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Let A be an abelian variety of dimension g over a global field K. Let K̄ denote a
separable closure of K. If ` is a rational prime distinct from the characteristic of K, the
Galois group Gal(K̄/K) acts on the group A[`n] ∼= (Z/`nZ)2g of `n-torsion points of A(K̄).
Therefore, it acts continuously on the vector space

V` := (lim
←

A[`n])⊗Z`
Q`
∼= Q2g

` .

This system of representations is strictly compatible in the sense of Serre [13]. Let ρ` denote
the homomorphism Gal(K̄/K)→ Aut(V`) and G` the Zariski closure of ρ`(Gal(K̄/K)) in
GL2g,Q`

. Let G◦` be the identity component of G` and V` the representation of G◦` on V`

by ρalg
` .

This paper is motivated by the following conjecture:

Conjecture. There exists a connected reductive group G over Q, and a faithful represen-
tation ρ of G on a Q-vector space V , such that for all `� 0,

(G◦` , V`, ρ
alg
` ) ∼= (G, V, ρ)×Q Q`.

In the case that K is a number field, this conjecture goes back almost thirty years.
The Lie algebra analogue has been formulated by J. Tate [18], D. Mumford [10], and J.-P.
Serre [13]. A more precise conjecture involves comparison with the singular homology
group H1(A(C), Q) for a fixed embedding K ⊂ C. If G∞ denotes the associated Hodge
group (cf. §4), the “Mumford-Tate” conjecture states that the comparison isomorphism
induces an isomorphism G◦`

∼= G∞ ×Q` for every `. Serre’s conjecture [14] C.3.3, which is
phrased in the language of algebraic groups, is even more precise.

In the function field case the (present) lack of natural comparison isomorphisms raises
delicate questions. For instance, there does not seem to be a natural choice of isomorphism.
Moreover, the abstract Tannakian point of view alone does not furnish full justification
for the conjecture. Nevertheless, in §5 we show how it follows from other, well-known
conjectures.

Almost all the existing unconditional evidence for the conjecture concerns the number
field case. For g = 1, it is due to Serre [12]. He extended the method to g ∈ {2, 6} ∪
(1 + 2Z) under the hypothesis EndK̄(A) = Z in [16], and this result has undergone some
improvement in work of W. Chi [2], [3]. In a different direction, Y. Zarhin [22] proved
the conjecture for abelian varieties which admit a place of reduction “of K3 type.” Serre
proved [15] that the absolute reductive rank of G` is independent of `, following Zarhin’s
proof in the function field case [21]. P. Deligne ([6] I Prop. 6.2) proved “one half” of the
Mumford-Tate conjecture for abelian varieties over number fields, namely the inclusion
G◦` ⊂ G∞ ×Q`.

* Supported by N.S.A. Grant No. MDA 904-92-H-3026
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Our results fall considerably short of a proof of the general conjecture, but they provide
supporting evidence of several different kinds. Our main theorems are as follows:

Theorem 3.3–3.4. Assume that the center of EndK̄(A) is equal to Z. Suppose the “split-
ting field” associated with A (cf. §1) is Q or that g = dim(A) is divisible neither by 315

nor by 24m5 for any integer m ≥ 2. Then there exists a connected reductive group G over
Q, and a faithful representation ρ of G on a vector space V , such that

(G◦` , V`, ρ
alg
` ) ∼= (G, V, ρ)×Q Q`

for all ` belonging to a set of primes of Dirichlet density one. If K is a function field, such
an isomorphism exists for all `� 0.

Theorem 4.1. Suppose that K is a function field. Let σ` denote the action of EndK̄(A)
on V`. There exists a complex vector space V with a representation σ of EndK̄(A) and a
faithful representation ρ of a connected complex reductive group G, such that

(G◦` , V`, ρ
alg
` , σ`)×Q`

C ∼= (G, V, ρ, σ)

for all ` and all embeddings Q` ↪→ C.

Theorem 4.3. Suppose that K is a number field, and let G∞ denote the Hodge group of
A for a fixed embedding K ⊂ C. If rank(G◦` ) = rank(G∞) for some `, then G◦` = G∞×Q`

for every `. In particular, if the Mumford-Tate conjecture holds for one prime, then it
holds for every prime.

We would like to thank W. Barker for allowing us to present his unpublished result
(Theorem 3.2) below. We would also like to acknowledge useful discussions with C.-L.
Chai and J. Milne.

§1. Pure compatible systems of `-adic representations: Generalities

Let K be a global field, i.e., a number field or the field of rational functions on an
algebraic curve over a finite field. Let K̄ denote a separable closure of K. We recall Serre’s
definition [13] of a strictly compatible system of `-adic representations of Gal(K̄/K): Let
S be a finite set of non-archimedean primes of K. The compatible system consists of a
continuous representation ρ` of Gal(K̄/K) on a finite dimensional Q`-vector space V`, for
all ` - char(K). One assumes that ρ` is unramified at every non-archimedean place v /∈ S
whose residue characteristic is not `. For all such `, v, the characteristic polynomial of
the image ρ`(Frobv) of Frobenius is well-defined, and the compatibility condition states
that its coefficients lie in Q and depend only on v. Clearly, this condition implies that
the dimension n of V` is independent of `. We assume that the system is pure of weight
w ∈ Z, i.e. that the eigenvalues of ρ`(Frobv) have absolute value q

w/2
v for every complex

embedding, where qv is the number of elements in the residue field of v. Throughout this
paper, compatible system always means strictly compatible system in the sense of Serre.
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For example, when X is a smooth proper variety over K, then by Deligne [5] 3.3.9,
the `-adic cohomology V` := Hw(X ×K K̄, Q`) is a pure compatible system of weight w,
with S the set of primes of bad reduction for X.

The algebraic monodromy group of ρ`, denoted G`, is defined as the Zariski closure of
ρ`(Gal(K̄/K)) in the algebraic group AutQ`

(V`) ∼= GLn,Q`
. Replacing ρ` by its semisim-

plification does not affect characteristic polynomials. Thus none of our basic assumptions
changes and no information is lost, except that G` is replaced by its reductive part. We
assume throughout that ρ` is semisimple, so G` is reductive. In fact, as we will see, the
theorem of Zarhin-Faltings (Th. 3.1 below) implies that ρ` is semisimple in the case of the
system of Tate modules of an abelian variety over a global field.

We are interested mainly in the connected component of the identity G◦` . By Serre
([15] p. 17, [17] 2.2.3, cf. also [9] 6.14), we know:

Proposition 1.1. (i) If G` is connected for some `, then it is so for every `.
(ii) The open subgroup ρ−1

` (G◦` (Q`)) is independent of `.
(iii) The groups G`/G◦` for different ` are canonically isomorphic.

Of course G◦` does not change if K is replaced by a finite extension. Thus, Prop. 1.1
allows us to reduce to the case that every G` is connected, whenever desired.

Let us recall some definitions from [9]. First consider a connected reductive subgroup
G of GLn over a field F of characteristic zero. A regular semisimple element g ∈ G(F ) lies
in a unique maximal torus Tg ⊂ G. We say that g is Γ-regular if it is regular semisimple,
if every automorphism of Tg ×F F̄ which fixes g and preserves the formal character of
Tg ⊂ GLn is trivial, and if the only GLn(F̄ )-conjugate of Tg that contains g is Tg itself.
(The equivalence of this definition with that in [9] 4.5 can be proved easily, using [9] 4.4–7.)
A non-archimedean place v /∈ S of K is called good if the image of Frobenius ρ`(Frobv)
belongs to G◦` and is Γ-regular with respect to this group. By [9] 4.5, 6.14 this condition
does not depend on the choice of `. Moreover, by [9] 7.2, the set of good primes has positive
Dirichlet density.

For every good v there exists a characteristic torus Tv ⊂ GLn,Q, an element tv ∈ Tv(Q),
and a family of isomorphisms φ` : GLn,Q`

→ GL(V`) coming from a choice of basis on each
V`, such that for every `,

φ`(tv) = ρ`(Frobv),

and φ`(Tv ×Q Q`) is a maximal torus of G◦` ([9] 4.7). (Note that the characteristic torus
usually but not always coincides with Serre’s Frobenius torus [15].) The splitting field of Tv

is equal to the splitting field of the characteristic polynomial of ρ`(Frobv). The intersection
of these fields, for all good v, is called the splitting field of {ρ`} and denoted E. In particular,
it is a finite Galois extension of Q. The splitting field does not change when K is replaced
by a finite extension (this follows, e.g., from [9] 8.4). Since our compatible system is pure,
the eigenvalues of Frobenius lie in CM fields; thus E is either totally real or CM.
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The term “splitting field” is justified by the fact that whenever there exists a G/Q
such that G◦` = G×Q Q` for all `� 0, then E is the splitting field of the quasi-split inner
form of G. Note that the existence of such a G requires all but finitely many G◦` to be
unramified, i.e., quasi-split over Q` and split over an unramified extension. In [9] 8.9 we
proved something weaker, namely:

Proposition 1.2. For all ` belonging to a set of primes of Dirichlet density one, G◦` is
unramified over Q` and split over E ⊗Q`.

Suppose that for every ` we are given a Galois invariant Z`-lattice Λ` ⊂ V`. This
is the case, in particular, for a compatible system of representations arising as the `-
adic cohomology of a smooth proper variety. Let G◦` be the Zariski closure of G◦` in the
algebraic group AutZ`

(Λ`) ∼= GLn,Z`
, endowed with the unique structure of reduced closed

subscheme. This is a subgroup scheme that is flat over Z`. If G◦` is smooth with reductive
fibres, then G` must be unramified. We know somewhat less, namely

Proposition 1.3. For all `� 0, G◦` is smooth and of constant reductive rank over Z`.

Proof. By Prop. 1.1 we may assume that all G` are connected. We abbreviate G` := G◦` .
Fix a good place v of K. If λi ∈ Q̄ are the pairwise distinct eigenvalues of Frobv, we
may assume that ` does not divide the discriminant

∏
i 6=j(λi − λj)2. In other words, no

two distinct eigenvalues can become congruent modulo a prime above `. By the definition
of “good” we have t` := ρ`(Frobv) ∈ T`(Q`) for a unique maximal torus T` ⊂ G`. Our
assumption on the eigenvalues implies that T` splits over some unramified extension F/Q`.
The eigenspace decomposition of V` ⊗Q`

F under T` coincides with that under t`, and by
our assumption on ` this is also the same as the decomposition under the prime-to-` part
of t`. But the latter induces a direct sum decomposition on the lattice On

F
∼= Λ`⊗Z`

OF . It
follows that T`,F

∼= Gr
m,F extends to a closed subgroup scheme TOF

∼= Gr
m,OF

↪→ GLn,OF
.

Of course, TOF
is contained in G`,OF

.

Let Lα be a root space with respect to T`,F in the Lie algebra of G`,F . Then Lα∩gln,OF

is a free OF -module of rank 1. If ` ≥ n, we may use exp and log to go back and forth
between nilpotent subalgebras and unipotent subgroups. Thus Lα ∩ gln,OF

is the Lie
algebra of a subgroup scheme Uα ⊂ GLn,OF

that is isomorphic to the additive group.
Again, this subgroup scheme must be contained in G`,OF

, and TOF
acts on it through the

character α. Consider the product morphism

TOF
×OF

∏
α

Uα −→ G`,OF
.

The induced map of relative tangent spaces at the identity section is equivariant under
TOF

, hence it must be injective. Since the identity section on both sides splits off the
horizontal tangent space, our morphism induces an injection of the full tangent space.
Thus it is a closed embedding in a Zariski neighborhood of the identity section. On the
other hand it is a local isomorphism in the generic fibre. It follows that, near the identity
section, the Zariski closure of G`,F in GLn,OF

, with the unique structure of reduced closed
subscheme, is contained in the image of the product morphism. As OF is unramified over
Z`, the definition of G` as Zariski closure with unique reduced structure commutes with
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base change. Thus our morphism must be a local isomorphism near the identity section.
Since the left hand side is smooth over OF , the proposition follows. tu

§2. The function field case

In this section we restrict to the case that K is a function field. Let Fq ⊂ K be
the field of constants and X a smooth geometrically connected algebraic curve over Fq

with function field K. We remove from X the finite set where the ρ` may be ramified,
and fix a geometric point x̄ of X. Then each ρ` comes from a representation of the étale
fundamental group π1(X, x̄) which we denote again by ρ`. Every V` is the stalk at x̄ of a
lisse `-adic sheaf F` on X, which is pointwise pure of weight w.

There is a short exact sequence of étale fundamental groups

0→ π1(X̄, x̄)→ π1(X, x̄) π−→ Ẑ→ 0,

where X̄ obtained from X by extension of scalars to Fq. The term on the left hand side is
called the geometric fundamental group of X. The Zariski closure, Ggeom

` , of ρ`(π1(X̄, x̄))
is called the geometric monodromy group. It is a normal subgroup of G`. Since F` is pure,
it follows from [5] 1.3.9 and 3.4.1 (iii) that Ggeom

` is semisimple. In fact, (Ggeom
` )◦ is the

derived group of G◦` .

Proposition 2.1. The dimension of the space of invariants V
Ggeom

`

` is independent of `.

Proof. The cohomology with compact support Hi
c(X̄,F`) vanishes in degrees i > 2.

For i = 2 it is canonically isomorphic to V
Ggeom

`

` (−1), where (−1) denotes Tate twist; it
is therefore pure of weight w + 2. In degrees i < 2 it is mixed of weight ≤ w + i, by
[5] 3.3.1; in particular it has weights < w + 2. It follows that the dimension in question
can be described as the sum of the multiplicities of all Frobenius eigenvalues of weight
w + 2 in the virtual representation

∑
(−1)iHi

c(X̄,F`). By the Lefschetz trace formula ([4]
Rapport, 3.1) this number depends only on the zeta function of (X,F`), which is, by the
compatibility assumption, independent of `. tu

Of course the proposition can be applied to any compatible system of representations
that is obtained from {V`} by linear algebra. That is, consider any algebraic representation
of GLn,Q on a space W . On W ⊗ Q` we obtain a representation of Ggeom

` , unique up to
isomorphism, such that dim(W ⊗ Q`)Ggeom

` is independent of `. In the terminology of [8]
all the pairs (Ggeom

` , V`) have the same dimension data.

Proposition 2.2. (i) If Ggeom
` is connected for some `, then it is so for every `.

(ii) The open subgroup ρ−1
` ((Ggeom

` )◦(Q`)) ∩ π1(X̄, x̄) is independent of `.
(iii) The groups Ggeom

` /(Ggeom
` )◦ for different ` are canonically isomorphic.

Proof. First we show that (i), if universally true, implies the rest. The open subgroup
ρ−1

` ((Ggeom
` )◦(Q`)) ∩ π1(X̄, x̄) belongs to a finite extension of KF̄q. We can write this

extension as LF̄q for a finite extension L/K. We can apply the same constructions to
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the representations ρ`′ |Gal(L̄/L). By construction the geometric monodromy group of this
representation is equal to (Ggeom

` )◦ for `′ = `, so by (i) it is connected for any `′. This
implies that every ρ−1

` ((Ggeom
` )◦(Q`)) ∩ π1(X̄, x̄) is contained in every other, so all are

equal. Part (iii) follows immediately from (ii).

To prove (i) we consider the dimension functions

W 7→ dim
(
(W ⊗Q`)Gal(K̄/LF̄q)

)
as L ranges over all finite extensions of K. Of course invariant dimensions cannot decrease
when L increases. The lemma below implies that Ggeom

` is connected if and only if this
function stays the same for every finite extension L. By Prop. 2.1 this condition is
independent of `, so the corollary follows. tu

Lemma 2.3. Let G be a reductive algebraic subgroup of GLn over a field. Suppose that for
every representation of GLn on a finite dimensional vector space W we have dim(WG◦

) =
dim(WG). Then G is connected.

Proof. The diagram of algebraic groups

GLn ←↩ G →→ G/G◦

‖ ‖ ‖
Spec S ←↩ Spec A →→ Spec B

corresponds to the equivariant diagram of G-representations S →→ A←↩ B. There exists a
finite dimensional GLn-invariant subspace W ⊂ S whose image in A contains B. By com-
plete reducibility under G the representation W |G contains a direct summand isomorphic
to B. Now by assumption

0 = dim(WG◦
)− dim(WG) ≥ dim(BG◦

)− dim(BG) = [G : G◦]− 1,

so [G : G◦] = 1, as desired. tu

We fix embeddings Q` ⊂ C which we use without further mention. We write ρgeom
`

(resp. ρalg
` ) for the tautological representation of (Ggeom

` )◦ (resp. G◦` ) on V`. Note that if
one ρgeom

` is absolutely irreducible, then so are all others; this follows at once by applying
Prop. 2.1 to the representation on End(V`).

Theorem 2.4. The connected component of the identity (Ggeom
` )◦×Q`

C is, up to isomor-
phism, independent of `. If the ρ` are absolutely irreducible, then the complexified triple
((Ggeom

` )◦, V`, ρ
alg
` )×Q`

C is, up to isomorphism, independent of `.

Proof. By Prop. 2.2 we are reduced to the case that the Ggeom
` are already connected.

Then the theorem follows from [8] Th. 1 and Th. 2. tu
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After choosing a basis for V` the second part of this theorem says that (Ggeom
` )◦×Q`

C
is independent of ` up to conjugation in GLn,C. For compatible systems coming from
cohomology one expects this to be true without irreducibility assumptions. But this cannot
be proved by invariant theory alone, for it is known ([8] Th. 3) that for n� 0 there exist
non-conjugate, though isomorphic, connected semisimple subgroups of GLn,C with the
same dimension data. In the case of abelian varieties this gap can be closed: see §4.

The results 2.1–4 extend directly to pure compatible systems of λ-adic representations.
More precisely, let F be a number field and denote its completion at a finite prime λ by
Fλ. A system of continuous representations ρλ of Gal(K̄/K) on Fλ-vector spaces Vλ, for
λ - char(K), is called compatible if ρλ is unramified at every place v 6∈ S whose residue
characteristic is different from that of λ, and if the characteristic polynomial of ρλ(Frobv)
has coefficients in F and is independent of λ. The geometric monodromy groups are then
linear algebraic groups over Fλ, and the independence of ` holds for the extension of scalars
under any embedding Fλ ⊂ C.

In the next section we shall need information about the Q`-rational structure of G◦`
that holds without Dirichlet density restriction. For this purpose we take up the method of
[9]. Let T be the characteristic torus associated to a fixed good place of K; after choosing
a basis of each V` we may assume that T ×Q` is a maximal torus of G◦` ⊂ GLn,Q`

(cf. the
definition of “good” in §1). Let Γ denote the group of all automorphisms of T × Q̄ that
fix the formal character of its tautological representation. For every `, let W` denote the
absolute Weyl group of G◦` with respect to T ×Q`, and N` its normalizer in Γ. Consider
any unramified maximal torus T ′` ⊂ G◦` and conjugate it into T ×Q` under G◦` (Q̄`). The
action of Frob` on the character group of T ′` corresponds to an element σ(T ′`) ∈ N`, whose
W`-conjugacy class depends only on T ′` .

Now assume that G◦` is unramified. Then the W`-conjugacy classes thus obtained form
a full coset σ(G◦` )W` ([9] 3.10). Moreover, G◦` is determined up to GLn(Q`)-conjugacy by
its GLn(C)-conjugacy class and this coset modulo N`. Fix ` and finitely many maximal
tori T`,i ⊂ G◦` such that the σ(T`,i) meet all the conjugacy classes in σ(G◦` )W`. By [9]
8.2 we can find characteristic tori Ti ⊂ GLn,Q associated to good places of K, such that
every Ti ×Q` is conjugate to T`,i under GLn(Q`). The set of all primes `′ with the same
Frobenius conjugacy class as ` in the splitting field of every Ti has positive Dirichlet density.
By Prop. 1.2 the same holds for the subset, denoted L, of all those for which, in addition,
G◦`′ is unramified. By construction every Ti × Q`′ is GLn(Q`′)-conjugate to a maximal
torus of G◦`′ . For `′ ∈ L this implies that σ(T`,i) and σ(T`′,i) are conjugate under Γ. To
express this state of affairs in a concise form, denote by [S], for any subset S ⊂ Γ, the set
of all elements of Γ that are conjugate to an element of S. We have proved:

Lemma 2.5. For every `′ ∈ L, we have [σ(G◦` )W`] ⊂ [σ(G◦`′)W`′ ].

Proposition 2.6. For any ` that splits in E, if G◦` is unramified, then it is split.

Proof. Let `′ ∈ L as above; by Prop. 1.2 we may even suppose that G◦`′ splits over
E ⊗Q`′ . Since ` splits in E, so does `′, and G◦`′ is split. In other words σ(G◦`′) ∈W`′ . By
the first part of Th. 2.4 (this is the only place in the proof where we use the hypothesis that
K is a function field), the pairs (T × C,W`) and (T × C,W`′) are isomorphic. (Caution:
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we do not know that W` and W`′ are conjugate under Γ; cf. [8] Th. 3.) For any set S
of automorphisms of T let [[S]] denote the set of all characteristic polynomials of γ ∈ S
acting on the character group of T . So far we know

[[σ(G◦` )W`]] ⊂ [[σ(G◦`′)W`′ ]] = [[W`′ ]] = [[W`]].

We have therefore reduced the proposition to the following lemma.

Lemma 2.7. Let T ⊂ G be a maximal torus in a connected reductive group over C. Let
W denote the associated Weyl group. Let σ be an automorphism of finite order of T that
preserves the root system of G. If [[σW ]] ⊂ [[W ]], then σ ∈W .

Proof. This is done as in [9] §2. Let Φr denote the rth cyclotomic polynomial. We define
a kind of lexicographic order on the set of all polynomials which are products of powers
of the Φr. For two such polynomials we write f � g if, for some r, the multiplicity of Φr

in f is greater than that in g, but for all s > r the multiplicity of Φs is the same. Clearly
f � g ⇔ f � g or f = g defines a total order. It suffices to prove max[[σW ]] � max[[W ]]
whenever σ 6∈ W . Now max[[σW ]] is preserved under isogenies and is multiplicative
for decompositions of (G, T, σ). Thus it suffices to prove the inequality in the case that
(G, T, σ) cannot be decomposed further, up to isogeny. For these the inequality follows
from [9] 2.4 and Tables 1 and 2. tu

§3. Abelian varieties over global fields

In this section we consider an abelian variety A over an arbitrary global field K. Let-
ting T` denote its Tate module, we have a pure compatible system of Galois representations
on V` := T` ⊗Z`

Q`. We keep the notations of §1.

The following is a celebrated theorem of Faltings ([7] Satz 3, Satz 4, and the Be-
merkung at the end of the article) in the number field case, and of Zarhin [19], [20] in the
function field case.

Theorem 3.1. (i) The action of Gal(K̄/K) on V` is semisimple for every `.
(ii) The map EndK(A)⊗ Z` → EndGal(K̄/K)(T`) is an isomorphism for every `.
(iii) For every ` � 0, the subalgebra of EndZ`

(T`) generated by ρ`(Gal(K̄/K)) is the full
commutant of EndK(A)⊗ Z`.

Parts (i) and (ii) imply that G` is reductive and that the canonical map EndK(A)⊗
Q` → EndG`

(V`) is an isomorphism. It was observed by W. Barker (unpublished) that
part (iii) implies the following strengthening of Prop. 1.2.

Theorem 3.2. G◦` is unramified for all `� 0.

Proof. First we use Prop. 1.1 to replace K by a finite extension so that every G` is
connected. Then, as in §1 we define G` = G◦` as the Zariski closure of G` in the algebraic
group AutZ`

(T`). By Prop. 1.3 this is smooth over Z` for all ` � 0. We shall prove that
its closed fibre is reductive; this then implies the theorem.
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Excluding at most finitely many primes, we may assume that EndK(A) ⊗ Z` is iso-
morphic to a direct sum of full matrix algebras over unramified extensions of Z`. As a
representation of any summand, T` must be isomorphic to a direct sum of copies of the
standard representation. It follows that the commutant of EndK(A) ⊗ Z` is also isomor-
phic to a direct sum of matrix algebras over unramified extensions of Z`, that it maps
surjectively to the commutant in End(T`/`T`), and that the latter is semisimple. By Th.
3.1 (iii) this commutant is generated by the image of Gal(K̄/K), for all `� 0. It follows
that the Galois representation on T`/`T` is semisimple and that, dually, its commutant
is equal to the image of EndK(A). This last fact implies that every Gal(K̄/K)-invariant
subspace of T`/`T` is invariant under G` in the algebraic sense. Moreover, every irreducible
Gal(K̄/K)-subspace of T`/`T` is a fortiori irreducible under G`. Thus the representation
of the closed fibre of G` is semisimple. By the definition of G` it is also faithful, so the
closed fibre of G` is reductive, as desired. tu

As in §1 we denote the splitting field of {ρ`} by E. Let g := dim(A). For the next
two theorems we assume (1) and either (2) or (3):
(1) The center of EndK̄(A) is equal to Z,
(2) E = Q,
(3) The dimension g is divisible neither by 315 nor by 24m5 for any integer m ≥ 2.

Theorem 3.3. Under the above assumptions (1) and (2), or (1) and (3), there exists a
connected reductive group G over Q, and a faithful representation ρ of G on a vector space
V , such that

(G◦` , V`, ρ
alg
` ) ∼= (G, V, ρ)×Q Q`

for all ` belonging to a set of primes of Dirichlet density one.

Proof. The hypotheses remain valid when K is replaced by a finite extension, so using
Prop. 1.1 we may assume that every G` is already connected. By (1), EndK(A)⊗Q is a
central simple algebra over Q, say of dimension d2. Excluding a finite number of primes,
we may assume that EndK(A)⊗Q` is isomorphic to the algebra of d×d matrices over Q`.
From Th. 3.1 it then follows that ρ` is a direct sum of d copies of an absolutely irreducible
Galois representation ρ′` on a Q`-vector space V ′` of dimension 2g/d. Clearly the ρ′` are
again compatible. Using assumption (2) or (3), [9] 9.10 implies that

(G`, V
′
` , ρ′`

alg) ∼= (G, V ′, ρ′)×Q Q`

for suitable (G, V ′, ρ′) over Q, and a set of primes of Dirichlet density one. The theorem
follows. tu

Theorem 3.4. Suppose that K is a function field. Then, under the above assumptions (1)
and (2), or (1) and (3), there exists a connected reductive group G over Q, and a faithful
representation ρ of G on a vector space V , such that

(G◦` , (G
geom
` )◦, V`, ρ`) ∼= (G, Gder, V, ρ)×Q Q`

for all `� 0.
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Proof. Applying Prop. 1.1 and Prop. 2.2, we may reduce the theorem to the case that
that both G` and Ggeom

` are connected. As in the preceding proof, after excluding a finite
number of primes we are reduced to studying the quadruples (G`, G

geom
` , V ′` , ρ′`

alg). Since
Ggeom

` is the derived group of G`, absolute irreducibility implies that G` ⊂ Ggeom
` ·{scalars}.

But the representation is pure of weight −1, so the determinant of G` cannot be trivial.
It follows that G` = Ggeom

` · {scalars}. With (G, V ′, ρ′) as in the preceding proof it follows
that

(G`, G
geom
` , V ′` , ρ′`

alg) ∼= (G, Gder, V ′, ρ′)×Q Q`

for a set of primes of Dirichlet density one. Without loss of generality we may assume that
G is quasi-split. Then, by Prop. 1.2, these isomorphisms already imply that G splits over
E. Note also that, by the second part of Th. 2.4, the above isomorphism exists over C for
every `.

By Th. 3.2, after excluding a finite number of primes we may assume that G` is
unramified. In the case E = Q, this together with Prop. 2.6 implies that G` is split.
But G splits over E = Q, so the isomorphism over C can be realized over Q`, as desired.
In the case of (3) we use Lemma 2.5 directly. With the notations of §2, we may assume
that T ⊂ G ⊂ GLn,Q. Let W be the absolute Weyl group of G with respect to T , and
N its normalizer in Γ. The Q-rational structure of G is determined by a homomorphism
ϕ : Gal(E/Q)→ N . The desired isomorphism exists if and only if

σ(G◦` )W` = γ(ϕ(Frob`)W )γ−1

for some γ ∈ Γ. Since we know this already on a set of Dirichlet density one, by Lemma
2.5 we find that

[σ(G◦` )W`] ⊂ [σ(G◦`′)W`′ ] = [ϕ(Frob`′)W ] = [ϕ(Frob`)W ]

for suitable `′. The rest is an elementary calculation of finite groups. If W1 ⊂ W is the
largest subgroup that is normal in Γ, it suffices to prove the above conjugacy modulo W1.
The possible forms of the factor groups W/W1 ⊂ Γ/W1 are deduced from the proof of [9]
9.7, so the theorem follows from the lemma below. tu

Lemma 3.5. Let Sn denote the symmetric group on n letters, and consider one of the
following cases:
(i) H = {±1}j × {1}k−j ⊂ G = {±1}k o Sk for 0 ≤ j ≤ k, or
(ii) H = Sk1 × . . .× Skr

⊂ G = Sk for a partition k = k1 + . . . + kr.
Let N ⊂ G be the normalizer of H, and n1, n2 ∈ N . Suppose that every element of the
coset n1H is conjugate in G to an element of n2H. Then n1H = n(n2H)n−1 for some
n ∈ N .

Proof. For case (i) we first classify the conjugacy classes in G = {±1}k o Sk. Consider
an element g ∈ G and a cycle of length i of its image in Sk. The restriction of gi to the
stabilizer {±1}i o Si of the i letters in the cycle takes the form (ε, . . . , ε) ∈ {±1}i for a
certain ε = ±1. We call this ε the sign of the cycle. One easily checks that two elements
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of G are conjugate if and only if they have the same number of cycles of every length and
sign.

The normalizer of H = {±1}j × {1}k−j in G is equal to

N = {±1}k o (Sj × Sk−j),

so
N/H ∼= Sj × ({±1}k−j o Sk−j).

For ν ∈ {1, 2}, let ai,ν (resp. aε
i,ν) denote the number of cycles of nν of length i in the

Sj-factor (resp. of sign ε and length i in the {±1}k−j o Sk−j-factor). The total number
of cycles of length i of the image of nν in Sk is ai,ν + a1

i,ν + a−1
i,ν . This is independent of ν,

so it suffices to prove aε
i,1 = aε

i,2 for all i and ε.
We claim that aε

i,ν is the minimum number of cycles of length i and sign ε for any
element in the coset nνH. Indeed, a cycle of length i in Sj can lift to a cycle of sign
−ε, so it does not contribute to the minimum. The contribution of the other cycles is by
definition aε

i,ν . Since any element of n1H can be conjugated into n2H under G, we find

aε
i,1 ≥ aε

i,2.

On the other hand, the aε
i,ν determine the cycle decomposition of an element of Sk−j , so

∑
i,ε

iaε
i,ν = k − j.

The resulting inequality

k − j =
∑
i,ε

iaε
i,1 ≥

∑
i,ε

iaε
i,2 = k − j

must be an equality, so aε
i,1 = aε

i,2 for all i and ε. This implies that n1 and n2 are conjugate
in N/H and therefore that n1H and n2H are conjugate in N .

For case (ii), we define ai to be the number of factors of H of type Si. Then

N/H ∼= Sa1 × Sa2 × · · · ,

where the constituent Sai
permutes the ai factors of H of type Si. Let bijν denote the

number of cycles of length j of nν inside Sai . It suffices to prove that bij1 = bij2 for all
i and j, since this implies that the images of n1 and n2 in N/H are conjugate, and the
result follows.

For any m, ` ≥ 1 and any σ ∈ Sk, let cm,`(σ) be the number of letters occurring in
cycles of length `, 2` . . . , or m`. Set

cm`ν = min{cm`(σ) | σ ∈ nνH}.
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We claim that
cm`ν =

∑
{(i,j): `|j and ij≤m`}

ijbijν .

Indeed, to minimize cm`(σ), we can minimize independently the contributions from each
cycle of length j in the factor Sai

. In the group Sk, such a cycle interchanges j disjoint sets
of i letters, and each of these sets is permuted arbitrarily by an element of H. Clearly any
element of the coset acts through cycles of lengths divisible by j and no larger than ij. On
the other hand, the coset contains an element that acts through precisely i cycles of length
j and another than acts through a single ij-cycle. Thus the contribution to cm`ν is zero
unless `|j and ij ≤ m`. In that case, all the cycles lengths are contained in {`, 2`, . . . , m`},
so the contribution is ij, as claimed.

It follows from the definition that cm`(σ) depends only on the Sk-conjugacy class of
σ. Since any element of n1H can be conjugated into n2H, we conclude

cm`1 ≥ cm`2.

We now use induction on m to prove that bm`1 = bm`2 for all `. If the claim holds for
all values smaller than a given m, then the only non-zero terms in the sum

cm`1 − cm`2 =
∑

{(i,j): `|j and ij≤m`}

ij(bij1 − bij2)

are those for which i = m and j = `. Thus,

0 ≤ cm`1 − cm`2 = m`(bm`1 − bm`2).

On the other hand, ∑
j

jbijν = ai

for any i, ν, by definition of bijν . It follows that

0 ≤
∑

`

`(bm`1 − bm`2) = am − am = 0.

Hence bm`1 = bm`2 for all `, and the lemma follows. tu

With a suitable generalization of the results of [8] and [9] it should be possible to
eliminate the hypothesis (1) in Th. 3.3 and Th. 3.4 (while modifying the divisibility
hypothesis in (3) appropriately). Then one should be able to prove that for all global
fields (resp. function fields) and most (resp. all sufficiently large) primes `, the EndK̄(A)-
linear action of G◦` on V` comes from a fixed Q-group G endowed with a representation
defined over EndK̄(A). The next section contains some results in this direction.
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§4. Abelian varieties with arbitrary endomorphism ring

The results of this section make essential use of the fact that, after suitable extension
of scalars, the system of Tate modules of an abelian variety over a global field can be
decomposed into a sum of systems of absolutely irreducible representations. Notations
remain the same as in §3. Without loss of generality we assume that all G` and, if K is a
function field, all Ggeom

` are connected. Then in particular EndK(A) = EndK̄(A).

By the Wedderburn theorem, the semisimple algebra EndK(A) ⊗ Q splits over some
number field F . Choose an isomorphism with a direct sum of matrix algebras

EndK(A)⊗ F ∼=
r∏

i=1

Mni
(F ).

For every finite prime λ - char(K) of F this induces a decomposition

V` ⊗Q`
Fλ
∼=

r⊕
i=1

Wi,λ ⊗F Fni ,

where Fni denotes the standard representation of Mni
(F ) and Wi,λ is a representation of

Gal(K̄/K), unique up to isomorphism. By Th. 3.1 the Wi,λ are absolutely irreducible and
pairwise inequivalent. For fixed i and varying λ, they form a pure compatible system of
λ-adic representations (see, e.g., [11] §8). In particular, di := dimWi,λ is independent of
λ. The algebraic monodromy group Gλ (resp. the geometric monodromy group Ggeom

λ , if
K is a function field) of

⊕
i Wi,λ is obtained from G` (resp. Ggeom

` ) by extension of scalars
to Fλ. Let us abbreviate

GLd :=
r∏

i=1

GLdi
.

Choosing a basis for each Wi,λ, our Gλ (resp. Ggeom
λ ) become subgroups of GLd,Fλ

, unique
up to conjugation. Our problem is then to study whether they come — up to conjugation
in GLd — from a fixed subgroup over F .

Taking the determinant in each factor, Gλ maps onto a subtorus Tλ of the product of
multiplicative groups Gr

m,Fλ
. Every character of Gr

m,F gives rise to a compatible system of
representations, so whether it is trivial on Tλ is independent of λ. Thus each Tλ = T ×F Fλ

for some subtorus T ⊂ Gr
m,F . The center of GLd,Fλ

maps onto Gr
m,Fλ

, and the pre-image of
Tλ is the identity component of the center of Gλ. In other words, these identity components
come from a fixed torus in the center of GLd,F . Thus, for questions of independence of `
it suffices to deal with Gder

λ .

The following result is an analogue of Th. 2.4. Let σ` denote the action of EndK̄(A)
on V`.

Theorem 4.1. If K is a function field, the data (G◦` , (G
geom
` )◦, V`, ρ

alg
` , σ`)×Q`

C is, up to
isomorphism, independent of `.
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Proof. By the above remarks it suffices to prove that the subgroups

Ggeom
λ ×Fλ

C = Gder
λ ×Fλ

C ⊂ GLd,C

are all conjugate. Every representation of GLd,F , on a finite dimensional vector space U ,
can be obtained from the standard representations by means of linear algebra. Thus it gives
rise to a compatible system of λ-adic representations to which we can apply Proposition
2.1. It follows that the dimension of invariants of Ggeom

λ in U ⊗F Fλ is independent of λ.
The desired assertion is now a consequence of the next theorem, which is an easy extension
of [8] Th. 2.

Theorem 4.2. Let G be a connected semisimple algebraic subgroup of GLd,C, such that
each standard representation G→ GLdi,C is irreducible. Then the data assigning dim(UG)
to every representation of GLd,C on a finite dimensional vector space U determines G up
to conjugation in GLd,C.

Proof. Let T ⊂ G be a maximal torus, Φ the associated root system, and ρi the formal
character of the representation T → GLdi,C. If X∗(T ) is the character group of T , we can
view ρi as an element of the group ring Z[X] of the vector space X = X∗(T )⊗Q. It suffices
to prove that the dimension function U 7→ dim(UG) determines the tuple (X, ρ1, . . . , ρr,Φ)
up to isomorphism. Let Γ be the (finite) group of all automorphisms of X that fix each
ρi. Consider the subspace generated by the element

F :=
∑
γ∈Γ

γ

(∏
α∈Φ

(1− α)

)
∈ Q[X].

We claim that the dimension function determines the isomorphism class of the tuple
(X, ρ1, . . . , ρr, Q · F ).

To see this, fix a maximal compact subgroup K of G and a maximal torus S of K.
Let dk and ds denote Haar measure with integral 1 on K and S respectively. As T is
any maximal torus of G, we may choose it to be the complexification of S. The image
ρ(G) ⊂ GLd(C) is compact and therefore lies in a subgroup Ud :=

∏
i U(di). Choosing

maximal tori U(1)di ⊂ U(di) such that ρi(S) ⊂ U(1)di , we obtain the diagram

K
ρ−→ Ud

pK ↓ ↓ pU

K\ ρ\

−→ U \
d

πS ↑ ↑ πU

S
ρS−→ U(1)Σidi

where the superscript \ denotes set of conjugacy classes. For any representation σ :
GLd,C → GL(U), we have

dim(UG) = dim(UK) =
∫

K

tr(σ(ρ(k))dk =
∫

Ud

tr(σ)ρ∗dk.
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By the Peter-Weyl theorem, the dimension function determines the measure

pU ∗ρ∗dk = ρ\
∗pK∗dk

on U \
d. As πU is finite, we can pull back measures and set

Y := supp(π∗Uρ\
∗pK∗dk) = π−1

U supp(ρ\
∗pK∗dk) = π−1

U ρ(K\) =
⋃

σ∈Sd

ρS(S)σ.

Here we have abbreviated Sd :=
∏

i Sdi
. As ρ is faithful, we may identify S with a

single irreducible component ρS(S) of the real-algebraic variety Y , and let S◦ denote
the complement of the intersection of S with the other components of Y . By the Weyl
integration formula,

π∗Uρ\
∗pK∗dk|S◦ =

1
|W |

∑
σ∈StabSd

S

σ∗

(∏
α∈Φ

(1− α(s))ds

)
.

A regular function on a torus is determined by its restriction to an open set, so QF is
determined as a one-dimensional subspace of Q[X∗(S)⊗Q] = Q[X∗(T )⊗Q]. We can read
off ρi ∈ Z[X∗(T )] from the formal character of the restriction of the projection Ud → U(di)
to S. Thus the tuple (X, ρ1, . . . , ρr, QF ) is determined up to isomorphism.

Let X =
⊕

Xj be the isotypic decomposition under Γ. Since Γ contains the Weyl
group of Φ, this induces a decomposition of the root system. Moreover, since X decomposes
into pairwise inequivalent representations under the Weyl group, each Xj is already Γ-
irreducible. As the formal character of an irreducible representation, every ρi is the tensor
product of unique ρi,j ∈ Z[Xj ]. This, in turn, implies that Γ is a product of groups acting
only on Xj , and hence that F is a tensor product as well. The theorem therefore reduces
to the Γ-irreducible case.

In this case every non-trivial ρi must be faithful, (up to center). Thus, by [8] Th. 4,
any single non-trivial ρi determines Φ completely, unless it is a tensor power of a basic
“ambiguous” representation in an explicit, short list. On the other hand, the abstract
isomorphism class of Φ is determined in any case, by [8] Th. 1. Since the list of basic
“ambiguous” representations is such that the abstract isomorphism class of Φ determines
Φ up to Γ-conjugacy, the theorem is proved. tu

Another consequence of [8] Th. 4 concerns the Mumford-Tate conjecture. Suppose
that K is a number field, given with an embedding K ⊂ C. The singular homomology group
V := H1(A(C), Q) carries a natural Hodge structure of weight −1: V ⊗C = V −1,0⊕V 0,−1.
Let z ∈ C× act on V −1,0 through multiplication by z, on V 0,−1 through multiplication
by z̄. The Hodge group is by definition the smallest algebraic subgroup G∞ ⊂ Aut(V ),
defined over Q, such that this action factors through G∞(C).
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Via the comparison isomorphisms V`
∼= V ⊗ Q` one can compare G∞ and G`. The

Mumford-Tate conjecture asserts that G◦` = G∞×Q` for every `. One half of this, namely
the inclusion G◦` ⊂ G∞ ×Q`, has been proved by [6] I Prop. 6.2.

Theorem 4.3. Suppose that K is a number field, and let G∞ denote the Hodge group of
A for a fixed embedding K ⊂ C. If rank(G◦` ) = rank(G∞) for some `, then G◦` = G∞×Q`

for every `. In particular, if the Mumford-Tate conjecture holds for one prime, then it
holds for every prime.

Proof. By Serre [15] p. 6 (cf. also [9] Prop. 6.12) the rank of G◦` is independent of `.
Therefore we have rank(G◦` ) = rank(G∞) for every `. The comparison isomorphisms are
equivariant with respect to the action of EndK̄(A) on V` and on V . Thus our decomposition
into compatible systems of absolutely irreducible representations is induced by a similar
decomposition

V ⊗ F ∼=
r⊕

i=1

Wi ⊗F Fni .

After a choice of bases G∞ × F is a subgroup of GLd,F , and by Deligne [6] I Prop. 6.2 we
have G◦λ ⊂ G∞ × Fλ for every λ. By assumption these groups have equal rank. Thus the
desired assertion is a consequence of the following lemma.

Lemma 4.4. Let H ⊂ G be connected reductive algebraic subgroups of GLd,C, such that
each standard representation H → GLdi,C is irreducible. If rank(H) = rank(G), then
H = G.

Proof. Let ZH denote the center of H. By irreducibility it is equal to the intersection of
H with the scalars Gr

m,C ⊂ GLd,C. Fix a maximal torus T of H. As ZH is contained in T ,
ZH = T ∩Gr

m,C. The same reasoning applies to G. Since T is also a maximal torus of G,
we find ZH = ZG.

Let Ψ ⊂ Φ ⊂ X∗(T ) denote the roots of H, respectively of G. Then the cocharacter
group of ZH (resp. ZG) is equal to X∗(T )/ZΨ (resp. X∗(T )/ZΦ). The equality of centers
therefore implies ZΨ = ZΦ. On the other hand, by [1] Ch. VI no. 1.7, Prop. 23,
Ψ = Φ ∩ ZΨ. It follows that Ψ = Φ, hence that H = G, as claimed. tu

§5. Independence-of-` conjectures in the function field case

In this section we suppose that our compatible system of representations comes from
the cohomology of a smooth proper variety X over K, i.e., that V` = Hw(X ×K K̄, Q`)
for every ` - char(K). If K is a number field, it is conjectured that G◦` = G∞ ×Q` via the
comparison isomorphism, where G∞ is the Hodge group of Hw(X(C), Q) with respect to
any given complex embedding of K. In fact, this is a consequence of the general Hodge and
Tate conjectures. In the function field case one lacks natural comparison isomorphisms for
the different V`, so that it is far from obvious what `-independence properties should be
expected. We shall present two implications of other well-known conjectures. From now
on K is a function field.
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Conjecture 5.1. There exists a connected reductive group G over Q, and a faithful rep-
resentation ρ of G on a Q-vector space V , such that for all finite primes ` 6= char(K),
(G◦` , V`, ρ

alg
` ) is an inner twist of (G, V, ρ)×Q Q`.

Theorem 5.2. Conjecture 5.1 is implied by the general Tate conjecture and the semisim-
plicity conjecture.

Proof. The well-known semisimplicity conjecture states that, in the given situation, the
representation ρ` is semisimple. This is equivalent to saying that G` is reductive. By
means of Prop. 1.1 we reduce to the case that every G` is connected.

The Tate conjecture states that the space of Galois-invariants in every V ⊗m
` ⊗(V ∨` )⊗n⊗

Q`(p) is generated by algebraic cycle classes. Let C denote the Tannakian category gen-
erated by the motive hw(X) and the Tate motive. (For this and the following see [6]).
The fibre functor hw(X) 7→ V` yields a ⊗-isomorphism between C ⊗ Q` and the category
of representations of G`, and furthermore there exist isomorphisms V` ⊗Q`

C ∼= V`′ ⊗Q`′ C
which respect the classes of algebraic cycles and which identify G` ×Q`

C with G`′ ×Q`′ C
[loc. cit. II Th. 2.11, Th. 3.2]. These isomorphisms are unique up to composition with a
point of G`.

By an argument of Serre ([15] pp. 13–14, or [3] Th. 3.7) we may choose a non-
archimedean place v /∈ S of K such that the Zariski closure of the subgroup generated by
ρ`(Frobv) is a maximal torus of G`, for every `. Let T` denote this maximal torus. If kv

is the residue field of v and Xv the reduction of X, then T` is the algebraic monodromy
group of the representation of Gal(k̄v/kv) on V` = Hw(Xv ×kv k̄v, Q`). Now we apply
the above discussion to the Tannakian category Cv generated by the Tate motive and the
motive hw(Xv) (here we use the Tate conjecture a second time!). The fact that our fibre
functors factor through the ⊗-morphism C → Cv gives us additional information. Namely,
the requirement that the morphisms in Cv be preserved implies that the isomorphisms
for the V` are unique up to composition with a point of T`, and that the T` ×Q`

C are
identified with each other. As these groups are abelian, their identification, being unique
up to conjugation, is independent of any choice.

Lemma 5.3. (i) The elements ρ`(Frobv) ∈ T`(Q`) correspond under this identification.
(ii) There exist a torus T over Q and a set of isomorphisms T`

∼= T×Q` that are compatible
with this identification.

Proof. Let A denote the endomorphism ring of hw(Xv) in Cv. Since A ⊗ Q` is the
commutant of ρ`(Frobv) in End(V`), it is semisimple and ρ`(Frobv) is an element of its
center. The elements of A can be represented by algebraic cycles, hence the system of
representations is A-linearly compatible, i.e. for any a ∈ A the characteristic polynomial
of a · ρ`(Frobv) is independent of ` ([11] §8). This implies that all ρ`(Frobv) come from a
fixed element tv of the center of A. This proves part (i) of the lemma. Part (ii) is clear if we
define T as the Zariski closure in the Q-algebraic group Aut(A) of the subgroup generated
by tv. tu

Now Th. 5.2 is proved by exploiting the “common maximal torus” T . The identifica-
tions over C imply that the root system of G`, as a subset of the character group X∗(T ),
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is independent of `. Let Φ denote this root system, W its Weyl group, and ρT the formal
character of ρalg

` . The form of T over Q corresponds to a homomorphism

ϕ : Gal(Q̄/Q)→ Aut(X∗(T ),Φ, ρT ).

There is a quasi-split connected reductive group G over Q with maximal torus T , root
system Φ, and a representation ρ on a vector space V with formal character ρT . In fact,
such G is unique up to isomorphism, and determined by the composite map

Gal(Q̄/Q) ϕ−→ Aut(X∗(T ),Φ, ρT ) −→ Aut(X∗(T ),Φ, ρT )/W.

The class of (G◦` , V`, ρ
alg
` ) up to inner twist corresponds to its restriction to Gal(Q̄`/Q`).

The theorem is proved. tu

Conjecture 5.4. G◦` is unramified for all `� 0.

The weaker assertion for a set of primes of density one is known: Prop. 1.2. In Th. 3.2
the full conjecture is proved for abelian varieties. The general conjecture is also justified
by the fact that the proof of Th. 3.2 works in general provided that an analogue of Th.
3.1 (iii), a conjecture of the Shafarevich type, is available. Together, conjectures 5.1 and
5.4 imply the conjecture in the introduction in the function field case.
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