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Tristan Riviere*

I Lecture 2

Deformations in Infinite Dimensional Manifolds.

The goal of this section is to present the main lines of Palais deformation
theory exposed in [3].

We shall start by recalling some notions from infinite dimensional
Banach Manifolds theory that will be useful to us. For a more systematic
study we suggest the reader to consult [1].

In this lecture as in the previous one N" denotes a closed C'*™° sub-
manifold of the Euclidian Space R"™.

We recall that a topological space is Hausdorff if every pair of points
can be included in two disjoint open sets containing each exactly one of
the two points. A topological space is called normal if for any two disjoint
closed sets have disjoint open neighborhoods.

Definition I.1. A C? Banach Manifold M for p € NU {oc} is an
Hausdorff topological space together with a covering by open sets (U;)ier, a
family of Banach vector spaces (E;)icr and a family of continuous mappings
(pi)ier from U; inton E; such that

i) for everyi € I
oi Ui — vi(U;) is an homeomorphism
i) for every pair of indices i # j in I
pio i @iUinU;) CEr — ¢i(U;NT;) C E;

s a CP diffeomorphism
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Example 1. Let ¥ be a closed oriented k—dimensional manifold and let
[ € N and p > 1. Define

M =W (SF N = {T e Whe(sk R™) 5 di(x) € N* forae. x € Zk}

where on X* we can choose any arbitrary reference smooth metric, they
are all equivalent since ¥* is compact. Assume 1p >k then WHP(XF N7)
defines a Banach Manifold. This comes mainly from the fact that, under
our assumptions,

whe sk R™)  —  CUZFR™) . (I.1)

The Banach manifold structure is then defined as follows. Choose ¢ > 0
such that each geodesic ball B2 (z) for any z € N" is strictly convex and
the exponential map

exp, : V. CT.N" — B}'(2)

realizes a C'*° diffeomorphism for some open neighborhood of the origin in
T.N™ into the geodesic ball BY"(z). Because of the embedding (I.1) there
exists €g > 0 such that

Vi, o eWrEENY i — 0w < o
= |disty (@(x), T(2))]| e (sr) < 0

We equip the space W'(XF N™) with the W' norm which makes it a
metric space and for any @ € M = WH(ZF, N™) we denote by B2(4) the
open ball in M of center @ and radius &.

As a covering of M we take (BX(@))gepm. We denote by

E":= Ty, (0 'TN) = {& € WHP(EF R™) 5 @(z) € Ty N" V z € £F}

this is the Banach space of W/P—sections of the bundle @ !TN and for
any @ € M and ¢ € B (&) we define @ (7) to be the following element
of K"

Vezek WD) () = exp?(ll,)(ﬁ(x))

It is not difficult to see that
W0 (W) o w (B (@) N BY(W) — @Y (BL(@) N BY())

defines a C*° diffeomorphism. O



The goal of the present section is to construct, for C! lagrangians on
some special Banach manifolds, a substitute to the gradient of such la-
grangian in order to be able to deform each level set to a lower level
set if there is no critical point in between. The strategy for construct-
ing such pseudo-gradient will consist in pasting together “pieces” using
partitions of unity of suitable regularity. To that aim we introduce the
following notion.

Definition 1.2. A topological Hausdorff space is called paracompact if
every open covering admits a locally finite! open refinement. O

We have the following result
Theorem I.1. [Stones 1948] FEvery metric space is paracompact. O

There is a more restrictive “separation axiom” for topological spaces
than being Hausdorff which is called normal.

Definition 1.3. A topological space is called normal if any pair of disjoint
closed sets have disjoint open neighborhoods. O

we have the following proposition
Proposition 1.1. Fvery Hausdorff paracompact space is normal. O

We have the following important lemma (which looks obvious but re-
quires a proof in infinite dimension)

Lemma I.1. Let M be a normal Banach Manifold and let (U, ¢) be a
chart on M, i.e. U C M is an open subset of M and o is an homeomor-
phism from U into an open set o(U) C E of a Banach Space (E,| - ||g).
For any xg € U and for r small enough

By (xo,7) = {y € U ; [lp(x0) = ¢)lle <} = ¢ (BF(20))
is closed in M and it’s interior is given by
B (wo,r) :=={y € U ; [lp(ao) — p()llp <1} = ¢~ (B (x0))
U

Proof of lemma I.1. Since the Banach manifold is assumed to be normal
there exists two disjoint open sets Vi and V5 such that M \ U C V; and
xo € V,. Since ¢ is an homeomorphism, the preimage by ¢! of V5 is open

Llocally finite means that any point posses a neighborhood which intersects only finitely many open sets of the subcovering
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in the Banach space E. Choose now radii » > 0 small enough such that

BE(xy) C ¢(V3), hence for such a r we have that
M\ By(xg,7) =V U ot (E \ BTE(:UO))

So M\ B,(zo, r) is the union of two open sets. It is then open and By (o, )
is closed in M. O

Remark 1.1. As counter intuitive as it could be at a first glance, there are
counter-examples of the closure of 0~ '(BE(x)) when r is not assumed to
be small enough and even with BE(x) C o(U) ! (see for instance [3]).

We shall need the following lemma

Lemma 1.2. Let M be a normal Banach Manifold and let (U, @) be a
chart on M, i.e. U C M is an open subset of M and ¢ is an homeomor-
phism from U into an open set o(U) C E of a Banach Space (E,| - ||g).
For any xo € U and for r small enough such that o~ Y(BE(x)) is closed
and included in U according to lemma 1.1 then the function defined by

VoelU  g):=inf{lp@) —e@lle : yeU\e (B ()

Voee M\U g(x) =0

is locally Lipschitz on M and strictly positive exactly on o~ (BE(zg)). O

Proof of lemma 1.2. First of all we prove that ¢ is globally lipschitz on
U. Let 2,y € U and let € > 0. Choose z € U \ ¢~ '(BE(x)) such that

lp(z) — p(2)||p < g(x) + &
We have by definition
le(y) — (2)le = 9(y)

Combining the two previous inequalities give

9(y) —g(x) < lle(y) —e(2)lle — lle(y) — 0(2)l|le + €

< lle(y) — (@)l +e

exchanging the role of x and y gives the lipschitzianity of g on U. Take
now y ¢ U since M \ U and ¢ }(BE(xq)) are closed and disjoint, since
¢ Y(BE(z9)) C U, the normality of M gives the existence of two dis-
joint open neighborhoods containing respectively M\ U and ¢~ }(BE(x)).
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Hence there exists an open neighborhood of y which does not intersect
0 1(BE(z)) and on which g¢ is identically zero. This implies the local
lipschitzianity of g. O

One of the reasons why we care about paracompactness in our context
comes from the following property.

Proposition 1.2. Let (O4)aca be an arbitrary covering of a C! paracom-
pact Banach manifold M. Then there exists a locally lipschitz partition of
unity subordinated to (Oy)aca, i-e. there exists (¢o)aca where ¢, is locally
lipschitz in M and such that
i)
Supp(da) C O
¢a = 0
> pa=1
acA
where the sum is locally finite.

g

Proof of proposition I.2. To each point z in O, we assign an open neigh-
borhood of the form ;' (BF (p(x))) included in O, for r small enough
given by lemma I.1. From the total union of all the families

(97 (Br(0(2))))aco,

where @ € A we extract a locally finite sub covering that we denote
(i {(BE(p(2))))ier, and o € A (we can have possibly I, = §)). To each
open set ¢; ' (BEFi(p(x;))) we assign the function ¢, given by lemma 1.2
which happens to be strictly positive on ; '(BZ(¢(z;))) and zero outside.
The functions g/, are locally lipschitz and since the family (¢; ' (BF (o(2:))))ier,
is locally finite, ¥, Yier, ¢!, is locally lipschitz too. we take

A

¢ . €1,
o -

Y Y4

acAiel,

with the convention that ¢, = 0 on M if I, = (. The family (¢q)aca
solves 1), ii) and iii) and proposition I.2. O
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We introduce more structures in order to be able to perform deforma-
tions in Banach Manifolds.

Definition 1.4. A Banach manifold V is called C’— Banach Space Bun-
dle over another Banach manifold M if there exists a Banach Space F,
a submersion m from V into M, a covering (U;)ier of M and a family of
homeomorphism from 7 1U; into U; x E such that the following diagram

commutes _
7T_1Ui — U, x E

™ p
Ui

where p s the canonical projection from U; X E onto U;. The restric-
tion of 7; on each fiber V, = 7w 1({x}) for x € U; realizes a continuous
tsomorphism onto E;. Moreover the map

veUinU; — mor!| ., €L(E,E)
is CP, O

Definition 1.5. Let M be a normal Banach manifold and let V be a Ba-
nach Space Bundle over M. A Finsler structure on V is a continuous

function
|- :V — R

such that for any x € M
|-z =1 \|\7T_1({x}) is a norm on V,

Moreover for any local trivialization ; over U; and for any xo € U; we
define on V, the following norm

vaen ({z})  dla, =7 (20, p(7i(0))) |la,
and there exists Cy, > 1 such that
VeeU  Col - lle <l Moo < Coo |- la
U

Definition 1.6. Let M be a normal C? Banach manifold. TM equipped
with a Finsler structure is called a Finsler Manifold. O

Remark 1.2. A Finsler structure on T'M defines in a canonical way a
dual Finsler structure on T* M. O



Example. Let X2 be a closed oriented 2—dimensional manifold and N
be a closed sub-manifold of R™. For ¢ > 2 we define

M = W2 (22, N") = {q? € W24(S2 N") ; rank (d®,) =2 Va € 22}

The set W2 (32, N™) as an open subset of the normal Banach Manifold
W24(¥2 N™) mherlts a Banach Manifold structure. The tangent space
to M at a point @ is the space szq(CI) ITN™) of W?%—sections of the

bundle & “ITN™ ie.

TzM = {@U e W2I(2%,R™) 5 wi(z) € Ty,

N" Ve 22}

We equip T3 M with the following norm

folive

where we keep denoting, for any 7 € N, V to be the connection on
(T*2)¥ @ @ 'TN over X defined by V := V% @ &*V" and V% is the Levi
Civita connection on (X, gz) and V" is the Levi-Civita connection on N™.
We check for instance that V27 defines a C? section of (T*%)2 @ ®~1TN.

Observe that, using Sobolev embedding and in particular due to the fact
W21(3,R™) — CY(X,R™) for ¢ > 2, the norm || - ||; as a function on the
Banach tangent bundle 7'M is obviously continuous.

1/q

q/2 "
2+ VO, [0 dvolyg| [ [Vl [l

9]l =

Proposition 1.3. The norms || - ||g defines a C*—Finsler structure on the
space M. O

Proof of proposition I.3. We introduce the following trivialization of
the Banach bundle. For any ® € M we denote P@'(m) the orthonormal
projection in R onto the n—dimensional vector subspace of R™ given

by T(i;(x)N” and for any 5 in the ball Bg\f(é) for some €; > 0 and any

v e TM = Ty2q(€ YT N) we assign the map w(z) := Pg V(). It is
straightforward to check that for €; > 0 chosen small enough the map

which to ¢ assigns «w is an isomorphism from Tg/\/l into Ty M and that
there exists kg > 1 such that V&' € TB?”‘(@)

1=

kq—)* H'U

le < llwllg < kg 1Vl

This concludes the proof of proposition I.3. O



Theorem I.2. [Palais 1970] Let (M, ||-||) be a Finsler Manifold. Define

on M x M
dw

— dt
dt

w(t)

. 1
d(p.q) = inf |

where
Qg = {weC'([0,1,M); w0)=p w(l)=q]

Then d defines a distance on M and (M, d) defines the same topology as
the one of the Banach Manifold. d is called Palais distance of the Finsler
manifold (M, | - ||). O

Contrary to the first appearance the non degeneracy of d is not straight-
forward and requires a proof (see [3]). This last result combined with
theorem 1.1 gives the following corollary.

Corollary I.1. Let (M, ||-]|) be a Finsler Manifold then M is paracompact.
(]

The following result is going to play a central role in this course

Proposition 1.4. Let M be the space
W2 (x2 N = {cﬁ € W2U(S2 N™) ; rank(dd,) =2 Vr € 22}

where Y2 is a closed oriented surface and N a closed sub-manifold of R™.
The Finsler Manifold given by the structure

Iolls = | ;195

is complete for the Palais distance. O

1/q
+ ||| VY

o T IV

L=(%)

2 2]/
Pl } dvoly, o5

We have also.

Proposition 1.5. For N" a closed sub-manifold of R™ and p > 1 we define
on

M =W (S', N") = {7 € W*P(S',N") ; rank(dv,) =1 VaeS'}

the following Finsler structure

1/p

. . . L 9]P/?
Jolly = | f, [70, + Vet + (o] oo,

Then (M, || - ||) is complete for the Palais distance . O



We shall present only the proof of proposition 1.4. The proof of proposi-
tion th-complete-S1 is very similar and can be found in [2].

Proof of proposition 1.4. For any deMandie T3 M we introduce
the tensor in (T*%)®" given in coordinates by

L L 2 . .
Vi®db+db&Vi= 3 [V, 50,8 +0,8 Vo, 0] dv; @ da,

2,5=1

where - denotes the scalar product in R™. Observe that we have

‘VU@ dd + dd & Vi

<2 |Vil,,
93

Hence, taking a C'! path <I;s in M one has for v := ag(f)

2

|ldT&dP + dP&dT, ||y =| > 92 g 0u(gg)i Oslgg)s

ijkl=1 L=(%)
R .. . 3 2 pum— =g 2
— H 105(gijdx; ® dxj) 03 p<(x) H 10595 95 oo (x)
(1.2)
Hence
1 2 ds<2 [ 0.3 d 1.3
b 10sals ] s, s <2 1081, 13)

We now use the following lemma

Lemma 1.3. Let M, be a C' path into the space of positive n by n sym-
metric matriz then the following inequality holds

Tr(M~2(0,M)?) > ||0slog M||* = Tr((dslog M)?)
Proof of lemma 1.3. We write M = exp A and we observe that
Tr (exp(—2A) (9, exp A)?) = Tr (0, A)?

Then the lemma follows. O
Combining the previous lemma with (I.2) and (I1.3) we obtain in a given
chart

1 1 1 -
Jy 19:108(g)ll ds < [T (9 log gig)?) ds <2 [0, 85, ds  (14)

This implies that in the given chart the log of the matrix (g;;(s)) is uni-

formly bounded for s € [0,1] and hence ®; is an immersion. It remains
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to show that it has a controlled W?%? norm. We introduce p = ¢/2 and
denote

Hess,(®) := /E[l + \Vd@\gé]p dvoly,
and we compute

d . . .
T~ (Hess,(®)) = p [ 05| Va® [ [1 4 |Vdd[2 ]7 dvol,,

+ [[1+[VdD[ ] 0, (dvol,,)

(.5)

Classical computations give

85(dvol%) = <V88<f>, dCI;> dvoly,

93

So we have

’/Z[lﬂvcicf)

zé]p ds(dvoly,)

< [1V0®Byy sy fy[L+ [VABL]P dvoly,

< 1|0:®| 4 /2[1 +[VdD[2 1P dvol,,
(L.6)
In local charts we have

—

2 1y Kkl h 2 h
95 Z 9% 98 <vaw.q3aqu)7vaw.q3afﬂlq)>
i,7,k,l=1 v J h

Vdd

Thus in bounding f5 8S\Vd<f>|2$ 1+ \Vdi))\gq;]p*1 dvol,. we first have to
control terms of the form

2 ’ ) ) L
kX dode <V§%53xk®,vgmj§axl<b>h 1+ [VdS[2 P dvol,,
(17)

We write

= > 095919795
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Hence

2

ij Kkl h > - = B

kX Oia <Vaxi53xk¢,vaxjéaml<b>h 1+ |VdB[2, 7 dvol,,
0,0,R5 0=

< [10ulggllzey [, (14 Va®[: ] dvoly,

< [10,®lg, [, [1+[VdP} ] dvol,,

We have also

h 5 h =
0.(Vl, §0,8.9), q;@xl@>h

h h z h z h z h h x
_ <vasq; (V4 50.,8) ,vaqu;axlcb>h + <vaw §0n 8, V" (vam éaxlq>>>h

By definition we have
v (ngi §0n8) = Vi (Vh 500.8) + B(0,,8,0,8)0,,
where we have used the fact that 0,8, 0, = ,[0,0,] = 0. Using also
that [0,®,0,, ] = 0, since V" is torsion free, we have finally
v (vg%_ §0n.P) = Vi i (ngk §0:8) + R"(0,,8,0,8)0,,8  (L9)

where R" is the Riemann tensor associated to the Levi-Civita connection
V". We have

Vi 5 (V5 50.8) = (V"2 5, 50.8 + Vi 0, (1.10)
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Combining all the previous gives then

2
j Kkl It = h -
S > 9595 0 <v5wiq;amkq>,vaqu;amq>>h dvol,,
7/7,77 ):

<c | ’<v2asc13,w<13>

1+ |Vd<f>|f]$]p_1 dvol,,

93 (I.12)
+C [ VOB, [VAD[2 1+ VD2 7 duoly,
FONR ey [ 10.B]n VBl [1+ VB[ )" dvol,,
Combining all the above we finally obtain that
85Hessp(cf>)‘ < C[0,B|| [Hess,(®) + Hess, (€)' /] (1.13)

Combining (I.4) and (I.13) we deduce using Gromwall lemma that if we
take a C! path from [0, 1) into M with finite length for the Palais distance
d, the limiting map (1_51 is still a W?%—immersion of ¥ into N”, which
proves the completeness of (M, d). O

Definition 1.7. Let M be a C? Finsler Manifold and E be a C' function
on M. Denote

M ={ueM ; DE,#0}

A pseudo-gradient is a Lipschitz continuous section X : M* — TM*
such that

i
Vue M* | X (u)]], <2 ||DE,||.
ii)
Vue M [DER < (X(u). DE.)p 1o
O

The following result is mostly using the existence of a Lipschitz partition
of unity for any covering of a Finsler Manifold (combine proposition 1.2
and corollary 1.1).

Proposition I.6. Every C* function on a Finsler Manifold admits a pseudo-
gradient. O

The following definition is central in Palais deformation theory.

12



Definition 1.8. Let E be a C' function on a Finsler manifold (M, ]| - ||)
and € E(M). On says that E fulfills the Palais-Smale condition at
the level B if for any sequence u,, staisfying

E(u,) — 8 and ||DE,|l.,, — 0
then there exists a subsequence u, and us € M such that
d(Up, Usg) — 0
and hence E(ux) =0 and DE, = 0. O
Example. Let M be W12(S1 N") for the Finsler structure given by
Vi € Dya(@ ' TN") [l o= [[@]|wres)
Then the Dirichlet Energy satisfies the Palais Smale condition for every

level set. O

Definition 1.9. A family of subsets A C P(M) of a Banach manifold M
1s called admissible family if for every homeomorphism = of M isotopic
to the identity we have

VAe A =(A) e A

d

Example 1. A closed 2 dimensional sub-manifold N? of R™ being given
and o € my(N?) # 0, considering the Banach Manifold M := W12(S1 N?)
we can take

{ u € CU([0,1], W (ST, N?)) ; w(0,-) and u(1,-) are constant }

and  u(t,0) [0,1] x S' — N?  realizes
(I.14)

i.e. for N* ~ S? A corresponds to a class of sweep-outs of the form €.
]

Example 2. Consider M := W4 (52, R?) and take ¢ € 7, (Imm(S? R?)) =

Zo x 7, then the following family is admissible
A= {® € C((0, 1], Wi, ($%,R) ; 8(0,-) = B(1,-)  and [B] = ¢}

d

We can now state the main theorem in this section.
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Theorem I.3. [Palais 1970] Let (M, ||-||) be a Banach manifold together
with a CY'—Finsler structure. Assume M is complete for the induced
Palais distance d and let E € CY(M) satisfying the Palais-Smale condition
(PS)g for the level set 5. Let A be an admissible family in P(M) such
that

inf sup E(u) =f

AcA ,ca
then there exists u € M satisfying
DE, =0
(L.15)
E(u) =p
O

Proof of theorem 1.3. We argue by contradiction. Assuming there is
no u satisfying (I.1) then Palais Smale condition (PS)s implies
360 >0,3¢ >0 B—e< Eu)<pf+e = |[DE,||,>9d . (1.16)

Let u € M*. Because of the Local lipschitz nature of a fixed pseudo-
gradient given by proposition 1.6 there exists a maximal time ¢ .= €
(0, +00] such that
dos(u , "
) (o)) n(E() i (0.2,
do(u) =u
where 1 > n(t) > 0 is supported in [ — €¢, 8 + €] and is equal to one on
(8 —€0/2, B+ €0/2].
We have for any 0 < 1) <ty <t ... we have
do(u
00 (), 61, () < [ 280
' br(u)

to
<2 | n(E(@(w)) 1DEs s dt

ta

dt

and t
[ 1B () 1DEy 1

= [ (B (w) (X(én(w), DEy ) dt
< E(¢r,(u) — E(¢r,(u))

14
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Hence

d(r, (1), n, (w) < 2 |to — 1a] 'V [E(¢r, (w)) — B(,(w))]

u
max

Hence, assuming ¢ . < 400, ¢(u) realizes a Cauchy sequence ast — t% .

Since M is complete, the only possibility for the extinction of the flow is
that lim .. ¢ (u) belongs to M*. But the flow is constant in time outside
EY([B — &0, B+ ¢€]) hence t",, = +oo.

max

Hence for any ¢ € R, ¢; is an homeomorphism of M isotopic to the
identity and, since A is admissible

VAe A Vitel0,+o0) o(A) e A

Let v now such that § < F(u) < 8+ ¢9/2. For any 7 > 0 such that
E(¢¢(u)) > B —e9/2 we have (taking dy < 1)

6 < B(én(u)) — B(u) = [ 224

2
0 dt < —2714;

Hence for any 7y < £¢/2 we have?
E(¢-(u)) < E(u) — 2785
In particular

E(¢ey /25, (1) < E(u) — do o
Choose A € A such that

sup E(u) < B+ dpeo

ucA
Hence we have for ty = ¢/2d
sup  E(¢y,(u)) < B
Do (u)Ery (A)
which is a contradiction. O

Application. We take M := W1?(S! N?) where N? ~ S%. Let any
sweep-out & of N? corresponding to a non zero element of mo(N?). Then

Wz, = _inf max F(d(t,-))

FeQs,NA  te[0,1]

is achieved by a closed geodesic. This gives a new proof of Birkhoff exis-
tence result. O

20bserve that this kind of inequality is reminiscent to the condition v) of the definition of Birkhoff curve shortening
process.
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Now, what about surfaces ? The Dirichlet energy of maps into a sub-
manifold of is not satisfying the Palais Smale anymore in 2 dimension. So
Palais Deformation theory does not apply directly to the construction of
minimal surfaces by working with the Dirichlet energy. We would also
like to go beyond the Colding-Minicozzi framework which is restricted to
spheres.
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