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0. Introduction

Consider a finite subgroup Γ of GLn over an arbitrary field. What can be said
about Γ without further hypothesis? Jordan’s theorem [20, p. 114] provides an
answer in characteristic zero:

Theorem 0.1. For every n there exists a constant J(n) such that any finite sub-
group of GLn over a field of characteristic zero possesses an abelian normal subgroup
of index ≤ J(n).

The corresponding statement in characteristic p > 0 is false. For example, the
group GLn(F̄p) contains arbitrarily large subgroups of the form SLn(Fpr ) which are
simple modulo their center. The problem lies in the existence of unipotent elements
of finite order. If all elements of Γ are semisimple, then Γ has order prime to p and
can therefore be lifted to characteristic zero, where Jordan’s theorem applies.

The following seems to us essentially the best possible generalization of Jordan’s
theorem to arbitrary characteristic:
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Theorem 0.2. For every n there exists a constant J ′(n) depending only on n
such that any finite subgroup Γ of GLn over any field k possesses normal subgroups
Γ3 ⊂ Γ2 ⊂ Γ1 such that

(a) [Γ : Γ1] ≤ J ′(n).
(b) Either Γ1 = Γ2, or p := char(k) is positive and Γ1/Γ2 is a direct product of

finite simple groups of Lie type in characteristic p.
(c) Γ2/Γ3 is abelian of order not divisible by char(k).
(d) Either Γ3 = {1}, or p := char(k) is positive and Γ3 is a p-group.

In particular, we have the following special case:

Theorem 0.3. For any finite simple group Γ possessing a faithful linear or projec-
tive representation of dimension ≤ n over a field k we have either

(a) |Γ| ≤ J ′(n), or
(b) p := char(k) is positive and Γ is a group of Lie type in characteristic p.

Note that the case (a) allows only finitely many isomorphism classes for each
value of n.

Without much effort one can deduce Theorem 0.2 from Theorem 0.3. With some
work the latter follows in turn from the classification of finite simple groups. The
object of this paper is to give a completely independent proof, based on the theory
of algebraic groups instead of methods from finite group theory.

There have been several previous generalizations of Jordan’s theorem to charac-
teristic p. Brauer and Feit [2] approached the problem using modular representation
theory. They showed that Γ possesses an abelian normal subgroup whose index is
bounded by a constant depending on n as well as the order of the p-Sylow subgroup
Γ(p) of Γ. Unfortunately, this bound is exponential in |Γ(p)|. Theorem 0.2, by con-
trast, implies the following bound, whose dependence on |Γ(p)| is optimal, as one
sees by considering finite groups of Lie type of the form PGL2(Fpr). (Assuming
classification of finite simple groups, Weisfeiler [32] gave the estimate O(|Γ(p)|7).)

Theorem 0.4. Any finite subgroup of GLn over a field of characteristic p > 0
possesses an abelian normal subgroup of order prime to p and of index ≤ J ′(n) ·
|Γ(p)|3.

In the case Γ ⊂ GLn(Fp), Nori ([26, §3]) and Gabber (see [21, Thm. 12.4.1])
proved results essentially equivalent to Theorem 0.2 using ideas from algebraic
geometry. Their approach is based on the fact that every subgroup of order p of Γ
is the group of Fp-valued points of a one-parameter additive subgroup Ga ↪→ GLn.
They relate Γ to the algebraic group generated by these. But this method does
not generalize to subgroups Γ ⊂ GLn(Fpr). Of course, one can embed GLn(Fpr)
in GLnr(Fp) and obtain an estimate of some kind, but the resulting upper bound
J ′(nr) on the index tends rapidly to infinity with r.

Our proof resembles that of Nori and Gabber in that we approximate Γ by an
algebraic subgroup G of GLn. It differs, however, in several important respects.
Instead of building up G from below by multiplying together algebraic subgroups,
we cut it down from above by exploiting irregularities in the overall distribution
of the elements of Γ in GLn. We cannot assume a priori that the coefficients of
Γ can be made to lie in any particular finite field. Rather, such information is
one of the things that must be determined from Γ. Whereas Nori and Gabber can
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ignore all problems associated with small primes, we cannot avoid dealing with their
pathologies. In particular, our framework must be flexible enough to accommodate
the Suzuki and Ree groups.

Genericity for finite subgroups. Our approach is based on the following ob-
servation. Any special property that Γ might have, and that can be recognized by
representation-theoretic information, can be expressed by saying that Γ is contained
in some proper algebraic subgroup of GLn. For example, the tautological repre-
sentation is reducible if and only if Γ lies in a proper parabolic subgroup. Similar
characterizations exist for imprimitivity, tensor decomposability, and so on. In all
these cases the algebraic subgroups in question form an algebraic family which is
indexed by a scheme of finite type over SpecZ.

Let us imagine that we are given such a family of algebraic subgroups, which is
closed under intersections, and that G is the smallest one that contains Γ. If the
family is large, there are many properties of special subgroups of G which Γ does
not have. If it is sufficiently large for a problem at hand, we call Γ a sufficiently
general finite subgroup of G. We make this concept precise in Section 2, and show
how to recognize it by looking at a suitable representation of G. It may be helpful
to think of G as a kind of algebraic envelope of Γ, which replaces the Zariski-closure
since every finite subgroup is already Zariski-closed.

Let G3 ⊂ G2 ⊂ G1 denote the unipotent radical, the radical, and the identity
component of G. The subgroups Γi in Theorem 0.2 will be roughly equal to Γ∩Gi.
Observe that the index [G : G1] is bounded, because G belongs to a family over a
scheme of finite type over SpecZ. Thus the least accessible part of Γ is the image of
Γ∩G1 in G1/G2. After replacing G by a simple quotient of G1/G2, we are reduced
to the case that G is connected simple. Here we have the following fundamental
result. The group of fixed points under a Frobenius map F is denoted GF (compare
Section 3), and the derived group is indicated by the suffix ( )der.

Theorem 0.5. Let G → SpecZ be the family of connected adjoint groups with a
fixed simple root system Φ, and let G denote a geometric fiber of G . Consider a
finite subgroup Γ ⊂ G. If Γ is sufficiently general, then the characteristic of the
base field of G is positive, and there exists a Frobenius map F : G → G so that
(GF )der is simple and (

GF
)der ⊂ Γ ⊂ GF .

The proof of this theorem takes up most of this article and is sketched in the
outline below. The other theorems above are deduced from it. The following
reformulation will be explained in Section 2.

Theorem 0.6. The family G → SpecZ of connected adjoint groups with a fixed
simple root system Φ possesses a representation G → GLn with the following prop-
erty. Consider any algebraically closed field k and any finite subgroup Γ of the as-
sociated geometric fiber G of G . If every Γ-invariant subspace of kn is G-invariant,
the characteristic of k is positive and there exists a Frobenius map F : G → G so
that (GF )der is simple and (

GF
)der ⊂ Γ ⊂ GF .
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History. This paper is a lightly revised version of a manuscript which has been
circulating since 1998. In particular, the numbering has remained unchanged from
the preprint version except at the end of section 4, from (4.6) on. At the time
it was written, the quasi-thin case of the classification of finite simple groups had
not yet been completed, at least in print. Our Theorem 0.3 gives much less than
classification, in that it applies only to linear groups and does not specify the finite
set of exceptions for each n. It was our hope that it could nevertheless serve as a
viable substitute in a range of applications in group theory and number theory. To
some extent, the subsequent history has justified that hope.

In the last dozen years, there have been several results which in one way or
another improved on or extended the results of this paper. In particular, Ehud
Hrushovski and Frank Wagner [16] have reproved the basic “nonconcentration esti-
mate” (Theorem 4.2) in a very general, model-theoretic framework. (In fact, since
the inductive scheme in the proof of Lemma 4.4 in the original manuscript was cir-
cular, theirs is the first complete proof in the literature.) Robert Guralnick proved
[11] in effect that if p ≥ n − 3 ≥ 6 and Γ3 is trivial, we can bound [Γ : Γ1] by the
classical Jordan constant J(n) rather than J ′(n). Michael Collins determined the
optimal values for J(n) [5] and J ′(n) [6]. Both Guralnick and Collins made use of
the classification.

Outline of the paper. In Section 1 we show that a whole range of constructions
for algebraic varieties and algebraic groups can be carried out simultaneously in
families. To emphasize our point of view, we use the term constructible family for
any morphism of separated schemes of finite type over SpecZ. Although we are
interested mainly in the set of geometric fibers of such a family, keeping track of
the total space as a scheme enables us to bound the complexity of the fibers in a
uniform way. We use only the softest general techniques of algebraic geometry such
as Noetherian induction and constructibility of images. In fact, our proofs could
perhaps have been cast equivalently into the language of model theory, in the spirit
of Hrushovski-Pillay [15].

Section 2 discusses the concept of sufficiently general finite subgroups and their
basic properties: They can be made arbitrarily large and assumed to be not con-
tained in any nowhere dense subvariety that belongs to a constructible family.

In Section 3 we show that finite groups of Lie type provide examples of sufficiently
general finite subgroups and discuss a corollary of Theorem 0.5. This is not used
in the rest of the paper.

In Section 4 we consider an algebraic group G and a subvariety X, each of
which belongs to a given constructible family. Using multiple induction over other
constructible families we derive an upper bound for the size of Γ ∩ X, for any
sufficiently general finite subgroup Γ ⊂ G. If G is almost simple, this bound reads

(0.7)
∣∣Γ ∩X

∣∣ ≤ c ·
∣∣Γ∣∣ dim X

dim G ,

where the constant on the right-hand side depends only on the family to which X
belongs. Remarkably, this order of magnitude is the same as when G is defined
over a finite field Fq and Γ = G(Fq). This upper bound is our key technical result
as far as algebraic geometry is concerned, and it is used systematically in the rest
of the paper.

Section 5 is an application to abelian varieties and plays no further role in the
paper.
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Sections 6 through 11 contain the proof of Theorem 0.5. Here G is connected
adjoint with a fixed simple root system and Γ is a sufficiently general finite subgroup.
Over the course of the proof we build up a collection of structural features ofG which
have counterparts for Γ, such as maximal tori, Borel subgroups, root subgroups,
and so on. We can even estimate their number and size.

The starting point is Section 6, where we show that centralizers in Γ satisfy a
lower bound of the same order of magnitude as the upper bound (0.7). This is an
existence theorem, which we will use as a machine to exhibit nontrivial elements and
subgroups of Γ with special properties. We also show that every G-conjugacy class
meets Γ in a bounded number of Γ-conjugacy classes. This fact will be important
for unipotent conjugacy classes later on.

The centralizer estimate is used in Section 7 to analyze maximal toric subgroups
of Γ. They are self-centralizing and have bounded index in their normalizer; these
facts allow precise counting arguments (which are known already for finite groups of
Lie type). We count the maximal toric subgroups inside centralizers of semisimple
elements, using the Jordan decomposition, and prove that the number of maximal
toric subgroups is equal to the number of unipotent elements of Γ. By estimating the
former number from below, we deduce that Γ must contain some regular unipotent
elements. This already implies that the characteristic of the base field is positive
and, by the way, reproves Jordan’s Theorem 0.1.

In Section 8 we consider a Borel subgroup B ⊂ G containing a regular unipotent
element of Γ. Using the preceding results we manage to show that Γ ∩ B also
contains many regular semisimple elements. With this information it is not hard
to construct other types of elements, either via centralizers, or as commutators. In
this way one finds sufficiently many elements of Γ in the center of the unipotent
radical of B. Usually this center is a root group, but in certain nonstandard cases
in small characteristics it may be the product of two root groups. In either case we
can find a connected unipotent subgroup V in the center of the unipotent radical
such that Γ ∩ V can be identified with a finite field FV . It will turn out that Γ is
essentially a finite group of Lie type over FV .

This is proved in Sections 9 through 11. The first problem is to translate the
internal characterization of FV inside Γ into external information on coefficients
in suitable representations. This is achieved by showing that the traces of certain
elements γ ∈ Γ lie in FV . Varying γ, we can construct global coordinates over
FV for some algebraic representation of G. Eventually this leads to the desired
Frobenius map F on G such that Γ ⊂ GF . Our size estimates then imply that
the index is bounded, and Theorem 0.5 follows. Both here and in Section 8 there
are a number of additional difficulties in characteristics 2 and 3 if G possesses
nonstandard isogenies. But our proof of Theorem 0.5 covers all these cases.

The other theorems mentioned above are proved in Section 12. For further
information, see the introductions to the individual sections.

Notation. The cardinality of a set X is denoted by |X|. For any group G acting
on a set X, the normalizer of a subset Y ⊂ X is

NG(Y ) :=
{
g ∈ G

∣∣ ∀y ∈ Y : gy ∈ Y
}
.

The simultaneous centralizer of Y is

GY :=
{
g ∈ G

∣∣ ∀y ∈ Y : gy = y
}
.
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For any single element x ∈ X we abbreviate Gx := G{x}. Its orbit is

OG(x) :=
{
gx

∣∣ g ∈ G
}
.

Mostly we will apply this to the action of G on itself by conjugation. In this case,
OG(x) is the conjugacy class of x. The center is denoted by Z(G) := GG and the
commutator subgroup by Gder. In the context of algebraic groups these concepts
have an algebro-geometric meaning. The identity component of an algebraic group
G is denoted by G◦ and the adjoint group of a connected reductive group by Gad.
The Zariski closure of a subset X of an algebraic variety or scheme is denoted by X.

The following list summarizes notation which is introduced within the text and,
in most cases, retains its meaning over several sections.

Symbol Page Description

NG(X) 1109 normalizer
GX , Gx 1109 (simultaneous) centralizer
OG(x) 1110 orbit, conjugacy class
Z( ) 1110 center
( )der 1110 derived group
( )◦ 1110 identity component
( )ad 1110 adjoint group

( ) 1110 Zariski closure
X , Y , . . . 1111 constructible family of algebraic varieties
S , T , . . . 1111 base scheme of a constructible family
Xs, Yt, . . . 1111 geometric fiber
XT 1112 pullback of a constructible family
G 1114, 1127 constructible family of algebraic groups
H 1114 constructible family of algebraic subgroups
( )n 1115 n-fold fiber product with itself
G = Gs 1116, 1127 algebraic group
Γ 1116, 1127 finite subgroup of G
Fq 1119 finite field with q elements
Φ 1120, 1127 root system of G
F 1120 Frobenius map on G
qF 1120 numerical constant attached to F
GF 1120 fixed points of F
qΓ 1122, 1127 numerical constant attached to Γ
X = Xt 1123 subvariety of G
Y = Yt 1123 subvariety of G
k 1127 algebraically closed base field
p 1127 characteristic of k
Λ 1128, 1129, 1143subset of Γ
c0 1128 constant in Theorem 6.2
( )rss 1129 subset of regular semisimple elements
( )un 1129 subset of unipotent elements
Θ 1130 maximal toric subgroup of Γ
TorΛ 1131 set of maximal toric subgroups of Γ◦

Λ

Tor�Λ 1131 subset of representatives under Γ◦
Λ

B 1134 Borel subgroup of G
U 1134 unipotent radical of B
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T 1134 maximal torus of B
Φ+ 1134 set of positive roots
Ga 1134 additive group
Uα 1134 root group
α�, αs 1135 highest long and short roots
U run 1137 regular unipotent elements in U
V 1138 nontrivial subgroup of Z(U) normalized by B
d 1139 dimension of V
FV 1139 finite field attached to Γ and V
pr 1140 order of FV

pe 1140 Frobenius twist
ρ, ρ�, ρs 1142 constituents of the adjoint representation
Ψ 1149 root subsystem
ẇ 1149 longest Weyl group element
H(g) 1149 subgroup generated by V and gV g−1

Radu G 1154 unipotent radical

1. Constructible families

Most constructions in algebraic geometry have a meaning not only for single
algebraic varieties but can be carried out in families. That is, the fibers of a
morphism X → S of finite type are viewed as forming a family of algebraic
varieties Xs, and operating with the total space X amounts to doing the same with
all fibers at the same time in a coherent fashion. The result is then another family,
i.e., another morphism of finite type. Now, it is a basic fact of algebraic geometry
that many properties of fibers, such as dimension or number of components, vary
constructibly over the base. It follows that the numerical invariants arising in
such constructions are bounded uniformly in the family. This phenomenon plays a
central role in the counting arguments of Section 4. The current section is devoted
to establishing the necessary framework for them. All this is basically standard
algebraic geometry.

Conventions. We are eventually interested only in questions concerning varieties
over algebraically closed fields. Nevertheless, since we aim at statements that are
independent of characteristic, we are forced to use the language of schemes (see
[9], [12]). For simplicity we assume that all our schemes are separated and of finite
type over SpecZ.

By a variety we will always mean the set of closed points of a scheme of finite type
over an algebraically closed field, with its induced structure of an algebraic variety
in the common sense. Note that a scheme and its reduced subscheme determine the
same variety. Note also that a variety is not required to be irreducible (compare [1],
[17]). Usually, schemes will be denoted by calligraphic letters, varieties by roman
letters. For example, the fiber of a morphism of schemes X → S over a geometric
point s of S determines a variety, called simply the geometric fiber above s, and
abbreviated by X := Xs.

To clarify our point of view we use the following terminology:

Definition 1.1. A constructible family X → S is a morphism of schemes of finite
type over SpecZ.
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The pullback of such a constructible family by a morphism T → S will be
abbreviated XT := X ×S T .

Definition 1.2. A morphism from a constructible family Y → T to a con-
structible family X → S consists of a morphism T → S and a T -morphism
ϕ : Y −→ XT .

Definition 1.3. A constructible family of subvarieties is a morphism for which
Y −→ XT is a closed embedding.

Thus the geometric points t of T parametrize a family of morphisms, resp.
closed embeddings, of varieties ϕt : Yt → Xs, where s denotes the corresponding
geometric point of S . Note that we do not rule out the possibility that the same
subvariety of Xs occurs for different t. In fact, to avoid this in our constructions
would be quite a burden and without any benefit.

Numerical invariants. One of the main features of constructible families is that
numerical invariants of the fibers are uniformly bounded:

Proposition 1.4. In any given constructible family X → S the dimension and
the number of irreducible components of the geometric fibers Xs are bounded.

Proof. See [10, Prop. 13.1.7, Cor. 9.7.9]. �

Stratifications. The word stratification normally refers to the decomposition of
a scheme into a disjoint union of locally closed subschemes, perhaps satisfying
additional hypotheses. In our case we care only about the following property:

Definition 1.5. A stratification map is a morphism S ′ → S which induces a
bijection on geometric points.

Various useful scheme-theoretic properties can be attained by pulling back a
constructible family via a stratification map:

Proposition 1.6. For any constructible family X → S there exists a stratification
map S ′ → S such that XS ′ −→ S ′ is flat and its fiber dimension locally constant
on S ′.

Proof. See [10, Thm. 11.1.1, Thm. 13.1.3]. �

Fiberwise closure. The process of taking Zariski-closure does not generally com-
mute with taking fibers unless one first pulls everything back by a suitable strati-
fication map. For the closure of the image in a family of morphisms we have:

Proposition 1.7. For any morphism of constructible families ϕ : Y → XT , there
exist a stratification map T ′ → T and a constructible family of subvarieties Z →
T ′ of X → S with the following property. For any geometric point t of T , with
t′ the corresponding geometric point of T ′, we have

Zt′ = ϕt(Yt).

Proof. The image of ϕ is a constructible subset of XT (see [10, Prop. 9.2.6]). Its
closure in the total space is constructible by definition, so by [10, Prop. 9.5.3] the

points t for which ϕt(Yt) = ϕ(Y )t is dense in
(
ϕ(Y )

)
t
form a constructible subset

of T . This set contains all generic points of T and therefore some open dense
subscheme U . Pulling the morphism ϕ back to T1 := T � U , by Noetherian
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induction we already have a stratification map T ′
1 → T1 and a constructible family

of subvarieties Z1 ⊂ XT ′
1
with the desired property over T1. Putting T ′ := U 	T ′

1

and Z :=
(
ϕ(Y )×T U

)
	 Z1 the assertion follows over T . �

Similarly, for the locus of points with given fiber dimension we have:

Proposition 1.8. For any morphism of constructible families ϕ : Y → XT and
any integer d ≥ 0, there exist a stratification map T ′ → T and a constructible
family of subvarieties Z → T ′ of X → S with the following property. Take any
geometric point t of T and let t′ and s denote the corresponding geometric points
of T ′, resp. S . Then we have

Zt′ =
{
x ∈ Xs

∣∣ dim(ϕ−1
t (x)) = d

}
.

Proof. The set of points of XT where the fiber dimension is d is constructible
by [10, Prop. 9.2.6.1]. Using this, one proceeds as in the preceding proof. �

Irreducible components. To decompose the geometric fibers into irreducible
components one needs more than a stratification map:

Proposition 1.9. For any constructible family X → S there exists a constructible
family of subvarieties Y → T such that for every geometric point s of S the
subvarieties Yt ⊂ Xs, as t runs through all geometric points of T above s, are
precisely the irreducible components of the geometric fiber Xs.

Proof. We proceed as in the proof of [10, Thm. 9.7.7]. Consider a generic point η
of S . By [10, Cor. 4.6.8], there exists a finite extension K ′ of its residue field K
such that every irreducible component Zi of Xη ×SpecK SpecK ′ is geometrically
irreducible. Choose a morphism U → S of finite type, where U is integral with
function field K ′. For each i let Zi denote the Zariski-closure of Zi in XU .

By [10, Thm. 9.7.7], the fibers of Zi → U are geometrically irreducible in a
neighborhood of the generic point. Thus after shrinking U all these fibers are geo-
metrically irreducible. Next, over the generic point, none of these fibers is contained
in any other. By [10, Cor. 9.5.2], the same is true over a whole neighborhood, so af-
ter shrinking again it is true over all of U . Furthermore, the inclusion

⋃
i Zi ⊂ XU

is an equality over the generic point. By [10, Cor. 9.5.2], this remains true in a
neighborhood, and so again without loss of generality over all of U . We conclude
that the fibers of the different families Zi → U are precisely the irreducible com-
ponents of the fibers of XU −→ U .

This solves the problem in a neighborhood of the generic point η. To finish, we
apply Noetherian induction to the pullback of X to a suitable complement in S ,
take the resulting family of subvarieties, and let Y → T be its disjoint union with
all Zi → U . The desired assertion follows. �

Intersections. Since the topological space underlying an algebraic variety is Noe-
therian, the intersection of any collection of closed subvarieties is already the inter-
section of a finite number of them. The following result shows that this number is
uniformly bounded when both the subvarieties and the ambient variety are allowed
to vary in constructible families.

Theorem 1.10. For any constructible family X → S and any constructible family
of subvarieties Y → T there is an integer n with the following property. Consider
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any geometric point s of S and any collection I of geometric points of T above s.
Then there exists a subset I ′ ⊂ I of at most n points such that⋂

t∈I

Yt =
⋂
t∈I′

Yt.

Proof. Fix d such that the fiber dimension of X → S is everywhere ≤ d. Then
every intersection in question is a variety of dimension ≤ d. To any such variety
Z let us associate the tuple r(Z) := (rd, . . . , r0) ∈ Nd+1, where ri is the number
of irreducible components of Z of dimension i. Consider the lexicographical total
order on Nd+1 defined by (rd, . . . , r0) < (r′d, . . . , r

′
0) if and only if in the leftmost

entry where these tuples differ we have ri < r′i. It is well known that this makes
Nd+1 a well-ordered set. Note also that r(Z) < r(Z ′) whenever Z � Z ′.

Now let us assume that the theorem is false. Then for every n there exist
geometric points t1, . . . , tn 
→ s such that Z := Yt1∩. . .∩Ytn cannot be written as an
intersection of fewer terms. Since all intersections of n terms form the constructible
family of subvarieties

(1.11) Y ×X . . .×X Y︸ ︷︷ ︸
n

−→ T ×S . . .×S T︸ ︷︷ ︸
n

,

Proposition 1.4 implies that there are only finitely many possibilities for the associ-
ated tuple r(Z). Let r(n) be the maximum of r(Z) for all Z which are intersections
of n terms but not of fewer terms. We claim that r(n) < r(n − 1). Indeed, for
suitable t1, . . . , tn we have

r(n) = r
(
Yt1 ∩ . . . ∩ Ytn

)
< r

(
Yt1 ∩ . . . ∩ Ytn−1

)
≤ r(n− 1),

as claimed. Thus the elements r(n) form an infinite strictly decreasing sequence,
contradicting the fact that Nd+1 is well ordered. �

As a consequence, arbitrary intersections of closed subvarieties in a constructible
family form a constructible family:

Corollary 1.12. For any constructible family X → S and any constructible fam-
ily of subvarieties Y → T there exists another constructible family of subvarieties
Z → U with the following property. Consider any geometric point s of S . Then
for any nonempty collection I of geometric points of T above s there exists a geo-
metric point u of U above s with ⋂

t∈I

Yt = Zu.

Conversely, every Zu is such an intersection.

Proof. With n as in Theorem 1.10, the family (1.11) has the desired property with
respect to all intersections of a positive number of terms. �

Families of algebraic groups. For the general theory of algebraic groups and
group schemes, see [7], [1], or [17]. Following our general conventions, an algebraic
group is always of finite type over an algebraically closed field. In accordance with
Definition 1.1 a constructible family of algebraic groups is a group scheme G → S ,
where G and S are of finite type over SpecZ. Similarly, a constructible family
of algebraic subgroups of G → S consists of a morphism T → S and a closed
subgroup scheme H ⊂ GT . Usually we have in mind constructible families of linear
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algebraic groups, i.e., of algebraic subgroups of GLn for some n. But our results
also have consequences for abelian varieties; see Section 5.

An action of G → S on a constructible family X → T is a morphism μ :
G ×S X −→ X satisfying the usual associativity and identity axioms. If X →
T is a vector bundle and the action is linear, this is a constructible family of
representations. The n-fold fiber product of G with itself over S will be denoted
by G n.

Transporter, Normalizer, Centralizer. In general these fiberwise constructions
can be carried out only after a suitable stratification map. We begin with trans-
porters and normalizers:

Proposition 1.13. Consider a constructible family of algebraic groups G → S
which acts on a constructible family X → S . Consider constructible families of
subvarieties Y1 → T and Y2 → T of X → S . Then there exist a stratification
map T ′ → T and a constructible family Z ′ → T ′ of subvarieties of G → S with
the following property. Take any geometric point t of T and let t′ and s denote the
corresponding geometric points of T ′, resp. S . Then we have

Z ′
t′ =

{
g ∈ Gs

∣∣ gY1,t ⊂ Y2,t

}
.

If Y1 = Y2, then Z ′ → T ′ is a family of algebraic subgroups, with Z ′
t′ = NGs

(Y1,t).

Proof. First we look at a single geometric fiber. We must prove that the right-
hand side in the above equality is Zariski-closed in Gs. To do this, note that for
every point y the set {g ∈ Gs | gy ∈ Y2,t} is Zariski-closed. The transporter is the
intersection of these as y runs through Y1,t, so it is closed.

To extend this argument to the family let us first replace G and X by their
pullbacks to T , after which we may assume T = S . Let μ : G ×S X −→ X be
the morphism defining the group action, and consider the subscheme

μ−1(Y2) ∩
(
G ×S Y1

)
⊂ G ×S Y1.

By [10, Cor. 9.5.2], the points g ∈ G over which this inclusion is an equality
form a constructible subset Z . In any geometric fiber this is precisely the desired
transporter. Since it is closed in every generic fiber, it is a closed subset over
some open dense subscheme U ⊂ T . We conclude by Noetherian induction, as in
the proof of Proposition 1.7. (For other approaches, see [7, Exp.VIB §6.1] or [19,
§2.6].) �

Applying this to the conjugation action of G on itself we deduce that the normal-
izer of an algebraic subgroup which belongs to a constructible family again belongs
to a constructible family. One can formulate a similar result for centralizers, but
using Corollary 1.12 we can do even better:

Proposition 1.14. For every constructible family of algebraic groups G → S
which acts on a constructible family X → S , there exists a constructible family
H → T of algebraic subgroups of G → S with the following property. Take any
geometric point s of S . Then for any subset I ⊂ Xs there exists a point t of T
above s such that

Ht =
(
Gs

)
I
:=

{
g ∈ Gs

∣∣ ∀x ∈ I : gx = x
}
.

Conversely, every Ht is such a centralizer.
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Proof. Consider the morphism

G ×S X −→ X , (g, x) 
→ (gx, x).

The pullback of the diagonal is a closed subscheme, consisting of all points (g, x)
with gx = x. Therefore the point stabilizers form a constructible family of alge-
braic subgroups. By Corollary 1.12, arbitrary intersections of these form again a
constructible family, as desired. �

Nonconstructible families. There are collections of algebraic subgroups which
cannot be the fibers of any constructible family. For instance, every finite subgroup
is algebraic, but if it varies in a constructible family its cardinality is bounded, by
Proposition 1.4. A similar phenomenon may happen even when the subgroups are
connected. For example, consider the standard torus Gd

m of dimension d ≥ 2 over
SpecZ and a constructible family of 1-dimensional subtori T . Then the degree of
all projection maps pri : T → Gm is bounded, leaving only finitely many possibilities
for the type of T . It follows that the collection of all 1-dimensional subtori does
not form a constructible family.

Similar examples can be obtained by means of Frobenius twisting. For instance,
for any algebraically closed field k of characteristic p > 0 and any integer n ≥ 0
consider the algebraic subgroup of GL3,k consisting of all matrices⎛

⎝1 x xpn

0 1 0
0 0 1

⎞
⎠ .

Here the degree of the projection map to the upper right corner is pn, which would
have to be bounded in any constructible family. Thus even in fixed positive char-
acteristic we have a collection of unipotent subgroups which does not form a con-
structible family.

2. Genericity for finite subgroups

Traditionally a point on an algebraic variety is called generic or general if it
does not satisfy some nontrivial Zariski-closed condition which remains tacit but is
understood to be fixed during the discussion under way. In other words, it has to
lie inside an arbitrarily small but fixed Zariski-dense open subset. This subset may
depend on choices which have already been made but should not be modified after
genericity is invoked. With the advent of schemes this somewhat vague concept
was turned into a precise technical term under the name “generic point”. But the
old point of view retains its usefulness, particularly in the setting we have in mind.

Consider a constructible family of algebraic groups G → S and abbreviate a
typical geometric fiber by G := Gs. Consider a finite subgroup Γ ⊂ G. If Γ is
contained in some previously given algebraic subgroup H ⊂ G of smaller dimen-
sion, we can try to analyze it using induction on dimH. The same applies when
H varies in a constructible family of fiberwise nowhere dense algebraic subgroups
H → T . Even if nothing else is known about this family, we can still conclude
from Proposition 1.4 that the number of irreducible components of H is bounded.
Thus if Γ ∩ H◦ is somehow understood by induction, we obtain a rough qualita-
tive description of Γ itself. This recursive analysis will be carried out in detail in
Section 12.
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The big remaining problem is to deal with the “generic” case, where Γ is not con-
tained in an algebraic subgroup of smaller dimension over which one has this kind
of control. The following terminology serves as a conceptual framework for this.
To avoid confusion with the meaning of “generic” in modern algebraic geometry,
we use the word “general”.

Definition 2.1. Let G → S be a constructible family of algebraic groups, and let
H → T be a constructible family of fiberwise nowhere dense algebraic subgroups.
A finite subgroup Γ of a geometric fiber Gs is called H -general if and only if for
every point t of T above s we have Γ �⊂ Xt.

Note that a closed subgroup H of an algebraic group G is nowhere dense if and
only if H does not contain the identity component of G.

In Definition 2.1, the family H may be complicated to describe and awkward to
carry along in our notation. Therefore we will mostly use the following abbreviation.

Metadefinition 2.2. Let G → S be a constructible family of algebraic groups
and consider a statement A(Γ) about finite subgroups Γ of a geometric fiber Gs.
The following assertions are defined as equivalent:

(a) For any sufficiently general Γ we have A(Γ).
(b) There exists a constructible family of fiberwise nowhere dense algebraic

subgroups H → T of G → S such that for any geometric point s of S
and any H -general finite subgroup Γ ⊂ Gs we have A(Γ).

To further justify this usage, let us imagine that the collection of all finite sub-
groups possesses some kind of algebro-geometric structure. For every n the sub-
groups of order ≤ n form a constructible family (see Proposition 2.5 below), but
in the limit for n → ∞ the parameter space could perhaps be viewed as infinite
dimensional. For any fixed H , the set of H -general finite subgroups should then
be an open dense subvariety, and as H varies, these subvarieties should be cofinal
among all open dense subvarieties. With this interpretation our use of the word
“general” becomes a direct analogue of the classical one.

Recognizing genericity. For some applications it will be useful to translate the
above concept into the language of invariant theory.

Proposition 2.3. Consider a constructible family of linear algebraic groups G →
S , and a constructible family of fiberwise nowhere dense algebraic subgroups H →
T .

(a) There exist a stratification map S ′ → S and a constructible family of rep-
resentations of G on a vector bundle W → S ′ with the following property.
Consider a geometric point s of S , with corresponding point s′ of S ′, and
a finite subgroup Γ ⊂ Gs. If every Γ-invariant subspace of the fiber Ws′ is
Gs-invariant, then Γ is H -general.

(b) If a faithful representation of G on a vector bundle V → S is given, then
in (a) one can take S ′ := S and

W :=

r⊕
i=1

V ⊗mi ⊗ (V ∨)⊗ni

for suitable integers r, mi, and ni.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1118 MICHAEL J. LARSEN AND RICHARD PINK

Proof. First we prove (b), using Noetherian induction on T . Consider a generic
point θ of T , and let η be the corresponding point of S . Then Hθ is a closed
algebraic subgroup of Gη. It can therefore ([1, Chap. II, Thm. 5.1]) be described as
the stabilizer of a subspace W ′

θ of some tensor space

Wη :=

r⊕
i=1

V ⊗mi
η ⊗ (V ∨

η )⊗ni .

This subspace extends to a vector subbundle W ′ over a neighborhood U of θ
in T . Since H coincides with the stabilizer of W ′ at the generic point θ, by [10,
Cor. 9.5.2], it does so over a whole neighborhood. Let us shrink U accordingly.
Then for any geometric point t of U with image s in S , and any subgroup Γ ⊂ Gs,
we have Γ ⊂ Ht if and only if W ′

t is Γ-invariant. Now recall that, by assumption,
Ht is a proper subgroup of Gs. Therefore W ′

t is not Gs-invariant. Thus if every
Γ-invariant subspace of Ws is Gs-invariant, then Γ is (H ×T U )-general.

Repeating this argument by Noetherian induction, we obtain a finite stratifica-
tion of T and for each stratum a vector bundle of the desired form, which detects
whether Γ is general with respect to the corresponding subfamily of H . Clearly
the direct sum of these vector bundles does the job over all of T , which proves (b).

To prove (a) we will construct a faithful representation of G on a vector bun-
dle over S ′. For this, note first that by assumption any generic fiber of G → S
possesses a faithful linear representation Gη ↪→ GLn. This homomorphism extends
automatically to an open neighborhood U ⊂ S . Its kernel is a Zariski-closed sub-
group scheme of G ×S U whose generic fiber coincides with the identity section.
By [10, Cor. 9.5.2], the same is true over a whole neighborhood, so after shrinking
U , this representation is faithful. Applying Noetherian induction to the comple-
ment S � U we find a faithful representation of G on a vector bundle V → S ′,
where S ′ → S is a stratification map. Now (b) implies (a). �

Proof of Theorem 0.6. We deduce this from Theorem 0.5. Let H → T be
the constructible family of fiberwise nowhere dense algebraic subgroups implicit in
Theorem 0.5 via Metadefinition 2.2. Take the representation furnished by Propo-
sition 2.3(b), starting with the adjoint representation of G . Then the assumptions
in Theorem 0.6 imply that Γ is H -general, so the desired assertion follows from
Theorem 0.5. �

Subvarieties versus subgroups. With equal right, one might have defined the
concept of sufficiently general finite subgroups with respect to arbitrary nowhere
dense subvarieties instead of subgroups. But this makes no difference:

Proposition 2.4. Let G → S be a constructible family of algebraic groups, and
let X → T be a constructible family of fiberwise nowhere dense subvarieties. Then
for any sufficiently general finite subgroup Γ of a geometric fiber Gs and every point
t of T above s we have Γ �⊂ Xt.

Proof. We first look at the problem for a single fiber. Suppose that Γ ⊂ X := Xt,
and put Y :=

⋂
γ∈Γ γX. By construction this is a nowhere dense closed subvariety

of Gs which is invariant under left translation by Γ. In other words, Γ is contained
in the normalizer N of Y for the left translation action of Gs on itself, and N is a
nowhere dense algebraic subgroup.
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In view of Metadefinition 2.2 it suffices to show that these subgroups N form a
constructible family. By Corollary 1.12 this is already so for the subvarieties Y . By
Proposition 1.13 the same follows for N , as desired. �

General finite subgroups are arbitrarily large. To further illustrate the con-
cept we note the following basic fact:

Proposition 2.5. Let G → S be a constructible family of algebraic groups of
dimension ≥ 1 and fix an integer n. Then any sufficiently general finite subgroup
Γ of a geometric fiber Gs has order > n.

Proof. The individual points on G are indexed by the tautological family id : G →
G , so the nonempty finite subsets of Gs of cardinality ≤ n can be indexed by G n,
the nth fiber power of G relative to S . The condition for a finite subset to be a
subgroup is Zariski-closed. Thus the subgroups of order ≤ n are the fibers of some
constructible family of subgroups of G → S . Now Metadefinition 2.2 applies. �

3. Finite groups of Lie type

In this section we show that finite groups of Lie type are sufficiently general in the
sense of Metadefinition 2.2, whenever the base field is sufficiently large. This result
is intended to clarify the scope of the concept of sufficiently general subgroups,
although it will play no further role in this paper. We begin with the following
estimate:

Proposition 3.1. For any connected algebraic group G over a finite field Fq with
q elements, we have

(
√
q − 1)2 dimG ≤

∣∣G(Fq)
∣∣ ≤ (

√
q + 1)2 dimG.

Proof. For abelian varieties these bounds are best possible; see [24, §21, Thm. 4].
For connected linear algebraic groups one has the stronger estimate (q − 1)dimG ≤∣∣G(Fq)

∣∣ ≤ (q+1)dimG (compare, e.g., [26, Lemma 3.5]). Every connected algebraic
group is an extension of an abelian variety by a connected linear algebraic group
([22]). Lang’s theorem implies that every short exact sequence of connected alge-
braic groups induces a short exact sequence on Fq-valued points. Thus the bounds
follow in general. �

Proposition 3.2. Let G → S be a constructible family of algebraic groups, and
H → T a constructible family of fiberwise nowhere dense algebraic subgroups.
Then there exists a constant q0 such that for every finite field Fq with q ≥ q0
elements and every point s ∈ S (Fq) the subgroup Gs(Fq) is H -general.

Proof. For any geometric point t of T above s we must show that Gs(Fq) �⊂ Ht. We
cannot apply the estimate in Proposition 3.1 directly to Ht, because this subgroup
is not necessarily defined over Fq. Let K be the intersection of all translates of Ht

under powers of the Frobenius Frobq. This subgroup is defined over Fq and satisfies
Gs(Fq) ∩ Ht = K(Fq). Every Frobenius translate of Ht is a (possibly different)
geometric fiber of the same constructible family H → T . Thus although K is the
intersection of an indeterminate number of terms, by Corollary 1.12 it is a fiber
of a constructible family of algebraic subgroups. Now Proposition 1.4 shows that
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the index [K : K◦] is bounded by some fixed constant c. Abbreviating G := Gs,
Proposition 3.1 implies that

|K(Fq)|
|G(Fq)|

≤ c · |K
◦(Fq)|

|G◦(Fq)|
≤ c ·

(
√
q + 1)2 dimK

(
√
q − 1)2 dimG

≤ c

q
·
(√

q + 1
√
q − 1

)2 dimG

.

For q � 0 this is less than 1; hence Gs(Fq) ∩ Ht � Gs(Fq), as desired. �

Remark. The upper bound used in the above proof can be generalized to the
number of points on algebraic subvarieties instead of subgroups. Namely, consider
any algebraic variety X over Fq. Using elementary estimates, e.g. stratifying X
and realizing each stratum as a quasi-finite covering of an affine space, one easily
shows that |X(Fq)| ≤ c · qdimX . Here the constant c is independent of Fq and can
remain fixed as X varies in a given constructible family.

Now suppose that G → S is a constructible family of algebraic groups and
X → T a constructible family of subvarieties. Abbreviate G := Gs and X := Xt.
The procedure in the above proof implies a similar upper bound

∣∣G(Fq) ∩ X
∣∣ ≤

c′ · qdimX . Combining this with Proposition 3.1, we obtain

(3.3)
∣∣G(Fq) ∩X

∣∣ ≤ c′′ ·
∣∣G◦(Fq)

∣∣ dim X
dim G ,

where the constant c′′ depends only on the families G → S and X → T . We
interpret this inequality as saying that the finite subgroup G(Fq) is not concentrated
on any proper closed subvariety which belongs to a constructible family. In the next
section we will generalize this to arbitrary sufficiently general finite subgroups in
place of G(Fq).

Simple groups and Frobenius maps. A central role in this article is played by
connected simple groups. In this paper, we use simple (for linear algebraic groups)
in the strong sense of adjoint and absolutely simple. A group will be called almost
simple if its center is finite and its quotient by its center is simple. To any simple
root system Φ one can associate a natural constructible family of split connected
simple linear algebraic groups G → SpecZ with root system Φ (see [7, Exp.XXV]).
It is necessarily adjoint; in fact, we will stick to adjoint groups as much as possible.
Consider a geometric fiber G = Gs over a field of positive characteristic.

The set of fixed points of any endomorphism F : G → G will be denoted GF .
Any model G0 of G over a finite field Fq with q elements corresponds to a so-called
standard Frobenius map Frobq : G → G. In local coordinates over Fq it is given by
x 
→ xq, and its chief defining property is G0(Fq) = GFrobq . An arbitrary isogeny
F : G → G is called a Frobenius map if and only if some positive power is a standard
Frobenius map. If Fn = Frobq, we set qF := n

√
q. This is a positive real number

which depends only on F . It plays the role of the cardinality of a finite field, even
when it is an irrational number, as happens for Suzuki and Ree groups. The group
of fixed points GF is finite and is called a finite group of Lie type.

Simple groups of Lie type. Keeping the above notation, let m denote the index
of the root lattice in the weight lattice of Φ, G̃ the simply connected covering group,
and G̃ → G the covering map. For later use we record some well-known facts (see [3,
§11.1, §14.4], [4, §2.9]).

Theorem 3.4. Assume qF ≥ 4. Then:

(a) The derived group (GF )der is nonabelian simple.
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(b) The index
[
GF : (GF )der

]
is ≤ m.

(c) The kernel of G̃ → G has order ≤ m.
(d) We have (qF − 1)dimG <

∣∣GF
∣∣ < qdimG

F . Moreover, the order of GF is less
than the cube of the order of one of its p-Sylow subgroups.

Genericity. We now prove an analogue of Proposition 3.2 which includes Suzuki
and Ree groups.

Proposition 3.5. Let G → SpecZ be the constructible family of connected adjoint
groups associated to a simple root system Φ, and consider a constructible family of
fiberwise nowhere dense algebraic subgroups H → T . Then there exists a constant
q0 such that for any Frobenius map F on a geometric fiber G := Gs with qF ≥ q0
the finite subgroup (GF )der is H -general.

Proof. By the classification of isogenies of simple algebraic groups, F is either a
standard Frobenius map, or the composite of a fixed basic nonstandard isogeny
with a standard Frobenius map. As in the proof of Proposition 3.2 we deduce
that the intersection K of all F -power translates of Ht belongs to a constructible
family of algebraic subgroups. This is an F -invariant proper algebraic subgroup,
and it remains to show that the ratio |(GF )der|

/
|(K◦)F | becomes arbitrarily large

with qF . By Theorem 3.4 this reduces to bounding |(K◦)F | from above. The
following assertion suffices:

(
√
qF − 1)2 dimK◦ ≤

∣∣(K◦)F
∣∣ ≤ (

√
qF + 1)2 dimK◦

.

It is proved with the same methods as Proposition 3.1. The details are left to the
reader. �

The above proof required some caution, because the analogue of Proposition 3.5
for a general family of groups is false if one does not know that F is the composite of
a standard Frobenius with an isogeny that varies in a constructible family. Indeed,
suppose that G = G1 × G1 and F : (g, g′) 
→ (g′, F1(g)), where F1 is an arbitrary
Frobenius map on G1. Then F 2 is just F1 on each factor, so F is a nonstandard
Frobenius map, where qF =

√
qF1

can become arbitrarily large. On the other hand,
the fixed points of F are just the fixed points of F1 on G1, diagonally embedded
into G. Thus GF is not H -general if H consists of the diagonal in G.

J. Tilouine pointed out to us that combining Proposition 3.5 with Theorem 0.5
yields the following corollary. It will not be used in the rest of this paper.

Corollary 3.6. For every simple root system Φ there exists a constant q0 with the
following property. Consider a connected adjoint group G with simple root system
Φ over an algebraically closed field of positive characteristic, and a finite subgroup
Γ ⊂ G. Assume that there is a Frobenius map F1 : G → G with qF1

≥ q0, so that
(GF1)der ⊂ Γ. Then there exists a Frobenius map F : G → G so that(

GF
)der ⊂ Γ ⊂ GF .

Proof. Let G → SpecZ be as above and H → T the constructible family of
fiberwise nowhere dense algebraic subgroups implicit in Theorem 0.5. Let q0 be
given by Proposition 3.5. Then (GF1)der is H -general, hence so is Γ, and the
desired assertion follows from Theorem 0.5. �
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4. Basic nonconcentration estimate

Consider an arbitrary constructible family of algebraic groups G → S , and a
geometric fiber G := Gs. The aim of this section is to generalize the inequality (3.3)
to arbitrary sufficiently general finite subgroups Γ ⊂ G. It may happen that a
disproportionately large subgroup of Γ is contained in a proper normal algebraic
subgroup N 	 G. This is so, for instance, when G and N are defined over Fq and
Γ = G(Fq) ·N(Fqr ) with r large. Thus a general analogue of the upper bound (3.3)
can be expected only in terms of the following quantity. Set

(4.1) qΓ := sup
N

|Γ ∩N | 1
dim N ,

where N runs through all connected normal algebraic subgroups of Gs. Clearly we
have qΓ = |Γ|1/ dimGs whenever Gs is connected and almost simple. The following
theorem is the main result of this section.

Theorem 4.2. Consider a constructible family of algebraic groups G → S , and a
constructible family of subvarieties X → T . Then there exists a constant c such
that for any sufficiently general finite subgroup Γ of a geometric fiber Gs and any
point t of T above s we have ∣∣Γ ∩ Xt

∣∣ ≤ c · qdimXt

Γ .

There is also a variant for Cartesian products:

Theorem 4.3. Consider a constructible family of algebraic groups G → S , a
positive integer n, and a constructible family of subvarieties X → T of G n → S .
Then there exists a constant c such that for any sufficiently general finite subgroup
Γ of a geometric fiber Gs and any point t of T above s we have∣∣Γn ∩ Xt

∣∣ ≤ c · qdimXt

Γ .

The proof of these theorems will occupy the rest of this section.

Proof of Theorem 4.2: The idea. As an easy example let us consider an ir-
reducible curve X in a connected algebraic group G of dimension r, and a suf-
ficiently general finite subgroup Γ ⊂ G. Ideally, we would like to find elements
γ1, . . . , γr−1 ∈ Γ such that the morphism of algebraic varieties

Xr −→ G, (x1, . . . , xr) 
→ x1γ1x2γ2 · · · γr−1xr

is dominant and quasi-finite. Suppose all its fibers contain ≤ n points. By counting
points in Γ we deduce ∣∣Γ ∩X

∣∣r ≤ n ·
∣∣Γ∣∣.

This implies the desired estimate:∣∣Γ ∩X
∣∣ ≤ r

√
n|Γ| ≤ r

√
n · qΓ.

In general, there are two technical problems with this method. First, it may not
be possible to cover G by multiplying translates of X. In that case one can show
that X is contained in a translate of a proper normal algebraic subgroup and use
induction on dimG. The second problem is that the morphism obtained by multi-
plying subvarieties in G may have fibers of positive and nonconstant dimension. A
counting argument as above can still be made to work if the number of points of Γ
in such fibers can be bounded. The bound we need here is of the same kind as the
original statement. We therefore proceed by induction. Note that since the fibers of
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the multiplication morphism vary, one is forced to prove the theorem uniformly for
a whole constructible family of subvarieties, even if one wants it only for a single X.

Reduction steps. We perform several reductions. First, since the number of
irreducible components of Xt is bounded by Proposition 1.4, it suffices to establish
the desired upper bound for the number of points in any one irreducible component.
We can then replace the family X → T by that given by Proposition 1.9, that
is, assume that Xt is irreducible. Next, if Γ ∩ Xt is nonempty, e.g. contains some
element γ, then its cardinality is equal to that of Γ ∩ γ−1Xt. Here the translate
γ−1Xt is again a fiber of a constructible family, namely that of all translates g−1Xt,
where g ∈ Gs lies in the same irreducible component as Xt. Thus we are reduced
to the case that all Xt are contained in the identity component of Gs. After this
reduction, we may also replace G by its identity component, i.e., assume that Gs is
connected.

Using Proposition 1.6 we may stratify the base and assume that the dimensions
of Gs and Xt are constant. We can then do induction on fiber dimensions. The
outermost induction is on dimGs, the next one on d := dimXt. The theorem is
obvious in the zero-dimensional case, since our fibers are already irreducible. So we
assume d > 0.

For technical reasons, it will be convenient to modify the desired estimate by
a certain defect δ and to consider two subvarieties at a time. Specifically, we will
prove the following statement for every integer δ ≥ 0, while the family G → S is
fixed:

Lemma 4.4. Given constructible families of subvarieties X → T and Y → U
of G → S there exists a constant c such that for any sufficiently general finite
subgroup Γ of a geometric fiber Gs, every point t of T above s, and every point u
of U above s, we have∣∣Γ ∩ Xt

∣∣ · ∣∣Γ ∩ Yu

∣∣ ≤ c · qdimXt+dimYu+δ
Γ .

For δ ≥ 2 dimGs, this is automatically true by the definition of qΓ. So we must
prove Lemma 4.4 for fixed δ ≥ 0, assuming it for δ + 1 in place of δ. For given δ,
we prove the lemma by descending induction on dimYu − dimXt. Without loss of
generality, we may assume dimXt ≤ dimYu. The condition dimYu − dimXt ≥
dimGs implies that Xt is a single point and Yu = Gs, and in this case the claim is
obviously true for every δ ≥ 0. We abbreviate G := Gs, X := Xt, and Y := Yu.

Our induction scheme is nested as follows:

(A) Induction on dimG;
(B) Descending induction on δ;
(C) Descending induction on dimY − dimX.

Lemma 4.5. Suppose that Y �= G.

(a) The set of g ∈ G with dimXgY = dimY is a fiber of some constructible
family of subvarieties of G → S .

(b) If dimXgY = dimY for every g ∈ G, then X is contained in a translate of
a connected normal subgroup N 	 G of smaller dimension, which is a fiber
of some constructible family of algebraic subgroups of G → S .

Proof. Choose any x ∈ X. Since X and Y are irreducible, the relation dimXgY =
dimY is equivalent to XgY = xgY . This in turn means that g−1x−1Xg is con-
tained in the normalizer M of Y for the left translation action of G on itself. By
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Proposition 1.13, M belongs to a constructible family of proper algebraic subgroups,
and the assumption Y �= G implies M �= G. The inclusion g−1x−1Xg ⊂ M is tan-
tamount to the condition that g lies in the transporter from x−1X to M for the
conjugation action of G on itself. By Proposition 1.13, this transporter belongs to
a constructible family, which proves (a).

For (b), let M∩ denote the intersection of the conjugates gMg−1 for all g ∈
G. This is a proper normal subgroup of G. By Corollary 1.12, it belongs to
a constructible family of algebraic subgroups. The same holds for the identity
component N := (M∩)◦, for instance by Proposition 1.9. Finally, the assumptions
in (b) imply x−1X ⊂ N , which proves the claim. �

In the situation of Lemma 4.5(b) we prove Lemma 4.4 as follows. Choose an
element x ∈ Γ ∩ X if that set is nonempty. Then we have |Γ ∩ X| = |Γ ∩ x−1X|,
and x−1X ⊂ N belongs to a constructible family. By induction hypothesis (A),
we know Theorem 4.2 already in that situation. Since qΓ∩N ≤ qΓ, Lemma 4.4 is
proved in this case.

Thus whenever Y �= G, we may suppose that there exists g ∈ G with dimXgY >
dimY . That is, in the constructible family of Lemma 4.5(a), we restrict ourselves
to that part of the base where the fiber is a proper subvariety of G. Afterwards, if
Γ is sufficiently general, by Proposition 2.4 we may choose γ ∈ Γ with dimXγY >
dimY . We set Z := XγY and consider the dominant morphism

ϕ : X × Y −→ Z, (x, y) 
→ xγy.

Fiber dimensions. The fiber above any point z ∈ Z is

ϕ−1(z) =
{
(x, γ−1x−1z)

∣∣ x ∈ X ∩ zY −1γ−1
}
.

Thus its dimension is always ≤ dimX, and in the case of equality, the fiber is
isomorphic to X. Recall that dimZ > dimY . The generic fiber dimension of ϕ is
therefore

dimX + dimY − dimZ < dimX,

and by semicontinuity ([10, Thm. 13.1.3]), all nonempty fibers have dimension at
least as great as the generic fiber dimension. For any integer

f ∈ [dimX + dimY − dimZ, dimX],

let
Zf :=

{
z ∈ Z

∣∣ dimϕ−1(z) = f
}
.

This locally closed subset of Z is open if and only if f = dimX + dimY − dimZ.
For all other values, the subset ϕ−1(Zf ) is nowhere dense in X × Y , so its closure
has dimension < dimX + dimY . Thus for all f we have either

(4.6) dimZf + f ≤ dimX + dimY − 1

or

dimZf + f = dimX + dimY,

dimZf − f = (dimZ − dimX) + (dimZ − dimY ) > dimY − dimX.
(4.7)

Note that by Proposition 1.7 the subvariety Z is a fiber of some constructible
family, and by Proposition 1.8 the same is true for the closure Zf . For all z ∈ Z,
the projection map pr1 from X × Y to X induces an isomorphism from ϕ−1(z) to

its projection pr1(ϕ
−1(z)), and it follows that the image closures pr1(ϕ

−1(z)), as z
ranges over Z, are fibers of some constructible family.
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Counting arguments. Now we count the points (x, y) ∈ (Γ ∩ X) × (Γ ∩ Y ) by
means of the partition

(Γ ∩X)× (Γ ∩ Y ) = Γ2 ∩ (X × Y ) =
dimX⋃

f=dimX+dimY−dimZ

Γ2 ∩ ϕ−1(Zf ).

This gives

|Γ ∩X| · |Γ ∩ Y | =
dimX∑

f=dimX+dimY−dimZ

|Γ2 ∩ ϕ−1(Zf )|.

The map ϕ sends Γ2 ∩ ϕ−1(Zf ) to Γ ∩ Zf ⊂ Γ ∩ Z̄f , and each fiber is contained in
a set of the form Γ2∩ϕ−1(z), which maps injectively under the projection map pr1
into

Γ ∩ pr1(ϕ
−1(z)) ⊂ Γ ∩ pr1(ϕ

−1(z)).

The condition z ∈ Zf means that dimpr1(ϕ
−1(z)) = f , and we claim

|Γ ∩ Zf | · |Γ ∩ pr1(ϕ
−1(z))| ≤ cfq

dimX+dimY+δ
Γ ,

for some constant cf depending only on f and the original families X and Y .
Indeed, if (4.6) holds, this follows from induction hypothesis (B); and if (4.7) holds,
it follows from induction hypothesis (C). Thus,

|Γ2 ∩ ϕ−1(Zf )| ≤ |Γ ∩ Zf | max
z∈Γ∩Zf

|Γ ∩ pr1(ϕ
−1(z))| ≤ cfq

dimX+dimY+δ
Γ .

Summing over f , we obtain

|Γ ∩X| · |Γ ∩ Y | ≤ qdimX+dimY+δ
Γ

dimX∑
f=dimX+dimY−dimZ

cf ,

and Lemma 4.4 follows by induction.
Theorem 4.2 follows immediately by specializing Lemma 4.4 to the case δ = 0,

T = U , X = Y , and t = u. �

Proof of Theorem 4.3. As in the preceding proof, we abbreviate G := Gs and
X := Xt. Let π : X −→ Gn−1 denote the projection map obtained by forgetting
the last factor in Gn. We count the points of Γn∩X by fibers of π, using induction
on n. The case n = 1 is just Theorem 4.2.

The fibers of π form a constructible family of subvarieties of G → S . Thus, if Γ
is sufficiently general, by Theorem 4.2 for every γ = (γ1, . . . , γn−1) ∈ Γn−1 we have

(4.8)
∣∣Γn ∩ π−1(γ)

∣∣ ≤ c1 · q
dimπ−1(γ)

Γ .

Next recall from Proposition 1.4 that dimG is bounded in the family G → S , say
by d. For every 0 ≤ f ≤ d put

Yf :=
{
g ∈ Gn−1

∣∣ dim π−1(g) = f
}
.

By Proposition 1.8, its Zariski-closure Yf belongs to a constructible family of sub-
varieties of G n−1 → S . Thus for sufficiently general Γ we have

(4.9)
∣∣Γn−1 ∩ Yf

∣∣ ≤ cn−1 · qdimYf

Γ .
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By construction the constants c1 and cn−1 depend only on the families G → S
and X → T . Now observe that

(4.10) f + dimYf = dimX ∩ π−1(Yf ) ≤ dimX.

Thus we can calculate

∣∣Γn ∩X
∣∣ = d∑

f=0

∑
γ∈Γn−1∩Yf

∣∣Γn ∩ π−1(γ)
∣∣

(4.8)
≤

d∑
f=0

c1 · qfΓ ·
∣∣Γn−1 ∩ Yf

∣∣
(4.9)
≤

d∑
f=0

c1 · cn−1 · qf+dimYf

Γ

(4.10)
≤ (d+ 1) · c1 · cn−1 · qdimX

Γ ,

which is the desired assertion. �

5. Finite subgroups of abelian varieties

In this section we briefly detour to apply Theorem 4.2 to abelian varieties. The
results here are not used in the rest of the paper. First we specialize everything
to commutative groups. A simplification arises in this case from the fact that all
subgroups are normal, and therefore in the definition (4.1) of qΓ, the supremum is
taken over all connected closed subgroups.

Theorem 5.1. Consider a constructible family of commutative algebraic
groups G → S and a constructible family of subvarieties X → T . Then there
exists a constant c such that for every finite subgroup Γ of a geometric fiber Gs and
every point t of T above s we have∣∣Γ ∩ Xt

∣∣ ≤ c · qdimXt

Γ .

Proof. By Theorem 4.2 and Metadefinition 2.2, the desired conclusion holds unless
Γ is contained in a fiber Hu of some constructible family of fiberwise nowhere
dense algebraic subgroups H → U of G → S . Let Y −→ V := T ×S U be the
constructible family of subvarieties of H → U which consists of all intersections
Yv := Xt ∩ Hu, where v = (t, u) ∈ Vs. By induction on fiber dimension, we may
suppose that the theorem holds already for H and Y . In other words, we have∣∣Γ ∩ Yv

∣∣ ≤ c · (q′Γ)dimYv ,

where c is some constant, and q′Γ is defined as in (4.1) except that the supremum
is extended only over subgroups N ⊂ Hu. Thus in the case Γ ⊂ Hu we deduce∣∣Γ ∩ Xt

∣∣ = ∣∣Γ ∩ Yv

∣∣ ≤ c · (q′Γ)dimYv ≤ c · qdimXt

Γ ,

as desired. �
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For abelian varieties a natural collection of finite subgroups is given by the n-
torsion points As[n] for varying n:

Corollary 5.2. Let A → S be a constructible family of abelian varieties, and
X → T a constructible family of subvarieties. Then there exists a constant c such
that for every positive integer n, every geometric fiber As, and every point t of T
above s we have ∣∣As[n] ∩ Xt

∣∣ ≤ c · (nn′)dimXt ,

where n′ is the largest divisor of n which is prime to the residue characteristic at s.

Proof. The connected algebraic subgroups B ⊂ As are precisely the abelian subva-
rieties. Thus we have ∣∣As[n] ∩B

∣∣ = ∣∣B[n]
∣∣ ≤ (nn′)dimB .

(See [24, §6] for the part prime to the characteristic, [24, §15] for the rest.) Thus
formula (4.1) implies that qΓ = nn′. The result follows from Theorem 5.1. �

R. Weissauer pointed out to us that this can also be proved using intersection
theory, following the lines of the proof of [25, Prop. 7.7].

Remark. The bound in (3.3) is optimal for subvarieties that are defined over Fq,
hence so is the bound in Theorem 5.1. The bound in Corollary 5.2 cannot be
improved either, as the following special case shows. Suppose that As is defined
over a finite field Fq and isogenous to a product of supersingular elliptic curves all
of whose endomorphisms are defined over Fq. Then it is well known that

As(Fqm) = As[q
m − 1]

(cf. [31, Thm. 2(d)]), so we are back in the situation (3.3). We do not know if an
improvement is possible in other cases or for other values of n.

6. Orders of conjugacy classes and centralizers

From here to the end of Section 11 we fix a simple root system Φ and let G →
SpecZ denote the family of split connected adjoint groups associated to Φ (see [7,
Exp. XXV]). We will consider a geometric fiber G = Gs over an algebraically closed
field k of characteristic p ≥ 0 and a finite subgroup Γ ⊂ G. In any quantification of
the form “for every sufficiently general Γ”, the whole triple (k,G,Γ) is allowed to
vary, with Γ being subject to Metadefinition 2.2. The assumption that G is adjoint
is irrelevant in this section but will become convenient later on. Recall from (4.1)
that in this case qΓ = |Γ|1/ dimG. We will often use the following reformulation of
Proposition 2.5:

Proposition 6.1. For any fixed constant c, if Γ is sufficiently general, we have
qΓ > c.

In this section, we use the results of Section 4 to estimate the size of centralizers
in Γ. The main observation is that Theorem 4.2 can be applied not only when X
is the family of centralizers, but also when it is the family of conjugacy classes in G .
Thus although Theorem 4.2 gives only an upper bound in each case, the formula∣∣Γγ

∣∣ · ∣∣OΓ(γ)
∣∣ = ∣∣Γ∣∣

implies a lower bound as well and thereby determines both factors to within a mul-
tiplicative constant. The following result generalizes this to centralizers of arbitrary
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subsets:

Theorem 6.2. There is a constant c0 depending only on Φ such that for any
sufficiently general Γ ⊂ G and any subset Λ ⊂ Γ we have

1

c0
· qdimGΛ

Γ ≤
∣∣ΓΛ

∣∣ ≤ c0 · qdimGΛ

Γ .

Proof. By Theorem 1.10, it suffices to consider centralizers of subsets of cardinality
≤ n, where n depends only on the family G → SpecZ, that is, on Φ. So suppose
Λ = {γ1, . . . , γm} with m ≤ n. Setting γi := 1 for m < i ≤ n, the centralizer
of Λ coincides with the stabilizer of the point γ := (γ1, . . . , γn) for the diagonal
conjugation action on Gn.

Consider the morphism

G × G n −→ G n × G n,
(
g, (g1, . . .)

)

→

(
(gg1g

−1, . . .), (g1, . . .)
)
.

This may be viewed as a morphism of families from G to G n which is indexed by the
second factor G n. The algebraic stabilizer in G of a point g ∈ Gn is a fiber of this
morphism, so it belongs to a constructible family of subvarieties of G → SpecZ.
On the other hand, the G-orbit of g is just the image of this map in the fiber
above g. Thus by Proposition 1.7, the orbit closures form a constructible family of
subvarieties of G n.

Applying Theorem 4.2 to the family of centralizers we find a constant c1 such
that

(6.3)
∣∣ΓΛ

∣∣ = ∣∣Γγ

∣∣ = ∣∣Γ ∩Gγ

∣∣ ≤ c1 · q
dimGγ

Γ

whenever Γ is sufficiently general. Similarly, applying Theorem 4.3 to the orbit
closures OG(γ) we find a constant c2 such that

(6.4)
∣∣OΓ(γ)

∣∣ ≤ ∣∣Γn ∩OG(γ)
∣∣ ≤ c2 · q

dimOG(γ)

Γ

whenever Γ is sufficiently general. Combining the second estimate with∣∣Γγ

∣∣ · ∣∣OΓ(γ)
∣∣ =

∣∣Γ∣∣ = qdimG
Γ = q

dimGγ+dimOG(γ)

Γ

we obtain

(6.5)
∣∣ΓΛ

∣∣ ≥ 1

c2
· qdimGγ

Γ .

Setting c0 := sup{c1, c2}, the theorem follows from (6.3) and (6.5). �

The constant c0 of Theorem 6.2 will be fixed throughout the rest of the paper.
The same kind of argument shows:

Theorem 6.6. Let Γ ⊂ G be as in Theorem 6.2. Then for every γ ∈ Γ, the
intersection Γ ∩OG(γ) consists of at most c20 conjugacy classes of Γ.

Proof. We will use the estimates (6.3) and (6.4) in the case n = 1. Without loss of
generality, we may assume that γ is the element of Γ ∩ OG(γ) whose Γ-conjugacy
class is smallest. Thus, the total number of Γ-conjugacy classes in Γ ∩OG(γ) is no
more than

|Γ ∩OG(γ)|
|OΓ(γ)|

=
|Γγ | · |Γ ∩OG(γ)|

|Γ| ≤ c1c2 · qdimGγ+dimOG(γ)
Γ

|Γ| = c1c2 ≤ c20. �
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Remark. Theorem 6.2 implies that ΓΛ is a sufficiently general subgroup of the
algebraic centralizer GΛ whenever Γ is sufficiently general. Indeed, any construc-
tible family of nowhere dense subvarieties X ⊂ GΛ can be viewed as a family of
subvarieties of G . Thus for suitable c we have∣∣Γ ∩X

∣∣ Thm. 4.2
≤ c · qdimX

Γ ≤ c

qΓ
· qdimGΛ

Γ

Thm. 6.2
≤ cc0

qΓ
·
∣∣ΓΛ

∣∣.
On the other hand, qΓ > cc0 whenever Γ is sufficiently general, by Proposition 6.1.
Therefore ΓΛ �⊂ X, as desired. This behavior allows induction arguments and will
be exploited in the following section.

7. Regular semisimple and unipotent elements

Let Φ, G , and Γ ⊂ G = Gs be as in the preceding section. An element of Γ
will be called semisimple, unipotent, regular, etc. if and only if it has this property
as an element of G. The set of all regular semisimple elements of a subset X is
denoted Xrss, the set of all unipotent elements Xun. Since Grss is open and dense
in G, it follows easily from Theorem 4.2 that most elements of a sufficiently general
finite subgroup are regular semisimple. It is more difficult to find elements of other
types.

It is well known that any finite group of Lie type contains a regular unipotent
element ([4, Prop. 5.1.7], [18, §8.4]). In this section, we prove the same assertion for
every sufficiently general finite subgroup Γ ⊂ G. The idea is to count the elements
of Γ in a particular way, breaking them up via their Jordan decomposition and using
induction on centralizers of semisimple elements with the help of Theorem 6.2. The
resulting formula shows that the number of unipotent elements in Γ is so large that
some of them must be regular unipotent.

For finite groups of Lie type such computations were carried out by Steinberg [30,
§§14–15] (see also [4, Thm. 3.4.1, Thm. 6.6.1], or [18, Thms. 8.8, 8.14]). Namely,
suppose that G lives in positive characteristic, and F : G → G is a Frobenius
map. In two separate calculations, Steinberg shows that the number of unipotent
elements in GF and the number of F -stable maximal tori of G are each equal to
the square of the order of a maximal unipotent subgroup of GF . A more direct
proof that the former quantities are equal was given by Lehrer [23, Cor. 1.13]. Our
argument resembles Lehrer’s approach.

Toric subsets and centralizers. For convenience we call a subset of G toric if
and only if it is contained in an algebraic torus of G. Any toric subset consists of
pairwise commuting semisimple elements, but the converse is not true in general.
The induction argument in Theorem 7.8 below employs reduction to the identity
components G◦

Λ of the centralizers of toric subsets Λ ⊂ Γ. By construction, each
G◦

Λ contains a maximal torus of G.

Proposition 7.1. For any toric subset Λ ⊂ G we have:

(a) Λ ⊂ G◦
Λ.

(b) For any semisimple element s ∈ G◦
Λ the set Λ ∪ {s} is toric.

(c) Any unipotent element of GΛ lies in G◦
Λ.

Proof. By Noetherian induction, every toric subset Λ has a finite subset Λ′ such
that GΛ = GΛ′ . Without loss of generality, therefore, we may assume Λ is finite. If
T ⊂ G is a maximal torus containing Λ, we have Λ ⊂ T ⊂ G◦

Λ, whence (a). Next
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by induction on |Λ| we see that G◦
Λ is reductive, since the connected centralizer of

a semisimple element in any reductive group is reductive. Thus the center of G◦
Λ,

and hence Λ itself, is contained in every maximal torus of G◦
Λ. As any semisimple

element of G◦
Λ lies in a maximal torus, this implies (b). Finally, (c) is the assertion

of [18, §1.12] if Λ consists of one element. The proof given there applies to all
connected reductive groups, so the general case of (c) follows again by induction
on Λ. �
Regular semisimple elements. To simplify notation we will abbreviate Γ◦

Λ :=
Γ ∩G◦

Λ.

Proposition 7.2. Fix any 0 < ε < 1. If Γ is sufficiently general, then for every
toric subset Λ ⊂ Γ we have

1− ε ≤ |(Γ◦
Λ)

rss|
|Γ◦

Λ|
≤ 1.

Proof. Let g 
→ Adg denote the adjoint representation of G . It is well known that g
is regular semisimple if and only if the multiplicity of 1 as a zero of the characteristic
polynomial of Adg is minimal, i.e., equal to the rank of Φ. This is a Zariski-open
condition, so the complement G � G rss is a constructible family of proper closed
subvarieties of G .

By Proposition 1.14 the algebraic centralizers GΛ form a constructible family of
algebraic subgroups of G . So by Proposition 1.9 the same is true for their identity
components. By construction these are irreducible and contain regular semisimple
elements; hence G◦

Λ�Grss belongs to a constructible family of subvarieties of strictly
smaller dimension. Thus for suitable c we have∣∣Γ◦

Λ �Grss
∣∣ Thm. 4.2

≤ c · qdim(G◦
Λ�Grss)

Γ ≤ c

qΓ
· qdimG◦

Λ

Γ

Thm. 6.2
≤ cc0

qΓ
·
∣∣Γ◦

Λ

∣∣,
provided Γ is sufficiently general. This implies that∣∣(Γ◦

Λ)
rss

∣∣ ≥ (
1− cc0

qΓ

)
·
∣∣Γ◦

Λ

∣∣.
Since qΓ may be assumed arbitrarily large by Proposition 6.1, the desired inequality
follows. �
Maximal toric subgroups. We call a subgroup of Γ◦

Λ maximal toric in Γ◦
Λ if it

is maximal among the toric subgroups of Γ◦
Λ.

Proposition 7.3. Fix any 0 < ε < 1, and suppose that Γ is sufficiently general.
Consider any toric subset Λ ⊂ Γ and any maximal toric subgroup Θ ⊂ Γ◦

Λ. Then
we have

1− ε ≤ |Θrss|
|Θ| ≤ 1.

In particular Θ lies in a unique maximal torus of G and is a maximal toric subgroup
of Γ.

Proof. By assumption Θ is contained in some maximal torus T ⊂ G◦
Λ. Since Λ lies

in the center of G◦
Λ by Proposition 7.1 (a), it is also contained in T . Thus Λ ∪ Θ

generates a toric subgroup of Γ◦
Λ, and the maximality of Θ implies Λ ⊂ Θ.

Next we apply Proposition 7.2 to Θ in place of Λ. It follows that Γ◦
Θ contains a

regular semisimple element γ. Proposition 7.1 (b) shows that Θ ∪ {γ} generates a
toric subgroup of Γ◦

Θ ⊂ Γ◦
Λ, so the maximality of Θ implies γ ∈ Θ. Thus Θ contains
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a regular semisimple element, and its connected centralizer G◦
Θ is a maximal torus

of G. Therefore Γ◦
Θ is a toric subgroup containing Θ. Again by maximality it must

be equal to Θ. This implies the last two assertions, and the estimate is precisely
that of Proposition 7.2 for Θ in place of Λ. �

The fact that most elements are regular semisimple can be used to count the
number of maximal toric subgroups, as follows. Let TorΛ denote the set of all

maximal toric subgroups of Γ◦
Λ. Let Tor

�
Λ ⊂ TorΛ be a system of representatives of

Γ◦
Λ-conjugacy classes.

Proposition 7.4. Assume that Γ is sufficiently general. Then for any toric subset
Λ ⊂ Γ we have ∑

Θ∈Tor�Λ

1

[NΓ◦
Λ
(Θ) : Θ]

= 1.

Proof. Since every regular semisimple element of Γ◦
Λ lies in a unique maximal toric

subgroup Θ ⊂ Γ◦
Λ, we can count them by looking at all maximal toric subgroups in

turn. We find

|(Γ◦
Λ)

rss|
|Γ◦

Λ|
=

∑
Θ∈TorΛ

|Θrss|
|Γ◦

Λ|

=
∑

Θ∈Tor�Λ

|Θrss|
|NΓ◦

Λ
(Θ)|

=
∑

Θ∈Tor�Λ

1

[NΓ◦
Λ
(Θ) : Θ]

· |Θ
rss|

|Θ| .

For any constant 0 < ε < 1, combining the preceding calculation with Proposi-
tions 7.2 and 7.3, we find

(7.5) 1− ε ≤
∑

Θ∈Tor�Λ

1

[NΓ◦
Λ
(Θ) : Θ]

≤ 1

1− ε

for any sufficiently general Γ. On the other hand, every Θ is contained in a unique
maximal torus T ⊂ G; hence NΓ◦

Λ
(Θ)/Θ is a subgroup of the associated Weyl group

NG(T )/T . The order m of this Weyl group is fixed, and we deduce

(7.6)
∑

Θ∈Tor�Λ

1

[NΓ◦
Λ
(Θ) : Θ]

∈ 1

m
· Z.

Taking 0 < ε < 1
m+1 , the desired equality follows from (7.5) and (7.6). �

Corollary 7.7. Under the hypotheses of Proposition 7.4 we have∑
Θ∈TorΛ

∣∣Θ∣∣ =
∣∣Γ◦

Λ

∣∣.
Proof.∑
Θ∈TorΛ

∣∣Θ∣∣ =
∑

Θ∈Tor�Λ

|Γ◦
Λ|

|NΓ◦
Λ
(Θ)| ·

∣∣Θ∣∣ =
∣∣Γ◦

Λ

∣∣ · ∑
Θ∈Tor�Λ

1

[NΓ◦
Λ
(Θ) : Θ]

Prop. 7.4
=

∣∣Γ◦
Λ

∣∣.
�
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Unipotent elements. Now we are in a position to give a precise formula for the
number of unipotent elements in any sufficiently general Γ. The induction procedure
forces us to prove the analogue for all Γ◦

Λ as well.

Theorem 7.8. Assume that Γ is sufficiently general. Then for any toric subset
Λ ⊂ Γ the number of unipotent elements in Γ◦

Λ is equal to the number of maximal
toric subgroups in Γ◦

Λ.

Proof. We use induction on dimG◦
Λ. The starting point is the case that G◦

Λ is a
maximal torus. Here the assertion is obvious, because a toric subgroup contains
precisely one unipotent element, namely the identity. So assume that the assertion
is known in dimension < dimG◦

Λ. Then it holds with Λ∪{γ} in place of Λ, for any
semisimple element γ ∈ Γ◦

Λ outside the center Z(G◦
Λ).

For any element g ∈ G◦
Λ consider the Jordan decomposition g = su. If g is in

Γ◦
Λ, so are s and u, for the following reason. Recall that Γ◦

Λ is a finite group. Thus
if the base field has characteristic zero, the unipotent part u must be trivial, and
both u = 1 and s = g are in Γ◦

Λ. In characteristic p > 0 the Jordan decomposition
coincides with the decomposition into the prime-to-p part and the p-part inside Γ◦

Λ.
Now we count the elements of Γ◦

Λ by separating their semisimple and unipotent
parts, in the following way. The second equality uses Proposition 7.1 (b) and (c)
and the induction hypothesis:∣∣Γ◦

Λ

∣∣ = ∣∣Γ◦
Λ ∩ Z(G◦

Λ)
∣∣ · ∣∣(Γ◦

Λ)
un
∣∣+ ∑

s∈Γ◦
Λ�Z(G◦

Λ)
semisimple

∣∣Γun
Λ∪{s}

∣∣

=
∣∣Γ◦

Λ ∩ Z(G◦
Λ)

∣∣ · ∣∣(Γ◦
Λ)

un
∣∣+ ∑

s∈Γ◦
Λ�Z(G◦

Λ)
semisimple

( ∑
Θ∈TorΛ∪{s}

1

)

=
∣∣Γ◦

Λ ∩ Z(G◦
Λ)

∣∣ · ∣∣(Γ◦
Λ)

un
∣∣+ ∑

Θ∈TorΛ

( ∑
s∈Θ�Z(G◦

Λ)

1

)

=
∣∣Γ◦

Λ ∩ Z(G◦
Λ)

∣∣ · ∣∣(Γ◦
Λ)

un
∣∣+ ∑

Θ∈TorΛ

(∣∣Θ∣∣− ∣∣Θ ∩ Z(G◦
Λ)

∣∣)

=

( ∑
Θ∈TorΛ

∣∣Θ∣∣)+
∣∣Γ◦

Λ ∩ Z(G◦
Λ)

∣∣ ·
(∣∣(Γ◦

Λ)
un
∣∣− ∑

Θ∈TorΛ

1

)
.

By Corollary 7.7 the first summand on the right-hand side equals the left-hand side.
Thus ∣∣(Γ◦

Λ)
un
∣∣ = ∑

Θ∈TorΛ

1,

as desired. �

Regular unipotent elements. An element of G is unipotent if and only if its
characteristic polynomial in any given faithful representation is a power of X − 1.
Clearly this is a Zariski-closed condition in any family, so the set of unipotent
elements G un is a constructible family of subvarieties of G . It is fiberwise irreducible
of dimension dimG− rankG, so Theorem 4.2 implies∣∣Γun

∣∣ ≤ c · qdimG−rankG
Γ
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if Γ is sufficiently general, where c is a constant depending only on Φ. Theorem 7.8
implies the corresponding lower bound:

Proposition 7.9. For any sufficiently general Γ we have∣∣Γun
∣∣ ≥ 1

c0
· qdimG−rankG

Γ .

Proof. ∣∣Γun
∣∣ Thm. 7.8

=
∑

Θ∈Tor∅

1

=
∑

Θ∈Tor�∅

|Γ|
|NΓ(Θ)|

=
∑

Θ∈Tor�∅

qdimG
Γ

[NΓ(Θ) : Θ] · |Θ|

Thm. 6.2
≥

∑
Θ∈Tor�∅

1

[NΓ(Θ) : Θ]
· qdimG

Γ

c0 · qrankG
Γ

Prop. 7.4
=

1

c0
· qdimG−rankG

Γ .

�

Corollary 7.10. Any sufficiently general finite subgroup Γ ⊂ G contains a regular
unipotent element.

Proof. It is well known (see, e.g., [18, Theorem 4.13]) that the nonregular unipotent
elements of a semisimple group form a nowhere dense closed subset of the set of
all unipotent elements. It follows from Proposition 1.8 that the set of nonregular
unipotent elements is a constructible family of subvarieties of G un of dimension
< dimG − rankG. Thus, by Theorem 4.2 and Proposition 7.9 the number of
nonregular unipotent elements of Γ is less than or equal to

c · qdimG−rankG−1
Γ ≤ cc0

qΓ
·
∣∣Γun

∣∣
for some constant c. On the other hand, qΓ > cc0 for sufficiently general Γ, by
Proposition 6.1. �

Corollary 7.11. If Γ ⊂ G is a sufficiently general finite subgroup, the characteristic
of the base field of G divides |Γ|. In particular it is nonzero.

Proof. The order of any nontrivial unipotent element is a power of the characteris-
tic. �

Remark: Jordan’s theorem. At this point, we have the main ingredients nec-
essary to reprove Jordan’s classical Theorem 0.1 in a purely algebraic manner. In
fact, we can prove a slightly more general result, covering all finite subgroups of
GLn(k) whose order is not divisible by the characteristic of k. We remark that
Jordan’s original proof bears some resemblance to ours. Consider a finite subgroup
Γ ⊂ GLn(k) of order not divisible by p = char(k) ≥ 0. Suppose that Γ is con-
tained in a connected algebraic subgroup H ⊂ GLn,k. If H possesses a simple
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factor group G, we can identify G with a fiber of the above constructible family
G → SpecZ, so by Corollary 7.11 the image of Γ in G is contained in an algebraic
subgroup Ht � G which belongs to a constructible family. By Proposition 1.4 the
number of connected components of Ht is bounded. Thus after replacing H by the
identity component of the inverse image of Ht, and Γ by a subgroup of bounded
index, we have decreased the dimension of H. After fewer than n2 such steps, the
group H is connected solvable, and the rest of the argument is straightforward. For
more details, see Section 12.

8. Minimal unipotent elements

Let Φ, G , and Γ ⊂ G = Gs be as before. The regular unipotent elements of G
lie at one end of the range of all types of unipotent elements. At the other end we
find the identity, followed by the elements of the center of the unipotent radical of a
Borel subgroup of G. For the purposes of this section the latter elements are called
minimal unipotent. In most cases, they lie in a canonical one-parameter additive
subgroup associated to a root of G.

In this section we begin with a regular unipotent element of Γ, whose existence
is guaranteed by Corollary 7.10, and manufacture minimal unipotent elements in
Γ using centralizers and maximal toric subgroups. We will show that Γ contains
a sufficiently large subgroup which consists purely of minimal unipotent elements,
and which is (in a natural way) a vector space of dimension one over a finite field.
This fact will be exploited later on.

In the following, we consider a Borel subgroup B ⊂ G and its unipotent radical U .
Recall that k denotes the base field of G, and p its characteristic.

Structure of the unipotent radical. Choose any maximal torus T ⊂ B, so that
the root system of G with respect to T is Φ. Let Δ ⊂ Φ+ ⊂ Φ denote the subsets
of simple, resp. positive, roots for the given Borel subgroup B. To every root
α ∈ Φ there is associated a root group Ga,k

∼= Uα ⊂ G on which T acts through the
character α. It is known that every algebraic subgroup of U which is normalized
by T is a product of root groups, which is a direct product of algebraic varieties
([17, Prop. 28.1]). In particular, we have

(8.1) U =
∏

α∈Φ+

Uα,

the product being taken in any order.

Proposition 8.2. The commutator subgroup of U is

Uder =
∏

α∈Φ+�Δ

Uα.

Proof. Let U ′ denote the right-hand side of this equality. The commutator of Uβ

and Uγ for any two nonproportional roots lies in the product of all Uiβ+jγ , where
i and j are positive integers such that iβ + jγ is a root. The precise formulas are
well known; see, for instance, [17, Props. 33.3 (b), 33.4 (b), 33.5 (b)]. It follows
immediately that U ′ is a subgroup of U which contains Uder.

To prove equality consider any nonsimple positive root α. Choose a simple root
β such that α − β is also a positive root. The root system Ψ := Φ ∩ (Zα ⊕ Zβ) is
then irreducible of rank two. The simple roots in Ψ+ := Ψ∩Φ+ are β and another
root γ, and α is a linear combination of these with positive integral coefficients.
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Now the formulas of [loc. cit.] show that the commutators [Uβ , Uγ ] have nontrivial
components in Uα. Since everything is normalized by T , it follows that Uα ⊂ Uder,
as desired. �

In the following, we will call (p,Φ) nonstandard whenever Φ possesses roots of
different lengths whose square length ratio is p. Otherwise it is called standard.
By the classification of root systems, the nonstandard cases are precisely (p,Φ) =
(2, Bn) and (2, Cn) for n ≥ 2, as well as (2, F4) and (3, G2). Now we can describe
the center of U :

Proposition 8.3. In the standard case we have Z(U) = Uα, where α is the highest
positive root. In the nonstandard case we have Z(U) = Uα�

Uαs
, where α� is the

highest long root and αs the highest short root.

Proof. Since Z(U) is a characteristic subgroup of U , it is normalized by T and
therefore a product of root groups. Thus we must find all positive roots α such
that Uα commutes with Uβ for all β ∈ Φ+. These subgroups always commute when
α + β is not a root. In particular, we have Uα ⊂ Z(U) whenever α is the highest
positive root.

Suppose that α is not the highest positive root, and consider β ∈ Φ+ such that
α + β is a root. Then the root system Ψ := Φ ∩ (Zα ⊕ Zβ) is irreducible of rank
two. The formulas [17, Props. 33.3 (b), 33.4 (b), 33.5 (b)] show that Uα and Uβ

commute in the given characteristic p if and only if |α + β|2 = p · |α|2 = p · |β|2.
In particular, we must have (p,Ψ) = (2, B2) or (3, G2). In that case, moreover, Uα

commutes with Uγ for all γ ∈ Ψ+ := Ψ ∩ Φ+ if and only if α is the highest short
root in Ψ.

This rank two analysis shows that there is another candidate for α only when
(p,Φ) is nonstandard, and that α must be short. If it is not the highest short root
in Φ, then there exists a simple root β with (α, β) < 0, so that sβ(α) � α is a
higher short root in Ψ. From the rank two case we then know that Uα is not in the
center. By contrast, the highest short root in Φ is also the highest short root in Ψ
for any β as above. Thus its root group is in the center of U , as desired. �

Normalizers and centralizers. We will need the following information on nor-
malizers and centralizers of minimal unipotent elements. Clearly the nontrivial
elements of any root group form a single orbit under T . In the nonstandard case,
the fact that α� and αs are nonproportional implies that the elements with non-
trivial component in both Uα�

and Uαs
form the unique open T -orbit in Z(U). In

all cases, the nontrivial B-invariant subgroups of Z(U) are precisely Z(U) and the
root groups inside Z(U).

Proposition 8.4. Consider a nontrivial B-invariant subgroup V ⊂ Z(U).

(a) The normalizer NG(V ) is a parabolic subgroup of G, and its action on V
factors through multiplicative characters corresponding to the roots occur-
ring in V . Its orbits on V therefore coincide with the orbits under T .

In the following let v denote any element of the open orbit in V .

(b) The centralizer Gv is connected and equal to the centralizer GV .
(c) The centralizer of GV in G is equal to V .
(d) Any element g ∈ G with gvg−1 ∈ V lies already in NG(V ).
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Proof. (a) Since NG(V ) contains B, it is a parabolic subgroup of G. In particular
it is connected. The kernel of the conjugation action NG(V ) → Aut(V ) contains
the unipotent radical of B, which is also a maximal connected unipotent subgroup
of NG(V ). Thus the image of this homomorphism is a connected linear algebraic
group without nontrivial connected unipotent subgroups. It is therefore a torus.
The corresponding characters of NG(V ) are uniquely determined by their restric-
tions to T , which are precisely the roots occurring in V . This proves (a).

For (b) recall that U is a maximal connected unipotent subgroup of G. Since
it lies inside Gv, it is also a maximal connected unipotent subgroup of Gv. Its
normalizer in G is B, so its normalizer in Gv is B ∩ Gv. Note that the identity
component of this intersection is a Borel subgroup of Gv. The fact that any two
maximal connected unipotent subgroups of Gv are conjugate under G◦

v implies

Gv = (B ∩Gv) ·G◦
v.

Now B ∩ Gv = U · Tv, and Tv is just the intersection of the kernels of the roots
occurring in V . It therefore centralizes V .

We claim Tv is connected. Indeed, if {α1, . . . , αk} are roots of any adjoint
semisimple group G with respect to any maximal torus T , all belonging to the same
base, then the intersection of the kerαi is connected. This statement is equivalent
to the claim that the intersection of the root lattice with the Q-span of {α1, . . . , αk}
coincides with the Z-span of the same set of roots. Suppose β = a1α1 + · · ·+ akαk

lies in the root lattice. For each i, there exists a fundamental dominant coweight α∗
i

such that α∗
i (αj) is 0 or 1 if i �= j or i = j, respectively. Moreover α∗

i (β) ∈ Z. Thus,
ai ∈ Z. From this general statement, it is clear that if k = 1, kerα1 is connected.
In the nonstandard case, it suffices to observe that there exists a base to which αs

and −αl both belong.
Thus B ∩ Gv is connected and equal to B ∩ GV . On the one hand this shows

that Gv is connected and that B ∩ Gv is a Borel subgroup of Gv. On the other
hand it shows that V commutes with a Borel subgroup of Gv, and therefore with
all of Gv (see [17, Prop. 21.4A]). This proves (b).

For (c) we first determineGU . To begin with, note thatGU is obviously contained
in NG(U) = B. Next, the action of B = TU on U/Uder factors through a faithful
action of T . Therefore GU ⊂ U . As the centralizer of any group in itself is just its
center, we find GU = Z(U). Since GV ⊃ U , this equality implies GGV

⊂ Z(U). If
V �= Z(U), and α denotes the root of T on V , the kernel of α acts nontrivially on
the other root group in Z(U). This shows that GGV

⊂ V . The reverse inclusion
holds automatically, which proves (c).

Finally, if gvg−1 ∈ V , assertion (b) implies Gv = GV ⊂ Ggvg−1 = gGvg
−1.

This inclusion must be an equality, so g normalizes Gv = GV . Thus by (c) it
normalizes V , which proves (d). �

Regular elements in a Borel subgroup. Now we fix a regular unipotent element
u ∈ Γ, whose existence is guaranteed by Corollary 7.10, and assume u ∈ B. By
counting regular unipotent elements in Γ∩U we will find sufficiently many regular
semisimple elements in Γ ∩B. We begin with the following abstract estimate:

Lemma 8.5. For every positive integer r there is a constant 0 < εr ≤ 1 with the
following property. Consider any finite group A and subgroups A1, . . . , Ar whose
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union is not A. Then ∣∣A� (A1 ∪ . . . ∪ Ar)
∣∣ ≥ εr ·

∣∣A∣∣.
Proof. Let ε1 := 1/2 and εr :=

(
εr−1/2

)r
for every r ≥ 2. The lemma is obvious

for r = 1, so we proceed by induction. Without loss of generality we may suppose
that Ar is the smallest of the given subgroups. If |Ar| ≤ (εr−1/2) · |A|, then∣∣A� (A1 ∪ . . . ∪Ar)

∣∣ ≥ ∣∣A� (A1 ∪ . . . ∪ Ar−1)
∣∣− ∣∣Ar

∣∣
≥

(
εr−1 −

εr−1

2

)
·
∣∣A∣∣

≥ εr ·
∣∣A∣∣

by the induction hypothesis. Otherwise we have[
A : A1 ∩ . . . ∩Ar

]
≤

[
A : A1

]
· · ·

[
A : Ar

]
≤

( 2

εr−1

)r

=
1

εr
.

As A � (A1 ∪ . . . ∪ Ar) is nonempty and a union of cosets of A1 ∩ . . . ∩ Ar, its
proportion is at least εr. �

Let U run denote the set of regular unipotent elements in U . By assumption
Γ ∩ U run is nonempty. In fact:

Lemma 8.6. If Γ is sufficiently general, we have∣∣Γ ∩ U run
∣∣ ≥ εrankG ·

∣∣Γ ∩ U
∣∣,

where εr is defined as in Lemma 8.5.

Proof. An element of U is regular unipotent if and only if, in the decomposition 8.1,
the component in each simple root group is nontrivial (see [18, Prop. 4.1, Thm. 4.6]).
Let A be the image of Γ ∩ U in the quotient group U/Uder, which is isomorphic to
GrankG

a,k by Proposition 8.2. Then an element of Γ ∩ U is regular unipotent if and
only if its image in A does not lie in a coordinate hyperplane. The proportion of
such elements is estimated in Lemma 8.5. �

Lemma 8.7. If Γ is sufficiently general, we have[
Γ ∩B : Γ ∩ U

]
≥ εrankG

c30
· qrankG

Γ .

Proof. We decompose[
Γ ∩B : Γ ∩ U

]
=

[Γ ∩B : Γu] · |Γu|
|Γ ∩ U |

=
|OΓ∩B(u)|
|Γ ∩ U run| ·

|Γ ∩ U run|
|Γ ∩ U | ·

∣∣Γu

∣∣,
and deal separately with each term on the right-hand side. First recall that all
regular unipotent elements of G are conjugate and that each one lies in a unique
Borel subgroup (see [18, Thm. 4.6]). Thus any two elements of U run are conjugate
and, since B is its own normalizer, any element of G that conjugates one into the
other lies in B. Now Theorem 6.6 implies that Γ ∩ U run consists of at most c20
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conjugacy classes under Γ∩B. We may assume without loss of generality that the
conjugacy class of u is the largest of these. Then the first term on the right-hand
side of 8 is at least 1/c20.

The second term is bounded below by Lemma 8.6. The third term is at least
qdimGu

Γ /c0 by Theorem 6.2. Since u is regular unipotent, we have dimGu = rankG,
and the desired estimate follows. �

Now we can find many semisimple elements in Γ ∩B:

Proposition 8.8. If Γ is sufficiently general, there exists a maximal torus T ⊂ B
with ∣∣Γ ∩ T

∣∣ ≥ εrankG

c30
· qrankG

Γ .

Proof. Since Γ ∩ U is a p-group which is normal in Γ ∩ B of index prime to p, it
possesses a semidirect complement. As B is connected solvable, this complement
is contained in a maximal torus of B (cf. [17, Prop. 19.4] or [1, Thm. 10.6(5)]). �
Minimal unipotent elements. Using the preceding estimate we can describe
Z(U) as the centralizer of a subset of Γ. Let T be as in Proposition 8.8.

Lemma 8.9. If Γ is sufficiently general, the centralizer of OΓ∩T (u) in G is Z(U).

Proof. Clearly the desired centralizer contains Z(U). Assume that it possesses an
element g ∈ G� Z(U). Then, dually, the conjugacy class OΓ∩T (u) is contained in
the centralizer Ug. If f : T → U denotes the conjugation map t 
→ tut−1, this in
turn means that Γ∩T ⊂ f−1(Ug). Here f−1(Ug) is a subvariety of T which belongs
to a constructible family since U , g, u, and T do so.

We claim that f−1(Ug) �= T . Indeed, equality would mean that OT (u) is con-
tained in Ug. Since u is regular unipotent, its image in U/Uder lies in the unique
open T -orbit. Therefore OT (u) generates U modulo Uder. But Uder is the commu-
tator subgroup of U , and U is a nilpotent group, so OT (u) generates U . Since, by
construction, Ug is a proper subgroup of U , it cannot contain OT (u). This proves
the claim.

If Γ ∩ T ⊂ f−1(Ug), Theorem 4.2 now shows |Γ ∩ T | ≤ c · qrankG−1
Γ for some

constant c. Since the size of Γ ∩ T is also bounded below by Proposition 8.8, we
obtain an upper bound for qΓ. But this contradicts Proposition 6.1 if Γ is sufficiently
general. �

Plugging Lemma 8.9 into Theorem 6.2, we deduce:

Corollary 8.10. If Γ is sufficiently general, we have

1

c0
· qdimZ(U)

Γ ≤
∣∣Γ ∩ Z(U)

∣∣ ≤ c0 · qdimZ(U)
Γ .

Let us note in passing that one can manufacture minimal unipotent elements
also by taking repeated commutators of elements of OΓ∩T (u).

Decomposing further. With Corollary 8.10 we have already constructed many
minimal unipotent elements in Γ. In the nonstandard case, we can sometimes
specialize further. Namely, suppose that B ⊂ G is any Borel subgroup and U
is its unipotent radical. Consider a B-invariant subgroup V ⊂ Z(U) such that
Γ ∩ V �= {1}. We begin by characterizing V as the centralizer of a subset of Γ, as
in Lemma 8.9:
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Lemma 8.11. If Γ is sufficiently general, the centralizer of Γ ∩GV in G is V .

Proof. Note first that GΓ∩GV
contains GGV

, which equals V by Proposition 8.4 (c).
For the reverse inclusion we study the size of Γ∩GV . From Proposition 8.4 (b) we
know that GV = GΓ∩V . Thus Theorem 6.2 implies that

(8.12)
∣∣Γ ∩GV

∣∣ =
∣∣ΓΓ∩V

∣∣ ≥ 1

c0
· qdimGV

Γ

whenever Γ is sufficiently general. Assume that there exists an element g ∈ GΓ∩GV
�

V . Then g commutes with Γ ∩ GV ; hence, dually, Γ ∩ GV ⊂ Gg. The assumption
g �∈ V = GGV

means that g does not commute with GV , so that GV �⊂ Gg.
Therefore GV ∩ Gg is a proper subgroup of GV . Since by Proposition 8.4 (b) the
latter is connected, we must have dim(GV ∩ Gg) < dimGV . Now Theorem 4.2
implies that∣∣Γ ∩GV

∣∣ =
∣∣Γ ∩GV ∩Gg

∣∣ ≤ c · qdim(GV ∩Gg)
Γ ≤ c

qΓ
· qdimGV

Γ ,

where c is fixed and Γ is sufficiently general. Comparing this with the lower
bound (8.12), we obtain an upper bound for qΓ. This contradicts Proposition 6.1
if Γ is sufficiently general. Therefore GΓ∩GV

= V , as desired. �

Combining Lemma 8.11 with Theorem 6.2, we deduce:

Corollary 8.13. If Γ is sufficiently general, we have

1

c0
· qdimV

Γ ≤
∣∣Γ ∩ V

∣∣ ≤ c0 · qdimV
Γ .

Finding a finite field. In the following we abbreviate d := dimV and impose:

Assumption 8.14. d is minimal for all possible B and V with Γ ∩ V �= {1}.

Let FV denote the image of the group ring Fp[NΓ(V )] in End(V ). Proposi-
tion 8.4 (a) implies that this is a finite Fp-subalgebra of kd.

Proposition 8.15. The ring FV is a field.

Proof. If not, we must have d = 2, and any zero-divisor x ∈ FV lies in one of the
factors of k2. Decomposing under x we deduce Γ∩V = (Γ∩Uα�

)⊕ (Γ∩Uαs
). This

contradicts Assumption 8.14. �

Thus Γ ∩ V is a finite vector space over FV . Note the general fact:

Lemma 8.16. Consider a finite nonzero vector space M over a finite field F.
Suppose there is a constant n such that

(a) the number of F×-orbits on M � {0} is at most n, and
(b) |M | ≥ n2.

Then dimF M = 1.

Proof. Abbreviate q := |F| and r := dimF M , and assume r ≥ 2. The number of
F×-orbits on M � {0} is then

qr − 1

q − 1
= qr−1 + · · ·+ 1 > qr−1.

Thus (a) implies n2 > q2(r−1) ≥ qr = |M |, which contradicts (b). �
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Now we can prove the following crucial result:

Theorem 8.17. If Γ is sufficiently general, we have dimFV
(Γ ∩ V ) = 1 and, in

particular,
1

c0
· qdΓ ≤

∣∣FV

∣∣ ≤ c0 · qdΓ.

Proof. The second assertion follows from the first together with Corollary 8.13.
For the first assertion note that, by the minimality of V , all nontrivial elements of
Γ ∩ V lie in the open T -orbit of V . Therefore they all lie in the same G-conjugacy
class. By Theorem 6.6 they fall into at most c20 conjugacy classes under Γ. By
Proposition 8.4 (d) two such elements are conjugate under Γ if and only if they are
conjugate under NΓ(V ). Since NΓ(V ) acts through a subgroup of F×

V , the number

of F×
V -orbits on Γ∩V �{1} is ≤ c20. On the other hand Γ∩V is arbitrarily large, by

Corollary 8.13 and Proposition 6.1. Thus the theorem follows from Lemma 8.16. �

Notation. We fix some notation to be used in the following sections. The order
of FV is denoted by pr. If d = 2 we suppose that the first component of FV ⊂ k2

corresponds to the action on Uα�
, the second to the action on Uαs

. As FV is a finite
field, the two projection maps FV → k must differ by a Frobenius twist. Thus the
elements of FV have the form (x, xpe

) for a unique integer 0 ≤ e < r.

9. Frobenius map

We keep the notation of the preceding sections. As a result of Proposition 8.15 we
have associated to any sufficiently general Γ a certain finite field FV of characteristic
p > 0, and by Theorem 8.17 the size of Γ is roughly that expected of a finite group
of Lie type over FV . We will establish that Γ indeed has this form.

Strategy of proof. The first problem is to translate the internal characterization
of FV within Γ into external information on the coefficients in representations. This
is achieved by showing that the traces of certain elements of Γ in a suitable algebraic
representation of G lie in FV . By combining this information for many elements
of Γ one can then show that some other algebraic representation descends to FV

when restricted to Γ. We will give a precise formulation of this intermediate result.
By a model over FV of a kd-module M we mean an FV -submodule M0 ⊂ M such
that the natural map M0 ⊗FV

kd −→ M is an isomorphism.

Theorem 9.1. There exists a nontrivial representation σ of G on a kd-module M
of finite type, which belongs to a constructible family of representations of G , such
that, for any sufficiently general finite subgroup Γ ⊂ G, there exists a Γ-invariant
model M0 of M over FV .

Our method to prove this in general depends on knowing Theorem 0.5 already
in the case rankG = d, for which we therefore need a different argument. We call
this the basic case and handle it in Section 10. The general case will be treated
in Section 11. In the remainder of this section we show how Theorem 9.1 implies
Theorem 0.5 for the given group G .

Construction of Frobenius. Let us view the automorphism group Autkd(M) as
an algebraic group over k. If d = 1, the model M0 determines a standard Frobenius
map F : Autk(M) → Autk(M) relative to the finite field FV .
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In the case d = 2, let M = M� ⊕ Ms be the decomposition according to the
two factors of k2. If i�, is : FV → k denote the two projection maps, recall that
is = Frobpe ◦ i�. Thus the choice of M0 determines an isomorphism

Ms
∼= M0 ⊗FV ,is k

∼=
(
M0 ⊗FV ,i� k

)
⊗k,Frobpe

k ∼= M� ⊗k,Frobpe
k,

and hence an isogeny

F : Autk(M�) −→ Frob∗pe Autk(M�) ∼= Autk(Ms).

Similarly, we have i� = Frobpr−e ◦ is and an isogeny

F : Autk(Ms) −→ Frob∗pr−e Autk(Ms) ∼= Autk(M�).

Taken together we find an isogeny F on Autk(Ms)×Autk(M�) = Autkd(M) whose
square is a standard Frobenius map relative to the finite field FV . In both cases
Theorem 9.1 implies, for all γ ∈ Γ,

(9.2) F ◦ σ(γ) = σ(γ).

Lemma 9.3. If Γ is sufficiently general, then F (σ(G)) = σ(G).

Proof. We claim that σ−1(F (σ(G))) belongs to a constructible family of algebraic
subgroups of G . To prove this, consider first the case d = 1. The constructibility
assumption in Theorem 9.1 means that there is a vector bundle M on a scheme T
of finite type over SpecZ, and a homomorphism σ : G ×SpecZ T −→ AutOT (M ),
such that M = Mt for some t ∈ T (k) with the induced representation of G =
G (k). As σ(G) is Zariski-closed in Aut(M), by Proposition 1.7 it belongs to a
constructible family of algebraic subgroups H of AutOT (M ). Without loss of
generality we may assume that H is indexed by the same scheme T , so that
σ(G) = Ht. Let Frobpr : k → k denote the Frobenius map x 
→ xpr

, and t′ ∈ T (k)
the image of t under Frobpr . The choice of M0 corresponds to an identification
Mt′ = Mt ⊗k,Frobpr

k ∼= Mt = M , resulting in a commutative diagram

Autk(Mt′) ∼= Autk(Mt) = Autk(M)

Ht′

∪
∼ �� F (Ht)

∪
= F (σ(G)).

∪

Here the isomorphism Mt′
∼= Mt is indexed by a point on the constructible family

Isom (pr∗1 M , pr∗2 M ) over (t, t′) ∈ T ×T . Therefore F (σ(G)) ⊂ Autk(M) belongs
to a constructible family of algebraic subgroups, and so does σ−1(F (σ(G))) ⊂ G,
as claimed. In the case d = 2 the proof is analogous.

Now (9.2) implies that σ−1(F (σ(G))) contains Γ. Thus, if Γ is sufficiently gen-
eral, this subgroup must be equal to G. This implies that σ(G) ⊂ F (σ(G)), and
equality follows from the fact that both sides are irreducible of the same dimen-
sion. �

Lemma 9.4. If Γ is sufficiently general, there exists a Frobenius map F : G → G
with qdF = |FV |, so that Γ ⊂ GF .

Proof. As σ is a nontrivial representation, and G is simple adjoint, the induced map
to the adjoint group G → σ(G)ad is a totally inseparable isogeny. From Lemma 9.3
and the classification of isogenies of simple adjoint groups (see [28, Thm. 1.7]) we
deduce that there is an isogeny F : G → G satisfying σ ◦F = F ◦σ. Moreover, F d is
a standard Frobenius map relative to the field FV ; hence qdF = qFd = |FV |. On the
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other hand, the fact that σ is injective on k-valued points and the property (9.2)
imply the desired inclusion Γ ⊂ GF . �

Proof of Theorem 0.5. Combining Lemma 9.4 with Theorem 8.17 we find

1
d
√
c0

· qΓ ≤ qF ≤ d
√
c0 · qΓ.

Thus using Theorem 3.4 (d) we deduce∣∣GF
∣∣ ≤ qdimG

F ≤ c
dim G

d
0 · qdimG

Γ = c
dim G

d
0 ·

∣∣Γ∣∣.
Therefore the index [

(GF )der : Γ ∩ (GF )der
]
≤

[
GF : Γ

]
is bounded, and so is the index of the largest normal subgroup of (GF )der that is
contained in Γ. On the other hand, if Γ is sufficiently general, Proposition 6.1 says
that qΓ and hence qF is arbitrarily large. Thus by Theorem 3.4 (a), (b), and (d) the
group (GF )der is simple and arbitrarily large. Therefore Γ contains (GF )der; hence(
GF

)der ⊂ Γ ⊂ GF , as desired. This finishes the proof of Theorem 0.5 modulo
Theorem 9.1. �

Notation: The adjoint representation. We fix some notation to be used in the
next two sections. Observe that the Lie algebra of G is a fiber of the vector bundle
LieG → SpecZ; hence the adjoint representation of G belongs to a constructible
family. The G-invariant subspaces are known completely, by [13], [14], or [28,
Prop. 1.11].

If dimZ(U) = 1, there is a unique simple subquotient on which G acts non-
trivially. The representation on it is denoted by ρ. The root system being fixed,
LieG is already irreducible whenever p � 0. Thus by replacing SpecZ by a
stratification consisting of a union of a dense open subset and a finite number of
points SpecFp, we see that ρ belongs to a constructible family of representations.

If dimZ(U) = 2, there are precisely two simple subquotients with nontrivial G-
action, one of which contains copies of all long root spaces, the other of all short root
spaces. The corresponding representations of G are denoted by ρ� and ρs. Since
this case arises in at most one characteristic p for each Φ, these representations
form a tautological constructible family over SpecFp ⊂ SpecZ.

If dimZ(U) = d = 2, we also view ρ := (ρ�, ρs) as a representation over k2. If
dimZ(U) = 2, but d = 1, we let ρ := ρ� if V = Uα�

, and ρ := ρs if V = Uαs
.

10. Traces in the basic case

In this section we prove Theorem 9.1 in the basic case rankG = d. So this
assumption, as well as the other notation of the preceding sections, will be in force.
Note that either d = 1 and Φ = A1, or d = 2 and (p,Φ) is (2, B2) or (3, G2).

The rank one case. Here we have G ∼= PGL2, and everything can be deduced
directly from the following classical theorem of Dickson [8, §§260–261]:

Theorem 10.1. Consider a field k and a finite subgroup Γ ⊂ PGL2(k). Then
either

(a) the inverse image of Γ in GL2(k) acts reducibly on k2;
(b) Γ is a dihedral group;
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(c) Γ ∼= A4, S4, A5; or
(d) p := char(k) is positive, and after a suitable change of basis we have Γ =

PGL2(Fpr ) or PGL2(Fpr )der for some r ≥ 1, where the latter group is
simple.

The subgroups in (a) through (c) are special: they lie in a Borel subgroup, or in
the normalizer of a maximal torus, or have bounded order. Thus any sufficiently
general subgroup must be of type (d), which proves Theorem 0.5 in the case Φ = A1.

However, our method in the cases (2, B2) or (3, G2) adapts very easily to the
A1-case as well. For the sake of completeness we therefore include an independent
proof based on the ideas of this paper. The reader willing to ignore the existence of
Suzuki and Ree groups in characteristics 2 and 3 may skip the rest of this section.

The whole basic case. The main idea is that the Γ-conjugacy classes of elements
of Γ∩B contribute sufficiently many elements with trace in FV . Consider a maximal
torus T ⊂ B which contains many elements of Γ, as in Proposition 8.8, and let Λ ⊂ Γ
be the set of elements which are conjugate to an element of Γ ∩ T rss.

Proposition 10.2. There is a constant ε > 0 such that, whenever Γ is sufficiently
general, we have |Λ| ≥ ε · |Γ|.

Proof. If both t and gtg−1 lie in T rss, we must have g ∈ NG(T ). Therefore∣∣Λ∣∣ = [
Γ : NΓ(T )

]
·
∣∣Γ ∩ T rss

∣∣ = |Γ|
[NΓ(T ) : Γ ∩ T ]

· |Γ ∩ T rss|
|Γ ∩ T | .

The denominator in the first fraction is at most the order of the Weyl group of Φ;
hence it is bounded. The second ratio can be bounded below by any constant less
than 1, using Proposition 7.3. The desired estimate follows. �

Recall that ρ is a representation over kd; hence its trace takes values in kd.

Proposition 10.3. If Γ is sufficiently general, for every γ ∈ Λ we have Tr ρ(γ) ∈
FV .

Proof in the rank one case. As the assertion is invariant under conjugation, we
may assume γ ∈ Γ ∩ T rss. Then γ acts on U ∼= Ga and LieU through the same
scalar x, and the construction of FV implies x ∈ FV . The total trace is x+1+ x−1

if the adjoint representation of PGL2,k is irreducible, and x + x−1 otherwise. It
therefore also lies in FV , as desired. �

The rank two case. This part is more involved. It requires a closer look at Γ∩B
from the viewpoint of the geometry of roots, combined with some arithmetic of
finite fields. To begin with, note that the positive roots are

Case (2, B2):

��
�

�
�

��

�
�

�
�

�� �

αs2αs − α� α�

α� − αs
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Case (3, G2):

���������	










�

�

�
�

�
��


����������

�

α�

2α� − 3αs α� − αs αs 3αs − α�

2αs − α�

Recall that V = Uα�
Uαs

. Let W denote the subgroup generated by V and the next
two lower root groups. Thus in the case (2, B2) we set W := U ; in the case (3, G2)
we set W := U ′. Then

(10.4) W/V ∼= Upαs−α�
× Uα�−αs

.

Lemma 10.5. There exists an element w ∈ Γ∩W whose component in each factor
of W/V is nontrivial.

Proof. In the case (2, B2) any regular unipotent element in Γ∩U has this property.
In the case (3, G2) we take a regular unipotent element u ∈ Γ ∩ U and an element
γ ∈ Γ ∩ T whose action on U/U ′ is not scalar. The existence of the latter is
guaranteed by Proposition 8.8. The commutator of u and γuγ−1 then has the
desired property, by the formulas in [17, Prop. 33.5 (b)]. �

Next recall from Proposition 8.4 (a) that NG(V ) is a parabolic subgroup. By
case analysis we easily find NG(V ) = B. By the proof of Proposition 8.8 we have
Γ∩B = (Γ∩U)� (Γ∩ T ). Thus, as Γ∩U acts trivially on V , the field FV ⊂ k2 is
generated by the image of Γ ∩ T . Since the root lattice is generated by α� and αs,
the torus T acts faithfully on V . It follows that Γ ∩ T maps isomorphically to a
subgroup of F×

V . In particular it is cyclic, and we choose a generator γ. Let (x, xpe

)

be its image in F×
V . Since |FV | = pr, the order of x in the multiplicative group is a

divisor of pr − 1. We will use the following facts:

Lemma 10.6. If Γ is sufficiently general, then:

(a) pr � 0.
(b) e �≡ 0mod r.
(c) The order of x in k× is at least (pr − 1)/c20.

Proof. (a) follows from Theorem 8.17 and Proposition 6.1. Next recall that Γ ∩ T
is a maximal toric subgroup; hence γ is regular semisimple. Its eigenvalue on the
root α� − αs is x1−pe

, whence (b). Finally, the proof of Theorem 8.17 shows that
the image of Γ ∩ T is a subgroup of F×

V of index at most c20. This implies (c). �
Lemma 10.7. If Γ is sufficiently general, at least one of the following assertions
is true:

(a) xpe+1−1 = xpn

for some integer n ≥ 0.

(b) xpe+1−1 = (x1−pe

)p
n

for some integer n ≥ 0.

Proof. The eigenvalues of γ on Upαs−α�
and Uα�−αs

are xpe+1−1 and x1−pe

, re-
spectively. Thus if (b) fails, the two eigenvalues of γ on W/V are not Frobenius
conjugates of each other. This means that the subring of End(W/V ) generated
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by the action of γ decomposes as in (10.4). Beginning with the element w of
Lemma 10.5 we can therefore manufacture an element of Γ ∩ W whose image in
W/V has a nontrivial component only in Upαs−α�

. In other words, we have found
an element in Γ ∩ (Upαs−α�

V )� V .
The group Upαs−α�

V is commutative. If (a) fails, the eigenvalue of γ on Upαs−α�

is not a Frobenius conjugate of the eigenvalues on V = Uα�
Uαs

. Therefore the
subring of the endomorphism ring End(Upαs−α�

V ) generated by the action of γ
decomposes, and we can find a nontrivial element in Γ ∩ Upαs−α�

. But then we
could have worked from the start with Upαs−α�

in place of V , contradicting As-
sumption 8.14. �

Next we need the following result about greatest common divisors:

Lemma 10.8. Consider any prime p and any integers r, a, a′, b, b′ ≥ 0.

(a) We have (
pr − 1, pa + pa

′ − pb
)

< 2p2r/3,

unless p = 2 and a ≡ a′ ≡ b− 1mod r.
(b) We have (

pr − 1, pa + pa
′ − pb − pb

′)
< 2p3r/4,

unless {amod r, a′ mod r} = {bmod r, b′ mod r}.

Proof. For (a) observe that the left-hand side depends only on a, a′, b modulo r
and is unchanged on replacing these by a+n, a′+n, b+n for any integer n. There
are fewer than r/3 values of n modulo r for which the remainder of a + n modulo
r is greater than 2r/3, and likewise for a′ + n and b+ n. Thus there is at least one
value of n for which all three remainders are ≤ 2r/3. Without loss of generality we

may therefore assume 0 ≤ a, a′, b ≤ 2r/3. This implies
∣∣pa + pa

′ − pb
∣∣ < 2p2r/3. As

we have pa + pa
′
= pb only if a = a′ = b − 1 and p = 2, this shows (a). The proof

of (b) follows the same lines and is left to the reader. �

Lemma 10.9. If Γ is sufficiently general, we have 2e+ 1 = r.

Proof. In the situation of Lemma 10.7 (a) the order of x is a divisor of(
pr − 1, pn + 1− pe+1

)
.

By Lemma 10.8 (a) this is < 2p2r/3 unless p = 2 and n ≡ 0 ≡ e modulo r. Both of
these possibilities are excluded by Lemma 10.6. A similar argument applies in the
situation of Lemma 10.7 (b). Here the order of x is a divisor of(

pr − 1, pe+1 + pe+n − 1− pn
)
.

By Lemma 10.8 (b), this is < 2p3r/4 unless {e+ 1mod r, e+ nmod r} = {0mod r,
nmod r}. The former case is excluded by Lemma 10.6 (a) and (c). As e �≡ 0 modulo
r by Lemma 10.6 (b), we deduce e + 1 ≡ n and e + n ≡ 0 modulo r. This implies
2e+ 1 ≡ 0 modulo r, whence the assertion. �
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Proof of Proposition 10.3 in the rank two case. It suffices to show that

Tr ρs(γ
i) =

(
Tr ρ�(γ

i)
)pe

for every integer i. The weight 0 occurs in both representations with the same
multiplicity, namely multiplicity 0 in the case (2, B2), and multiplicity 1 in the case
(3, G2) (see [28, Prop. 1.11]). Thus we may replace the trace by the sum over all
nonzero weights. In ρ� these are precisely the long roots, in ρs the short roots. So
the desired formula follows if we can match bijectively long roots β� and short roots
βs such that βs(γ) = β�(γ)

pe

. Among positive roots such a matching is given by
the following table:

β� βs β�(γ) βs(γ)

α� αs x xpe

pαs − α� α� − αs xpe+1−1 x1−pe

= (xpe+1−1)p
e

2α� − pαs 2αs − α� x2−pe+1

x2pe−1= (x2−pe+1

)p
e

Here the indicated equalities follow from Lemma 10.9, and the last row applies only
to the case (3, G2). The corresponding matching works for negative roots. This
finishes the proof of Proposition 10.3. �

From traces to matrices. By looking at traces of suitable products in Γ we will
obtain information on all matrix coefficients. First we note the following abstract
result:

Lemma 10.10. Consider a finite group Γ and a subset Λ ⊂ Γ satisfying |Λ| ≥ ε·|Γ|
with ε > 0. Consider a positive integer � and set ε′ := ε�/2. Let Ω be the set of all
tuples (γ1, . . . , γ�) ∈ Γ� with the property∣∣∣∣∣

�⋂
i=1

γ−1
i Λ

∣∣∣∣∣ ≥ ε′ ·
∣∣Γ∣∣.

Then |Ω| ≥ ε′ · |Γ|�.

Proof. We estimate the number of tuples (γ1, . . . , γ�, γ) ∈ Γ�+1 satisfying γiγ ∈ Λ
for all 1 ≤ i ≤ �. Summing first over γ ∈ Γ, this number is equal to∣∣Γ∣∣ · ∣∣Λ∣∣� ≥ ε� ·

∣∣Γ∣∣�+1
= 2ε′ ·

∣∣Γ∣∣�+1
.

On the other hand, summing first over (γ1, . . . , γ�) the tuples in Ω contribute at
most |Ω| · |Γ|. The remaining tuples contribute at most(∣∣Γ∣∣� − ∣∣Ω∣∣) · ε′ ·

∣∣Γ∣∣ ≤ ε′ ·
∣∣Γ∣∣�+1

.

Thus all together we find∣∣Ω∣∣ · ∣∣Γ∣∣+ ε′ ·
∣∣Γ∣∣�+1 ≥ 2ε′ ·

∣∣Γ∣∣�+1
,

whence the lemma. �

Let M be the ring of kd-linear endomorphisms of the representation space of ρ.
In the nonstandard case we have dim ρ� = dim ρs, since rankG = 2 (cf. [28,
Prop. 1.11]). Thus in either case M is a ring of matrices of some size n×n over kd.
Take Λ ⊂ Γ and ε as in Proposition 10.2, and let Ω and ε′ be as in Lemma 10.10
with � := n2.
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Lemma 10.11. If Γ is sufficiently general, there exists a tuple (γ1, . . . , γn2) ∈ Ω
such that the elements ρ(γi) form a basis of M over kd.

Proof. Let X denote the set of tuples (g1, . . . , gn2) ∈ Gn2

for which the elements
ρ(gi) do not form a basis of M over kd. This is a fiber of a constructible family of

Zariski-closed subvarieties of G n2

, since its defining condition can be expressed in
terms of the vanishing of certain determinants. It is a proper subvariety, because
Burnside’s theorem, applied to ρ, respectively to ρ� and ρs, implies that ρ(G)
contains a basis of M . Thus Theorem 4.3 implies that

∣∣Γn2 ∩X
∣∣ ≤ c · qdimX

Γ ≤ c

qΓ
·
(
qdimG
Γ

)n2

=
c

qΓ
·
∣∣Γ∣∣n2

for some fixed constant c. Combined with Lemma 10.10 this implies that Ω �⊂ X if
qΓ is large, as guaranteed by Proposition 6.1. Clearly, any tuple in Ω�X has the
desired property. �

Consider a tuple as in Lemma 10.11, and select any element γ ∈
⋂n2

i=1 γ
−1
i Λ.

After replacing each γi by γiγ, the condition in Lemma 10.11 still holds, and in

addition we have 1 ∈
⋂n2

i=1 γ
−1
i Λ. We fix such a tuple and set

M0 :=
{
m ∈ M

∣∣ ∀1 ≤ i ≤ n2 : Tr(ρ(γi)m) ∈ FV

}
.

By construction this defines a model of M as a vector space over FV . We do not
yet worry about its relation with the algebra structure on M , but note that our
normalization of the tuple implies that id ∈ M0.

Lemma 10.12. We have
∣∣Γ ∩ ρ−1(M0)

∣∣ ≥ ε′ ·
∣∣Γ∣∣.

Proof. By construction

Γ ∩ ρ−1(M0) =
{
γ ∈ Γ

∣∣ ∀1 ≤ i ≤ n2 : Tr(ρ(γi)ρ(γ)) ∈ FV

}
Prop. 10.3

⊃
{
γ ∈ Γ

∣∣ ∀1 ≤ i ≤ n2 : γiγ ∈ Λ
}

=

n2⋂
i=1

γ−1
i Λ.

Thus the desired lower bound follows from the choice of (γ1, . . . , γn2) and the defi-
nition of Ω in Lemma 10.10. �

Next, we consider the left stabilizer

Δ :=
{
γ ∈ Γ

∣∣ ρ(γ)M0 = M0

}
.

Lemma 10.13. If Γ is sufficiently general, we have
[
Γ : Δ

]
< 2/ε′.

Proof. Let M0, . . . ,Mh ⊂ M denote the pairwise distinct left Γ-translates of M0,
and let � be the greatest integer less than 2/ε′. We must prove h+1 ≤ �. So let us
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assume h ≥ �. We calculate

∣∣Γ∣∣ ≥
∣∣∣∣∣∣Γ ∩

�⋃
j=0

ρ−1(Mj)

∣∣∣∣∣∣
=

�∑
j=0

∣∣∣∣∣Γ ∩ ρ−1(Mj)�
j−1⋃
i=0

ρ−1(Mi)

∣∣∣∣∣
=

�∑
j=0

∣∣Γ ∩ ρ−1(Mj)
∣∣− �∑

j=0

∣∣∣∣∣Γ ∩ ρ−1(Mj) ∩
j−1⋃
i=0

ρ−1(Mi)

∣∣∣∣∣ .
Here all terms in the first sum are equal to

∣∣Γ ∩ ρ−1(M0)
∣∣; hence by Lemma 10.12

that sum is ≥ (�+ 1) · ε′ · |Γ| ≥ 2 · |Γ|. This implies

∣∣Γ∣∣ ≤ �∑
j=0

∣∣∣∣∣Γ ∩ ρ−1(Mj) ∩
j−1⋃
i=0

ρ−1(Mi)

∣∣∣∣∣
≤

�∑
j=0

j−1∑
i=0

∣∣Γ ∩ ρ−1(Mj ∩Mi)
∣∣ .

By assumption Mj ∩ Mi is contained in a proper kd-submodule N � M . Such
submodules are indexed by Grassmannians, so as in the proof of Lemma 10.11
we deduce that ρ−1(N) belongs to a constructible family of Zariski-closed proper
subvarieties of G . Thus Theorem 4.2 implies that every term in the last sum is
≤ c · qdimG−1

Γ ≤ |Γ| · c/qΓ if Γ is sufficiently general. Therefore

1 ≤ �(�+ 1)

2
· c

qΓ
,

so qΓ is bounded, contrary to Proposition 6.1. �

Proof of Theorem 9.1 in the basic case. Let σ denote the representation of G
on M , defined by σ(g)(m) := ρ(g)mρ(g)−1. As ρ belongs to a constructible family
of representations, so does σ. It is also nontrivial, since ρ is not scalar. It remains
to prove σ(γ)(M0) = M0 for every γ ∈ Γ.

Note first that, since id ∈ M0, we also have ρ(Δ) ⊂ M0. Therefore

Δ ∩ γΔγ−1 ⊂ Γ ∩ ρ−1(M0) ∩ γρ−1(M0)γ
−1

= Γ ∩ ρ−1
(
M0 ∩ ρ(γ)M0ρ(γ)

−1
)

= Γ ∩ ρ−1
(
M0 ∩ σ(γ)(M0)

)
.

On the one hand, Lemma 10.13 implies that∣∣Δ ∩ γΔγ−1
∣∣ ≥ |Γ|

[Γ : Δ]2
>

(
ε′

2

)2

·
∣∣Γ∣∣.

On the other hand, if M0 and σ(γ)(M0) differ, their intersection is contained in a
proper kd-submodule of M . As in the proof of Lemma 10.13 we deduce that∣∣∣Γ ∩ ρ−1

(
M0 ∩ σ(γ)(M0)

)∣∣∣ ≤ c

qΓ
·
∣∣Γ∣∣.

Thus all together we find (ε′/2)2 < c/qΓ, so qΓ is bounded, contradicting Proposi-
tion 6.1. Therefore M0 = σ(γ)(M0), as desired. �
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11. Traces in the general case

In this section we prove Theorem 9.1 in general, assuming that Theorem 0.5
is already known in the basic case rankG = d. Thus throughout this section we
assume rankG > d. We keep the notation of Section 9.

The main idea is to analyze the subgroup generated by Γ ∩ V and its conjugate
under any element γ ∈ Γ which is in sufficiently general position with respect to V .
For this we will first show that the algebraic group H(γ) generated by V and γV γ−1

is almost simple of rank d. We also show that Γ∩H(γ) is a sufficiently general finite
subgroup of H(γ). Thus by Theorem 0.5 in the basic case we know that Γ∩H(γ) is
a finite group of Lie type over FV . From this we deduce that for any 1 �= v ∈ Γ∩V ,
the trace of vγvγ−1 in a suitable representation of G lies in FV . Finally, we use
this information to show that all matrix coefficients of Γ in another representation
of G lie in FV , as desired.

Subgroups generated by root groups. Fix a maximal torus T ⊂ B and recall
that V is a product of root groups in the center of U . Let Ψ ⊂ Φ denote the set
of roots which are Z-linear combinations of roots occurring in V . Take ẇ ∈ NG(T )
such that ẇBẇ−1 is the Borel subgroup opposite to B. For every g ∈ G let H(g)

denote the algebraic subgroup generated by V and gV g−1.

Proposition 11.1. (a) Ψ is a simple root system of rank d. If d = 1, it has
type A1; otherwise we have (p,Ψ) = (2, B2) or (3, G2).

(b) H(ẇ) is connected almost simple with root system Ψ.
(c) For every g ∈ BẇB the subgroup H(g) is conjugate to H(ẇ).
(d) The complement G � BẇB is a fiber of a constructible family of proper

subvarieties of G .

Proof. Part (a) follows from the proof of Proposition 8.3. For (b) note that ẇ
transforms the highest root, resp. the highest short root, to its negative. Thus
ẇV ẇ−1 is the product of root groups associated to the negatives of the roots oc-
curring in V . Clearly H(ẇ) is contained in the connected almost simple subgroup
of G, normalized by T , with root system Ψ. Well-known facts on commutators ([17,
Props. 33.3, 33.4, 33.5]) imply equality. For (c) we write g = bẇb′ with b, b′ ∈ B
and calculate

H(g) =
〈
V, bẇb′V b′−1ẇ−1b−1

〉
= b

〈
V, ẇV ẇ−1

〉
b−1 = bH(ẇ)b

−1.

Finally, (d) follows from the fact that BẇB is the big cell in the Bruhat decompo-
sition of G. �

Genericity. Let H → SpecZ denote the family of split connected adjoint groups
with simple root system Ψ, and let H be its geometric fiber over the field k. For
any g ∈ BẇB we identify the adjoint group Had

(g) with H by means of a central

isogeny π : H(g) −→→ H.

Proposition 11.2. The subgroup H(g) belongs to a constructible family of algebraic
subgroups of G , and π to a constructible family of homomorphisms.

Proof. The maximal tori T and the root groups Uα form constructible families of
algebraic subgroups of G → SpecZ. The connected semisimple subgroups asso-
ciated to a closed root subsystem Ψ ⊂ Φ are the Zariski-closures of T ·

∏
α∈Ψ Uα,

so by Proposition 1.7 they also form a constructible family. If Ψ = {±α}, where
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α is the highest positive root, these subgroups occur as H(g) in any characteristic.
For all other cases in the list of Proposition 11.1 (a) the characteristic p is fixed,
but there is no further restriction. Thus in these cases the base of the constructible
family must be restricted to Fp. �

The following proposition says that the subgroup π(Γ∩H(γ)) is sufficiently gen-
eral in H for every γ ∈ Γ ∩BẇB, provided that Γ is sufficiently general.

Proposition 11.3. Consider a constructible family K → T of proper algebraic
subgroups of H . Assume that Γ is sufficiently general. Then for every element
γ ∈ Γ ∩BẇB and every point t ∈ T (k) we have π(Γ ∩H(γ)) �⊂ Kt.

Proof. If π(Γ ∩ H(γ)) ⊂ Kt, then both Γ ∩ V and Γ ∩ γV γ−1 are contained in

π−1(Kt). This subgroup belongs to a constructible family of proper subgroups
of H(γ), by Proposition 11.2. The definition of H(γ) shows that not both V and

γV γ−1 can be contained in π−1(Kt). Suppose V �⊂ π−1(Kt). Then V ∩ π−1(Kt)
is a fiber of a constructible family of proper algebraic subgroups of V . Viewing it
as a subgroup of G, Theorem 4.2 implies that∣∣Γ ∩ V

∣∣ =
∣∣Γ ∩ V ∩ π−1(Kt)

∣∣ ≤ c · qdim(V ∩π−1(Kt))
Γ ≤ c · qd−1

Γ

for some fixed constant c if Γ is sufficiently general. But this contradicts Corol-
lary 8.13, if qΓ is large, as guaranteed by Proposition 6.1. The analogous arguments
apply when γV γ−1 �⊂ π−1(Kt). �

Algebraic properties of certain traces. The representations ρ, ρ�, and ρs were
defined at the end of Section 9. We will need the following information on their
traces:

Lemma 11.4. If d = 1, the function Tr ρ|H(ẇ) is nonconstant.

Proof. It suffices to show that the formal character of the restriction is not con-
gruent modulo p to a multiple of the trivial character. The weights are elements
of the character space RΦ, and their restriction to H(ẇ) is obtained by orthogonal
projection to the subspace RΨ. If V = Uα, we will prove that α occurs exactly
once in the restriction of the formal character.

Suppose first that α is the highest root in Φ. Then for every β ∈ Φ � {±α}
we have |(β, α)| < (α, α), since otherwise |β|2 > |α|2, which contradicts the fact
that α is a longest possible root. Therefore the weight α occurs in the restriction
exactly once, as desired. If α is not the highest root in Φ, by Proposition 8.3 we
have a nonstandard case and α is the highest short root. Then by definition we
have ρ = ρs, so only short roots occur as nonzero weights β. The same argument
then applies. �

Proposition 11.5. For any element v ∈ V in the open T -orbit, the function
G −→ kd, g 
→ Tr ρ(vgvg−1) is nonconstant.

Proof. We first consider the case d = 1. It suffices to verify the assertion on
elements of the form g = ẇt with t ∈ T ∩ H(ẇ). For these the product vgvg−1

can be calculated purely inside H(ẇ). Lifting everything to SL2, we can compute
explicitly. Suppose that

v =

(
1 1
0 1

)
, ẇ =

(
0 1
1 0

)
, t =

(
x 0
0 x−1

)
.
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Then

vgvg−1 =

(
1 1
0 1

)
·
(
1 0
x2 1

)
=

(
1 + x2 1
x2 1

)
.

The trace of this matrix is 2 + x2, which is a nonconstant function of x. As
any central function on SL2 is a polynomial in the trace, we deduce that any
nonconstant central function on H(ẇ) remains nonconstant on elements of the above

form vgvg−1. Thus in this case the desired assertion follows from Lemma 11.4.
In the case d = 2 we can avoid explicit calculations by the following argument.

If the function is constant, the calculation

Tr ρ
(
(tvt−1)g(tvt−1)g−1

)
= Tr ρ

(
v(t−1gt)v(t−1gt)−1

)
for any t ∈ T shows that this constant value is independent of v in the open orbit. It
is therefore attained for all v ∈ V . In particular, the function g 
→ Tr ρ�(v�gv�g

−1)
is constant for any 1 �= v� ∈ Uα�

. But this contradicts what we have just proved in
the case V = Uα�

. �
In the following lemma we assume d = 2, and let σ� and σs denote the simple

subquotients of the adjoint representation of H(g) associated to the long, resp.

short, roots. Accordingly, we view σ = (σ�, σs) as a representation over k2.

Lemma 11.6. If d = 2, for any g ∈ BẇB we have Tr ρ|H(g) = Trσ.

Proof. By Proposition 11.1 (c) it is enough to work with g = ẇ. As in Lemma 11.4
the assertion depends only on the formal characters. Since we are here in the non-
standard case with Ψ �= Φ, we must have (p,Ψ) = (2, B2) and Φ = Bn, Cn, or F4.
Thus we must show that the formal characters are congruent modulo 2.

Consider first the nonzero weights in ρ� or ρs. These are precisely the long (resp.
short) roots α ∈ Φ. Those in Ψ occur on both sides of the desired congruence, so
let us suppose α �∈ Ψ. Write α = λ+ λ⊥ with λ ∈ RΨ and 0 �= λ⊥ ∈ (RΨ)⊥. Since
Ψ = B2, the image of α under the longest Weyl group element of Ψ is −λ + λ⊥.
Its negative λ− λ⊥ also occurs, is different from α, and has the same restriction to
H(ẇ). The contribution of each such pair is congruent to 0mod 2, as desired.

For weight 0 we compare multiplicities directly. It turns out that the multiplic-
ity is even on both sides: this results from the general description of the adjoint
representation [13] or [28, Prop. 1.11]. The proposition follows. �
Arithmetic properties of traces. Fix a nontrivial element v ∈ Γ ∩ V .

Proposition 11.7. If Γ is sufficiently general, we have Tr ρ(vγvγ−1) ∈ FV for
every γ ∈ Γ ∩BẇB.

Proof. By Proposition 11.3 the subgroup Δ := π(Γ ∩ H(γ)) is sufficiently general

in H, so by the basic case of Theorem 0.5 we have (HF )der ⊂ Δ ⊂ HF for some
Frobenius map F : H → H. In the case d = 2 this cannot be a standard Frobenius
map, since otherwise Δ contains nontrivial elements of some root group; hence so
does Γ, which contradicts Assumption 8.14. Therefore the finite field underlying
this Frobenius map is the given field FV ⊂ kd.

In the case d = 1 we can therefore choose an identification H ∼= PGL2,k so
that PGL2(FV )

der ⊂ Δ ⊂ PGL2(FV ). The universal covering SL2,k → PGL2,k

factors through a unique central isogeny � : SL2,k → H(γ). Since both v and γvγ−1

are unipotent elements in Γ ∩ H(γ), they lift canonically to elements of SL2(FV ).

Therefore vγvγ−1 ∈ �
(
SL2(FV )

)
. Now, it is known that every irreducible algebraic
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representation of SL2,k can be defined already over Fp. In particular, the traces
of SL2(FV ) in any algebraic representation lie in FV . Applying this fact to the
representation ρ ◦�, the lemma follows.

In the case d = 2 we have Tr ρ(vγvγ−1) = Trσ(vγvγ−1) by Lemma 11.6. Thus
it suffices to prove Trσ(δ) ∈ FV for every δ ∈ Δ. Let ϕ : H → H denote any non-
standard isogeny whose square is a standard Frobenius map relative to the prime
field Fp. By [28, Prop. 1.11] and the succeeding remarks we know that σ�

∼= σs ◦ϕ.
On the other hand, recall that F 2 is a standard Frobenius map relative to the field
FV of order pr. Thus the classification of isogenies ([28, Thm. 1.7]) implies that
F differs from ϕr by an automorphism. Furthermore, recall that r = 2e + 1 by
Lemma 10.9. All together this implies that

σs ◦ F ∼= σs ◦ ϕ2e+1 ∼= σ� ◦ ϕ2e ∼= Frobpe ◦ σ�,

and similarly

σ� ◦ F ∼= σs ◦ ϕ ◦ ϕ2e+1 ∼= Frobpe+1 ◦ σs.

For elements δ ∈ Δ ⊂ HF , it follows that Trσs(δ) = Trσ�(δ)
pe

and Trσ�(δ) =

Trσs(δ)
pe+1

. This implies that Trσ(δ) ∈ FV , as desired. �

From traces to matrices. The information in Proposition 11.7 involves a qua-
dratic expression in the matrix coefficients of ρ(γ). To linearize it, we first pass to
the ring E of kd-linear endomorphisms of the representation space of ρ. This is a
direct sum of d matrix rings over k.

On the other hand, our information relates only the element ρ(v) with its con-
jugates. Thus we can use it to access only the following subquotient. Let E′ ⊂ E
be the smallest G-invariant kd-submodule containing the element ρ(v). Let E′⊥ be
the orthogonal complement of E′ with respect to the trace form

E × E −→ kd, (f1, f2) 
→ Tr(f1f2).

The kd-module M := E′/E′∩E′⊥ then carries a natural representation of G, which
we denote by σ. By construction the trace form induces a nondegenerate symmetric
kd-bilinear pairing Tr: M ×M → kd.

Lemma 11.8. σ belongs to a constructible family of representations of G .

Proof. As ρ varies in a constructible family, so does E. The submodule E′ can be
described as the image of the morphism

(Gd
a ×G)n −→ E,

(
(xi, gi)

)

→

n∑
i=1

xi · ρ(givg−1
i )

for any sufficiently large n. This morphism depends only on v, so it is a fiber of
some morphism of constructible families. Every linear subspace is already closed,
so Proposition 1.7 shows that E′ varies in a constructible family. Its orthogonal
complement E′⊥ is characterized by a Zariski-closed condition, so it also varies in
a constructible family. Therefore so does E′ ∩E′⊥, and by Proposition 1.6 we may
assume that the dimensions of all these subspaces are locally constant over the base.
Then the quotient space M can be constructed in the family and carries a natural
representation of G , as desired. �

Let m0 ∈ M denote the image of ρ(v) ∈ E′. Then for every g ∈ G we have

(11.9) Tr
(
m0, σ(g)(m0)

)
= Tr ρ(vgvg−1).
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Another direct calculation shows that

(11.10) Tr
(
σ(g)(m), σ(g)(m′)

)
= Tr

(
m,m′)

for all m, m′ ∈ M and g ∈ G. Combining (11.9) and (11.10) with Proposition 11.7
we find

Tr
(
σ(γ)(m0), σ(γ

′)(m0)
)
= Tr

(
m0, σ(γ

−1γ′)(m0)
)

= Tr ρ
(
v(γ−1γ′)v(γ−1γ′)−1

)
∈ FV

(11.11)

for all γ, γ′ ∈ Γ with γ−1γ′ ∈ BẇB. Let M0 ⊂ M be the FV -subspace generated
by the Γ-orbit OΓ(m0).

Lemma 11.12. If Γ is sufficiently general, the natural map M0 ⊗FV
kd −→ M is

an isomorphism.

Proof. Suppose first that the map is not surjective. Then the Γ-orbit of m0 gener-
ates a proper kd-submodule N � M . In other words, Γ is contained in the proper
subvariety

(11.13) X :=
{
g ∈ G

∣∣ σ(g)(m0) ∈ N
}

� G.

Note that the submodules N are indexed by some Grassmannian and thus by a
constructible family, and σ varies in a constructible family of representations by
Lemma 11.8. Thus X also belongs to a constructible family. By Proposition 2.4 it
cannot contain Γ if Γ is sufficiently general. Therefore the desired map is surjective.

Suppose that the map is not injective. Then we can find elements γi ∈ Γ for
1 ≤ i ≤ � so that the vectors σ(γi)(m0) ∈ M are FV -linearly independent but
kd-linearly dependent. Moreover, we may assume � ≤ n+1, where n is the smallest
number of generators of M over kd. As the pairing Tr is nondegenerate, the set of
elements {

m ∈ M
∣∣ ∀ 1 ≤ i ≤ � : Tr(σ(γi)(m0),m) ∈ FV

}
is then contained in a proper kd-submodule N � M . Now (11.11) implies that

σ(γ)(m0) ∈ N for every γ ∈ Γ ∩
⋂�

i=1 γiBẇB. In other words, these elements γ lie
in the subvariety X of (11.13), or equivalently

Γ ⊂ X ∪
�⋃

i=1

γi
(
G�BẇB

)
.

Each term in this finite union is a proper subvariety of G which belongs to a
constructible family. As the number of terms is bounded, the whole union belongs to
a constructible family. Thus Proposition 2.4 yields a contradiction if Γ is sufficiently
general. Therefore the map in question is injective, and hence an isomorphism, as
desired. �

Proof of Theorem 9.1 in the general case. Proposition 11.5 and Formula 11.9
imply that the representation σ is nontrivial. By Lemma 11.8 it varies in a con-
structible family. By construction the subspace M0 ⊂ M is Γ-invariant, and by
Lemma 11.12 it constitutes a model of M over FV . This finishes the proof of
Theorem 9.1. �
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12. Finite subgroups of general linear groups

In this section we prove Theorems 0.1 through 0.4 of the introduction. We begin
with the following technical lemma.

Lemma 12.1. For any constructible family of algebraic groups G → S, any con-
structible family of fiberwise nowhere dense algebraic subgroups L → T, and every
positive integer N , there exists a constructible family of fiberwise nowhere dense
algebraic subgroups LN → TN of G → S with the following property. For any
finite subgroup Γ of a geometric fiber Gs, if

[
Γ : Γ ∩ Lt

]
≤ N for some point t of

T above s, then Γ ⊂ LN,tN for some point tN of TN above s.

Proof. The conjugates of L form a constructible family of subgroups, indexed by
the total space G ×S T . Therefore the intersections of at most N conjugates also
form a constructible family, say L ′ → T ′. By Proposition 1.13, after stratifying
T ′ if necessary, there is a constructible family of subgroups N → T ′ of G which
is fiberwise the normalizer of L ′.

Now consider any Γ ⊂ Gs with
[
Γ : Γ ∩ Lt

]
≤ N for some t. By construction

there is a point t′ of T ′ above s with L ′
t′ =

⋂
γ∈Γ γLtγ

−1. Then Γ ⊂ Nt′ , and we
have [

Γ : Γ ∩ L ′
t′
]
≤ N !.

The N !-tuples (n1, . . . , nN !) of sections of N are indexed by the N !-fold fiber
product N N !. Thus the union of the translates niL ′ is a constructible family
of subvarieties of N . The condition for a fiber of this family to be a subgroup
is Zariski-closed, so the subgroups arising in this way form a constructible family
LN → TN . Clearly it has the desired property vis-à-vis Γ. �

Next we will show that simple quotients of connected linear algebraic groups
G vary in a constructible family if the groups G do so. To fix ideas, by a simple
quotient of G we mean the epimorphism G −→→ H to a simple direct factor of the
adjoint group (G/Radu G)ad, where Radu G denotes the unipotent radical of G.
We call two simple quotients f1 : G −→→ H1 and f2 : G −→→ H2 equivalent if there
exists an isomorphism ψ : H1

∼−−→ H2 such that f2 = ψ ◦ f1. Note that here we do
not allow arbitrary epimorphisms with a simple target group. The reason is that
the composite of a simple quotient map f : G −→→ H with an arbitrary Frobenius
map on H still constitutes a quotient in the category of algebraic groups, but all
these do not form a constructible family.

Lemma 12.2. Consider a constructible family of connected linear algebraic groups
G → S . Let H → SpecZ be the constructible family of connected adjoint groups
associated to a simple root system Φ. Then there exists a morphism of finite type
S ′ → S and a homomorphism f : G ×S S ′ → H × S ′ such that

(a) f is a simple quotient in every geometric fiber, and
(b) every simple quotient with root system Φ of any geometric fiber of G is

equivalent to one occurring in f .

Proof. By Noetherian induction it suffices to prove this over a neighborhood of any
fixed generic point η of S . After shrinking S and passing to a finite covering,
we may suppose that all simple quotients of Gη of type Φ can be defined over the
residue field k(η). Consider one of them, say fη : Gη → Hη. As η is a generic
point of S , this morphism extends to some neighborhood. After shrinking S , the
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extension f : G → HS remains a homomorphism, as well as surjective (compare
Proposition 1.7). Since fη is a simple quotient, the image of its derivative

dfη : LieGη −→→ Lie
(
Gη/Radu Gη

)
−→ (LieH )⊗ k(η)

contains all root spaces. This assertion remains true in a neighborhood of η, where
f remains a simple quotient, as desired. �

Theorem 12.3. For every constructible family of linear algebraic groups G → S
there exists a constructible family of algebraic subgroups H → T with the following
property. For any finite subgroup Γ of a geometric fiber Gs, there exists a point t of
T above s, such that Γ ⊂ Ht and for every simple quotient f : H ◦

t −−→→ H1 there
is a Frobenius map F : H1 → H1 with (HF

1 )der simple and(
HF

1

)der ⊂ f
(
Γ ∩ H ◦

t

)
⊂ HF

1 .

Proof. As the dimension of G ◦
s is bounded, only finitely many root systems can

occur for its simple quotients. Let Φ be one of them, HΦ → SpecZ the associated
constructible family of connected adjoint groups, and KΦ → TΦ the constructible
family of fiberwise nowhere dense algebraic subgroups given by Theorem 0.5. Thus
any KΦ-general finite subgroup of a geometric fiber HΦ = HΦ,t is trapped between
(HF

Φ )der and HF
Φ for some Frobenius map F on HΦ.

The groups G ◦
s form a constructible family G ◦, for instance by Proposition 1.9.

Let fΦ : G ◦×S S ′
Φ → HΦ×S ′

Φ be the homomorphism given by Lemma 12.2. The
inverse image of KΦ is a constructible family of fiberwise nowhere dense algebraic
subgroups LΦ of G ◦, and thus of G . Let N be an upper bound for the index
[Gs : G ◦

s ] in all fibers, and LΦ,N the constructible family of fiberwise nowhere dense
algebraic subgroups of G given by Lemma 12.1.

Now consider any finite subgroup Γ of a geometric fiber Gs. If the desired
assertion does not hold with Ht = Gs, there exists a simple quotient fΦ : G ◦

s −→→ HΦ

for which the image fΦ
(
Γ ∩ G ◦

s

)
is not KΦ-general, i.e., is contained in some fiber

of KΦ. Then Γ ∩ G ◦
s is contained in a fiber of LΦ. Moreover, its index in Γ is at

most N , so by Lemma 12.1 the whole group Γ is contained in a fiber of LΦ,N . By
induction on fiber dimension we may assume that the theorem is already proved for
LΦ,N in place of G . We take the constructible families of algebraic subgroups of
LΦ,N determined by Theorem 12.3 for all possible Φ, and define H as the disjoint
union of these with the original family G . This family clearly has the desired
properties. �

Proof of Theorem 0.2. We apply Theorem 12.3 to the ambient group GLn,Spec Z.
To remain in keeping with the notation in the introduction, we abbreviate a typical
geometric fiber of the resulting family H by G := Ht. By Proposition 1.4 the index
[G : G◦] is bounded, say ≤ N . As the dimension is bounded, so are the type and
the number of simple quotients of G. Now consider a finite subgroup Γ ⊂ GLn(k),
where k is any field. Without loss of generality, we may assume k algebraically
closed. By Theorem 12.3 we can choose t such that Γ ⊂ G, and for every simple
quotient fi : G

◦ −→→ Hi there exists a Frobenius map F : Hi → Hi so that (HF
i )der

is simple and (
HF

i

)der ⊂ fi
(
Γ ∩G◦) ⊂ HF

i .



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

1156 MICHAEL J. LARSEN AND RICHARD PINK

Define

G1 := G◦, Γ1 := (Γ ∩G1)
der · (Γ ∩G2),

G2 :=
⋂

i ker fi, Γ2 := Γ ∩G2,

G3 := Radu G1, Γ3 := Γ ∩G3.

We claim that these subgroups have the desired properties. Clearly they are nor-
mal subgroups of Γ that are contained in each other. The group Γ2 is the ker-
nel of the homomorphism Γ ∩ G1 →

∏
i H

F
i , and Γ1 is the kernel of Γ ∩ G1 →∏

i

(
HF

i /(HF
i )der

)
. Let r be an upper bound for the number of simple factors, and

let m be an upper bound for the index of their root lattices in their weight lattices.
Using Theorem 3.4 (b) we deduce[

Γ : Γ1

]
=

[
Γ : Γ ∩G1

]
·
[
Γ ∩G1 : Γ1

]
≤ Nmr =: J ′(n),

whence Theorem 0.2 (a). The next subquotient Γ1/Γ2 is embedded into the prod-
uct of noncommutative simple groups (HF

i )der and surjects onto each factor. By
Goursat’s lemma we obtain an isomorphism from Γ1/Γ2 to the product of some
of the (HF

i )der. This implies Theorem 0.2 (b). Assertion (c) follows from the fact
that Γ2/Γ3 is contained in the center of the connected reductive group G1/G3.
Finally, (d) holds by construction. �

Proof of Theorem 0.4. Consider a finite subgroup Γ ⊂ GLn(k), where p :=
char(k) > 0. Let Γ3 ⊂ Γ2 ⊂ Γ1 be the subgroups given by Theorem 0.2. Let
Z be the maximal abelian normal subgroup of Γ2 of order prime to p. Being a
characteristic subgroup of Γ2, it is also normal in Γ. In the product[

Γ : Z
]
=

[
Γ : Γ1

]
·
[
Γ1 : Γ2

]
·
[
Γ2 : Z

]
,

the first factor is ≤ J ′(n), by Theorem 0.2 (a). The second factor is at most the
cube of its p-part, by Theorem 3.4 (d). Thus it suffices to prove the same for the
third factor. This term is, in fact, bounded by the square of its p-part, by the
following lemma applied to Γ2 in place of Γ:

Lemma 12.4. Consider a finite group Γ with a normal Sylow p-subgroup Γ(p) and
abelian factor group Γ/Γ(p). Then the maximal abelian normal subgroup Z ⊂ Γ of

order prime to p has index ≤ |Γ(p)|2.

Proof. Write Γ as a semidirect product Γ(p) �Δ. Then Z can be described as the
kernel of the conjugation action Δ → Aut(Γ(p)). In other words, the factor group
Δ/Z acts faithfully on Γ(p). Choose a composition series of Γ(p) as a group with
Δ-action. The successive quotients Mi are elementary abelian p-groups, that is,
Fp-vector spaces, with irreducible representations of Δ. As Δ is abelian, each Mi

can be viewed as a 1-dimensional vector space over a field Fpri , on which Δ acts
through the multiplicative group F×

pri . Now, since Δ/Z has order prime to p, it
still acts faithfully on the product of all Mi. Therefore∣∣Δ/Z

∣∣ ≤
∏
i

∣∣F×
pri

∣∣ ≤
∏
i

∣∣Mi

∣∣ =
∣∣Γ(p)

∣∣.
It follows that [

Γ : Z
]
=

∣∣Γ(p)

∣∣ · ∣∣Δ/Z
∣∣ ≤

∣∣Γ(p)

∣∣2,
which proves Lemma 12.4. This also finishes the proof of Theorem 0.4. �
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