + 130948a22b%!
+589244a%1b%2 + 16383364206 + 2803380a'2b** + 3164208a'8b%° + 24754804726
+1391432a'0b%7 4 594656a°6%® + 1922720146 + 4840043030 + 8612a'263" + 92741 b32
+61809a%4b'® + 3151404236 + 1092212a%2b%0 + 2425524a%12! + 3681233a2°b%2
+3941328a'76%3 + 30192684 86?4 + 17430964 7b*° 4 7626494 56%6 + 258780a5b%7 + 686364 4b*®
+12660a36%° + 152502630 + 22578a2h1° + 124043025616 + 52086042407 + 1452522a23b'8
+2868864a%2b' + 4128115a%16%0 + 4288488a20b%! + 3338604a'9b?% + 19836424853
+897163a'7b%* + 324480a'6%° + 890424060 + 17568a'4b*" + 2331a'3b%® + 6331a%2b12
+35532a27b3 + 17702302501 + 603264a2°b'° + 1503368424616 + 28327960237 + 3946778a2b'8
+4126904a%' 6" + 3316469420620 + 2033672a°b%! + 972789a'8b%% + 3703844a!7H?3
+107112a'06%4+22568a'°6?° 4+3310a 5?6 +1334a%°0° +7200a%°010+42212a8b' 1 +172198a>"b'?
4527290426013 + 1270876a2°b' 4 2323064024615 + 3251238423010 + 3494178a22b17
4292314002108 + 1881324a2°b'? 4 955386a'70?" + 3850824 86?1 + 118340a'7b?? + 26652465
+4346a'°b%* 4 20243265 4 968a>1b” + 6821a3°b® + 3289642907 + 121303422010 + 367336a27b!!
+866993a26b'2 + 1591376a%°b'3 + 23027794240 + 25611364230 + 22808894%2h16
+1545972a%1 b7 + 84508502068 4 36087241701 + 1193974820 4 28612a!7b%! + 5258a'6H%2
+20a340? + 74a33b* 4 692a320° + 398463100 + 173944307 + 659284268 + 199512a2831°
+474320627b'0 + 912544a26p11 4 1369182a2°b'2 + 16205164246 + 1545072a>3p14
+1117458a%?b'5 4+ 666150021516 + 300492420617 + 1096640768 427440080 + 5843a!"H?° + 036
+2a%°b 4 3503402 + 28003353 4 1361a32b* + 6796031 b° + 265333000 + 8173642767 + 20950842818
+422192a%7b? + 678458426010 4 866832a25b!! + 892081a4b1? + 7022444233 + 458529a22b14
+220896a%16' +90139a2°616 42331009617 +5892a 8618 + 104 + 384340+ 320030 +1816a32b3
+7082a31644-25678a2°b° + 7016802760 +154292a28b7 +-274142a°"b®+379354a%69+43380842° b0
+372712a%4bM + 27195842312 4 140724a%2b" + 65346410 + 17314406 + 5313017016
+51a3* + 208a%3b + 1304a>2b? + 5516a>1b® + 16563a3°b* + 43612a22b° 4 8497242846
+133296a%7b" + 1716450250 + 162632a2°b7 + 136261a%*b'° + 75492a23b! + 41263a>?b'?
+10996a%1b3 + 42196290 + 157433 + 528a32b 4 2822a31b% + 818243003 + 19541427 b*
+35520a28b° 4+ 530122755 + 5649642507 + 5579242568 4 33098a%4b” + 2213842310 + 5832a22b!1
+2892a2'b12 + 295432 + 688a3'b + 3337a30b% + 60244263 + 12669a%8b* + 142740710
+18273a20b5 4 1120462507 + 9812a24b® + 2482a231° + 1672422010 + 33243 4 440a°%b
+2246a%7b% 4 21600280 + 4704a27b* + 2598a20b° + 3500a2°b° + 778a**b” + 7924368 + 215a°
+130a%°b + 854a28b% + 3324271 + 947a26b* + 154a250° + 29302468 + 77a%° + 14a28b + 168a%71?
+14a25b% + 78a%b* + 14a2® + 130252 + a*")
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Appendix

Maple Calculations

This is an irreducibility test for a given factor B_(m,k)
> IrreducibilityTest

:= proc (m::nonnegint, k::nonnegint)

> if irreduc(B(m,k)) then printf("B(%d,%d) is irreducible",m,k)
> else printf("B(%d,%d) is not irreducible",m,k) fi;
>

end proc:

Check if the polynomials B_(m,k) are irreducible for all indices with m+k < nmax,

k=1,...,nmax

> seq(seq(print(IrreducibilityTest(m,k)), m=0..nmax-k), k=1..nmax);

B(0,1) is irreducible
B(1,1) is irreducible
B(2,1) is irreducible
B(3,1) is irreducible
B(4,1) is irreducible
B(5,1) is irreducible
B(6,1) is irreducible
B(7,1) is irreducible
B(8,1) is irreducible
B(9,1) is irreducible
B(0,2) is irreducible
B(1,2) is irreducible
B(2,2) is irreducible
B(3,2) is irreducible
B(4,2) is irreducible
B(5,2) is irreducible
B(6,2) is irreducible
B(7,2) is irreducible
B(8,2) is irreducible

)

=

1s 1rreducible

)

os]

,4) is irreducible

os]

,0) is irreducible

o8]

,0) 1s irreducible

=

1s 1rreducible

)

os]

1s 1rreducible

B(0,3) is irreducible
B(1,3) is irreducible
B(2,3) is irreducible
B(3,3) is irreducible
B(4,3) is irreducible
B(5,3) is irreducible
B(6,3) is irreducible
B(7,3) is irreducible
B(0,4) is irreducible
B(1,4) is irreducible
B(2,4) is irreducible
B(3,4) is irreducible
B(4,4) is irreducible

(5,4)

(6,4)

(0,5)

(1,5)

(2,5)

(3,5)

9

)

e}

1s irreducible

)

oy

,9) is irreducible

W

,9) is irreducible

B(4,5) is irreducible
B(5,5) is irreducible
B(0,6) is irreducible
B(1,6) is irreducible
B(2,6) is irreducible
B(3,6) is irreducible
B(4,6) is irreducible
B(0,7) is irreducible
B(1,7) is irreducible
B(2,7) is irreducible
B(3,7) is irreducible
B(0,8) is irreducible
B(1,8) is irreducible

(2.8)

(0,9)

(1,9)

(0,10

o8]

,10) is irreducible
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