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Abstract:

We prove that the `-adic algebraic monodromy
groups associated to a motive over a number field are
generated by certain one-parameter subgroups deter-
mined by Hodge numbers. In the special case of an
abelian variety we obtain stronger statements saying
roughly that the `-adic algebraic monodromy groups
look like a Mumford-Tate group of some (other?) abel-
ian variety. When the endomorphism ring is Z and the
dimension satisfies certain numerical conditions, we
deduce the Mumford-Tate conjecture for this abelian
variety. We also discuss the problem of finding places
of ordinary reduction.
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§0. Introduction

Galois representations arising from motives: Consider a smooth proper alge-
braic variety X over a number field K, an integer d, and a rational prime `. Let ρ` denote
the continuous representation of Gal(K̄/K) on the `-adic étale cohomology group

V` := Hd(X ×K K̄,Q`) ,

where K̄ denotes an algebraic closure of K. The main object of interest in this article is the
associated global algebraic monodromy groupG`, defined as the Zariski closure of the image
of ρ` in the algebraic group AutQ`

(V`). Unfortunately our methods cannot say anything
about the unipotent part of this group. Therefore we replace ρ` by its semisimplification,
after which G` is a reductive group. Note that this modification is unnecessary in the case
d = 1, where ρ` is dual to the Galois representation on the Tate module of an abelian
variety.

As ` varies, the different ρ` form a strictly compatible system of Galois representations
in the sense of Serre [28]. This means the following. Consider a non-archimedean place v
of K, say with residue characteristic p, where X has good reduction. If ` 6= p, then ρ` is
unramified at v and the characteristic polynomial of ρ`(Frobv) has coefficients in Q and is
independent of `.

Frobenius tori: Serre systematically analyzed the group theoretic consequences of
strict compatibility ([31], [33], see also [6]). One of his main tools is the Zariski closure of
the subgroup generated by ρ`(Frobv), which gives rise to the so-called Frobenius torus Tv.
The compatibility condition implies that this torus has a natural form over Q and can be
conjugated into G` for each ` 6= p. One of Serre’s main results asserts that for many places
v this yields a maximal torus of the identity component G◦` (cf. Theorem 3.7). It follows
that the rank and the formal character of the different groups G` are independent of `.

Local algebraic monodromy groups and their cocharacters: The first main
theme of the present article, expounded in Sections 1–3, is the relation between Tv and G`
in the case ` = p. The motivation arose from studying some unpublished ideas of William
W. Barker, but our methods are different. Let HV,v ⊂ Gp denote the Zariski closure of
the image of the local Galois group Gal(K̄v/Kv). As the local Galois representation is
very ramified in general, this group is more difficult to describe than Tv. Nevertheless, one
can get hold of some of its structure and combinatorics using the so-called “mysterious
functor” relating Vp with the crystalline cohomology group

Mv := Hd(Xv/Ov) ⊗Ov
Kv .

(Again we replace this by its semisimplification.) The local Galois representation is de-
termined by the filtered module structure of Mv (cf. Illusie [18]). This data involves
two things: a crystalline Frobenius, and a Hodge decomposition (see Wintenberger [43]
Th. 3.1.2). The first piece of information leads to a natural representation of the Frobe-
nius torus Tv on Mv. Via the mysterious functor one obtains a unique conjugacy class
of embeddings Tv,Q̄p

↪→ HV,v,Q̄p
(see 3.12). In particular, some form of Tv can be found

inside Gp.
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An important tool in Serre’s study of the Frobenius torus was the (quasi)-cocharacter
of Tv determined by the p-adic valuations of the Frobenius eigenvalues (cf. 3.4). Motivated
by its relation with Newton polygons we call it the Newton cocharacter of Tv. In the
case ` = p the Hodge decomposition of Mv also determines a cocharacter, which via
the mysterious functor determines a unique conjugacy class of cocharacters of HV,v,Q̄p

.
(This conjugacy class can be characterized using the Hodge-Tate decomposition.) These
cocharacters are called Hodge cocharacters because of their relation with Hodge polygons.
The fundamental idea in Sections 1–3 is to systematically study and exploit the relations
between Newton and Hodge cocharacters.

Geometric relations between cocharacters: The main ingredient from the theory
of local Galois representations is the fact (a former conjecture of Katz) that the Newton
polygon lies above the Hodge polygon for every algebraic representation ofHV,v. This com-
binatorial statement depends only on the algebraic group HV,v and its Newton and Hodge
cocharacters. Thus it may be analyzed in an abstract setting. This is done in Section 1.
We translate combinatorial statements on polygons such as the above into geometric re-
lations between the cocharacters themselves. The abstract results, Theorems 1.3–5, apply
to any linear algebraic group over a field together with two (quasi)-cocharacters defined
over an algebraic closure.

In the case of a crystalline local Galois representation the result is formulated in The-
orem 2.3. To state it in words, let us conjugate both the Newton and Hodge cocharacters
into a fixed maximal torus T ⊂ HV,v, so that they may be viewed as elements of the
cocharacter space Y := Y∗(T ) ⊗Z R. The resulting Hodge cocharacter is not unique, but
determines a unique finite subset of Y . Let SµV

denote the union of all Gal(Q̄p/Qp)-
conjugates of this set. Then the Newton cocharacter lies in the interior of the convex
closure of SµV

. (A similar assertion is in Rapoport-Richartz [27] Theorem 4.2.)

Sections 1–2 contain a few other results on subgroups generated by cocharacters, and
describing HV,v. The case of ordinary local Galois representations is considered in 2.7–9.

Consequences for global algebraic monodromy groups: One central result in
Serre’s theory says that the Gal(Q̄/Q)-conjugates of the Frobenius cocharacter generate
the cocharacter space of Tv (see Proposition 3.5). Since by Theorem 2.3 the Frobenius
cocharacter is a linear combination of Hodge cocharacters, one can deduce a similar as-
sertion for Hodge cocharacters, stated in Theorem 3.16. Here one must allow conjugates
under both Gal(Q̄/Q) and the Weyl group of Gp, and the result is valid only for certain v.

Disregarding such fine points one can draw the following general conclusion for the
groups G`. Let us call a cocharacter of G`,Q̄`

a weak Hodge cocharacter if and only if the

multiplicity of each weight i ∈ Z on V` is equal to the corresponding Hodge number hi,d−i

of X . Our result is:

Theorem (3.18). For every rational prime ` the identity component of G`,Q̄`
is generated

by the images of weak Hodge cocharacters.
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Abelian varieties and the Mumford-Tate conjecture: The remaining sections
of this article are devoted to the special case d = 1. We may suppose without loss of
generality that the algebraic variety X is equal to an abelian variety A over K, say of
dimension g. Consider the singular cohomology group V := H1(A(C),Q) with respect to
some fixed embedding K ⊂ C, and let G∞ ⊂ AutQ(V ) denote the Mumford-Tate group
associated to the natural Hodge structure on V . By definition it is generated by the
images of weak Hodge cocharacters, so the fact that the only non-zero Hodge numbers
are h1,0 = h0,1 = g imposes strong restrictions on the form of G∞. The comparison
isomorphism V` ∼= V ⊗Q Q` makes it possible to compare the identity component G◦` with
G∞,Q`

, and according to the Mumford-Tate conjecture these groups should coincide.

The results of Sections 1–3 imply that the Hodge cocharacters impose combinatorial
restrictions on G◦` similar to those for G∞. Thus in some sense G◦` looks like a Mumford-
Tate group of an abelian variety. For a weak version of this statement, resulting from
Theorem 3.18 cited above, see Theorem 5.10. Using classification results due to Serre
[30] §3, explained and augmented in Section 4, one can deduce in particular the so-called
minuscule weights conjecture (see Zarhin [47] 0.4):

Corollary (5.11). Each simple factor of the root system of G◦` has type A, B, C, or D,
and its highest weights in the tautological representation are minuscule.

Using the finer result of Theorem 3.16 it is possible to obtain stronger restrictions
on G◦` , up to proving the Mumford-Tate conjecture under suitable numerical assumptions
on g = dim(A) and the endomorphism ring End(AK̄). Here the main other ingredient is
Faltings’ theorem ([14] Theorems 3–4). For simplicity we restrict ourselves to the special
case End(AK̄) = Z in this article, although the results could be generalized to some extent
along standard lines.

Interpolation of `-adic algebraic monodromy groups: First note that, if we dis-
regard the Mumford-Tate group, the Mumford-Tate conjecture still implies that the groups
G◦` are “independent of `” in that they all come from one and the same algebraic group
over Q. A version of this weaker statement was proved already under certain restrictions
in Larsen-Pink [22]. Here we can go significantly beyond that result:

Theorem (5.13). Assume that End(AK̄) = Z.

(a) There exists a connected reductive subgroup G ⊂ GL2g,Q such that G◦` is conjugate to
G×Q Q` under GL2g(Q`) for every ` in some set L of primes of Dirichlet density 1.

(b) The pair consisting of G together with its absolutely irreducible tautological represen-
tation is a strong Mumford-Tate pair of weights {0, 1} over F = Q in the sense of
Definition 4.1 (b).

(c) The derived group Gder is Q-simple.

(d) If the root system of G is determined uniquely by its formal character, i.e. if G does
not have an ambiguous factor (cf. Section 4), then in (a) we can take L to contain
all but at most finitely many primes.

Parts (b–c) of this theorem form a stronger version of the statement that G◦` looks
like a Mumford-Tate group. The proof is given in Section 6. It avoids crystalline theory
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and is thus independent of Sections 1–2. It is based on two main principles: First, we
find arithmetic information relating Frobenius tori with roots of G`, using arguments very
similar to those used by Serre [28], Katz, Ogus [24], and others to detect places of ordinary
reduction in some cases. Second, we exploit the fact that Frobenius tori impose relations
between the Q`-structures of the different G`, using the method of Larsen-Pink [21], [22].

New instances of the Mumford-Tate conjecture: Under certain numerical con-
ditions on g = dim(A) the restrictions on G◦` given by Theorem 5.13 are sufficient to imply
the Mumford-Tate conjecture itself. This yields a significant improvement of earlier results
of Serre [28], [32], [33], as well as those of Tankeev ([40] et al., [35], [38]).

Theorem (5.14). Assume that End(AK̄) = Z. Assume moreover that 2g is neither

(a) a kth power for any odd k > 1, nor

(b) of the form
(
2k
k

)
for any odd k > 1.

Then we have G∞ = CSp2g,Q and G◦` = CSp2g,Q`
for every `. In particular the Mumford-

Tate conjecture holds for A.

To indicate the scope of this result observe that in the range ≤ 1000 the only excluded
dimensions are g = 4, 10, 16, 32, 64, 108, 126, 256, 500, 512, 864. The number of excluded
values g ≤ 106 is only 82. Alas, in the smallest interesting dimension g = 4 the Mumford-
Tate conjecture still remains open.

If the Mumford-Tate group is in some sense small, one can also prove the Mumford-
Tate conjecture by showing that the classification does not allow G◦` to be smaller:

Theorem (5.15). Assume that End(AK̄) = Z and that the root system of each simple
factor of G∞,Q̄ has type A2s−1 with s ≥ 1 or Br with r ≥ 1 (cf. Table 4.6). Then the
Mumford-Tate conjecture holds for A.

This result, like the others cited above, depends on the classification results collected
in Section 4.

Places of Ordinary Reduction: The arguments in the proof of Theorem 5.13 can
be used to obtain some new results on the frequency of places with given Newton polygon.
The smaller the groups G` are, the better the method works. Thus when the G` are
sufficiently special, one can show the existence of many places of ordinary reduction. In
the following results Kconn is a certain finite extension of K determined as in Theorem 3.6:

Theorem (7.1). Assume that End(AK̄) = Z, and let G be as in Theorem 5.13. Suppose
that the root system of the simple factors of GQ̄ does not have type Cr with r ≥ 3. Then
the abelian variety AKconn has ordinary reduction at a set of places of Kconn of Dirichlet
density 1.

When the Mumford-Tate group is already small, the same follows for the groups G◦` .
Thus we can deduce:
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Corollary (7.2). Assume that End(AK̄) = Z. Suppose that the root system of the simple
factors of G∞,Q̄ does not have type Cr with r ≥ 3. Then the abelian variety AKconn has
ordinary reduction at a set of places of Kconn of Dirichlet density 1.

The proof of these results, given in Section 7, distinguishes cases according to the
type of the root system of G. In two of three cases the assertion follows easily from the
intermediate results of Section 6. In the remaining case we encounter a new problem,
which is solved with the help of a theorem of Wintenberger [46] concerning the lift of a
compatible system of `-adic representations under an isogeny of algebraic groups.

For further explanations see the introductions to the individual sections.
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§1. Algebraic Groups, Cocharacters, and Polygons

Consider a linear algebraic group H over a field F . The subject of this preparatory
section is to study relations between different cocharacters of H. To a cocharacter µ and a
representation V of H are associated the weights of µ in V together with their respective
multiplicities. These data are encoded in a certain polygon, and the main objects of this
section are

(a) to reformulate certain geometric relations between these polygons in terms of the
cocharacters themselves, and

(b) to deduce group theoretic consequences from these properties.

In the following we fix H, F , and an algebraically closed overfield E of F .

Tannaka duality: Let RepH denote the category of all finite dimensional repre-
sentations of H over F . This is a tannakian category in the sense of Deligne-Milne [12].
Let VecF denote the category of finite dimensional F -vector spaces, and ω the “forgetful”
functor RepH → VecF which to a representation of H associates the underlying F -vector
space. This is a fiber functor of tannakian categories, and we have a canonical isomorphism
H ∼= Aut⊗(ω) (cf. [12] §2).

Cocharacters and Z-gradings: Let Gm,E denote the multiplicative group over E.
A homomorphism of algebraic groups µ : Gm,E → HE := H ×F E is called a cocharacter
of H. For any cocharacter µ and any finite dimensional representation V of H we have
a natural Z-grading VE := V ⊗F E =

⊕

i∈Z V
i
E . Here V iE is the weight space of weight

i under µ, that is, the subspace on which µ(x) acts by multiplication with xi for every
x ∈ E×. If µ is fixed, this grading is functorial in V and compatible with tensor products
and duals. Conversely, suppose that for each V we are given a Z-grading of VE which is
functorial in V and compatible with tensor products and duals. Then this data can be
interpreted as an F -linear tensor functor RepH → RepGm,E

, so it comes from a unique
cocharacter of H (compare [12] Example 2.30). In other words, the cocharacter and the
associated grading determine each other.

Quasi-cocharacters and Q-gradings: The following terminology allows for arbi-
trary rational weights instead of integral weights. Consider the following inverse system
of linear algebraic groups Gn over E, indexed by positive integers n ordered by divisibil-
ity. For each n we set Gn := Gm,E , and for any n|n′ the homomorphism Gn′ → Gn is

exponentiation by n′/n. Then Ĝm,E := lim
←−

Gn is the affine group SpecE[Xr|r∈Q].

A homomorphism of algebraic groups µ : Ĝm,E → HE is called a quasi-cocharacter

of H. Pulling back by the natural map Ĝm,E → Gm,E , any cocharacter can be viewed as
a quasi-cocharacter. Conversely, any quasi-cocharacter factors through some Gn, so it can
be viewed as an nth root of a usual cocharacter.

Most properties of cocharacters extend naturally to quasi-cocharacters. For instance,
every quasi-cocharacter factors through some torus in HE . The quasi-cocharacters of a
torus T form an abelian group which is canonically isomorphic to Y∗(T ) ⊗Z Q, where
Y∗(T ) := Hom(Gm,E , T ×F E) is the usual cocharacter group of T . Furthermore the above
correspondence between cocharacters and compatible systems of Z-gradings extends in
a natural way to a correspondence between quasi-cocharacters and compatible systems
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of Q-gradings. Namely, if some positive power µn of a quasi-cocharacter µ is an honest
cocharacter, the weight space of weight i ∈ Q for µ is just the weight space of weight ni
for µn.

Gradings and polygons: To any quasi-cocharacter µ and any finite dimensional
representation V of H is associated the following polygon. It is the graph in R2 of a
piecewise linear convex function [0, dimF (V )] → R which starts at (0, 0). All slopes of this
function are rational numbers, and the length of the subinterval on which the function has
a given slope i ∈ Q is the dimension of the corresponding weight space dimE(V iE). The
polygon thus constructed is denoted Pµ(V ).

Conjugation into a fixed maximal torus: The polygon Pµ(V ) does not change
when µ is replaced by a conjugate under H(E)oAut(E/F ). For the following arguments it
will be useful to conjugate all cocharacters into a given maximal torus. Let us fix a maximal
torus TE ⊂ HE . Let Γ̄ denote the image of Aut(E/F ) in the outer automorphism group
of HE , and let Γ be the inverse image of Γ̄ in the automorphism group of TE . This is a
finite group preserving the root system of HE . For later use recall that we have a canonical
perfect pairing

〈 , 〉 : X∗(TE) × Y∗(TE) → Z, (χ, λ) 7→ deg(χ ◦ λ),

where X∗(TE) := Hom(TE ,Gm,E) is the character group of TE . After tensoring with R
the cocharacter space Y := Y∗(TE) ⊗Z R and the character space X := X∗(TE) ⊗Z R are
also in perfect duality X × Y → R. All of this is equivariant under the action of Γ.

Definition (1.1). For any quasi-cocharacter µ of HE we let Sµ ⊂ Y denote the set of all
H(E) o Aut(E/F )-conjugates of µ which factor through TE.

By construction Sµ is a single orbit under the action of Γ. In particular, it is a finite
set and its convex closure Conv(Sµ) is a bounded convex polytope. As the corners of this
polytope form a Γ-invariant non-empty subset of Sµ, this subset must be equal to Sµ. The
interior Conv(Sµ)

◦ is defined as the interior of the polytope Conv(Sµ) inside the smallest
affine linear subspace containing it.

Polygons and polytopes: Now we consider two cocharacters µ, ν of H.

Definition (1.2). Let V be a finite dimensional representation of H.

(a) We say that Pν(V ) lies above Pµ(V ) if and only if the first polygon lies on or above
the second one at every point of the interval of definition [0, dimF (V )].

(b) We say that Pν(V ) lies strictly above Pµ(V ) if and only if in addition to (a) the
polygons meet at most at the starting point (0, 0) and the endpoint.

The following results translate these geometric relations into geometric relations be-
tween the cocharacters themselves. In the case that F is algebraically closed the assertion
of Theorem 1.3 is contained in Rapoport-Richartz [27] Section 2 (cf. also Atiyah-Bott [1]
Section 12).
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Theorem (1.3). The following conditions are equivalent:

(a) Sν ⊂ Conv(Sµ).

(a′) For every ν′ ∈ Sν and every character χ ∈ X∗(TE) there exists µ′ ∈ Sµ such that
〈χ, ν′〉 ≥ 〈χ, µ′〉.

(b) For every finite dimensional representation V of H over F the polygon Pν(V ) lies
above the polygon Pµ(V ).

(c) In every non-trivial finite dimensional representation V of H over F the smallest
weight of ν is greater than or equal to the smallest weight of µ.

Theorem (1.4). The following conditions are equivalent:

(a) Sν ⊂ Conv(Sµ)
◦.

(a′) For every ν′ ∈ Sν and every character χ ∈ X∗(TE) either there exists µ′ ∈ Sµ with
〈χ, ν′〉 > 〈χ, µ′〉, or we have 〈χ, ν′〉 = 〈χ, µ′〉 for every µ′ ∈ Sµ.

(b) For every irreducible finite dimensional representation V of H over F the polygon
Pν(V ) lies above the polygon Pµ(V ) and lies strictly above unless the latter is a straight
line.

Theorem (1.5). The following conditions are equivalent:

(a) Sν = Sµ.

(b) For every finite dimensional representation V of H over F the polygon Pν(V ) coincides
with the polygon Pµ(V ).

(c) For every finite dimensional representation V of H over F the polygon Pν(V ) lies
above the polygon Pµ(V ), and for some faithful representation these polygons coincide.

One should note that all of these statements refer to properties relative to the ground
field F . Thus on the one hand the representation V of H must be defined over F , while
on the other hand all Galois conjugates are included in the set Sµ. In the following proofs
we may without loss of generality assume µ ∈ Sµ and ν ∈ Sν .

Proof of Theorem 1.3: The implication (b)⇒(c) is obvious. For its converse it is
enough to look at the polygons above any integral point 0 < i ≤ dimF (V ). For each of
the polygons the value at i is just the smallest weight of the associated quasi-cocharacter
on the exterior power

∧i
VE . Thus (b) follows from (c). Next, the equivalence (a)⇔(a′) is

a well-known characterization of the convex closure, provided that χ in (a′) is allowed to
run through all of X . Since Sµ consists of rational points of Y , it is enough to work with
rational χ. Scaling each χ makes it integral, so it suffices to consider usual characters, as
desired. It remains to prove (a′)⇔(c).

For the implication (a′)⇒(c) consider any finite dimensional representation V of H,
and choose a weight χ ∈ X∗(TE) of TE on VE such that 〈χ, ν〉 attains the smallest possible
value. By (a′) there exists µ′ ∈ Sµ such that 〈χ, ν〉 ≥ 〈χ, µ′〉. Here the right hand side is
≥ the smallest weight of µ′ in VE , hence also the smallest weight of µ, proving (c).

To prove (c)⇒(a′) fix a character χ ∈ X∗(TE) and choose an order on the roots
of HE with respect to TE , such that χ is a dominant weight. Let V be an irreducible
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representation of H over F which has χ among its highest weights. Then all highest
weights of V are Γ-conjugate to χ, and therefore all weights of V are in the convex closure
of the Γ-orbit of χ. It follows that the smallest weight of µ on VE is of the form 〈χγ , µ〉 for

some γ ∈ Γ. This is equal to 〈χ, µ′〉, where µ′ := µγ
−1

is another element of Sµ. Now (c)
implies 〈χ, ν′〉 ≥ (the smallest weight of ν′ on VE) = (the smallest weight of ν on VE)
≥ 〈χ, µ′〉, proving (a′). �

Proof of Theorem 1.4: The equivalence (a)⇔(a′) is easy and left to the reader. To
prove (b)⇒(a′) fix ν′ ∈ Sν and a character χ ∈ X∗(TE), and consider an irreducible
representation V with highest weight χ. As in the preceding proof we find an element
µ′ ∈ Sµ such that 〈χ, µ′〉 is the smallest weight of µ in VE . When Pν(V ) lies strictly above
Pµ(V ) at the point 1, we have 〈χ, ν〉 ≥ (the smallest weight of ν′ on VE) = (the smallest
weight of ν on VE) > 〈χ, µ′〉. Assuming (b), this yields the desired assertion unless Pµ(V )
is a straight line. In that case we compare the two polygons for V and its dual V ∨. Since
Pν(V ) lies above Pµ(V ), and Pν(V

∨) above Pµ(V
∨), one easily shows that the respective

polygons must be equal. Then 〈χ, ν′〉 is some slope of Pν(V ), hence it is equal to every
slope of Pµ(V ), and therefore to 〈χ′, µ′〉 for every weight χ′ of TE in VE . In particular

we have 〈χ, ν′〉 = 〈χγ
−1

, µ′〉 = 〈χ, µ′γ〉 for every γ ∈ Γ. Thus 〈χ, ν′〉 = 〈χ, µ′〉 for every
µ′ ∈ Sµ, proving (a′).

It remains to prove (b) under the assumption (a′). Consider an irreducible represen-
tation V for which Pµ(V ) is not a straight line but meets Pν(V ) at a point in the interior
of its interval of definition. In view of Theorem 1.3 it suffices to derive a contradiction
in this case. It is easy to see that the polygons must meet at a break point of Pν(V ),
that is, a point where its slope changes. Suppose this point has coordinates (i, r) with

0 < i < dimF (V ). Then r is the unique smallest weight of ν in the representation
∧i

VE .
More precisely, if V ′E ⊂ VE denotes the F -subspace of dimension i corresponding to the

slopes of Pν(V ) to the left of (i, r), then
∧i

V ′E is the unique line in
∧i

VE on which ν has
the smallest possible weight r.

By assumption the smallest weight of µ on
∧i

VE is also equal to r. If χ denotes the

weight of TE on
∧i

V ′E , it follows that we must be in the second case of condition (a′),

that is, we have 〈χ, ν′〉 = 〈χ, µ′〉 for all ν′ ∈ Sν and µ′ ∈ Sµ. Thus
∧i

V ′E is the unique line

in
∧i

VE on which the quasi-cocharacter ν0 :=
∑

ν′∈Sν
ν′ has the smallest possible weight

r · card(Sν). By construction ν0 is a quasi-cocharacter in the center of H which is defined
over F (i.e., any power of ν0 which is an honest cocharacter is defined over F ). Therefore

the subspace
∧i

V ′E ⊂
∧i

VE is H-invariant and defined over F . At last, this implies that
V ′E comes from an H-invariant subspace V ′ ⊂ V , contradicting the assumption that V is
irreducible. This proves (b), as desired. �

Proof of Theorem 1.5: The implications (a)⇒(b)⇒(c) are obvious. To prove (b)⇒(a)
we first note that the situation is completely symmetric in µ and ν. Applying Theorem 1.3
twice, the second time with µ and ν interchanged, condition (b) implies Conv(Sµ) =
Conv(Sν). Taking corners of these polytopes, the condition (a) follows.
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It remains to prove the implication (c)⇒(b). Fix a faithful representation V for which
the two polygons coincide. We must prove the same for any other representation V1. If the
polygons are equal for all irreducible subquotients of V1, clearly the same follows for V1

itself. Thus we may assume that V1 is irreducible. Then V1 is isomorphic to a subquotient
of the tensor space V m,n := V m ⊗ (V ∨)n for suitable non-negative integers m, n. Clearly
the two polygons coincide for V m,n. Let V2 be the direct sum of the Jordan-Hölder factors
of V m,n other than V1. Then Pν(V

m,n) is obtained by joining Pν(V1) and Pν(V2) and
rearranging all edges in the order of increasing slopes. The same holds with µ in place
of ν. As Pν(V

m,n) = Pµ(V
m,n) and, by assumption, Pν(Vi) is above Pµ(Vi) for both

i = 1, 2, by an easy comparison of multiplicities it follows that the respective polygons
coincide. This proves (b), as desired. �

Comparing subgroups generated by cocharacters: For any quasi-cocharacter
µ of H let Hµ ⊂ H be the smallest normal algebraic subgroup, defined over F , such
that µ factors through Hµ,E . Equivalently, this subgroup can be characterized by the
fact that Hµ,E is generated by the images of all H(E) o Aut(E/F )-conjugates of µ. The
geometric relations between cocharacters listed in the preceding results have the following
consequences.

Proposition (1.6). Suppose the equivalent conditions in Theorem 1.3 are satisfied. Then
we have Hν ⊂ Hµ.

Proof: Since Hµ is a normal subgroup of H, the intersection Tµ,E := Hµ,E ∩ TE is a
maximal torus of Hµ,E . The above characterization of Hµ,E implies that the cocharacter
space Y∗(Tµ,E) ⊗Z R is just the R-subspace of Y generated by Sµ. The same statements
hold with ν in place of µ. Now condition (a) of Theorem 1.3 implies that R · Sν ⊂
R ·Sµ. Therefore a maximal torus of Hµ contains a maximal torus of Hν . As these groups
normalize each other, we deduce that the factor group Hν/(Hν ∩Hµ) has rank zero. Since
by construction it is also generated by the images of cocharacters, it must be trivial. Thus
we have Hν ⊂ Hµ, as desired. �

Proposition (1.7). Suppose the equivalent conditions in both Theorem 1.4 and Theo-
rem 1.5 are satisfied. Then we have Hν = Hµ, this group is solvable, and its toric part is
either trivial or isomorphic to Gm,F .

Proof: The conditions (a) of Theorems 1.4–5 together say that Sν = Sµ ⊂ Conv(Sµ)
◦.

The first equality, combined with Proposition 1.6, already shows Hν = Hµ. The latter
inclusion implies that Sµ consists of a single element, say µ0. By the remarks in the
preceding proof µ0 generates the cocharacter space of a maximal torus of Hµ,E . As µ0 is
fixed under Γ, both the Weyl group of HE and the automorphism group Aut(E/F ) act
trivially on this cocharacter space. Thus on the one hand the Weyl group of Hµ,E must
be trivial, hence Hµ is solvable. On the other hand Hµ modulo its unipotent radical must
be a split torus of dimension at most 1. �
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§2. Crystalline Local Galois Representations

Fix a rational prime p and a finite extension K/Qp, which for simplicity we assume
unramified. The Frobenius substitution of K over Qp is denoted σ. Embed K into a fixed
algebraic closure Q̄p of Qp and let D := Gal(Q̄p/K) denote the “decomposition” group. In
this section we study crystalline Galois representations of D over Qp. For such representa-
tions it is well-known that “The Newton polygon lies above the Hodge polygon”. Our main
aim is to deduce from this certain consequences for the associated algebraic monodromy
groups. We begin by reviewing some known facts concerning crystalline representations,
filtered modules, and their associated algebraic monodromy groups.

The local algebraic monodromy group: Consider a continuous representation of
D on a finite dimensional Qp-vector space V . The associated algebraic monodromy group
HV is the Zariski closure of the image of D in the general linear group AutQp

(V ). This
group has a tannakian description, as follows.

Let RepD denote the category of all finite dimensional continuous representations of
D over Qp. This is a tannakian category in the sense of Deligne-Milne [12]. For V as above
we let ((V )) denote the full tannakian subcategory of RepD which is generated by V , i.e.
the smallest abelian full subcategory containing V which is stable by taking subquotients,
tensor product, and duals. Let VecQp

denote the category of finite dimensional Qp-vector
spaces, and ωV the “forgetful” functor ((V )) → VecQp

which to a representation of D asso-
ciates the underlying Qp-vector space. This is a fiber functor of tannakian categories, and
we have a canonical isomorphism HV

∼= Aut⊗(ωV ). The category ((V )) is then canonically
equivalent to the category of representations of HV (cf. [12] §2).

Filtered modules: Following Fontaine [15] 1.2, [16] 5.1 a “filtered module” over K
consists of a finite dimensional K-vector space M together with

(a) a descending, exhaustive, separated filtration by K-subspaces FiliM (i ∈ Z), and

(b) a σ-linear automorphism fM : M ∼−−→ M , i.e. an automorphism of additive groups
satisfying fM (xm) = σ(x)fM(m) for all x ∈ K and m ∈M .

Let MFK denote the category of filtered modules over K. This is a Qp-linear category
with tensor products and duals, but it is not abelian. Fontaine ([15] §4, [17] 1.3) defines

a full subcategory MFfK of “weakly admissible filtered modules”, which is abelian and
tannakian. Its identity object consists of the vector space K with 0 = Fil1K $ Fil0K = K
and fK = σ.

For any object M of MFfK we let ((M)) denote the full tannakian subcategory of

MFfK which is generated by M . Then the functor ωM : ((M)) → VecK which to each
filtered module associates its underlying K-vector space is a fiber functor of tannakian
categories. Its automorphism group HM := Aut⊗(ωM ) is a certain algebraic subgroup of
the general linear group AutK(M), defined over K.

The “mysterious functor”: Fontaine ([16] Th.5.2) defines:

(a) a full tannakian subcategory Repcris
D of RepD, stable under taking subquotients.

Objects of Repcris
D are called “crystalline representations”.

(b) a full tannakian subcategory MFaK of MFfK , stable under taking subquotients. Ob-
jects of MFaK are called “admissible filtered modules”.

12



(c) a (covariant) equivalence of tensor categories D : RepD
∼−−→ MFK .

In the following we fix a crystalline representation V and let M := D(V ) denote the asso-
ciated admissible filtered module. Then the functor D induces an equivalence of tannakian
categories ((V )) ∼−−→ ((M)). By tannakian theory ([12] Th.3.2) it follows that the algebraic
groups HV,K := HV ×Qp

K and HM are in a canonical way inner forms of each other.

Hodge decomposition and the Hodge cocharacter: Following Wintenberger
([43] 4.2.1, Th.3.1.2) any weakly admissible filtered module M possesses a canonical split-
ting of the filtration Fil•M , i.e. a grading M =

⊕

i∈Z M
i by K-subspaces such that

FiliM =
⊕

i′≥iM
i for each i ∈ Z. This grading is functorial in M and compatible with

tensor products and duals. As explained in Section 1, this data corresponds to a unique
cocharacter µM : Gm,K → HM , characterized by the fact that x ∈ K× acts by multiplica-
tion with xi on each M i. This cocharacter is defined over K. By analogy with usual Hodge
structures the grading of M may be called Hodge decomposition and µM the associated
Hodge cocharacter.

Via the inner twist the conjugacy class of µM corresponds to a unique conjugacy class
of cocharacters of HV,Q̄p

:= HV ×Qp
Q̄p. We fix a representative µV . By construction we

have:

Fact (2.1). The HV (Q̄p)-conjugacy class of µV is defined over K.

It is possible to characterize this conjugacy class using the Hodge-Tate decomposition
associated to V (cf. [16], [44] §4, [18]). We have chosen the above construction via HM

because it will also apply to the Newton cocharacter below.

Frobenius: Let us set m := [K/Qp]. Then fmM is a K-linear automorphism of M . As
its formation is functorial inM and compatible with tensor products and duals, this defines
an element of HM (K) ⊂ AutK(M). Via the inner twist its conjugacy class corresponds to
a unique conjugacy class in HV (Q̄p), for which we fix a representative ΦV .

Proposition (2.2). The HV (Q̄p)-conjugacy class of ΦV is defined over Qp.

Proof: Since fM is a σ-linear automorphism of M , the map ψ : h 7→ fM ◦ h ◦ f−1
M

defines an isomorphism σ∗HM
∼−−→ HM . Via the inner twist we thus obtain an isomor-

phism (σ∗HV,K) ×K Q̄p
∼−−→ HV,K ×K Q̄p which is unique up to an inner automorphism.

Now HV is defined over Qp, so this isomorphism amounts to a Q̄p-valued automorphism
of HV . As its construction was intrinsic, i.e. functorial in M and compatible with tensor
constructions, it is already an inner automorphism.

Obviously fmM is a K-valued element of HM , and by definition we have ψ(fmM ) = fmM .
As ψ corresponds to an inner automorphism of HV,Q̄p

, this shows that the conjugacy class
of ΦV is defined over Qp, as desired. �

The Newton cocharacter: Next let ordp : Q̄p → Q ∪ {∞} be the normalized
valuation with ordp(p) = 1. Then there is a unique fmM -invariant Q-grading M =

⊕

i∈Q Mi

of K-vector spaces such that all eigenvalues of fmM on Mi have normalized valuation mi.
This decomposition can be obtained, for instance, from the eigenspace decomposition of

13



M⊗K Q̄p under the semisimple part of fmM . The grading is functorial in M and compatible
with tensor products and duals, hence corresponds to a unique quasi-cocharacter νM :
Ĝm,K → HM .

In the same way ΦV gives rise to a quasi-cocharacter νV of HV , defined over Q̄p. The
conjugacy classes of νV and νM correspond to each other via the inner twist between HV

and HM . From Proposition 2.2 it follows that the conjugacy class of νV is defined over
Qp. For ease of terminology we call νM and νV Newton cocharacters, even when they are
only quasi-cocharacters. The reason for the name “Newton” is the following relation with
the Newton polygon.

Hodge and Newton polygons: In Section 1 we have associated a polygon to any
cocharacter and any representation of an algebraic group. Consider an object W of ((V )),
corresponding to the filtered module N := D(W ) in ((M)). From the respective Hodge
cocharacters we then obtain the Hodge polygon PµM

(N) = PµV
(W ) of N and V . The

respective Newton cocharacters give rise to the Newton polygon PνM
(M) = PνV

(V ).

Geometric location of the Newton cocharacter: It is known that for crystalline
representations the Newton polygon lies above the Hodge polygon. We shall express this
information in intrinsic group theoretic terms, as follows. Putting F := Qp, E := Q̄p, and
H := HV , we are in the situation of Section 1. Again we fix a maximal torus TQ̄p

of HV,Q̄p

and work inside its cocharacter space Y := Y∗(TQ̄p
)⊗Z R. As in Definition 1.1 the set of all

HV (Q̄p)oGal(Q̄p/Qp)-conjugates of µV , resp. of νV , which factor through TQ̄p
is denoted

SµV
, resp. SνV

. Note that in the special case K = Qp Fact 2.1 and Proposition 2.2 imply
that these sets do not change if only the HV (Q̄p)-conjugates are taken.

Theorem (2.3). We have SνV
⊂ Conv(SµV

)◦.

Proof: (A related assertion is in Rapoport-Richartz [27] Theorem 4.2.) Consider an
irreducible representation W of HV over Qp, corresponding to a simple filtered module
N in ((M)). Since N is a weakly admissible filtered module, by [15] Prop.4.3.3 we know
already that its Newton polygon PνM

(N) lies above its Hodge polygon PµM
(N). Thus to

apply Theorem 1.4 it suffices to prove that PνM
(N) lies strictly above PµM

(N) unless the
latter is a straight line.

Assume that PµM
(N) is not a straight line but meets PνM

(N) above a point in the
interior of its interval of definition. Then it is easy to see that the polygons must meet at
a break point of the Newton polygon, that is, a point where its slope changes. Suppose
this point lies at 0 < d′ < dimK N and the greatest slope to the left of that point is s. Let
N ′ ⊂ N be the maximal fmN -invariant K-subspace on which the normalized valuation of
every eigenvalue is ≤ ms. Endowed with the induced filtration FiliN ′ := N ′ ∩ FiliN this
is a subobject of N in the category MFK .

Let us show that N ′ is weakly admissible. The relevant polygons are sketched in
Figure 2.4. By construction the Newton polygon PνM

(N ′) is just the initial segment of
PνM

(N) above the interval [0, d′]. For the Hodge polygon, on the other hand, the slopes
of PµM

(N ′) are among the slopes of PµM
(N). Since the slopes are always arranged in

ascending order, the endpoint of PµM
(N ′) lies on or above PµM

(N). Now one of the
equivalent definitions of weak admissibility of N ([15] Def.4.1.4) states that the endpoint
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of PνM
(N ′) must lie on or above the endpoint of PµM

(N ′). Since PνM
(N) and PµM

(N)
coincide at that point, it follows that the endpoints of PνM

(N ′) and PµM
(N ′) are equal.

By [15] Prop.4.5.1 we now deduce that N ′ is weakly admissible, as desired.

Being weakly admissible, N ′ forms a non-zero proper subobject of N in the category
((M)). This contradicts the assumption that N is simple. (For a related statement see
Katz [19] Th.1.6.1.) �

It would be interesting to obtain further relations between the Hodge and Newton
cocharacters. Later in this section we shall look at one of the possible extremes.

Description of HM and HV : In order to describe the group HM we must take
into account not only the Hodge cocharacter µM and the Frobenius element fmM , but also
the various conjugates of µM under fM . For any i ∈ Z there is a unique cocharacter
ψi

µM : Gm,K → HM characterized by

ψi

µM (σi(x)) = f iM ◦ µM (x) ◦ f−iM

for all x ∈ K×. The following result is an analogue of Wintenberger [43] Prop. 4.2.3.

Proposition (2.5). The subgroup of HM which is generated by fmM and the images of
ψi

µM for all i ∈ Z is Zariski dense in HM .

Proof: First we formalize the process of extension of scalars from Qp to K, following
general tannakian theory (see Deligne [11] §5). Let ((M)) ⊗Qp

K denote the category

whose objects are objects Ñ of ((M)) together with a homomorphism of Qp-algebras K →

End((M))(Ñ). Since objects of ((M)) are K-vector spaces (with extra structures), such Ñ
is in particular a module over the ring K ⊗Qp

K, where the second factor refers to the
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additional, “external” K-action. The morphisms in ((M)) ⊗Qp
K are those morphisms in

((M)) that commute with the additional K-action. With the tensor product over K⊗Qp
K

we obtain a rigid abelian tensor category over K.

To get a closer look at the objects of this category consider the isomorphism

K ⊗Qp
K −→

⊕

imodm

K, x⊗ y 7→ (σi(x) · y)i .

Any object has a corresponding decomposition Ñ =
⊕

imodmNi. To analyze the filtered

module structure on Ñ , note first that the Hodge decomposition must consist of K⊗Qp
K-

submodules. Thus each Ni comes with its own Hodge decomposition. Furthermore, as the
automorphism fM is σ-linear in the first factor of K ⊗Qp

K, it permutes the Ni cyclically.

It follows that Ñ is determined up to isomorphism by the K-vector space N0 together with
its automorphism induced by fmM and the pullback via f iM of the Hodge decomposition
of Ni, for every i ∈ Z. In other words, we have established an equivalence of categories
between ((M))⊗Qp

K and the category of these N0 with the indicated structures.

Now if G denotes the automorphism group of the fiber functor

ωM̃ : ((M))⊗Qp
K −→ VecK , Ñ 7→ N0 ,

we have a natural equivalence of categories ((M)) ⊗Qp
K −→ RepK . Observe that

((M))⊗Qp
K is generated as a tensor category by the object M̃ = M ⊗Qp

K, whose image

ωM̃ (M̃) is canonically isomorphic to M . Thus G is the Zariski closure of the subgroup of

AutK(M) that is generated by fmM and the images of ψ
i

µM for all i ∈ Z.

On the other hand the composite of ωM̃ with the functor

((M)) −→ ((M)) ⊗Qp
K , N 7→ N ⊗Qp

K

is just the original fiber functor ωM . By universality of the construction of ((M)) ⊗Qp
K

the induced functor ((M)) −→ RepHM
factors through a natural tensor functor

((M)) ⊗Qp
K −→ RepHM

.

This amounts to a functor RepG → RepHM
which is a right inverse of the restriction

functor RepHM
→ RepG. It follows that G = HM , as desired. �

Coming to the group HV , as in Section 1 we let HµV
denote the smallest normal

algebraic subgroup, defined over Qp, such that µV factors through HµV ,Q̄p
. In other

words, the group HµV ,Q̄p
⊂ HV,Q̄p

is generated by the images of all HV (Q̄p)oGal(Q̄p/Qp)-
conjugates of µV .
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Proposition (2.6). The image of ΦV in the factor group HV /HµV
has coefficients in Qp

and generates a Zariski dense subgroup. In particular HV /HµV
is commutative.

Proof: Via the inner twist the group HµV
corresponds to the subgroup HµM

⊂ HM

defined as in Section 1. By Proposition 2.5 the image of fmM in HM/HµM
generates a

Zariski dense subgroup. In particular this factor group is commutative. Being its inner
twist the group HV /HµV

is also commutative, and therefore the image of ΦV in this group
is the unique element of its conjugacy class. By Proposition 2.2 it is therefore defined
over Qp. The rest follows again by inner twist. �

Ordinary representations: The starting point is the following observation.

Proposition (2.7). The following conditions are equivalent:

(a) SνV
= SµV

.

(a′) SµV
consists of one element.

(b) The Hodge and Newton polygons for every object W of the category ((V )) coincide.

(c) The Hodge and Newton polygons of V coincide.

Proof: From the proof of Theorem 2.3 we know already that for every W in ((V )) the
Newton polygon lies above the Hodge polygon. Thus the equivalences (a)⇔(b)⇔(c) follow
directly from Theorem 1.5. The implication (a)⇒(a′) is a consequence of Theorem 2.3,
and its converse is deduced as in the proof of Proposition 1.7. �

Definition (2.8). A crystalline representation V and its associated filtered module D(V )
are called ordinary if and only if the equivalent conditions of Proposition 2.7 are met.

This definition is equivalent to that in Wintenberger [43] §5.5. As a special case, when
V is the Tate module of an abelian variety A over K with good reduction, property 2.7 (c)
shows that V is ordinary if and only if the reduction of A is ordinary in the usual sense.
The group theoretic consequences of the property “ordinary” are similar to those in that
special case:

Proposition (2.9). When V is ordinary, the group HV is solvable.

Proof: Using Theorem 2.3, Proposition 1.7 implies that HµV
is solvable. By Proposi-

tion 2.6 the factor group HV /HµV
is commutative. Thus HV is solvable, as desired.

�
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“Quasi-ordinary” representations: To end with a bit of speculation, it might be
useful to extend the concept of ordinary along the line suggested by Proposition 2.9.

Definition (2.10). A crystalline representation V and its associated filtered module D(V )
are called quasi-ordinary if and only if HV is solvable.

Motivated by the experience that group theoretic properties of algebraic monodromy
groups correspond to arithmetic statements for the underlying motives, it would be inter-
esting to find out more about quasi-ordinary representations. For instance, when V arises
as part of the cohomology of a smooth projective algebraic variety X over a number field,
is the local Galois representation quasi-ordinary for a set of places of Dirichlet density 1?
This is true when X is an elliptic curve. Also, there might exist consequences for the local
behavior of X .

Proposition (2.11). If V is quasi-ordinary, then SνV
consists of the single element

1

card(SµV
)
·

∑

µ′∈SµV

µ′ .

Proof: The assertion does not change when the representation V is replaced by its
semisimplification and hence HV by its quotient by its unipotent radical. Thus without
loss of generality we may assume that the identity component H◦V is a torus. Then the
main point is to show that the quasi-cocharacter νV is centralized by HV and defined
over Qp.

For this first note that the algebraic group HµV
is connected, because over Q̄p it is

generated by connected subgroups. Thus Proposition 2.6 implies that HV is generated by
H◦V together with ΦV . Now by construction νV is centralized by ΦV . It is also centralized
by H◦V since the latter is a torus. Thus νV is centralized by all of HV . By Proposition 2.2
the conjugacy class of νV is defined over Qp, hence νV itself is defined over Qp. In particular
we must have SνV

= {νV }.

Now recall that SµV
and SνV

are Γ-orbits, where Γ is defined as in Section 1. Thus
the unique element νV of the latter is itself Γ-invariant. By Theorem 2.3 it is an element
of Conv(SµV

), and the unique Γ-invariant element is the one indicated. �
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§3. Global Algebraic Monodromy Groups and Generation by Cocharacters

In this section we shall consider a compatible system of representations of a global
Galois group which arises from the `-adic cohomology of an algebraic variety. As in the
preceding section we are mainly interested in the associated algebraic monodromy groups.
It was proved by Serre that these groups are generated essentially by the images of Newton
cocharacters (combine Proposition 3.5 and Theorem 3.7 below). The main object of this
section is to prove an analogous statement for Hodge cocharacters (see Theorem 3.18).

Galois representations arising from motives: In the following we fix a number
field K and an algebraic closure K̄. We also fix a smooth proper algebraic variety X
over K and an integer d. Then for every rational prime ` the `-adic cohomology group
Hd(X ×K K̄,Q`) is a finite dimensional Q`-vector space carrying a natural continuous
action of Gal(K̄/K). We shall concentrate on the semisimplification of this representation,
denoted V`. It is known that dimQ`

(V`) is independent of `, say it is n. Once and for all
we choose an identification V` ∼= Qn

` . Then the Galois action corresponds to a continuous
homomorphism ρ` : Gal(K̄/K) −→ GLn(Q`), and our main object of interest is the
associated global algebraic monodromy group:

Definition (3.1). The Zariski closure in GLn,Q`
of the image of ρ` is denoted G`.

Since by construction ρ` is a semisimple representation, the algebraic group G` is
reductive. All the results of this section are valid in some greater generality. For instance,
one could work with the semisimplification of

⊕

d∈Z H
d(X ×K K̄,Q`) instead of a single

cohomology group. Also, one could replace Hd(X×K K̄,Q`) by a direct factor which is cut
out by a fixed algebraic cycle. Essentially we shall use only the fact that the representations
ρ` form a strictly compatible system of `-adic representations which are locally crystalline
in equal residue characteristic at almost all places of K.

The local Galois representation: For any non-archimedean place v of K we let
Kv denote the completion of K at v and kv the residue field. We fix an extension v̄ of v to
K̄ and let k̄v denote the residue field at v̄. Let Iv̄ ⊂ Dv̄ ⊂ Gal(K̄/K) denote the inertia
group and the decomposition group at v̄. Then Dv̄/Iv̄ ∼= Gal(k̄v/kv) is the free pro-finite
group generated by Frobenius. We let Frobv ∈ Dv̄ denote any element that represents the
geometric Frobenius in Dv̄/Iv̄.

In the following we shall discuss the restriction of the different representations ρ` to
the decomposition group Dv̄. The behavior depends heavily on the relation between ` and
the characteristic of kv. Let us fix a finite set S of non-archimedean places of K such that
X has good reduction outside S. For later use we assume that S contains all places where
K is ramified over Q. Throughout we shall restrict ourselves to places not in S.

Strict compatibility: Suppose that v 6∈ S and ` 6= char(kv). Then the following
fundamental facts are known (Deligne [8] Th. 1.6, [9] Cor. 3.3.9).

Theorem (3.2). (a) ρ` is unramified at v, that is, its restriction to Iv̄ is trivial.

(b) The characteristic polynomial of ρ`(Frobv) has coefficients in Z and is independent
of `.
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Frobenius eigenvalues: Let Q̄ denote a fixed algebraic closure of Q. We choose an
embedding Q̄ ↪→ C and let | |∞ denote the associated complex absolute value. Likewise,
for every rational prime ` we choose an embedding of Q̄ into the algebraic closure Q̄` of
Q` and let ord` denote the valuation on these which is normalized so that ord`(`) = 1.

By Theorem 3.2 the eigenvalues of ρ`(Frobv) are algebraic integers, independent of `.
The following can be said about their behavior at different places of Q̄.

Theorem (3.3). Let ξ ∈ Q̄ be any eigenvalue of ρ`(Frobv) for v 6∈ S. Then we have

(a) |ξ|∞ =
√

card(kv),

(b) ord`(ξ) = 0 for any prime ` 6= char(kv), and

(c) 0 ≤ ordp(ξ) ≤ d · ordp(card(kv)) = d · [kv/Fp] for p = char(kv).

Here (b) follows from fundamental properties of `-adic cohomology. The lower bound
in (c) results from Theorem 3.2 (b), which by Poincaré duality implies the upper bound.
Assertion (a) is Deligne’s celebrated theorem concerning the analogue of the “Riemann
Hypothesis” [9]. The valuations in (c) have been discussed in Section 2 and will play an
important role below.

Frobenius tori: The information on the groups G` that results from properties of the
Frobenius elements ρ`(Frobv) can be encoded neatly in terms of Frobenius tori, following
Serre (cf. [31], or Chi [6]). For any v 6∈ S choose a semisimple element tv ∈ GLn(Q) with
the same characteristic polynomial as ρ`(Frobv). Let Tv ⊂ GLn,Q be the Zariski closure
of the subgroup generated by tv. By construction its identity component is a torus, called
the Frobenius torus associated to v. Clearly tv and Tv are determined uniquely up to
conjugation.

By construction tv is conjugate under GLn(Q`) to the semisimple part of ρ`(Frobv),
for every ` 6= char(kv). As any linear algebraic group contains the semisimple part of any of
its elements, it follows that tv is conjugate to an element of G`. Therefore Tv,Q`

:= Tv×QQ`

is conjugate under GLn(Q`) to an algebraic subgroup of G`. The observation that this
construction provides us with many subtori “common to all G`” has been exploited by
Serre, with the following results (among others).

The Newton cocharacter: The cocharacter group and the character group

Y∗(Tv) := Hom(Gm,Q̄, Tv ×Q Q̄) ,

X∗(Tv) := Hom(Tv ×Q Q̄,Gm,Q̄)

of Tv are in canonical perfect duality

〈 , 〉 : X∗(Tv) × Y∗(Tv) → Z, (χ, λ) 7→ deg(χ ◦ λ).

Thus giving a quasi-cocharacter of Tv, that is, an element of Y∗(Tv)⊗Z Q, is equivalent to
giving a homomorphism X∗(Tv) → Q. In particular there is a unique quasi-cocharacter νv
of Tv such that

(3.4) 〈χ, νv〉 =
ordp

(
χ(tv)

)

[kv/Fp]
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for all χ ∈ X∗(Tv), where p = char(kv). We call νv the Newton cocharacter of Tv, even
when it is only a quasi-cocharacter.

An equivalent characterization of νv can be given as in Section 2. Namely, for every
i ∈ Q let Vi ⊂ Q̄n be the weight space of weight i under νv. This is just the sum of
the eigenspaces of tv for all eigenvalues with p-adic valuation mvi, and the decomposition
Q̄n =

⊕

i∈Q Vi determines νv uniquely.

Abundance of the Newton cocharacter: As Tv is defined over Q there is a natural
action of Gal(Q̄/Q) on Y∗(Tv). The following result plays a central role in Serre’s theory
(cf. [31] p.10, also Chi [6] Th.3.4).

Proposition (3.5). The cocharacter space Yv := Y∗(Tv) ⊗Z R of Tv is generated over R
by the Gal(Q̄/Q)-orbit of νv.

Proof: Suppose not. Then there exists a character χ ∈ X∗(Tv) of infinite order with

0 = 〈χ, νσv 〉 = 〈χσ
−1

, νv〉
(3.4)
=

ordp
(
χσ

−1

(tv)
)

[kv/Fp]
=

ordp
(
χ(tv)

σ−1)

[kv/Fp]
.

for all σ ∈ Gal(Q̄/Q), where p = char(kv). This means that the algebraic number χ(tv)
is a unit at all primes above p. On the other hand Theorem 3.3 implies that χ(tv) is a
unit at all other finite primes and that its archimedean norms are equal. Thus the product
formula shows that the archimedean norms are all equal to 1. In other words χ(tv) is an
algebraic number whose local norms are all 1. Any such number is a root of unity! Thus
we have χm(tv) = 1 for some positive integer m. As tv generates a Zariski dense subgroup
of Tv, it follows that χm is the trivial character. Thus χ has finite order, contrary to the
assumption. �

Connectedness and maximal tori: Let G◦` denote the identity component of G`.
Then the open subgroup ρ−1

` (G◦` (Q`)) ⊂ Gal(K̄/K) corresponds to a unique finite Galois
extension of K.

Theorem (3.6). (Serre [31] p.17, [33] 2.2.3) This extension is independent of `.

We denote this extension by Kconn. Note that replacing K by Kconn has the effect of
replacing each G` by its identity component, and afterwards we have K = Kconn.

Theorem (3.7). (Serre [31] p.13, [33] 2.2.4, cf. also Chi [6] Cor.3.8) Suppose that
K = Kconn. Then there is a set Vmax of non-archimedean places of K, of Dirichlet
density 1, such that for all v ∈ Vmax we have

(a) v 6∈ S,

(b) the group Tv is connected, hence a torus, and

(c) for every ` 6= char(kv) the torus Tv,Q`
is conjugate under GLn(Q`) to a maximal torus

of G`.
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Corollary (3.8). (Serre) The rank and the formal character of G` are independent of `.

Proof: Without loss of generality we may assume that K = Kconn. With any fixed
v ∈ Vmax, Theorem 3.7 implies the assertion for all ` 6= char(kv). Repeating the argument
with a place v of different residue characteristic finishes the proof. �

For further consequences we look at the local Galois representation in equal residue
characteristic, as follows.

Relation with crystalline cohomology: As before let us consider a non-archi-
medean place v 6∈ S of K of residue characteristic p. By our assumption on S the local
field extension Kv/Qp is unramified. We now consider the case ` = p and shall apply the
concepts and results of Section 2 to the restriction of ρp to the decomposition group Dv̄.
Mostly we shall use the notations of Section 2 with an additional index v.

Let Ov denote the ring of v-adic integers in Kv, and let Xv denote the closed fiber of
a smooth proper model of X over Ov. Then the crystalline cohomology group

Hd(Xv/Ov) ⊗Ov
Kv

possesses a natural structure of filtered module. Here the action of Frobenius is in-
trinsically defined, and the Hodge filtration results from comparison with the De Rham
cohomology of X . Moreover by the Ccris-conjecture, proved by Fontaine-Messing and
Faltings (cf. [18] Th. 3.2.3) the representation of Dv on the `-adic cohomology group
Hd(X×K K̄,Qp) is crystalline and its associated filtered module is canonically isomorphic
to the above crystalline cohomology group.

Recall that Vp was defined as the semisimplification of Hd(X ×K K̄,Qp) under the
global Galois group Gal(K̄/K). Thus it is a partial semisimplification of the associated
local Galois representation and hence again crystalline. Moreover its associated filtered
module Mv := D(Vp) is a partial semisimplification of the above crystalline cohomology
group.

The local algebraic monodromy groups: As in Section 2 we can now compare
the following two algebraic groups.

Definition (3.9). (a) The Zariski closure in GLn,Qp
of ρp(Dv̄) is denoted HV,v.

(b) We set HM,v := Aut⊗(ωMv
), where ωMv

is the natural fiber functor ((Mv)) → VecKv
.

Clearly HV,v is contained in the global algebraic monodromy group Gp. Although Gp
was forced to be reductive, this is not at all so for HV,v. By Section 2 the algebraic groups
HV,v ×Qp

Kv and HM,v are inner forms of each other. The reason for passing back and
forth between these two groups is that in equal residue characteristic a Frobenius can be
found naturally only on the crystalline side, that is, in HM,v.

Crystalline Frobenius: Let fMv
denote the σ-linear automorphism of Mv which

is part of the structure of filtered module, and put mv := [Kv/Qp]. Consider another
rational prime ` 6= p. The following statement is a consequence of the fact that crystalline
cohomology is a “Weil cohomology”.
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Theorem (3.10). (Katz-Messing, cf. [18] (1.3.5)) The characteristic polynomial of fmv

Mv

on Mv has coefficients in Z and is equal to that of ρ`(Frobv).

From Section 2 recall that fmv

Mv
is an element of HM,v(Kv). Fix a representative Φv,p

of the corresponding conjugacy class in HV,v(Q̄p). Theorem 3.10 implies that there exists
gv ∈ GLn(Q̄p) such that gvtvg

−1
v is equal to the semisimple part of Φv,p. Note that,

although gv is not unique, the double coset

(3.11) HV,v(Q̄p) · gv · CentGLn(Q̄p)(Tv)

is independent of choices. As in the global case we obtain an element of HV,v(Q̄p) and
thus embeddings

(3.12) gvTv,Q̄p
g−1
v ⊂ HV,v,Q̄p

⊂ Gp,Q̄p
.

Thus in every local algebraic monodromy group some form of Tv can be found. Let us
note the following consequence.

Proposition (3.13). Suppose that K = Kconn and let Vmax be as in Theorem 3.7.
Consider v ∈ Vmax, say with residue characteristic p. Then all the groups Tv, HM,v, HV,v,
and Gp are connected of the same rank, independent of v and p, and gvTv,Q̄p

g−1
v is a

maximal torus of both HV,v,Q̄p
and Gp,Q̄p

.

Proof: By Theorem 3.7 and Corollary 3.8 we already know that Tv and Gp are connected
of equal rank, independent of v and p. Since HV,v,Q̄p

is pinched between forms of these
two groups by 3.12, it also has the same rank. By Proposition 2.6 it is generated by a
connected subgroup together with gvTv,Q̄p

g−1
v . As the latter is connected, the assertions

pertaining to HV,v are proved. Finally, the assertions for HM,v follow from the fact that
this group is an inner form of HV,v. �

Newton and Hodge cocharacters: Consider the Newton cocharacter νv of Tv, as
defined above. Conjugating it into HV,v,Q̄p

as in 3.12 we find precisely the conjugacy class
of Newton cocharacters from Section 2. Similarly we would like to find some conjugate of
the Hodge cocharacter inside Tv. This is possible if Tv is sufficiently big.

So let us assume that K = Kconn and v ∈ Vmax. Let V1 denote the set of places v
of absolute degree 1, i.e. with Kv

∼= Qp if p denotes the residue characteristic of v. In
the following we shall also assume v ∈ V1. This restriction does not disturb since V1 has
Dirichlet density 1.

Consider the conjugacy class of Hodge cocharacters of HV,v defined in Section 2. By
Proposition 3.13 we can find representatives in the maximal torus gvTv,Q̄p

g−1
v and conjugate

them into Tv via g−1
v .
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Definition (3.14). (a) The resulting cocharacters of Tv are called strong Hodge cochar-
acters of Tv. The set of all strong Hodge cocharacters of Tv is denoted Sµ,v.

(b) A cocharacter of Tv which is conjugate under GLn(Q̄) to a cocharacter in (a) is called
a weak Hodge cocharacter of Tv.

The uniqueness of the double coset 3.11 implies that part (a) of this definition is
independent of the choice of gv. Next observe that the GLn-conjugacy class of any cochar-
acter is determined uniquely by the system of multiplicities for all weights. As the Hodge
filtration on Mv comes from the natural filtration on the De Rham cohomology group
Hd(X,Ω•X), for Hodge cocharacters these multiplicities are just the Hodge numbers hi,d−i

of X . Let C denote the GLn-conjugacy class of cocharacters Gm → GLn determined by
these Hodge numbers. Then the weak Hodge cocharacters are precisely those cocharacters
of Tv which also lie in C.

Abundance of Hodge cocharacters: In the rest of this section we shall combine
the main results obtained so far. First we restate Theorem 2.3 in terms of Tv. Recall that
Yv denotes the cocharacter space of Tv.

Theorem (3.15). Assume K = Kconn and v ∈ Vmax ∩ V1. Then we have νv ∈
Conv(Sµ,v)

◦.

Proof: The assertion of Theorem 2.3 concerns a fixed but arbitrary maximal torus of
HV,v,Q̄p

. By Proposition 3.13 we may take the torus gvTv,Q̄p
g−1
v . As in Definition 3.14

consider the conjugacy class of Hodge cocharacters of HV,v,Q̄p
defined in Section 2. Since

v ∈ V1, by Fact 2.1 this conjugacy class is defined over Qp. Thus the set Sµ,v in Defini-
tion 3.14 corresponds to the set SµV

in Theorem 2.3 via conjugation with gv. The theorem
is thus a restatement of Theorem 2.3. �

Combining Theorem 3.15 with Proposition 3.5 we deduce:

Theorem (3.16). Assume that K = Kconn and v ∈ Vmax. Then Tv,Q̄ is generated by

the images of all Gal(Q̄/Q)-conjugates of all strong Hodge cocharacters. In particular, it
is generated by the images of all weak Hodge cocharacters.

At last we come back to the global algebraic monodromy group Gp for an arbitrary
rational prime p. Recall that C denotes the GLn-conjugacy class of cocharacters of GLn
determined by the Hodge numbers of X , and that C contains all the Hodge cocharacters
under discussion.

Definition (3.17). (a) Suppose that X has good reduction at all places v above p. Then
a cocharacter µ of Gp is called a strong Hodge cocharacter of Gp if and only if there
exists a non-archimedean place v 6∈ S of K with residue characteristic p, such that µ
is Gp(Q̄p)-conjugate to a Hodge character of HV,v as in Section 2.

(b) A cocharacter µ of Gp is called a weak Hodge cocharacter of Gp if and only if µ ∈ C.

Of course, any strong Hodge cocharacter is also a weak Hodge cocharacter. It is
conjectured that the identity component G◦

p,Q̄p
is generated by the images of strong Hodge
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cocharacters, provided that X has good reduction at all places v above p (compare, for
instance, [45] Conjecture R). Our approach gives a slightly different result, involving a
single conjugacy class of Hodge cocharacters and its transforms under Gal(Q̄/Q). In
particular, we can prove:

Theorem (3.18). For every rational prime ` the identity component of G`,Q̄`
is generated

by the images of weak Hodge cocharacters.

Proof: Without loss of generality we may assume K = Kconn. Choose any v ∈ Vmax,
say with residue characteristic p. By Theorem 3.16 the associated Frobenius torus Tv,Q̄ is

generated by the images of weak Hodge cocharacters. Moreover some GLn(Q̄`)-conjugate
of this torus is a maximal torus of G`,Q̄`

. Indeed, this follows from Theorem 3.7 and
Corollary 3.8 if ` 6= p, respectively from Proposition 3.13 if ` = p. Thus some maximal
torus, and hence every maximal torus of G`,Q̄`

is generated by the images of weak Hodge
cocharacters. As G`,Q̄`

is a reductive group, the desired assertion follows. �
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§4. Classification of Certain Algebraic Groups of Mumford-Tate Type

In this section we collect some mostly known results on connected reductive groups
which look like the Mumford-Tate group of an abelian variety. The main classification
was obtained by Serre [30] §3. All the arguments are based on the classification and
representation theory of reductive groups. We work over a given field F of characteristic
zero with algebraic closure F̄ .

Mumford-Tate pairs: Consider a reductive algebraic group G over F and a faithful
finite dimensional representation ρ of G. We are interested in cocharacters of G with
special numerical properties vis-à-vis ρ. We shall use a slight variant of the definition in
Serre [30] 3.2 (cf. also Wintenberger [44]).

Definition (4.1). (a) The pair (G, ρ) is called a weak Mumford-Tate pair of weights
{0, 1} if and only if there exist cocharacters µi : Gm,F̄ → GF̄ (1 ≤ i ≤ k) such that

(i) GF̄ is generated by the images of all G(F̄ )-conjugates of all µi, and

(ii) the weights of each ρ ◦ µi are in {0, 1}.

(b) The pair (G, ρ) is called a strong Mumford-Tate pair of weights {0, 1} if and only if
the conditions in (a) hold and

(iii) the µi are conjugate under Gal(F̄ /F ).

Condition (i) implies that G must be connected. The possibilities for (G, ρ) and µi
were determined by Serre [30] §3. We shall list his results, augmented by information on
all possible autodualities and inclusions.

Reduction to the irreducible case: First we analyze weak Mumford-Tate pairs
(G, ρ) of weights {0, 1}. By definition this condition is invariant under base extension, so
to study it we may without loss of generality assume F = F̄ . Next it is clear that (G, ρ)
satisfies the desired conditions if and only if (ρ′(G), ρ′) does so for every irreducible direct
summand ρ′ of ρ. Therefore we now assume that ρ is irreducible.

Tensor decomposition: Let Z denote the identity component of the center of G.
When G = Z we must have dim(ρ) = 1 and there are the following two possibilities.
If all µi are trivial, then G = Z = 1: we shall disregard this case. Otherwise we have
G = Z ∼= Gm,F , and ρ is the standard representation Gm,F

∼−−→ GL1,F .

Let us now assume that G 6= Z and let G1, . . . , Gs denote the pairwise distinct almost
simple factors of the derived group Gder. Then we have an almost direct product G =
Z ·G1 · · ·Gs. Correspondingly there are irreducible representations ρ0 of Z and ρi of each
Gi such that ρ decomposes as exterior tensor product ρ ∼= ρ0 � . . .� ρs.

Each µi in Definition 4.1 (a) can be written uniquely as a product of quasi-cocharacters
of Z and G1, . . . , Gs. If it has a non-trivial component in more than one Gj , one easily
shows that ρ ◦ µ has at least three distinct weights. This possibility is forbidden. On the
other hand, for each Gj there must be at least one µi which has a non-trivial component
in Gj . Then in particular ρ ◦ µi is not central, so it must have both weights 0 and 1. It
follows that det ◦ρ ◦µi has weight > 0 and µi has a non-trivial component in Z. Therefore
we have Z ∼= Gm,F , and its representation ρ0 is, of course, the standard representation
Gm,F

∼−−→ GL1,F . To summarize note that µi factors through the subgroup Z ·Gj ⊂ G.
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Thus all in all we deduce that (G, ρ) is a Mumford-Tate pair of weights {0, 1} if and only
if the same is true for (Z ·Gj , ρ0 � ρj) for every 1 ≤ j ≤ s.

The simple case: Now we are reduced to the case G = Gm,F · Gder with Gder

almost simple. Then the conjugates of a single cocharacter µ : Gm,F → G are enough to
generate G. The triple (G, ρ, µ) is determined up to isomorphy by its “semisimple part”
(Gder, ρ′, µ′), where ρ′ := ρ|Gder and µ′ denotes the component of µ in Gder. A list of all
possibilities for this triple is given in Table 4.2.

root system Ar Cr Dr Ar Br Dr

representation standard standard standard
∧

s
(standard) Spin Spin+

highest weight ω1 ω1 ω1 ωs ωr ωr

dim(ρ) r+1 2r 2r
(
r+1
s

)
2r 2r−1

cocharacter ω∨

s ω∨

r ω∨

r ω∨

1 ω∨

1 ω∨

1

multiplicities s, r+1−s r, r r, r
(
r
s−1

)
,
(
r
s

)
2r−1, 2r−1 2r−2, 2r−2

numerical r≥s≥1 r≥1 r≥3 r≥s≥1 r≥1 r≥3

conditions

autoduality − if r=1 − + (−1)s if r=2s−1 + if r≡0,3 (4) + if r≡0 (4)

no if r 6=1 no if r 6=2s−1 − if r≡1,2 (4) − if r≡2 (4)

no if r≡1 (2)

Table 4.2: simple Mumford-Tate pairs of weights {0, 1}

Most of the information is from [30] §3. In each case ρ′ is a fundamental representation
with minuscule highest weight. Likewise the cocharacter µ′ is a minuscule fundamental
weight of the dual root system. The fundamental weights and co-weights are indexed as
in Bourbaki [5] Planches. The last row contains the sign of the autoduality of ρ′ if this
representation is autodual, otherwise it contains the word “no”. This information was
taken from Dynkin [13] Ch.1, §3, Remark C. Note that some isomorphy classes of triples
are listed more than once in Table 4.2 because of the exceptional isomorphisms between
simple root systems of small rank.

Inclusions between irreducible Mumford-Tate pairs: Consider a weak Mumford-
Tate pair (G, ρ) of weights {0, 1} with ρ absolutely irreducible. We want to determine all
types of subgroups G′ ⊂ G such that ρ′ := ρ|G′ remains absolutely irreducible and (G′, ρ′)
is also a weak Mumford-Tate pair of weights {0, 1}. Again we may assume F = F̄ .

Comparing the tensor decompositions of ρ with respect to G and G′ we find that
each simple factor of (G′)der must lie in a unique simple factor of Gder. Thus the problem
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reduces at once to the case that Gder is almost simple. However, it is not necessary that
(G′)der is almost simple.

In the first three cases of Table 4.2 the group G is a classical group in its standard
representation, so for these the possibilities are easily determined. In the first case we
have G = GLr+1,F , hence any weak Mumford-Tate pair (G′, ρ′) of weights {0, 1} with
dim(ρ′) = r + 1 can occur inside (G, ρ). In the next two cases we have G = CSp2r,F ,
respectively G = GSO2r,F , so (G′, ρ′) occurs inside (G, ρ) if and only if ρ′ has dimension
2r and possesses an autoduality of sign −1, resp. +1. Note that this means that each
almost simple factor of (G′, ρ′) must be autodual, and that the signs of these individual
autodualities must multiply up to the correct sign. The remaining three cases are covered
by the following result.

Proposition (4.3). Consider a weak Mumford-Tate pair (G, ρ) of weights {0, 1} over
F = F̄ . Assume that ρ is irreducible, that Gder is almost simple, and the type of (G, ρ)
is one of the last three in Table 4.2. Consider a subgroup G′ ⊂ G such that ρ′ := ρ|G′

is irreducible and (G′, ρ′) is another weak Mumford-Tate pair of weights {0, 1}. Then we
have either

(a) G′ = G, or

(b) there exist integers r1, r2 ≥ 0 with r := r1 +r2 +1 ≥ 3 such that G has root system Dr
and ρ is the Spin representation (i.e. the type of (G, ρ) is the last one in Table 4.2),
and G′ has root system Br1 + Br2 and ρ′ is the tensor product of the respective Spin
representations of Br1 and Br2 (i.e. any simple factor of (G′, ρ′) has the fifth type in
Table 4.2). Note that the cases r1 = 0 or r2 = 0 are included: here the root system of
G′ is Br−1.

Proof: The possible triples (H,H ′, σ) consisting of a connected almost simple algebraic
group H, a connected subgroup H ′ ⊂ H, and a representation σ of H whose restriction
to H ′ is irreducible have been determined by Dynkin [13]. The proposition follows by
comparing his list with ours. Assume that G′ 6= G, and look at the type of (G, ρ) in
Table 4.2. The fourth type is excluded by [13] Th. 4.7 and Table 6. The fifth type is
impossible by [13] Th. 6.8. For the sixth type the result follows from [13] Th. 6.9 and
Tables 16–17, provided that r ≥ 4. The case r = 3 is finished by inspection of Table 4.2.

�

Irreducible Mumford-Tate pairs and formal characters: As before consider
a weak Mumford-Tate pair (G, ρ) of weights {0, 1} over F = F̄ with ρ irreducible. We
shall determine to which extent (G, ρ) is determined by its formal character. This problem
differs from that in the preceding paragraph because two irreducible connected subgroups
of GLn,F with the same formal character need not be contained in each other. (The
problem was discussed in greater generality in Larsen-Pink [20] §4.)

Consider a maximal torus T ⊂ G and letX∗(T ) := Hom(T,Gm,F ) denote its character
group. The formal character of ρ is the formal sum

chρ :=
∑

χ∈X∗(T )

multρ(χ) · χ ∈ Z[X∗(T )],
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where multρ(χ) ∈ Z denotes the multiplicity of χ as weight of ρ|T . Since ρ was assumed
to be faithful, the formal character determines the pair (T, ρ|T ) up to isomorphism. Thus
we may suppose that T and ρ|T are fixed. To determine the pair (G, ρ) up to isomorphism
it then remains to determine the root system Φ ⊂ X∗(T ) of G.

Let Φ◦ ⊂ Φ be the subset of roots which are short in their respective simple factor of Φ.
By Larsen-Pink [20] §4 this set is determined uniquely by the formal character. Note that
Φ◦ itself is a root system of the same rank as Φ, though in general it is not a closed root
subsystem of Φ. It is known that the short roots of any simple root system form an isotypic
root system, i.e. all simple factors are of the same type. Thus the isotypic decomposition
of Φ◦ comes from some decomposition of Φ. If the formal character is taken into account,
we obtain an isotypic decomposition of the pair (Φ◦, chρ) which corresponds to a certain
tensor decomposition of (G, ρ). For the rest of the analysis it suffices to consider a single
isotypic component, i.e. we may suppose that (Φ◦, chρ) is isotypic.

Any remaining ambiguity must now originate in one of the cases of Table 4.2 where the
root system possesses roots of different lengths. In the case of type Cr the short roots form
a simple root system of type Dr, and the standard representation of Sp2r,F corresponds to
the standard representation of SO2r,F . Here we may restrict attention to the case r ≥ 3,
since the case r = 2 will be included next. In the case Br (r ≥ 1) the short roots form a
reducible root system of type rA1, and the Spin representation of Spin2r+1,F corresponds
to the exterior tensor product of the respective standard representations of SL2,F . If we
have the first type of ambiguity, the simple factors of Φ and Φ◦ correspond to each other,
and for each simple tensor factor of (G, ρ) we have exactly the choice between the second
and the third type of Table 4.2, with r ≥ 3 fixed. In the second type of ambiguity all simple
tensor factors of (G, ρ) must be of the fifth type in Table 4.2, but now r may vary. The
only other information determined by the formal character is the sum over the respective
values of r.

Irreducible strong Mumford-Tate pairs: Now we return to an arbitrary field F of
characteristic zero and consider strong Mumford-Tate pairs according to Definition 4.1 (b).
We restrict ourselves to the irreducible case. The following result goes back to Borovoi [4]:

Proposition (4.4). Consider a strong Mumford-Tate pair (G, ρ) of weights {0, 1} over F ,
such that ρ is absolutely irreducible. Then Gder is almost simple over F or it is trivial. In
particular, all simple tensor factors of (G, ρ) over F̄ have the same type in Table 4.2 (with
the same r).

Proof: Suppose that Gder 6= 1 and let G1 be one of the almost simple factors of Gder
F̄

.
Recall that some µi must factor through Gm,F̄ ·G1 ⊂ GF̄ and have a non-trivial component
in both the center and in G1. As G is connected, the images of the G(F̄ )-conjugates of
µ1 generate the subgroup Gm,F̄ · G1. By conditions (i) and (iii) of Definition 4.1 the
Gal(F̄ /F )-conjugates of this subgroup must generate GF̄ . Thus the almost simple factors
of Gder

F̄
are permuted transitively by the Galois group. �
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Proposition (4.5). Consider a strong Mumford-Tate pair (G, ρ) of weights {0, 1} over
F , such that ρ|Gder is absolutely irreducible and symplectic. Then all simple tensor factors
of (G, ρ) over F̄ are symplectic and their number is odd.

Proof: As ρ|Gder is symplectic, each simple tensor factor must be self-dual and the number
of symplectic factors is odd. In particular there is at least one symplectic factor. As all the
factors have the same type, they are all symplectic. This in turn implies that the number
of factors is odd. �

For later use we extract from Table 4.2 a list of all possibilities for the simple fac-
tors in the symplectic case, given in Table 4.6. The watchful reader will note that some
unnecessary duplication was purged, but not all.

root system Cr A2s−1 Br Dr

representation standard
∧s

(standard) Spin Spin+

dim(ρ) 2r
(
2s
s

)
2r 2r−1

cocharacter ω∨r ω∨1 ω∨1 ω∨1

numerical r ≥ 1 s ≥ 1 r ≥ 1 r ≥ 6
conditions s ≡ 1 (2) r ≡ 1, 2 (4) r ≡ 2 (4)

Table 4.6: symplectic simple Mumford-Tate pairs of weights {0, 1}

Proposition (4.7). Consider a strong Mumford-Tate pair (G, ρ) of weights {0, 1} over
F , such that ρ|Gder is absolutely irreducible and symplectic. Assume that n := dim(ρ) is
greater than 1 and neither

(a) a kth power for any odd k > 1, nor

(b) of the form
(
2k
k

)
for any odd k > 1.

Then we have G = CSpn,Q.

Proof: Let m denote the number of simple factors of GF̄ , and n1 the common dimension
of the representation of any simple tensor factor. Then we have n = nm1 . Since m is odd
by Proposition 4.5, condition (a) implies m = 1. We must show that the unique simple
factor has the first type in Table 4.6. The second type is forbidden by condition (b), unless
s = 1 which coincides with the first case with r = 1. Next the third case with r ≤ 2 is
subsumed by the first case. In the third case with r > 2 as well as in the fourth case n is
an odd power. This is again excluded by condition (a). �
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§5. Abelian Varieties and the Mumford-Tate Conjecture

Recall that Theorem 3.18 asserts that the identity component G◦` of the `-adic alge-
braic monodromy group is generated by certain Hodge cocharacters. In the present section
we apply this result to the case of an abelian variety A over a number field K. It follows
that G◦` looks like the Mumford-Tate group of an abelian variety. A weak version of this
statement is obtained in Theorem 5.10. Under the assumption End(AK̄) = Z we are able
formulate a much stronger version in Theorem 5.13. The proof will be given in Section 6;
it avoids crystalline theory and is thus independent of Sections 1–2. According to the
Mumford-Tate conjecture G◦` should be equal to the Mumford-Tate group of A. Using the
classification results of Section 4, we can prove this in many cases where End(AK̄) = Z.

In the following we fix an abelian variety A of dimension g over a number field K.
We fix an embedding K ⊂ C and let K̄ be the algebraic closure of K in C. To keep the
notations of the earlier sections we work with cohomology instead of homology.

The Mumford-Tate group: The singular cohomology group V := H1(A(C),Q) is
a vector space of dimension 2g over Q. It is endowed with a natural Hodge structure of
type {(1, 0), (0, 1)}, that is, a decomposition of C-vector spaces V ⊗Q C = V 1,0 ⊕ V 0,1

such that V 0,1 = V 1,0. Once and for all we choose an identification V ∼= Q2g. Let
µ∞ : Gm,C → GL2g,C be the cocharacter through which any z ∈ C× acts by multiplication
with z on V 1,0 and trivially on V 0,1.

Definition (5.1). The Mumford-Tate group of A(C) is the unique smallest algebraic
subgroup G∞ ⊂ GL2g,Q, defined over Q, such that µ∞ factors through G∞ ×Q C.

As the image of µ∞ is connected, this definition implies that G∞ is connected.

Relation with endomorphisms: The endomorphism algebra End(A(C)) acts nat-
urally on the homology group H1(A(C),Q) ∼= V ∨. Thus its opposite algebra acts on V .
This action preserves the Hodge decomposition, so it commutes with µ∞ and hence with
G∞. In fact, we have a natural isomorphism

(5.2) End(A(C))opp ⊗Z Q ∼−−→ EndG∞
(V ) .

All endomorphisms of A(C) are algebraic over K̄, that is, we have a canonical isomorphism
End(AK̄) ∼= End(A(C)).

Relation with polarizations: Any polarization on A induces a non-degenerate
alternating form Λ : V × V → Q(−1), where Q(−1) is a Q-vector space of dimension 1,
distinguished from Q in being viewed as a pure Hodge structure of type {(1, 1)}. If CSp2g,Q

denotes the group of symplectic similitudes with respect to Λ, it follows that µ∞ factors
through CSp2g,C. Thus the definition of G∞ implies

(5.3) G∞ ⊂ CSp2g,Q .

The `-adic algebraic monodromy group: For any rational prime ` the étale
cohomology group V` := H1(A ×K K̄,Q`) is canonically isomorphic to the dual of the
`-adic Tate module of A. The Galois action can thus be described by the action on the
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torsion points of A(K̄). On the other hand, there is a canonical isomorphism V` ∼= V ⊗QQ`,
so the chosen isomorphism V ∼= Q2g induces an identification V` ∼= Q2g

` . The Galois action
thus corresponds to a continuous homomorphism

ρ` : Gal(K̄/K) −→ GL2g(Q`).

As in Section 3 the main object of our interest is the associated global algebraic monodromy
group:

Definition (5.4). The Zariski closure in GL2g,Q`
of the image of ρ` is denoted G`.

The Mumford-Tate conjecture: Let G◦` denote the identity component of G`.
The Hodge and Tate conjectures for general algebraic cycles would imply the following
conjecture.

Conjecture (5.5). (Mumford-Tate, cf. [29] C.3.1) For any rational prime ` we have

G◦` = G∞ ×Q Q`.

Certain parts of this conjecture have been proved. Most notably, the inclusion “⊂”
was proved by Piatetskii-Shapiro [25], Deligne [10] I Prop. 6.2, Borovoi [2]:

Theorem (5.6). For any rational prime ` we have

G◦` ⊂ G∞ ×Q Q`.

If G∞ is known, this result provides an upper bound on G`. As for lower bounds, the
only known general result is the following theorem of Faltings ([14] Theorems 3–4).

Theorem (5.7). The representation ρ` is semisimple, and the natural homomorphism

End(A)opp ⊗Z Q` −→ EndQ`[Gal(K̄/K)]

(
V`

)

is an isomorphism.

Corollary (5.8). The group G◦` is reductive, and End(AK̄)opp⊗Z Q` maps isomorphically
to the commutant of G◦` in M2g(Q`).

Proof: After replacing K by a suitable finite extension we have End(A) = End(AK̄) and
G` = G◦` (compare Theorem 3.6). In this case the desired assertion is equivalent to that
of Theorem 5.7. �

Using the results mentioned above and his theory of Frobenius tori Serre [28], [32], [33]
was able to prove the Mumford-Tate conjecture for any odd dimensional abelian variety
with End(AK̄) = Z. These methods were adapted by Tankeev to abelian varieties of
dimension rp with p prime and r ≤ 9 ([34], [36], [37], [39], [40]) and in other special cases
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([35], [38], cf. also [42]). In the present paper we significantly extend these results (while
relying heavily on Serre’s ideas). Serre’s theorem has been generalized to certain abelian
varieties with larger endomorphism rings by Chi [6], [7], and Tankeev (loc. cit.). Our
results could be generalized to some extent along the same lines.

The form of G◦` in the general case: By Faltings’ theorem (Theorem 5.7 above)
the representation ρ` is semisimple. Therefore we may apply the general qualitative results
of Section 3 to the present situation. By construction the Hodge cocharacter µ∞ defined
above has weights 0 and 1 in the given representation on V . Thus the following is obvious
from the definition of the Mumford-Tate group.

Fact (5.9). The pair consisting of G∞ together with its tautological representation is a
strong Mumford-Tate pair of weights {0, 1} over F = Q in the sense of Definition 4.1 (b).

Any weak Hodge cocharacter of G` as defined in 3.17 has the same weights as µ∞.
Thus Theorem 3.18 implies:

Theorem (5.10). The pair consisting of G◦` together with its tautological representation is
a weak Mumford-Tate pair of weights {0, 1} over F = Q` in the sense of Definition 4.1 (a).

Using Table 4.2 we deduce in particular:

Corollary (5.11). Each simple factor of the root system of G◦` has type A, B, C, or D,
and its highest weights in the tautological representation are minuscule.

The irreducible case: In the rest of this section we consider the case End(AK̄) = Z.
The isomorphy 5.2 then implies that the tautological representation of the Mumford-Tate
group is absolutely irreducible. Combining Fact 5.9 with Proposition 4.4 we deduce:

Proposition (5.12). Assume that End(AK̄) = Z. Then Gder
∞ is Q-simple. In particular

Gder
∞,Q̄

⊂ GL2g,Q̄ is ⊗-isotypic.

Similarly Corollary 5.8 implies that the tautological representation of G◦` on V` is
absolutely irreducible. We cannot immediately deduce an analogue of Proposition 5.12,
because by construction the `-adic algebraic monodromy groups are defined over varying
fields Q` and only loosely connected with each other via Frobenius tori. We do know that
the formal character of G◦` is independent of `. However, we have seen in Section 4 that
the formal character does not always determine the root system. Therefore we cannot rule
out the possibility that the root system of G` varies to some extent with `. Nevertheless
with the methods of Larsen-Pink [21], [22], we can show that deviations may happen only
for few `. By the following theorem most G◦` can be “interpolated” by an algebraic group
defined over Q. At the same time, the statement that G◦` looks like a Mumford-Tate group
is made more precise.

Theorem (5.13). Assume that End(AK̄) = Z.

(a) There exists a connected reductive subgroup G ⊂ GL2g,Q such that G◦` is conjugate to
G×Q Q` under GL2g(Q`) for every ` in some set L of primes of Dirichlet density 1.
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(b) The pair consisting of G together with its absolutely irreducible tautological represen-
tation is a strong Mumford-Tate pair of weights {0, 1} over F = Q in the sense of
Definition 4.1 (b).

(c) The derived group Gder is Q-simple.

(d) If the root system of G is determined uniquely by its formal character, i.e. if G does
not have an ambiguous factor (cf. Section 4), then in (a) we can take L to contain
all but at most finitely many primes.

The proof will be given in the following section. In the remainder of this section
we discuss some consequences. Let us first note that Theorem 5.13 (a) and the fact
that the representation of every (G◦` )

der is symplectic together imply that the tautological
representation of Gder is symplectic. Therefore by Proposition 4.5 the possible types of
the simple factors of Gder are those in Table 4.6.

New instances of the Mumford-Tate conjecture: The assertions of Fact 5.9 and
Theorem 5.13 (b) put the same strong restrictions on the groups G∞ and G. Exploiting
the classification results of Section 4 we can deduce that they must indeed look the same
under certain dimension restrictions.

Theorem (5.14). Assume that End(AK̄) = Z. Assume moreover that 2g is neither

(a) a kth power for any odd k > 1, nor

(b) of the form
(
2k
k

)
for any odd k > 1.

Then we have G∞ = CSp2g,Q and G◦` = CSp2g,Q`
for every `. In particular the Mumford-

Tate conjecture holds for A.

Proof: By Fact 5.9, the absolute irreducibility 5.2, and the inclusion (5.3), we may
apply Proposition 4.7 to the Mumford-Tate group G∞. It follows that G∞ = CSp2g,Q.

Next consider the group G given by Theorem 5.13. Since the representation of Gder is
symplectic, by Theorem 5.13 (b) we may apply Proposition 4.7 to G. Thus G is also
a group of symplectic similitudes associated to some non-degenerate alternating form.
By Theorem 5.13 (a) the same follows for G◦` , as long as ` ∈ L. Thus the inclusion in
Theorem 5.6 implies G◦` = CSp2g,Q`

for these `.

Since this last equality holds for one prime `, it holds for every `, by [22] Th. 4.3. To
sketch the argument recall from Corollary 3.8 that the rank and the formal character of
G◦` are independent of `. Thus every G◦` is a subgroup of equal rank of CSp2g,Q`

. It is
also absolutely irreducible, hence the short roots of G◦` are the same as those of CSp2g,Q`

(cf. Section 4). In characteristic zero it is well-known that the roots of any subgroup
of equal rank form a closed root subsystem of the ambient root system. It follows that
G◦` ⊂ CSp2g,Q`

have the same roots, hence are equal, as desired. �

Theorem (5.15). Assume that End(AK̄) = Z and that the root system of each simple
factor of G∞,Q̄ has type A2s−1 with s ≥ 1 or Br with r ≥ 1 (cf. Table 4.6). Then the
Mumford-Tate conjecture holds for A.
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Proof: For every prime ` we know from Theorem 5.6, Corollary 5.8, and Theorem 5.10
that G◦

`,Q̄`
is a subgroup of G∞,Q̄`

whose tautological representation is irreducible and

which forms a weak Mumford-Tate pair of weights {0, 1}. It suffices to prove that G∞,Q̄`

does not possess any proper subgroup with these properties. This assertion reduces to the
same assertion for each simple tensor factor, where it is guaranteed by Proposition 4.3. �

35



§6. Interpolation of `-adic Algebraic Monodromy Groups

This section contains the proof of Theorem 5.13. The proof consists of two main
parts. In the first half we show that the formal character is isotypic and its simple fac-
tors are permuted transitively by Gal(Q̄/Q). Although the result is similar, this proof is
independent of Sections 1–2. Here we concentrate more on the Newton cocharacter than
the Hodge cocharacter. The arguments are very similar to those used to find places of
ordinary reduction. For more explanations see Section 7. In the second half we show that
the local data at the different primes ` fit together to a group defined over Q. This group
is constructed in some sense “around” a suitable Frobenius torus. The main ingredients
here are the methods and results of Larsen-Pink [21], [22].

We keep the notations and assumptions of Section 5 and also assume End(AK̄) = Z.
Then by Corollary 5.8 the tautological representation of G◦` is absolutely irreducible. Since
for Theorem 5.13 we may replace K by an arbitrary finite extension, we shall also assume
K = Kconn, so that all G` are connected. We fix a set Vmax as in Theorem 3.7.

The setup: Recall from Theorem 3.7 that the Frobenius tori Tv for v ∈ Vmax and the
groups G` all have the same rank and the same formal character. Thus we may fix a split
torus T0 ⊂ GL2g,Q and conjugate it into each of these groups over the algebraic closure.

On the one hand we fix an element f` ∈ GL2g(Q̄`) for every rational prime ` such that

(6.1) T0,Q̄`
⊂ f−1

` G`,Q̄`
f` .

This is a maximal torus. Let Γ ⊂ Aut(T0,Q̄) denote the stabilizer of the formal character

of the tautological representation. Let Φ` ⊂ X∗(T0) denote the root system of f−1
` G`,Q̄`

f`
and W` ⊂ Γ its Weyl group. Let Φ◦` ⊂ Φ` be the subset of roots which are short in their
respective simple factor of Φ`. By Larsen-Pink [20] §4 this set is determined uniquely by
the formal character, and it is a root system of the same rank as Φ`, though not a closed
root subsystem. In particular it is independent of `, so we may abbreviate Φ◦ := Φ◦` . Note
that Φ` is non-empty, because it is the root system of a connected reductive group with an
irreducible representation of dimension 2g > 1. Therefore Φ◦ is non-empty. Next we may
suppose that the torus f`T0,Q̄`

f−1
` is defined over Q`. Its form over Q` then corresponds

to a homomorphism Gal(Q̄`/Q`) → NormΓ(W`). The composite with the projection map

(6.2) π` : NormΓ(W`) −→→ NormΓ(W`)/W`

is a homomorphism

(6.3) ϕ̄` : Gal(Q̄`/Q`) −→ NormΓ(W`)/W`

which together with Φ` characterizes the form of G` up to inner twist.

On the other hand we choose an element hv ∈ GL2g(Q̄) for every v ∈ Vmax such that

(6.4) T0,Q̄ = h−1
v Tv,Q̄hv .
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The form of Tv over Q then corresponds to a homomorphism

(6.5) ϕv : Gal(Q̄/Q) −→ Γ .

Roots and Frobenius eigenvalues: Let νv denote the Newton cocharacter of Tv
defined in (3.4). Its conjugate by hv is a cocharacter ν0,v of T0. By Theorem 3.3 (c) we
have

(6.6) 0 ≤ 〈χ, ν0,v〉 ≤ 1

for every weight χ ∈ X∗(T0) which occurs in the given tautological representation. Any
root α ∈ Φ◦ is a quotient of two such weights, hence

(6.7) −1 ≤ 〈α, ν0,v〉 ≤ 1 .

We shall show that one of the inequalities in (6.7) is an equality sufficiently often. The
following innocuous definition will provide us with the necessary arithmetic information.
For any v ∈ Vmax set

(6.8) av :=
∑

α∈Φ◦

α(h−1
v tvhv) ,

where tv ∈ Tv is as in Section 3. This is a rational number, since Φ◦ is invariant under the
Galois action via ϕv. Recall that V1 denotes the set of places of K of absolute degree one.
Let Vgood be the set of places v ∈ Vmax ∩ V1 satisfying

(6.9) av is not a rational integer of absolute value ≤ card(Φ◦).

Proposition (6.10). For any v ∈ Vgood there exists α ∈ Φ◦ such that

〈α, ν0,v〉 = −1 .

Proof: Suppose kv ∼= Fp, and consider a weight χ ∈ X∗(T0) which occurs in the given
representation. By Theorem 3.3 (b) the algebraic number χ(h−1

v tvhv) is a unit at all finite
primes not above p, and its archimedean valuations are independent of χ. For any α ∈ Φ◦ it
follows that α(h−1

v tvhv) is a unit at all finite primes not above p, and its archimedean norms
are equal to 1. Thus av is always a rational number of absolute value ≤ card(Φ◦) which is
integral outside p. By the hypothesis it cannot be an integer, so we have ordp(av) ≤ −1. It
follows that ordp

(
α(h−1

v tvhv)
)
≤ −1 for some α ∈ Φ◦. In view of the characterization (3.4)

of νv this means that

〈α, ν0,v〉 ≤
−1

[kv/Fp]
= −1.

The inequality (6.7) now shows that we must have equality, as desired. �
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Proposition (6.11). Vgood has Dirichlet density 1.

Proof: Fix any prime `. The algebraic variety of semisimple conjugacy classes of
f−1
` G`,Q̄`

f` is canonically isomorphic to T0,Q̄`
/W`. Thus there is a dominant morphism

G`,Q̄`
−→ T0,Q̄`

/Γ , g 7→ f−1
` g0f` mod Γ ,

where g0 denotes any G`(Q̄`)-conjugate of the semisimple part of g such that f−1
` g0f` ∈

T0(Q̄`). This morphism is already defined over Q`. Next the morphism

T0 → A1
Q , t 7→

∑

α∈Φ◦

α(t)

factors through T0/Γ, since Φ◦ is Γ-invariant. Thus we can form the composite morphism

ψ : G` −→ A1
Q`
.

As Φ◦ is non-empty, it contains a non-zero weight, and the linear independence of char-
acters implies that ψ is not constant. Let X` ⊂ G` denote the set of points g for which
ψ(g) is a rational integer of absolute value ≤ card(Φ◦). As only finitely many values are
allowed, and G` is connected, this is a nowhere dense Zariski closed subset.

Now consider all places v ∈ Vmax ∩ V1 of residue characteristic different from `. We
already know that they form a set of Dirichlet density 1. For the condition (6.9) note
that by construction we have av = ψ(ρ`(Frobv)). Thus condition (6.9) is satisfied if
and only if ρ`(Frobv) 6∈ X`. To analyze this property note that the image of Galois
Γ` := ρ`(Gal(K̄/K)) is a compact `-adic analytic subgroup of G`(Q`) which is Zariski
dense. Therefore Ξ` := X`(Q`) ∩ Γ` is a nowhere dense closed analytic subset of Γ`. Let
µ be the Haar measure on Γ` with total volume 1. One easily shows that volµ(U`) goes to
zero as U` runs through a cofinal system of open compact neighborhoods of Ξ`. Thus the
desired assertion follows from the Čebotarev density theorem. �

Transitivity of the Galois action: Since the root system Φ◦ is determined uniquely
by the formal character, it is invariant under the Galois action via ϕv. The following result
is crucial.

Proposition (6.12). For any v ∈ Vgood the action of Gal(Q̄/Q) via ϕv permutes the
simple factors of Φ◦ transitively.

We deduce immediately:

Corollary (6.13). For every ` the formal character of Gder
`,Q̄`

⊂ GL2g,Q̄`
is ⊗-isotypic.

The mere fact that G` possesses a Hodge cocharacter has long been known as a con-
sequence of Hodge-Tate theory. Together with Corollary 6.13 one thus obtains a different
proof of Theorem 5.10 in this case, avoiding the general machinery of Sections 1–2. Con-
versely, Proposition 6.12 can be deduced almost, though not quite, from Theorems 3.15–16.
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If the simple factors of Φ◦ have type A1 it seems that an additional argument like in this
section remains necessary.

Proof of Proposition 6.12: Let Φ◦ = Φ◦1 ⊕ . . . ⊕ Φ◦k be the decomposition into
simple factors. Consider the character space X := X∗(T0) ⊗ R and its corresponding
decomposition X = X0 ⊕ X1 ⊕ . . . ⊕ Xk, where X0 belongs to the central part. Let
Y := Y∗(T0)⊗R = Y0 ⊕ . . .⊕ Yk be the analogous decomposition of the cocharacter space.
For any v ∈ Vgood the Frobenius cocharacter ν0,v is an element of Y . Let α ∈ Φ◦ be as in
Proposition 6.10. Without loss of generality we may assume α ∈ Φ◦1.

Lemma (6.14). ν0,v ∈ Y0 ⊕ Y1.

Proof: By Proposition 6.10 we have 〈α, ν0,v〉 = −1. Assume that ν0,v has a non-trivial
part in the factor Yi with i > 1. Then there exists a root β ∈ Φ◦i with 〈β, ν0,v〉 < 0. Now
by Larsen-Pink [20] §4 the formal character of the given tautological representation factors
as ch = ⊗kj=0chj with chj ∈ Z[Xj ]. For any j > 0 the factor chj is the formal character of
a faithful representation of a simple Lie algebra with root system Φ◦j . For every 0 ≤ j ≤ k
we shall choose a weight χj ∈ Xj which occurs in chj , as follows. Note that we may impose
independent conditions on each χj . For j 6= 1, i we make no additional assumption. For
j = 1 we assume that χ1 + α also occurs in ch1. Likewise for j = i we assume that χi + β
occurs in chi. Clearly such choices can be made. By construction both χ := χ0 + . . .+ χk
and χ′ := χ+ α+ β are weights in the tautological representation which satisfy

〈χ′, ν0,v〉 − 〈χ, ν0,v〉 < −1 .

But the inequalities (6.6) imply that any such difference must be in the closed interval
[−1, 1]. Thus we have a contradiction. �

To finish the proof of Proposition 6.12 note that by Proposition 3.5 the conjugates
of ν0,v under ϕv(Gal(Q̄/Q)) generate the R-vector space Y . As the factorization of Y is
normalized by the Galois group, this action must permute Y1, . . . , Yk transitively. Thus
the simple factors of Φ◦ are permuted transitively, as desired. �

The non-ambiguous cases: By Corollary 6.13 we may now distinguish cases ac-
cording to the type of the formal character of each simple factor of Φ◦. First we prove
Theorem 5.13 in the non-ambiguous case, i.e. when each Φ` is determined by its formal
character. Then for all ` we have Φ` = Φ◦, and W` =: W ◦ is the Weyl group of Φ◦. Note
that this is a normal subgroup of Γ. Fix a place v ∈ Vgood and let

ψ̄ : Gal(Q̄/Q) −→ Γ/W ◦

denote the composite of ϕv with the projection map

Γ −→→ Γ/W ◦ .

In the following a homomorphism emanating from Gal(Q̄/Q) or Gal(Q̄`/Q`) is called un-
ramified (at `) if and only if its restriction to the inertia group at ` is trivial. A connected
reductive group over Q` is called unramified if and only if it is quasi-split and splits over
an unramified extension.
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Proposition (6.15). For all but at most finitely many ` we have

(a) ψ̄ is unramified at `,

(b) G` and hence ϕ̄` is unramified, and

(c) the homomorphisms ψ̄|Gal(Q̄`/Q`)
and ϕ̄` are conjugate to each other by some element

of Γ.

Proof: Assertion (a) is obvious, and (b) is Theorem 3.2 of Larsen-Pink [22]. Assertion (c)
follows from the fact that Tv,Q`

is conjugate to a maximal torus ofG`, whenever ` is different
from the residue characteristic of v. �

The group G desired in Theorem 5.13 certainly exists over Q̄, say with maximal torus
T0,Q̄, and the problem is to choose a suitable model over Q. Recall that the quasi-split

forms over Q are classified by homomorphisms from Gal(Q̄/Q) to the outer automorphism
group Out(Φ◦). Thus ψ̄ and the natural injection

Γ/W ◦ ↪−→ Out(Φ◦)

define a quasi-split connected reductive group G over Q. By construction the formal
character of the given irreducible representation is Gal(Q̄/Q)-invariant with respect to this
form of G. As G is quasi-split, this representation descends to an absolutely irreducible
representation over Q (see Borel-Tits [3] Cor. 12.11). In particular we can realize G as a
subgroup of GL2g,Q.

For any ` as in Proposition 6.15 both G and G` are unramified at `. Since ϕ̄`,
respectively ψ̄, determines G`, resp. GQ`

up to inner twist, and both are quasi-split, they
are isomorphic by Proposition 6.15 (c). As the given representations correspond, they are
conjugate under GL2g(Q`), as desired. This proves Theorem 5.13 (a) and (d).

For the rest of Theorem 5.13 note that by construction G with its given representation
forms a weak Mumford-Tate pair of weights {0, 1} in the sense of Definition 4.1. On the
other hand the simple factors of GQ̄ are permuted transitively by Gal(Q̄/Q), by Proposi-
tion 6.12. This implies Theorem 5.13 (c) and that we have a strong Mumford-Tate pair,
i.e. Theorem 5.13 (b). Thus Theorem 5.13 is proved in the non-ambiguous case. �

The ambiguous cases: In the remaining cases we need a technical result from [21]
which relates the Galois action ϕv with the structure of the different G` via their Weyl
groups W`. Again we fix a place v ∈ Vgood. Abbreviate ∆ := ϕv(Gal(Q̄/Q)), consider a
normal subgroup ∆1 /∆, and let

ϕ̄ : Gal(Q̄/Q) −→→ ∆/∆1

denote the composite of ϕv with the projection map

π : ∆ −→→ ∆/∆1 .

Let Frob` ∈ Gal(Q̄`/Q`) ⊂ Gal(Q̄/Q) denote any element which acts as geometric Frobe-
nius on unramified extensions. Finally, for any subset X ⊂ Γ we let [X ] denote the set of
elements of Γ that are conjugate to an element of X . The crucial point is the following.
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Proposition (6.16). (Larsen-Pink [21] Prop. 8.9) One can choose v ∈ Vgood and ∆1 /∆
such that for all rational primes ` in a set L of Dirichlet density 1 we have:

(a) ϕ̄ is unramified at `,

(b) G` and hence ϕ̄` is unramified, and

(c) [π−1
` (ϕ̄`(Frob`))] = [π−1(ϕ̄(Frob`))] .

Recall from Proposition 6.12 that ∆ permutes the simple factors of Φ◦ transitively.
This information was not available in [22]. It will allow us to identify ∆1, essentially, as a
Weyl group, and to strengthen Proposition 6.16 from an assertion on conjugacy classes to
one on individual subgroups and their cosets. In the following we fix v, ∆1, and L as in
Proposition 6.16.

Let W ◦ denote the Weyl group of Φ◦. This is a normal subgroup of Γ. Put ∆̃1 :=
W ◦ · ∆1 and ∆̃ := W ◦ · ∆, and consider the following commutative diagram.

(6.17)

∆
_�

��

// //π
∆/∆1

����
Gal(Q/Q)

jjjj ϕTTTTTT

uuuu
ψ

jjjjjj

∆̃ // //$
∆̃/∆̃1

Note that W ◦ ⊂W` for every `. Thus Proposition 6.16 implies:

Proposition (6.18). For all ` ∈ L we have:

(a) ψ̄ is unramified at `,

(b) G` and hence ϕ̄` is unramified, and

(c) [π−1
` (ϕ̄`(Frob`))] = [$−1(ψ̄(Frob`))] .

Combinatorial arguments: First we note the following special case of Proposi-
tion 6.18.

Proposition (6.19). There exists a prime ` ∈ L such that [W`] = [∆̃1].

Proof: Since L has Dirichlet density 1 we may choose ` ∈ L such that ψ̄(Frob`) = 1.
Then the right hand side in Proposition 6.18 (c) is equal to [$−1(1)] = [∆̃1]. This subset
contains the identity element of Γ, hence so does the left hand side in Proposition 6.18 (c).
As the left hand side is the union of all conjugates of some W`-coset, and contains the
identity, the coset must be equal to W`. Thus the assertion of Proposition 6.18 (c) reads
[W`] = [∆̃1], as desired. �

Proposition (6.20). There exists a connected reductive group G0 ⊂ GL2g,Q̄ with maximal
torus T0,Q̄ and root system Φ ⊂ X∗(T0) such that

(a) the set of short roots in Φ is Φ◦, and

(b) the Weyl group of Φ is ∆̃1.
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With some additional effort one can probably prove W ◦ ⊂ ∆1, so that ∆1 = ∆̃1 is
itself the Weyl group of Φ. For our purposes this improvement is not necessary.

Proof: The problem is to select Φ among the different types with the same set of short
roots allowed by Table 4.2. We distinguish cases according to the type of ambiguity.

Assume first that the simple factors of Φ` have type Cr or Dr with fixed r ≥ 3, coming
with the standard representation of dimension 2r. Here the simple factors of Φ and Φ◦

correspond to each other. Note that the Weyl group of Dr has index 2 in the Weyl group
of Cr. Let us identify the factor group with the additive group of the field with 2 elements
F2. Then the factor group Γ̄ := Γ/W ◦ is isomorphic to the wreath product Fk2 oSk, where
k is the number of simple factors of Φ◦ and Sk denotes the symmetric group on k letters,
acting on Fk2 by permuting the coefficients. Consider the subgroup ∆̄1 := ∆̃1/W

◦ ⊂ Γ̄.

Lemma (6.21). Either ∆̄1 = 1 or ∆̄1 = Fk2 .

Proof: By Proposition 6.19 we have [∆̃1] = [W`] for some ` ∈ L. Note that up to
conjugation by Γ we have W`/W

◦ = Fk
′

2 × {0}k−k
′

, where k′ is the number of Cr-factors
of G`. Thus we can already deduce ∆̄1 ⊂ Fk2 .

Suppose that ∆̄1 6= 1. Then W` 6= W ◦, and hence k′ > 0. It follows that W`/W
◦,

and hence ∆̄1, contains an element of Fk2 which has precisely one entry equal to 1. Now
recall that ∆̄1 is normalized by ∆ whose image in Sk is transitive. Thus the ∆-conjugates
of the element just found generate Fk2 . Hence we have ∆̄1 = Fk2 , as desired. �

Depending on the case in Lemma 6.21 we choose Φ of type kDr respectively kCr. In
both cases ∆̃1 is the Weyl group of Φ, hence Proposition 6.20 is proved for this type of
ambiguity.

Now assume that each simple factor of Φ◦ has type A1, coming with the standard
representation. If the number of these factors is k, we can identify Γ̄ := Γ/W ◦ with the
symmetric group Sk. Consider the subgroup ∆̄1 := ∆̃1/W

◦ ⊂ Γ̄ ∼= Sk.

Lemma (6.22). There exists k′|k such that ∆̄1 = (Sk′)
k/k′ ⊂ Sk up to conjugation by Sk.

Proof: By Proposition 6.19 we have [∆̃1] = [W`] for some ` ∈ L. Since the simple factors
of Φ` have root system Bri

for certain positive integers ri with r1 + . . . + rs = k, the
subgroup W`/W

◦ ⊂ Sk is equal to Sr1 × . . .× Srs
up to conjugation by Sk.

If ri = 1 for all 1 ≤ i ≤ s, we have ∆̄1 = 1, hence the desired assertion holds with
k′ = 1. So let us assume that some ri is greater than 1. Then W`/W

◦, and therefore ∆̄1,
contains a transposition. Let ∆̄2 ⊂ ∆̄1 be the subgroup generated by all transpositions
in ∆̄1. Any subgroup of Sk which is generated by transpositions has the form Sk1×. . .×Skt

up to conjugation by Sk, where k = k1+ . . .+kt is a partition with ki > 0. By construction
∆̄2 is normalized by ∆ whose image in Sk is transitive. Thus all ki are equal, that is, we
have ki = k′ for some k′|k. Note that we must have k′ > 1, since ∆̄2 6= 1. To prove the
lemma it remains to show that ∆̄1 = ∆̄2.

Suppose that ∆̄1 6= ∆̄2. Note that ∆̄1 is contained in the normalizer of ∆̄2, which
is the wreath product (Sk′)

k/k′ o Sk/k′ . Take any nontrivial element of the image of ∆̄1
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in Sk/k′ . We can lift it to an element of ∆̄1 which possesses a cycle of length ≥ 2k′. By

the formula [W`] = [∆̃1] the same is true for some element of W`/W
◦. Thus we must have

ri ≥ 2k′ for some 1 ≤ i ≤ s. It follows that W`/W
◦ contains a pure cycle of length 2k′−1,

and again the same is true for ∆̄1. But the group (Sk′)
k/k′ o Sk/k′ cannot contain a pure

cycle of length 2k′ − 1. Indeed, consider any element of this group. If its image in Sk/k′ is
non-trivial, the number of letters which are moved is ≥ 2k′ > 2k′ − 1. If the element lies
in (Sk′)

k/k′ , all its cycles have length ≤ k′, which is < 2k′ − 1 since k′ > 1. Thus we have
a contradiction, and Lemma 6.22 is proved. �

Lemma 6.22 implies that ∆̃1 is the Weyl group of the root system (k/k′) ·Bk′ , up to
conjugation by Γ. Letting Φ be a suitable conjugate of (k/k′) · Bk′ , Proposition 6.20 is
proved in this case, and thus in general. �

Fix G0 and Φ as in Proposition 6.20. We can now strengthen Proposition 6.18.

Proposition (6.23). For each ` ∈ L we have

(a) ψ̄ is unramified at `,

(b) G` and hence ϕ̄` is unramified, and

and there exists γ` ∈ Γ such that

(c) Φ` = γ`(Φ), and

(d) π−1
` (ϕ̄`(Frob`)) = γ` ·$

−1(ψ̄(Frob`)) · γ
−1
` .

Proof: Fix ` ∈ L. Parts (a) and (b) are repetitions from Proposition 6.18. For the
remaining assertions let us write the respective cosets in the form

π−1
` (ϕ̄`(Frob`)) = σ`W`

$−1(ψ̄(Frob`)) = τ`∆̃1

with suitable σ`, τ` ∈ Γ. Then Proposition 6.18 (c) reads

(6.24) [σ`W`] = [τ`∆̃1] .

The rest of the proof is essentially an exercise in group theory and could be left to the
reader. The important combinatorial information here is that both W` and ∆̃1 are Weyl
groups. To avoid explicit calculations in symmetric groups we shall use a general result
from [21]. Let us identify Γ with a subgroup of the automorphism group of the cocharacter
space X := X∗(T0) ⊗ R. Then [21] Th. 2.1 implies that the triples (X,W`, σ`W`) and
(X, ∆̃1, τ`∆̃1) are abstractly isomorphic. In other words, there exists an automorphism
ι of X such that W` = ι∆̃1ι

−1 and σ`W` = ιτ`∆̃1ι
−1. As the set of reflections at roots

is intrinsic in a Weyl group, the first equality implies that Φ` and ι(Φ) differ only in the
lengths of their elements. In particular the isomorphy classes of Φ` and Φ differ at most by
replacing certain factors of type Br by Cr or vice versa, with r ≥ 3. Since neither of the
isotypic cases in Table 4.2 allows the occurrence of both Br and Cr with r ≥ 3, it follows
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that Φ` and Φ are abstractly isomorphic. One easily shows that ι can be chosen such that
Φ` = ι(Φ). Finally Table 4.2 shows that in the ambiguous cases under consideration the
formal character is intrinsic to the root system. Thus ι preserves the formal character,
hence comes from an element γ` ∈ Γ. The desired assertions follow. �

End of the proof of Theorem 5.13: To construct the group G desired in The-
orem 5.13 we start with the group G0 of Proposition 6.20 and choose a suitable model
over Q. In the same way as in the non-ambiguous cases we define G as the quasi-split form
of G0 associated to the composite of ψ̄ of Diagram (6.17) with the natural injection

∆̃/∆̃1 ↪−→ Out(Φ) .

By the same arguments as before we can realize G as a subgroup of GL2g,Q.

To show that G satisfies condition (a) of Theorem 5.13, consider any ` ∈ L. By
Proposition 6.23 (a–b) and by construction both GQ`

and G` are unramified connected
reductive groups over Q`. Their isomorphy classes are therefore uniquely determined by the
respective root datum and the homomorphism from Gal(Q̄/Q) to the outer automorphism
group. Moreover, the isomorphy class of the given representation is determined if the
formal character is taken into account. By Proposition 6.23 (c–d) all these data coincide for
the two groups, up to isomorphism. Hence the groups are isomorphic and their respective
representations correspond. This means that GQ`

and G` are conjugate under GL2g(Q`),
as desired.

The rest of Theorem 5.13 is proved as in the non-ambiguous case. �
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§7. Places of Ordinary Reduction

Consider an abelian variety A over a number fieldK. It is conjectured that there exists
a finite extension K ′ of K such that the set of places of K ′ where AK′ possesses ordinary
reduction has Dirichlet density 1. It is also conjectured that the extension K ′ = Kconn of
Theorem 3.6 is enough. We prove this conjecture when the algebraic monodromy groups
G` associated to A are sufficiently special.

Theorem (7.1). Assume that End(AK̄) = Z, and let G be as in Theorem 5.13. Suppose
that the root system of the simple factors of GQ̄ does not have type Cr with r ≥ 3. Then
the abelian variety AKconn has ordinary reduction at a set of places of Kconn of Dirichlet
density 1.

The hypothesis means that G, and hence the groups G◦` , are in some sense small (see
Table 4.6). Thus it applies, for instance, when the Mumford-Tate group G∞ of A is small.
We can deduce:

Corollary (7.2). Assume that End(AK̄) = Z. Suppose that the root system of the simple
factors of G∞,Q̄ does not have type Cr with r ≥ 3. Then the abelian variety AKconn has
ordinary reduction at a set of places of Kconn of Dirichlet density 1.

Proof: If the Mumford-Tate conjecture holds for A, the assertion follows directly from
Theorem 7.1. Thus by Theorem 5.15, and a look at Table 4.6, it remains to consider the
case that the simple factors of G∞,Q̄ have type Dr with r ≥ 6 and the Mumford-Tate
conjecture is false. Then Proposition 4.3 implies that the simple factors of GQ̄ have type
Br in the Spin representation, for some r ≥ 1. In this case, again Theorem 7.1 applies. �

Note that if the Mumford-Tate conjecture were to fail for A, then G◦` would be smaller
than G∞, making it easier to prove the existence of places of ordinary reduction.

Summary of the proof: The rest of this section is devoted to proving Theorem 7.1.
Throughout we assume End(AK̄) = Z and K = Kconn, and use the notations of Sections 5–
6. Let G and L be as in Theorem 5.13.

We shall distinguish cases according to the isotypic type of the formal character of
Gder, following Table 4.6. Note that the case Cr with r ≤ 2 is subsumed by the corre-
sponding case Br. Thus it suffices to look at the remaining three cases. In the second and
the third case the theorem follows from Proposition 7.3 together with Proposition 6.11.
The fourth case is treated in Proposition 7.4.

In each of these cases the proof follows the lines of a well-known argument going back
to Serre [28], Katz, Ogus [24] 2.7–9. It is also found in Noot [23], Tankeev [41], and in the
analogous case of Drinfeld modules in Pink [26].

Let us briefly sketch the main ideas. Choose a central function on the `-adic algebraic
monodromy group G`, for every `, which is sufficiently intrinsic so that its values on
Frobenius elements ρ`(Frobv) are rational numbers and independent of `. For example
this central function may be the trace of an intrinsically defined representation of G`, such
as its given tautological representation, or its adjoint representation. In any case its value

45



on ρ`(Frobv) can be written as a sum of certain multiplicative combinations of eigenvalues
of Frobenius on the Tate module of A. Thus this value is subject to rather sharp bounds
with respect to all valuations of Q not associated to the residue characteristic p of v. The
bound at p is weaker; in fact, it is weakest when A has ordinary reduction at v. With
luck for non-ordinary reduction the bound is strong enough to show that the value lies in
a fixed finite set which is independent of v. Looking at the `-adic representation for some
fixed ` and using Čebotarev’s density theorem one then proves that these places v have
Dirichlet density zero, finishing the proof.

The cases A2s−1 and Br: The following proposition generalizes Noot [23] Th. 2.2,
its proof being similar. Most of the work was done already in the first half of Section 6.
Let Vgood be as defined in (6.9). Note that the statement applies to the case Br as well,
since its short roots are isotypic of type A1.

Proposition (7.3). Assume that the simple factors of Φ◦ have type A2s−1 with s ≥ 1.
Then the abelian variety A has ordinary reduction at all places v ∈ Vgood.

Proof: We use the same notations as in the proof of Propositions 6.10 and 6.12. Take
v ∈ Vgood of residue characteristic p and let νi denote the component of the Newton
cocharacter ν0,v in Yi, for each 0 ≤ i ≤ k. By Proposition 6.10 and Lemma 6.14 we have
ν1 6= 0 and νi = 0 for all i > 1.

Take a strong Hodge cocharacter of Tv as in Definition 3.14 and conjugate it via hv
into a cocharacter µ0,v of Tv. By Theorem 3.15 ν0,v lies in the convex closure of the orbit
of µ0,v under some Weyl group Wv ⊂ Γ. Recall from Section 4 that µ0,v ∈ Y0 ⊕ Yi for
some i ≥ 1. As ν1 6= 0, some Wv-conjugate of µ0,v must have a non-trivial component
in Y1. Thus without loss of generality we may assume µ0,v ∈ Y0 ⊕ Y1. Let µi denote
the component of µ0,v in Yi, for each 0 ≤ i ≤ k. The convex closure theorem first of all
implies ν0 = µ0. Next observe that the Wv-conjugates of µ0,v in Y0 ⊕ Y1 are precisely
the conjugates under the Weyl group W1 of Φ◦1. Thus ν1 lies in the convex closure of the
W1-orbit of µ1.

To calculate explicitly let us now identify Φ◦1 with the subset

{
ei − ej

∣
∣ 1 ≤ i, j ≤ 2s, i 6= j

}
⊂ R2s ,

where e1, . . . , e2s denotes the standard basis of R2s. Then the character space X1 is
identified with the subspace

{
(x1, . . . , x2s) ∈ R2s

∣
∣ x1 + . . .+ x2s = 0

}
,

and the cocharacter space Y1 with the quotient space R2s/R · (1, . . . , 1). We write elements
of Y1 in the form [y1, . . . , y2s], keeping in mind that different tuples may represent the same
element. The Weyl group W1 is identified with the symmetric group S2s. By Table 4.6
we have µ1 = [1, 0, . . . , 0] up to conjugation by W1. Since ν1 ∈ Conv(W1 · µ1), we can
write ν1 = [y1, . . . , y2s] with yi ≥ 0 and y1 + . . . + y2s = 1. Then we also have yi ≤ 1
for all i. After conjugation by W1 we may without loss of generality assume that 1 ≥
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y1 ≥ y2 ≥ . . . ≥ y2s ≥ 0. Now by Proposition 6.10 there exist 1 ≤ i, j ≤ 2s such that
〈ei − ej , ν1〉 = −1. Therefore

1 = 〈ej − ei, ν1〉 = yj − yi ≤ y1 ≤ 1 .

It follows that we have equality, and in particular y1 = 1. The remaining yi must then
vanish, hence we have ν1 = [1, 0, . . . , 0] = µ1.

All in all we have now shown that ν0,v = µ0,v up to conjugation by Γ. Thus the Newton
polygon and the Hodge polygon of the given local Galois representation on Vp coincide.
Therefore the local Galois representation is ordinary, hence A has ordinary reduction at v.

�

The case Dr: In this case the method sketched above does not quite work in the
stated form. The problem is that there is no central function on G which leads to bounds
that are tight enough at places of non-ordinary reduction. One can show that the only
candidates for such a function come from the trace of the standard representation of SO2r,
but this representation is defined only over a central extension. If the `-adic representations
were to lift to a compatible system of representations into SO2r, the previous method would
be applicable there. Fortunately, using a theorem of Wintenberger we can perform enough
of this lift so that essentially the same arguments succeed.

Proposition (7.4). Assume that the simple factors of Φ◦ have type Dr with r ≥ 6. Then
the abelian variety A has ordinary reduction at all places v in some set Vord ⊂ Vmax ∩ V1

of Dirichlet density 1.

Proof: We use the same notations as in the proof of Proposition 6.12. Recall that the
root system of G corresponds to Φ◦, whose Weyl group was denoted W ◦. To calculate
explicitly we identify each simple factor Φ◦i with the subset

{
±ej ± ej′

∣
∣ 1 ≤ j < j′ ≤ r

}
⊂ Rr ,

where e1, . . . , er denotes the standard basis of Rr. Accordingly, both the character spaces
Xi and the cocharacter spaces Yi are identified with Rr. Recall that any possible Hodge
cocharacter has a non-trivial component in at most one Yi with i > 0, and the type of
this component can be read off from Table 4.6. In the above notation we find that this
component is equal to e1 = (1, 0, . . . , 0) ∈ Yi up to conjugation by W ◦.

Next recall that the lattices between the root lattice and the weight lattice of a root
system correspond to the different isomorphy types of semisimple groups in a fixed isogeny
class. In this case Zr ⊂ Xi is the weight lattice of SO2r, and (1, 0, . . . , 0) is an element of
the dual lattice (Zr)∨ = Zr ⊂ Yi. In other words, the component of the Hodge cocharacter
in any simple factor of Gad

Q̄
comes from a cocharacter of SO2r,Q̄. This observation plays a

central role in the following argument.
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Lifting the Galois representation: Let us now look at the structure of the adjoint
groupGad over Q. By constructionGad is isomorphic to the Weil restriction RF/Q PSO2r,F ,
where PSO2r,F denotes a quasi-split projective special orthogonal group over a number field
F of degree (F/Q) = k. The exterior tensor product of the standard representations of the
different simple factors of RF/QSO2r,F over Q̄ descends to a representation over Q, since

its formal character is invariant under all automorphisms of the root system. Let G̃ denote
the image of RF/QSO2r,F in this representation and σ the induced faithful representation

of G̃. We have thus constructed a central extension of Gad of degree 2, i.e. a short exact
sequence

(7.5) 1 −→ µ2 −→ G̃ −→ Gad −→ 1 .

Let us call a cocharacter of Gad a Hodge cocharacter if and only if it comes from a Hodge
cocharacter of G. By the remarks above any Hodge cocharacter of Gad lifts to a cocharacter
of RF/QSO2r,F and hence to a cocharacter of G̃.

Now consider any prime ` ∈ L. By Theorem 5.13 (a) the given `-adic representation
ρ` can be conjugated from G` into G. Composing with the projection G→ Gad we obtain
a homomorphism

ρ̄` : Gal(K̄/K) −→ Gad(Q`) .

As in Section 3 let S denote a finite set of non-archimedean places of K such that A has
good reduction outside S and K/Q is unramified outside S. Then ρ̄` is unramified at all
non-archimedean places v 6∈ S with v - `. For v 6∈ S with v|` the local representation ρ̄`|Dv̄

is crystalline in the sense that, for instance, its composite with the adjoint representation
of Gad is crystalline. Note that the Hodge weights of this representation are in the interval
[−1, 1]. As we have seen above, the associated Hodge cocharacters lift to cocharacters of G̃.

Using Wintenberger [46] Th. 2.1.4 one can now lift each ρ̄` to G̃ on some fixed open
subgroup of Gal(K̄/K). For our purposes an elementwise lift will suffice. For this we shall
quote an intermediate result of Wintenberger’s proof. Consider the long exact sequence
of Q`-valued points associated to the short exact sequence (7.5). It is the first row of
the following diagram, in which K1 ⊂ K̄ denotes a Galois extension of K, to be chosen
presently, and the dotted arrow is not yet defined.

(7.6)

. . . // G̃(Q`) // Gad(Q`) //δ
H1(Q`, {±1})

Gal(K̄/K) //

OO

ρ̄`

Gal(K1/K) .

OO

The proof of [46] Lemme 2.3.2 shows:

Lemma (7.7). There exists a finite abelian extension K1/K of exponent 2 such that for
each ` ∈ L there exists a dotted arrow making Diagram (7.6) commutative.
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Compatibility of Frobenius conjugacy classes: Next we translate the compati-
bility condition for characteristic polynomials of Theorem 3.2 (b) into an `-independence
statement on conjugacy classes. The following result is enough for our purposes.

Lemma (7.8). For any ` ∈ L and any v ∈ Vmax with v - ` the Aut(Gad
Q̄

)-conjugacy class

of the semisimple part of ρ̄`(Frobv) is defined over Q and independent of `.

Proof: To begin with, consider any torus T ⊂ GL2g,E, defined over an overfield E/Q,
which has the same dimension and the same formal character as T0. Then T can be
conjugated into T0 over the algebraic closure Ē of E. By definition of Γ the resulting
identification TĒ

∼−−→ T0,Ē is unique up to conjugation by Γ. It follows that the morphism
T → T0/Γ is unique and defined over E. We shall use this remark several times.

First suppose that T is a maximal torus of G defined over Q. Let W denote the
associated Weyl group. Then the algebraic variety G\ of semisimple conjugacy classes of
G is naturally isomorphic to the quotient variety T/W . On conjugating T into T0 the
Weyl group W is mapped to a subgroup of Γ. Hence we have natural morphisms, defined
over Q:

(7.9) G −→→ G\ ∼= T/W −→→ T0/Γ .

Note that the composite map can be described as follows. Take an element γ ∈ G and
conjugate its semisimple part into T via G. Next conjugate the resulting element together
with the whole torus T into T0 under GL2g, and take the image in T0/Γ. In any case,
the semisimple part of γ is conjugated into T0 under GL2g in some way, and the result is
mapped to T0/Γ. The problem is that this shorter description does not characterize the
image uniquely for every γ.

Now consider ` ∈ L and suppose that the conjugationG`
∼−−→ GQ`

in Theorem 5.13 (a)
was done with the element u` ∈ GL2g(Q`). Take v ∈ Vmax with v - `. I claim that the
ambiguity disappears for the element u`ρ`(Frobv)u

−1
` ∈ G(Q`). Indeed, its semisimple

part is conjugate to the abstract Frobenius element tv. Recall that tv generates a Zariski
dense subgroup of Tv, and note that Tv is a torus of the right type, since v ∈ Vmax. Thus
conjugating tv is equivalent to conjugating Tv. It follows that the image of tv in T0/Γ is
unique and equal to the image of u`ρ`(Frobv)u

−1
` via the morphisms (7.9). It also follows

that the image of tv is defined over Q.

To transfer these assertions to the group Gad note that the morphisms (7.9) lie in the
following commutative diagram.

(7.10)

G // //

����

G\

����

∼= T/W // //

����

T0/Γ

����
Gad // // (Gad)

\

����

∼= T ad/W // // T ad
0 /Γ

����
(Gad)\/Aut(Gad) //∼

T ad
0 /Aut(Φ◦)

Here we abbreviate T ad := T/Gm,Q and T ad
0 := T0/Gm,Q. The isomorphy in the last row

results from the fact that T ad
0 conjugates into a maximal torus of Gad, which identifies the
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root system of Gad with Φ◦. By construction u`ρ`(Frobv)u
−1
` maps to ρ̄`(Frobv) in Gad.

As the image in T0/Γ is Q-rational, so is the image in the last row, as desired. �

Traces of Frobenius lifts and their arithmetic properties: Now we lift the
Frobenius elements to G̃ and discuss their traces. First note the following fact.

Lemma (7.11). The morphism

G̃ −→ A1
Q, γ̃ 7→ tr(σ(γ̃))2

factors through a non-constant morphism ψ : Gad −→ A1
Q which is invariant under all

automorphisms of Gad
Q̄

.

Proof: As σ is a non-trivial irreducible representation, the linear independence of char-
acters implies that the morphism tr ◦σ is non-constant. Since the isomorphy class of σ is
invariant under all automorphisms of the root system, the same is true for this morphism.
Its square factors through Gad because it is invariant under γ̃ 7→ −γ̃. �

Now consider any ` ∈ L and v ∈ Vmax with v - `. Choose an element F̃robv,` ∈ G̃(Q̄`)
mapping to ρ̄`(Frobv) ∈ Gad(Q`). It is unique up to sign. Therefore, the same is true for

av,` := tr(σ(F̃robv,`)) ∈ Q̄`.

Lemma (7.12). The number a2
v,` is in Q and independent of `.

Proof: By construction we have a2
v,` = ψ(ρ̄`(Frobv)), with ψ as in Lemma 7.11. Thus

Lemma 7.8 implies that this is a rational number which is independent of `. �

In particular, the av,` are algebraic numbers which differ at most up to sign when v

is fixed. After replacing certain F̃robv,` by their negatives, if necessary, we may suppose
without loss of generality that av,` is independent of `. Therefore we may now abbreviate
av := av,`. By Lemma 7.12 this is an algebraic number of degree at most 2 over Q. The
following lemma says that these av generate only finitely many distinct extensions of Q.

Lemma (7.13). There exists a finite subset M ⊂ Vmax such that for every v ∈ Vmax we
have av ∈ Q · aw for some w ∈M .

Proof: Let K1 be as in Lemma 7.7. We first require that M contains all places v ∈
Vmax which ramify in K1. Next for each element τ ∈ Gal(K1/K) consider the places
v ∈ Vmax which are unramified in K1 and whose associated Frobenius substitution is τ .
By Čebotarev’s density theorem we may assume that M contains such a place, say vτ . If
we have av 6= 0 for one of these places associated to τ , we also assume avτ

6= 0. Otherwise,
any vτ will do.

Let us show that such a set M meets our requirements. If v ∈ Vmax is ramified in K1

we may take w = v, so the assertion is obvious. It is also obvious if av = 0. Otherwise we
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can find w ∈M which is unramified in K1, whose Frobenius substitution in Gal(K1/K) is
equal to that associated to v, and which satisfies aw 6= 0. I claim that av/aw ∈ Q for this
choice of w.

To prove this consider any ` ∈ L with v, w - ` and look at the diagram (7.6). Recall
that Kummer theory induces a natural isomorphism

(7.14) H1(Q`, {±1}) ∼= Q×` /(Q
×
` )2 .

Since Gal(Q̄`/Q`) induces the same sign change on F̃robv,` as on av, the cohomology class
δ(ρ̄`(Frobv)) corresponds to the class of a2

v via (7.14). The same remarks apply to w in
place of v, and by Lemma 7.7 the resulting cohomology classes are equal. It follows that
(av/aw)2 ∈ (Q×` )2. Therefore ` splits in the (at most quadratic) extension Q(av/aw) of Q.
Since this holds for all primes ` in a set of Dirichlet density 1, Čebotarev’s density theorem
implies Q(av/aw) = Q, as desired. �

Next we want to bound av with respect to every valuation on Q. Consider any

eigenvalue ξ ∈ Q̄` of σ(F̃robv,`). Then ξ2 is an eigenvalue in the representation σ⊗2. This
factors through a representation of Gad, where ξ2 is an eigenvalue of ρ̄`(Frobv). It is
therefore an algebraic number, hence ξ ∈ Q̄. In the following, let p denote the residue
characteristic of v.

Lemma (7.15). Assume that v ∈ V1, i.e. v has absolute degree one. Then we have

(a) |ξ|∞ = 1,

(b) ord`(ξ) = 0 for any rational prime ` 6= p, and

(c) | ordp(ξ)| ≤ 1.

Proof: The valuations of the eigenvalues of ρ`(Frobv) in the given representation are
described in Theorem 3.3. Taking ratios of two such eigenvalues it follows that for any
eigenvalue ξ′ of ρ̄`(Frobv) in the adjoint representation we have

(a) |ξ′|∞ = 1,

(b) ord`(ξ
′) = 0 for any ` 6= p, and

(c) | ordp(ξ
′)| ≤ [kv/Fp] = 1.

The first two relations extend directly to any other representation of Gad. Taking ξ′ = ξ2,
this proves the first two assertions.

The valuations at p correspond to the slopes of the Newton polygon, which in turn
is determined by the Newton cocharacter. So assertion (c) amounts to a bound on the
weights of the Newton cocharacter in the representation σ. We may do the necessary
calculation inside the character and cocharacter spaces of T0. As in Section 6 the Newton
cocharacter at v corresponds to a quasi-cocharacter ν0,v of T0. Let us write

(7.16) ν0,v =
(
ν0, ν1, . . . , νk

)
∈ Y = Y0 ⊕ Y1 ⊕ . . .⊕ Yk .

We have already seen that the Hodge cocharacter has the form

(7.17) µ0,v =
(
µ0, e1, 0, . . . , 0

)
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up to conjugation by Γ. From Theorem 3.15 we know that ν0,v lies in the convex closure
of the orbit of µ0,v under the Weyl group W ◦.

Now recall that σ was defined as the exterior tensor product of the respective standard
representations for all simple factors of GQ̄. Thus its weights correspond to the elements

(7.18) χ =
(
0,±ei1 , . . . ,±eik

)
∈ X = X0 ⊕X1 ⊕ . . .⊕Xk ,

for all possible 1 ≤ ij ≤ r and all signs. Therefore the possible values of 〈χ, µ0,v〉 are
±1 and 0. Since ν0,v ∈ Conv(W ◦ · µ0,v), it follows that |〈χ, ν0,v〉| ≤ 1. This implies
assertion (c). �

From Lemma 7.15 we immediately deduce the following bounds on av.

Lemma (7.19). Assume that v ∈ V1, i.e. v has absolute degree one. Then we have

(a) |av|∞ ≤ dim(σ) = (2r)k,

(b) ord`(av) ≥ 0 for any rational prime ` 6= p, and

(c) ordp(av) ≥ −1.

Proof of Proposition 7.4: First we give a sufficient condition for ordinary reduction
in terms of the elements av. Later we show that this condition holds for a set of places of
Dirichlet density 1.

Lemma (7.20). Assume that v ∈ Vmax ∩ V1 with ordp(av) = −1. Then A has ordinary
reduction at v.

Proof: Let ν0,v and µ0,v be as in (7.16–17) and recall that ν0,v ∈ Conv(W ◦ · µ0,v). Note
that the Weyl group W ◦ stabilizes each summand of the decomposition Y = Y0 ⊕ Y1 ⊕
. . .⊕ Yk and acts trivially on the central part Y0. Thus we can deduce ν0 = µ0 and νi = 0
for all i > 1. Next observe that the conjugates of e1 under the Weyl group of Dr are
precisely the elements ±ei with 1 ≤ i ≤ r. Therefore we must have ν1 = (y1, . . . , yr) with
|y1|+ . . .+ |yr| ≤ 1. After conjugation by the Weyl group we may without loss of generality
assume y1 ≥ . . . ≥ yr−1 ≥ |yr|.

Now by the proof of Lemma 7.15 the given assumptions imply that 〈χ, ν0,v〉 = −1 for
some weight χ as in (7.18). In explicit terms we have

−1 = 〈χ, ν0,v〉 = 〈±ei1 , ν1〉 = ±yi1 .

Therefore
1 = |yi1 | ≤ |y1| + . . .+ |yr| ≤ 1 .

Thus we must have equality, whence yi = 0 for all i 6= i1. Our normalization of ν1 now
implies i1 = 1 and y1 = 1. All in all we find ν1 = (1, 0, . . . , 0) = µ1, and therefore
ν0,v = µ0,v. This means that the local Galois representation is ordinary, hence A has
ordinary reduction at v. �
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Lemma (7.21). For any b ∈ Q the set of places v ∈ Vmax ∩ V1 with a2
v 6= b has Dirichlet

density 1.

Proof: Let us fix any prime ` ∈ L and restrict attention to places v ∈ Vmax with v - `. By
construction we have a2

v = ψ(ρ̄`(Frobv)), where ψ is the morphism from Lemma 7.11. Thus
we are speaking of those places v for which ρ̄`(Frobv) does not lie in the Zariski closed
subscheme ψ−1(b) ⊂ Gad. Since ψ is a non-constant morphism and Gad is connected,
this is a nowhere dense Zariski closed subscheme. The rest of the proof proceeds as in
Proposition 6.11. �

Lemma (7.22). The set of places v ∈ Vmax ∩ V1 with ordp(av) = −1 has Dirichlet
density 1.

Proof: Consider a place v ∈ Vmax ∩ V1 with ordp(av) > −1. We shall show that the
number a2

v attains one of only finitely many values. The desired assertion then follows
from Lemma 7.21. If av = 0 there is nothing more to prove, so let us suppose av 6= 0.

Fix a finite set M as in Lemma 7.13. We may disregard the finite number of primes
v at which some non-zero aw for w ∈ M is not a unit. Take w ∈ M such that av ∈
Q · aw. Then we must have aw 6= 0, so we can look at the rational number av/aw.
By Lemma 7.19 (b) its denominator outside p is bounded by that of aw. Next we have
ordp(av/aw) = ordp(av) > −1, by assumption. Since the number is rational, this valuation
is in Z, so av/aw is integral at p. It follows that the denominator of av/aw is bounded by
that of aw at all finite primes. On the other hand, by Lemma 7.19 (a) its archimedean
absolute value is bounded by (2r)k/|aw|. Therefore av/aw takes only finitely many values.
We conclude that av takes only finitely many values, as desired. �

Proposition 7.4 now results by combining Lemma 7.20 with Lemma 7.22. �
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Algébrique de Rennes, Astérisque, bf 65, Paris: Soc. Math. France (1979), 155–188.

[31] J.-P. Serre, Letter to K. Ribet, Jan. 1, 1981.

[32] J.-P. Serre, Letter to J. Tate, Jan. 2, 1985.
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