Minmax Methods in the Calculus of Variations of Curves and
Surfaces

Tristan Riviere*

I Lecture 3

A Viscosity Approach in the Calculus of Variations
of Curves and Surfaces.

The heuristic of the method is simple. Consider the energy E to which
one aims to apply a minmax procedure. If F does not satisfy the Palais-
Smale condition on add to £ a more coercive term multiplied by a small
“viscosity” parameter ¢ in order for the obtained “smoothed” functional
E° to satisfy Palais Smale. Apply Palais deformation theory of lecture 2
in order to obtain a minmax critical point of E? and make o go to zero.
As we will see the procedure, in contrast with the simplicity of it’s main
strategy, offers surprising difficulties we have to overcome.

I.L1 An Attempt for constructing Geodesics using a Viscosity
Approach

We consider again a closed sub-manifold N™ of R™. We consider the
Banach manifold introduced in lecture 2 and given by

M= Wi, (ST, N")

This Banach manifold is equipped with a Finsler structure given for any
7 € M and any @' € D22 (7 1T N™)

I8l = [ [, V212, + |ve | (L1)

We have seen that (M, || -]|) is complete for the induced Palais distance.
Introduce for any ® € M
E°(7) = [, [1+0 [R5 dls
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where K5 is the curvature of the immersion inside N" given by

2. — U 9. .~
Ry = Vi 057
We have the following proposition

Lemma I.1. E7 is C' on M and in constant speed parametrization we
have

dE7 -0 = [ (V'0,d7), dls+0” [ 2 < V5, VdT >, dls

95
=30" [ <VU,dT >y |Rol® dly+ 0 [ 2 < RNT,d9) 47, V"4 >, di
(1.2)

The proof can be proved in [1]. As a matter of illustration and for later
purposes we compute the derivative of £? in the case N" = §".

. 1 0 | 0y ” | 937 ] [39\597\ a]
K~ = PT T~ = — P = - P — a
7 Lam o0 Lam 20712] T [Tanr
0%y
— TAa 519 +
2071 "
Take 75 and denote 0s7|,_, = U. We have

+ 17] — 4Rz - O O - Oy

— 832_) — — 12 — —
= 2Ry - [\89’7\2 + v] — 4 |R5|7 < dv,dy >,

We have seen
Osdly,|,_y =< dv,dy >, dly
Combining all the previous gives in constant speed parametrization |0py| =
L/2w
L 2

) . .
o/ = - = 2 — = o= —12 = rs
3 dE°(Y) - U = 51[ ¥+ o {2/<;+27T/<:+3(99 (I%] ’y)” vdf (1.3)

We have the following Palais Smale Property “modulo gauge changes”.
Proposition 1.1. Let o0 > 0 and 7; be a sequence in M := w22 (St N™),

where the space of W22 immersions into N" is equipped with the Finsler
structure given by (1.1) such that

E7(%;) — B(o) and DE] —0

2



then there exists a subsequence uj and a sequence vy of W2 —diffeomorphisms
of St such that

Vi 0y — Ooo  for the Palais distance.

If one assume furthermore that ujy stays within a ball of finite radius in
M for the Palais distance, then one can take 1 to be the identity. O

Proof of proposition 1.1. The proof of this result can be found in
[1]. As a matter of illustration we present it in the sphere case when
N™ = 5" We take 1¢; such that the parametrization is of constant speed
: |0p(Yj 0 4j)| = Lj/2m. We omit to write explicitly the composition with
¥; and we assume that 7; itself is in constant speed parametrization. As
we saw, the geodesic curvature in S™ is given by

@__%%
Y100

+9; = kj + 7

where £; is the vector curvature of the same immersion but viewed as an
immersion into the ambient space R"™. The Fenchel theorem gives

o < [P diy < LY [P dig] " < LV [ R 1) )

Hence the length L; is bounded from above and from below by a positive
number. Hence, in constant speed parametrization the assumption that
E°(%;) is uniformly bounded reads

9 2

0T + —5 7

df <
i +00

lim sup /S X

j—+o00
And this implies that there exists a subsequence 7 such that
Vi = A  weakly in W**(S1)

Observe that in this constant speed parametrization the assumption we
have for any v € T5 M

75, <1 =
o I, (Vs ) PI07 > d8 -+ [V 51007, o+ [ d < 1
We have
Vh - T = PT(3,)(057) = 85T — 7, - 057 7j = 09T + 0y, - T 7
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and
h h =\ _ pT(= ho
V@g,—y'j (V@G,—Y'jU) =P (’yj) <89 <v89,—y},1}>)
= 0pT + 2 0, - Ot 7j + 0oy - T 4 + 0oy - U O
Hence, using in particular the embedding W2 < O it is not difficult to
see that there exists a constant C' > 0 independent of j such that

w2 oy <C - = 7y, <1

Combining this fact with the assumptions together with (I.3) gives

) . I |
sup /81 [_7j+02 {2/4;3-+23/<;j+389 (‘/{j|2 ’Yj)” -7 db
{||77||W2,2§1 ; U-’%EO} T
i
0

Let @ € W2?(S1, R™) there exists C; > 0 such that ||d|y22 < C; =
|Tllw22 < 1 where v = & — 7; - @ ;. Observe that we have successively
Y- A= R-T=0 0 8 (R )T =~ KPP
and ) .
ki3 = 1R 1* 1
Combining all the previous implies that

N N — 5 L2 - — 5 - N —
=% = PP 07 |28+ 52 R 430 (IK1° 35) + 1R 13177,

1l strongly in W—22(S1)

0
Wedging by 7; gives that
Oy (1 —20%) 7, A9 +20% 93 ARy — 202 75 ANR; + 302 |Rj12 ) AJ;)
(1.4)

converges to zero in W22, Hence there exists a converging sequence of
constant 2-vectors Cj such that

(1—20%) 9 A7 +20% 3 AR —20° 3 AR +3|7[P5;, A% — G = 0

in W12, Since L'(S') embeds in a compact way into W~12(S1) we deduce
that 9; A K; is strongly pre-compact in L*(S') and since &; = (7; A7) L7;
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we have that &; and thus 927, is pre-compact in L?. This gives the strong
convergence of J; t0 Y in W%? and this easily imply that

DE’ (%) = 0
This concludes the proof of the theorem. O
Let A be an admissible family of W22, (S', N") and denote

pO) = juf, s f s

Assume 3(0) > 0.
Example. A is the sub-family of

CO(0,1), Wi, (S, N*) 0 C°([0, 1], W (S, N?)

mm

of maps 7(¢,-) which are constant at ¢ = 0 and ¢ = 1 and which realize a
non trivial sweep-out of N2 (i.e. a non zero class of mo(N?)). O

For any A € A we define
Ay={7eA st [ dz>p0)/2]
and Ay ={A e A; Ay #0}. Let

B(o) := inf sup E7(7)

ceAy Fe Ao

It is straightforward to prove that
lim 5(0) = 5(0)

o0
Because of all the previous we have the existence of ¥ such that
E?7(77) = B(o) and  DE?(Y7) =0
In constant speed parametrization we have a sequence o; such that
7% —~ 7% weakly in (W)
We are now facing the following difficulty.
Do we have ) = L(7°~) and 77> is a geodesic ?

The answer to this question is a-priori negative. We have



Proposition 1.2. Let N" = S?, the unit sphere of the 3-dimensional eu-
clidian Space. Under the previous notations, there exists o; — 0 and
v € W22 (81,52 such that

limsup £ (7;) < +o0o and DE% =0 ,

J—+o0
moreover y; is in normal parametrization and

Vi — Yoo weakly in  (WH)*
but ' .
o/ Jﬁ_}:) Yoo Q.€.
Moreover, for every measurable I C S such that L1(I) # 0
LY 1) < l}glﬁ?ofL(WL[)

and Y, 1S not a geodesic. O

I.2 Struwe’s Monotonicity Trick.

Theorem I.1. Let (M, || -||) be a complete Finsler manifold. Let E° be a
family of Ct functions for o € [0,1] on M such that for every ¥ € M

o— FE°(y¥) and o — 0,E°(Y) (L.5)

are increasing and continuous functions with respect to o. Assume more-
over that

IDEZ = DEZ|ly < C(o) (lo —7|) F(E°(7)) (1.6)
where C(o) € L5.((0,1)), 6 € LiS.(Ry) and goes to zero at 0 and f €

loc

©(R). Assume that for every o the functional E° satisfies the Palais

loc

Smale condition. Let A be an admissible family of M and denote

B(o) == inf sup E7(7)

Then there exists a sequence o; — 0 and 7; € M such that
E% () = B(o;) . DE%(%;) =0

Moreover 7; satisfies the so called “entropy condition”

7)) —ol b
0o, B (’YJ)_O(% log (C}]))



Before proving theorem 1.1 we are going to apply this result to the case
of W22 —immersions of curve into a closed sub-manifold N"

Theorem 1.2. In the Finsler manifold W22 (S*, N™) equipped with the

rmm
Finsler structure (I.1) we consider the family of C* functions on M given

by
E7() = [, [1+ 0% |R5]] dis

then for any admissible family of W22 (S', N™) we denote

plo) == inf Sup E7(7)

and assume 3(0) > 0. Then there exists a sequence o; — 0 and 7; € M
such that
E%(5;) = B(o;) . DE%(3;) =0

02 [, 1R dis, = o (10;(1)) (L.7)

;Vj > Voo
moTeover Yo, 1S a_geodesic satisfying

L(’_Y’oo) - B(O)

moreover

and

(]

Proof of theorem 1.2. We aim to apply first theorem I.1. Conditions
(I.5) are clearly fulfilled. Regarding condition (I.6) a short computa-
tion, starting from the explicit expression of the derivative of E? given
by lemma 1.1, implies that for any ¥ € W2, (S*, N") and any ¥ € T5M

mm

[DEZ -5~ DEL- 4] < Cye |2 = 0?| [V

dlv HU||7

Hence, all the conditions for applying theorem 1.1 are fulfilled and we
obtain a sequence o; — 0 together with a sequence of critical points 7; of
E°i such that (o) = E%(7;) and the entropy condition (I1.7) is fulfilled.

In order to simplify the presentation we give the rest of the argument in
the particular case N" = S™ (the general case is presented in [1]). In that
case we can use the expression (1.4) and infer the existence of a sequence



of constant 2-vectors éj such that in constant speed parametrization one
has.

(1—=205) % A% +20° Fj ARy — 205 4 AR+ 307 |R;[P 9 A7 = C
Because of the entropy condition (I.7) we have that
L; = 8(0) >0

and hence |¥;| = L;/2n — [(0)/27. Using this fact we deduce that in
normal parametrization

0J2- |7j)> — 0 strongly in L'(S")
Hence there exists a sequence of 2-vector valued function ]5] — 0
strongly in L'(S!) such that

¥ A= =20 3 N+ F+ G,
Integrating this identity over S! gives

T AT =21 G+ o(1)

hence
limsup )| < 4(0) /2

J—+00
Taking now the scalar product with 4; A ,'7], and integrating over S' gives
L? P L oS S5 o o
or = 7205 [ (T AR;) - (A7) + o) +/51 Cj - NY; do
This implies that
Cjl — 8(0)/2m
and consequently

lim H/SﬁjA?j de‘—/sl 1 Al d9’=0

J——+00

we deduce the strong convergence of 7; A ’.73' in L' from which the theorem
follows. .

Remark I.1. Observe that the argument of the proof is similar to a “com-

pensated compactness type argument” as it has been originally introduced
by Luc Tartar in [2]. O



Proof of theorem I.1. Since (o) is a non decreasing function of o
Lebesgue theorem implies that it is differentiable almost everywhere. De-
noting by Df the distributional derivative of 8 we have the existence of
an L' non negative function (o) which coincides with the derivative of
[ almost everywhere and a non negative Radon measure p on [0, 1] such
that
DB(c) = B'(0) dL'L[0,1] + p

we have moreover the existence of a Lebesgue zero measure subset B of
[0, 1] such that u(B) = ([0, 1]). We then deduce that

| B'(0) do < B(7) = B(0)
Then there exists a sequence of point of differentiability for 8 in (0, 1) that

we denote o; such that

o(1)
0j — 0 and B/(O-]) S m

Let now o be a point of differentiability of g and fix ¢ > 0. Since [ is
differentiable at ¢ we have for 7 close enough to ¢ an larger than o

B(r) < Blo) +(B(o) +¢) (T —0) . (L.8)

Take now 7 > o close enough to ¢ in such a way that (1.8) holds and let
A € A and 7 € A such that

plo) < E7(Y) +¢ (1 - 0)

(1L.9)
ET(7) < B(7) + (T — o)
We claim that under the two assumptions (1.8 and (1.9) we have
I, E°(Y) < (o) +3e . (I.10)

Indeed, combining (I.8) and (1.9) together with the fact that £7(¥) is non
decreasing in 7 we have

Blo)—¢e (tT—0) < E7(Y) < E7(7) < B(7)+e(7—0) < B(o)+(f(0)+2¢) (T—0)
which gives
ET(Y) - E°(7)

— < fB(o)+3¢

using the fact that 0, E7(7) is non decreasing we deduce the claim (I1.10).

9



We are now going to construct for any op — o+ and 7 such that
: k(=L
Jim [DE* (55, = 0 (111)
and

{ Blo) < E7(Vk) + ¢ (or — o)
(1.12)

E7 (Vi) < Blok) +e(or, — o)
Given an arbitrary sequence o; — o' we assume that there exists 0 such
that for k£ large enough and for all ¥ satisfying

{ Blo) < E°(Y) +¢ (or — 0)
(I.13)
E7(5) < B(oy) + e(or — o)
one has
IDE™()ls >3 . (L14)

We take a pseudo-gradient X 7%(¥) on M* given by proposition 7?7 and we
consider a cut-off function y € C*(R) supported on R, and such that
X = 1 on [1,+00). We consider then the following cut off of the pseudo-
gradient

X()'k(,?) =y (EU(’V) _65((0‘?_"'05)(016 - ‘7)) X(7)
and consider the flow given by
k 5 ~
W) _ kgt 3) i 0.6)
o0(7) =7
We have for any 7 and for t < 7
WO - ppe(eh () - K647
x( <_> FEZ) Dp (k) X0k )
o — 0)
- (E AL DEn ok ) - X6 )
O'k — 0
+ xi(0F (7 E"’“(cbt( 7)) — DE”(¢;(7))] - X7 (6} (7))
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where

k(9 (7)) = x (
Starting with v satisfying
E7() < Blow) +e(or, — o)
since the flow is decreasing the E°* energy i.e.
E7(6;(7)) < E™(¢;(7)) < E™(7) < B(ox) + e(og — 0)
and since
X7(o{(7) #0 = Blo) < E°(¢{(7)) + ¢ (ox — 0)

The energy E?(¢f(¥)) is uniformly bounded from above and from below
all along the flow and then, from our assumptions, we can choose k large
enough in such a way that

[DE”(¢1()) — DE”(¢{(7))] - X7*(¢ (7)) < 6%/2

E7(¢1 (7)) — B(o) + ¢ (ok — 0))

(o — o)

Since

DE™(¢;(7)) - X™(¢1(7)) = &*
for B(o) < E7(¢5 (7)) +¢ (01 — o), the energy E° also decreases along the
flow and, unless

E7(7) < Blo) — € (ok — 0)
in which case the flow is constant, we must have
B(o) < E7(¢{(7)) + ¢ (o) — o)

for all time. Arguing as in the proof of Palais theorem 7?7, because of our
assumption (I.14) under the condition (I.13), if we start with ¥ satisfying

E?(5) < B(ow) +e(or — 0)

the flow cannot extinct on a critical point of M \ M* and then exists for
all time and t7 = +o0o. Taking now a point A € A such that

SHE Eo*(7) < B(ok) + e(ox — o)

—

ye
we consider ¢f(A). Because of the above there will be a finite time T such

that
sup E7(¢5()) — (o) + & (o — 0))
yeA e (o) — o)

<1
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which implies
sup £7(¢7.(7) < B(0)
~yeA
Since ¢%(A) € A we have reached a contradiction and we have proved the
existence of 7y satisfying both (I.11) and (I.12). We have then
0, E° () < B'(0)+3e and  lim ||[DE™ ()]s =0

k—+o0

Because of the assumption (I.6) we deduce that 7 is a Palais Smale se-
quence and since € = o(1/0 log(c™1)) as 0 — 0, the theorem 1.1 follows.
(]
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