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Abstract

We will give an introduction to the parametrised Picard-Vessiot Theory and intro-
duce the necessary prerequisites. As an application we will prove with it a Theorem
by Hölder on the Gamma function.
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1 Introduction

In 1887, Hölder stated and proved the following theorem for the Gamma-function Γ(x) :=∫ +∞
0

tx−1e−tdt:

Theorem 1.1 (Hölder) There does not exist a polynomial P ∈ C[z,X0, . . . , Xn] for any
n ∈ Z>0 such that P (z,Γ(z),Γ(z)′, . . . ,Γ(n)(z)) = 0.

He proved this by contradiction. For this, he used the lexicographic ordering z > X0 >
. . . > Xn on C[z,X0, . . . , Xn] and assumed the existence of a P as in the theorem which is
minimal with respect to this ordering. Using the fact that the Gamma-function satisfies the
following recursion formula Γ(z+1) = zΓ(z), he constructed another P ′ ∈ C[z,X0, . . . , Xn]
of smaller degree then P such that P ′(z,Γ(z),Γ(z)′, . . . ,Γ(n)(z)) = 0. This is a contradic-
tion to the minimality of P .

For an ring-automorphism σ, one calls an equation of the form σ(y) = ay a difference
equation. An example of this is the automorphism σ : C[x]→ C[x] induced by the identity
on C and x 7→ x+1 and the difference equation σ(y) = xy. Note that the Gamma-function
is a solution of this equation. This provides another angle to tackle questions like Hölder’s
Theorem. A theory has been developed to study differential equations which solutions of
a difference equation satisfy which is known as parametrised Picard-Vessiot Theory. This
Thesis follows the expository texts on the subject by C.Hardouin and M.F.Singer, [2] and
[3]. For the purpose of this theory, one not only assumes a difference structure on K, but
also a differential structure. A derivation on a ring is an additive morphism δ respecting
the Leibniz rule. A differential ring is a ring with a specified derivation. An examples is
C[x] with σ induced by the identity and σ(x) = x + 1 and δ the formal derivation. One
also assumes that the derivation δ and the automorphism σ commute.

In the parametrised Picard-Vessiot Theory, one associates to a linear difference equation
a differential ring, called the parametrised Picard-Vessiot-ring of this equation, which con-
tains a non-trivial solution to the difference equation. This can be seen as an analogue of
the splitting field in Galois Theory.

The study of differential rings began in the 1930’s by the american mathematician Ritt.
He showed that familiar Theorems from commutative algebra, for instance Hilbert’s Base
Theorem, sensibly adjusted, still hold. Ritt also initated together with his student Ellis
Kolchin the field of Differential Algebraic Geometry. They tried to develop a theory akin
to Algebraic Geometry. Algebraic Geometry at that time was still in its “classical form”,
hence the Differential Algebraic Geometry introduced by Ritt and Kolchin is similar to
classical algebraic geometry. In a similar way that classical algebraic geometry needs an
algebraically closed base field, the differential algebraic geometry developed by Ritt and
Kolchin needed a differentially closed base field. We will work at first with them and then
find a way to circumvent this restriction. In section 3 we introduce some properties of
differential fields and in section 4 give an introduction of to differential algebraic geometry.
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Section 5 will give a short review of rings with both a difference and differential structure
on it.

Algebraic Geometry allows one to study algebraic groups, that is algebraic varieties with a
group structure on it. Mirroring this approach, one can study differential algebraic groups,
that is differential varieties with a group structure on it. Classical examples of this would
be the vector group Ga or the torus Gm. An interesting fact is that there exists a constant
differential group morphism Gm → Ga, whereas there does not exist such a morphism in
the algebraic group context. Using this morphism, one can find a precise classification of
the differential subgroups of Ga and Gm. These classification results were first discovered
by P.Cassidy in the 1970’s. This material will be covered in section 6 & 7

A key fact for the parametrised Picard-Vessiot theory is that the group of σδ-automorphism
of the parametrised Picard-Vessiot ring is a differential algebraic group. Furthermore, the
differential dimension of this group corresponds to the differential transcendence degree of
the solution to the difference equation one is studying. If the difference equation is scalar,
the parametrised Galois-Group is a differential subgroup of a Gm. This allows to use the
classification results by Cassidy. In particular, this gives a theorem allowing us to study
the differential transcendence degree of the solution by studying the coefficient: For F the
field of one-periodic meromorphic functions on C, define a derivation on F(x) by ∂

∂x
and

an automorphism σ : f(x) 7→ f(x+ 1). Then:

Proposition 1.2 For a ∈ C(x)\{0}, consider a nonzero meromorphic function g in x
over C such that

σ(g) = ag.

Then g is differentially algebraic over F(x) if and only if there exists a non-zero linear

homogeneous differential polynomial ` ∈ C{X} and an element f ∈ C(x) such that `( δ(a)
a

) =
σ(f)− f .

This provides us with the tools to give a simple proof to the theorem by Hölder.

I would like to thank my supervisor Professor Richard Pink for his effort, constructive
comments and our interesting conversations throughout this thesis.
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2 Differential Algebra

Definition 2.1 A derivation on a commutative ring R is an additive map δ:R→ R which
satisfies the Leibniz rule, i.e. for all (a, b) ∈ R2 we have δ(ab) = δ(a)b+ aδ(b).

Definition 2.2 A pair (R, δ) consisting of a commutative, unitary ring and a derivation
on it is called a differential ring. If R is a field, then we call it a differential field.

We will drop the derivation from the notation and sometimes call a differential ring a δ-ring
for short.

Definition 2.3 For any differential ring R, we call Rδ := {r ∈ R | δ(r) = 0} the ring of
δ-constants.

Note that integers are δ-constants in any differential ring.

Proposition 2.4 The quotient rule holds, i.e. for any a, b ∈ R where b is a unit, we have
δ(a

b
) = δ(a)b−aδ(b)

b2
.

Proof. We have δ(a) = δ(a
b
b) = δ(a

b
)b + a

b
δ(b), which gives δ(a)b − aδ(b)a = δ(a

b
)b2 and

since b is a unit we can conclude. �

Proposition 2.5 For any differential ring (R, ∂), any collection {Xi | i ∈ I} of indepen-
dent variables over R and any choice of fi ∈ R[Xi | i ∈ I], there exists a unique derivative
δ on the polynomial ring R[Xi | i ∈ I] extending δ such that δXi = fi for all i ∈ I.

Example 2.6 For any ring R, the ring R[x] can be seen as a differential ring with the for-
mal derivation ∂ = d

dx
. Another example of a derivation on R[x] is obtained by multiplying

the formal derivation with x, i.e. for all f ∈ R[x] we set δ(f) := x∂f
∂x

.

Example 2.7 The ring of smooth functions C∞(R) in the indeterminate x together with
derivation δ = ∂

∂x
is a differential ring.

Definition 2.8 A morphism of rings ϕ : R → S for differential rings (R, δ) and (S, ∂)
which commutes with derivation, i.e. ϕδ = ∂ϕ, is called a morphism of differential rings.
A differential isomorphism is a differential morphism with a two-sided inverse differential
morphism.

Proposition 2.9 A differential morphism is an differential isomorphism if and only if it
is bijective.

Definition 2.10 For differential rings R, S, where R is a subring of S, we call R a dif-
ferential subring of S if the inclusion is a differential morphism.

Definition 2.11 For a differential ring R, we call an ideal a a differential ideal if it is
stable under derivation, i.e. δ(a) ⊂ a.
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Proposition-Definition 2.12 For any subset A ⊂ R of a differential ring, there exists a
smallest differential ideal [A] containing A.

Proof. The set A is contained in the differential ideal R. Furthermore, the intersection
of a non-empty collection of differential ideals is again a differential ideal since it is already
an ideal and for any x ∈

⋂
i∈I ai, we have for all i ∈ I that δ(x) ∈ ai by the definition of

differential ideals. If all ai contain A, then so does
⋂
i∈I ai, hence [A] is well defined as the

intersection of all differential ideals containing A. �

Example 2.13 For x2 ∈ Z[x], the ideal [x2] has to contain 2 = δ2(x2). Since (x2, 2x, 2) is
stable under derivation we have (x2, 2) = [x2].

Definition 2.14 A maximal differential ideal is a proper differential ideal which is maxi-
mal among all proper differential ideals.

Proposition 2.15 For any proper differential ideal a, there exists a maximal differential
ideal m containing a. In particular, any nontrivial differential ring possesses a maximal
differential ideal.

Proof. This proof works exactly like the proof of Krull’s Theorem in “classical” algebra:
We consider the set M of proper differential ideal containing a. This set is non-empty as
a is an element. For any ascending chain of proper differential ideals containing a, there
exists a upper bound given by the union of all elements of the chain. By Zorn’s Lemma
there exists a maximal element m ∈ M , which is a maximal differential ideal containing
a. �

Definition 2.16 A differential ideal which is prime as an ideal is called a prime differential
ideal.

Proposition 2.17 Every maximal differential ideal is prime.

Proof. Assume that there were a differential ring R containing a maximal differential
ideal m which is not prime. Then there exist a, b ∈ R\m such that ab ∈ m. But then
[a,m] = [b,m] = R and thus m = [ab,m] = R, which is a contradiction. �

Example 2.18 Maximal differential ideals need not be maximal ideals. For an example
consider Q[x] with the formal derivation. If we derive any non-zero polynomial in Q[x]
sufficiently often, we get an non-zero element in Q and thus a unit. Thus (0) ⊂ Q[x] is the
maximal differential ideal, but plainly not a maximal ideal.

Definition 2.19 For any subset A ⊂ R we define the radical of A to be

rad(A) := rad([A]) = {a ∈ R | ∃n > 1 : an ∈ [A]}.

We call a differential ideal a radical if rad(a) = a.
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Unfortunately, in general this is not a differential ideal. For instance consider the differen-
tial ring Z[x] with the formal derivation ∂ = d

dx
. If rad(x2) were a differential ideal, then

x ∈ rad(x2) and δ(x) = 1 ∈ rad(x2). However 1n = 1 /∈ [x2] = (x2, 2). The solution to this
is to only consider so-called Keigher rings.

Definition 2.20 A differential ring such that the radical of any differential ideal is a
differential ideal is called Keigher.

Proposition 2.21 If Q is a subring of a differential ring R, then R is a Keigher ring.

Proof. Consider a differential ring R such that Q is a subring. We fix a differential ideal
a ⊂ R and a ∈ rad(a). Then there exists n ∈ Z>0 such that an ∈ a. By differentiating we
get δ(an) = nδ(a)an−1 ∈ a and since Q is a subring of R, we get δ(a)an−1 ∈ a. We define
ak = δ(a)2k+1an−k−1 and show by induction that for all k 6 n−1 we have ak ∈ a. We have
just dealt with the base case k = 0. Assume that for 0 6 k 6 n− 2 we have ak ∈ a. Then

a 3δ(ak)δ(a)− ak(2k + 1)δ2(a) =

=δ(a)(n− k − 1)an−k−2δ(a)2k+1δ(a) + δ(δ(a)2k+1)an−k−1δ(a)− (2k + 1)δ(a)2k+1an−k−1δ2(a)

=(n− k − 1)an−k−2δ(a)2k+3 + δ2(a)(2k + 1)δ(a)2kan−k−1δ(a)− δ2(a)(2k + 1)δ(a)2kan−k−1δ(a)

=(n− k − 1)an−k−2δ(a)2k+3

=(n− k − 1)ak+1

and since (n − k − 1) 6= 0 invertible in R we have ak+1 ∈ a. In particular for k = n − 1
we have δ(a)2n−1 ∈ a. Thus we have δ(rad(a)) ⊂ rad(a) and hence rad(a) is a differential
ideal. �

Remark 2.22 As a convention, we will from now on assume that Q is a subring of any
differential ring. This allows us to assume by the previous proposition that the radical of
any set is a differential ideal.

Proposition 2.23 The radical of a set is a radical ideal. Hence we will call the radical of
a set the radical ideal of a set.

Proof. For any differential ring R, consider A ⊂ R. We have rad(rad(A)) = {r ∈ R |
∃n ∈ Z>1 st. rn ∈ rad(A)}. By definition of rad(A), for any r ∈ rad(rad(A)) we have
rm ∈ [A] for some large enough m ∈ Z>1. Hence rad(rad(A)) ⊂ rad(A). Since the other
inclusion is clear, we are done. �

Definition 2.24 Let (R, ∂) be a differential ring and n a non-negative integer. For each
i > 0 and n > j > 0 let δi(xj) be a variable. We define a derivation on the polynomial
ring with infinitely many variables R[x1, ..., xn, δ(x1), ..., δ(xn), δ2(x1), ...] by defining for all
i > 0 and all r ∈ R

δ(δi(x)) := δi+1(x) and δ(r) := ∂(r).

We call this the differential polynomial ring and denote it by R{x1, ..., xn}.
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Proposition 2.25 Let R be a differential ring and S ⊂ R a multiplicative subset. Then by
defining for all a

s
∈ S−1R a derivation δ(a

b
) = δ(a)b−aδ(b)

b2
we get a differential ring structure

such that the inclusion ι : R→ S−1R is a differential ring morphism.

Proof. This is a computation. �

Example 2.26 The field of rational functions with complex coefficients C(x) together
with δ = ∂

∂x
is a differential field.

Proposition 2.27 Let R be a differential ring and a a differential ideal. Then the factor
ring R/a inherits a differential ring structure by defining δ : R/a→ R/a, r+a 7→ δ(r)+a.
The projection ι : R→ R/a is a differential morphism.

Proof. This map is well defined since δ(a) ⊂ a. Furthermore by direct computation, one
sees that the additivity and the Leibniz rule hold. �

Proposition 2.28 The differential ideals of the factor ring R/a correspond to the differ-
ential ideals of R which contain a.

Proposition 2.29 For any differential morphism ϕ : R → S, the kernel is a differential
ideal and the image a differential ring. Furthermore ϕ induces a differential isomorphism
R/ ker(ϕ) ∼= im(ϕ).

Proof. Since the morphism and derivation commute, the kernel is a differential ideal
and the image a differential ring. We already know that there is an isomorphism of rings
ϕ̄ : R/ ker(ϕ) → im(ϕ), r + ker(ϕ) 7→ ϕ(r). It is also a differential morphism by the
following commutative diagram:

x+ ker(ϕ) ϕ(x)

δ(x) + ker(ϕ) ϕ(δ(x)) = δ(ϕ(x))

ϕ

δ δ

ϕ

Hence it is a differential isomorphism. �

Definition 2.30 We call a differential ring S with a differential morphism R −→ S an R-
δ-algebra. If there exist n ∈ Z>0 and si ∈ S for all i ∈ {1, . . . , n} such that the differential
morphism of rings R{x1, . . . , xn} −→ S induced by xi 7→ si is surjective, we call S a
differentially finitely generated R-δ-algebra and write S = R{s1, . . . , sn}.

Note that since the kernel of a differential morphism is a differential ideal, we can also
write S ∼= R{x, . . . , xn}/a.

Caution: A differentially finitely generated R-δ-algebra is not necessarily a finitely gener-
ated R-algebra, for example Z{x} = Z[x, δ(x), δ2(x), . . .] is a differentially finitely generated
Z-algebra, but not a finitely generated Z-algebra.
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Definition 2.31 A morphism of R-δ-algebras is a differential morphism of rings ϕ : U →
V such that ϕ commutes with the given morphism ιU : R→ U , ιV : R→ V :

R U

V

ιU

ιV ϕ

Differentially finitely generated differential rings need not be Noetherian. For instance,
Z{x} is not Noetherian as [x] is not generated as ideal by finitely many elements. One
might want to call a differential ring R “differentially Noetherian” if for every differential
ideal a the exists a finite subset {a1, . . . , am} ⊂ R such that a = [a1, . . . , am]. However, Ritt
showed that this does not hold for a = [x2, δ(x)2, . . .]. This is remedied by the following
definition.

Proposition-Definition 2.32 For a differential ring R the following conditions are equiv-
alent:

1. Any ascending chain of radical differential ideals becomes stationary.

2. For any radical differential ideal a there exists a finite subset B ⊂ a such that rad(B) =
a. Such a set B is called a finite basis of a.

3. Every non-empty set of radical differential ideals has a maximal element.

A differential ring satisfying these conditions is called Rittian.

This proof is similar to the one that Noetherian is well-defined.

Proof. For 1. ⇒ 2. we consider an arbitrary ascending chain rad(b1) ⊂ rad(b1, b2) ⊂ . . .
where all bi ∈ a. If there were no finite basis, then the chain would not become sta-
tionary, and we would have a contradiction of 1. For 2. ⇒ 1. pick a arbitrary sequence
of bi ∈ a where for i 6= j we have bi 6= bj. Then the ascending chain of radical ide-
als rad(b1) ⊂ rad(b1, b2) ⊂ . . . becomes stationary at rad(b1, . . . , bn) for some n ∈ Z>0.
However, if rad(b1, . . . , bn) ( a. But then for any b ∈ a\rad(b1, . . . , bn), we would have
rad(b1, . . . , bn) ( rad(b1, . . . , bn, b). This is a contradiction and thus rad(b1, . . . , bn) = a
and thus we have found a finite basis of a. For 1.⇒ 3. consider a non-empty set of radical
differential ideals S and pick any s1 ∈ S. If there were not a maximal element, we could
always pick a strictly larger si and thus get a chain of radical differential ideals which would
not become stationary. For 3.⇒ 1. we note that an ascending chain of radical differential
ideals is a non-empty set. By 3. there exists a maximal element in this set and we are
done. �

As for Noetherian, Rittian remains invariant under certain constructions.

Proposition 2.33 For any Rittian differential ring R and any differential ideal a ⊂ R,
the factor ring R/a is Rittian.
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Proof. We check the ascending chain condition. Note that the differential ideals of the
quotient ring R/a correspond to the differential ideals of R which contain a. Check that
the radical differential ideals of R/a correspond to the radical differential ideals of R which
contain a. If there were an ascending chain of radical ideals in R/a which does not become
stationary, there would be a ascending chain of radical differential ideal in R which would
not become stationary. �

To show the differential analogue to Hilbert’s Basis Theorem we need some more differential
algebra, namely division with remainder.

Definition 2.34 The order of a differential polynomial p ∈ R{x}\R is the largest integer
n such that δn(x) occurs in p. The order of an element p ∈ R is −1. The degree of a
differential polynomial of order n > 0 is the degree of P as polynomial in δn(x).

Definition 2.35 We define the rank of any differential polynomial p ∈ R{x}\R to be the
pair rank(p) := (ord(p), deg(p)) ordered with the lexicographic order, i.e.for q ∈ R{x} we
set

p� q ⇐⇒
[
ord(p) < ord(q) or (ord(p) = ord(q) and deg(p) < deg(q))

]
.

We define that for all r ∈ R and p ∈ R{x} we have r � p.

Definition 2.36 The initiant Ip of a differential polynomial p of order n > 0 is the leading
coefficient of p as polynomial in δn(x). The initiant of a differential polynomial of order
−1 is the differential polynomial itself. The separant Sp of a differential polynomial p
of order n > 0 is ∂p

∂(δn(x))
, i.e. the formal partial derivative of p seen as polynomial in

R[x, δ(x), . . . , δn−1(x)][δn(x)]. The separant of a differential polynomial of order −1 is the
differential polynomial itself.

Lemma 2.37 For p ∈ R{x} and n := ord(p), we have δk(p) = Spδ
n+k(x) + r for some

r ∈ R{x} and ord(r) 6 n+ k − 1 for all k > 0.

Proof. We prove this by induction. For the base case k = 0, the statement is that
p − Spδ

n(x) =: r is of smaller order. By partial derivation we get ∂r
∂δn(x)

= 0. Hence

δn(x) does not occur in r and we are done. Now assume that the statement is true for
k > 0, i.e. there exists some r ∈ R{x} of order less or equal then n + k − 1 such that
δk(p) = Spδ

n+k(x) + r. By derivation we get δk+1(p) = Spδ
n+k+1(x) + δ(Sp)δ

n+k(x) + δ(r).
Note that δ(Sp)δ

n+k(x) + δ(r) is of order 6 n+ k and thus we are done. �

Proposition 2.38 For any differential ring R, q ∈ R{x}\R and p ∈ R{x}, there exists
an element r ∈ R{x} and integers u, v ∈ Z>0 such that Suq I

v
q p− r ∈ [q] and r � q.

Proof. If p is of smaller rank then q, we are done. So without loss of generality we
assume that ord(p) > ord(q). We will first reduce this to the case where p and q are of the
same order. Let n := ord(q) and ord(p) = n+ k for some strictly positive integer. By our
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previous Lemma, we write δk(q) = Sqδ
n+k(x) + r for some r of order 6 n + k − 1. Thus,

there exists some a, b in R{x} of order 6 n+ k − 1 such that

Sqp− aδn+k(x) = b.

Hence Sqp− aδk(q) is of order 6 n+ k − 1. Hence by iterating this process we know that
there exists some u ∈ Z>0 and f ∈ [q] such that Suq p− f is of order 6 n. Hence we assume
that ord(p) = ord(q).

If the degree of p is smaller then the degree of q, we are done. If not, we consider p
and q as polynomials R[x, δ(x), . . . , δn−1(x)][δn(x)] where the leading coefficient of q is by
definition Iq. By the “usual” polynomial division of p by q we get that there exist v ∈ Z>0

and r ∈ R[x, δ(x), . . . , δn−1(x)][δn(x)] of degree smaller than the degree of q such that

Ivq p− sq = r.

Note that r is of smaller rank than q and we are done. �

Definition 2.39 For any differential Ring R and any differential ideal a ⊂ R and element
r ∈ R, we define the saturation of a with respect to r to be the ideal

a : (r)∞ := {s ∈ R | ∃n ∈ Z>0 : rns ∈ a}.

Proposition 2.40 For a differential field K and a proper, non-zero differential prime ideal
p ⊂ K{x}, and p ∈ p\{0} of minimal rank, we have

p = [p] : (SpIp)
∞.

Proof. For any q ∈ p, there exists an r ∈ K{x} of smaller rank then p and integers
u, v ∈ Z>0 such that Sup I

v
p q− r ∈ [p]. Thus r is in p and of smaller rank than p and thus in

K. Since p is a proper ideal, we have that r = 0. Hence we know that p ⊂ ([p] : (SpIp)
∞).

Since Sp and Ip do not belong to the prime ideal p, we have p = ([p] : (SpIp)
∞). �

Altough it may be that for an irreducible element p ∈ K{x} the ideal [p] is not prime, it
holds that:

Proposition 2.41 For K a differential field and p ∈ K[x] an irreducible polynomial, the
differential ideal ([p] : (SpIp)

∞) is a maximal differential ideal and thus prime.

Proof. We first show that ([p] : (SpIp)
∞) is a proper ideal. Assume that 1 ∈ ([p] :

(SpIp)
∞). Then SpIp ∈ rad([p]). Since Ip ∈ K× and Sp ∈ K[x]\{0} is of smaller degree

than p, this cannot be, hence ([p] : (SpIp)
∞) is proper.

Assume that there exists a differential ideal a properly containing ([p] : (SpIp)
∞). Then

there exists a q ∈ a\([p] : (SpIp)
∞). By division with remainder get the existence of

r ∈ K{x} of rank strictly smaller than p and n ∈ Z>0 such that (SpIp)
np− r ∈ [p]. Thus

r ∈ a. Since r is of rank strictly smaller than p it is in K[x] and of smaller degree than p.
Since p is irreducible, we have (p, r) = (1). Then 1 ∈ a and we have a contradiction. �
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Theorem 2.42 (Ritt’s Basis Theorem) For any R Rittian, R{x1, . . . , xn} is Rittian.

Proof. We will only prove this Theorem in the case that R is a field.

By induction it suffices to show that R{x} is Rittian. Assume that there exists a rad-
ical differential ideal in R{x} with no finite basis. Any ascending chain a0 ⊂ a1 ⊂ · · ·
of radical differential ideals without a finite basis has an upper bound in the form of the
union

⋃
i>0 ai. This has no finite basis, because if it had a finite basis B then for some

i > 0 we would have B ⊂ ai, which would mean that B is a finite basis of ai, which is a
contradiction. Since by assumption the set of radical differential ideals without finite basis
is not empty, we may apply Zorn’s Lemma and get a radical differential ideal m with no
finite basis which is maximal among all radical differential ideals with no finite basis.

We now show that m is a prime ideal. It is proper because R{x} = [1] has a finite
basis. Assume that m is not prime, then there exist some a, b ∈ R{x}\m such that ab ∈ m.
Both rad(a,m) and rad(b,m) have finite basis and we have {a1, . . . , an}, {b1, . . . , bm} ⊂ m
such that rad(a,m) = rad(a, a1, . . . , an) and rad(a,m) = rad(b, b1, . . . , bm). For any m ∈ m
we have

m2 ∈ m2 ⊂ rad(a, a1, . . . , an)rad(b, b1, . . . , bm) ⊂ rad(ab, ab1, . . . , abm, a1b, a1b1, . . . , anbm).

Hence m ∈ rad(ab, ab1, . . . , abm, a1b, a1b1, . . . , anbm) and since ab ∈ m and all ai’s and bi’s
are element of m as well, this means that

m = rad(ab, ab1, . . . , abm, a1b, a1b1, . . . , anbm).

This is a contradiction and thus m is prime.

By the previous proposition we can write m = ([P ] : (SP IP )∞) for some P ∈ m of
minimal rank. Since m is a prime ideal, this means that SP IP /∈ m. We claim that
SP IPm ⊂ rad(P ). Indeed, for any m ∈ m, there exists n ∈ Z>0 such that (SP IP )nm ∈ [P ],
hence (SP IP )nmn ∈ [P ] and thus SP IPm ∈ rad(P ). Since rad(SP IP ,m) % m, by maximal-
ity there exist {P1, . . . , Pr} ⊂ m such that rad(SP IP , P1, . . . , Pr) = rad(SP IP ,m). Hence

m2 ⊂ mrad(SP IP ,m) ⊂ rad(SP IPm, P1m, . . . , Prm) ⊂ rad(P, P1m, . . . , Prm).

Furthermore, since [P, P1m, . . . , Prm] ⊂ [P, P1, . . . , Pr], we have rad(P, P1m, . . . , Prm) ⊂
rad(P, P1, . . . , Pr). Thus, since {P, P1, . . . , Pr} ⊂ m, we have m = rad(P, P1, . . . , Pr).
Hence m has a finite basis, which is a contradiction and we have shown that all radical
differential ideals of R{x} have a finite basis. �

Proposition 2.43 Let R be a Rittian differential ring. Then any differentially finitely
generated R-δ-algebra is Rittian.
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Proof. We can write any finitely generated R-δ-algebra as R{x1, . . . , xn}/a. By Ritt’s
Basis Theorem, R{x1, . . . , xn} is Rittian, and as the quotient ring of a Rittian ring is
Rittian, so is R{x1, . . . , xn}/a. �

Proposition 2.44 For any Rittian differential ring R, any radical differential ideal a ⊂ R
can be written as the finite intersection of prime differential ideals not containing each
other. This decomposition is unique up to permutation.

Proof. Assume to the contrary that the set of radical differential ideals which are not the
finite intersection of prime differential ideals is not empty. Then since R is Rittian, there
exists a maximal element m in that set. Since it is not prime, there exist a, b ∈ R\m such
that ab ∈ m. Then rad(a,m) and rad(b,m) properly contain m and can thus be written
as the finite intersection of prime differential ideals. For any c ∈ rad(a,m) ∩ rad(b,m),
c2 ∈ rad(a,m)rad(b,m) ⊂ rad(ab,m) = m, hence rad(a,m) ∩ rad(b,m) = m. This is a
contradiction. �

3 Differential Fields

Definition 3.1 For two differential fields K,L where L is a field extension of K, we call
L a differential field extension of K if the inclusion is a differential morphism. We will
denote this by L/K.

Definition 3.2 For a differential field extension L/K and A ⊂ L we denote by K〈A〉 ⊂ L
the smallest differential subfield of L containing K and A.

This is well defined since the intersection of any differential subfields containing both K
and A is a differential subfield containing K and A.

Definition 3.3 Let L/K be a differential field extension. We say that an element a ∈ L
is differentially algebraic over K if there exists a differential polynomial f ∈ K{x}\{0}
such that f(a) = 0. If an element is not differentially algebraic over K, we say that it is
differentially transcendent over K.

Definition 3.4 Let L/K be a differential field extension. We say that elements a1, · · · , an
are differentially dependent over K if there exists an f ∈ K{X1, · · · , Xn}\{0} such that
f(a1, · · · , an) = 0. If there does not exist such an f , we say that a1, · · · , an are differentially
independent over K.

Definition 3.5 We call a differential field extension L/K differentially algebraic if every
element of x ∈ L is differentially algebraic over K.

Note that a differentially algebraic field extension need not be algebraic. For instance
C〈ex〉/C is differentially algebraic, as δ(ex) − ex = 0, but ex is transcendent over C. We
will use this fact to define an order of differential field extensions.
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Definition 3.6 The order of a differential field extension L/K is the transcendence degree
of the field extension L/K.

Proposition 3.7 For a differential field extension L/K, an element x ∈ L is differentially
algebraic over K if and only if the order of K〈x〉/K is finite.

Proof. If x is differentially algebraic over K, there exists a f ∈ K{z}\{0} such that
f(x) = 0. Then f /∈ K, hence there exists n ∈ Z>0 such that δn(x) is the highest
order of derivation involved in f . Hence δn(x) is algebraic over K(x, δ(x), . . . , δn−1(x)).
We now show that δn+i(x) is algebraic over K(x, δ(x), . . . , δn−1(x)) for all i > 0. We
have just done the base case i = 0. Hence fix an j > 0 and assume that δn+j(x) is
algebraic over K(x, δ(x), . . . , δn−1(x)). There exists an f ∈ K(x, δ(x), . . . , δn−1(x))(X)
such that f(δn+j(x)) = 0. Then δ(f(δn+j(x))) = 0. This is a differential polynomial
in K{x, . . . , δn(x), δn+j(x)}{δn+j+1(x)} and thus δn+j+1(x) is differentially algebraic over
K{x, . . . , δn−1(x)}.

If K〈x〉/K has finite order, then by definition there exists n > 0 such that x, δ(x), . . . , δn(x)
are algebraically dependent over K. Thus x is differentially algebraic over K. �

Proposition 3.8 A differential field extension L/K has order zero if and only if L/K is
algebraic.

Proposition-Definition 3.9 A differential transcendence basis of a differential field ex-
tension L/K is a subset B of L such that L/K〈B〉 is differentially algebraic and B is
differentially independent over K. There exists such a set. The cardinality of such sub-
sets is unique and we call it the differential transcendence degree of L/K and denote it by
δ-trdeg(L/K).

Proposition 3.10 For differential field extensions L/M and M/K the differential tran-
scendence degree is additive, i.e. δ-trdeg(L/K) =δ-trdeg(L/M) + δ-trdeg(M/K).

We will now introduce differential analogues of an algebraically closed field and the alge-
braic closure of a field. However, a straightforward adaption doesn’t work here. One may
be tempted to say that a differential field is closed if any differentially algebraic extension
is trivial. But for any differential field K and a variable x we can define a non-trivial
differentially algebraic differential field extension K(x) by defining δ(x) = 1, thus it would
be nonsensical to define differentially closed in this way as there aren’t any fields satisfying
this condition.

Definition 3.11 A differential field K is called differentially closed if for any n,m ∈
Z>0 and f1, . . . , fn, g ∈ K{x1, . . . , xm}, the existence of a joint solution of the equations
fi(x1, . . . , xm) = 0 and the inequality g(x1, . . . , xm) 6= 0 in some differential field extension
implies the existence of a joint solution in K.
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Interestingly, the definition of a differentially closed field changed over time. The definition
of a differentially closed field which we use was introduced by A.Robinson in 1959. In
the 1960’s, Kolchin introduced another definition, which is however equivalent to the one
introduced by Robinson. In 1968 L.Blum introduced yet another equivalent definition of
a differentially closed field, which she used to show that any differential field possesses
a differential closure. A differentially closed field is “an enormous field” and even the
“differential closure of Q is a monstrous object” [2], so one might not want to work with
them.

Proposition-Definition 3.12 For any differential field K, there exists a differential field
extension K̃ of K such that K̃ is differentially closed and for any differential field extension
L/K such that L is differentially closed, there exists a injective differential morphism
ι : K̃ → L. We call such K̃ a differential closure of K.

Proposition 3.13 For any two differential closures of K, there exists a differential iso-
morphism which restricts to the identity on K.

Proposition 3.14 The field of δ-constants of a differentially closed field is algebraically
closed.

Proof. Pick an arbitrary f ∈ kδ[x] of degree > 1. Then there exists a root z of f in an
algebraic closure of kδ. If z ∈ k, then we are done. If not, we can endow the field extension
k(z) with derivation induced by δ(z) = 0. Then k(z) is a differential field extension of k
which contains a solution to

f(y) = 0 and δ(y) = 0.

Since k is differentially algebraically closed, this means there exists a solution s which is a
δ-constant. Hence kδ is algebraically closed. �

Proposition-Definition 3.15 A differential field extension L of K is called semiuniversal
if any differentially finitely generated extension of K can be embedded into L. Such an
extension always exists.

Theorem 3.16 Consider a differential field K and an integral, differentially finitely gen-
erated K-δ-algebra R and a differential ring R0 such that R ⊃ R0 ⊃ K. There exists
a nonzero element u0 ∈ R0 such that every K-δ-homomorphism ϕ into a semiuniversal
extension L of K with ϕ(u0) 6= 0 can be extended to a differential K-δ-homomorphism
ϕ′ : R→ L.

For reference see Theorem 3 in [6].
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4 σδ-Algebra

Definition 4.1 A triple (R, δ, σ) consisting of a ring R, a derivation δ on R and a ring
automorphism σ of R such that (R, δ) is a differential ring and σ and δ commute is called
a σδ-ring. If (R, δ) is a differential field, then we call it σδ-field.

In particular this means that σ is a differential morphism.

Remark 4.2 Any differential ring R is a σδ-ring for σ = id.

Definition 4.3 For a σδ-ring R we call Rσ := {r ∈ R | σ(r) = r} the ring of σ-constants
of R. For a σδ-field K this is a differential field.

Definition 4.4 A σδ-morphism of σδ-rings is a morphism of rings which commutes with
σ and δ.

Definition 4.5 An ideal a of a σδ-ring R is called a σδ-ideal if it is stable under σ and
δ, i.e. if σ(a) ⊂ a and δ(a) ⊂ a.

Definition 4.6 A σδ-ideal m of a σδ-ring R which is maximal among all σδ-ideals of R
with respect to inclusion is called a maximal σδ-ideal.

Proposition 4.7 For any non-empty σδ-ring R there exists a maximal σδ-ideal m.

Example 4.8 We endow the differential polynomial ring R{x} with the automorphism
σ : R{x} → R{x} induced by x 7→ −x. The differential ideal rad(x2 − 1) is a σδ-ideal.
The only proper differential ideals containing it are [x − 1] and [x + 1]. However neither
[x− 1] nor [x+ 1] are σ-stable. Hence rad(x2 − 1) is the maximal σδ-ideal. Note however
that rad(x2− 1) is not prime. This shows that a maximal σδ-ideal may not even be prime.

Definition 4.9 A σδ-ring is called σδ-simple if it is non-zero and the only σδ-ideals are
(0) and R.

Proposition 4.10 Let R be a σδ-ring and m ⊂ R a maximal σδ-ideal. The factor ring
R/a inherits a σδ-ring structure by defining σ : R/m→ R/m, r+m 7→ r+m. In particular
ι : R→ R/m is a σδ-morphism.

Proof. The ring homomorphism π : R → R/m commutes with σ and δ. We just need
to show that σ : R/m → R/m is an automorphism. Surjectivity is clear. The kernel of
π is a σδ-ideal of R, which contains m and thus by maximality, ker(π) = m. Hence σ is
injective. �

Proposition 4.11 For any σδ-ring R and maximal σδ-ideal m, the factor ring R/m is
σδ-simple.
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Definition 4.12 We call a σδ-ring S together with a σδ-morphism of σδ-rings R −→ S
a R-σδ-algebra.

Definition 4.13 For R-σδ-algebras U, V we call a σδ-morphism of σδ-rings ϕ : U → V a
R-σδ-morphism if ϕ commutes with the given ιU : R→ U and ιV : R→ V , i.e.

R U

V

ιU

ιV ϕ

Proposition 4.14 For a σδ-ring S and two S-σδ-algebras R1, R2, define

σ : R1 ⊗S R2 → R1 ⊗S R2, induced by a⊗ b 7→ σ(a)⊗ σ(b)

δ : R1 ⊗S R2 → R1 ⊗s R2, induced by a⊗ b 7→ δ(a)⊗ b+ a⊗ δ(b).

This gives R1⊗S R2 the structure of S-σδ-algebra such that ι1 : R1 → R1⊗S R2, r 7→ r⊗ 1
and ι2 : R2 → R1 ⊗S R2, r 7→ 1⊗ r are S-σδ-algebra morphisms.

Proof. To show that σ and δ commute it suffices to check on elements of the form a⊗ b,

σ(δ(a⊗ b)) = σ(δ(a)⊗ b+ a⊗ δ(b)) = δ(σ(a))⊗ σ(b) + σ(a)⊗ δ(σ(b)) = σδ(a⊗ b).

Since for any a, b ∈ R1, c, d ∈ R2 we have

δ((a⊗ c)(b⊗ d)) = δ(ab)⊗ cd+ ab⊗ δ(cd) = δ(a)b⊗ cd+ aδ(b)⊗ cd+ ab⊗ δ(c)d+ ab⊗ cδ(d)

= (δ(a)⊗ c+ a⊗ δ(c))(b⊗ d) + (a⊗ c)(δ(b)⊗ d+ b⊗ δ(d))

= δ(a⊗ c)(b⊗ d) + (a⊗ c)δ(b⊗ d),

δ is a derivation. By right-exactness of the tensor product we get that σ ⊗ idR2 resp.
idR1 ⊗ σ is an automorphism. Hence R1 ⊗S R2 is a S-σδ-algebra. �

Proposition 4.15 Let any σδ-ring R and a multiplicative subset S which is stable under
σ. Then by defining for all a

s
∈ S−1R that σ(a

s
) := σ(a)

σ(s)
we get an automorphism and

using the usual derivation on S−1R, we get a σδ-ring structure on S−1R such that the map
ι : R→ S−1R is a σδ-morphism.

When we say that we localize a σδ-ring R at an element s, we mean that we localize at
S = {σi(s) | i ∈ Z>0}.
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5 Differential Algebraic Geometry

We will now need some differential algebraic geometry. For that we will use an adaption
of classical algebraic geometry. This will necessitate the use of a differentially closed field.
We will deal with this restriction later on. For the moment we will assume that k is
differentially closed.

Definition 5.1 For any set I ⊂ k{x1, . . . , xn} we denote

V(I) = {(k1, . . . , kn) ∈ kn | f(k1, . . . , kn) = 0 for all f ∈ I}.

Proposition-Definition 5.2 We have V(∅) = kn and V({1}) = ∅. Furthermore
⋂
i∈I V(i) =

V(
⋃
i∈I{i}) and V(i) ∪ V(j) = V([i][j]). Thus the V(S) form the closed sets of a topology

on kn, which we call the Kolchin topology. We will call Kolchin closed sets k-δ-varieties.

Note that we restrict ourself to affine k-δ-varieties. Kolchin and Cassidy developped the
theory in greater generality, but this won’t be necessary for our purposes.

Any Zariski closed set is Kolchin closed. In general, the Kolchin topology is finer than
the Zariski topology. For instance, for any polynomial p ∈ k[x], the vanishing set V (p) is
a finite set of points whereas

V(δ(x)) = {c | c ∈ kδ}
is a vector space.

Definition 5.3 For any X ⊂ kn, we call

J(X) := {f ∈ k{x1, . . . , xn} | for all x ∈ X : f(x) = 0}

the defining ideal of X.

The defining ideal is a radical differential ideal. Furthermore Y ⊂ X implies J(X) ⊂ J(Y ).

Proposition 5.4 The Kolchin topology is noetherian.

Proof. Consider a descending chain X1 ⊃ X2 ⊃ . . . of Kolchin closed sets. This
corresponds to an ascending chain of radical differential ideals J(X1) ⊂ J(X2) ⊂ . . . in
k{x1, . . . , xn}. By Ritt’s basis theorem, we know that k{x1, . . . , xn} is Rittian and thus
the chain of radical differential ideals stabilizes. Thus the descending chain of closed sets
stabilizes too and thus the topology is noetherian. �

Remark 5.5 In particular, any non-empty closed set can be written as the finite union of
irreducible components.

Definition 5.6 For any Kolchin closed subset, the ring k{X} := k{x1, . . . , xn}/J(X) is
called the differential coordinate ring of X. The localization of the differential coordinate
ring of X with respect to all non-zero divisors is called the total differential coordinate ring
of X and denoted by k〈X〉.
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Proposition 5.7 (Differential Analogue to Hilbert’s Nullstellensatz) For a differ-
entially closed field k the maps

{radical differential ideals of k{x1, . . . , xn}} ↔ {k-δ-subvarieties of kn}

a 7→ V(a)

J(X)←p X

are inverse to each other and bijections.

Proposition 5.8 A subset X ⊂ kn is irreducible for the Kolchin topology if and only if
J(X) is a prime ideal and then K〈X〉 is a field. Furthermore, the irreducible components
correspond to the minimal prime ideals of k{X}.

Proposition 5.9 Let X be a Kolchin closed subset and X1, . . . , Xn its irreducible compo-
nents. Then k〈X〉 ∼=

∏n
i=1 k〈Xi〉.

Definition 5.10 For k-δ-varieties X ⊂ kn, Y ⊂ km we call a map χ : X → Y a morphism
of differential varieties or a k-δ-morphism if there exist χ1, . . . , χm ∈ k{X} such that
χ(x) = (χ1(x), . . . , χm(x)). We call a k-δ-morphism an isomorphism if there exists a
two-sided inverse k-δ-morphism.

Definition 5.11 The k-δ-dimension δ-dimk(X) of an irreducible k-δ-variety X is defined
as δ-trdeg(k〈X〉 | k). If X is reducible, then we define its k-δ-dimension as the maximum
of the k-δ-dimensions of its irreducible components.

Note that k-δ-morphisms are continuous in the Kolchin topology. Furthermore this gives
us a category affine k-δ-varieties, whose objects are k-δ-varieties as defined above and
whose morphisms are k-δ-morphisms.

Proposition 5.12 Given two affine varieties V = V(f1, . . . , fr) ⊂ kn for {f1, . . . , fr} ⊂
k{x1, . . . , xr} and W = V(g1, . . . , gs) ⊂ km for {g1, . . . , gr} ⊂ k{y1, . . . , ys}, define

V ×k W := V(f1, . . . , fr, g1, . . . , gs) ⊂ kn+m

where the fi’s and gj’s are seen as elements in k{x1, . . . , xr, y1, . . . , ys}. This defines a
product in the category of affine k-δ-varieties. Hence all finite products exist in this
category.

Proposition 5.13 A singleton is an affine k-δ-variety and an terminal object in the cat-
egory of affine k-δ-varieties.
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6 Linear Differential Algebraic Groups

Definition 6.1 A linear k-δ-differential group is a group object in the category affine
k-δ-varieties, i.e. it is a quadruple (G, e, ◦, inv) consisting of an object G and e ∈ G (or
equivalently a morphism e : 1 → G) and morphisms ◦ : G × G → G and inv : G → G,
where m is associative, inv is a two-sided inverse of ◦ and e is a two-sided unit of m.

There exists a more general definition of a differential algebraic group, using a more general
definition of a k-δ-morphism [7].

Example 6.2 Consider G = kn with g1 ◦ g2 := g1 + g2 and inv(g) = −g. This is
sometimes called the vector group and denoted by Gn

a . Since J(Gn
a) = [0], we have

k{Gn
a} = k{x1, . . . , xn} and thus δ-dimk(Gn

a) = n.

Example 6.3 The set GLn(k) = {M ∈ kn2 | det(M) 6= 0} is Kolchin open, hence it is not
a k-δ-group. However, we can identify it with {(M,d) ∈ kn2+1 | det(M)d = 1}, which is
Zariski closed and thus Kolchin closed in kn

2+1 and thus a linear k-δ-group.

Example 6.4 The torus Gn
m = {(k×)n} with componentwise multiplication as group law

is a k-δ-subgroup of SLn+1(k). Any element of (x1, . . . , xn) ∈ Gn
m can be seen as

x1 0 . . . 0

0 x2
. . . 0

...
. . . . . . 0

0 . . . 0 1∏n
i=1 xi

 ∈ SLn+1(k)

and thus Gn
m = V

(
zi,j for i 6= j ,

∏n+1
i=1 zi,i

)
, hence the coordinate ring is

k{Gn
m} = k{x1, . . . , xn+1}/rad(

n∏
i=1

xi − 1) ∼= k{x1, . . . , xn,
1

x1 · · ·xn
}.

In particular δ-dimk(Gn
m) = n. For ease of notation, we will denote elements (x1, . . . , xn,

1
x1···xn )

with (x1, . . . , xn).

Definition 6.5 A group morphism between two k-δ-groups G,H which is a k-δ-morphism
of varieties is called a k-δ-group morphism. A k-δ-group isomorphism is a k-δ-group
morphism with a both-sided inverse.

Remark 6.6 The kernel of a k-δ-group morphism is a k-δ-subgroup of the source. This
because it is a subgroup and Kolchin closed, since it is defined as the solution to elements
of k{x1, . . . , xn}. The image is a k-δ-subgroup of the target.
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Proposition 6.7 For any k-δ-group G and any normal k-δ-subgroup N of G, there exists
a k-δ-group G/N together with a morphism π : G→ G/N such that it satisfies the universal
property of the quotient group, i.e. for any k-δ-morphism ϕ : G→ G′ such that N ⊂ ker(ϕ),
there exists a unique k-δ-morphism ϕ̃ : G/N → G′ making the following diagram commute:

G G/N

G′

π

ϕ
∃!ϕ̃

Proposition 6.8 Any k-δ-morphism ϕ : G → G′ induces an isomorphism G/ ker(ϕ) ∼=
im(G).

Proposition 6.9 For any k-δ-group G and a normal k-δ-subgroup N , the k-δ-subgroups
of G/N correspond bijectively to the k-δ-subgroups of G containing N .

Example 6.10 An important example of a k-δ-group morphism is the logarithmic deriva-
tive dlog : Gm → Ga, g 7→ δ(g)

g
. For any x, y ∈ Gm, we have dlog(xy) = δ(xy)

xy
=

δ(x)
x

+ δ(y)
y

= dlog(x) + dlog(y), thus this is a morphism of groups. In particular, since
δ(x)
x
∈ k{Gm} = k{x, 1

x
} we know that dlog is a k-δ-group morphism. However, it is not a

morphism of algebraic groups.

This morphism is surjective. Indeed, pick an arbitrary element g of Ga. Finding an
element of the pre-image of g in Gm corresponds to finding a solution to the equations
δ(z) = gz and z 6= 0. Since k is differentially closed, there exists such an element in k.
The kernel of dlog is Gm(kδ). We get the following exact sequence:

1→ Gm(kδ)→ Gm → Ga → 1.

In particular, we have have the following differential isomorphism Ga
∼= Gm/Gm(kδ).

Example 6.11 The k-δ-group Gm(kδ) is not an algebraic group over k, because it is not
Zariski closed in k. However, it is Zariski closed in kδ and thus an algebraic group over kδ.

Proposition 6.12 For any k-δ-group G there a exists a unique connected component con-
taining the identity. This is a normal k-δ-subgroup G0 of finite index of G.

Proof. Since G0 is Kolchin closed, to show that it is a k-δ-subgroup it suffices to show
that it is a group. Pick an arbitrary element g ∈ G0. Then g−1G0 ∩ G0 6= ∅ and thus
g−1G0 = G0 and g−1 ∈ G0. Hence we have for any g ∈ G0 that gG0 ∩ G0 6= ∅ and thus
gG0 = G0. Hence G0 is a k-δ-subgroup.

For an arbitrary element g ∈ G, we have that an k-δ-isomorphism y 7→ gyg−1. Thus
gG0g−1 is closed in G and has a non-empty intersection with G0. Thus we have shown
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that for all g ∈ G we have gG0g−1 = G0 and thus G0 is a normal k-δ-subgroup.

Furthermore G possesses a finite decompostion into connected components Gi. Since for
any g ∈ Gi we have gG0 ∩Gi 6= ∅, we know that Gi = gG0. Hence G0 is of finite index in
G. �

Proposition 6.13 The irreducible and connected components in the Kolchin topology of
any k-δ-group coincide.

In particular this means that the identity component of any k-δ-group is irreducible.

7 k-δ-subgroups of Ga and Gm

Theorem 7.1 A subset of k is a proper k-δ-subgroup of Ga if and only if it is the zero set
of a non-zero linear homogeneous differential polynomial in k{x}.

Proof. The zero set of a non-zero linear homogeneous differential polynomial ` is a proper
Kolchin-closed subset of k. Since ` is homogeneous, 0 ∈ V(`) and it is a subgroup as the
sum of two solutions of ` is again a solution. Thus it is a proper k-δ-subgroup of Ga.

Conversely, fix a proper k-δ-subgroup G of Ga. We first show that G is a kδ-vector space.
Let t be a new variable, and extend δ from k to k[t] by defining δ(t) := 0. Pick an element
h ∈ G\{0} and an f ∈ J(G). Then f(th) ∈ k[t]. Since nh ∈ G for all n ∈ Z, we have that
f(nh) = 0. Since Z is Zariski dense in kδ, we have f(lh) = 0 for all l ∈ kδ and thus, since
f was chosen arbitrarily in J(G), we have lh ∈ G. Hence G is a kδ-vector space.

Since vector spaces do not possesses proper subgroups of finite index, G is irreducible
and we know that J(G) is prime. By 2.40, for P ∈ J(G)\{0} of minimal rank in J(G) we
have

J(G) = [P ] : (IPSP )∞.

Because P is of minimal rank, and SP and IP are of smaller rank then P , we know that
SP and IP are not in J(G). Hence SP IP /∈ J(G) since J(G) is prime. Thus there exists a
g ∈ G such that SP (g)IP (g) 6= 0. Since G is an kδ-vector space, we have for of all h ∈ G
and all t ∈ kδ that P (g + th) = 0. We introduce a new variable u and extend δ to k[u] by
setting δ(u) := 0. Using the Taylor extension of P (g + hu) ∈ k[u] at u = 0, we can write

P (g + hu) =
∑′

Pk(g, h)uk

where Pk(g, h) ∈ k{g, h}. This means that for all k > 0 we have that Pk(g, h) = 0 and
thus in particular P1(g, h) = 0. By definition of the Taylor extension, P1(g, h) is the partial
derivative of P (g + hu) with respect to u evaluated at u = 0. We recall that if we denote
x = (δi(x))>0, we get k{x} = k[x0, x1, . . .]. Furthermore, we denote by g := (δi(g))i>0 and
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h := (δi(h))i>0. We then consider P (x) as an element of k[x0, x1, . . .]. Using the chain rule
we get [ ∂

∂u
P (g + hu)

]
u=0

=
∑
k>0

∂P

∂xk
(g)hk.

Thus, if we define

P1(g, x) :=
∑
k∈Z>0

∂P

∂xk

(
g
)
xk ∈ k[x],

we them have for all g′ ∈ G that P1(g, g′) = 0. Thus P1(g, x) ∈ J(G). We will now show
that J(G) = [P1(g, x)]. By the linearity of P1(g, x), its rank is smaller or equal to the rank
of P . Thus P1(g, x) is of minimal rank. Again by 2.40 J(G) = [P1(g, x)] : (IP1(g,x)SP1(g,x))

∞.
However, since IP1(g,x) = SP1(g,x) ∈ k×, this means that

J(G) = [P1(g, x)].

Since P1(g, x) is a non-zero linear homogeneous differential polynomial, we are done. �

Theorem 7.2 A subset of k× is a proper k-δ-subgroup of Gm if and only if it is the zero
set of an equation of the form

• xn − 1 for n ∈ Z>0 or

• `( δ(x)
x

) for some linear homogeneous differential polynomial in ` ∈ k{x}.

Proof. Consider a proper k-δ-subgroup H of Gm and its k-δ-subgroup of its kδ-rational
points H(kδ). Note that H(kδ) is a k-δ-subgroup of Gm(kδ) and thus either µn for some
n ∈ Z>1 or Gm(kδ).

Since H0(kδ) = H0 ∩Gm(kδ) we know by the differential analogue of Hilbert’s Nullstellen-
satz that J(H0(kδ)) = rad(J(H0) + [δ(x)]). We also have that

k{x, 1
x
}/(J(H0) + [δ(x)]) ∼= k[x, 1

x
]/(J(H0) ∩ k[x, 1

x
]).

Since H0 is irreducible, J(H0) ∩ k[x 1
x
] is prime and thus the ring above is an integral

domain. Hence J(H0) + [δ(x)] is radical. If H0(kδ) is finite and cyclic, we know that
J(H0) ∩ k[x 1

x
] ⊃ (xn − 1) and thus H0 is finite and cyclic. But since H0 is a normal

subgroup of finite index of H, we know that H is finite and cyclic.

We now assume that H(kδ) = Gm(kδ) and thus H > Gm(kδ). For this we recall form Ex.
6.10 the following differential isomorphism Ga

∼= Gm/Gm(kδ). Thus, there exists a proper
k-δ-subgroup H ′ of Ga such that dlog induces the isomorphism H/Gm(kδ) ∼= H ′ � Ga. In
particular the image of H under dlog is a proper subgroup. Thus H is the zero set of an
equations of the form `( δ(x)

x
) for some linear homogeneous differential polynomial ` ∈ k{x}.

Thus H is the zero-set of some equations of the form `( δ(x)
x

) or xn − 1. �
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Note that any proper k-δ-subgroup G of Gm is contained in the zero set of a non-zero
linear homogeneous differential polynomial. If G is the zero set of an equation of the form
xn − 1, then we know that for any h ∈ H we have hn = 1 and thus δ(hn)

hn
= n δ(h)

h
= 0. The

second case is trivial.

One can generalize our results to k-δ-subgroups of Gn
a and Gn

m:

Theorem 7.3 A subset of kn is a proper k-δ-subgroup of Gn
a if and only if it is the zero set

of a finite number of non-zero linear homogeneous differential polynomials in k{x1, . . . , xn}.

Theorem 7.4 A subset of (k×)n is a proper k-δ-subgroup of Gn
m if and only if it is the

zero set of a finite number of equation of the form

• xm1
1 · · · xmn

n − 1 for (m1, . . . ,mn) ∈ Zn or

• `( δ(x1)
x1

, . . . , δ(xn)
xn

) for some linear homogeneous differential polynomial ` ∈ k{X1, . . . , Xn}.
Furthermore for any proper subgroup G of Gn

m there exists a non-zero linear homogeneous

differential polynomial L ∈ k{X1, . . . , Xn} such that G ⊂ V
(
L
(
δ(x1)
x1

, . . . , δ(xn)
xn

))
.

8 Parametrised Picard-Vessiot-Theory

8.1 σδ-Picard-Vessiot Ring

For ease of notation, when Z = (Zi,j)i,j an element of GLn(R), we will denoteK{(Zi,j)i,j=1,...,n,
1

det(Z)
}

by K{Z, 1
det(Z)

}.

Definition 8.1 For a σδ-field K and A ∈ GLn(K), a parametrised Picard-Vessiot ring for
the equation σ(Y ) = AY is a σδ-simple K-σδ-algebra R such that there exists Z ∈ GLn(R)
with σ(Z) = AZ whose entries differentially generate R, i.e. R = K{Z, 1

det(Z)
}, which

we call a fundamental solution. We will sometimes abbreviate the name “parametrised
Picard-Vessiot ring” to “σδ-Picard-Vessiot ring” or simply “σδ-PV-ring”.

Proposition 8.2 For any σδ-field K and A ∈ GLn(K), there exists a σδ-Picard-Vessiot
ring for σ(Y ) = AY .

Proof. We give an explicit construction. Let X be an n × n-matrix whose entries
are variables. We first endow the differential ring K{(Xi,j),

1
det(X)

} with the structure

of a K-σδ-algebra by extending σ. We do this by defining σ(Xi,j) := (AX)i,j for all
i, j ∈ {1, . . . , n} and σ( 1

det(X)
) := 1

det(A) det(X)
. Since K{(Xi,j),

1
det(X)

} is generated by these

elements and σ and δ have to commute, we can extend σ to K{(Xi,j),
1

det(X)
}. Since this

σδ-ring is non-zero, there exists a maximal σδ-ideal m. Then the quotient ring R :=
K{(Xi,j),

1
det(X)

}/m is σδ-simple. Furthermore, R is generated as a K-σδ-algebra by the

images of Xi,j’s and 1
det(X)

into R, i.e. R = K{(X̄i,j),
1

det(X̄)
}. Thus R is a σδ-Picard-Vessiot

ring for σ(Y ) = AY . �
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This σδ-Picard-Vessiot ring of an equation is in general not unique. However, we will later
show that under the assumption that Kσ is differentially closed, two σδ-Picard-Vessiot
rings are isomorphic as σδ-algebras.

Proposition 8.3 For a σδ-field K and a differentially finitely generated σδ-simple K-σδ-
algebra R , there exist n ∈ Z>0 and e0, . . . , en−1 ∈ R such that

1. e0 + . . .+ en−1 = 1, e2
i = ei, eiej = 0 for all i 6= j

2. R = Re0 ⊕ . . .⊕Ren−1 and σ(ei) = ei+1 mod n

3. the Rei are integral δ-rings and σnδ-simple σnδ-rings

Proof. Since R is σδ-simple, the ideal [0] is the maximal σδ-ideal. In particular, it is
radical. Since R is differentially finitely generated over a field, it is Rittian. Thus we can
write [0] =

⋂n−1
i=0 pi for prime differential ideals pi which do not contain one another. The

R/pi’s are integral domains. Since the pi’s are unique up to permutation, the image of
any one these prime ideals pi under σ is one of the prime ideals pj. We now show that
the action of σ on the pi is transitive. If not, there would exist a non-empty proper sub-
set I  {0, . . . , n − 1} such that σ(

⋂
i∈I pi) =

⋂
i∈I pi % {0}. In particular

⋂
i∈I pi is a

σδ-ideal and non-trivial. But this contradicts the fact that R is σδ-simple. Thus, after
possible renumbering, we can write σ(pi) = pi+1 mod n. Thus, the pi are prime σnδ-ideals
and σ(R/pi) = R/pi+1 mod n.

We also want to show that the R/pi’s are σnδ-simple rings. This is equivalent to the
non-existence of proper σnδ-ideals of R properly containing pi. Assume that there exists
such a differential ideal q. Then

⋂n−1
k=0 σ

k(q) is stable under σ, since q is a σnδ-ideal. Hence⋂n−1
k=0 σ

k(q) is a σδ-ideal and since R is σδ-simple we know
⋂n−1
k=0 σ

k(q) = [0]. In particular⋂n−1
k=0 σ

k(q) ⊂ pi and thus there exists a j ∈ {0, . . . , n− 1} such that σj(q) ⊂ pi. Further-
more, since pi ⊂ q, we have σj(pi) ⊂ σj(q) ⊂ pi. But since σj(pi) = pi′ for some i′ and no
pi are contained in one another, we have σj(pi) = pi and thus pi ⊂ σj(q) ⊂ pi. Hence we
have pi = σ−j(pi) = q, which is a contradiction. Hence the R/pi are σnδ-simple rings.

Furthermore, for all i 6= j, the sum pi + pj is a σnδ-ideal which properly contains pi. Thus
by the previous argument it has to be R, hence the pi’s are coprime. In particular, this
allows us to apply the Chinese Remainder Theorem and we know that π : R

∼−→
⊕n−1

i=0 R/pi,
r 7→ (r̄, . . . , r̄) is an isomorphism. Since it is a differential ring morphism, this is also a
differential isomorphism. We set ei := π−1(0, . . . , 1R/pi , 0 . . . , 0) for all i. In particular, for
all i we have e2

i = π−1(0, . . . , 12
R/pi

, 0 . . . , 0) = ei, for all i 6= j ejei = π−1(0, . . . , 0) = 0

and e0 + . . . en = π−1(1R/p0 , . . . , 1R/pn−1) = 1. Furthermore Rei = π−1(R/pi). Since π is a
differential isomorphism, the Rei’s are integral domains and δ-simple. �

This allows us to define the differential transcendence degree of a σδ-Picard-Vessiot Ring.

Proposition-Definition 8.4 For any σδ-field K and A ∈ GLn(K), consider a σδ-Picard-
Vessiot ring R for σ(Y ) = AY . Then the total ring of fractions L of R is the prod-
uct of finitely many σnδ-fields Li which are all differentially isomorphic. We define δ-
trdeg(R/K) := δ-trdeg(Li/K).
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Proof. Since R is a σδ-Picard-Vessiot ring over K, it is differentially finitely generated
K-σδ-algebra and σδ-simple. Thus we know, thanks to the previous Proposition, that
R = Re0 ⊕ . . .⊕Ren. Since the total ring of fractions of the product is the product of the
respective total rings of fractions, we have L =

⊕n
i=0 Quot(Rei). It remains to show that

the Li := Quot(Rei) are isomorphic as differential fields. Note that σ is an automorphism of
R and that σ(Rei) = Rei+1 mod n. In particular since R is a σδ-algebra, σ is a differential
morphism of rings. Hence we have Rei ∼= Rej for all i, j and Quot(Rei) = Quot(Rej).
Since the transcendence degree is invariant under differential isomorphism, δ-trdeg(R/K)
is well-defined. �

Proposition 8.5 For any σδ-field K such that Kσ =: k is differentially closed and any σδ-
simple K-σδ-algebra R which is differentially finitely generated over K, we have Rσ = Kσ.

Proof. By our previous proposition we may write R = Re0 ⊕ . . . ⊕ Ren−1. In par-
ticular for any r ∈ Rσ and i ∈ {1, . . . , n} we have σn(rei) = rei. Pick an arbitrary
r ∈ Rσ. Then rei ∈ (Rei)

σn
. Note that Rei is am integral σnδ-simple K-σnδ-algebra

which is finitely generated over K. If we prove the proposition in this case, we then have
(Rei)

σn
= Kσn

. We first show that it suffices to show this special case. Pick an arbi-
trary element l ∈ Kσn\Kσ and consider the polynomial

∏n−1
i=0 y − σi(l) ∈ K{y}. Note

that σ(
∏n−1

i=0 (y − σi(l))) =
∏n−1

i=0 (y − σi(l)) and thus
∏n−1

i=0 (y − σi(l)) ∈ (K{y})σ. We
claim that (K{y})σ = Kσ{y}. We write yα = yα0δ(y)α1 · · · and pick an arbitrary element∑
fαy

α ∈ (K{y})σ. We then have σ(
∑
fαy

α) =
∑
σ(fα)yα and by assumption

∑
fαy

α.
Thus we have σ(fα) = fα and in particular (K{y})σ ⊂ Kσ{y}. The other inclusion is

trivial. Hence
∏n−1

i=0 (y − σi(l)) ∈ Kσ{y}. Since Kσ is differentially and thus algebraically
closed, we know that Kσn

= Kσ. Hence for all i we have rei = ki for some ki in Kσ. Then
r = r(e1 + . . .+ en) = re1 + . . .+ ren = k1 + . . .+ kn ∈ Kσ.

It remains to show that if R is an integral σδ-simple K-σδ-algebra which is finitely gener-
ated over K, we have Rσ = Kσ. We argue by contradiction and assume the existence of
an c ∈ Rσ\Kσ. We will show the existence of an differential homomorphism from R to a
differential field extension of K sending c into Kσ.

For that let R0 := K{c}, where we note that since R is differentially finitely generated over
K, it is so too over R0. Let u0 be the element given by the statement of Theorem 3.17.
Then it suffices to find a morphism ϕ′ : R0 → L such that ϕ′(u0) 6= 0 and ϕ′(c) ∈ Kσ, as
we can then extend the morphism to R thanks to Theorem 3.17. We write u0 = p(c) for
some p ∈ K{y}, where y is a new variable. We choose a Kσ-vector space basis (ai)i∈I of
K and write p =

∑
aiVi for some Vi ∈ Kσ{y}. Since u0 6= 0, there exists a k such that

Vk(c) 6= 0.

We endow K{y} with the structure of a σδ-ring by extending σ via σ(y) = y. Since
c ∈ Rσ, the defining ideal J(c) ⊂ K{y} is a σδ-ideal. We claim that [J(c)∩Kσ{y}] = J(c).
Its clear that [J(c)∩Kσ{y}] ⊂ J(c). For the other inclusion we first define the length `(f)
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of a differential polynomial f ∈ K{y}. We can write f =
∑′ fαyα where α is a multi-

index, fα ∈ K and yα := yα0δ(y)α1 · · · . Then let the length be the number of non-zero
fα involved. We now show that all f ∈ J(c) are in [J(c) ∩ Kσ{y}] via induction on the
length k. The base case k = 0 is true since 0 is an element of any ideal. Now assume that
for k > 0 the claim is true. Let f be of length k + 1. By normalizing, we may assume
without loss of generality that there exists a β such that fβ = 1. If all coefficients of f are
in Kσ, we are done. Thus we assume that there is a α such that fα ∈ K\Kσ. Consider
the equation

σ(f−1
α f)− f−1

α f = σ(f−1
α )(σ(f)− f) + (σ(f−1

α )− f−1
α )f.

The left hand side has length k, since the α-monomial cancels itself. Thus the left hand
side is, by induction-assumption, in [J(c) ∩Kσ{y}]. The first term on the right hand side
has length k, since the term with fα = 1 cancels itself. Again, by induction assumption,
it is in [J(c) ∩ Kσ{y}]. Thus we know that (σ(f−1

α ) − f−1
α )f ∈ [J(c) ∩ Kσ{y}] and thus,

since (σ(f−1
α )−f−1

α ) is non-zero, we have f ∈ [J(c)∩Kσ{y}]. Thus we have shown the claim.

By the claim and the fact that Kσ{y} is Rittian, we know that J(c) = [rad(f1, . . . , fr)] for
r > 0 and f1, . . . , fr ∈ Kσ{y}. Furthermore, since R is an integral domain, J(c) is prime
and in particular radical. Hence

J(c) = rad(J(c)) = rad([rad(f1, . . . , fr)]) = rad(f1, . . . , fr).

Thus the f1, . . . , fr and the inequality Vk form a system of equation in Kσ which possesses
a joint solution in an extension of K, namely c. Since Kσ is differentially closed, there
exists a joint solution c̃ ∈ Kσ.

We induce a morphism ϕ′′ : K{y} → K by letting ϕ′′ be the identity on K and defin-
ing ϕ′′(x) := c̃. Since the kernel of ϕ′′ contains f1, . . . , fr and is a radical ideal, it also
contains rad(f1, . . . , fr). Thus, ϕ′′ induces a differential morphism

ϕ′ : K{c} ∼= K{y}/rad(f1, . . . , fr)→ K

sending c to c̃ ∈ Kσ. It remains to show that ϕ(u0) 6= 0. We know that Vk(c̃) 6= 0. Thus,

since all Vi(c̃) ∈ Kσ{c̃} = Kσ and Vk(c̃) 6= 0, if ϕ(u0) = p(c̃) =
∑
aiVi(c̃) = 0, then the

ai’s would be linearly dependent over Kσ. This is contradiction and thus ϕ(u0) 6= 0. Thus
there exists a differential morphism ϕ as we were looking for.

Hence ϕ(c − c̃) = ϕ(c) − c̃ = 0. Since c, c̃ ∈ Rσ we have that [c − c̃] ⊂ R is a σδ-
ideal. But since R is σδ-simple, we know that 1 ∈ [c − c̃] and thus ϕ(1) = 0, which is a
contradiction. Thus there cannot exist an c ∈ Rσ\Kσ and we are done.

�
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Remark 8.6 Note that the parametrised Picard-Vessiot theory did not make use of the
condition that Kσ is differentially algebraically closed up until now. In everything that
follows, the condition that Kσ be differentially algebraically closed is only used to apply
this proposition, i.e. that the field σ-constants of K is the same as the field of σ-constants
of the parametrised Picard-Vessiot ring. We will return to this observation later on.

Proposition 8.7 For any σδ-field K such that Kσ is differentially closed and for any σδ-
simple, differentially finitely generated K-algebra R and its total quotient ring Quot(R),
we have Quot(R)σ = Kσ.

Proof. Omitted, for reference see Cor 6.15 in [3]. �

Corollary 8.8 For any σδ-field K such that Kσ is differentially closed and A ∈ GLn(K)
and an σδ-Picard-Vessiot ring R for σ(Y ) = AY and two fundamental solutions Z1, Z2 ∈
GLn(R), there exists a unique C ∈ GLn(Kσ) such that Z2 = Z1C.

Proof. We have σ(Z−1
1 Z2) = Z−1

1 A−1AZ2 = Z−1
1 Z2, hence Z−1

1 Z2 =: C ∈ GLn(Rσ) =
GLn(Kσ) by 8.5 and thus Z2 = Z1C. In particular this C is unique. �

Proposition 8.9 For a σδ-field K such that Kσ is differentially closed and A ∈ GLn(K),
any two σδ-Picard-Vessiot rings for σ(Y ) = AY are isomorphic as K-σδ-algebras.

Proof. Consider two such rings R1 = K{Ui,j, 1
det(U)

} and R2 = K{Vi,j, 1
det(V )

} and (R1⊗K
R2)/m for a maximal σδ-ideal m ⊂ R1 ⊗K R2. Since R1, R2 are σδ-simple, the canonical
morphisms ι1 : R1 → (R1⊗KR2)/m, r 7→ r ⊗ 1 and ι2 : R2 → (R1⊗KR2)/m, r 7→ 1⊗ r are
injective. The images of ι1 and ι2 are generated by ι1(Ui,j), ι1( 1

det(U)
) and ι2(Vi,j), ι2( 1

det(V )
)

respectively. Since (R1⊗KR2)/m is a σδ-simple K-σδ-algebra which is differentially finitely
generated over K we have ((R1 ⊗K R2)/m)σ = Kσ. Since σ((1 ⊗ V )−1(U ⊗ 1)) = (1 ⊗
V )−1A−1A(U ⊗ 1) we have ι2(V ) = ι1(U)C for some C ∈ GLn(Kσ). Thus ι1(R1) = ι2(R2)
and thus R2

∼= R1 via ι−1
2 ι1. �

8.2 Parametrised Galois Group

Definition 8.10 A σδ-automorphism ϕ : R → R which restricts to the identity on K is
called a σδ-automorphism over K.

Definition 8.11 For a σδ-field K let R be a σδ-Picard-Vessiot ring for σ(Y ) = AY where
A ∈ GLn(K). Then the σδ-Galois group or parametrised Galois group σδ- Gal(R/K) of
R is the group of σδ-automorphisms ϕ of R over K.

Notice that an element ψ ∈ σδ- Gal(R/K) gives a well defined K-σδ-morphism of the total

ring of fraction L of R via ψ(a
b
) = ψ(a)

ψ(b)
. Since we have developed tools to study linear

differential algebraic groups, we want to show that the parametrised Galois group is one.
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Proposition 8.12 Consider a σδ-field K such that k := Kσ is differentially closed and a
σδ-Picard-Vessiot ring R for σ(Y ) = AY where A ∈ GLn(K). Then there exists a injective
group morphism ι : σδ- Gal(R/K) → GLn(k) such that the image is a k-δ-subgroup of
GLn(k).

Proof. We first define ι. Since R is a σδ-Picard-Vessiot ring, there exists a fundamental
solution Z ∈ GLn(R) such that R = K{(Zi,j), 1

det(Z)
}. Then for any ψ ∈ σδ- Gal(R/K), we

have σ(ψ(Z)) = ψ(σ(Z)) = ψ(AZ) = Aψ(Z) and hence ψ(Z) is a solution of σ(Y ) = AY .
Furthermore, since ψ(Z) is invertible in R, we have ψ(Z) ∈ GLn(R). Hence ψ(Z) is
a fundamental solution of σ(Y ) = AY . Therefore, by Cor. 8.8 there exists a unique
Uψ ∈ GLn(k) such that ψ(Z) = ZUψ. Since for ψ, ϕ ∈ σδ- Gal(R/K) we have ϕ(ψ(Z)) =
ϕ(ZUψ) = ZUϕUψ, this defines a group morphism ι : σδ- Gal(R/K)→ GLn(k), ψ 7→ Uψ.

Assume that Uψ = idGLn(k). Then ψ(Z) = Z. Since R is differentially generated by
the entries of Z and its determinant, we know that ψ is then the identity. Thus ι is injec-
tive. The image of ι is a subgroup of GLn(k), but to show that it is a k-δ-subgroup, we
need to show that it is Kolchin-closed. For that we will show that the image of ι is the
zero-set of some differential polynomials. First we write R = K{(Yi,j), 1

det(Y )
}/J where for

i, j = 1, . . . , n the Yi,j are new variables and J a radical differential ideal. The automor-
phism σ is then defined by σ(Yi,j) = (AY )i,j. Since K{(Yi,j), 1

det(Y )
} is Rittian, we know

that J has a finite basis which we denote by {J1, . . . , Js}. For any M ∈ GLn(k) we consider
a differential automorphism

ψM : K{(Yi,j),
1

det(Y )
} → K{(Yi,j),

1

det(Y )
} defined by Yi,j 7→ (YM)i,j

and by the identity onK. SinceM is a matrix of σ-constants, the differential automorphism
ψM commutes with σ. Hence ψM is a σδ-automorphism which is the identity on K.
M in the image of ι if and only if ψM fixes J, as then and only then ψM gives us a
σδ-automorphism of R over K. Each of the finitely many Ji’s can be written as a K-
linear combination of finitely many δk1,1(y1,1)l1,1 · · · δk1,2(y1,2)l1,2 · · · δkn,n(yn,n)ln,n det(Y )−r

where all li,j, ki,j, r ∈ Z>0. Let V ⊂ K{Y, 1
det(Y )

} be the finite dimensional K-vector space

generated by all monomials in δka,b(ya,b)
la,b and 1

det(Y )
which occur in this representation of

J1, . . . , Js. We can find a K-vector space basis {pe}e∈E of V ∩J and extend it to a K-vector
space basis {pw}w∈W of V . We now have for w ∈ W

ψM(pw) = pw((YM)i,j, (det(Y ) det(M))−1) =
∑
v∈W

′
Pv,w

(
(Mi,j),

1

det(M)

)
pv

for some Pv,w((Mi,j),
1

det(M)
)K̄{M, 1

det(M)
}. Thus J is fixed by ψM if and only if Pv,w = 0

for all v ∈ W\E , as only then ψM(pw) is a K-linear combination of pv’s for v ∈ E . We now
show that is equates to ((Mi,j),

1
det(M)

) being a solution to a set of differential polynomials

with coefficient in k. Choose a basis {kt}t∈T of K as a k-vector space. Hence every

28



differential polynomial Pv,w((Mi,j),
1

det(M)
) can be written as

∑′
t∈T Pv,w,t((Mi,j),

1
det(M)

)kt,

for finitely many Pv,w,t((Xi,j),
1

det(X)
) ∈ k{(Xi,j),

1
det(X)

}. Thus the image of ι is the zero

set of the differential polynomials {Pv,w,t((Xi,j),
1

det(X)
) | w ∈ E , v ∈ W\E , t ∈ T }. Thus it

is Kolchin-closed and the image of ι is a differential subgroup of GLn(k). �

Remark 8.13 Note that in the construction of ι in the proof of 8.11 we chose a fundamen-
tal solution Z. This choice is not unique and thus this identification of the parametrised
Galois group is not unique. However, it is up to unique k-δ-group isomorphism. For two
fundamental solutions Z1, Z2 there exists a unique D ∈ GLn(k) such that Z1 = Z2D. As
in the proof, we have ψ(Z1) = Z1Uψ,1 = Z2DUψ,1 and ψ(Z1) = ψ(Z2D) = Z2Uψ,2D. Hence
Uψ,1 = D−1Uψ,2D, thus the two identification are conjugate.

Proposition 8.14 For a a σδ-field K such that k := Kσ is differentially closed, let R be
a σδ-Picard-Vessiot ring. Then we have δ-trdeg(R/K) = δ-dimk (σδ- Gal(R/K)).

A proof of this can be found in Prop 6.24 of [3]

Corollary 8.15 The entries of a fundamental solution of a difference equation are differ-
entially dependent if and only if δ-dimk (σδ- Gal(R/K)) = 0.

The next theorem shows that calling the parametrised Galois group a Galois group is
justified. Indeed, there exists a Galois-correspondence, which we won’t actually need.

Definition 8.16 For any subset F ⊂ L we define

F σδ-Gal(R/K) := {f ∈ F | ∀ϕ ∈ σδ- Gal(R/K) ϕ(f) = f}.

For the next theorem we introduce for all σδ-rings F ⊂ L the notation

σδ- Gal(L/F ) := {ϕ ∈ σδ- Gal(R/K) | ∀f ∈ F : ϕ(f) = f}

Theorem 8.17 Let K be a σδ-field such that k := Kσ is differentially closed. For
A ∈ GLn(K), let R be a σδ-Picard-Vessiot ring of σ(Y ) = AY and L its total ring of
fractions. Then we have Lσδ-Gal(R/K) = K and the following inclusion reversing bijective
correspondence:

{F | F a σδ-ring, K ⊂ F ⊂ L and Quot(F ) = F} {H | H a δ-subgroup of σδ- Gal(R/K)}

F σδ- Gal(L/F )

LH H
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Proof. We only show that Lσδ- Gal(R/K) = K, which is the only thing which we will
need. Assume that there exists a

b
∈ Lσδ- Gal(R/K)\K. Then 0 6= a ⊗ b − b ⊗ a ∈ R ⊗K R.

Since (R⊗KR)a⊗b−b⊗a is a non-empty σδ-ring, we can pick a maximal σδ-ideal m ⊂ (R⊗K
R)a⊗b−b⊗a. Then the σδ-algebra morphisms ψ1 : R→ (R⊗KR)a⊗b−b⊗a/m, r 7→ r⊗1

1
+m and

ψ2 : R→ (R⊗KR)a⊗b−b⊗a/m, r 7→ 1⊗r
1

+m are injective, since R is σδ-simple. Since (R⊗K
R)a⊗b−b⊗a/m is a σδ-simple K-σδ-algebra which is differentially finitely generated over K
we have ((R⊗K R)a⊗b−b⊗a/m)σ = Kσ and since σ((1⊗Z)−1(Z⊗1)) = (1⊗Z)−1A−1A(Z⊗1)
we have ψ2(Z) = ψ1(Z)C for some C ∈ GLn(Kσ). Thus ψ1(R) = ψ2(R) and hence ψ−1

2 ψ1

is a σδ-automorphism of R over K. The image of a⊗ b− b⊗ a into (R⊗K R)a⊗b−b⊗a/m is
equal to ψ1(a)ψ2(b)− ψ1(b)ψ2(a) 6= 0, since a⊗ b− b⊗ a is a unit in (R⊗K R)a⊗b−b⊗a and
thus not contained in the maximal ideal m. Thus ψ−1

2 ψ1(a)b−ψ−1
2 ψ1(b)a 6= 0, therefore we

have found an element of σδ- Gal(R/K) such that a
b

isn’t fixed by it. This is a contradiction
and we are done. �

9 Main Theorems

Theorem 9.1 Let K be a σδ-field such that k = Kσ is differentially closed. For a ∈ K×
let L be a K-σδ-algebra which contains z such that σ(z) = az and Lσ = k. Then z is
differentially algebraic over K if and only if there exists a non-zero homogenous linear
differential polynomial ` ∈ k{x} and an element f ∈ K× such that

`
(δ(a)

a

)
= σ(f)− f.

If z is differentially algebraic, then `( δz
z

)− f ∈ k.

Proof. Assume that there exist such ` and f as in the Theorem. Then we have

σ
(
`
(δ(z)

z

)
− f

)
=`
(δ(σ(z))

σ(z)

)
− σ(f) = `

(δ(az)

az

)
− σ(f)

=`
(δ(a)

a

)
+ `
(δ(x)

x

)
− σ(f) = `

(δ(z)

z

)
+ `
(δ(a)

a

)
− σ(f) = `

(δ(z)

z

)
− f

and thus `( δ(z)
z

)− f ∈ Lσ = k. Hence z is differentially algebraic over K.

Conversely, assume that z is differentially algebraic over K. Since K is a field, K{z, 1
z
}

is non-zero and there exists a maximal σδ-ideal in K{z, 1
z
}. Hence R := K{z, 1

z
}/m =

K{z̄, 1̄
z
} is a σδ-simple ring. Thus R is a σδ-Picard-Vessiot ring. Consider any ϕ ∈

σδ- Gal(R/K). Then

σ(
ϕ(z̄)

z̄
) =

ϕ(σ(z̄))

σ(z̄)
=
āϕ(z̄)

āz̄
=
ϕ(z̄)

z̄

and thus ϕ(z̄)
z̄

=: kϕ ∈ k. And since

ϕ(ψ(z̄))

z̄
=
ϕ(ψ(z̄))

ψ(z̄)

ψ(z̄)

z̄
= kϕkψ,
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we can identify σδ- Gal(R/K) with a k-δ-subgroup of Gm. Since z is differentially algebraic
over K, by 8.13 we have

1 > δ-trdeg(R/K) = δ- dimk(σδ- Gal(R/K)),

hence it is a proper subgroup. Thus we know that there exists a non-zero linear homo-
geneous polynomial ` ∈ k{X} such that σδ- Gal(R/K) ⊂ V(`( δ(X)

X
)). We now show that

`( δ(z̄)
z̄

) ∈ K. To show this we prove that `( δz̄
z̄

) is invariant under σδ- Gal(R/K). For this
pick any ϕ ∈ σδ- Gal(R/K). Then

ϕ

(
`

(
δ(z̄)

z̄

))
= `

(
δ(ϕ(z̄))

ϕ(z̄)

)
= `

(
δ(kϕz̄)

kϕz̄

)
`

(
δ(z̄)

z̄
+
δ(kϕ)

kϕ

)
= `

(
δ(z̄)

z̄

)
and thus f := `

(
δ(z̄)
z̄

)
∈ K. And since

σ(f)− f = `

(
σ

(
δ(z̄)

z̄

)
− δ(z̄)

z̄

)
= `

(
δ(a)

a

)
we have found both an ` and an f as in the statement and we are done. �

It is somewhat unsatisfactory that we have to work with a differentially closed field.
However, the results which we have suffice to prove some results regarding meromorphic
functions. On the field Mer(C) of meromorphic functions on C define σ : Mer(C) →
Mer(C), f(x) 7→ f(x + 1) and δ = ∂

∂x
. Let F = (Mer(C))σ and C(x) and F(x) be

σδ-sub-fields of Mer(C).

Proposition 9.2 For a ∈ C(x)\{0}, consider a nonzero meromorphic function g in x
over C such that

σ(g) = ag.

Then g is differentially algebraic over F(x) if and only if there exists a non-zero linear

homogeneous differential polynomial ` ∈ C{X} and an element f ∈ C(x) such that `( δ(a)
a

) =
σ(f)− f .

Proof. If ` and f exist as in the statement we note that `( δ(g)
g

)−f is a linear combination

of meromorphic functions, so it is meromorphic. If `( δ(a)
a

) = σ(f)− f for some f ∈ C(x),

then σ(`( δ(g)
g

) − f) = `( δ(g)
g

+ δ(a)
a

) − σ(f) = `( δ(g)
g

) − f , hence `( δ(g)
g

) − f is a 1-periodic
meromorphic function and thus an element of F . Thus g is differentially algebraic over
F(x).

Conversely assume that g is differentially algebraic over F(x). We need to show the
existence of an ` and f as specified in the proposition. We will first find an ` and f for the
case that Kσ is differentially closed and then use these as an Ansatz to find a solution over
C. For this we choose a differential closure of F , which we denote by F̃ , and F(x){g} the
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differential ring extension of F(x) with g, which is a σδ-subring of the field of meromor-
phic functions. Endow K := F̃(x) with a σδ-structure by extending δ with δ(x) = 1 and
defining σ to be the automorphism induced by the identity on F̃ and σ(x) 7→ x+ 1. Then
K{g} has a natural K-σδ-algebra structure. Pick a maximal σδ-ideal m ⊂ K{g} and set
L := K{g}/m, which is a K-σδ-algebra.

To apply Prop 9.1 we need to show that Lσ = Kσ = F̃ . To determine Kσ, we use Prop
8.7 to the F̃ -algebra F̃ [x]. To apply this, we first need to check that F̃ [x] is differentially
finitely generated over F̃ , σδ-simple and that F̃σ is differentially closed. By definition of
σ we have F̃σ = F̃ , which is differentially closed by choice. Since F̃ [x] is already finitely
generated as a F̃ -algebra, it is differentially finitely generated over F̃ . To check the σδ-
simple condition, we pick an arbitrary P ∈ F̃ [x]\{0} and show that any σ-ideal containing
P is the unit ideal. We do this by induction on the degree of P . The base case degP = 0
is clear. Assume that the claim is true for all P of degree 6 n. Then pick P of degree
n + 1. Since F̃ [x]σ = F̃ , we know that σ(P ) 6= P . Then deg(σ(P ) − P ) < deg(P ) and
σ(P ) − P 6= 0. Thus, by induction assumption we are done. Hence F̃ [x] is σ-simple and
in particular it is σδ-simple. By Prop.8.7 we then have Quot(F̃ [x])σ = F̃σ = F̃ .

To determine Lσ, we use Prop 8.5. To apply this, we need to check that K{g}/m is
σδ-simple, differentially finitely generated over K and that Kσ is differentially closed. We
have just shown Kσ = F̃ . Furthermore, since m is a maximal σδ-ideal, the σδ-simple con-
dition is satisfied. The differentially finitely generated condition holds since L is generated
by g ∈ L. Thus we have Lσ = Kσ = F̃ .

Notice that since g is differentially dependent over F(x), it is also differentially depen-
dent over F̃(x). Since g ∈ L is now a solution to a difference equation over K and Kσ is
differentially closed, we can apply theorem 9.1. From this we get the existence of ˜̀∈ F̃{Y }
and f̃ ∈ F̃(x)×

˜̀(Y ) =
n∑
i=0

l̃iδ
i(Y ) and f̃(x) =

ũ(x)

ṽ(x)

for

ũ(x) =
m∑
i=0

ũix
i and ṽ(x) =

n−1∑
i=0

ṽix
i + xn

such that

˜̀
(
δ(a(x))

a(x)

)
− ũ

ṽ
(x+ 1) +

ũ

ṽ
(x) = 0.

We make this into an Ansatz by introducing new variables L,U, V :

`(L, Y ) =
n∑
i=0

Liδ
i(Y )
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and

f(x) =
u(U, x)

v(V , x)

for

u(U, x) =
m∑
i=0

Uix
i and v(V , x) =

n−1∑
i=0

Vix
i + xn.

We want to find some l, u, v ∈ C such that after evaluating we have

`

(
l,
δ(a(x))

a(x)

)
− u(u)

v(v)
(x+ 1) +

u(u)

v(v)
(x) = 0.

After multiplying this equation with some power of the denominator d of a and v(x)v(x+1),
which is not zero since v is normalized by assumption, we get the following, equivalent
equation

dmv(V , x)v(V , x+ 1)

(
`

(
L,
δ(a(x))

a(x)

)
− σ(

u(U)

v(V )
(x)) +

u(U)

v(V )
(x)

)
= 0 ∈ C[L,U, V , x].

This equation holds if and only if all coefficients of powers of x are zero. This gives
us a system of polynomial equations in C[L,U, V , x]. However, by construction of our
Ansatz, we know of the existence of a joint solution l̃, ũ, ṽ in an extension of C. Since C is
algebraically closed, there exists some solution l, u, v in C. Evaluating `, u, v at l, u, v we
get ` and f as stated in the proposition. �

Theorem 9.3 (Hölder) The Gamma function is differentially transcendent over C(x).

Proof. The Gamma function is a meromorphic solution to σ(z) = xz, hence by 9.2
it is differentially algebraic over F(x) only if there exists a non-zero linear homogeneous

differential polynomial ` ∈ C(X) and a f ∈ C(x) such that `( δ(x)
x

) = σ(f)−f . As δ(x) = 1,

for any i > 0 we have δi( δ(x)
x

) = (−1)ii!
xi+1 . Thus it is sufficient to show that for any n ∈ Z>0,

for i = 1, . . . , n and ai ∈ C not all zero and f(x) ∈ C(x)

n∑
i=1

ai
xi

= f(x+ 1)− f(x)

can not hold. We first note that
∑n

i=1
ai
xi

has only poles at the point 0. Assume that f(x)
has a pole at u ∈ C\{0}. Then in particular u + Z>0 63 0 or u + Z60 63 0. If 0 /∈ u + Z>0,
then using

∑n
i=1

ai
xi

+ f(x) = f(x+ 1), we see that f(x) has a pole at u+ 1. Since u+ i 6= 0
for all i > 0, we can apply this argument infinitely many times and see that f(x) has
infinitely many poles and thus is not an element of C(x). If 0 /∈ u+Z60, we can apply the
analogous argument by using

∑n
i=1

ai
xi
− f(x+ 1) = −f(x).

33



Hence f(x) can only have poles at zero and can thus be written f(x) = g(x)
xm

for some

g(x) ∈ C[x]. Hence we have (
∑n

i=1
ai
xi

+ g(x)
xm

)xmax{m,n} = g(x+1)xmax{m,n}

(x+1)m
. Note that the left

hand side has no poles, thus right hand side does not either. In particular f(x) has no poles.

If f(x) does not have any poles, then
∑n

i=1
ai
xi

cannot have any poles either. This is
only the case if all ai = 0, which we excluded. Hence no such f(x) and ` exist and thus
the Gamma function is differentially transcendent over F(x) and thus in particular over
C(x). �

We can generalize Theorem 9.1 to:

Theorem 9.4 Let K be a σδ-field such that k = Kσ is δ-closed. For a1, . . . , an ∈ K× let
L be a K-σδ-algebra which contains z1, . . . , zn such that for i = 1, . . . , n

σ(zi) = aizi

and Lσ = k. Then z1, . . . , zn are differentially dependent over K if and only if there exists
a non-zero homogenous linear differential polynomial `(x1, . . . , xn) ∈ k{x1, . . . , xn} and an
element f ∈ K× such that

`

(
δ(a1)

a1

, . . . ,
δ(an)

an

)
= σ(f)− f

We do not prove this Theorem, but rather note that the proof works analogously to the
one of Theorem 9.1. using Theorem 7.4 instead of Theorem 7.2. The “descent” argument
given for Proposition 9.2 can also be generalized:

Proposition 9.5 For a1, . . . , an ∈ C(x)× consider z1, . . . , zn meromorphic functions over
C such that

σ(zi) = aizi

for all i = 1, . . . , n. Then the zi’s are differentially dependent over F(x) if and only if
there exist a non-zero linear homogeneous differential polynomial ` ∈ C{X1, . . . , Xn} and

a f ∈ C(x) such that `( δ(a1)
a1
, . . . , δ(an)

an
) = σ(f)− f .

A proof of it can be found in Cor. 3.2 of [2]. We use this to prove the following:

Proposition 9.6 (Ex. 4.45 in [2]) Let a1, a2 ∈ C. Then Γ(x + a1) and Γ(x + a2) are
differentially algebraically dependent over F(x) if and only if a1 − a2 ∈ Z.

Proof. Note that Γ(x + a) satisfies the difference equation σ(z) = (x + a)z. Using
Proposition 9.5 and the same calculation as in the proof of 9.3, we see that the differential
algebraical dependence is equivalent to the existence of some bi,j ∈ C not all zero and an
element f ∈ C(x) such that∑

i,j∈Z>0

bi,j
(x+ a1)i(x+ a2)j

= f(x+ 1)− f(x).
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It suffices to show that if a2 − a1 = 1, then Γ(x + a1) and Γ(x + a2) are differentially
algebraically dependent. If we set f(x) = 1

x+a1
, we then get

f(x+ 1)− f(x) =
1

x+ a1 + 1
− 1

x+ a1

=
−1

(x+ a1 + 1)(x+ a1)
=

−1

(x+ a2)(x+ a1)

hence Γ(x+ a2) and Γ(x+ a1) are differentially algebraically dependent.

Now assume that a2−a1 /∈ Z and that there were some bi,j’s and an f(x) as demanded . We
first assume that f(x) has a pole at u ∈ C\{−a1,−a2}. Then {−a1,−a2} * u+Z. Assume

that −a1,−a2 /∈ u+Z>0. Then, thanks to
∑

i,j∈Z>0
bi,j

(x+a1)i(x+a2)j
+f(x) = f(x+1) we know

that f has a pole a u + 1. Since −a1,−a2 /∈ u + Z>0, we get that f has infinitely many
poles and we get a contradiction. The analogous argument works for if −a1,−a2 /∈ u+Z60.

If f has only poles at −a1 and −a2, then we can write f(x) = g(x)
(x+a1)n(x+a2)m

for some

g(x) ∈ C[x] and n,m ∈ Z>0. But then there exists a N ∈ Z>0 such that

(x+ a1)N(x+ a2)N(
∑

i,j∈Z>0

bi,j
(x+ a1)i(x+ a2)j

+ f(x))

has no poles. Thus g(x)(x+a1)N (x+a2)N

(x+a1+)n(x+a2+1)m
has no poles. Hence f does not have any poles.

If f(x) does not have any poles, then
∑

i,j∈Z>0
bi,j

(x+a1)i(x+a2)j
cannot have any poles either.

This only the case if all bi,j = 0, which we excluded. Thus no bi,j’s and f(x) exist and
thus Γ(x+ a1) and Γ(x+ a2) are not differentially algebraically dependent over F(x) and
in particular over C(x). �

Remark 9.7 As already mentioned in Rem.8.6, the main “ingredient” of the the parametrised
Picard-Vessiot Theory is the non-increase of the field of σ-constants. This is were we used
the fact that the σ-constants were differentially closed. This gives hope that one can do
without this condition. Di Vizio and Hardouin in [1] and Wibmer in [4] showed that
if Kσ is algebraically closed one can construct a parametrised Picard-Vessiot ring R for
σ(Y ) = AY where A ∈ GLn(K) such that the σ-constants do not increase, i.e. Rσ = Kσ.
Unfortunately, the Picard-Vessiot ring constructed this way does not have to be unique,
so one then still needs to deal with that. This has for instance been done by Di Vizio
and Hardouin in [1], where they consider linear differential groups schemes instead of dif-
ferential groups. This functorial approach allows them to generalize several results of the
parametrised Picard-Vessiot-Theory, in particular theorem 9.1 can be stated without the
condition that the field of σ-constants need to be differentially closed.
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