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Abstract

The main goal of this thesis is to analyse weak holomorphic structures over
closed Kähler manifolds and to positively several answer strong approxima-
tion questions. For Xd closed Kähler manifolds with associated Hermitian
bundles we investigate weak structures in W 1,d-critical regularity and es-
tablish a one to one correspondence between unitary connections satisfying
F 0,2
∇ = 0 and the existence of holomorphic structures. In the smooth frame-

work this is the celebrated Newlander-Nirenberg theorem. In an article to-
gether with my advisor Tristan Rivière, we have proven the analogue for weak
structures over closed Kähler surfaces [25]. In order to answer this question
we deeply investigate results in the field of complex analysis of several vari-
ables.

Moreover, the calculus of variations yields the question of smooth approxi-
mations of such structures. We can establish strong approximations of weak
holomorphic structures with smooth holomorphic ones.

This thesis goes beyond the case of Kähler surfaces and analyses the case
of closed Kähler manifolds in general dimensions. We positively answer the
questions of existence of weak holomorphic structures and strong approxi-
mation under critical regularity regime.

Lastly, our techniques naturally lead us to research the case of flat con-
nections under non-compactness of the structure group. The question of
strong approximation of such connections is known in the literature assum-
ing compactness of the structure group. However, the difficulty of the non-
compactness of the structure group is non-trivial. In collaboration with my
advisor and Mircea Petrache we have developed a general framework that en-
ables us to answer strong approximation questions for a large class of weak
solutions to PDEs. The case of flat connections is one such application.
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Zusammenfassung

Das Hauptziel dieser Arbeit ist es, schwache holomorphe Strukturen über
geschlossenen Kähler-Mannigfaltigkeiten zu analysieren und mehrere Fragen
zur starken Approximation positiv zu beantworten. Für geschlossene Kähler-
Mannigfaltigkeiten Xd mit assoziiertem hermitischen Bündel untersuchen wir
schwache Strukturen mit W 1,d-kritischer Regularität und stellen eine Eins-
zu-Eins-Korrespondenz zwischen unitären Zusammenhängen, die F 0,2

∇ = 0
erfüllen, und der Existenz holomorpher Strukturen her. Im glatten Rah-
men ist dies das berühmte Newlander-Nirenberg-Theorem. In einem Artikel
zusammen mit meinem Betreuer Tristan Rivière haben wir das Analogon für
schwache Strukturen über geschlossenen Kähler-Oberflächen [25] bewiesen.
Um diese Frage zu beantworten, haben wir im Detail Resultate der kom-
plexen Analysis mehrerer Variablen untersucht.

Darüber hinaus wirft die Variationsrechnung die Frage nach glatten Ap-
proximationen solcher Strukturen auf. Wir können starke Approximationen
schwacher holomorpher Strukturen mit glatten holomorphen Strukturen her-
leiten.

Diese Arbeit geht über den Fall von Kähler-Oberflächen hinaus und analysiert
den Fall von geschlossenen Kähler-Mannigfaltigkeiten in allgemeinen Dimen-
sionen. Wir beantworten die Fragen der Existenz schwacher holomorpher
Strukturen und einer starken Approximation unter Annahme kritischer Reg-
ularität positiv.

Schliesslich führen uns unsere Techniken natürlicherweise dazu, den Fall von
flachen Zusammenhängen bei fehlender Kompaktheit der Strukturgruppe zu
untersuchen. Die Frage der starken Approximation solcher Zusammenhänge
ist in der Literatur unter der Annahme der Kompaktheit der Strukturgruppe
bekannt. Die Schwierigkeit bei fehlender Kompaktheit der Strukturgruppe
ist jedoch nicht trivial. In Zusammenarbeit mit meinem Betreuer und Mircea
Petrache haben wir einen allgemeinen Rahmen entwickelt, der es uns ermö-
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glicht, starke Approximationsfragen für eine grosse Klasse schwacher Lösungen
von PDEs zu beantworten. Der Fall von flachen Zusammenhängen ist eine
solche Anwendung.
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Chapter 1

Introduction

The calculus of variations of Yang-Mills in 4-dimensions has naturally lead
to the definition of Sobolev connections [10]. In the framework of Sobolev
connections defined on a smooth vector bundle over a base manifold M , we
analyse the case of weak holomorphic structures and the cousin problem of
flat connections.

The strong approximation of Sobolev connections by smooth ones has been
proven in the case of Riemannian manifolds without any other topological
constraints. This is less involved and hence, one of the novelties of this thesis
is exploring how the approximation can be achieved by adding certain topo-
logical constraints as we will see in the next sections.

We note that there has been a definition of weak connections with L2 bounded
curvature given by T. Rivière in collaboration with M. Petrache in [26]
and [27]. This definition was motivated in a search of the closure of Sobolev
connections below a Yang-Mills energy level. Roughly speaking a weak con-
nection in real 5-dimensions is defined as being an L2 1-form into a Lie
algebra g such that its restriction on a.e. 4-sphere is a Sobolev connection.
In higher dimensions weak connections are defined in an iterative way. That
is, for n > 5, a weak connection in n-dimensions is an L2 form A into the Lie
Algebra such that when restricted to a.e n − 1 spheres is itself a weak con-
nection. This space has been proved to be weakly sequentially closed under
Yang-Mills Energy control. This was one of the main results in [26] and [27].

3



4 Chapter 1.

1.1 Weak holomorphic structures

We consider the above notions in the following complex framework. Let E
be a C∞ complex vector bundle of rank n over a d-dimensional closed Kähler
manifold Xd and h0 be some reference Hermitian inner product in the fibers
of E: i.e. (E, h0) defines a Hermitian vector bundle. We shall sometimes
consider E issued from its associated GLn(C) principal bundle or from its
associated unitary principal bundle.

The classical Newlander-Nirenberg theorem [23] states that given an almost-
complex structure J over an even dimensional smooth manifold X then the
torsion of J (also called the Nijenhuis tensor) vanishes if and only if J de-
fines a complex structure. Let F∇ be the curvature 2-form associated to a
connection ∇ of (E, h0) over a complex manifold X. We will be interested in
the ”bundle” version of the Newlander-Nirenberg theorem (see [16, Theorem
2.1.53], [17, Chapter 1, Section 3, Proposition p. 9]). It states that uni-
tary connections satisfying F 0,2

∇ = 0 are in one to one correspondance with
holomorphic structures:

Let ∇ be a smooth unitary connection of a C∞ hermitian bundle (E, h0) over
a complex manifold X. Then X has a holomorphic structure if and only if
F 0,2
∇ = 0.

One of the goals of this thesis is to extend this identification to Sobolev con-
nections. More precisely, we analyse what we call weak holomorphic struc-
tures, that is Sobolev connections (see the definition 1.1 below) satisfying the
integrability condition F 0,2

∇ = 0 and study the analogue of the Newlander-
Nirenberg theorem in this regime. Since

F 0,2
∇ = 0

gives us the integrability of the complex manifold (in the sense that it gives
the existence of a complex structure), then we call such a vanishing condition
the integrability condition.

In addition, because the problem of weak closures naturally appears in the
calculus of variations, we will look at the strong approximation of such weak
holomorphic structures by smooth ones.

We are interested in the space of Sobolev W k,p connections of E which are
defined as follows:
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Definition 1.1. Let ∇0 be a smooth connection of E, we denote

Sk,p(E, h0) :=
{
∇ := ∇0 + η where η ∈ W k,p(Ω1(adh0(E)))

}
where W k,p(Ω1(adh0(E))) is the space of Sobolev W k,p 1-form sections into
the sub-bundle of the endomorphism bundle End(E) made of the unitary
endomorphisms for the reference metric h0.

Then Sk,p(E, h0) is called the space of Sobolev unitary W k,p-connections of
(E, h0).

We will heavily use gauge theory in order to obtain our results. To this extent
we find it useful to recall to the reader the notion of a gauge transformation
of a connection ∇ ∈ Sk,p(E, h0). Let g be a section of the Hermitian vector
bundle E, then the gauge transformation of ∇ = ∇0 + η by g is defined as
∇g = ∇0 + ηg, where

ηg := g−1dg + g−1ηg.

Let {Ui}i be a cover of a Kähler manifold X. Then such a connection ∇ ∈
Sk,p(E, h0) can be represented in each Ui as

∇ ≈ d+ Ai,

where d is the exterior derivative and Ai ∈ W k,p(Ω1Ui ⊗ u(n)). Hence, for a
local gauge transformation g : Ui → U(n) on ∇ we have:

Agi = g−1dg + g−1Aig in Ui.

In this framework we study the convergence of Sobolev unitary connections,
and their respective Sobolev structures in the case of closed Kähler manifolds
Xd. In particular, we consider unitary connections belonging to the space
S1,d(E, h0) over Xd.

Convergence of Sobolev connections is a subtle issue that deserves to be
detailed before going forward. It is customary to define the distance of two
Sobolev connections by fixing a system of charts and trivialisations of the
connections and measuring the Sobolev distance in each trivialisation. In
the calculus of variations of Yang-Mills, however, it is of interest to study
the compactness of the space of connections with bounded Lp curvature (see
for example [30], [16] and [40]). In this context, the convergence of Sobolev
connections is always taken modulo gauge transformations due to the non-
coerciveness of the Yang-Mills functional. To this extent, we define the gauge
invariant distance between two given connections.
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Definition 1.2. Let Xd be a d-dimensional closed Kähler manifold and p ≥ 1
with its associated Kähler 2-form ω. We define the gauge invariant distance
as the functional

distp : S1,p × S1,p → R≥0
given by:

distp(∇1,∇2) := inf
σ∈G1,d(GL(n,C))

∫
Xd

|∇1 −∇σ
2 |p ωd +

∫
Xd

|F∇1 − F∇2
σ |p ωd

where G1,d(GLn(C)) is the space of W 1,d gauge transformations on E for the
group GLn(C).

We point out to the reader that the problem of existence of weak holo-
morphic structures has been studied in the case of one dimensional com-
plex spaces. Under the assumption that ∇ has L2,1 regularity (L2,1 is the
Lorentz space 2, 1) for one complex dimensional spaces, F. Helein gives a
solution in [13, Lemma 4.1.7]. The case of L2,1 regularity is, however, sub-
critical. The critical case of L2 connections has been proven by B. Sharp
in [34]. Analysing higher-dimensional cases leads to non-trivial difficulties
and through this work we are building a few mathematical frameworks that
allow us to tackle this problem in the case of critical regularity.

Thus, we positively answer the analogue of the Newlander-Nirenberg theorem
for W 1,d unitary connections and the question of strong convergence. More
precisely, the first main result I obtained in collaboration with my advisor
Tristan Rivière is the following:

Theorem 1.1. Let ∇ be a unitary W 1,2 connection of an hermitian bundle
(E, h0) over a closed Kähler surface X2. Assume ∇ satisfies the integrability
condition

F 0,2
∇ = 0 (1.1)

then there exists a smooth holomorphic structure E on E and a
⋂
q<2

W 2,q

section h of the bundle of positive Hermitian endomorphisms of E such that

∇ = ∂0 + h−1∂0h+ ∂E (1.2)

where ∂E is the ∂−operator associated to the holomorphic bundle E and ∂0 is
the 1-0 part of the Chern connection associated1 to the holomorphic structure
E and the chosen reference hermitian product h0.

1These connections are not necessarily unitary with respect to h0 anymore.
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Recall that the Dolbeault operator ∂ induces the Dolbeault cohomology
groups Hp,q

∂
(X2) (see [12, Chapter 0, p. 25]) which ”measure” the failure

of ∂ closed forms to be ∂ exact. Under the assumption that H0,2

∂
(X2) = 0,

the second main result of this thesis obtained in collaboration with my advi-
sor asserts that Sobolev holomorphic structures associated to Sobolev unitary
connections are strongly approximable by smooth ones in 2 complex dimen-
sions (the dimension for which the Yang-Mills energy is critical).

Theorem 1.2. Under the assumptions of Theorem 1.1 and H0,2

∂
(X2) = 0,

there exists a sequence of smooth connections ∇k on smooth holomorphic
bundles Ek satisfying

F 0,2
∇k = 0 ,

and converging to ∇ in the sense that for any p < 2:

distp(∇k,∇) = inf
σ∈G1,2(GL(n,C))

∫
X2

|∇k −∇σ|p ω2 +

∫
X2

|F∇k − F∇σ |p ω2 → 0.

(1.3)
Moreover, there exists a family of isomorphisms Hk such that

∂Ek = H−1k ◦ ∂E ◦ Hk.

That is, the sequence of connections ∇k act on equivalent bundles to E. 2

Remark 1.1. We have formulated these theorems by considering closed Kähler
manifolds. This consideration has been done for simplicity, since it allows us
to use the fact that ∂∂

∗
+ ∂

∗
∂ is locally equal to the Hodge-Laplace operator

∆d = dd∗+ d∗d. The reader should take into account the fact that the results
are generalisable to closed complex manifolds by carefully dealing with error
between the ∂∂

∗
+ ∂

∗
∂ and ∆d operators.

In higher even dimensions, for the weak connections defined in [27] over a com-
plex manifold and satisfying in addition the integrability condition F 0,2

A = 0
with W 1,2 regularity on A, we expect theorems 1.1 and 1.2 to extend in the
following way: We expect to have necessary singularities and the smooth
holomorphic structures should be replaced by the more general notion of co-
herent sheaves. The question remains to know how smooth these sheaves can
be and if a weak holomorphic structure defines a reflexive sheaf or not.

The motivation for addressing these questions takes its roots in a paper of G.
Tian [39] in which the closure of the space of smooth Yang-Mills fields has
been studied. It leads naturally to the study of Yang-Mills fields on a bundle
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well defined away from a co-dimension 4 closed rectifiable set in the basis.
The attempt in [26] and [27] was to give a suitable notion of such singular
bundles together with a singular connection that enjoys a sequential weak clo-
sure property. The attached singular ”bundle” to these singular connections
could be thought as a real version of coherent sheaves. The goal of mixing
the notion of weak connection with the integrability condition F 0,2

∇ = 0 is to
check whether the corresponding singular bundle coincide with the classical
notion of reflexive sheaves in the complex framework. The present thesis is
bringing a positive answer to this question when the basis is a Kähler surface.

1.1.1 Higher dimensions

We can further extend our results over closed Kähler manifolds while in-
creasing the regularity assumptions under the same integrability condition
requirements. For Xd, a d-dimensional closed Kähler manifold, we assume
connections of W 1,d Sobolev regularity. In order to solve the strong approx-
imation question, in collaboration with my advisor and Mircea Petrache, we
have developed a more general framework which studies the invertibility of
general Fredholm operators under a certain class of perturbations (see for
example Section 4.3.1).

There are a few differences in our approach compared to the case of Kähler
surfaces. The main difficulty is that we will not be able to directly obtain
the integrability condition F 0,2

∇ = 0 for the approximating sequence. We in-
troduce the idea of extended integrability condition (4.5) and show that this
implies the integrability condition under the assumption that Xd is closed.

Another difference will be the fact that due to the lack of ellipticity of the
∂ operator, surprisingly we will not be able to prove the equivalent of the-
orem 1.2 in a low energy regime in d-dimensions on unit balls B2d. This
is solely due to the fact that B2d has non-empty boundary. Thus, general-
ising our result to bounded domains is more delicate and is an open problem.

The results we obtain are the following:

Theorem 1.3. Let ∇ be a unitary W 1,d connection of an hermitian bundle
(E, h0) over a closed Kähler manifold Xd. Assume ∇ satisfies the integrabil-
ity condition

F 0,2
∇ = 0 (1.4)
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then there exists a smooth holomorphic structure E on E and a
⋂
q<d

W 2,q

section h of the bundle of positive Hermitian endomorphisms of E such that

∇ = ∂0 + h−1∂0h+ ∂E (1.5)

where ∂E is the ∂−operator associated to the holomorphic bundle E and ∂0 is
the 1-0 part of the Chern connection associated2 to the holomorphic structure
E and the chosen reference hermitian product h0.

and:

Theorem 1.4. Under the assumptions of Theorem 1.3 and H0,2

∂
(Xd) = 0,

there exists a sequence of smooth connections ∇k on smooth holomorphic
bundles Ek satisfying

F 0,2
∇k = 0 ,

and converging to ∇ in the sense that for all p < d:

distp(∇k,∇) = inf
σ∈G1,d(GL(n,C))

∫
Xd

|∇k −∇σ|p ωd +

∫
Xd

|F∇k − F∇σ |p ωd → 0.

(1.6)
Moreover, there exists a family of isomorphisms Hk such that

∂Ek = H−1k ◦ ∂E ◦ Hk.

That is, the sequence of connections ∇k act on equivalent bundles to E. 2

1.2 Flat connections

A problem parallel to obtaining the strong approximation of weak holomor-
phic structures is that of strongly approximating flat Sobolev connections.
As described in Chapter 5, this problem can be solved in several ways (see
for example [4]) assuming compactness of the structure Lie groups (such as
O(n), SO(n) etc.).

In physics, however, there is a rich range of applications that consider non-
compact Lie groups [38]. We can consider the groups O(p, q) which are also
called indefinite orthogonal groups. They are non-compact and are structure
groups of pseudo-Riemannian manifolds. One of the particular examples is

2These connections are not necessarily unitary with respect to h0 anymore.
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the Lorentz group O(3, 1) which is found in special relativity and electro-
magnetism. In particular, the Minkowski pseudo-Riemannian manifold R3,1

with associated structure group O(3, 1) has vanishing curvature.

The novelty of this work is to be able to smoothly approximate flat Sobolev
connections without assuming the compactness of the structure group of
the base manifold. In particular, we will positively answer the problem of
approximating flat W 1,n/2 Sobolev connections in the case of Bn as the base
space. Let g be the Lie algebra induced by the Lie group G. We further
assume that g is a subspace ofMr(R), the space of r×r square matrices. Then
the result obtained in collaboration with my advisor and Mircea Petrache is
the following:

Theorem 1.5. A is a g-valued 1-form in W 1,n/2 over the ball Bn, and we
assume that FA = dA + A ∧ A = 0. Then there exist a sequence of smooth
1-forms Ak with k ∈ N such that

Ak → A in W 1,n/2,

furthermore satisfying

FAk = 0 for all k ∈ N.

In proving this we used the same framework of inverting Fredholm operators
mentioned in section 1.1.1, under appropriate perturbations. This problem
brings a similar difficulty as in the case of closed Kähler manifolds. Indeed,
we will not be able to achieve the flatness condition FAk = 0 directly, but we
will obtain it through what we will define as the extended flatness condition
(5.3).

1.3 Structure of the thesis

In order to introduce the reader to our ideas and strategies, we start by
analysing the case of abelian bundles. Thus, in Chapter 2 we prove theorems
1.1 and 1.2 in the simplified case of U(1) bundles. This is easier, since the
integrability condition locally translates to F 0,2

A = ∂A0,1 = 0.

With these ideas in hand, we proceed to Chapter 3 and prove theorems 1.1
and 1.2 in full generality over U(n) bundles. The chapter is structured as
follows:
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Section 3.1 is devoted to the proof of theorem 1.2 in the case of small W 1,2

norm. This proof is not going to be used for proving the theorem in its full
generality. However, we thought that it could be useful for the reader to ex-
pose a different approach in this particular case and the scheme of the proof
we are giving in this section is going to be used in later ones.

Under the smallness condition of the W 1,2 norm of the connection ∇, in
Section 3.2 we prove that connections satisfying the integrability condition
(1.1) are locally holomorphically trivialisable, meaning that in any geodesic
ball embedded in our manifold X2 where we have the local representation
∇ ' d+A, we show the existence of g ∈ GLn(C) such that A0,1 = −∂g · g−1.
Using this result, we prove theorem 1.1 in section 3.3.

Sections 3.4 and 3.5 are dedicated to proving theorem 1.2. The former sec-
tion proves the strong approximation result, and the latter concludes the
statement by proving that the connections ∇k act on equivalent bundles to
E.

Afterwards, in Chapter 4 we prove theorems 1.3 and 1.4. In the first section
of the chapter we introduce the idea of extended integrability condition (4.5)
and describe how we will use it throughout. In section 4.2 we prove the
existence of holomorphic trivialisations by adapting the approach to W 1,d

regularity. This section has a very similar approach to Section 3.2, in the
case of closed Kähler surfaces. We note however, that we will already make
use of the idea of extended integrability condition (4.5) in order to positively
answer theorem 1.3.

Section 4.3 discusses density under high energy regime and takes a differ-
ent approach compared to what we have done for the case of closed Kähler
surfaces in Section 3.4. We start by analysing the invertibility of Fredholm
operators, and with these results in hand we are able to solve the strong
approximation question. We emphasize again that we firstly obtain density
under the extended integrability condition and using a topological argument
we conclude the integrability condition as required.

We conclude with Chapter 5 which tackles the related problem of strongly
approximating flat Sobolev connections and positively answers theorem 1.5.

Appendix A contains a few results on complex several variables where we
also introduce some regularity results in particular case of the domain B4.
In Appendix C we prove certain results regarding linear operators and lastly,
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Appendix D brings some regularity results and bootstrapping techniques for
the classes of PDEs we will encounter.

1.4 Open Problems

We introduce a few open problems we find interesting.

The strong approximation results relies on the cohomological constraint:
H0,2

∂
(Xd) = 0. It would be interesting to understand this condition fur-

ther:

Open Problem. Without assuming the cohomological constraintH0,2

∂
(Xd) =

0, prove or find a counterexample to theorems 1.2 and 1.4. In particular, one
can consider the case where X2 is a K3 surface.

When dealing with answering the strong approximation question in theorem
1.2, we take a global approach. It would be interesting to analyse the prob-
lem from a different perspective:

Open Problem. Under the assumptions of theorem 1.2, obtain local strongly
approximating sequences satisfying the integrability condition and glue them
in such a way that we obtain a sequence of smooth connections ∇k strongly
approximating ∇ in W 1,2 and satisfying the integrability condition F 0,2

∇k = 0.

The difficulty of this question lies in the lack of ellipticity of the ∂-operator.
Hence, related to the above open problem we suggest another question:

Open Problem. Let ∇ be a unitary W 1,d connection over a Kähler manifold
Xd with non-empty boundary satisfying the integrability condition F 0,2

∇ = 0.

Assume that in a geodesic ball B2d
ρ ∇ is represented by d + A, where A is a

W 1,d 1-form. Prove or disprove whether one can obtain sequences of smooth
1-forms Ak converging strongly in W 1,d to A and F 0,2

Ak
= 0 over B2d.

A natural question arising from smoothly approximating flat Sobolev connec-
tions is to consider the setting of two connection 1-forms A and B satisfying
FA = FB. We want to smoothly approximate A and B while keeping the
curvature equality condition. Thus, we propose the following open problem:

Open Problem. A,B are g-valued 1-forms in W 1,n/2 over the ball Bn, and
we assume that FA = FB. Show whether there exist two sequences of smooth
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1-forms Ak, Bk with k ∈ N such that

Ak → A and Bk → B in Ln,

and furthermore satisfying

FAk = FBk for all k ∈ N.

The difficulty of tackling this problem arises from the fact that when ap-
proximating A and B smoothly, we cannot rely on the Bianchi identity, in
particular there isn’t necessarily a 1-form C such that dC(FB − FA) = 0,
where

dC · = d ·+[C, ·].

Such an identity is crucial to solving the flat connection case.
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1.5 Notations

Mn(C) - the space of n× n complex valued square matrices

u(n) - the Lie algebra associated to the unitary group U(n),

i.e. matrices satisfying A = −AT

Sym(n) - the space of symmetric matrices A = A
T

. This is short-
hand for the space iu(n).

Hp,q

∂
(X) - Dolbeault cohomology (p, q)-group over the complex

manifold X

Gp,q(GLn(C)) - the space of W p,q gauge transformations on E for the
group GLn(C)

Γ(E) - the space of global smooth sections of the vector bundle
E

ΓW p,q(E) - the space of global W p,q sections of the vector bundle E

Ap,q(X) - the space of global (p, q)-sections defined over the man-
ifold X

Ωp,qU ⊗ g - the space of g-valued (p, q)-forms on U

W 2,p
D - the space of Sobolev functions W 2,p that vanish on the

boundary of the domain

ϑω - ϑ = − ∗ ∂∗, formal adjoint of ∂ (see [9, p. 83])

Nω - N is the inverse operator of ∆∂ = ∂∂
∗

+ ∂
∗
∂

B2d - 2d-dimensional unit open ball

B2d
r - 2d-dimensional open ball of radius r > 0

[A,B] - [A,B] = A ∧B + (−1)p+qB ∧A, if A is a p form and B
a q-form
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∂A - ∂A· = ∂ ·+[A0,1, ·] (see Proposition C.3)

∂
∗
A - ∂

∗
A· = ∂

∗ ·+ ∗ [∗∂·, A0,1
T

] (see Proposition C.3)

ϑA - ϑA· = ϑ ·+ ∗ [∗∂·, A0,1
T

] (see Remark C.1)

(A0,1)
g

- g−1∂g + g−1A0,1g

|||T ||| - the norm of the operator T : X → Y , for X, Y Banach
spaces

σ(T ) - the spectrum of the operator T

ρ(T ) - the resolvent of the operator T , defined as C \ σ(T )

A(x) - for k-forms A =
∑
|I|=k xIdxI denote A(x) =

∑
I ai(x)dxI

distp(∇k,∇) - inf
σ∈G1,d(GL(n,C))

∫
Xd |∇k −∇σ|p ωd +

∫
Xd |F∇k − F∇σ |p ωd





Chapter 2

Abelian U(1) Bundles

In order to obtain a good understanding of the equivalence between the
integrability condition F 0,2

∇ = 0 and holomorphic local trivialisations in the
weak setting we have outlined in the introductory chapter, we first start
by investigating the simpler case of U(1) bundles for 2-dimensional closed
Kähler manifolds. Even though this does not capture the difficulties of the
non-abelian case, it shows the steps we should follow later on and what needs
to be changed.

2.1 Existence of holomorphic trivialisations

We consider the setting of theorem 1.1. Since the theorem we want to prove
is local, we can solve the problem of the existence of local holomorphic trivi-
alisations by restricting to geodesic balls Bρ(x) embedded in the given closed
Kähler surface X2. Without loss of generality, we shall work on unit balls B4.

We observe that for any given connection 1-form A ∈ W 1,2(Ω1B4,C), there
exists a perturbation ω ∈ W 2,2(Ω0,2B4,C) such that we obtain the integra-
bility condition

F 0,2

A+∂
∗
ω

= 0

and there exists C > 0 independent of A such that

‖ω‖W 2,2(B4) ≤ C ‖A‖W 1,2(B4) .

Indeed, since we are working with abelian bundles, the integrability condition
reduces to solving the linear problem:

∂∂
∗
ω = −F 0,2

A = −∂A0,1.

17
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According to the ∂-Hodge decomposition (A.5), we have

A0,1 = ∆∂NA
0,1 = ∂∂

∗
NA0,1 + ∂

∗
∂NA0,1,

where N is the operator ∆−1
∂

mapping W 1,2(Ω0,1B4) to W 2,2(Ω0,1B4) such

that the ∂-Neumann boundary conditions are satisfied:

σ(ϑ, dr)NA0,1 = 0 and σ(ϑ, dr)∂NA0,1 = 0,

as defined in Appendix A. We have ∂A0,1 = ∂∂
∗
∂NA0,1. Define ω = −∂NA0,1.

Then by definition it follows

∂∂
∗
ω = −∂A0,1, (2.1)

and hence the integrability condition is satisfied:

F 0,2

A+∂
∗
ω

= ∂(A0,1 + ∂
∗
ω) = 0.

We still have to show that ω has W 2,2 regularity. A-priori, we only have by
the sub-elliptic estimates of ∂ (A.3), that

‖ω‖H3/2(B4) =
∥∥∂NA0,1

∥∥
H3/2(B4)

≤ C
∥∥A0,1

∥∥
W 1,2(B4)

.

It remains to bootstrap to W 2,2 regularity. Since ω is a (0, 2)-form in B4 then
∂
∗
ω = 0. Thus, the equation (2.1) which ω solves is elliptic. In particular:

2∆dω = ∆∂ω = ∂∂
∗
ω = −∂A0,1. (2.2)

Moreover, we know that from ω = −∂NA0,1 and the ∂-Neumann boundary
conditions satisfied by NA0,1, it follows that σ(ϑ, dr)ω = 0 on ∂B4 by Ap-
pendix A. According to the equation (A.2) in Appendix A, this is equivalent
to

∂r ∧ ∗ω = 0 on ∂B4.

We need to understand what this condition means. ω is a (0, 2) form and
can be written as ω = f dz1 ∧ dz2 = f τ ∧ ∂r, where f is a function on B4.
Then ∗ω = f τ ∧∂r and it follows that the boundary condition implies f = 0
on ∂B4, which in turn implies that

ω = 0 on ∂B4. (2.3)

Remark 2.1. Unlike the case of differential forms whose normal components
(containing dr) vanish on the boundary ∂B4, the complex normal components
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(containing either ∂r or ∂r) do not vanish. Indeed, by (A.10) we have ∂r =
dr + iJdr and i∂B4∂r = iJdr.

Putting (2.2) and (2.3) together, we have a solution ω to the PDE:
∂∂
∗
ω = −∂A0,1 in B4

i∗∂B4ω = 0 on ∂B4

Since this is an elliptic problem with vanishing boundary condition, we have
the classic estimate:

‖ω‖W 2,2(B4) ≤ C
∥∥∂A0,1

∥∥
L2(B4)

,

for some constant C > 0. Hence, we have shown that there exists ω ∈
W 2,2(Ω0,2B4,C) such that

F 0,2

A+∂
∗
ω

= 0.

Denote the form A + ∂
∗
ω by Ã. We show that for Ã we can find a gauge

g : B4 → C∗ such that
∂g = Ã0,1g.

Proposition 2.1. There exists ε0 > 0 such that if Ã ∈ W 1,2(Ω1B4,C)

with F 0,2

Ã
= 0 satisfies

∥∥∥Ã∥∥∥
W 1,2

≤ ε0, then there exists r ∈ (0, 1) and

g ∈
⋂
p<2

W 2,p(B4
r ,C∗) such that ∂g = −Ã0,1g.

Proof of Proposition 2.1. Since F 0,2

Ã
= ∂Ã0,1 = 0, then by the ∂-Hodge de-

composition (A.5) there exists a function

U := ∂
∗
NÃ0,1 ∈ H3/2(B4,C)

such that
Ã0,1 = ∂U.

Moreover, there exists r0 ∈ (0, 1) such that

‖U‖W 2,2(B4
r0

) ≤ C ‖A‖W 1,2(B4) ,

for some constant C > 0. Thus, by the embedding [3, Theorem 4.6] W 2,2 ↪→
BMO, we obtain the estimate

‖U‖BMO ≤ C ‖A‖W 1,2(B4) ≤ Cε0.
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We choose ε0 > 0 such that Cε0 <
1
4
24e. It follows that c := 4 < (24eCε0)

−1 ≤
(24e ‖U‖BMO)−1 and as a consequence of [11, Corollary 3.1.7], for any com-
pact set K ⊆ B4 ⊂ R4 we have∫

K

exp c|U |dx <∞.

In particular, for K = B4
r0

, we have∫
B4
r0

exp 4|U | <∞. (2.4)

Define g = exp(−U). By the above estimate (2.4), we have g ∈ L4(B4
r0

).
Moreover, g solves the required PDE:

∂g = −∂U · exp(−U) = −Ã0,1g.

By Lemma D.1 it follows that there exists r ∈ (0, r0) such that

g ∈
⋂
p<2

W 2,p(B4
r ,C∗).

Thus, putting everything together we can prove theorem 1.1 in the case of
abelian bundles. We formulate the statement for U(1) bundles:

Theorem 1.1. Let ∇ be a unitary W 1,2 connection of an hermitian U(1)
bundle (E, h0) over a closed Kähler surface X2. Assume ∇ satisfies the
integrability condition

F 0,2
∇ = 0 (2.5)

then there exists a smooth holomorphic structure E on E and a
⋂
q<2

W 2,q

section h of the bundle of positive Hermitian endomorphisms of E such that

∇ = ∂0 + h−1∂0h+ ∂E (2.6)

where ∂E is the ∂−operator associated to the holomorphic bundle E and ∂0 is
the 1-0 part of the Chern connection associated1 to the holomorphic structure
E and the chosen reference hermitian product h0.

1These connections are not necessarily unitary with respect to h0 anymore.
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Proof of Theorem 1.1. We pick geodesic balls B4
r (xi) covering X2 on which

the connection can be trivialised as ∇ ' d+ Ai and

‖Ai‖W 1,2(B4
r (xi))

≤ ε0,

where ε0 is given by Proposition 2.1. Because X2 is a compact manifold,
there are finitely many such balls covering X2. By Proposition 2.1 there
exists r′ ∈ (0, r), σi ∈ W 2,p(B4

r′(xi),C∗) and hi = σiσi ∈ W 2,p(B4
r′ ,R>0), for

any p < 2 so that Aσii = h−1i ∂hi. Hence

∇σi ' d+ h−1i ∂hi in B4
r′(xi). (2.7)

It is worth noting that since Ai is unitary (Ai = −Ai), then Ai is purely
imaginary. However, due to the fact that hi is a positive real valued function
then Aσii is only complex valued, not necessarily unitary.

It remains to show that ∇ defines a connection on a holomorphic vector
bundle structure E . In order to achieve this, it is enough to find holomorphic
transition functions. On the initial bundle E, there exists gauge transition
functions gij ∈ W 2,2(B4

r (xi) ∩B4
r (xj), U(1)) such that

A
gij
i = Aj.

Define the transition functions

σij = σ−1i gijσj. (2.8)

We show that these functions are holomorphic and consequently since they
define a cocycle, they define a holomorphic vector bundle structure E over
the Kähler manifold X2:

∂σij = ∂σ−1i · gijσj + σ−1i ∂gijσj + σ−1i gij∂σj

= σ−1i A0,1
i gijσj + σ−1i ∂gijσj − σ−1i gijA

0,1
j σj

= σ−1i
(
gij
(
A0,1
i − A

0,1
j

)
+ ∂gij

)
σj,

where we have used the abelian property of our bundle. Since

g−1ij ∂gij + A0,1
i = A0,1

j ,

the above equation gives:
∂σij = 0.

This shows that the transition functions are holomorphic. Thus, there exists
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a holomorphic vector bundle structure E which is compatible with ∇ since
(∇σi)σij = ∇σj in local coordinates. From the local representation (2.7) we
obtain:

∇0,1 = ∂E .

2.2 Global approximation

It remains to prove theorem 1.2 in the context of U(1) bundles. In order to
do so, we focus on proving the following result:

Lemma 2.1. Given ∇ a unitary connection over X2 with H0,2

∂
(X2) = 0

satisfying
F 0,2
∇ = 0,

then there exists ∇k a sequence of smooth connections with F 0,2
∇k = 0 and

∇k → ∇ as k →∞ in W 1,2(X2),

It is worth noting that in this section we will emphasize a few different ap-
proaches. Firstly, we introduce the global approach we will also take in
Chapters 3 and 4. Secondly, we show that under the setting of U(1) bundles
we can achieve a gluing procedure and obtain the required strong approxi-
mation. Lastly, we draw a parallel to an analogue construction using sheaf
theoretical methods.

We warn the reader that in order to prove Lemma 2.1 we will use the ”clas-
sical” notion of W 1,2 convergence of connections. We fix a system of finitely
many charts {Ui}Ni=1 covering X2 and trivialisations ∇ ≈ d+Ai in Ui. Then
the distance function we use is

cdist(∇,∇′) :=
N∑
i=1

‖Ai − A′i‖W 1,2(Ui)
, (2.9)

for any W 1,2 connections ∇,∇′ over X2. Thus, when we say ∇k → ∇ in
W 1,2 as k →∞, we mean cdist(∇,∇′)→ 0.

The distance between∇ and a connection 1-form A′i on a chart Ui is naturally
defined as:

cdist(∇, A′i) = ‖Ai − A′i‖W 1,2(Ui)
,

where ∇ ≈ d+ Ai in Ui.
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Later on, when discussing convergence of connections attaining weak holo-
morphic structures, we will use the gauge invariant distance distp as defined
in Definition 1.2.

Global Approach

We start with a global approach which is the abelian analogue to how we
will solve the more difficult problem in the non-abelian settings.

Proof of Lemma 2.1. Let ∇̃k be a sequence of smooth connections over X2

converging to ∇ in W 1,2(X2). Such a smooth sequence exists by [15]. In the
case of U(1) bundles, we have ∂F 0,2

∇̃k
= 0, where ∂ is the operator mapping

Ap,q(X2) to Ap,q+1(X2). Thus, by the condition H0,2

∂
(X2) = 0 and the ∂-

Hodge decomposition (A.4), there exists (0, 1) forms

uk ∈ C∞(Ω0,1X2 ⊗Mn(C))

such that F 0,2

∇̃k
= ∂uk.

This sequence converges by construction in L2 to 0 = F 0,2
∇ . Since the decom-

position is taken over a compact manifold X2, then ∂ is an elliptic opera-
tor [12, p. 93] and hence the sequence of maps uk is uniformly bounded in
W 1,2. Thus, define

∇k := ∇̃k − uk + uk,

where we have added uk in order to have that ∇k is unitary. Then by
construction

F 0,2
∇k = 0

and ∇k → ∇ in W 1,2 as k →∞ (convergence taken in the sense of (2.9)).

Moreover, the convergence of F 0,2

∇̃k
→ 0 in L2 gives that uk → 0 in W 1,2 as

k →∞.

Gluing Approach

We construct a global approximation result using a gluing approach. The
general idea is having two smooth connections ∇̃U and ∇̃V on intersecting
open sets U, V ⊆ X2 that are close in W 1,2 distance (2.9) to the given con-
nection ∇ on X2, then there is a smooth connection ∇̃ on U, V that is close
in W 1,2 distance to ∇̃U , ∇̃V and ∇. Thus, by constructing approximating
smooth connection 1-forms on fixed charts and gluing them, we obtain global
smooth connections on X2 that are close to ∇ in W 1,2 distance. The main
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difficulty is keeping the integrability condition (1.1) throughout the proce-
dure.

We assume the existence of ∇ a unitary W 1,2 connection over X2. Moreover,
we fix coordinate charts {B4

ρi
(xi)}Ni=1 over X2 and trivialisations ∇ ≈ d+Ai

in each B4
ρi

(xi). The following proposition gives the existence result we have
just described:

Proposition 2.2. Let U =
⋃
i∈I B

4
ρi

(xi) ⊆ X2 an open set and B4
ρi0

(xi0) such

that B4
ρi0

(xi0) ∩ U 6= ∅. Moreover, let ∇̃U ∈ W 1,2 ∩ C∞(U) be a connection

over U and Ã ∈ C∞(Ω1B4
ρi0

(xi0)⊗ C) a connection 1-form such that

F 0,2

∇̃U
= F 0,2

Ã
= 0.

Then there exists ρ0 ∈ (0, ρi0) and a connection

∇̃ ∈ C∞ ∩W 1,2(U ∪B4
ρ0

(xi0),C)

satisfying the integrability condition F 0,2

∇̃ = 0 and the estimate

cdist(∇̃, ∇̃U) + cdist(∇̃, Ã) ≤ C
(

cdist(∇, ∇̃U) + cdist(∇, Ã)
)

for some constant C > 0.

Proof of Proposition 2.2. In B4
ρi0

(xi0), we have the representation

∇ ≈ d+ Ai0 ,

where Ai0 ∈ W 1,2(Ω1Bρi0
(xi0) ⊗ C). In B4

ρi0
(xi0) ∩ U 6= ∅, we have the

representation
∇ ≈ d+B

such that there exists a gauge change g : B4
ρi0

(xi0)∩U 7→ U(1) satisfying the
gluing compatibility Bg = A. Moreover, we have

∇U ≈ d+ B̃

in B4
ρi0

(xi0) ∩ U . We want to find a perturbation of Ã such that we satisfy

B̃g = Ã. Due to the abelian-ness of the bundle, the gluing compatibility we
need to find translates as

Ã = B̃ + g−1dg.

Denote
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η = Ã0,1 − B̃0,1 − g−1∂g on B4
ρi0

(xi0) ∩ U, (2.10)

and η ∈ C∞ ∩W 1,2(Ω0,1B4
ρi0

(xi0),C). Moreover,

∂η = ∂Ã0,1 − ∂B̃0,1 − ∂(g−1∂g).

We have
∂(g−1∂g) = ∂g−1 ∧ ∂g = −g−1∂g ∧ g−1∂g.

Because g ∈ U(1), then ∂g and g−1 commute and ∂g ∧ ∂g = 0. Hence,

g−1∂g ∧ g−1∂g = g−1 · g−1∂g ∧ ∂g = 0

and
∂(g−1∂g) = 0.

Putting this together with the integrability conditions F 0,2

Ã
= 0 and F 0,2

B̃
= 0

satisfied by Ã and B̃ respectively, we obtain

∂η = F 0,2

Ã
− F 0,2

B̃
= 0.

By the ∂-Hodge decomposition A.5 on B4
ρi0

(xi0) ∩ U , this implies that there
exists

α = ∂
∗
Nη ∈ C∞ ∩H3/2(B4

ρi0
(xi0) ∩ U,C)

satisfying:
η = ∂α (2.11)

with estimate

‖α‖H3/2(B4
ρi0

(xi0 )∩U) ≤ C1 ‖η‖W 1,2(B4
ρi0

(xi0 )∩U) , (2.12)

for some constant C1 > 0. However, since α is a function, there exists
ρ0 ∈ (0, ρi0) such that we have the elliptic estimate:

‖α‖W 2,2(B4
ρ0

(xi0 )∩U) ≤ C2

(∥∥∂α∥∥
W 1,2(B4

ρi0
(xi0 )∩U)

+ ‖α‖W 1,2(B4
ρi0

(xi0 )∩U)

)
(2.13)

for some constant C2 > 0. Putting together (2.11),(2.12), (2.13) and the
Sobolev embedding H3/2 ↪→ W 1,2, the estimate follows:

‖α‖W 2,2(B4
ρ0

(xi0 )∩U) ≤ C ‖η‖W 1,2(B4
ρi0

(xi0 )∩U) , (2.14)
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for some constant C > 0. In order to obtain a good bound on η, we can
rewrite equation (2.10) as:

η = Ã0,1 − A0,1
i0
− B̃0,1 +B0,1 + A0,1

i0
−B0,1 − g−1∂g

= (Ã0,1 − A0,1
i0

)− (B̃0,1 −B0,1).

Thus for some constant C > 0 we have:

‖α‖W 2,2(B4
ρ0

(xi0 )∩U) ≤ C ‖η‖W 1,2(B4
ρi0

(xi0 )∩U)

≤ 2C
(

cdist(∇, ∇̃U) + cdist(∇, Ã)
)
.

Using the extension result Proposition B.1, it follows that there exists an
extension α̃ on B4

ρ0
(xi0) such that α̃ = α on B4

ρ0
(xi0) ∩ U and

‖α̃‖W 2,2(B4
ρ0

(xi0 ))
≤ 2C

(
cdist(∇, ∇̃U) + cdist(∇, Ã)

)
,

for some constant C > 0. Thus, we redefine

Ã := Ã− ∂α̃− ∂α̃ ∈ C∞ ∩W 1,2(Ω1B4
ρ0

(xi0),C)

and by construction satisfies the gluing compatibility Ã = B̃g = B̃ + g−1dg
and the integrability condition F 0,2

Ã
= 0. Hence, it yields a well-defined

smooth connection ∇̃ on B4
ρ0

(xi0) ∪ U with the required estimate:

cdist(∇̃, ∇̃U) + cdist(∇̃, Ã) ≤ C
(

cdist(∇, ∇̃U) + cdist(∇, Ã)
)

for some constant C > 0. This finishes the proof of Proposition 2.2.

It is crucial to note that in Proposition 2.2 we have that η = ∂α. In the
general case of U(n) bundles, we can only decompose η as ∂α+∂

∗
β for some

(0, 2)-form β. Hence, we cannot glue in a similar way and the gluing problem
is open for non-abelian bundles.

Using the Proposition 2.2 above, we prove Lemma 2.1 which gives us a strong
W 1,2 global approximation of ∇ under the integrability condition (1.1) con-
straint.

Proof of Lemma 2.1. By [15], there exists a smooth sequence of connections
∇̃0
k such that ∇̃0

k → ∇ in W 1,2. However, unlike [15], there is no need to
smooth out the bundle since we only work in the setting of weak connections
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and not weak bundles. Hence, the transition functions between charts are
smooth.

We want to perturb ∇̃0
k so that we obtain a smooth sequence which satisfies

the integrability condition. We cover X2 by finitely many geodesic balls
{B4

ρi
(xi)}Ni=1, where N < ∞ and ρ > 0 not necessarily small. On each

B4
ρi

(xi) we fix the representations:

∇̃0
k ≈ d+ Ãik and ∇ ≈ d+ Ai.

We have shown that for each i we can perturb Ãik such that we obtain Ãik, sat-
isfying F 0,2

Ãik
= 0, while preserving the convergence: Ãik → Ai inW 1,2(B4

ρi
(xi)).

We construct ∇k inductively using Proposition 2.2.

Without loss of generality we will assume that we do not shrink the domains
as in Proposition 2.2. We can assume this since we have a finite cover and
hence the induction will finish in a finite number of steps.

In the first step we define:

ε0 :=
∥∥∥Ã1

k − A1
∥∥∥
W 1,2(B4

ρ1
(x1))

+
∥∥∥Ã2

k − A2
∥∥∥
W 1,2(B4

ρ2
(x2))

,

∇ := ∇̃0
k, U := B4

ρ1
(x1), ∇U := d + A1

k, Ã := A2
k. By Proposition 2.2 there

exists a smooth connection ∇̃1
k onB4

ρ1
(x1)∪B4

ρ2
(x2) satisfying the integrability

condition (1.1) such that

cdist(∇̃1
k, ∇̃0

k) ≤ Cε0,

for some C > 0.

Assume we have obtained a connection ∇̃n
k on Un =

⋃n
i=1B

4
ρi

(xi) and we con-

struct a connection ∇̃n+1
k over Un+1 =

⋃n+1
i=1 B

4
ρi

(xi). We apply Proposition
2.2 with

εn := cdist(∇̃n
k , ∇̃0

k) +
∥∥∥Ãn+1

k − A1
∥∥∥
W 1,2(B4

ρn+1
(xn+1))

,

∇ := ∇̃n
k , U := Un, ∇U = ∇̃n

k , Ã := An+1
k . Then there exists a smooth

connection ∇̃n+1
k on Un+1 such that:

cdist(∇̃n+1
k , ∇̃n

k) + cdist(∇̃n+1
k , Ãn+1

k ) ≤ Cεn,

for some constant C > 0. Thus, we have inductively constructed a smooth
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connection ∇k := ∇̃N
k on X2 such that:

cdist(∇k, ∇̃0
k) ≤ C

N∑
i=1

∥∥∥Ãik − Ai∥∥∥
W 1,2(B4

ρi
(xi))
→ 0

and F 0,2
∇k = 0. Since ∇̃0

k → ∇ as k →∞, then we conclude that ∇k → ∇ in
W 1,2.

Using the result of Lemma 2.1, the proof of theorem 1.2 in the case of U(1)
bundles follows line by line as in section 3.5.

Sheaf Approach

We conclude this chapter by making a geometrical observation. It is useful
to make a connection between the previous construction and sheaf theory.
In order to have a concrete example, we take X2 = CP2. The following
approach gives a sheaf theoretical argument on why we are able to perform a
gluing argument. However, it also outlines the difficulties such a proof would
bring regarding the global convergence result.

In essence the above Lemma 2.1 is a gluing result which can be reformulated
as such: there exists ρ > 0 such that we can cover X2 = CP2 by finitely
many geodesic balls Bρ(xi) and in each such ball we have the representation

∇ ≈ d+ Ai

where Ai are W 1,2 connection 1-forms satisfying the integrability condition

F 0,2
Ai

= 0 = ∂(Ai)0,1.

Moreover, we have shown that we can strongly approximate Ai by sequences
Ãik such that

Ãik → Ai in W 1,2 and F 0,2

Ãik
= 0.

We need to find perturbations to each Ãik to obtain Aik such that there
exist gauge transition functions gijk satisfying the gluing compatibility Aik =(
gijk
)−1

dgijk + Ajk, the strong W 1,2 convergence Aik → Ai as k → ∞ for each

i, and F 0,2

Aik
= 0. Thus, the error of the gluing compatibility of Ãik can be

denoted by:

ηijk = Ãik −
(
gijk
)−1

dgijk − Ã
j
k ∈ C

∞ ∩W 1,2(Ω1Bρ(xi) ∩Bρ(xj),C).
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We have ∂(ηijk )0,1 = 0, which implies that (ηijk )0,1 are holomorphic. Moreover,
they satisfy the cocycle condition:

(ηijk )0,1 + (ηj`k )0,1 + (η`ik )0,1 = 0 on Bρ(xi) ∩Bρ(xj) ∩Bρ(x`). (2.15)

Since X2 = CP2 we have that H1(X2,O) ' H0,1

∂
(X2) = 0 by [12, Dolbeault

Theorem, p.45], where O is the sheaf of holomorphic functions. In particular,
for any indices s1, . . . , sj we have

H0,q

∂
(Bρ(xs1) ∪ . . . ∪Bρ(xsj)) ' Hq(Bρ(xs1) ∪ . . . ∪Bρ(xsj),O) = 0

i.e. our cover is acyclic. Thus, by Leray Theorem [12, p. 40] it follows that

Ȟ1({Bρ(xi)}Ni=1),O) ' H1(X2,O) ' H0,1

∂
(X2) = 0.

Hence, we have obtained that the first Cech coholomology is trivial. It follows
that the cocycle condition (2.15) implies exactness as well, i.e. there exists
functions ηik defined on Bρ(xi) such that

ηijk = ηik − η
j
k on Bρ(xi) ∩Bρ(xj),

and ∂ηik = 0 for each i. Moreover, by definition we have ηijk → 0 in W 1,2 as
k →∞. Hence, it is enough to define

Aik = Ãik − ηik,

since these 1-forms satisfy the gluing compatibility and integrability condi-
tion F 0,2

Aik
= 0. From this we obtain a sequence of smooth connections ∇k.

Although, this sheaf theoretical result strengthens our constructive gluing,
it fails to reveal whether the connections ∇k we obtain preserve the W 1,2

convergence to ∇. This is because the co-exactness of

ηijk = ηik − η
j
k

does not give W 1,2 convergence of ηik and ηjk even though ηijk converges to 0.





Chapter 3

U(n) Bundles in Hilbert Spaces

Having seen the ideas behind solving the problem in the setting of U(1)
bundles, we are now in a position to analyse the case of U(n) bundles.
This Chapter will look at the case of closed Kähler surfaces which is yet
another intermediary step to understanding the problem on closed Kähler
manifolds. Here we will develop the first methods that help us deal with the
non-linearities that occur from lacking the abelian property of the bundle.

3.1 Density under low energy

Given a unitary W 1,2 connection ∇ of the hermitian bundle (E, h0) over
a closed Kähler surface X2 satisfying F 0,2

∇ = 0, we assume without loss of
generality that B4 is a geodesic ball in X2 and that ∇ trivialises as ∇ ' d+A
in B4, where A is a connection 1-form. Moreover, in this section we will work
with low W 1,2 connection norm in B4 i.e. A satisfies the smallness condition

‖A‖W 1,2(B4) ≤ ε0(X
2, ω)

for some ε0(X
2, ω) > 0 depending on the surface X2 and the Kähler form ω.

We will use the smallness assumption throughout this section. Moreover, to
fix ideas we will assume that B4 is the flat closed unit ball.

We start by showing how to smooth 1-forms, keeping the approximating
sequence unitary. This method however, does not ensure the integrability
condition (1.1). Let p > 1 and A ∈ W 1,p(Ω1B4 ⊗ u(n)) then we can always
find a sequence of unitary smooth 1-forms Ak ∈ C∞(Ω1B4⊗ u(n)) such that

Ak → A in W 1,p(B4).

31
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Indeed, we can write A as A = A0,1 − A0,1
T

, where A0,1 = α1dz1 + α2dz2.
Since for each i = 1, 2, we have αi ∈ W 1,p(B4,Mn(C)), then by the density
of C∞ maps into W 1,p, there exist sequences

α1,k → α1 in W 1,p(B4)

and
α2,k → α2 in W 1,p(B4).

By defining A0,1
k := α1,kdz1 + α2,kdz2 and Ak := A0,1

k − A
0,1
k

T

, we obtain by
construction the convergence of Ak to our initial form A in W 1,p. Moreover,
Ak is a unitary 1-form.

The next lemma helps us prove that we can always find a perturbation of a
given connection 1-form A ∈ W 1,p with low norm such that the integrability
condition (1.1) is satisfied.

Lemma 3.1. Let p ≥ 2. There exists ε > 0 depending on p such that for
any A ∈ W 1,p(Ω1B4⊗ u(n)) satisfying ‖A‖W 1,p(B4) ≤ ε, there exists a 1-form

Ã ∈ W 1,p(Ω1B4 ⊗ u(n))

that satisfies the integrability condition

F 0,2

Ã
= 0

and ∥∥∥Ã− A∥∥∥
W 1,p(B4)

≤ C
∥∥F 0,2

A

∥∥
Lp(B4)

,

for some constant C > 0 depending on p. Moreover, if A is smooth then Ã
is also.

In the proof we will use Sobolev embeddings under the assumption that
p ∈ [2, 4) - which is the more delicate case. If p ≥ 4, the results hold by
considering the corresponding Sobolev embeddings.

Proof of Lemma 3.1. In order to obtain a form satisfying the integrability
condition, we want to perturb the A with a 1-form V ∈ C∞(Ω1B4, u(n))
such that F 0,2

A+V = 0. We express V by V = v− vT , where v ∈ W 1,p(Ω0,1B4⊗
Mn(C)). We expand F 0,2

A+V = 0 as such:

0 = F 0,2
A+V = (d(A+ V ) + (A+ V ) ∧ (A+ V ))0,2

= (d(A+ V ))0,2 + ((A+ V ) ∧ (A+ V ))0,2
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=
(
(∂ + ∂)(A0,1 + V 0,1 + A1,0 + V 1,0)

)0,2
+ ((A0,1 + V 0,1 + A1,0 + V 1,0) ∧ (A0,1 + V 0,1 + A1,0 + V 1,0))0,2

= ∂A0,1 + ∂V 0,1 + A0,1 ∧ A0,1 + [A0,1, V 0,1] + V 0,1 ∧ V 0,1

= F 0,2
A + ∂V 0,1 + [A0,1, V 0,1] + V 0,1 ∧ V 0,1

= F 0,2
A + ∂v + [A0,1, v] + v ∧ v.

Thus, we get the following equation

∂v + [v,A0,1] + v ∧ v = −F 0,2
A .

By the fact that we work on a Kähler manifold, we know that ∂∂
∗· = 1

2
∆ ·

dz1 ∧ dz2 on the space Ω0,2B4. Thus, we want to transform the PDE above
into an elliptic one by taking v of the form

v = ∂
∗
ω

with ω = 0 on ∂B4 - so that ∂
∗

is well defined. We solve the following elliptic
system:

∂∂
∗
ω + [∂

∗
ω,A0,1] + ∂

∗
ω ∧ ∂∗ω = −F 0,2

A .

Since A0,1 and F 0,2
A have small norms, we can use a fixed point argument.

We consider the following Dirichlet problem:
∂∂
∗
ω = −[∂

∗
ω,A0,1]− ∂∗ω ∧ ∂∗ω − F 0,2

A in B4

ω = 0 on ∂B4.

We fix k and we build the following sequence {ωj}∞j=1 of forms that solve the
PDEs:

∂∂
∗
ω1 = −F 0,2

A

∂∂
∗
ω2 = −[∂

∗
ω1, A

0,1]− ∂∗ω1 ∧ ∂
∗
ω1 − F 0,2

A

· · ·

∂∂
∗
ωj+1 = −[∂

∗
ωj, A

0,1]− ∂∗ωj ∧ ∂
∗
ωj − F 0,2

A

· · ·

where ωj = 0 on ∂B4 for all j ≥ 1.
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Claim. {ωj}∞j=1 exists and is a bounded sequence in W 2,p.

By classical elliptic theory, since F 0,2
A ∈ Lp, there exists a constant C1 > 0

depending only on p such that

‖ω1‖W 2,p(B4) ≤ C1

∥∥∥∂∂∗ω1

∥∥∥
Lp(B4)

= C1

∥∥F 0,2
A

∥∥
Lp(B4)

< 2C1

∥∥F 0,2
A

∥∥
Lp(B4)

.

By induction we prove that ωj exists and satisfies the uniform bound

‖ωj‖W 2,p(B4) ≤ 2C1

∥∥F 0,2
A

∥∥
Lp(B4)

.

We assume that ωj exists and ‖ωj‖W 2,p(B4) ≤ 2C1

∥∥F 0,2
A

∥∥
Lp(B4)

and prove

that ωj+1 exists with the same W 2,p bound. By the Sobolev embedding
W 1,p ↪→ L4p/(4−p), there exist constants C2 > 0, C3 > 0 so that∥∥∥∂∗ωj∥∥∥

L4p/(4−p)(B4)
≤ C2 ‖∇ωj‖W 1,p(B4)

≤ C2 ‖ωj‖W 2,p(B4)

≤ 2C1 · C2

∥∥F 0,2
A

∥∥
Lp(B4)

and ∥∥A0,1
∥∥
L4p/(4−p)(B4)

≤ C3

∥∥A0,1
∥∥
W 1,p(B4)

≤ C3ε

In addition, since 4p/(4 − p) ≥ 2p for any p ≥ 2, then W 1,p continuously
embeds into L2p and we can bound ‖FA‖Lp(B4) as such:

‖FA‖Lp(B4) ≤ ‖dA‖Lp(B4) + ‖A‖2L2p(B4) ≤ ‖A‖W 1,p(B4) + C3 ‖A‖2W 1,p(B4)

≤ ‖A‖W 1,p(B4) + C3ε ‖A‖W 1,p(B4)

= (1 + C3ε) ‖A‖W 1,p(B4) .

Define the constant C4 := 1 + C3ε. Moreover, since p ≥ 2, we have the
embedding L2p/(4−p) ↪→ Lp. Denote

fj := −[∂
∗
ωj, A

0,1]− ∂∗ωj ∧ ∂
∗
ωj − F 0,2

A .

Using the estimates above we obtain:

‖fj‖Lp(B4) ≤
∥∥∥[∂
∗
ωj, A

0,1]
∥∥∥
Lp(B4)

+
∥∥∥∂∗ωj ∧ ∂∗ωj∥∥∥

Lp(B4)
+
∥∥F 0,2

A

∥∥
Lp(B4)
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≤
∥∥∥[∂
∗
ωj, A

0,1]
∥∥∥
L2p/(4−p)(B4)

+
∥∥∥∂∗ωj ∧ ∂∗ωj∥∥∥

L2p/(4−p)(B4)

+
∥∥F 0,2

A

∥∥
Lp(B4)

≤
∥∥∥∂∗ωj∥∥∥

L4p/(4−p)(B4)

∥∥A0,1
∥∥
L4p/(4−p)(B4)

+
∥∥∥∂∗ωj∥∥∥2

L4p/(4−p)(B4)

+
∥∥F 0,2

A

∥∥
Lp(B4)

≤ C2C3

∥∥F 0,2
A

∥∥
Lp(B4)

ε+ 4C2
1 · C2

2

∥∥F 0,2
A

∥∥2
Lp(B4)

+
∥∥F 0,2

A

∥∥
Lp(B4)

≤ C2C3

∥∥F 0,2
A

∥∥
Lp(B4)

ε+ 4C2
1 · C2

2C4

∥∥F 0,2
A

∥∥
Lp(B4)

‖A‖W 1,p(B4)

+
∥∥F 0,2

A

∥∥
Lp(B4)

≤ (C2C3ε+ 4C2
1C

2
2C4ε+ 1)

∥∥F 0,2
A

∥∥
Lp(B4)

Hence, −[∂
∗
ωj, A

0,1]− ∂∗ωj ∧ ∂
∗
ωj − F 0,2

A ∈ Lp and the solution ωj+1 to the
PDE


∂∂
∗
ωj+1 = −[∂

∗
ωj, A

0,1]− ∂∗ωj ∧ ∂
∗
ωj − F 0,2

A in B4

ωj+1 = 0 on ∂B4

(3.1)

exists. Choosing ε > 0 such that

C2C3ε+ 4C2
1C

2
2C4ε < 1

is satisfied, it follows that we can obtain the required bound:

‖ωj+1‖W 2,p(B4) ≤ C1

∥∥∥∂∗∂ωj+1

∥∥∥
Lp(B4)

= C1 ‖fj‖Lp(B4) ≤ 2C1

∥∥F 0,2
A

∥∥
Lp(B4)

.

Hence, by induction, we have proven the claim.

Claim. {ωj}∞j=1 is a Cauchy sequence.

Since each ωj satisfies the elliptic PDE (3.1), we can estimate the difference
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ωj+1 − ωj as such:

‖ωj+1 − ωj‖W 2,p(B4) ≤ C
(
‖ωj − ωj−1‖W 2,p(B4) ‖A

0,1‖W 1,p(B4)

+
∥∥F 0,2

A

∥∥
Lp
‖ωj − ωj−1‖W 2,p(B4)

)
≤ 2Cε ‖ωj − ωj−1‖W 2,p(B4)

where C > 0 is a constant depending on p. Choosing ε such that in addition
2Cε < 1 is satisfied, it then follows that the sequence is Cauchy. Because
W 2,p is a Banach space and the sequence {ωj}∞j=1 is Cauchy, we have that
the sequence converges strongly in W 2,p to a limit which we denote by ω.
Moreover, by construction ω satisfies the PDE:

∂∂
∗
ω = −[∂

∗
ω,A0,1]− ∂∗ω ∧ ∂∗ω − F 0,2

A in B4

ω = 0 on ∂B4.

Define Ã = A+ ∂
∗
ω − ∂∗ω

T

. Then F 0,2

Ã
= 0 and∥∥∥Ã− A∥∥∥

W 1,p
=

∥∥∥∥∂∗ω − ∂∗ωT∥∥∥∥
W 1,p

≤ 4C1

∥∥F 0,2
A

∥∥
Lp
.

Using the result above, we can prove the following main theorem of this
section:

Theorem 3.1. There exists ε0 > 0 such that if A ∈ W 1,2(Ω1B4, u(n)) satis-
fies the smallness condition

‖A‖W 1,2(B4) ≤ ε0

and the integrability condition F 0,2
A = 0, then there exists a sequence Ak ∈

C∞(Ω1B4, u(n)) so that:

Ak → A in W 1,2(Ω1B4, u(n))

and satisfies the integrability condition F 0,2
Ak

= 0.

Proof of Theorem 3.1. As we have discussed at the start of this section, we
can always construct a sequence of smooth 1-forms Âk that converge in W 1,2



3.2 Existence of holomorphic trivialisations 37

to A and satisfyF 0,2

Âk
→ 0 = F 0,2

A in L2 as k →∞. Let ε > 0 be the constant

given by Lemma 3.1 and pick ε0 = ε/2. Then there exists k0 ≥ 0 such that∥∥∥Âk − A∥∥∥
W 1,2(B4)

≤ ε0 for all k ≥ k0 and:

∥∥∥Âk∥∥∥
W 1,2(B4)

≤
∥∥∥Âk − A∥∥∥

W 1,2(B4)
+ ‖A‖W 1,2(B4) ≤ 2ε0 = ε.

Thus, for each k ≥ k0 we can apply Lemma 3.1 in order to obtain a perturbed
sequence Ak satisfying the integrability condition F 0,2

Ak
= 0, such that there

exists a constant C > 0∥∥∥Ak − Âk∥∥∥
W 1,2
≤ C

∥∥∥F 0,2

Âk

∥∥∥
L2
→ 0.

Thus,

‖Ak − A‖W 1,2 ≤
∥∥∥Ak − Âk∥∥∥

W 1,2
+
∥∥∥Âk − A∥∥∥

W 1,2

≤ C
∥∥∥F 0,2

Âk

∥∥∥
L2

+
∥∥∥A− Âk∥∥∥

W 1,2
→ 0

as k →∞. This concludes the statement.

3.2 Existence of holomorphic trivialisations

In this section we prove that under the integrability condition F 0,2
A = 0 we

obtain the existence of local holomorphic trivialisations assuming low W 1,2

norm for A as in the section before. We state the result:

Theorem 3.2. There exists ε0 > 0 such that if A ∈ W 1,2(Ω1B4 ⊗ u(n))
satisfies

‖A‖W 1,2(B4) ≤ ε0,

and the integrability condition F 0,2
A = 0, then there exists r > 0 and g ∈

W 2,q(B4
r , GLn(C)) for all q < 2 such that

A0,1 = −∂g · g−1 in B4
r . (3.2)

Moreover, there exists a constant Cq > 0 such that the following estimates
hold:

‖g − id‖W 2,q(B4
r )
≤ Cq ‖A‖W 1,2(B4) and

∥∥g−1 − id∥∥
W 2,q(B4

r )
≤ Cq ‖A‖W 1,2(B4) .
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It follows that Ag = h−1∂h where h = gTg.

This result is an analogue of the following real case framework: Let P be a
principal G- bundle over B4, where G is a compact Lie group. Assume A is
a connection 1-form on B4. The flatness condition FA = 0 together with the
compactness of G imply that A = −dg · g−1 where g ∈ W 2,2(B4) ∩ L∞(B4).
This can be easily concluded by using Uhlenbeck’s gauge extraction proce-
dure [41]. In the complex framework, however, due to the lack of compactness
of the group GLn(C), we fail to obtain W 2,2 ∩ L∞ regularity of g and g−1.

We can assume that the ball of radius 2 B4
2 equipped with the canonical

complex structure is holomorphically embedded into CP2 (simply take the
embedding (z, w) 7→ [z, w, 1]).

Strategy:
Since this proof is quite technical, we start by describing the strategy. We
will first prove in Proposition 3.2 that we can extend a small perturbation
A + V of our connection 1-form A from B4 to CP2 while also keeping the
integrability condition (1.1). Secondly, Lemma 3.2 shows that this extended
form is holomorphically trivialisable in the sense of (3.2). Thirdly, Lemma
3.3 proves a technical result which shows the existence of holomorphic triv-
ialisations of forms that are more regular than W 1,2. This will help us later
to cancel the initial perturbation V we have added.

By combining all these steps, theorem 3.2 proves the existence of holomorphic
trivialisation of our initial form A0,1 in B4

r for some r > 0. We conclude the
section with Corollary 3.1 which proves a stability result of the trivialisations
we obtain.

Before we start we need to prove the following technical proposition:

Proposition 3.1. There exists ε > 0 such that for any Ã ∈ W 1,2(Ω1CP2 ⊗
u(n)) satisfying the bound

∥∥∥Ã∥∥∥
W 1,2(CP2)

≤ ε, the operator

LÃ : W 2,2(Ω2CP2 ⊗Mn(C))→ L2(Ω2CP2 ⊗Mn(C))

defined by

LÃ(ω) = ∂∂
∗
ω + [Ã0,1, ∂

∗
ω] (3.3)

is Fredholm and invertible.

Proof of Proposition 3.1. It follows from G̊arding’s Inequality, that the op-
erator ∂∂

∗
= 1

2
∆d is elliptic over CP2 (see [12, p. 93]). Because CP2 is a
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compact manifold, then Ker1
2
∆d and Coker1

2
∆d are finite dimensional spaces.

By definition it follows that ∂∂
∗

is Fredholm.

Let ε > 0 be as defined in [32, Theorem 4.4.2 (ii), p.185] such that∥∥∥Ã∥∥∥
W 1,2(CP2)

≤ ε

is small in W 1,2 norm. It follows that the operator [Ã0,1, ∂
∗·] has small oper-

ator norm W 2,2 to L2:∣∣∣∣∣∣∣∣∣[Ã0,1, ∂
∗·]
∣∣∣∣∣∣∣∣∣ = sup

‖ω‖W2,2=1

∥∥∥[Ã0,1, ∂
∗
ω]
∥∥∥
L2(CP2)

≤
∥∥∥Ã0,1

∥∥∥
L4(CP2)

∥∥∥∂∗ω∥∥∥
L4(CP2)

≤ C
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

‖ω‖W 2,2(CP2)

≤ Cε,

for some constant C > 0 coming from the Sobolev embedding W 1,2 ↪→ L4.
Hence, from the continuity of the index maps [32, Theorem 4.4.2, p.185],
we have that LÃ is Fredholm and has the same index as ∂∂

∗
mapping

W 2,2(CP2,Mn(C)) to L2(CP2,Mn(C)).

It is well-known that there are no global nonzero holomorphic (0, 2)-forms
on CP2 [12, p. 118]. The lack of holomorphic (0, 2)-forms implies that ∂∂

∗

defined from W 2,2(CP2) to L2(CP2) is an invertible operator on the space of
(0, 2)-forms and consequently has index 0. Thus, it follows that index(LÃ) =

index(∂∂
∗
) = 0.

It remains to show that LÃ has trivial kernel. Once we have shown this,
we can use the zero index of LÃ in order to conclude that LÃ is invertible.
Assume ω ∈ KerLÃ. Hence, ω satisfies

∂∂
∗
ω = −[Ã0,1, ∂

∗
ω].

By the Fredholm Lemma [32, Lemma 4.3.9] and the Sobolev embedding
W 1,2 ↪→ L4, we obtain

‖ω‖W 2,2 ≤ C
∥∥∥∂∂∗ω∥∥∥

L2
≤ C(‖LÃ(ω)‖L2 +

∥∥∥[Ã0,1, ∂
∗
ω]
∥∥∥
L2

)

≤ C ‖LÃ(ω)‖L2 +
∥∥∥Ã0,1

∥∥∥
L4

∥∥∥∂∗ω∥∥∥
L4



40 Chapter 3. U(n) Bundles in Hilbert Spaces

≤ C ‖LÃ(ω)‖L2 + C ′ε ‖ω‖W 2,2

for some constants C,C ′ > 0. We can take the term C ′ε ‖ω‖W 2,2 on the left
hand side of the inequality:

(1− C ′ε) ‖ω‖W 2,2 ≤ C ‖LÃ(ω)‖L2 .

Choosing ε > 0 such that 1 − C ′ε > 1
2
, then we can divide by the positive

factor 1− C ′ε. We obtain the bound:

‖ω‖W 2,2 ≤
C

1− C ′ε
‖LÃ(ω)‖L2 .

Because ω ∈ KerLÃ, we have that ω = 0. Since ω was arbitrarily chosen
from the kernel, it follows that the kernel of LÃ is trivial: KerLÃ = {0}.
This finishes the proof.

Having this result at our disposal, we can prove the existence of a CP2 ex-
tension of our connection form A, keeping the integrability condition (1.1).
We assume the holomorphic embedding of B4 in CP2.

Proposition 3.2. There exists ε > 0 such that for any A ∈ W 1,2(Ω1B4 ⊗
u(n)) satisfying F 0,2

A = 0 and ‖A‖W 1,2(B4) < ε, there exists Ã ∈ W 1,2(Ω1CP2⊗
u(n)) that satisfies

F 0,2

Ã
= 0

in CP2 and ω ∈ W 2,2(Ω0,2CP2 ⊗Mn(C)) such that Ã0,1 = A0,1 + ϑω in B4.

Moreover, ω satisfies the estimate

‖ω‖W 2,2(CP2) ≤ C ‖A‖W 1,2(B4)

for some constant C > 0.

We recall to the reader that according to equation (A.1), we have ϑ = −∗∂∗,
which is the formal adjoint of ∂.

Proof of Proposition 3.2. Step 1. Since A is unitary, we can decompose A

into its (0, 1) and (1, 0) parts as such: A = A0,1 − A0,1
T

where

A0,1 = α1dz1 + α2dz2

and αi ∈ W 1,2(B4, u(n)) for i = 1, 2. We extend each αi into B4
2 to a

compactly supported map α̂i, so that α̂i = 0 in B4
2 \ B4

3/2. For constructing
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α̂i, for each i = 1, 2 we solve:
∆φi = 0 in B4

3/2 \B4
1

φi = αi on ∂B4
1

φi = 0 on ∂B4
3/2

Such solutions exist by [20, Remark 7.2, Chapter 2] and satisfy

‖φi‖W 1,2(B4
3/2
\B4

1)
≤ C ‖αi‖H1/2(∂B4

1)
≤ C ′ ‖αi‖W 1,2(B4

1)

for some constants C,C ′ > 0. We can now define the following extensions on
B4

2 :

α̂i =


αi in B4

1

φi in B4
3/2 \B4

1

0 in B4
2 \B4

3/2.

By the construction of φi, the functions α̂i are well-defined W 1,2(B4
2) Sobolev

maps that satisfy the estimate:

‖α̂i‖W 1,2(B4
2)
≤ C ‖αi‖W 1,2(B4

1)
.

Define the (0, 1)-form Â0,1 = α̂1dz1 + α̂2dz2 and

Â := Â0,1 − Â0,1
T

∈ W 1,2(Ω1B4
2 ⊗ u(n)).

By covering CP2 \ B4
2 with coordinate charts, we can trivially extend Â by

0 on CP2 \ B4
2 . Thus, we have obtained Â ∈ W 1,2(Ω1CP2 ⊗ u(n)) and there

exists a constant Ĉ > 0 such that
∥∥∥Â∥∥∥

W 1,2(CP2)
≤ Ĉ ‖A‖W 1,2(B4) .

Step 2. It remains to perturb the form Â so that we obtain the integrabil-
ity condition. This can be done by finding a (0, 2)-form solution ω to the
integrability condition:

F 0,2

Â+∂
∗
ω−∂∗ω

T = 0.

This amounts to solving the following PDE globally on the complex projective
space CP2:

∂∂
∗
ω + [Â0,1, ∂

∗
ω] = −∂∗ω ∧ ∂∗ω − F 0,2

Â
(3.4)
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where ω is a (0, 2) form on CP2. Using the invertibility of the operator LÂ
proven in Proposition 3.1, we can solve equation (3.4) using a fixed point
method. This is done by mimicking the procedure we have employed before,
in Lemma 3.1. Indeed, consider the sequence given by:

LÂ(ω1) = −F 0,2

Â

LÂ(ω2) = −∂∗ω1 ∧ ∂
∗
ω1 − F 0,2

Â

· · ·

LÂ(ωk) = −∂∗ωk−1 ∧ ∂
∗
ωk−1 − F 0,2

Â
(3.5)

· · ·

By showing that the sequence ωk converges strongly in W 2,2, we will obtain
a W 2,2 solution to the required equation (3.4). Since LÂ is invertible as an
operator from W 2,2 to L2, it is clear that existence holds for each ωk, k ≥ 1.
We need to show that the sequence {ωk}∞k=1 is Cauchy in W 2,2.

Claim. {ωk}∞k=1 is a Cauchy sequence in W 2,2(CP2).

Let ε0 := C
∥∥∥F 0,2

Â

∥∥∥
L2(CP2)

, where C > 0 is the constant appearing in Fredholm

inequality:
‖φ‖W 2,2(CP2) ≤ C ‖LÂ(φ)‖L2(CP2) .

We first show by induction the uniform bound on the sequence ‖ωk‖W 2,2(CP2) ≤
2ε0. By the Fredholm Lemma [32, Lemma 4.3.9] we have that

‖ω1‖W 2,2(CP2) ≤ C ‖LÂ(ω1)‖L2(CP2) = C
∥∥∥F 0,2

Â

∥∥∥
L2(CP2)

= ε0 < 2ε0

Let k ≥ 1. By the Sobolev embedding W 1,2(CP2) ↪→ L4(CP2) there exists a
constant C1 > 0 so that∥∥∥∂∗ωk∥∥∥

L4(CP2)
≤ C1

∥∥∥∂∗ωk∥∥∥
W 1,2(CP2)

≤ C2
1 ‖ωk‖W 2,2(CP2) .

Thus, the inequalities follow:

‖ωk+1‖W 2,2(CP2) ≤ C ‖LÂ(ωk+1)‖L2(CP2)

≤ C
∥∥∥∂∗ωk ∧ ∂∗ωk∥∥∥

L2(CP2)
+ C

∥∥∥F 0,2

Â

∥∥∥
L2(CP2)

≤ C ‖ωk‖2L4(CP2) + ε0
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≤ C · C4
1 ‖ωk‖

2
W 2,2(CP2) + ε0

By the induction hypothesis, we have the bound ‖ωk‖W 2,2(CP2) < 2ε0. Thus,

‖ωk+1‖W 2,2(CP2) ≤ 4(C · C4
1)ε20 + ε0. (3.6)

Having chosen ε > 0 such that 4(C · C4
1)ε < 1 and∥∥∥Â∥∥∥

W 1,2(CP2)
≤ Ĉ ‖A‖W 1,2(B4) ≤ ε,

it follows that 4(C · C4
1)ε0 < 1. We conclude from (3.6) the estimate:

‖ωk+1‖W 2,2(CP2) ≤ 2ε0.

By induction, we prove that there is a uniform bound for the sequence of
2-forms {ωk}:

‖ωk‖W 2,2(CP2) ≤ 2ε0.

for all k ≥ 1.

It remains to show that {ωk} is a Cauchy sequence. Let k ≥ 2. Thus, we
derive the following bounds from the recurrence relation (3.5) satisfied by
the sequence:

‖ωk+1 − ωk‖W 2,2(CP2) ≤ C ‖LÂ(ωk+1 − ωk)‖L2(CP2)

≤ C
∥∥∥∂∗(ωk − ωk−1) ∧ ∂∗ωk∥∥∥

L2(CP2)
+

C
∥∥∥∂∗ωk−1 ∧ ∂∗(ωk − ωk−1)∥∥∥

L2(CP2)

≤ 4C · C2
1ε0 ‖ωk − ωk−1‖W 2,2(CP2)

To simplify notation, denote ε1 := 4C · C2
1ε0 < 1. We further expand our

estimate above:

‖ωk+1 − ωk‖W 2,2(CP2) ≤ ε ‖ωk − ωk−1‖W 2,2(CP2)

≤ . . . ≤ εk1 ‖ω1 − ω0‖W 2,2(CP2)

≤ 4εk1ε
2
0

Let ` > k > 0. It follows that

‖ω` − ωk‖W 2,2(CP2) ≤ ‖ω` − ω`−1‖W 2,2(CP2) + ‖ω`−1 − ωk‖W 2,2(CP2)
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≤ 4ε`−11 ε20 + ‖ω`−1 − ω`−2‖W 2,2(CP2) + ‖ω`−2 − ωk‖W 2,2(CP2)

≤ 4ε`−11 ε20 + 4ε`−21 ε20 + . . .+ 4εk1ε
2
0

= 4ε20 · εk1 ·
1− ε`−k1

1− ε1
≤ εk1

This is clearly a Cauchy sequence by the inequality above and the claim is
proven.

Hence, since {ωk}∞k=1 is a Cauchy sequence in the Banach space of (0, 2) forms
W 2,2(Ω0,2CP2 ⊗Mn(C)), it has a limit ω and converges strongly in W 2,2 to

it. Hence, by defining Ã = Â + ∂
∗
ω − ∂

∗
ω
T

, we obtain a skew-Hermitian
1-form, satisfying F 0,2

Ã
= 0 such that Ã0,1 = Â0,1 + ϑω = A0,1 + ϑω in B4.

Moreover, by convergence, we have that the uniform bound is satisfied by the
limiting form ω, indeed ‖ω‖W 2,2 < 2ε0 = 2C ‖FÂ‖L2 . By construction of Â,
it is clear that there exists a constant C ′ > 0 so that ‖FÂ‖L2 ≤ C ′ ‖A‖W 1,2 .
This leads to the required estimate on ω, ‖ω‖W 2,2(CP2) ≤ C ‖A‖W 1,2(B4), where
C > 0 is some constant.

We prove that on CP2 we can obtain holomorphic trivialisations of Ã, a
connection 1-form.

Lemma 3.2. There exists ε > 0 such that for any form Ã ∈ W 1,2(Ω1CP2 ⊗
u(n)) satisfying the integrability condition (1.1) and

∥∥∥Ã∥∥∥
W 1,2

< ε, then there

exist gauges g̃, g̃−1 ∈ W 2,q(CP2, GLn(C)) for all q < 2 such that

Ã0,1 = −∂g̃ · g̃−1.

Futhermore for each q < 2 there exists a constant Cq > 0 such that

‖g̃ − id‖W 2,q(CP2) ≤ Cq

∥∥∥Ã∥∥∥
W 1,2(CP2)

(3.7)

and ∥∥g̃−1 − id∥∥
W 2,q(CP2)

≤ Cq

∥∥∥Ã∥∥∥
W 1,2(CP2)

. (3.8)

Proof of Lemma 3.2. We divide the proof into three steps. Using a fixed
point argument the first two steps show the existence of a map g̃ satisfying
∂g̃ = −Ã0,1g̃. Step 3 shows the existence of g̃−1 and proves the estimates
(3.7) and (3.8).
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Step 1. Consider the linear operator:

T : W 1,2(CP2,Mn(C))→ W 1,2(CP2,Mn(C))

given by
T (g̃) = −∂∗N(Ã0,1g̃) + id,

where id is the constant identity matrix and N is the inverse operator of ∆∂

as defined in (A.3). We verify that T is well-defined. It follows from the
G̊arding inequality on CP2 (see for example [12, p. 93]) that we have the
elliptic estimate∥∥∥∂∗N(Ã0,1g̃)

∥∥∥
W 1,2(CP2)

≤ C
∥∥∥∂∂∗N(Ã0,1g̃)

∥∥∥
L2(CP2)

(3.9)

for some constant C. Moreover, using the ∂-Hodge decomposition (A.5) we
can decompose Ã0,1g̃ as such:

Ã0,1g̃ = ∂
∗
∂N(Ã0,1g̃) + ∂∂

∗
N(Ã0,1g̃) (3.10)

and because ∂
∗

and ∂ are orthogonal with respect to the L2 inner product,
it follows that∥∥∥Ã0,1g̃

∥∥∥
L2

=
∥∥∥∂∗∂N(Ã0,1g̃)

∥∥∥
L2

+
∥∥∥∂∂∗N(Ã0,1g̃)

∥∥∥
L2
.

Consequently, ∥∥∥∂∂∗N(Ã0,1g̃)
∥∥∥
L2(CP2)

≤
∥∥∥Ã0,1g̃

∥∥∥
L2(CP2)

. (3.11)

Putting (3.9) and (3.11) together, we obtain:∥∥∥∂∗N(Ã0,1g̃)
∥∥∥
W 1,2(CP2)

≤ C
∥∥∥Ã0,1g̃

∥∥∥
L2(CP2)

≤ C
∥∥∥Ã0,1

∥∥∥
L4(CP2)

‖g̃‖L4(CP2) .

Furthermore, using the Sobolev embedding in 4-dimensionsW 1,2 ↪→ L4, there
exists a constant C ′ so that∥∥∥∂∗N(Ã0,1g̃)

∥∥∥
W 1,2
≤ C ′

∥∥∥Ã0,1
∥∥∥
W 1,2
‖g̃‖W 1,2 . (3.12)

Thus, the operator T is well-defined, mapping W 1,2 to W 1,2.

We can now show that T has a unique fixed point. Consider g̃1, g̃2 ∈
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W 1,2(CP2,Mn(C)). Then

‖T (g̃1)− T (g̃2)‖W 1,2(CP2) =
∥∥∥∂∗N(Ã0,1(g̃1 − g̃2))

∥∥∥
W 1,2(CP2)

.

Using the inequality (3.12) above, we obtain∥∥∥∂∗N(Ã0,1(g̃1 − g̃2))
∥∥∥
W 1,2(CP2)

≤ C ′
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

‖g̃1 − g̃2‖W 1,2(CP2)

and we can choose ε > 0 for the bound
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

< ε so that the

factor C ′
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

is strictly smaller than 1. Hence, T is a contraction

operator and there exists a unique fixed point g̃ ∈ W 1,2(CP2,Mn(C)), T (g̃) =
g̃. Thus, we have

∂g̃ = −∂∂∗N(Ã0,1g̃). (3.13)

Step 2. We can now prove that the above equation (3.13) coupled with the
integrability condition F 0,2

Ã0,1 = 0 satisfied by Ã0,1, imply that g̃ solves the

required PDE: ∂g̃ = −Ã0,1g̃. The ∂-Hodge decomposition (3.10) gives

∂g̃ = −Ã0,1g̃ + ∂
∗
∂N(Ã0,1g̃). (3.14)

Since the operators N and ∂ compute, N∂ = N∂ (see [8, Theorem 4.4.1 (3)]),
we can further compute the term ∂

∗
∂N(Ã0,1g̃):

∂
∗
∂N(Ã0,1g̃) = ∂

∗
N∂(Ã0,1g̃) = ∂

∗
N(∂Ã0,1g̃ − Ã0,1 ∧ ∂g̃).

Using the above equation (3.14), then

∂
∗
∂N(Ã0,1g̃) = ∂

∗
N(∂Ã0,1g̃ − Ã0,1 ∧ ∂g̃)

= ∂
∗
N(∂Ã0,1g̃ + Ã0,1 ∧ Ã0,1g̃ − Ã0,1 ∧ ∂∗∂N(Ã0,1g̃)).

Since Ã satisfies the integrability condition F 0,2

Ã
= 0, we have the recurrence

relation:
∂
∗
∂N(Ã0,1g̃) = −∂∗N(Ã0,1 ∧ ∂∗∂N(Ã0,1g̃)). (3.15)

Thus, it is natural to consider the operator

L : L2(Ω1CP2 ⊗Mn(C))→ L2(Ω1CP2 ⊗Mn(C))

V 7→ −∂∗N(Ã0,1 ∧ V ).

We need to establish whether L is a well-defined operator and find its fixed
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points in order to analyse equation (3.15). By the Sobolev embeddingW 1,4/3 ↪→
L2 it follows that

‖L(V )‖L2(CP2) ≤ C ‖L(V )‖W 1,4/3(CP2)

for some constant C > 0. We also have that

‖∇L(V )‖L4/3(CP2) ≤ C
∥∥∥∇2N(Ã0,1 ∧ V )

∥∥∥
L4/3(CP2)

and consequently, since N(Ã0,1 ∧ V ) is a (0, 2)-form in 4-dimensions, the
elliptic estimate holds:∥∥∥∇2N(Ã0,1 ∧ V )

∥∥∥
L4/3(CP2)

≤ C
∥∥∥∂∂∗N(Ã0,1 ∧ V )

∥∥∥
L4/3(CP2)

= C
∥∥∥Ã0,1 ∧ V

∥∥∥
L4/3(CP2)

.

By the Hölder inequality and the estimates above, it immediately follows
that:

‖L(V )‖L2(CP2) ≤ C
∥∥∥Ã0,1

∥∥∥
L4(CP2)

‖V ‖L2(CP2) .

Similarly as before, this means that L is a well-defined contraction operator
and has a unique fixed point. In particular, 0 is its fixed point. We know
from equation (3.15) that ∂

∗
∂N(Ã0,1g̃) is also a fixed point for L and, thus,

we have that the term ∂
∗
∂N(Ã0,1g̃) vanishes. In particular, from (3.14) the

equation is solved:
∂g̃ = −Ã0,1g̃.

Step 3. It remains to show that g̃ ∈ W 2,q(CP2, GLn(C)) for all q < 2 and
that it satisfies the required estimate (3.7). Moreover, we need to show that
its inverse satisfies the estimate (3.8). Let q < 2. We know that g̃ is a W 1,2

map and satisfies:
g̃ − id = ∂

∗
N(Ã0,1g̃).

Since g̃ is a fixed point of T , then it satisfies the estimate (3.12), which means:

‖g̃ − id‖W 1,2(CP2) ≤ C
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

‖g̃‖W 1,2

≤ C
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

‖g̃ − id‖W 1,2 + C
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

.

Because
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

< ε, where ε is small, then there exists a constant
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C > 0 such that

‖g̃ − id‖W 1,2(CP2) ≤ C
∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

.

Since g̃ satisfies this estimate, we can bootstrap using Lemma D.1 and Re-
mark D.1(i), from which follows the required estimate and regularity (3.7)

‖g̃ − id‖W 2,q(CP2) ≤ Cq

∥∥∥Ã∥∥∥
W 1,2(CP2)

, (3.16)

for some constant Cq > 0.

We need to show that g̃ is in GLn(C) over CP2 and that its inverse satisfies
a similar estimate as (3.16). Arguing in a similar way to Step 1, 2 and the
way we obtained the regularity estimates for g in (3.16), we can show that
there exists ũ ∈ W 2,q(CP2, GLn(C)) for any q < 2 such that

∂ũ = ũÃ0,1

and
‖ũ− id‖W 2,q(CP2) ≤ Cq

∥∥∥Ã∥∥∥
W 1,2(CP2)

(3.17)

for some constant Cq > 0. In particular, we have that ∂(ũg̃) = 0. Hence,
there exists a holomorphic function h̃ such that ũg̃ = h̃. However, since the
only holomorphic functions on CP2 are the constant ones [12, p. 118], then
h̃ is a constant.

We can pick 3/2 < q0 < 2 so that we obtain the Sobolev embedding W 2,q0 ↪→
L∞ on any 3-dimensional hypersurface. Moreover, by the Sobolev products
regularity results in [31, Section 4.8.2, Theorem 1], there exists q1 ∈ (q0, 2)
such that for ũ, g̃ ∈ W 2,q1(CP2,Mn(C)), ũg̃ ∈ W 2,q0 and

‖ũg̃ − id‖W 2,q0 (CP2) ≤ Cq0

∥∥∥Ã∥∥∥
W 1,2(CP2)

for some constant Cq0 > 0. By Fubini, there exists a radius r > 0 and
z0 ∈ CP2 such that

‖ũg̃ − id‖W 2,q0 (∂B4
r (z0))

< 2C ′q0

∥∥∥Ã∥∥∥
W 1,2(CP2)

where B4
r (z0) is a ball in CP2. Thus, from the embedding of W 2,q0 into L∞

in 3-dimensions, there exists a constant C ′′q0 > 0 so that
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‖ũg̃ − id‖L∞(∂B4
r (z0))

≤ C ′′q0

∥∥∥Ã∥∥∥
W 1,2(CP2)

. (3.18)

We can choose a possibly smaller ε > 0 than we have done for the estimate∥∥∥Ã∥∥∥
W 1,2(CP2)

< ε such that we obtain that h̃ = ũg̃ ∈ GLn(C) over ∂Br(z0)

from (3.18). However, because h̃ is a constant, then h̃ ∈ GLn(C) over CP2

and satisfies the estimate:∥∥∥h̃− id∥∥∥
L∞(CP2)

≤ C
∥∥∥Ã∥∥∥

W 1,2(B4)
,

for some constant C > 0.

Hence, we can define g̃−1 := h̃−1ũ. Since g̃−1g̃ = id by construction, we obtain
that g̃ maps into GLn(C). Moreover, from the fact that h̃−1 is a constant
and from the estimate (3.17) it follows that g̃−1 ∈ W 2,q(CP2, GLn(C)) for all
q < 2. In particular, we obtain that for each q < 2 there exists a constant
Cq > 0 such that ∥∥g̃−1 − id∥∥

W 2,q(CP2)
≤ Cq ‖A‖W 1,2(CP2) .

This concludes the proof of Lemma 3.2.

Before proving the existence of a local holomorphic trivialisation for our
initial W 1,2 form A defined on B4, we need to show a stronger version of
existence of such trivialisations. We consider 1-forms of small norm in W 1,p,
p > 3. This will be a useful result for our final theorem.

Lemma 3.3. Let p > 3. There exists ε > 0 such that for any

ω ∈ W 1,p(Ω0,1B4 ⊗Mn(C))

satisfying F 0,2
ω = 0 and ‖ω‖W 1,p(B4) ≤ ε, there exists r ∈ (1/2, 1) and gauges

u, u−1 ∈ W 2,p(B4
r , GLn(C)) so that

ω = −∂u · u−1 in B4
r ,

with estimates

‖u− id‖W 2,p(B4
r )
≤ C ‖ω‖W 1,p(B4)

and (3.19)∥∥u−1 − id∥∥
W 2,p(B4

r )
≤ C ‖ω‖W 1,p(B4) .
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Remark 3.1. The reader can note the fact that the technique to solve this
lemma is similar to the ideas used in the Lemma 3.2. However, since we
work on B4, the proof will rely more on regularity results from the literature
on the analysis of several complex variables.

Proof of Lemma 3.3. Step 1. Let q = 4p/(4−p). We show the existence of a
gauge u ∈ GLn(C) that ”almost” solves our equation modulo a perturbation
term. Indeed, in Step 2 we can show that the perturbation term vanishes
and consequentially u is the solution. Let T1, T2 be the operators defined as
in (A.7) and (A.8). Note that we can extend T1 and T2 to operators defined
on Sobolev spaces by density arguments.

We define the operator

H : L∞(B4,Mn(C)) ∩ {f : ∂f ∈ Lq} → L∞(B4,Mn(C)) ∩ {f : ∂f ∈ Lq}

given by
H(u) = id+ T1(−ω · u),

where id is the constant identity matrix.

Claim. H is well-defined.

Since T1 takes (0, 1)-forms to maps we only need to check that H maps
L∞ ∩ {f : ∂f ∈ Lq}to L∞ ∩ {f : ∂f ∈ Lq}. By the Sobolev embedding
W 1,p ↪→ Lq, there exists a constant C1 > 0 so that

‖ω‖Lq(B4) ≤ C1 ‖ω‖W 1,p(B4) .

The assumption p > 3 implies that q = 4p/(4 − p) > 12. Consequently,
for u ∈ L∞(B4,Mn(C)) ∩ {f : ∂f ∈ Lq} we have ω · u ∈ Lq. Moreover
∂(ω · u) ∈ Lq/2. We prove this.∥∥∂(ω · u)

∥∥
Lq/2(B4)

≤
∥∥∂ω∥∥

Lq/2(B4)
‖u‖L∞(B4) +

∥∥ω ∧ ∂u∥∥
Lq/2(B4)

≤
∥∥∂ω∥∥

Lq/2(B4)
‖u‖L∞(B4) + ‖ω‖Lq(B4)

∥∥∂u∥∥
Lq(B4)

Crucially, we have that F 0,2
ω = ∂ω + ω ∧ ω = 0. Because ω ∈ Lq(B4), then

F 0,2
ω = 0 gives ∂ω ∈ Lq/2. Thus,∥∥∂(ω · u)

∥∥
Lq/2(B4)

≤ ‖ω‖2Lq(B4) ‖u‖L∞(B4) + ‖ω‖Lq(B4)

∥∥∂u∥∥
Lq(B4)

≤ C1ε ‖ω‖Lq(B4) ‖u‖L∞(B4) + ‖ω‖Lq(B4)

∥∥∂u∥∥
Lq(B4)

≤ C2
1 ‖ω‖W 1,p(B4)

(
‖u‖L∞(B4) +

∥∥∂u∥∥
Lq(B4)

)
. (3.20)
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where we have implicitly used the fact that we can choose ε < 1 so that
‖ω‖W 1,p(B4) ≤ ε. Hence, we have shown that ∂(ω · u) ∈ Lq/2. Taking into

account that q/2 > 6 and the embedding W 1,q/2 ↪→ Lq, we can apply Propo-
sition A.2 to the (0, 1)-form ω · u and obtain the estimate:

‖T1(ω · u)‖L∞(B4) +
∥∥∂T1(ω · u)

∥∥
Lq(B4)

≤ C
(
‖ω · u‖Lq(B4) +

∥∥∂(ω · u)
∥∥
Lq/2(B4)

)
. (3.21)

This shows that, H is well-defined, since the operator T1(ω·) is a well-defined
map from L∞ ∩ {f : ∂f ∈ Lq} to L∞ ∩ {f : ∂f ∈ Lq}. We have proven the
claim.

Next, we show that H has a fixed point. From (3.21), it follows that

‖T1(ω · u)‖L∞(B4) +
∥∥∂T1(ω · u)

∥∥
Lq(B4)

≤ C
(
‖ω‖Lq(B4) ‖u‖L∞(B4) +

∥∥∂(ω · u)
∥∥
Lq/2(B4)

)
.

Since ‖ω‖W 1,p(B4) ≤ ε and using (3.20), for any u1, u2 ∈ L∞(B4,Mn(C))∩{f :

∂f ∈ Lq} we have:

‖H(u1)−H(u2)‖L∞(B4) +
∥∥∂H(u1)− ∂H(u2)

∥∥
Lq(B4)

= ‖T1(−ω · (u1 − u2))‖L∞(B4) +
∥∥∂T1(−ω · (u1 − u2))∥∥Lq(B4)

≤ Cε
(
‖u1 − u2‖L∞(B4) +

∥∥∂(u1 − u2)
∥∥
Lq(B4)

)
,

where C depends on the W 1,p norm of ω. Choosing ε > 0 such that
Cε < 1 , we obtain that H is a contraction and therefore there exists
u ∈ L∞(B4,Mn(C)) ∩ {f : ∂f ∈ Lq} satisfying

u = id+ T1(−ω · u) = H(u).

This fixed point ”almost” solves the required equation. We will show in
the next step that the error we obtain vanishes in light of the integrability
condition F 0,2

ω = 0.

Step 2. Having obtained this fixed point, we show that u satisfies ∂u = −ω ·u.
Since we have proven that u − id = T1(−ω · u), we get ∂u = ∂T1(−ω ·
u) ∈ Lq. We can apply Theorem A.1 from the Appendix to get the integral
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representation of −ω · u:

−ω · u = ∂T1(−ω · u) + T2(∂(−ω · u))

and expand the last term in the following way:

T2(∂(−ω · u)) = T2(−∂ω · u+ ω ∧ ∂u)

= T2(−∂ω · u+ ω ∧ ∂T1(−ω · u))

= T2(−∂ω · u+ ω ∧ (−ω · u− T2(∂(−ω · u)))

= T2(−(∂ω + ω ∧ ω)u− ω ∧ T2(∂(−ω · u))).

By using the fact that ω satisfies the integrability condition

F 0,2
ω = ∂ω + ω ∧ ω = 0,

we obtain:
T2(∂(−ω · u)) = T2(ω ∧ T2(∂(−ω · u))). (3.22)

We want to show that this recurrence equation implies that T2(∂(−ω·u)) = 0.
From Proposition A.1, T2 is a well-defined operator mapping Ls to W 1,s for
any s > 1 and the following estimate holds:∥∥T2(∂(−ω · u))

∥∥
L∞(B4)

≤ C
∥∥T2(∂(−ω · u))

∥∥
W 1,q(B4)

= C
∥∥T2(ω ∧ T2(∂(−ω · u)))

∥∥
W 1,q(B4)

≤ C
∥∥ω ∧ T2(∂(−ω · u))

∥∥
Lq(B4)

≤ C ‖ω‖Lq(B4)

∥∥T2(∂(−ω · u))
∥∥
L∞(B4)

≤ CC1ε
∥∥T2(∂(−ω · u))

∥∥
L∞(B4)

,

where C is the Sobolev constant given by the Sobolev embedding W 1,q ↪→ L∞

(q > 6) in 4 dimensions. Moreover, for 1−C ·C1ε > 0 there is a contradiction
unless T2(∂(−ω · u)) = 0 and we can conclude that the ∂-equation is solved:

∂u = −ω · u in B4.

Step 3. It remains to show that u ∈ GLn(C) and satisfies the required
estimates (3.19). We have:

‖u− id‖L∞(B4) = ‖H(u)− id‖L∞(B4)
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≤ C ‖ω‖W 1,p(B4) ‖u‖L∞(B4)

≤ Cε ‖u− id‖L∞(B4) + C ‖ω‖W 1,p(B4) .

Thus, since ε > 0 is small, we get the L∞ bound:

‖u− id‖L∞(B4) ≤
C

1− Cε
‖ω‖W 1,p(B4) .

Because we can assume that 1− Cε > 1
2

for ε small enough, then

‖u− id‖L∞(B4) ≤ 2C ‖ω‖W 1,p(B4) . (3.23)

This implies that u ∈ GLn(C). Remark D.1(iii) gives the existence of r ∈
(1/2, 1) and a constant C > 0 such that

‖u− id‖W 2,p(B4
r )
≤ C ‖ω‖W 1,p(B4) . (3.24)

Moreover, since u−1 exists, we have the following L∞ estimate:∥∥u−1 − id∥∥
L∞(B4)

=
∥∥u−1 − u−1u∥∥

L∞(B4)
≤
∥∥u−1∥∥

L∞(B4)
‖u− id‖L∞(B4)

≤
∥∥u−1 − id∥∥

L∞(B4)
‖u− id‖L∞(B4) + ‖u− id‖L∞(B4)

The estimate (3.23) on u also implies that the norm ‖u− id‖L∞(B4) is small.

Hence, the estimate of u−1 then follows:

∥∥u−1 − id∥∥
L∞(B4)

≤
‖u− id‖L∞(B4)

1− ‖u− id‖L∞(B4)

≤ C ‖ω‖W 1,p(B4) ,

for some constant C > 0. By Remark D.1 applied to u−1, we obtain a similar
estimate. This finishes the proof of Lemma 3.3.

Having the results above at our disposal, we are ready to proceed at showing
the existence of local holomorphic trivialisations in B4

r for some r > 0.

Theorem 3.2. There exists ε0 > 0 such that if A ∈ W 1,2(Ω1B4 ⊗ u(n))
satisfies

‖A‖W 1,2(B4) ≤ ε0,

and the integrability condition F 0,2
A = 0, then there exists r > 0 and g ∈

W 2,q(B4
r , GLn(C)) for all q < 2 such that

A0,1 = −∂g · g−1 in B4
r . (3.25)
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Moreover, there exists a constant Cq > 0 such that the following estimates
hold:

‖g − id‖W 2,q(B4
r )
≤ Cq ‖A‖W 1,2(B4)

and (3.26)∥∥g−1 − id∥∥
W 2,q(B4

r )
≤ Cq ‖A‖W 1,2(B4) .

It follows that Ag = h−1∂h where h = gTg.

Proof of Theorem 3.2. From Proposition 3.2, there exists a 1-form

Ã ∈ W 1,2(Ω1CP2 ⊗ u(n))

satisfying the integrability condition so that Ã0,1 = A0,1 + ϑω in B4, where
ω ∈ W 2,2(Ω0,2CP2 ⊗Mn(C)) with estimate ‖ω‖W 2,2(CP2) ≤ ‖A‖W 1,2(B4). This
implies that ∥∥∥Ã0,1

∥∥∥
W 1,2(CP2)

≤ C ‖A‖W 1,2(B4) (3.27)

for some constant C > 0.

Lemma 3.2 applied to the form Ã gives the existence of a gauge

g̃ ∈ W 2,q(CP2, GLn(C))

for all q < 2 so that
∂g̃ = −Ã0,1g̃ in CP2

and for each q < 2 there exists Cq > 0 such that

‖g̃ − id‖W 2,q(CP2) ≤ Cq

∥∥∥Ã∥∥∥
W 1,2(CP2)

and∥∥g̃−1 − id∥∥
W 2,q(CP2)

≤ Cq

∥∥∥Ã∥∥∥
W 1,2(CP2)

.
(3.28)

On the unit ball B4 we can rewrite (A0,1)
g̃

as such:(
A0,1

)g̃
= g̃−1∂g̃ + g̃−1A0,1g̃ = g̃−1∂g̃ + g̃−1Ã0,1g̃ − g̃−1ϑωg̃ = −g̃−1 (ϑω) g̃.

In order to find a gauge g for A0,1 that gives a holomorphical trivialisa-
tion, it remains to find a gauge change u that cancels the perturbation term
−g̃−1 (ϑω) g̃:

∂u = g̃−1 (ϑω) g̃ · u. (3.29)
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We claim that the composition of gauges g̃ · u satisfies the statement.

Since the Sobolev embedding W 2,q ↪→ L2q/(2−q) holds for any q < 2, it implies
that g̃, g̃−1 ∈

⋂
q<∞

Lq. The fact that A and Ã satisfy the integrability condition

on B4: F 0,2
A = 0 and F 0,2

Ã
= 0, implies that ω ∈ W 2,2(Ω0,2B4) satisfies the

following PDE:
1

2
∆ω = −[A0,1, ϑω]− ϑω ∧ ϑω. (3.30)

Proposition D.2 applied to this PDE allows to bootstrap the regularity of ω
inside B4. Indeed, we have the much better regularity ω ∈ W 2,q

loc (B4,Mn(C))
for any q < 4. Sobolev embeddings yield:

ϑω ∈
⋂
q<4

W 1,q
loc (B4,Mn(C)) ↪→

⋂
q<∞

Lqloc.

Putting together the regularity of ϑω, g̃ and g̃−1 we can obtain the regularity
of g̃−1 (ϑω) g̃:

g̃−1 (ϑω) g̃ ∈
⋂
q<4

W 1,q
loc ↪→

⋂
q<∞

Lqloc. (3.31)

Fix p > 3 and δ > 0 small. There exists r0 ∈ (0, 1) so that∥∥g̃−1 (ϑω) g̃
∥∥
W 1,p(B4

r0
)
< δ. (3.32)

This (0, 1)-form also solves F 0,2
g̃−1(ϑω)g̃ = 0 in B4

r0
. Hence, we apply Lemma 3.3

to g̃−1 (ϑω) g̃ in B4
r0

(by rescaling) to get the existence of r ∈ (r0/2, r0) and

u ∈ W 2,p(B4
r , GLn(C)) that solves the ∂-equation above (3.29):

∂u = g̃−1 (ϑω) g̃ · u in B4
r .

and satisfies the estimates

‖u− id‖W 2,p(B4
r )
≤ C

∥∥g̃−1 (ϑω) g̃
∥∥
W 1,2(B4

r )
≤ C ‖A‖W 1,2(B4) (3.33)

and ∥∥u−1 − id∥∥
W 2,p(B4

r )
≤ C

∥∥g̃−1 (ϑω) g̃
∥∥
W 1,2(B4

r )
≤ C ‖A‖W 1,2(B4) , (3.34)

for some constant C > 0.

Define g := g̃u in B4
r . By construction, the required ∂-equation is solved:

∂g = −A0,1g in B4
r (3.35)
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We show that g and g−1 satisfy the required estimates (3.26). Let q < 2
arbitrary. The triangle inequality applied on the norm W 2,q gives:

‖g − id‖W 2,q(B4
r )
≤‖(g̃ − id)(u− id)‖W 2,q(B4

r )

+ ‖g̃ − id‖W 2,q(B4
r )

+ ‖u− id‖W 2,q(B4
r )
.

Using the Sobolev product results of [31, Section 4.8.2, Theorem 1] and the
regularity of g̃ − id ∈

⋂
q<2W

2,q(B4
r ) and u− id ∈ W 2,p(B4

r ), it follows that

(g̃ − id)(u− id) ∈
⋂
q<2

W 2,q(B4
r )

with

‖(g̃ − id)(u− id)‖W 2,q(B4
r )
≤ C ‖g̃ − id‖W 2,q1 (B4

r )
· ‖u− id‖W 2,p(B4

r )
,

for some q1 ∈ (q, 2) and constant C > 0. Hence, from (3.27), (3.28) and
(3.33) it immediately follows that there exists a constant Cq > 0 such that:

‖g − id‖W 2,q(B4
r )
≤ Cq ‖A‖W 1,2(B4) . (3.36)

By arguing in a completely analogous way to how the obtained (3.36), using
(3.28) and (3.34), we obtain∥∥g−1 − id∥∥

W 2,q(B4
r )
≤ Cq ‖A‖W 1,2(B4) .

It remains to show the existence of h such that Ag = h−1∂h. We apply g to
A in B4

r to get:

Ag = g−1(∂g + ∂g) + g−1A0,1g − g−1A0,1
T
g = g−1∂g − g−1A0,1

T
g.

Since (3.35) holds, then ∂gT = −gTA0,1
T
. Hence,

(
gT
)−1

∂gT = −A0,1
T

. By
plugging this into the equation above, we get

Ag = g−1∂g + g−1
(
gT
)−1

∂gTg = (gTg)−1∂(gTg).

We conclude the proof of Theorem 3.2 by defining h := gTg, and h ∈
W 2,q(B4

r , iu(n)) for any q < 2.

Remark 3.2. From the proof of the theorem 3.2 above the radius r > 0 can be
chosen to be the same under small perturbations of the 1-form A. We shortly
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justify this fact. We have shown that there exists a 2-form ω associated to
A satisfying (3.30) in B4. Moreover, from Proposition D.2 for each q < 4,
there exists a constant Cq > 0 such that

‖ω‖W 2,q
loc (B

4) ≤ Cq ‖A‖W 1,2(B4) .

Over domains B4
r we have the estimate

‖ω‖W 2,q(B4
r )
≤ Cq,r ‖A‖W 1,2(B4) .

for constants Cq,r > 0 which depend on r and Cq,r → 0 as r → 0. Let
δ > 0 and p > 3 such that (3.32) holds. Consider perturbations Aε of A with
F 0,2
Aε

= 0 over B4 such that

‖A− Aε‖W 1,2(B4) ≤
1

2
‖Aε‖W 1,2(B4) . (3.37)

Choose C > 0 such that

C <
δ

2 ‖A‖W 1,2(B4)

≤ δ

‖Aε‖W 1,2(B4)

.

Since Cp,r → 0 as r → 0, choose r0 > 0 such that Cp,r0 < C, where p > 3
was fixed. Then any ωε associated to Aε through (3.30) satisfies

‖ωε‖W 2,p(B4
r0

) ≤ Cp,r0 ‖Aε‖W 1,2(B4) < δ.

Thus, up to constants we obtain the estimate (3.32) for ωε and we conclude
that under perturbations Aε of A satisfying (3.37), we can always choose
r := r0 > 0.

Having made the above remark, we end the section by proving a stability
result for holomorphic trivialisations. This Corollary will be used to show
the convergence of holomorphic structures later on in Section 3.5.

Corollary 3.1. Let A1 ∈ W 1,2(Ω1B4 ⊗ u(n)) and r > 1 so that

g1 ∈ W 2,q(B4
r , GLn(C))

satisfies theorem 3.2. There exists δ > 0 such that for all A2 ∈ W 1,2(Ω1B4⊗
u(n)) with F 0,2

A2
= 0 satisfying

‖A1 − A2‖W 1,2(B4) ≤ δ,



58 Chapter 3. U(n) Bundles in Hilbert Spaces

there exists a radius r0 ∈ (r/2, r) depending only on A1 and a gauge

g2 ∈
⋂
q<2

W 2,q(B4
r0
, GLn(C))

that trivialises A2 in the sense that:

A2 = −∂g2 · g−12 in B4
r0

with the following estimates: for any q < 2 there exists Cq > 0 such that

‖g2 − id‖W 2,q(B4
r0

) ≤ Cq

(
‖A1‖W 1,2(B4) + ‖A2‖W 1,2(B4)

)
and there exists C > 0 such that

‖g1 − g2‖Lp(B4
r0

) ≤ C ‖A1 − A2‖W 1,2(B4)

for any p < 12.

Proof of Corollary 3.1. Choose δ > 0 such that A2 is a small perturbation
of A1. By Remark 3.2 and Theorem 3.2 applied to the forms A1 and A2 we
obtain the existence of r > 0 and gauges g1, g2 ∈ W 2,q(B4

r , GLn(C)) for all
q < 2 so that

∂g1 = −A0,1
1 · g1 and ∂g2 = −A0,1

2 · g2 in B4
r (3.38)

and there exists a constant Cq > 0 such that

‖g1 − id‖W 2,q(B4
r )
≤ Cq ‖A1‖W 1,2(B4) ,

‖g2 − id‖W 2,q(B4
r )
≤ Cq ‖A2‖W 1,2(B4)

≤ Cq

(
‖A1‖W 1,2(B4) + ‖A1 − A2‖W 1,2(B4)

)
and (3.39)∥∥g−12 − id

∥∥
W 2,q(B4

r )
≤ Cq ‖A2‖W 1,2(B4)

≤ Cq

(
‖A1‖W 1,2(B4) + ‖A1 − A2‖W 1,2(B4)

)
Since g1 and g2 holomorphically trivialise A1 and A2 respectively (3.38), we
can relate the transition gauge g−12 g1 with the difference 1-form A2 − A1

through the following ∂-equation:

∂(g−12 g1) = g−12 (A2 − A1)
0,1g2 · (g−12 g1). (3.40)
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We first estimate g−12 g1−id using the inequalities (3.39) and then use equation
(3.40) to show that g−12 g1 − id is only bounded by the norm of A2 −A1. Fix
q < 2. The triangle inequality gives:

∥∥g−12 g1 − id
∥∥
W 2,q(B4

r )
≤

∥∥(g−12 − id)(g1 − id)
∥∥
W 2,q(B4

r )

+
∥∥g−12 − id

∥∥
W 2,q(B4

r )
+ ‖g1 − id‖W 2,q(B4

r )

Hence, by the results of [31, Section 4.8.2, Theorem 1] applied to the product

(g−12 − id)(g1 − id)

and estimates (3.39), there exists a constant Cq > 0 so that∥∥g−12 g1 − id
∥∥
W 2,q(B4

r )
≤ Cq(‖A1‖W 1,2 + ‖A2‖W 1,2)

≤ 2Cq(‖A1‖W 1,2 + ‖A1 − A2‖W 1,2).
(3.41)

for any q < 2. We can use equation (3.40) in order to find an a-posteriori
estimate of g−12 g1 − id involving only the 1-form A2 − A1. Let s < 4. By
the regularity of ∂ in Ls (see [18, Theorem 1(b)]) there exists a holomorphic
function h and a constant Cs > 0 such that∥∥g−12 g1 − h

∥∥
L6s/(6−s)(B4

r )
≤ Cs

∥∥∂(g−12 g1)
∥∥
Ls(B4

r )

≤ Cs
∥∥g−12 (A2 − A1)

0,1g2
∥∥
Lsp/(p−s)(B4

r )

∥∥g−12 g1
∥∥
Lp(B4

r )
,

where p ∈ (s,∞) arbitrary. Hence, it follows that there exists C > 0 depend-
ing on A1 such that∥∥g−12 g1 − h

∥∥
L6s/(6−s)(B4

r )
≤C ‖A1 − A2‖W 1,2(B4)

∥∥g−12 g1 − id
∥∥
Lp(B4

r )

+ C ‖A1 − A2‖W 1,2(B4) .

There exists q < 2 such that W 2,q ↪→ Lp. Since g−12 g1 − id is bounded in
W 2,q as in (3.41), then it is also bounded in Lp. Hence,∥∥g−12 g1 − h

∥∥
L6s/(6−s)(B4

r )
≤ C ‖A1 − A2‖W 1,2(B4) .

Since this holds for any s < 4, there exists a constant C > 0 such that∥∥g−12 g1 − h
∥∥
Lp(B4

r )
≤ C ‖A1 − A2‖W 1,2(B4) ,
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for any p < 12. Having this inequality at our disposal, we can turn to
estimate g1 − g2 · h. Let p < 12, then:

‖g1 − g2 · h‖Lp(B4
r )

=
∥∥(g2 − id)(h− g−12 g1) + h− g−11 g2

∥∥
Lp(B4

r )
.

For v ∈ (p, 12), we get:

‖g1 − g2 · h‖Lp(B4
r )
≤‖g2 − id‖Lvp/(v−p)(B4

r )

∥∥g−12 g1 − h
∥∥
Lv(B4

r )

+
∥∥g−12 g1 − h

∥∥
Lp(B4

r )
.

Thus, there exists a constant Cv,p > 0 depending on v, p and A1 such that

‖g1 − g2 · h‖Lp(B4
r )
≤ Cvp ‖A1 − A2‖W 1,2(B4) .

Moreover, g2 · h solves the equation:

∂(g2 · h) = A0,1
2 (g2 · h) (3.42)

in a distributional sense. It remains to show that the g2 · h is bounded in
W 2,q by the norms of A1 and A2 in a possible slightly smaller ball. Let
r0 ∈ (r/2, r), then there exists a constant C > 0 such that

‖g2 · h− id‖W 1,2(B4
r0

) ≤ C
(∥∥∂g2 · h∥∥L2(B4

r )
+ ‖g2 · h− id‖L2(B4

r )

)
.

Consequently, by using the ∂-equation (3.42) satisfied by g2 · h, it follows
that:

‖g2 · h− id‖W 1,2(B4
r0

) ≤C
(
‖A2‖L4(B4

r )
‖g2 · h‖L4(B4

r )

+ ‖g2 · h− g1‖L2(B4
r )

+ ‖id− g1‖L2(B4
r )

)
.

Having shown that g2 · h ∈ Lp for all p < 12, we obtain in particular

‖g2 · h− id‖L4(B4
r0

) ≤ C
(
‖A1‖W 1,2(B4) + ‖A2‖W 1,2(B4)

)
.

Hence, given that g2 · h ∈ L4 and g2 · h − id is bounded by A1 and A2, we
get from Lemma D.1 and Remark D.1(ii) the estimate: for any q < 2 there
exists a constant Cq > 0 such that:

‖g2 · h− id‖W 2,q(B4
r0

) ≤ Cq

(
‖A1‖W 1,2(B4) + ‖A2‖W 1,2(B4)

)
.
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By redefining g2 as g2 · h, we have proven our stability result.

3.3 Proof of Theorem 1.1

We pick geodesic balls B4
r (xi) covering X2 on which the connection can be

trivialised: ∇ ' d+ Ai and

‖Ai‖W 1,2(B4
r (xi))

≤ ε0(X
2, ω),

where ε0(X
2, ω) is given by Theorem 3.2. Because X2 is a compact manifold,

there are finitely many such balls covering X2. By Theorem 3.2 there exists
r′ ∈ (0, r), σi ∈ W 2,p(B4

r′(xi), GLn(C)) and hi = σTi σi ∈ W 2,p(B4
r′ , Sym(n))

for all p < 2 so that
Aσii = h−1i ∂hi,

where we recall that Sym(n) is the space of symmetric n×n matrices. Hence

∇σi ' d+ h−1i ∂hi in B4
r′(xi). (3.43)

It remains to show that ∇ defines a connection on a holomorphic vector
bundle structure E over X2. In order to achieve this, it is enough to find
holomorphic transition maps. On the initial bundle E, there exists gauge
transition maps gij ∈ W 2,2(B4

r (xi) ∩B4
r (xj), U(n)) such that

A
gij
i = Aj.

Define the transition maps

σij = σ−1i gijσj. (3.44)

We show that the σij are holomorphic and consequently since they define a
cocycle, they define a holomorphic vector bundle structure E over the Kähler
manifold X2:

∂σij = ∂σ−1i · gijσj + σ−1i ∂gij · σj + σ−1i gij∂σj

= σ−1i A0,1
i gijσj + σ−1i ∂gijσj − σ−1i gijA

0,1
j σj

= σ−1i gijg
−1
ij A

0,1
i gijσj + σ−1i ∂gijσj − σ−1i gijA

0,1
j σj

= σ−1i gij
(
A0,1
j − g−1ij ∂gij

)
σj + σ−1i ∂gijσj − σ−1i gijA

0,1
j σj.
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This equation gives:
∂σij = 0

and shows that the transition maps are holomorphic. Thus, there exists a
holomorphic vector bundle structure E which is compatible with ∇ since
(∇σi)σij = ∇σj in local coordinates. From the local representation (3.43) we
finally obtain:

∇0,1 = ∂E .

3.4 Density under high energy

Until now we have proven results under the assumption of low W 1,2 connec-
tion norm. In this section we lose this assumption. As before we assume that
we work on the flat unit ball B4. In Section 3.4.4 we show how to gener-
alise our results on the closed Kähler surface X2. We start by investigating
the case when A ∈ W 1,2(Ω1B4 ⊗ u(n)) and ‖A‖W 1,2(B4) < ∞. Furthermore,

through-out the section we assume the integrability condition F 0,2
A = 0 is

satisfied.

Difficulty:
If we want to proceed as in the case of low W 1,2 connection norm, we start by
smoothing A inside B4 by simple convolutions and thus, obtain a sequence
of smooth forms Ak converging to A in W 1,2 as k → ∞. The integrability
condition (1.1) is, however, lost for Ak. Furthermore, since we want to pre-
serve the condition for each k, the argument reduces to finding a sequence
of perturbations ωk ∈ C∞(Ω0,2B4⊗Mn(C)) uniformly bounded in W 2,2 such
that for each k, ωk solves

∂∂
∗
ωk = −

[
∂
∗
ωk, A

0,1
k

]
− ∂∗ωk ∧ ∂

∗
ωkj − F

0,2
Ak

in B4

ωk = 0 on ∂B4

Since A0,1
k is not small in W 1,2 norm, we cannot hope to apply a fixed point

argument even if F 0,2
Ak

is very small in L2 norm (it converges to F 0,2
A = 0). To

make the situation worse, the linear operator ∂∂
∗ · +

[
∂
∗·, A0,1

k

]
might have

non-trivial kernel..

Hence, in this section we have developed a method that deals with the case
of Ak having high W 1,2 norm. We present it below:
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Strategy:
We recall that through Proposition 3.1 and Lemma 3.2, we were able to
find a perturbation ∂

∗
ω to the form Ã in order to obtain the integrability

condition (1.1) over CP2. This method, however, heavily used the fact that
the operator LÃ (3.3) is invertible under the smallness condition of the W 1,2

norm of Ã. Following this blueprint, our idea is to find a unitary gauge

change g of A such that the operator ∂∂
∗ ·+

[
∂
∗·, (A0,1)

g
]

is invertible.

Firstly, we will need to acquaint ourselves with this idea. We found it natural
to start by considering the case of linear perturbations of A and show that
we can always find a smooth perturbation U such that the operator ∂∂

∗ ·
+
[
∂
∗·, A0,1 + β∂U

]
acting on (0, 2) forms has a trivial kernel for some β > 0.

Having this idea, we search for a unitary gauge change g that forces the

operator ∂∂
∗ · +

[
∂
∗·, (A0,1)

g
]

to have trivial kernel. Moreover, we show

that for k large enough, the same gauge g gives that the operators ∂∂
∗ ·

+
[
∂
∗·,
(
A0,1
k

)g]
are also invertible. This enables us to find a perturbation ωk

that solves

∂∂
∗
ωk +

[
∂
∗
ωkj ,
(
A0,1
k

)g]
+ ∂

∗
ωk ∧ ∂

∗
ωk = −F 0,2

Agk

with ωk = 0 on ∂B4, and satisfies the estimate:

‖ωk‖W 2,2(B4) ≤ C

∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1
k )

g

∣∣∣∣∣∣∣∣∣∣∣∣ ∥∥∥F 0,2
Agk

∥∥∥
L2(B4)

,

for some constant C > 0. Moreover, as k →∞, we show that the W 2,2 norm
of ωk is uniformly bounded. Using this estimate, together with the conver-
gence of Ak to A in W 1,2 and F 0,2

A = 0, we obtain the strong convergence of
the sequence ωk to 0.

Hence, we prove the first theorem of this section by also taking into account
that g is a unitary gauge transformation, and we can thus use the invariance

of the L2 norm under the action of g:
∥∥F 0,2

Ak

∥∥
L2 =

∥∥∥g−1F 0,2
Agk
g
∥∥∥
L2

=
∥∥∥F 0,2

Agk

∥∥∥
L2

.

The local theorem on B4 is stated as follows:

Theorem 3.3. Let A ∈ W 1,2(Ω1B4 ⊗ u(n)), with F 0,2
A = 0. There exists a

sequence of smooth 1-forms Ak ∈ C∞(Ω1B4 ⊗ u(n)) satisfying F 0,2
Ak

= 0 and
Ak → A in W 1,2(B4).

Moreover, using the local theorem, we will show that it implies the global
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existence of an approximating smooth sequence under the cohomological con-
straint H0,2

∂
(X2) = 0. In particular, we obtain:

Theorem 3.4. Let ∇ a W 1,2 unitary connection over X2 with H0,2

∂
(X2) = 0,

satisfying the integrability condition

F 0,2
∇ = 0.

Then there exists a sequence of smooth unitary connections ∇k, with F 0,2
∇k = 0

such that
dist2(∇k,∇)→ 0.

3.4.1 Linear perturbation

We will be looking for a small linear perturbation that forces the operator

LA0,1 = ∂A∂
∗· = ∂∂

∗ ·+[A0,1, ∂
∗·]

to have trivial kernel, assuming vanishing boundary conditions. Let U ∈
C∞(B4,Mn(C)). W 2,2

D is the space of (0, 2) forms vanishing on ∂B4 and we
define the following operators

L0 : W 2,2
D (Ω0,2B4 ⊗Mn(C))→ L2(Ω0,2B4 ⊗Mn(C))

ω 7→ ∂∂
∗
ω + [A0,1, ∂

∗
ω]

Lβ,U : W 2,2
D (Ω0,2B4 ⊗Mn(C))→ L2(Ω0,2B4 ⊗Mn(C))

ω 7→ L0ω + βBUω

where BU = [∂U, ∂
∗·].

Proposition 3.3. L0 and Lβ,U are Fredholm operators of index zero from
the space W 2,2

D (Ω0,2B4 ⊗Mn(C)) to L2(B4,Mn(C)).

Proof of Proposition 3.3. It is sufficient to prove this statement for L0. We
argue that L0 is Fredholm. We know that L0 is elliptic on the domain B4.
Thus, by [3] for some C > 0 the estimate

‖ω‖W 2,2(B4) ≤ C
(
‖L0ω‖L2(B4) + ‖ω‖L2(B4)

)
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holds for all ω ∈ W 2,2
D (Ω0,2B4⊗Mn(C)). From this we can deduce that L0 is

Fredholm. Moreover, ∂∂
∗

= 1
2
∆dz1 ∧ dz2 is an elliptic operator of Fredholm

index zero mapping W 2,2
D (Ω0,2B4 ⊗Mn(C)) to L2(Ω0,2B4 ⊗Mn(C)).

Let Ak be a sequence of smooth 1-forms converging strongly in W 1,2 to A.
Then the bracket operator

ω 7→ [A0,1
k , ∂

∗
ω]

is compact from W 2,2(Ω0,2(B4)) to L2(Ω0,2(B4)). Indeed, Ak is bounded in
L∞ and hence:∥∥∥[A0,1

k , ∂
∗
ω]
∥∥∥
L2(B4)

≤ C ‖Ak‖L∞(B4)

∥∥∥∂∗ω∥∥∥
L2(B4)

,

for some constant C > 0, where we have used the fact that W 1,2 is compactly
embedded in L2 in 4-dimensions, by Rellich-Kondrachov [2]. By the compact
embeddedness, it follows that the operators ω 7→ [A0,1

k , ∂
∗
ω] are compact W 2,2

to L2 for all k. Hence, using the compactness of these operators and the fact
that ∂∂

∗
is Fredholm, by [32, Theorem 4.4.2, p.185] we have

index(∂∂
∗ ·+[A0,1

k , ∂
∗·]) = index(∂∂

∗
) = 0.

Moreover, for a fixed ε > 0 given by [32, Theorem 4.4.2, p.185], then there

exists k0 > 0 such that for all k ≥ k0, we have that
∣∣∣∣∣∣∣∣∣[A0,1

k − A0,1, ∂
∗
]
∣∣∣∣∣∣∣∣∣ ≤ ε

since Ak converges strongly to A in W 1,2. Thus, by applying [32, Theorem
4.4.2, p.185] to the perturbation operator [A0,1

k −A0,1, ∂
∗
] and to L0, we obtain

that

index(L0) = index(L0 + [A0,1
k − A

0,1, ∂
∗
]) = index(∂∂

∗ ·+[A0,1
k , ∂

∗·]) = 0

This proves the statement.

We will be working with operators of the form L0 and Lβ,U , where β ∈ R
is small and U ∈ W 2,2(B4,Mn(C)). By the Proposition above the kernel of
L0 is finite dimensional. On the L2 orthogonal space of KerL0 denoted by
(KerL0)

⊥, there exists a compact operator S = L−10 from L2 into W 2,2
D such

that
S : RanL0 → (KerL0)

⊥.

By classical spectral theory, S has discrete spectrum with a possible accu-
mulation point at 0 (see for example [29, Theorem VI.15]). This means that
the spectrum of S is {λ1, λ2, . . . , λn, . . .} where λn → 0.
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Thus, on (KerL0)
⊥, the spectrum of L0 is{

1

λ1
,

1

λ2
, . . . ,

1

λn
, . . .

}
where λn → 0. If we assume KerL0 6= {0}, we have that 0 has to be in the
spectrum as well and then{

0,
1

λ1
,

1

λ2
, . . . ,

1

λn
, . . .

}
is the spectrum of the operator L0. In addition, Lβ,U has discrete spectrum
by arguing as before with A0,1 + β∂U instead of A0,1.

The following proposition states that the number of eigenvalues near 0 of Lβ,U
cannot exceed the multiplicity of the 0 eigenvalue of L0 for β small enough.
This was proven in [7, Theorem 1]. We denote by m be the multiplicity of 0
for the operator L0.

Proposition 3.4. There exists β0 > 0 so that for each 0 ≤ β ≤ β0, Lβ,U has

at most m repeated according to multiplicity λ
(1)
U (β), . . . λ

(m)
U (β) near 0 that

converge to 0 as β → 0.

Proof of Proposition 3.4. Denote ε0 :=
∣∣∣ 1
λ1

∣∣∣ . and let ε < ε0. Since the ball

Bε(0) = {|λ| ≤ ε} ⊆ C is compact, then Lβ,U has finitely many not neces-

sarily distinct mβ eigenvalues in Bε(0), λ
(1)
U (β), . . . , λ

(mβ)
U (β). The statement

follows by [7, Theorem 1].

Define the following operator:

Pβ,U := − 1

2πi

∮
|λ|=ε

(Lβ,U − λ)−1 dλ

where ε is chosen as in Proposition 3.4. Moreover, from Proposition 3.4, we
have isolated branched points of the spectrum. Thus, we can rewrite Pβ,U as

Pβ,U := − 1

2πi

m∑
i=1

∮
|λ−λ(i)U (β)|=ε1

(Lβ,U − λ)−1 dλ.

for some ε1 > 0 small enough. Each term of this sum is the projection onto
the generalised eigenspace of Lβ,U corresponding to the eigenvalue λ

(i)
U (β)

(see [28, Chapter XII]). By Proposition 3.4 on the circle |λ| = ε, we have
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that λ ∈ ρ(Lβ,U), where ρ is the resolvent of Lβ,U . Thus, the resolvent oper-
ator Rλ = (Lβ,U −λ)−1 is analytic in β on the ε circle. It follows that Pβ,U is
also analytic in β for β small enough. Similarly, we can define the operator
P0 associated to L0.

Following [32, Chapter 5], we denote the generalised eigenspace corresponding
to 0 for L0 by

G0 =
∞⋃
k=1

{
v ∈ W 2,2

D (Ω0,2B4 ⊗Mn(C))|Lk0v = 0
}

and the range of Pβ,U by

Gβ,U =
∞⋃
k=1

m⊕
i=1

{
v ∈ W 2,2

D (Ω0,2B4 ⊗Mn(C))|(Lβ,U − λ(i)U (β))kv = 0
}

respectively. The following proposition will show that these two spaces are
isomorphic for small β.

Proposition 3.5. There exists β0 > 0 so that Pβ,U : G0 → Gβ,U is an
isomorphism for all 0 < β < β0.

Proof of Proposition 3.5. From [28, Theorem XII.5], Pβ,U and P0 define two
surjective projection operators:

Pβ,U : W 2,2
D (Ω0,2B4 ⊗Mn(C))→ Gβ,U

and
P0 : W 2,2

D (Ω0,2B4 ⊗Mn(C))→ G0.

Claim 1. There exists β0 > 0 so that for all β < β0, Pβ,U is surjective as an
operator from G0 to Gβ,U .

Pβ,U − P0 = − 1

2πi

∮
|λ|=ε

(Lβ,U − λ)−1 − (L0 − λ)−1 dλ

= − 1

2πi

∮
|λ|=ε

(
(L0 − λ)−1 −

∞∑
i=1

βi(L0 − λ)−1(BU(L0 − λ)−1)i

)
− (L0 − λ)−1 dλ

= O(β) (3.45)

Thus, there exists β0 such that for all β < β0 we have the following bound
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for the norm of the operator P (β)− P (0):

‖Pβ,U − P0‖W 2,2
D
<

1

16
.

Since Lβ,U −λ is a continuous operator from W 2,2
D to L2 for any λ, β ∈ R, we

have that
(Lβ,U − λ)−1G0

is closed, since RanP0 = G0 is closed (see [28, Theorem XII.5]). This implies
that Pβ,UG0 is closed as Pβ,U is a composition of two continuous operators.

Assume that Pβ,UG0 6= Gβ,U . Since Pβ,UG0 is closed in Gβ,U , we can apply
Riesz Lemma (see for example [32, Lemma 1.2.13]). Then there exists u ∈
Gβ,U where ‖u‖W 2,2

D
= 1 and

inf
v∈Pβ,UG0

‖u− v‖W 2,2
D
> 1

2
.

Pβ,U is a projection operator and u ∈ Gβ,U , then u is its own projection -
u = Pβ,Uu. Moreover, the norm distance between u and P0u satisfies the
following inequality

‖u− P0u‖W 2,2
D

= ‖Pβ,Uu− P0u‖W 2,2
D
≤ ‖Pβ,U − P0‖W 2,2

D
‖u‖W 2,2

D

= ‖Pβ,U − P0‖W 2,2
D
<

1

16
.

The last inequality holds because β is chosen to be small. From the above
estimate, we can estimate the norm of P0u:

‖P0u‖W 2,2
D
≤ ‖u‖W 2,2

D
+ ‖u− P0u‖W 2,2

D
< 1 + 1

16
.

By further computing, we get

‖Pβ,UP0u− P0u‖W 2,2
D

= ‖Pβ,UP0u− P0P0u‖W 2,2
D

P 2
0=P0

≤ ‖Pβ,U − P0‖W 2,2
D
‖P0u‖W 2,2

D

< 1
162

+ 1
16
.
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Thus,

‖u− Pβ,UP0u‖W 2,2
D
≤ ‖Pβ,UP0u− P0u‖W 2,2

D
+ ‖u− P0u‖W 2,2

D
< 2

16
+ 1

162
.

Since Pβ,UP0u ∈ Pβ,UG0, we get a contradiction with inf
v∈Pβ,UG0

‖u− v‖W 2,2 >

1
2
. Hence, Pβ,UG0 = Gβ,U and we have proven the claim that Pβ,U is surjective

from G0 to Gβ,U .

Claim 2. Pβ,U is injective as an operator from G0 to Gβ,U .

We have shown in (3.45) that

Pβ,U − P0 =
1

2πi

∮
|λ|=ε

(
∞∑
i=1

βi(L0 − λ)−1(BU(L0 − λ)−1)i

)
dλ.

Define Eβ,U = Pβ,U − P0. Then Eβ,U is a well-defined bounded operator
defined on the space of W 2,2 (0, 2) forms. Moreover, there exists β0 > 0 such
that for all 0 < β < β0 we have

|||Eβ,U ||| < 1.

Let ω ∈ G0 such that Pβ,Uω = 0. Without loss of generality we can assume
‖ω‖W 2,2 = 1. Then we obtain:

0 = Pβ,U(ω) = − 1

2πi

∮
|λ|=ε

(Lβ,U − λ)−1ω dλ

= − 1

2πi

∮
|λ|=ε

(
(L0 − λ)−1 −

∞∑
i=1

βi(L0 − λ)−1(BU(L0 − λ)−1)i

)
ω dλ

= ω + Eβ,Uω.

Hence,

1 = ‖ω‖W 2,2 = ‖Eβ,Uω‖W 2,2 ≤ |||Eβ,U ||| ‖ω‖W 2,2 = |||Eβ,U ||| < 1.

We have obtained a contradiction. Hence, for all β < β0 we have that Pβ,U
is injective from G0 to Gβ,U .

From the two claims above, there exists β0 > 0 so that

Pβ,U : G0 → Gβ,U
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is an isomorphism for all β < β0.

The last ingredient we need to prove in order to obtain the existence of
a perturbation that makes KerLβ,U trivial is the next statement. It gives
us the perturbation U which will satisfy the necessary condition to make
the kernel trivial. This next Proposition together with the existence of the
isomorphism Pβ,U will be key to proving Lemma 3.4.

Proposition 3.6. There exists a smooth map U ∈ C∞(B4, u(n)) such that
BU is injective on KerL0.

Proof of Proposition 3.6. Since KerL0 is finite dimensional, let {e1, . . . , eN}
be an orthonormal basis of it.

Let v ∈ KerL0, v 6= 0. We show that for each such v, we can find Uv such that
BUvv 6= 0. Assume by contradiction that BUv = 0 for all smooth maps U on

B4. Define the linear operator H(ω) :=
(

[ω, ∂
∗
v]
)0,2

: C∞(Ω1B4⊗Mn(C))→
C∞(Ω2B4⊗Mn(C)) which satisfies the fact that H(ω(z)) = H(ω)(z), where
ω(z) means that each component of ω is applied to z. Moreover, we have
that

0 = BUv = [∂U, ∂
∗
v] = H(dU)

for all smooth maps U on B4. Applying Proposition C.1 to H, we obtain that
H = 0. By density of smooth (0, 1)-forms into W 1,2 (0, 1)-forms, it follows
in particular that

H(A0,1) = [A0,1, ∂
∗
v] = 0.

Putting this together with the fact that v ∈ KerL0, we obtain:

0 = L0v = ∂∂
∗
v.

Since v = 0 on ∂B4 and ∂∂
∗
v = 0, then v = 0 in B4. This is a contradiction

because ‖v‖W 2,2
D

= 1. Hence, there exists Uv ∈ C∞(B4,Mn(C)) so that

BUvv 6= 0.

Next, we show that such a Uv can be chosen to be Hermitian. Indeed since
Uv ∈ Mn(C), there exists a decomposition in terms of its Hermitian and
anti-Hermitian part:

Uv = U1 + U2,

where U1 ∈ C∞(B4, u(n)) and U2 ∈ C∞(B4, iu(n)). Assume that BU1v = 0,
otherwise we redefine Uv := U1. Under this assumption, by linearity it then
necessarily follows that

BU2v 6= 0.
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If this condition holds, then by multiplying with i,

iBU2v = BiU2v 6= 0.

Moreover, iU2 ∈ C∞(B4, u(n)) and in this case we redefine Uv := iU2. Hence,
there exists

Uv ∈ C∞(B4, u(n)) so that BUvv 6= 0, for any v ∈ KerL0, v 6= 0. (3.46)

Claim. There exists U smooth Hermitian function such that BU is injective
on KerL0.

We formulate the following inductive hypothesis:

I(k) =


there exists Uk ∈ C∞(B4, u(n)) supported in V k ( B4 such that

{BUkej}kj=1 is linearly independent,

where k ≤ N . We show by induction that I(N) holds from which it follows
that BUN is injective on KerL0.

By (3.46), there exists U1 such that BU1e1 6= 0. Without loss of generality,
by multiplying with a compactly supported function ρ1, we can localise U1 in
V1 ( B4. Hence I(1) holds. Assume that for k < N , I(k) holds. We prove
that I(k + 1) holds as well.

If {BUkej}k+1
j=1 is linearly independent, then set Uk+1 = Uk. Otherwise there

exists λ1, . . . , λk+1 not all 0 such that
∑k+1

i=1 λiBUkei = 0. Notice that λk+1 6=
0.

By (3.46) there exists Uk+1 such that BUk+1

∑k+1
i=1 λiei 6= 0. We can choose a

neighbourhood Vk+1 and Ṽ k ⊆ V k disjoint from Vk+1 such that {BUkej}kj=1

is linearly independent in Ṽ k and

Bρk+1Uk+1

k+1∑
i=1

λiei 6= 0 in Vk+1

In particular, we can define functions ρk+1 compactly supported in Vk+1, ρk
compactly supported in Ṽ k. Define Uk+1 := ρkU

k + ρk+1Uk+1.

It remains to show that {BUk+1ej}k+1
j=1 is linearly independent. Assume there

exists β1, . . . , βk+1 such that
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k+1∑
j=1

βjBρkUk+ρk+1Uk+1
ej =

k+1∑
j=1

βjBUk+1ej = 0. (3.47)

In the neighbourhood Ṽ k, we have that

k+1∑
j=1

βjBUkej = 0.

Then (β1, . . . , βk+1) = c(λ1, . . . , λk+1) for some constant c. Hence, in Vk+1,
we have that

c

k+1∑
j=1

λjBUk+1
ej = 0.

By the choice of Uk+1, we obtain that c = 0. Hence β1 = . . . = βk+1 = 0. To
conclude, define V k+1 = Ṽ k ∪ Vk+1. This proves the induction.

Hence, we have obtained U = UN such that {BUej}Nj=1 are linearly indepen-
dent, where {ej}Nj=1 is the orthonormal basis of KerL0 we picked initially. It
follows that BU is injective on KerL0.

We are now ready to prove the result of this section.

Lemma 3.4. There exists a small constant β ∈ [0, 1] and a smooth map
U ∈ C∞(B4,Mn(C)) such that

KerLβ,U = {0}

where
Lβ,U : W 2,2

D (Ω0,2B4 ⊗Mn(C))→ L2(Ω0,2B4 ⊗Mn(C)).

Hence, Lβ,U is an invertible operator.

Proof of Lemma 3.4. The case when β = 0 and KerL0 = {0} is trivial. We
focus on the case when KerL0 6= {0}.
We assume the worst case scenario dimG0 = ∞. By Proposition 3.6, there
exists U ∈ C∞(B4, u(n)) so that BU is injective on KerL0. Furthermore it
follows from Proposition 3.5 that there exists an isomorphism Pβ,U between
G0 and Gβ,U for all β < β0 for some β0 > 0. We want to show the existence
of β so that KerLβ,U = {0}.
Assume that for all β < β0 we have that KerLβ,U 6= {0}. We aim at showing
by contradiction that for some β < β0 we will get that KerLβ,U = {0}. Thus,
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let the space
Sβ,U := P−1β,U(KerLβ,U).

Since KerLβ,U is finite dimensional and its dimension is bounded by the di-
mension of KerL0 by Proposition 3.4. Because Pβ,U is an isomorphism, then
Sβ,U is a finite dimensional space in G0 of dimension at most dimKerL0.
Moreover, KerL0 ∩ Sβ,U is also finite dimensional and there exists an or-
thonormal basis of this space. We can complete it, to obtain an orthonormal
basis {eβ,Uj }Nj=1 on Sβ,U , where N = dimKerLβ,U = dimSβ,U . Fix 1 ≤ j ≤ N
and ε > 0 small enough such that λ ∈ ρ(L0) for all |λ| = ε. We compute the
following:

0 = Lβ,UPβ,Ue
βU
j = − 1

2πi
Lβ,U

∮
|λ|=ε

(Lβ,U − λ)−1eβ,Uj dλ

= − 1

2πi
Lβ,U

∮
|λ|=ε

(L0 + βBU − λ)−1eβ,Uj dλ

= − 1

2πi
(L0 + βBU)

∮
|λ|=ε

(L0 + βBU − λ)−1eβ,Uj dλ

= − 1

2πi
(L0 + βBU)

∮
|λ|=ε

(
(L0 − λ)−1

−
∞∑
i=1

βi(L0 − λ)−1(BU(L0 − λ)−1)i

)
eβ,Uj dλ

= − 1

2πi
L0

∮
|λ|=ε

(L0 − λ)−1eβ,Uj dλ

+ β
1

2πi
L0

∮
|λ|=ε

∞∑
i=1

βi−1(L0 − λ)−1(BU(L0 − λ)−1)ieβ,Uj dλ

− β 1

2πi
BU

∮
|λ|=ε

(L0 − λ)−1eβ,Uj dλ

+
1

2πi
βBU

∮
|λ|=ε

∞∑
i=1

βi(L0 − λ)−1(BU(L0 − λ)−1)ieβ,Uj dλ

= L0e
β,U
j − β 1

2πi

(
BUe

β,U
j − L0

∮
|λ|=ε

(L0 − λ)−1BU(L0 − λ)−1eβ,Uj dλ

)
+O(β2) (3.48)

The last equality holds because eβ,Uj ∈ G0 and we have
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P0e
β,U
j = − 1

2πi

∮
|λ|=ε

(L0 − λ)−1eβ,Uj dλ = eβ,Uj .

We further discuss two cases:

Case 1. eβ,Uj /∈ KerL0

Because eβ,Uj is an element of the orthonormal basis, then eβ,Uj ∈ (KerL0)
⊥.

Moreover, since L0 is Fredholm, we have

1 =
∥∥∥eβ,Uj ∥∥∥

W 2,2
D

≤ C
∥∥∥L0e

β,U
j

∥∥∥
L2
≤ O(β)

∥∥∥eβ,Uj ∥∥∥
W 2,2
D

= O(β),

where C > 0 is a constant independent of β. Since β < β0 is small, we get a
contradiction.

Case 2. eβ,Uj ∈ KerL0

Because the equation (3.48) vanishes for any β < β0 and KerL0 6= {0} it
follows that

BUe
β,U
j = L0

∮
|λ|=ε

(L0 − λ)−1BU(L0 − λ)−1eβ,Uj dλ. (3.49)

Using the invertibility of the operator L0 − λ, where λ ∈ ρ(L0) then

(L0 − λ)−1(L0 − λ) = id.

Thus, by expanding we obtain that

(L0 − λ)−1L0 − id = (L0 − λ)−1λ.

((L0 − λ)−1L0

λ
− id

λ
)eβ,Uj = (L0 − λ)−1eβ,Uj . Since eβ,Uj ∈ KerL0, then

(L0 − λ)−1eβ,Uj = −1

λ
eβ,Uj .

We obtain the following:

(3.49) = −L0

∮
|λ|=ε(L0 − λ)−1 1

λ
BUe

β,U
j dλ

= −
∮
|λ|=ε

(
(L0 − λ)−1 + I

λ

)
BUe

β,U
j dλ

= −2πiBUe
β,U
j −

∮
|λ|=ε(L0 − λ)−1BUe

β,U
j dλ

(3.50)
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Putting the above equalities (3.49) and (3.50) together, we have that

(1 + 2πi)BUe
β,U
j = −

∮
|λ|=ε

(L0 − λ)−1BUe
β,U
j dλ = 2πiP0BUe

β,U
j

We apply P0 on both sides of the equation to get

(1 + 2πi)P0BUe
β,U
j = 2πiP 2

0BUe
β,U
j .

Moreover, since P0 is a projection, and thus satisfies P 2
0 = P0, our computa-

tions then give us the following equality

(1 + 2πi)P0BUe
β,U
j = 2πiP0BUe

β,U
j .

This can be true only if P0BUe
β,U
j = 0. Together with

(1 + 2πi)BUe
β,U
j = 2πiP0BUe

β,U
j ,

it implies that BUe
β,U
j = 0. This is a contradiction by the choice of our initial

U .

We conclude that for some β < β0 we have KerLβ,U = {0}.

3.4.2 Gauge perturbation

After having acquainted ourselves with the linear perturbation in the section
before, we are now in a position to generalise the previous results. First
consider operators of the form

T(A0,1)g(βU) = ∂∂
∗ ·+[(A0,1)g(βU), ∂

∗·]

where

T(A0,1)g(βU) : W 2,2
D (Ω0,2B4 ⊗Mn(C))→ L2(Ω0,2B4 ⊗Mn(C))

and g(βU) := exp(βU) ∈ C∞(B4, U(n)). For the following proofs we will
denote TA0,1 and T

A0,1g(βU) by T0 and Tβ,U respectively. We can remark the
fact that T0 = L0.

Similar to the linear case, we can deduce that Tβ,U has a discrete spectrum
for any U and β, with β < 1 small (so that exp is defined). Moreover, the
family of operators have discrete spectrum with no accumulation points and
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we can express them as

Tβ,U = ∂∂
∗ ·+[(A0,1)g(βU), ∂

∗·]

= ∂∂
∗ ·+

∞∑
n=0

[βnAn, ∂
∗·]

= ∂∂
∗ ·+[A0,1, ∂

∗·] +
∞∑
n=1

βn[An, ∂
∗·]

where A1 = A0,1 and An are (0, 1)-forms. This shows that the resolvent
is an analytic function of β. Thus, the operator is analytic in the sense of
Kato (see [28]). In a completely analogous way to Proposition 3.4 we have
the existence of m not necessarily distinct eigenvalues corresponding to Tβ,U ,

namely λ
(1)
U (β), . . . , λ

(m)
U (β). There exists ε > 0 so that |λ(i)U (β)| < ε for all

β ≥ 0 and 1 ≤ i ≤ m. In this section we denote Pβ,U by

Pβ,U = − 1

2πi

∮
|λ|=ε

(Tβ,U − λ)−1 dλ

and it is an analytic function of β on |λ| = ε. Similarly, we define P0 for the
operator T0.

We denote the generalised eigenspace corresponding to 0 for T0 by

G0 =
∞⋃
k=1

{
v ∈ W 2,2

D (Ω0,2B4 ⊗Mn(C))|T k0 v = 0
}

and the range of Pβ,U by

Gβ,U =
∞⋃
k=1

m⊕
i=1

{
v ∈ W 2,2

D (Ω0,2B4 ⊗Mn(C))|(Tβ,U − λ(i)U (β))kv = 0
}

respectively.

Since g(βU) = exp(βU), we then have the existence of an operator Bβ,U so
that

βBβ,U · = [(A0,1)g(βU) − A0,1, ∂
∗·]

and Bβ,U is analytic in β (in particular it does not have any poles). Since U
is a smooth Hermitian mapping we can obtain

Bβ,U · = [∂U + [A0,1, U ], ∂
∗·] +O(β),
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by expanding Bβ,U in β. Define

B0,U · := [∂U + [A0,1, U ], ∂
∗·]

as a map from W 2,2
D (Ω0,2B4⊗Mn(C)) to L2(Ω0,2B4⊗Mn(C)). Thus, by again

using the smoothness of U , we can expand Tβ,U in U and obtain

Tβ,U = T0 + βBβ,U = T0 + βB0,U +O(β2).

In a completely analogous to Proposition 3.5 way we obtain that Pβ,U is an
isomorphism between G0 and Gβ,U . Hence, we can assume this and prove the
reciprocal version of Lemma 3.4. Firstly, we prove an analogue of Proposition
3.6. The proof will follow very similar steps as before.

Proposition 3.7. There exists a smooth map U ∈ C∞(B4, u(n)) such that
B0,U is injective on KerT0.

Remark 3.3. It is important to remark that this proof will give us a map U
that belongs to the Lie algebra u(n). This, in turn, will yield a perturbation
by a gauge that is unitary, since g(βU) = exp(βU). It is crucial to find a
unitary gauge, because it will preserve our Hermitian vector bundle structure
later on.

Proof of Proposition 3.7. Since KerT0 is finite dimensional, let {e1, . . . , eN}
be an orthonormal basis of it.

Let v ∈ KerT0, v 6= 0. We show that for each such v, we can find Uv such
that B0,Uvv 6= 0. Assume by contradiction that B0,Uv = 0 for all smooth
maps U on B4. Define the linear operators

H0(ω) :=
(

[[A0,1, ω], ∂
∗
v]
)0,2

: C∞(B4,Mn(C))→ C∞(Ω2B4 ⊗Mn(C))

and

H1(ω) :=
(

[ω, ∂
∗
v]
)0,2

: C∞(Ω1B4 ⊗Mn(C))→ C∞(Ω2B4 ⊗Mn(C))

which satisfies the fact that H0(ω(z)) = H0(ω)(z). Moreover, we have that

0 = B0,Uv = [∂U + [A0,1, U ], ∂
∗
v] = H1(dU) +H0(U)

for all smooth maps U on B4. Applying Proposition C.2 to H1 and H0, we
obtain that H1 ◦ d = 0 and H0 = 0. In particular, we have obtained that for
all U smooth maps on B4,
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H1(dU) = [∂U, ∂
∗
v] = 0.

This is a contradiction by Proposition 3.4. Hence, there exists a map Uv ∈
C∞(B4,Mn(C)) so that B0,Uvv 6= 0.

Next, we show that such a Uv can be chosen to be Hermitian. Indeed since
Uv ∈ Mn(C), there exists a decomposition in terms of its Hermitian and
anti-Hermitian part:

Uv = U1 + U2,

where U1 ∈ C∞(B4, u(n)) and U2 ∈ C∞(B4, iu(n)). Assume that B0,U1v = 0,
otherwise we redefine Uv := U1. Under this assumption, by linearity it then
necessarily follows that

B0,U2v 6= 0.

If this condition holds, then by multiplying with i,

iB0,U2v = B0,iU2v 6= 0.

Moreover, iU2 ∈ C∞(B4, u(n)) and in this case we redefine Uv := iU2. Hence,
there exists

Uv ∈ C∞(B4, u(n)) so that B0,Uvv 6= 0, for any v ∈ KerT0, v 6= 0. (3.51)

Claim. There exists U smooth Hermitian function such that B0,U is injective
on KerT0.

We formulate the following inductive hypothesis:

I(k) =


there exists Uk ∈ C∞(B4, u(n)) supported in V k ( B4 such that

{B0,Ukej}kj=1 is linearly independent,

where k ≤ N . We show by induction that I(N) holds from which it follows
that B0,UN is injective on KerT0.

By (3.51), there exists U1 such that B0,U1e1 6= 0. Without loss of generality,
by multiplying with a compactly supported ρ1, we can localise U1 in a neigh-
bourhood V1 ( B4. Hence I(1) holds. Assume that for k < N , I(k) holds.
We prove that I(k + 1) holds as well.

If {B0,Ukej}k+1
j=1 is linearly independent, then set Uk+1 = Uk. Otherwise

there exists λ1, . . . , λk+1 not all 0 such that
∑k+1

i=1 λiB0,Ukei = 0. Notice that
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λk+1 6= 0.

By (3.51) there exists Uk+1 such that B0,Uk+1

∑k+1
i=1 λiei 6= 0. We can choose a

neighbourhood Vk+1 and Ṽ k ⊆ V k disjoint from Vk+1 such that {B0,Ukej}kj=1

is linearly independent in Ṽ k and

B0,ρk+1Uk+1

k+1∑
i=1

λiei 6= 0 in Vk+1

In particular, we can define functions ρk+1 compactly supported in Vk+1, ρk
compactly supported in Ṽ k. Define Uk+1 := ρkU

k + ρk+1Uk+1.

It remains to show that {B0,Uk+1ej}k+1
j=1 is linearly independent. Assume there

exists β1, . . . , βk+1 such that

k+1∑
j=1

βjB0,ρkUk+ρk+1Uk+1
ej =

k+1∑
j=1

βjB0,Uk+1ej = 0. (3.52)

In the neighbourhood Ṽ k, we have that

k+1∑
j=1

βjB0,Ukej = 0.

Then (β1, . . . , βk+1) = c(λ1, . . . , λk+1) for some constant c. Hence, in Vk+1,
we have that

c
k+1∑
j=1

λjB0,Uk+1
ej = 0.

By the choice of Uk+1, we obtain that c = 0. Hence β1 = . . . = βk+1 = 0. To
conclude, define V k+1 = Ṽ k ∪ Vk+1. This proves the induction.

Hence, we have obtained U = UN such that {B0,Uej}Nj=1 are linearly inde-
pendent, where ej the orthonormal basis of KerT0 we have picked initially.
It follows that B0,U is injective on KerT0.

The following Lemma proves our perturbation result.

Lemma 3.5. There exists a small constant β ∈ [0, 1] and U ∈ C∞(B4, u(n))
such that

KerTβ,U = {0}

where
Tβ,U : W 2,2

D (Ω0,2B4 ⊗Mn(C))→ L2(Ω0,2B4 ⊗Mn(C)).
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Hence, Tβ,U is an invertible operator.

Proof of Lemma 3.5. We argue as before:

The case when β = 0 and KerT0 = {0} is trivial. We focus on the case when
KerT0 6= {0}.

We assume the worst case scenario dimG0 = ∞. By Proposition 3.7, there
exists U ∈ C∞(B4, u(n)) so that B0,U is injective on KerT0. To further set
up our proof, it follows from Proposition 3.5 that there exists an isomorphism
Pβ,U between G0 and Gβ,U for all β < β0 for some β0 > 0. We want to show
the existence of β so that KerTβ,U = {0}.

Assume that for all β < β0 we have that KerTβ,U 6= {0}. We aim at showing
by contradiction that for some β < β0 we will get that KerTβ,U = {0}. Thus,
let the space

Sβ,U := P−1β,U(KerLβ,U).

Since KerTβ,U is finite dimensional, its dimension is bounded by the dimen-
sion of KerT0 by Proposition 3.4. Because Pβ,U is an isomorphism, then
Sβ,U is a finite dimensional space in G0 of size at most dimKerT0. Moreover,
KerT0∩Sβ,U is also finite dimensional and there exists an orthonormal basis

of this space. We can complete it, to obtain an orthonormal basis {eβ,Uj }Nj=1

on Sβ,U , where N = dimKerTβ,U = dimSβ,U . Fix 1 ≤ j ≤ N and ε > 0
small enough such that λ ∈ ρ(T0) for all |λ| = ε. We compute the following:

0 = Tβ,UPβ,Ue
β,U
j = − 1

2πi
Tβ,U

∮
|λ|=ε

(Tβ,U − λ)−1eβ,Uj dλ

= − 1

2πi
(T0 + βBβ,U)

∮
|λ|=ε

(T0 + βBβ,U − λ)−1eβ,Uj dλ

= − 1

2πi
T0

∮
|λ|=ε

(T0 − λ)−1eβ,Uj dλ

− 1

2πi
β

(
Bβ,U − T0

∮
|λ|=ε

(T0 − λ)−1Bβ,U(T0 − λ)−1eβ,Uj dλ

)
+O(β2)

= T0e
β,U
j − 1

2πi
β

(
Bβ,U − T0

∮
|λ|=ε

(T0 − λ)−1Bβ,U(T0 − λ)−1eβ,Uj dλ

)
+O(β2) (3.53)

The last equality holds because eβ,Uj ∈ G0 and we have
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P0e
β,U
j = − 1

2πi

∮
|λ|=ε

(T0 − λ)−1eβ,Uj dλ = eβ,Uj .

By further expanding Bβ,U in β we can rewrite the vanishing equation (3.53)
as such:

0 = T0e
β,U
j −

1

2πi
β

(
B0,U − T0

∮
|λ|=ε

(T0 − λ)−1B0,U(T0 − λ)−1eβ,Uj dλ

)
+O(β2).

(3.54)
We discuss two cases:

Case 1. eβ,Uj /∈ KerT0

Because eβ,Uj is an element of the orthonormal basis, then eβ,Uj ∈ (KerT0)
⊥.

Moreover, since T0 is Fredholm, we have

1 =
∥∥∥eβ,Uj ∥∥∥

W 2,2
D

≤ C
∥∥∥T0eβ,Uj ∥∥∥

L2
≤ O(β)

∥∥∥eβ,Uj ∥∥∥
W 2,2
D

= O(β),

where C > 0 is a constant independent of β. Since β < β0 is small, we get a
contradiction.

Case 2. eβ,Uj ∈ KerT0
Because the equation (3.54) holds for any β < β0 and KerT0 6= {0} we then
have that

B0,Ue
β,U
j = T0

∮
|λ|=ε

(T0 − λ)−1B0,U(T0 − λ)−1eβ,Uj dλ.

By computing in an analogous way to Lemma 3.4 we get that the equation
above implies that B0,Ue

β,U
j = 0. This is a contradiction with our initial

choice of U . Thus, we found β and U so that KerTβ,U = {0}.

3.4.3 Local density result in the high energy case

We start this section by first proving that under a fixed gauge transformation
the operators TA0,1

k
corresponding to the approximating smooth 1-forms have

trivial kernels. Secondly, we prove the existence of perturbations that give
us the integrability condition (1.1) in B4. Finally, we end this section by
proving the main result - that we can always approximate connection forms
by smooth ones in B4 in such a way that we satisfy the integrability condition
(1.1) throughout.
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Proposition 3.8. Let A ∈ W 1,2(Ω1B4 ⊗ u(n)) and a sequence of smooth
1-forms Ak → A in W 1,2. Then there exists a gauge g ∈ C∞(B4, U(n)) and
k0 ∈ N such that

(i)
KerT(A0,1)g = {0} and KerT(A0,1

k )
g = {0}

for all k ≥ k0. In particular, the operators T(A0,1
k )

g and T(A0,1)g are all

invertible.

(ii)

sup
k≥k0

∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1
k )

g

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣.
Proof of Proposition 3.8. (i) The existence of a unitary smooth gauge g is
given by Lemma 3.5. We have that

KerT(A0,1)g = {0}.

It remains to prove that there exists k0 ∈ N so that KerT(A0,1
k )

g = {0} for

all k ≥ k0.

In order to prove this statement, we assume by contradiction that

KerT(A0,1
k )

g 6= {0}

and let 0 6= ωk ∈ KerT(A0,1
k )

g . We can also assume without loss of generality

that ‖ωk‖W 2,2
D (B4) = 1. Since KerT(A0,1)g is trivial and T(A0,1)g is Fredholm,

we then get (see [32, Lemma 4.3.9]):

1 = ‖ωk‖W 2,2
D (B4) ≤ CA,g

∥∥T(A0,1)gωk
∥∥
L2(B4)

,

for some constant CA,g > 0 depending on the initial 1-form A and on the
gauge change g.
We compute this further:

1 ≤ CA,g
∥∥T(A0,1)gωk

∥∥
L2(B4)

=
∥∥∥T(A0,1)gωk − T(A0,1

k )
gωk

∥∥∥
L2(B4)

=
∥∥∥[(A0,1

k

)g − (A0,1
)g
, ∂
∗
ωk

]∥∥∥
L2(B4)

.
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Indeed, we can bound the last bracket above by ‖Ak − A‖W 1,2(B4):∥∥∥[(A0,1
k

)g − (A0,1
)g
, ∂
∗
ωk

]∥∥∥
L2(B4)

≤ Cg ‖Ak − A‖L4(B4) ‖ωk‖L4(B4)

≤ Cg ‖Ak − A‖W 1,2(B4) ‖ωk‖W 2,2
D (B4)

= Cg ‖Ak − A‖W 1,2(B4) .

for some constant Cg depending on g. Since the constants are independent
of k, it follows that

1 ≤ CA,g · Cg ‖Ak − A‖W 1,2(B4) → 0 as k →∞.

Thus, for k large enough the above inequality yields a contradiction. We then
have that there exists k0 large so that ωk = 0 and that KerT(A0,1

k )
g = {0}

for all k ≥ k0. We conclude that since T(A0,1)g and T(A0,1
k )

g for each k ≥ k0

are all operators of index zero and their kernel is trivial, they are invertible.

(ii) Since T(A0,1)g has trivial kernel and is an operator of index zero, its inverse

exists mapping L2 to W 2,2
D and we have that

∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣ < ∞. Since Ak

converges strongly to A in W 1,2 and g is smooth by construction, then we can

assume without loss of generality that
∣∣∣∣∣∣∣∣∣T(A0,1

k )
g − T(A0,1)g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣ < 1
2

for any k ≥ k0. Hence [32, Theorem 1.5.5(iii)] yields

∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1
k )

g − T−1(A0,1)g

∣∣∣∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣T(A0,1

k )
g − T(A0,1)g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣
1−

∣∣∣∣∣∣∣∣∣T(A0,1
k )

g − T(A0,1)g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣.
Thus, for k ≥ k0, we have∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1

k )
g

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1
k )

g − T−1(A0,1)g

∣∣∣∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣.
Hence, by taking the sup over all k ≥ k0, we obtain the result.

The following Lemma proves the existence of a perturbation under the con-
ditions that TA0,1 has trivial kernel and that F 0,2

A is small in L2 norm.
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Lemma 3.6. There exists a constant C > 0 such that for every

A ∈ W 1,2(Ω1B4 ⊗ u(n))

with TA0,1 invertible and satisfying
∥∥F 0,2

A

∥∥
L2 ≤ C

|||T−1

A0,1|||2
, there exists a (0, 2)

form ω ∈ W 2,2
D (Ω0,2B4 ⊗Mn(C)) solving the PDE:

∂∂
∗
ω + [A0,1, ∂

∗
ω] + ∂

∗
ω ∧ ∂∗ω = −F 0,2

A

and satisfying the estimate

‖ω0‖W 2,2
D (B4) ≤ C ′

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

(3.55)

where C ′ > 0 is a constant independent of A.

Proof of Lemma 3.6. We construct the following sequence of solutions:

TA0,1ω0 = −F 0,2
A

TA0,1ω1 = −∂∗ω0 ∧ ∂
∗
ω0 − F 0,2

A

TA0,1ω2 = −∂∗ω1 ∧ ∂
∗
ω1 − F 0,2

A

. . .

TA0,1ωk = −∂∗ωk−1 ∧ ∂
∗
ωk−1 − F 0,2

A

. . .

Claim. {ωk}∞k=0 is a Cauchy sequence in W 2,2
D .

We first show by induction the uniform bound on the sequence

‖ωk‖W 2,2
D
≤ 2|||TA0,1|||

∥∥F 0,2
A

∥∥
L2(B4)

.

Since TA0,1 is invertible, then we have the identity:

ω0 = T−1A0,1TA0,1ω0.

Hence, from the definition of the norm of operators, it follows that:

‖ω0‖W 2,2
D (B4) ≤

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ‖TA0,1ω0‖L2(B4)

=
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)
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< 2
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

Let k > 0. By the Sobolev embedding of W 1,2 ↪→ L4 there exists a constant
C1 > 0 so that∥∥∥∂∗ωk∥∥∥

L4(B4)
≤ C1

∥∥∥∂∗ωk∥∥∥
W 1,2(B4)

≤ C1 ‖ωk‖W 2,2
D (B4) .

Then we have:

‖ωk‖W 2,2
D (B4) ≤

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ‖TA0,1ωk‖L2(B4)

≤
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥∥∂∗ωk−1 ∧ ∂∗ωk−1∥∥∥
L2(B4)

+
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

≤ C1

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ‖ωk−1‖2L4(B4) +
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

≤ C2
1

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ‖ωk−1‖2W 2,2
D (B4) +

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

By the induction hypothesis we have that

‖ωk−1‖W 2,2
D (B4) < 2

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

.

Thus,

‖ωk‖W 2,2
D (B4) ≤ 4C2

1

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣3 ∥∥F 0,2
A

∥∥2
L2(B4)

+
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

.

Choosing the constant C > 0 such that 1
C
< 4C2

1 , we obtain by assumption

4C2
1

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣2 ∥∥F 0,2
A

∥∥
L2(B4)

< C
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣2 ∥∥F 0,2
A

∥∥
L2(B4)

≤ 1,

and we conclude that

‖ωk‖W 2,2
D
≤ 2
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

Hence, by induction it follows that the sequence is uniformly bounded in
W 2,2
D :

‖ωk‖W 2,2
D (B4) ≤ 2

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

for all k ≥ 0. It remains to show that {ωk}∞k=0 is a Cauchy sequence.

Let k > 0. It follows that

‖ωk+1 − ωk‖W 2,2
D (B4) ≤

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ‖TA0,1(ωk+1 − ωk)‖L2(B4)
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≤
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥∥∂∗(ωk − ωk−1) ∧ ∂∗ωk∥∥∥
L2(B4)

+
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥∥∂∗ωk−1 ∧ ∂∗(ωk − ωk−1)∥∥∥
L2(B4)

≤ 4C1

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣2 ∥∥F 0,2
A

∥∥
L2(B4)

‖ωk − ωk−1‖W 2,2
D (B4)

Choosing the constant C > 0 such that 1
C
< 4C1, we obtain by assumption

4C1

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣2 ∥∥F 0,2
A

∥∥
L2(B4)

<
1

C

∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣2 ∥∥F 0,2
A

∥∥
L2(B4)

≤ 1,

and we can conclude that the sequence {ωk}∞k=0 is Cauchy. Hence, we have
proven the claim.

Moreover, because W 2,2
D is a Banach space and {ωk}∞k=0 is a Cauchy sequence,

there exists ω∞ such that ωk → ω∞ as k → ∞ in W 2,2
D . Moreover, by the

strong convergence and the uniform bound of the sequence we obtain that
‖ω∞‖W 2,2

D (B4) ≤ 2
∣∣∣∣∣∣T−1A0,1

∣∣∣∣∣∣ ∥∥F 0,2
A

∥∥
L2(B4)

and

∂∂
∗
ω∞ + [A0,1, ∂

∗
ω∞] + ∂

∗
ω∞ ∧ ∂

∗
ω∞ = −F 0,2

A .

We can conclude this section with the main result.

Theorem 3.3. Let A ∈ W 1,2(Ω1B4 ⊗ u(n)), with F 0,2
A = 0. There exists a

sequence of smooth forms Ak ∈ C∞(Ω1B4 ⊗ u(n)), F 0,2
Ak

= 0 and Ak → A in
W 1,2(Ω1B4 ⊗ u(n)).

Proof of Theorem 3.3. By Lemma 3.5 there exists a unitary gauge change
g ∈ C∞(B4, U(n)) so that T(A0,1)g is invertible W 2,2

D to L2. Moreover, we

can obtain a sequence of smooth 1-forms Ãk by simple convolution such

that
∥∥∥F 0,2

Ãk

∥∥∥
L2(B4)

→ 0 and Ãk → A in W 1,2 as k → ∞. By Proposi-

tion 3.8(i) there exists k0 so that for all k ≥ k0, TÃgk
is invertible and that

Ãgk → Ag. Moreover, since the change of gauge is unitary we also have that∥∥∥F 0,2

Ãk

∥∥∥
L2(B4)

=
∥∥∥F 0,2

Ãgk

∥∥∥
L2(B4)

.

Moreover, by Proposition 3.8(ii) we know that

sup
k≥k0

∣∣∣∣∣∣∣∣∣∣∣∣T−1(Ã0,1
k )

g

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣.
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Thus, for all k ≥ k0, it follows that 1∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣T−1

(Ã0,1
k )

g

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2 ≥ 1

2
∣∣∣∣∣∣∣∣∣T(A0,1)g

∣∣∣∣∣∣∣∣∣2 . Let C > 0 the

constant given by Lemma 3.6. There exists k1 > k0 such that∥∥∥F 0,2

Ãgk

∥∥∥
L2(B4)

≤ C

2
∣∣∣∣∣∣T(A0,1)g

∣∣∣∣∣∣2 ≤ C∣∣∣∣∣∣∣∣∣∣∣∣T−1(Ã0,1
k )

g

∣∣∣∣∣∣∣∣∣∣∣∣2 .
for all k ≥ k1. Hence, for each k ≥ k1, Lemma 3.6 gives the existence of
(0, 2) forms ωk satisfying the estimate

‖ωk‖W 2,2
D (B4) ≤ C ′

∣∣∣∣∣∣∣∣∣∣∣∣T−1(A0,1
k )

g

∣∣∣∣∣∣∣∣∣∣∣∣ ∥∥∥F 0,2

Ãgk

∥∥∥
L2(B4)

≤ 2C ′
∣∣∣∣∣∣∣∣∣T−1(A0,1)g

∣∣∣∣∣∣∣∣∣ ∥∥∥F 0,2

Ãk

∥∥∥
L2(B4)

,

where C ′ > 0 is a constant independent of k. Moreover, each ωk solve the
PDE:

∂∂
∗
ωk +

[(
Ã0,1
k

)g
, ∂
∗
ωk

]
+ ∂

∗
ωk ∧ ∂

∗
ωk = −F 0,2

Ãgk
, (3.56)

i.e. F 0,2

Ãgk+∂
∗
ωk

= 0. Since
∥∥∥F 0,2

Ãk

∥∥∥
L2(B4)

converges strongly to 0, the estimates

on the (0, 2) forms ωk give ωk → 0 in W 2,2
D as k → ∞. Thus, we obtain the

strong convergence (
Ã0,1
k

)g
+ ∂

∗
ωk →

(
A0,1

)g
in W 1,2.

Define the sequence of connection forms

Ak :=

(
(Ã0,1

k )g + ∂
∗
ωk − (Ã0,1

k )g + ∂
∗
ωk

T
)g−1

∈ W 1,2(Ω1B4 ⊗ u(n)) ∩ C∞.

Because g is a smooth unitary gauge, and Agk → Ag in W 1,2 by construction,
then this sequence of forms are unitary and convergent in W 1,2. We need
to establish that Ak → A in W 1,2. Indeed, we obtain the following L2

convergence:

‖Agk − A
g‖L2 → 0 ⇐⇒

∥∥g−1 (Ak − A) g
∥∥
L2 → 0

g∈U(n)⇐⇒ ‖Ak − A‖L2 → 0.

Because the limit is unique, then Ak → A in W 1,2. Moreover, the smooth
sequence Ak satisfies the integrability condition F 0,2

Ak
= 0 by the construction

of ωk in (3.56).
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3.4.4 Global density result

In this section we will use the result we have proven in the previous section
in order to obtain a global result for a closed Kähler manifold X2. In order
to be able to generalise, we will work on sections of the vector bundle (E, h0)
over X2. The ∂ operator over X2 is well-defined and acts on the space of
(p, q)-forms:

∂ : Ap,q(X2)→ Ap,q+1(X2).

Its corresponding dual operator, ∂
∗
, is defined as a map:

∂
∗

: Ap,q(X2)→ Ap,q−1(X2).

On the space Ap,q(X2) the ∂-Hodge decomposition (A.4) gives the orthogonal
L2 decomposition:

Ap,q(X2) = ∂Ap,q−1(X2) + ∂
∗Ap,q+1(X2) +Hp,q(X2), (3.57)

where Hp,q(X2) is the space of holomorphic (p, q)-sections. Since X2 is a
closed Kähler manifold, then we remark that Hp,q(X2) is finite dimensional.
In particular, by (3.57) under the condition H0,2

∂
(X2) = 0, the (0, 2)-form

ω ∈ A0,2(X2) can be written as follows:

ω = ∂∂
∗
α.

Since ∂ and ∂
∗

define elliptic complexes over closed Kähler surfaces (see for
example [22, Chapter IV]):

0→ A0,0(X2)
∂→ A0,1(X2)

∂→ A0,2(X2)→ 0

and

0→ A0,2(X2)
∂
∗

→ A0,1(X2)
∂
∗

→ A0,0(X2)→ 0

then the operator ∂∂
∗

is elliptic on (0, 2)-sections over closed Kähler surfaces.
In particular, it is Fredholm and moreover, ∂∂

∗
is self-adjoint. Thus, its

Fredholm index vanishes:

index(∂∂
∗
) = dimKer(∂∂

∗
)− dimCoker(∂∂

∗
)

= dimKer(∂∂
∗
)− dimKer(∂∂

∗
) = 0. (3.58)

We redefine our operator TA0,1 as such:

T∇ : ΓW 2,2(A0,2(X2))→ ΓL2(A0,2(X2))
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where ∇ is a W 1,2 unitary connection over X2 and ΓW p,q is the space of
sections of W p,q regularity. We can directly apply Lemma 3.5 to obtain the
existence of a global smooth section g so that KerT∇g = 0. Moreover, by
(3.58) and Proposition 3.3 applied to T∇g it follows that T∇g is a Fredholm
operator of index 0. Hence, CokerT∇g is empty and the operator T∇g is in-
vertible.

It follows that we can apply Lemma 3.6 to ∇g and we can conclude that,
similarly to Theorem 3.3, we have proven:

Theorem 3.4. Let ∇ a W 1,2 unitary connection over X2 with H0,2

∂
(X2) = 0,

satisfying the integrability condition

F 0,2
∇ = 0.

Then there exists a sequence of smooth unitary connections ∇k, with F 0,2
∇k = 0

such that
dist2(∇k,∇)→ 0.

3.5 Proof of Theorem 1.2

By Theorem 3.4 applied to the given W 1,2 connection ∇, we obtain the
existence of a sequence of smooth connections ∇k that converge to ∇ in the
sense of

dist2(∇k,∇)→ 0.

Step 1. There exists r > 0 and a finite good cover {B4
r (xi)} such that

∇ ' d+ Ai in B4
r (xi)

with
‖∇Ai‖L2(B4

r (xi))
≤ ε0,

where ε0 > 0 is given by Theorem 3.2. Since ∇k converges to ∇ in the sense
of dist2, it follows that in each ball B4

r (xi) with∇k ≈ d+Aki we have F 0,2

Aki
= 0,

Aki → Ai in W 1,2 and FAki → FAi in L2 as k →∞.

By Theorem 3.2 there exists r′ < r and σi ∈ W 2,p(B4
r′(xi), GLn(C)) for any

p < 2 such that
A0,1
i = −∂σi · σ−1i .

Let δ > 0 be the constant given in Corollary 3.1. There exists k0 ≥ 0 so that∥∥Aki − Ai∥∥W 1,2 ≤ δ for all k ≥ k0. Corollary 3.1 applied to each Aki , k ≥ k0
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gives the existence of a sequence

σki ∈ W 2,p(B4
r′/2(xi), GLn(C))

of gauges that holomorphically trivialise Aki :(
Aki
)0,1

= −∂σki ·
(
σki
)−1

with the estimates∥∥σki − σi∥∥Lp(B4
r′/2(xi))

≤ C
∥∥Aki − Ai∥∥W 1,2(B4

r (xi)
(3.59)

for some constant C > 0 and all p < 12. For each q < 2 there exists Cq > 0
such that

∥∥σki − id∥∥W 2,q(B4
r′/2(xi))

≤ Cq

(∥∥Aki ∥∥W 1,2(B4
r (xi)

+ ‖Ai‖W 1,2(B4
r (xi)

)
(3.60)

By an abuse of notations, from now on, we will use r′ to denote r′/2. From
(3.59), σki → σi in Lp(B4

r′(xi)) for all p < 12. Moreover, the uniform bound
(3.60) gives that the sequence σki converges strongly in W 2,q for all q < 2.
Since limits are unique, we obtain that σki converges strongly to σi in W 2,q

for all q < 2. Aki is smooth, it follows that each gauge σki is smooth.

By defining hki = σki
T
· σki , we have that each hki is uniformly bounded in

W 2,p(B4
r′ , Sym(n)) and

(
Aki
)σki =

(
hki
)−1

∂hki → h−1i ∂hi in W 1,p(B4
r′(xi)) for all p < 2. (3.61)

Moreover, the corresponding curvature forms satisfy the following gauge re-
lation:

F
(Aki )

σk
i

=
(
σki
)−1 (

FAki

)
σki .

Combining the estimate (3.59) with the L2 convergence of the sequence FAki ,
we have

F
(Aki )

σk
i
→ FAσii in Lp(B4

r′(xi)) for all p < 2. (3.62)

Analogously to the proof of theorem 1.1 in Section 3.3, there exists smooth
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holomorphic structures Ek such that

∇0,1
k = ∂Ek .

Thus, (3.61) and (3.62) yield that for all p < 2 we obtain the required
convergence:

distp(∇k,∇)→ 0

over the holomorphic vector bundle structures Ek and E . In the next step
we prove that this convergence leads to an isomorphism between the two
structures.
Step 2. We construct bundle isomorphisms Hk between the holomorphic
bundles Ek and E such that ∂Ek = H−1k ◦ ∂E ◦ Hk.

Let i,j such that there exist gauge transition maps gij ∈ W 2,2(B4
r (xi) ∩

B4
r (xj), U(n)) and gkij ∈ C∞(B4

r (xi) ∩B4
r (xj), U(n)) satisfying:

A
gij
i = Aj in B4

r (xi) ∩B4
r (xj)

and (
Aki
)gkij = Akj in B4

r (xi) ∩B4
r (xj).

Since gkij → gij in W 2,2 by construction, from [15] there exist maps φki ∈
W 2,2(B4

r′(xi), U(n)) and φkj ∈ W 2,2(B4
r′(xj), U(n)) such that

gkij =
(
φki
)−1 · gij · φkj .

Using the notation introduced in Section 3.3, there exists holomorphic tran-
sition maps for the structures E and Ek defined as:

σij = σ−1i · gij · σj and σkij =
(
σki
)−1 · gkij · σkj .

Consider the maps Hk
i := σ−1i ·φki ·σki and Hk

j = σ−1j ·φkj ·σkj . By construction,
we have:

σkij =
(
Hk
i

)−1 · σij · Hk
j .

Thus, Hk = {Hk
i }i defines a bundle isomorphism and since σkij are holomor-

phic, it preserves the holomorphic structure:

∂Ek = H−1k ◦ ∂E ◦ Hk.

This finishes the proof of theorem 1.2.





Chapter 4

U(n) Bundles in Banach Spaces

Using the ideas developed in the previous chapter, we will generalise all our
results for d-dimensional closed Kähler manifolds Xd. Let ∇ be a unitary
W 1,d connection of a hermitian bundle (E, h0) over Xd. In the last chapter
we have benefited from d = 2 and consequently from the fact that L2 is
a Hilbert space. In this chapter we will adapt our techniques from before
and generalise them for Ld Banach spaces, where d ≥ 3. Moreover, when
translating the theorems we will encounter an additional difficulty which is
the fact that ∂∂

∗
is not elliptic for d ≥ 3. However, the analogous results

still hold true. We recall the theorems we will prove:

Theorem 1.3. Let ∇ be a unitary W 1,d connection of an hermitian bundle
(E, h0) over a closed Kähler manifold Xd. Assume ∇ satisfies the integrabil-
ity condition

F 0,2
∇ = 0 (4.1)

then there exists a smooth holomorphic structure E on E and a
⋂
q<d

W 2,q

section h of the bundle of positive Hermitian endomorphisms of E such that

∇ = ∂0 + h−1∂0h+ ∂E (4.2)

where ∂E is the ∂−operator associated to the holomorphic bundle E and ∂0 is
the 1-0 part of the Chern connection associated1 to the holomorphic structure
E and the chosen reference hermitian product h0.

and:

Theorem 1.4. Under the assumptions of Theorem 1.3 and H0,2

∂
(Xd) = 0,

there exists a sequence of smooth connections ∇k on smooth holomorphic

1These connections are not necessarily unitary with respect to h0 anymore.
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bundles Ek satisfying
F 0,2
∇k = 0 ,

and converging to ∇ in the sense that for all p < d:

distp(∇k,∇) = inf
σ∈G1,d(GL(n,C))

∫
Xd

|∇k −∇σ|p ωd +

∫
Xd

|F∇k − F∇σ |p ωd → 0.

(4.3)
Moreover, there exists a family of isomorphisms Hk such that

∂Ek = H−1k ◦ ∂E ◦ Hk.

That is, the sequence of connections ∇k act on equivalent bundles to E. 2

4.1 Strategy and Structure of the Chapter

Since the way we will approach the proofs of the theorems will vary in cer-
tain points to a significant degree compared to Chapter 3, it is useful to fix
the ideas first. Let d ≥ 3. The invertibility of ∂∂

∗
as an operator from

W 2,d(Ω0,2Xd) to Ld(Ω0,2Xd) fails in particular because Ld(Ω0,2Xd) consists
of (0, 2)-forms that are not necessarily ∂-exact. Thus, our methods from Sec-
tions 3.1 and 3.4 do not translate and we will solve the integrability condition
(1.1) by using the extended integrability condition. Let

∂A· := ∂ ·+[A, ·]. (4.4)

and ∂
∗
A its adjoint operator as defined in Proposition C.3. Note that

F 0,2
A = ∂A0,1 + A0,1 ∧ A0,1 = ∂A0,1/2A

0,1.

For a (0, 2)-form ω ∈ Ω0,2 with ω satisfying the ∂-Neumann boundary con-
ditions ω, ∂ω ∈ Dom(∂

∗
) (see Appendix A), we define the extended inte-

grability condition as:

F 0,2

A+∂
∗
ω

+ ∂
∗
A0,1+∂

∗
ω∂ω = 0, (4.5)

where ∂
∗
A0,1+∂

∗
ω is well-defined by Proposition C.3. We will show that under

certain assumptions on A0,1, we can solve such an equation for ω since the
above equation can be expanded as the following elliptic PDE:(
∂∂
∗

+ ∂
∗
∂
)
ω = −[∂

∗
ω,A0,1]−∗[∗∂ω,A0,1

T
]−∂∗ω∧∂∗ω−∗[∗∂ω, ∂∗ω

T

]−F 0,2
A .
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Moreover, we can show that under the ∂-Neumann boundary conditions
ω, ∂ω ∈ Dom(∂

∗
), we obtain the integrability condition:

F 0,2

A+∂
∗
ω

= 0.

On Kähler manifolds we have that the Kohn-Laplace is related to the Hodge-
Laplace in the following way: ∆∂ := ∂∂

∗
+ ∂

∗
∂ = 1

2
∆d. However, we have

to point out to the reader that even under such a nice relation, we cannot
expect an immediate translation of the work in Sections 3.1 and 3.4. Indeed
the conditions ω, ∂ω ∈ Dom(∂

∗
) are the ∂-Neumann boundary conditions

which lead to a problem of lack of coerciveness. Hence, ∆∂ is not an elliptic
operator over B2d under ∂-Neumann boundary conditions by (A.3).

We emphasize the fact that if ω does not satisfy the ∂-Neumann conditions,
then we will use the operator ϑ (see (A.1)) instead of ∂

∗
to emphasize the

difference between the two cases. In this case we have ∆∂ := ∂ϑ + ϑ∂ and
we note that ∂ and ϑ are not necessarily L2 orthogonal.

Sections 3.1 and 3.4 took a ”local” approach by perturbing the connection
1-form A in the unit ball B4 such that it satisfies the integrability condition.
Since ∆∂ is not an elliptic operator from W 2,d(Ω0,2B2d) to Ld(Ω0,2B2d) under
∂-Neumann boundary conditions, then a density result obtained through
a similar local approach seems out of reach. In order to mitigate for the
lack of ellipticity, we will assume the d-Neumann boundary conditions for
ω ∈ W 2,d(Ω0,2B2d):

i∗∂B2dω = 0 and i∗∂B2d(dω) = 0, (4.6)

where i∂B2d : ∂B2d → B2d is the canonical inclusion map. For consistency we
will denote the d-Neumann boundary conditions (4.6) by ω, dω ∈ Dom(d∗).
Thus, by the classical Hodge decomposition, it is known that ∆∂ = 1

2
∆d is

elliptic under the boundary conditions (4.6) (see [37, Theorem 10.5.1]).

We can use the d-Neumann conditions (4.6) so that we can solve the extended
integrability condition (4.5) on the unit ball B2d. Moreover, using the tech-
niques we develop, we are able to conclude that globally on the closed Kähler
manifold Xd we obtain the integrability condition from the extended one.

Having fixed these ideas, we can outline the structure of the Chapter. Firstly,
we start by proving the existence of holomorphic trivilisations in Section
4.2. This part will use methods that resemble the same techniques which
have been used in Section 3.2. Secondly, in Section 4.3 we show density
under high-energy assumptions over B2d keeping the extended integrability
condition (4.5) under the d-Neumann boundary conditions (4.6). Using this
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construction we show the extended integrability condition can be globally
satisfied on Xd and that this implies the integrability condition.

We prove the key result showing that over closed Kähler manifolds Xd, we
have that the extended integrability condition (4.5) implies the integrability
condition (1.1).

Proposition 4.1. Let ω ∈ W 2,d(Ω0,2Xd) and A ∈ W 1,d(Ω1Xd) satisfying the
extended integrability condition:

F 0,2

A+∂
∗
ω

+ ∂
∗
A0,1+∂

∗
ω∂ω = 0.

Then,
F 0,2

A+∂
∗
ω

= 0 and ∂
∗
A0,1+∂

∗
ω∂ω = 0.

Proof of Proposition 4.1. We show that the complex variable analogue of
Bianchi’s identity dAFA = 0 holds:

∂A+∂∗ωF
0,2

A+∂
∗
ω

= 0.

Indeed, by defining Ã = A+ ∂
∗
ω, we have

∂Ã(∂Ã+ Ã ∧ Ã) = ∂(Ã ∧ Ã) + [Ã, ∂Ã] + [Ã, Ã ∧ Ã]

= ∂Ã ∧ Ã− Ã ∧ ∂Ã+ Ã ∧ ∂Ã− ∂Ã ∧ Ã

= 0,

where we have used the fact that [Ã, Ã∧ Ã] = 0. Thus, F 0,2

A+∂
∗
ω
∈ ker ∂A+∂∗ω.

From the extended integrability condition it follows that

∂
∗
A0,1+∂

∗
ω∂ω ∈ ker ∂A+∂∗ω.

Moreover, we know that ∂
∗
A0,1+∂

∗
ω∂ω ∈ Im∂

∗
A0,1+∂

∗
ω

Ld

. From the Closed
Image Theorem [32, Theorem 4.1.16] we know

(ker ∂A+∂∗ω)⊥ = Im∂
∗
A0,1+∂

∗
ω

Ld

.

Thus,

∂
∗
A0,1+∂

∗
ω∂ω ∈ ker ∂A+∂∗ω ∩ Im∂

∗
A0,1+∂

∗
ω

Ld

,

and it follows that ∂
∗
A0,1+∂

∗
ω∂ω = 0 and consequently F 0,2

A+∂
∗
ω

= 0.
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4.2 Existence of holomorphic trivialisations

We setup the framework. Let ∇ be a unitary W 1,d connection of the her-
mitian bundle (E, h0) over a closed Kähler manifold Xd satisfying F 0,2

∇ = 0.
We assume that the unit ball B2d is a geodesic ball in Xd and that ∇ triv-
ialises as ∇ ' d + A in B2d, where A is a connection 1-form. Moreover, in
this section we will work with low W 1,d connection norm i.e. A satisfies the
smallness condition

‖A‖W 1,d(B2d) ≤ ε0(X
d, ω)

for some ε0(X
d, ω) > 0 depending on the manifold Xd and the Kähler form

ω. We will use the smallness assumption throughout this section. Moreover,
to fix ideas we will assume that B2d is the flat closed unit ball.

We adapt the methods we have developed in Section 3.2 in order to apply
them in our setting. We will rewrite all the results for completeness. We
prove that under the integrability condition F 0,2

A = 0 we obtain the existence
of local holomorphic trivialisations assuming low W 1,d norm for A as before.
We state the result:

Theorem 4.1. There exists ε0 > 0 such that if A ∈ W 1,d(Ω1B2d ⊗ u(n))
satisfies ‖A‖W 1,d(B2d) ≤ ε0, and the integrability condition F 0,2

A = 0, then

there exists r > 0 and g, g−1 ∈ W 2,q(B2d
r , GLn(C)) for all q < d such that

A0,1 = −∂g · g−1 in B2d
r . (4.7)

Moreover, there exists a constant Cq > 0 such that the following estimates
hold:

‖g − id‖W 2,q(B2d
r ) ≤ Cq ‖A‖W 1,d(B2d)

and ∥∥g−1 − id∥∥
W 2,q(B2d

r )
≤ Cq ‖A‖W 1,d(B2d) .

It follows that Ag = h−1∂h where h = gTg.

We skip describing the strategy since it is completely analogous to the Hilbert
case in Section 3.2. As before we assume that the ball of radius 2, B2d

2

equipped with the canonical complex structure, is holomorphically embedded
into CPd (simply take the embedding (z1, . . . , zd)→ [z1, . . . , zd, 1]).

We show the invertibility of the operator defined by:

LÃ(ω) = ∂∂
∗
ω + ∂

∗
∂
∗
ω + [Ã0,1, ∂

∗
ω] + ∗[∗∂ω,A0,1

T
]
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which is the natural replacement of the operator ∂∂
∗ ·+[Ã0,1, ∂

∗·] in order to
obtain the extended integrability condition 4.5 in CPd. We note that over
CPd we have that trivially ω, ∂ω ∈ Dom∂

∗
since CPd has no boundary.

Proposition 4.2. There exists ε > 0 such that for any

Ã ∈ W 1,d(Ω1CPd ⊗ u(n))

satisfying the bound
∥∥∥Ã∥∥∥

W 1,d(CPd)
≤ ε, the operator

LÃ : W 2,d(Ω2CPd ⊗Mn(C))→ Ld(Ω2CPd ⊗Mn(C))

defined by

LÃ(ω) = ∂∂
∗
ω + ∂

∗
∂
∗
ω + [Ã0,1, ∂

∗
ω] + ∗[∗∂ω,A0,1

T
] (4.8)

is Fredholm and invertible.

Proof of Proposition 4.2. Since CPd is a Kähler manifold, it follows that op-
erator ∂∂

∗
+ ∂

∗
∂ = 1

2
∆d is elliptic over CPd (see [12, p. 93]). Because CPd

is a compact manifold, then Ker1
2
∆d and Coker1

2
∆d are finite dimensional

spaces. By definition it follows that ∂∂
∗

+ ∂
∗
∂ is Fredholm.

Let ε > 0 be as defined in [32, Theorem 4.4.2 (ii), p.185] such that∥∥∥Ã∥∥∥
W 1,d(CPd)

≤ ε

is small in W 1,d norm. It follows that the operator [Ã0,1, ∂
∗·] + ∗[∗∂·, A0,1

T
]

has small operator norm W 2,d to Ld:∣∣∣∣∣∣∣∣∣[Ã0,1, ∂
∗·] + ∗[∗∂·, A0,1

T
]
∣∣∣∣∣∣∣∣∣ = sup

‖ω‖
W2,d=1

∥∥∥[Ã0,1, ∂
∗
ω] + ∗[∗∂ω,A0,1

T
]
∥∥∥
Ld(CP2)

≤
∥∥∥Ã0,1

∥∥∥
L2d(CPd)

∥∥∥∂∗ω∥∥∥
L2d(CPd)

+
∥∥∥Ã0,1

∥∥∥
L2d(CPd)

∥∥∂ω∥∥
L2d(CPd)

≤ C
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

‖ω‖W 2,d(CPd)

≤ Cε,

for some constant C > 0 coming from the Sobolev embedding W 1,d ↪→ L2d.
Hence, from the continuity of the index maps [32, Theorem 4.4.2, p.185],
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we have that LÃ is Fredholm and it has the same index as ∂∂
∗

+ ∂
∗
∂ as an

operator mapping W 2,d(CP2,Mn(C)) to Ld(CPd,Mn(C)).

It is well-known that there are no global nonzero holomorphic (0, 2)-forms on
CPd [12, p. 118]. The lack of holomorphic (0, 2)-forms imply that ∂∂

∗
+ ∂

∗
∂

defined from W 2,d(CPd) to Ld(CPd) is an invertible operator on the space of
(0, 2)-forms and consequently has index 0. Thus, it we get that index(LÃ) =

index(∂∂
∗

+ ∂
∗
∂) = 0.

It remains to show that LÃ has trivial kernel. Once we have shown this,
we can use the zero index of LÃ in order to conclude that LÃ is invertible.
Assume ω ∈ KerLÃ. Hence, ω satisfies

∂∂
∗
ω + ∂

∗
∂ω = −[Ã0,1, ∂

∗
ω]− ∗[∗∂ω,A0,1

T
].

By the Fredholm Lemma [32, Lemma 4.3.9] and the Sobolev embedding
W 1,d ↪→ L2d, we obtain

‖ω‖W 2,d ≤ C
∥∥∥∂∂∗ω + ∂

∗
∂ω
∥∥∥
Ld

≤ C
(
‖LÃ(ω)‖Ld +

∥∥∥[Ã0,1, ∂
∗
ω]
∥∥∥
Ld

+
∥∥∥∗[∗∂ω,A0,1

T
]
∥∥∥
Ld

)
≤ C

(
‖LÃ(ω)‖Ld +

∥∥∥Ã0,1
∥∥∥
L2d

∥∥∥∂∗ω∥∥∥
L2d

+
∥∥∥Ã0,1

∥∥∥
L2d

∥∥∂ω∥∥
L2d

)
≤ C ‖LÃ(ω)‖Ld + C ′ε ‖ω‖W 2,d

for some constants C,C ′ > 0. We can take the term C ′ε ‖ω‖W 2,d on the left
hand side of the inequality:

(1− C ′ε) ‖ω‖W 2,d ≤ C ‖LÃ(ω)‖Ld .

Choosing ε > 0 such that 1− C ′ε > 1
2
, then we divide by the positive factor

1− C ′ε and obtain the bound:

‖ω‖W 2,d ≤
C

1− C ′ε
‖LÃ(ω)‖Ld .

Because ω ∈ KerLÃ, we have that ω = 0. Since ω was arbitrarily chosen
from the kernel, it follows that the kernel of LÃ is trivial: KerLÃ = {0}.
This finishes the proof.

Using a similar technique to Proposition 3.2 we will prove the existence of a
CPd extension of our connection form A, satisfying the integrability condition
(1.1). However, we need to take care in order to obtain this condition. We
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will use Proposition 4.1 in order to achieve the integrability condition. We
assume the holomorphic embedding of B2d in CPd.

Proposition 4.3. There exists ε > 0 such that for any

A ∈ W 1,d(Ω1B2d ⊗ u(n))

satisfying F 0,2
A = 0 and ‖A‖W 1,d(B2d) < ε, there exists Ã ∈ W 1,d(Ω1CPd⊗u(n))

that satisfies the integrability condition

F 0,2

Ã
= 0

in CPd and ω ∈ W 2,d(Ω0,2CPd ⊗Mn(C)) such that Ã0,1 = A0,1 + ϑω in B2d.

Moreover, ω satisfies the estimate ‖ω‖W 2,d(CPd) ≤ C ‖A‖W 1,d(B2d) for some
constant C > 0 and

∂
∗
Ã∂ω = 0 in CPd.

We recall to the reader that according to equation (A.1), we have ϑ = − ∗
∂∗, the formal adjoint of ∂. In addition, ∂

∗
Ã is the operator defined as in

Proposition C.3:

∂
∗
Ã· = ∂

∗ ·+ ∗ [∗∂·, A0,1
T

].

Proof of Proposition 4.3. Step 1. Since A is unitary, we can decompose A

into its (0, 1) and (1, 0) parts as such: A = A0,1 − A0,1
T

where

A0,1 =
d∑
i=1

αidzi

and αi ∈ W 1,d(B2d,Mn(C)) for i = 1, d. We extend each αi to a compactly
supported map α̂i in B2d

2 , so that α̂i = 0 in B2d
2 \ B2d

3/2. For constructing α̂i,
for each i ≤ d we solve:

∆φi = 0 in B2d
3/2 \B2d

1

φi = αi on ∂B2d
1

φi = 0 on ∂B2d
3/2

Such solutions exist by [20, Remark 7.2, Chapter 2] and satisfy

‖φi‖W 1,d(B2d
3/2
\B2d

1 ) ≤ C ‖αi‖W 1−1/d,d(∂B2d
1 ) ≤ C ′ ‖αi‖W 1,d(B2d

1 )
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for some constants C,C ′ > 0. We can now define the extensions to B2d
2 :

α̂i =


αi in B2d

1

φi in B2d
3/2 \B2d

1

0 in B2d
2 \B2d

3/2.

By construction of φi, the functions α̂i are well-defined W 1,d(B2d
2 ) Sobolev

maps that satisfy the estimate:

‖α̂i‖W 1,d(B2d
2 ) ≤ C ‖αi‖W 1,d(B2d

1 ) .

Define the (0, 1)-form Â0,1 =
∑d

i=1 α̂idzi and

Â := Â0,1 − Â0,1
T

∈ W 1,d(Ω1B2d
2 ⊗ u(n)).

By covering CPd \ B2d
2 with coordinate charts, we can trivially extend Â by

0 on CPd \B2d
2 . Thus, we have obtained Â ∈ W 1,d(Ω1CPd ⊗ u(n)) and there

exists a constant Ĉ > 0 such that
∥∥∥Â∥∥∥

W 1,d(CPd)
≤ Ĉ ‖A‖W 1,d(B2d) .

Step 2. It remains to perturb the form Â so that we obtain the integrability
condition. We first find a solution ω to the extended integrability condition.
Note that over CPd, ∂ω automatically belongs to the space Dom(∂

∗
).

F 0,2

Â0,1+∂
∗
ω

+ ∂
∗
Â0,1+∂

∗
ω∂ω = 0.

This amounts to solving the following PDE globally on the complex projective
space CPd:

∂∂
∗
ω + ∂

∗
∂ω + [Â0,1, ∂

∗
ω]+ ∗ [∗∂ω, Â0,1

T

]

= −∂∗ω ∧ ∂∗ω − ∗[∗∂ω, ∂∗ω
T

]− F 0,2

Â
(4.9)

where ω is a (0, 2) form on CPd. Using the invertibility of the operator LÂ
proven in Proposition 4.2, we can solve equation (4.9) using a fixed point
method. We consider the sequence given by:

LÂ(ω1) = −F 0,2

Â

LÂ(ω2) = −∂∗ω1 ∧ ∂
∗
ω1 − ∗[∗∂ω1, ∂

∗
ω1

T

]− F 0,2

Â

· · ·



102 Chapter 4. U(n) Bundles in Banach Spaces

LÂ(ωk) = −∂∗ωk−1 ∧ ∂
∗
ωk−1 − ∗[∗∂ωk−1, ∂

∗
ωk−1

T

]− F 0,2

Â
(4.10)

· · ·

By showing that the sequence ωk converges strongly in W 2,d, we will obtain
a W 2,d solution to the required equation (4.9). Since LÂ is invertible as an
operator from W 2,d to Ld, it is clear that existence holds for each ωk, k ≥ 1.
We need to show that the sequence {ωk}∞k=1 is Cauchy in W 2,d.

Let ε0 := C
∥∥∥F 0,2

Â

∥∥∥
Ld(CPd)

, where C > 0 is the constant appearing in Fredholm

inequality:
‖φ‖W 2,d(CPd) ≤ C ‖LÂ(φ)‖Ld(CPd) .

Claim. {ωk}∞k=1 is a Cauchy sequence in W 2,d(CPd).

We first show by induction the uniform bound ‖ωk‖W 2,d(CPd) ≤ 2ε0. By the
Fredholm Lemma [32, Lemma 4.3.9] we have that

‖ω1‖W 2,d(CPd) ≤ C ‖LÂ(ω1)‖Ld(CPd) = C
∥∥∥F 0,2

Â

∥∥∥
Ld(CPd)

= ε0 < 2ε0

Let k ≥ 1. By the Sobolev embedding W 1,d(CPd) ↪→ L2d(CPd) there exists
a constant C1 > 0 so that∥∥∥∂∗ωk∥∥∥

L2d(CPd)
≤ C1

∥∥∥∂∗ωk∥∥∥
W 1,d(CPd)

≤ C2
1 ‖ωk‖W 2,d(CPd) .

Similarly for ∂ωk:
∥∥∂ωk∥∥L2d(CPd) ≤ C2

1 ‖ωk‖W 2,d(CPd). Thus, from (4.10) the

inequalities follow:

‖ωk+1‖W 2,d(CPd) ≤ C ‖LÂ(ωk+1)‖Ld(CPd)

≤ C

(∥∥∥∂∗ωk ∧ ∂∗ωk∥∥∥
Ld(CPd)

+

∥∥∥∥∗[∗∂ωk−1, ∂∗ωk−1T ]

∥∥∥∥
Ld(CPd)

+

+
∥∥∥F 0,2

Â

∥∥∥
Ld(CPd)

)
≤ C ‖ωk‖2L2d(CPd) + ε0

≤ C · C4
1 ‖ωk‖

2
W 2,d(CPd) + ε0

By the induction hypothesis, we have ‖ωk‖W 2,d(CPd) < 2ε0. Thus,

‖ωk+1‖W 2,d(CPd) ≤ 4(C · C4
1)ε20 + ε0.
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Having chosen ε > 0 such that 4(C · C4
1)ε < 1 and∥∥∥Â∥∥∥

W 1,d(CPd)
≤ Ĉ ‖A‖W 1,d(B2d) ≤ ε,

it follows that 4(C · C4
1)ε0 < 1 and we conclude

‖ωk+1‖W 2,d(CPd) ≤ 2ε0.

By induction, we have proven that we have a uniform bound for the sequence
of (0, 2)-forms {ωk}:

‖ωk‖W 2,d(CPd) ≤ 2ε0.

for all k ≥ 1. It remains to show that {ωk} is a Cauchy sequence. Let k ≥ 2.
We derive the following bounds from the recurrence relation (4.10) satisfied
by the sequence:

‖ωk+1 − ωk‖W 2,d(CPd) ≤ C ‖LÂ(ωk+1 − ωk)‖Ld(CPd)
≤ C · ε0 ‖ωk − ωk−1‖W 2,d(CPd)

for some C > 0 and Cε0 < 1. Because Cε0 < 1, it follows immediately that
the sequence is Cauchy and the claim is proven.

Because {ωk}∞k=1 is a Cauchy sequence in the Banach space W 2,d(Ω0,2CPd ⊗
Mn(C)), it has a limit ω and converges strongly in W 2,d to it. Moreover,
from the W 2,d convergence, we have that the uniform bound is satisfied by
the limiting form ω, indeed ‖ω‖W 2,d < 2ε0 = 2C ‖FÂ‖Ld . By construction of

Â, it is clear that there exists a constant C ′ > 0 so that

‖FÂ‖Ld(CPd) ≤ C ′ ‖A‖W 1,d(B2d) .

This leads to the required estimate on ω, ‖ω‖W 2,d(CPd) ≤ C ‖A‖W 1,d(B2d),
where C > 0 is some constant.

By construction, ω satisfies the extended integrability condition (4.5) and
from Proposition 4.1, it follows that

F 0,2

Â+∂
∗
ω

= 0 and ∂
∗
Â+∂

∗
ω∂ω = 0 in CPd.

We conclude by defining Ã = Â+∂
∗
ω−∂∗ω

T

to be a skew-Hermitian 1-form,
satisfying F 0,2

Ã
= 0 in CPd and Ã0,1 = Â0,1 + ϑω = A0,1 + ϑω in B2d.

This finishes the proof of Proposition 4.3.
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We are ready to prove the existence of a holomorphic trivialisation of Ã over
CPd.

Lemma 4.1. There exists ε > 0 such that for any form Ã ∈ W 1,d(Ω1CPd ⊗
u(n)) satisfying the integrability condition (1.1) and

∥∥∥Ã∥∥∥
W 1,d

< ε, then there

exist gauges g̃, g̃−1 ∈ W 2,q(CPd, GLn(C)) for all q < d such that

Ã0,1 = −∂g̃ · g̃−1.

Furthermore for each q < d there exists a constant Cq > 0 such that

‖g̃ − id‖W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

(4.11)

and ∥∥g̃−1 − id∥∥
W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

. (4.12)

Proof of Lemma 4.1. We divide the proof into three steps. Using a fixed
point argument the first two steps show the existence of a map g̃ satisfying
∂g̃ = −Ã0,1g̃. Step 3 shows the existence of g̃−1 and proves the estimates
(4.11) and (4.12).

Step 1. We consider the linear operator:

T : W 1,d(CPd,Mn(C))→ W 1,d(CPd,Mn(C))

given by

T (g̃) = −∂∗N(Ã0,1g̃) + id, (4.13)

where id is the constant identity matrix and N is the inverse operator of ∆∂

as defined in (A.3). Consequently up to a constant N is the inverse operator
of ∆d on CPd, since CPd is Kähler. We verify that the operator T is well-
defined. On CPd we can use the fact that ∂ is an elliptic operator and hence
we get the following estimate:∥∥∥∂∗N(Ã0,1g̃)

∥∥∥
W 1,d(CPd)

≤ C
∥∥∥∂∂∗N(Ã0,1g̃)

∥∥∥
Ld(CPd)

(4.14)

for some constant C. Since CPd is Kähler, we have 1
2
∆d = ∆∂ on CPd and

the ∂-Hodge decomposition (A.5) follows from the d-Hodge decomposition
for 1-forms. The lack of global holomorphic (0, 1)-forms on CPd (see [12, p.
118]) gives us the following decomposition:
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Ã0,1g̃ = ∂
∗
∂N(Ã0,1g̃) + ∂∂

∗
N(Ã0,1g̃) =

1

2
∆dN(Ã0,1g̃) (4.15)

From the elliptic regularity of ∆d [37, Theorem 10.5.1] we have the estimate:∥∥∥N(Ã0,1g)
∥∥∥
W 2,d
≤
∥∥A0,1g

∥∥
Ld
,

from which it follows that∥∥∥∂∂∗N(Ã0,1g̃)
∥∥∥
Ld
≤
∥∥∥Ã0,1g̃

∥∥∥
Ld
. (4.16)

Putting the inequalities (4.14) and (4.16) together, we obtain:

∥∥∥∂∗N(Ã0,1g̃)
∥∥∥
W 1,d(CPd)

≤ C
∥∥∥Ã0,1g̃

∥∥∥
Ld(CPd)

≤ C
∥∥∥Ã0,1

∥∥∥
L2d(CPd)

‖g̃‖L2d(CPd) .

(4.17)
Furthermore, using the Sobolev embedding in 2d-dimensions W 1,d ↪→ L2d,
there exists a constant C ′ so that∥∥∥∂∗N(Ã0,1g̃)

∥∥∥
W 1,d
≤ C ′

∥∥∥Ã0,1
∥∥∥
W 1,d
‖g̃‖W 1,d . (4.18)

Thus, the operator T is well-defined, mapping W 1,d to W 1,d.

We can now show that T has a unique fixed point. Consider g̃1, g̃2 ∈
W 1,d(CPd,Mn(C)). Then

‖T (g̃1)− T (g̃2)‖W 1,d(CPd) =
∥∥∥∂∗N(Ã0,1(g̃1 − g̃2))

∥∥∥
W 1,d(CPd)

.

From (4.17), we obtain∥∥∥∂∗N(Ã0,1(g̃1 − g̃2))
∥∥∥
W 1,d(CPd)

≤ C ′
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

‖g̃1 − g̃2‖W 1,d(CPd)

and we can choose ε > 0 such that the bound
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

< ε is small such

that the factor C ′
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

is strictly smaller than 1. Hence, T is a con-

traction operator and there exists a unique fixed point g̃ ∈ W 1,d(CPd,Mn(C)),
T (g̃) = g̃. Thus, we have

∂g̃ = −∂∂∗N(Ã0,1g̃). (4.19)

Step 2. We can now show that the equation (4.19) above coupled with the
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integrability condition F 0,2

Ã0,1 = 0 satisfied by Ã0,1, imply that g̃ solves the

required PDE: ∂g̃ = −Ã0,1g̃. The ∂-Hodge decomposition (4.15) gives

∂g̃ = −Ã0,1g̃ + ∂
∗
∂N(Ã0,1g̃). (4.20)

Since the operators N and ∂ compute, N∂ = N∂ (see [8, Theorem 4.4.1 (3)]),
we can further compute the term ∂

∗
∂N(Ã0,1g̃):

∂
∗
∂N(Ã0,1g̃) = ∂

∗
N∂(Ã0,1g̃) = ∂

∗
N(∂Ã0,1g̃ − Ã0,1 ∧ ∂g̃).

Using (4.20), then we have

∂
∗
∂N(Ã0,1g̃) = ∂

∗
N(∂Ã0,1g̃ − Ã0,1 ∧ ∂g̃)

= ∂
∗
N(∂Ã0,1g̃ + Ã0,1 ∧ Ã0,1g̃ − Ã0,1 ∧ ∂∗∂N(Ã0,1g̃)).

Since Ã satisfies the integrability condition F 0,2

Ã
= 0, we have the recurrence

relation:

∂
∗
∂N(Ã0,1g̃) = −∂∗N(Ã0,1 ∧ ∂∗∂N(Ã0,1g̃)) := L

(
∂
∗
∂N(Ã0,1g̃)

)
(4.21)

where we defined

L : Ld(Ω1CPd ⊗Mn(C))→ Ld(Ω1CPd ⊗Mn(C))

V 7→ −∂∗N(Ã0,1 ∧ V ).

We need to establish whether L is a well-defined operator and find its fixed
points in order to analyse equation (4.21).

Since N is the inverse of an elliptic operator, we have:∥∥∥N(Ã0,1 ∧ V )
∥∥∥
W 2,2d/(d+1)(CPd)

≤ C
∥∥∥Ã0,1 ∧ V

∥∥∥
L2d/(d+1)(CPd)

≤ C
∥∥∥Ã0,1

∥∥∥
L2d(CPd)

‖V ‖Ld(CPd)

for some constant C > 0. Moreover, by the Sobolev embeddingW 1,2d/(d+1) ↪→
Ld it follows that

‖L(V )‖Ld(CPd) ≤ C ‖L(V )‖W 1,2d/(d+1)(CPd) .
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and consequently,

‖L(V )‖Ld(CPd) ≤ C
∥∥∥Ã0,1 ∧ V

∥∥∥
L2d/(d+1)(CPd)

≤ C
∥∥∥Ã0,1

∥∥∥
L2d(CPd)

‖V ‖Ld(CPd) .

Similarly as before, this means that L is a well-defined contraction operator
and has a unique fixed point. In particular, 0 is its fixed point. We know
from equation (4.21) that ∂

∗
∂N(Ã0,1g̃) is also a fixed point for L and thus,

we have that the term ∂
∗
∂N(Ã0,1g̃) vanishes. In particular, from (4.20) the

equation is solved:
∂g̃ = −Ã0,1g̃.

Step 3. We prove that g̃ ∈ W 2,q(CP2, GLn(C)) for all q < d and satisfies the
required estimate (4.11). Afterwards, we show that g̃−1 satisfies (4.12). Let
q < d. We know that g̃ is a W 1,d map and satisfies:

g̃ − id = ∂
∗
N(Ã0,1g̃).

Since g̃ is a fixed point of T (4.13), then it satisfies the estimate (4.18), which
means:

‖g̃ − id‖W 1,d(CPd) ≤ C
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

‖g̃‖W 1,d

≤ C

(∥∥∥Ã0,1
∥∥∥
W 1,d(CPd)

‖g̃ − id‖W 1,d +
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

)
.

Because
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

< ε, where ε is small, then there exists a constant

C > 0 such that

‖g̃ − id‖W 1,d(CPd) ≤ C
∥∥∥Ã0,1

∥∥∥
W 1,d(CPd)

.

Since g̃ satisfies this estimate, we can bootstrap using Lemma D.1 and Re-
mark D.1(i), from which the required estimate (4.11) follows:

‖g̃ − id‖W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

, (4.22)

for some constant Cq > 0.

We need to show that g̃ is in GLn(C) over CPd and that its inverse satisfies
a similar estimate as (4.22). Arguing in a similar way to Step 1, 2 and the
way we obtained the regularity estimates for g̃ in (4.22), we can show that



108 Chapter 4. U(n) Bundles in Banach Spaces

there exists ũ ∈ W 2,q(CPd, GLn(C)) for any q < d such that

∂ũ = ũÃ0,1

and

‖ũ− id‖W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

(4.23)

for some constant Cq > 0. In particular, we have that ∂(ũg̃) = 0. Hence,
ũg̃ =: h̃ is holomorphic. However, since the only holomorphic functions on
CPd are the constant ones [12, p. 118], then h̃ is a constant.

We can pick (2d − 1)/2 < q0 < d so that we obtain the Sobolev embedding
W 2,q0 ↪→ L∞ on any 2d − 1 dimensional hypersurface. Moreover, by the
Sobolev products results in [31, Section 4.8.2, Theorem 1], there exists q1 ∈
(q0, 2) such that from ũ, g̃ ∈ W 2,q1(CPd,Mn(C)) we have ũg̃ ∈ W 2,q0 and

‖ũg̃ − id‖W 2,q0 (CPd) ≤ Cq0

∥∥∥Ã∥∥∥
W 1,d(CPd)

for some constant Cq0 > 0. By Fubini,

there exists a radius r > 0 and z0 ∈ CPd such that

‖ũg̃ − id‖W 2,q0 (∂B2d
r (z0))

< 2C ′q0

∥∥∥Ã∥∥∥
W 1,d(CPd)

where B2d
r (z0) is a ball in CPd. Thus, by the embedding of W 2,q0 into L∞ in

2d− 1 dimensions, there exists a constant C ′′q0 > 0 so that

‖ũg̃ − id‖L∞(∂B2d
r (z0))

≤ C ′′q0

∥∥∥Ã∥∥∥
W 1,d(CPd)

. (4.24)

We can choose a possibly smaller ε > 0 than we have done for the estimate∥∥∥Ã∥∥∥
W 1,d(CPd)

< ε such that we obtain that h̃ = ũg̃ ∈ GLn(C) over ∂B2d
r (z0).

Because h̃ is a constant, then h̃ ∈ GLn(C) over CPd and satisfies the estimate:∥∥∥h̃− id∥∥∥
L∞(CPd)

≤ C
∥∥∥Ã∥∥∥

W 1,d(B2d)
,

for some constant C > 0.

Hence, we can define g̃−1 := h̃−1ũ. Since g̃−1g̃ = id by construction, we obtain
that g̃ takes values in GLn(C). Moreover, from the fact that h̃−1 is a constant
and from the estimate (4.23) it follows that g̃−1 ∈ W 2,q(CPd, GLn(C)) for all
q < d, and by the estimates on ũ, we obtain that for each q < d there exists



4.2 Existence of holomorphic trivialisations 109

a constant Cq > 0 such that∥∥g̃−1 − id∥∥
W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

.

This concludes the proof of Lemma 4.1.

Before proving the existence of a local holomorphic trivialisation for our
initial W 1,d form, we show a stronger version of existence similar to Lemma
3.3. We consider forms of small norm in W 1,p, p > 2d − 1. This will be a
useful result for our final theorem.

Lemma 4.2. Let p > 2d − 1. There exists ε > 0 such that for any ω ∈
W 1,p(Ω0,1B2d⊗Mn(C)) satisfying F 0,2

ω = 0 and ‖ω‖W 1,p(B2d) ≤ ε, there exists

r ∈ (1/2, 1) and gauges u, u−1 ∈ W 2,p(B2d
r , GLn(C)) so that

ω = −∂u · u−1 in B2d
r ,

with estimates

‖u− id‖W 2,p(B2d
r ) ≤ C ‖ω‖W 1,p(B2d)

and (4.25)∥∥u−1 − id∥∥
W 2,p(B2d

r )
≤ C ‖ω‖W 1,p(B2d) .

Remark 4.1. We note that in proving this result, we will use a more direct
approach than in Lemma 3.3. The techniques can be easily interchanged. We
do not have to worry about working in a Hilbert setting, since this result is
not formulated in it in the case B4 either.

Proof of Lemma 4.2. Step 1. Let q = 2dp/(2d − p). We show the existence
of a gauge u ∈ GLn(C) that ”almost” solves our equation modulo a per-
turbation term. Indeed, in Step 2 we can show that the perturbation term
vanishes and consequentially u is the solution. Again, let N be the inverse
operator of ∆∂.

We define the operator

H : L∞(B2d,Mn(C))→ L∞(B2d,Mn(C))

given by

H(u) = id+ ∂
∗
N(−ω · u), (4.26)
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where id is the constant identity matrix and N is the inverse of the operator
∆∂ as defined in (A.3).

Claim. H is well-defined.

Using the fact that ∂
∗
N maps Lq to W 1/2,q in B2d [5, Theorem 4], then

‖H(u)− id‖W 1/2,q(B2d) ≤ C ‖−ω · u‖Lq(B2d) ≤ C ‖ω‖Lq(B2d) ‖u‖L∞(B2d) ,

where C > 0 is a constant. By the Sobolev embedding W 1,p ↪→ Lq on B2d,
then

‖H(u)− id‖W 1/2,q(B2d) ≤ C ‖ω‖W 1,p(B2d) ‖u‖L∞(B2d) ,

for a constant C > 0. Moreover, since 1/q− 1/(4d) < 0, then W 1/2,q embeds
into L∞ over B2d and we get

‖H(u)− id‖L∞(B2d) ≤ C ‖ω‖W 1,p(B2d) ‖u‖L∞(B2d) ≤ Cε ‖u‖L∞(B2d) .

Thus, by picking ε > 0 such that Cε < 1, then H is well-defined and has
a fixed point u ∈ L∞(B2d,Mn(C)). This fixed point ”almost” solves the
required equation. We will show in the next step that the error we obtain
vanishes in light of the integrability condition F 0,2

ω = 0.

Step 2. Having obtained the fixed point u for the operator H, we show that
u satisfies ∂u = −ω · u. Since we have proven that u− id = ∂

∗
N(−ω · u), we

get by [5, Theorem 1] that

∂u = ∂∂
∗
N(−ω · u) ∈ Lq. (4.27)

We can apply the ∂-Hodge decomposition (A.5) to get:

− ω · u = ∂∂
∗
N(−ω · u) + ∂

∗
∂N(−ω · u) (4.28)

and by using F 0,2
ω = 0, we expand the last term to get

∂
∗
∂N(−ω · u) = ∂

∗
N(ω ∧ ∂∗∂N(−ω · u)),

which is similar to (4.21). We want to show that this recurrence equation
implies that ∂

∗
∂N(−ω · u) = 0.∥∥∥∂∗∂N(−ω · u))

∥∥∥
L∞(B2d)

≤ C
∥∥∥∂∗∂N(−ω · u)

∥∥∥
W 1/2,q(B2d)

≤ C
∥∥∥ω ∧ ∂∗∂N(−ω · u)

∥∥∥
Lq(B2d)
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≤ C ‖ω‖Lq(B2d)

∥∥∥∂∗∂N(−ω · u)
∥∥∥
L∞(B2d)

≤ CC1ε
∥∥∥∂∗∂N(−ω · u)

∥∥∥
L∞(B2d)

,

where C > 0 is the Sobolev constant given by the Sobolev embedding
W 1/2,q ↪→ L∞. For 1− C · C1ε > 0 there is a contradiction unless

∂
∗
∂N(−ω · u) = 0.

From (4.27) and (4.28), we conclude that the ∂-equation is solved:

∂u = −ω · u in B2d.

Step 3. Since the procedure is identical to Step 3 in the proof of Lemma 3.3,
we refer the reader to it in order to show that u ∈ GLn(C) and satisfies the
required estimates (4.25).

This finishes the proof of Lemma 4.2.

Having the results above at our disposal, we are ready to proceed with show-
ing the existence of local holomorphic trivialisations of ∇ ≈ d+A in B2d

r for
some r > 0:

Theorem 4.1. There exists ε0 > 0 such that if A ∈ W 1,d(Ω1B2d ⊗ u(n))
satisfies ‖A‖W 1,d(B2d) ≤ ε0, and the integrability condition F 0,2

A = 0, then

there exists r > 0 and gauges g, g−1 ∈ W 2,q(B2d
r , GLn(C)) for all q < d such

that

A0,1 = −∂g · g−1 in B2d
r . (4.29)

Moreover, there exists a constant Cq > 0 such that the following estimates
hold:

‖g − id‖W 2,q(B2d
r ) ≤ Cq ‖A‖W 1,d(B2d)

and (4.30)∥∥g−1 − id∥∥
W 2,q(B2d

r )
≤ Cq ‖A‖W 1,d(B2d) .

It follows that Ag = h−1∂h where h = gTg.

Proof of Theorem 4.1. From Proposition 4.3, there exists a 1-form

Ã ∈ W 1,d(Ω1CPd ⊗ u(n))
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satisfying the integrability condition F 0,2

Ã0,1 = 0 so that Ã0,1 = A0,1 + ϑω in

B2d, where
ω ∈ W 2,d(Ω0,2CPd ⊗Mn(C))

with estimate ‖ω‖W 2,d(CPd) ≤ ‖A‖W 1,d(B2d). This implies that∥∥∥Ã0,1
∥∥∥
W 1,d(CPd)

≤ C ‖A‖W 1,d(B2d) (4.31)

for some constant C > 0.

Lemma 4.1 applied to the form Ã gives the existence of a gauge

g̃ ∈ W 2,q(CPd, GLn(C))

for all q < d so that
∂g̃ = −Ã0,1g̃ in CPd

and for each q < d there exists Cq > 0 such that

‖g̃ − id‖W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

and (4.32)∥∥g̃−1 − id∥∥
W 2,q(CPd) ≤ Cq

∥∥∥Ã∥∥∥
W 1,d(CPd)

.

On the unit ball B2d we can rewrite (A0,1)
g̃

as such:(
A0,1

)g̃
= g̃−1∂g̃ + g̃−1A0,1g̃ = g̃−1∂g̃ + g̃−1Ã0,1g̃ − g̃−1ϑωg̃ = −g̃−1 (ϑω) g̃.

In order to find a gauge g for A0,1 that gives a holomorphical trivialisa-
tion, it remains to find a gauge change u that cancels the perturbation term
−g̃−1 (ϑω) g̃:

∂u = g̃−1 (ϑω) g̃ · u. (4.33)

We claim that the composition of gauges g̃ · u satisfies the statement.

Since the Sobolev embedding W 2,q ↪→ Ldq/(d−q) holds for any q < d, it implies
that g̃, g̃−1 ∈

⋂
q<∞

Lq. The fact that A and Ã satisfy the integrability condition

on B2d: F 0,2
A = 0 and F 0,2

Ã
= 0, implies that ω ∈ W 2,d(Ω0,2B2d) satisfies the

following PDE:
∂ϑω = −[A0,1, ϑω]− ϑω ∧ ϑω.
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Moreover, by Proposition 4.3, we also know that

ϑ∂ω = − ∗ [∗∂ω,A0,1
T

]− ∗[∗∂ω, ϑωT ].

Thus, using the fact that ϑ∂ + ∂ϑ = 1
2
∆d, it follows that

1

2
∆dω + [A0,1, ϑω] + ∗[∗∂ω,A0,1

T
] + [ϑω, ϑω] + ∗[∗∂ω, ϑωT ] = 0.

Proposition D.2 applied to this PDE allows to bootstrap the regularity of ω
insideB2d. Indeed, we have an improved inner regularity ω ∈ W 2,q

loc (B2d,Mn(C))
for any q < 2d. Sobolev embeddings yield:

ϑω ∈
⋂
q<2d

W 1,q
loc (B2d,Mn(C)) ↪→

⋂
q<∞

Lqloc.

Putting together the regularity of ϑω, g̃ and g̃−1 we can obtain the regularity
of g̃−1 (ϑω) g̃:

g̃−1 (ϑω) g̃ ∈
⋂
q<2d

W 1,q
loc ↪→

⋂
q<∞

Lqloc. (4.34)

Fix p > 2d− 1 and δ > 0 small. There exists r0 ∈ (0, 1) so that∥∥g̃−1 (ϑω) g̃
∥∥
W 1,p(B2d

r0
)
< δ.

This (0, 1)-form also solves F 0,2
g̃−1(ϑω)g̃ = 0 in B2d

r0
. Hence, we apply Lemma

4.2 to g̃−1 (ϑω) g̃ in B2d
r0

(by rescaling) to get the existence of r ∈ (r0/2, r0)

and u ∈ W 2,p(B2d
r , GLn(C)) that solves the ∂-equation above (4.33):

∂u = g̃−1 (ϑω) g̃ · u in B2d
r .

and satisfies the estimates

‖u− id‖W 2,p(B2d
r ) ≤ C

∥∥g̃−1 (ϑω) g̃
∥∥
W 1,d(B2d

r )
≤ C ‖A‖W 1,d(B2d) (4.35)

and

∥∥u−1 − id∥∥
W 2,p(B2d

r )
≤ C

∥∥g̃−1 (ϑω) g̃
∥∥
W 1,d(B2d

r )
≤ C ‖A‖W 1,d(B2d) , (4.36)

for some constant C > 0.

Define g := g̃u in B2d
r . By construction of g, the required ∂-equation is
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solved:

∂g = −A0,1g in B2d
r (4.37)

We show that g and g−1 satisfy the required estimates (4.30). Let q < d
arbitrary. The triangle inequality applied on the norm W 2,q gives:

‖g − id‖W 2,q(B2d
r ) ≤‖(g̃ − id)(u− id)‖W 2,q(B2d

r )

+ ‖g̃ − id‖W 2,q(B2d
r ) + ‖u− id‖W 2,q(B2d

r ) .

Using the Sobolev product estimates of [31, Section 4.8.2, Theorem 1], from
the regularity of g̃ − id ∈

⋂
q<dW

2,q(B2d
r ) and u− id ∈ W 2,p(B2d

r ), it follows
that

(g̃ − id)(u− id) ∈
⋂
q<d

W 2,q(B2d
r )

with

‖(g̃ − id)(u− id)‖W 2,q(B2d
r ) ≤ C ‖g̃ − id‖W 2,q1 (B2d

r ) · ‖u− id‖W 2,p(B2d
r ) ,

for some q1 ∈ (q, d) and constant C > 0. Hence, from (4.31), (4.32) and
(4.35) it immediately follows that there exists a constant Cq > 0 such that:

‖g − id‖W 2,q(B2d
r ) ≤ Cq ‖A‖W 1,d(B2d) .

By arguing in a completely analogous way to how we obtained the regularity
of g, we obtain ∥∥g−1 − id∥∥

W 2,q(B2d
r )
≤ Cq ‖A‖W 1,d(B2d) .

It remains to show the existence of h satisfying Ag = h−1∂h. We apply g to
A in B2d

r to get:

Ag = g−1(∂g + ∂g) + g−1A0,1g − g−1A0,1
T
g = g−1∂g − g−1A0,1

T
g.

Since (4.37) holds, then ∂gT = −gTA0,1
T
. Hence,

(
gT
)−1

∂gT = −A0,1
T

. By
plugging this into the equation above, we get

Ag = g−1∂g + g−1
(
gT
)−1

∂gTg = (gTg)−1∂(gTg).

We conclude the proof of Theorem 4.1 by defining h := gTg, and h ∈
W 2,q(B2d

r , iu(n)) for any q < d.
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Taking into account Remark 3.2, we end the chapter by proving a stability
result for holomorphic trivialisations similar to Corollary 3.1.

Corollary 4.1. Let A1 ∈ W 1,d(Ω1B2d ⊗ u(n)) and r < 1 so that g1 ∈
W 2,q(B2d

r , GLn(C)) satisfies theorem 4.1. There exists δ > 0 such that for all
A2 ∈ W 1,d(Ω1B2d ⊗ u(n)) with F 0,2

A2
= 0 satisfying

‖A1 − A2‖W 1,d(B2d) ≤ δ,

there exists a radius r0 ∈ (r/2, r) depending only on A1 and a gauge

g2 ∈
⋂
q<d

W 2,q(B2d
r0
, GLn(C))

that trivialises A2 in the sense that:

A2 = −∂g2 · g−12 in B2d
r0

The following estimates hold: for all q < d there exists Cq > 0 such that

‖g2 − id‖W 2,q(B2d
r0

) ≤ Cq

(
‖A1‖W 1,d(B2d) + ‖A2‖W 1,d(B2d)

)
and there exists C > 0 such that

‖g1 − g2‖Lp(B2d
r0

) ≤ C ‖A1 − A2‖W 1,d(B2d)

for all p < d(2d+ 2).

Proof of Corollary 3.1. Choose δ > 0 such that A2 is a small perturbation
of A1. By Remark 3.2 and Theorem 4.1 applied to the forms A1 and A2 we
obtain the existence of r > 0 and gauges g1, g2 ∈ W 2,q(B2d

r , GLn(C)) for all
q < d so that

∂g1 = −A0,1
1 · g1 and ∂g2 = −A0,1

2 · g2 in B2d
r (4.38)

and there exists a constant Cq > 0 such that

‖g1 − id‖W 2,q(B2d
r ) ≤ Cq ‖A1‖W 1,d(B2d) ,

‖g2 − id‖W 2,q(B2d
r ) ≤ Cq ‖A2‖W 1,d(B2d)

≤ Cq

(
‖A1‖W 1,d(B2d) + ‖A1 − A2‖W 1,d(B2d)

)
and (4.39)
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∥∥
W 2,q(B2d

r )
≤ Cq ‖A2‖W 1,d(B2d)

≤ Cq

(
‖A1‖W 1,d(B2d) + ‖A1 − A2‖W 1,d(B2d)

)
By (4.38), g1 and g2 holomorphically trivialise A1 and A2 respectively, we can
relate the transition gauge g−12 g1 with the difference 1-form A2−A1 through
the following ∂-equation:

∂(g−12 g1) = g−12 (A2 − A1)
0,1g2 · (g−12 g1). (4.40)

We first estimate g−12 g1−id using the inequalities (4.39) and then use equation
(4.40) to show that g−12 g1 − id is only bounded by the norm of A2 −A1. Fix
q < d. The triangle inequality gives:∥∥g−12 g1 − id

∥∥
W 2,q(B2d

r )
≤
∥∥(g−12 − id)(g1 − id)

∥∥
W 2,q(B2d

r )

+
∥∥g−12 − id

∥∥
W 2,q(B2d

r )
+ ‖g1 − id‖W 2,q(B2d

r )

Hence, by the results of [31, Section 4.8.2, Theorem 1] applied to the product
(g−12 − id)(g1 − id) and estimates (4.39), there exists a constant Cq > 0 so
that ∥∥g−12 g1 − id

∥∥
W 2,q(B2d

r )
≤ Cq(‖A1‖W 1,d + ‖A2‖W 1,d)

≤ 2Cq(‖A1‖W 1,d + ‖A1 − A2‖W 1,d). (4.41)

for all q < d. We can use equation (4.40) in order to find an a-posteriori
estimate of g−12 g1 − id involving only the 1-form A2 − A1. Let s < 2d. By
the regularity of ∂ in Ls (see [18, Theorem 1 (b)]) there exists a holomorphic
map h and a constant Cs > 0 such that∥∥g−12 g1 − h

∥∥
L(2d+2)s/((2d+2)−s)(B2d

r )
≤ Cs

∥∥∂(g−12 g1)
∥∥
Ls(B2d

r )

≤ Cs
∥∥g−12 (A2 − A1)

0,1g2
∥∥
Lsp/(p−s)(B2d

r )

∥∥g−12 g1
∥∥
Lp(B2d

r )
,

where p ∈ (s,∞) arbitrary. Hence, it follows that there exists C > 0 depend-
ing on A1 such that∥∥g−12 g1 − h

∥∥
L(2d+2)s/((2d+2)−s)(B2d

r )
≤C ‖A1 − A2‖W 1,d(B2d)

∥∥g−12 g1 − id
∥∥
Lp(B2d

r )

+ C ‖A1 − A2‖W 1,d(B2d) .

There exists q < d such that W 2,q ↪→ Lp. Since g−12 g1 − id is bounded in
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W 2,q by (4.41), then it is also bounded in Lp. Hence,∥∥g−12 g1 − h
∥∥
L(2d+2)s/((2d+2)−s)(B2d

r )
≤ C ‖A1 − A2‖W 1,d(B2d) .

Since this holds for any s < 2d, there exists a constant C > 0 such that∥∥g−12 g1 − h
∥∥
Lp(B2d

r )
≤ C ‖A1 − A2‖W 1,d(B2d) ,

for all p < d(2d + 2). Having this inequality at our disposal, we can turn to
estimate g1 − g2 · h. Let p < d(2d+ 2), then:

‖g1 − g2 · h‖Lp(B2d
r ) =

∥∥(g2 − id)(h− g−12 g1) + h− g−11 g2
∥∥
Lp(B2d

r )
.

For v ∈ (p, d(2d+ 2)), we get:

‖g1 − g2 · h‖Lp(B2d
r ) ≤‖g2 − id‖Lvp/(v−p)(B2d

r )

∥∥g−12 g1 − h
∥∥
Lv(B2d

r )

+
∥∥g−12 g1 − h

∥∥
Lp(B2d

r )
.

Thus, there exists a constant Cv,p > 0 depending on v, p and A1 such that

‖g1 − g2 · h‖Lp(B2d
r ) ≤ Cv,p ‖A1 − A2‖W 1,d(B2d) .

Moreover, g2 · h solves the equation:

∂(g2 · h) = A0,1
2 (g2 · h) (4.42)

in a distributional sense. It remains to show that the g2 · h is bounded in
W 2,q for all q < d by the norms of A1 and A2 in a possible slightly smaller
ball. Let r0 ∈ (r/2, r), then there exists a constant C > 0 such that

‖g2 · h− id‖W 1,d(B2d
r0

) ≤ C
(∥∥∂g2 · h∥∥L2(B2d

r )
+ ‖g2 · h− id‖Ld(B2d

r )

)
.

Consequently, by using the ∂-equation (4.42) satisfied by g2 · h, it follows
that:

‖g2 · h− id‖W 1,d(B2d
r0

) ≤ C
(
‖A2‖L2d(B2d

r ) ‖g2 · h‖L2d(B2d
r )

+ ‖g2 · h− g1‖Ld(B2d
r ) + ‖id− g1‖Ld(B2d

r )

)
.
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Having shown that g2 · h ∈ Lp for all p < d(2d+ 2), we obtain

‖g2 · h− id‖L2d(B2d
r0

) ≤ C
(
‖A1‖W 1,d(B2d) + ‖A2‖W 1,d(B2d)

)
.

Hence, given that g2 · h ∈ W 1,d and g2 · h− id is bounded by A1 and A2, we
get from Lemma D.1 and Remark D.1(ii) the estimate: for any q < d there
exists a constant Cq > 0 such that:

‖g2 · h− id‖W 2,q(B2d
r0

) ≤ Cq

(
‖A1‖W 1,d(B2d) + ‖A2‖W 1,d(B2d)

)
.

By redefining g2 as g2 · h, we have proven our stability result.

4.3 Density under high energy

For proving theorem 1.4 we have to show that for any smooth approximating
sequence of ∇, there exists a perturbation of the sequence such that the
integrability condition F 0,2

∇ = 0 is satisfied throughout. In the previous

chapter, we have heavily used the fact that ∂∂
∗

is an elliptic operator on
Kähler surfaces. However, this is not the case for Kähler manifolds as we have
explained in section 4.1. Thus, we aim at solving the extended integrability
condition (4.5) locally and consequently showing that globally this implies
the integrability condition.

Over B2d we assume without loss of generality that ∇ ≈ d+A. We start by
studying the invertibility of the operator

LA : W 2,d(Ω0,2B2d) ∩Dom(LA)→ Ld(Ω0,2B2d)

defined by

LAω := ∂ϑω + ϑ∂ω + [A0,1, ϑω] + ∗[∗∂ω,A0,1
T

]. (4.43)

where Dom(LA) = {ω : ωN = 0, (dω)N = 0} and by ωN we understand
the components of the form ω involving dr, i.e. Dom(LA) = {ω : ω, dω ∈
Dom(d∗)} by (4.6). In particular, since ∆∂ = 1

2
∆d, the boundary conditions

ωN = 0, (dω)N = 0 make the operator LA elliptic. Globally we do not need
these conditions since we are working over a closed Kähler manifold.

We show that for perturbations g of A with ‖g − id‖L∞ small, LAg is an
invertible operator that maps W 2,d(Ω0,2B2d ⊗ u(n)) to Ld(Ω0,2B2d ⊗ u(n)).



4.3 Density under high energy 119

In order to be able to study the invertibility of LA, we first need a set of
general results derived from the theory of Fredholm Operators. Secondly, we
prove that under linear perturbations of A, we can find u(n)-valued maps U
such that LA+β∂U is invertible for all 0 < β < β0, for some β0 > 0. Finally,
we generalise these ideas in Section 4.3.3 and find gauge changes g of A such
that LAg is invertible.

The first result of this Chapter is the analogous of Proposition 3.3.

Proposition 4.4. The operator

LA : W 2,d(Ω2B2d ⊗ u(n)) ∩Dom(LA)→ Ld(B2d, u(n))

is Fredholm and has index zero.

Proof of Proposition 4.4. Firstly, LA is elliptic, because it is a lower order
perturbation of ∆∂ = 1

2
∆d under well-posed boundary conditions, thus it is

Fredholm.

Next, note that ∆∂ is an elliptic operator of Fredholm index zero from
W 2,d(Ω0,2B2d ⊗ u(n)) ∩Dom(LA) into Ld(Ω2B2d ⊗ u(n)).

Let Ak be a sequence of smooth 1-forms converging strongly in W 1,d to A.
Then the bracket operator

ω 7→ [A0,1
k , ϑω] + ∗[∗∂ω,A0,1

k

T

]

is compact W 2,d(Ω0,2(B2d)) to Ld(Ω0,2(B2d)). Indeed, Ak is bounded in L∞

and hence:∥∥∥∥[A0,1
k , ϑω] + ∗[∗∂ω,A0,1

k

T

]

∥∥∥∥
Ld(B2d)

≤ C ‖Ak‖L∞(B2d)

(
‖ϑω‖W 1,d(B2d)

+
∥∥∂ω∥∥

W 1,d(B2d)

)
,

for some constant C > 0, where we have used the fact that W 1,d is compactly
embedded in Ld in 2d-dimensions, by Rellich-Kondrachov [2] and therefore
the operators

ω 7→ [A0,1
k , ϑω] + ∗[∗∂ω,A0,1

k

T

]

are compact W 2,d to Ld for all k. Hence, using the compactness of these
operators and the fact that ∆∂ is Fredholm, by [32, Theorem 4.4.2, p.185])
we have

indexLAk = index(∆∂).
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By the Hodge decomposition, we know that ∆d has index zero over Dom(LA).
Thus, ∆∂ has index zero as well and we have

indexLAk = index(∆∂) = 0.

Moreover, for a fixed ε > 0 given by [32, Theorem 4.4.2, p.185], there exists
k0 > 0 such that for all k ≥ k0:∣∣∣∣∣∣∣∣∣∣∣∣[A0,1

k − A
0,1, ϑ·] + ∗[∗∂·, A0,1

k − A0,1
T

]

∣∣∣∣∣∣∣∣∣∣∣∣ ≤ ε

since Ak converges strongly to A in W 1,d.

Thus, by applying [32, Theorem 4.4.2, p.185] to the perturbation operator

[A0,1
k − A0,1, ϑ·] + ∗[∗∂·, A0,1

k − A0,1
T

] and LA, we obtain that

indexLA = index

(
LA + [A0,1

k − A
0,1, ϑ·] + ∗[∗∂·, A0,1

k − A0,1
T

]

)
= indexLAk = 0

This proves the statement.

In the following section we will discuss the invertibility of general Fredholm
operators. The results we prove here will be crucial to our density arguments.

4.3.1 Invertibility of Fredholm Operators

Recall that a bounded linear operator L : X → Y between Banach spaces
is Fredholm if it has closed range and its kernel and cokernel are finite-
dimensional. If L : X → Y is Fredholm and P : X → Y is another bounded
linear operator, we can write X = Ker(L) ⊕ X ′ and Y = Y ′ ⊕ Ran(L), as
direct sum decompositions of X, Y . Then L, P and L+ P can be written in
the form

L =

 0 0

0 L4

 , P =

 P1 P2

P3 P4

 , L+ P :=

 P1 P2

P3 L̃4

 , (4.44)

where L4 : X ′ → Ran(L) is a bounded invertible operator, L̃4 := L4 + P4,
and where via the expression
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L̃−14 = (L4 + P4)
−1 =

∞∑
k=0

(−L−14 P4)
kL−14 , for ‖L−14 P4‖ < 1 (4.45)

we see that if ‖P4‖ < ‖L−14 ‖−1 then L̃4 is invertible with bounded inverse. In
particular, we have ∣∣∣∣∣∣∣∣∣L̃−14

∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣L−14

∣∣∣∣∣∣ 1

1−
∣∣∣∣∣∣L−14

∣∣∣∣∣∣|||P4|||
(4.46)

In this case we can use the Schur complement of L̃4 and write

L+ P =

 P1 P2

P3 L̃4

 (4.47)

=

 IY ′ P2L̃
−1
4

0 IRan(L)


 P1 − P2L̃

−1
4 P3 0

0 L̃4


 IKer(L) 0

L̃−14 P3 IX′

 .

We note that the first and last operators in (4.47) are bounded and invertible,
acting respectively on Y and on X, thus the index of L + P is equal to the
index of the middle operator in (4.47). Considering the middle operator in
(4.47), since it is block-diagonal and L4 + P4 is invertible, its kernel and
co-kernel dimensions are determined by the upper-left block

L̃1 := P1 − P2L̃
−1
4 P3 : Ker(L)→ Y ′, (4.48)

which is a bounded linear operator between finite-dimensional spaces.

Note that denoting x0 ∈ KerL and x1 ∈ X ′ according to the decomposition
X = KerL⊕X ′, we have

Ker(L+ P ) 3 x0 + x1 ⇔


P1x0 + P2x1 = 0,

P3x0 + L̃4x1 = 0,

⇔


L̃1x0 = 0,

x1 = −L̃−14 P3x0.

.

(4.49)



122 Chapter 4. U(n) Bundles in Banach Spaces

Note that the map written in block form as

JL,P := (IKer(L),−L̃−14 P3) : Ker(L)→ Ker(L)⊕X ′ (4.50)

is injective, and thus an isomorphism between Ker(L) and its range, which
is

KL,P := {x0 + x1 : x0 ∈ Ker(L), x1 = −L̃−14 P3x0}. (4.51)

Also note that Ker(L + P ) ⊂ KL,P ⊂ X, and that the map JL,P depends
continuously on P .

Lemma 4.3. Let L, P : X → Y be bounded linear operators between Banach
spaces such that L is Fredholm and that decomposition (4.44) holds, with

furthermore ‖P4‖ < ‖L−14 ‖−1. Let the operator L̃1 be defined as in (4.48)
using (4.45). Then the following hold:

1. The map P 7→ L̃1 is continuous with respect to the operator norms
induced by the Banach space norms on X, Y,Ker(L), Y ′.

2. There holds Ker(L+ P ) ' Ker(L̃1) and CoKer(L+ P ) ' CoKer(L̃1).

3. There holds dimKer(L + P ) ≤ dimKer(L) and dimCoKer(L + P ) ≤
dimCoKer(L).

Sketch of proof: Points 1 and 2 follow from the decomposition (4.44) and
formula (4.45). Point 3 follows from point 2 and (4.48).

In view of Lemma 4.3, the following result gives us a necessary and sufficient
condition for dimKer(L+ P ) = dimKer(L):

Proposition 4.5. Let L, P : X → Y be bounded linear operators between
Banach spaces, such that P |Ker(L) is injective and ‖P4‖ < ‖L−14 ‖−1 with no-
tation as in (4.44). Then dimKer(L+ P ) = dimKer(L) if and only if

P1 = P2L̃
−1
4 P3 = 0. (4.52)

Proof of Proposition 4.5. By (4.47) we have the following decomposition in-
duced by the direct sum Y = Y ′ ⊕ Ran(L):

P |Ker(L) =

 P1

P3

 . (4.53)
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First assume that dimKer(L+ P ) = dimKer(L). By the isomorphism (4.50)
we obtain that dimKer(L+P ) = dimKL,P and since Ker(L+P ) ⊂ dimKL,P ,
we obtain Ker(L+P ) = KL,P . Comparing the rightmost system in (4.51) to

(4.49), we deduce L̃1 = 0, and via (4.48) we find

P1 = P2L̃
−1
4 P3. (4.54)

Inserting this in (4.53), we get

P |Ker(L) =

 P2L̃
−1
4

IRan(L)

P3. (4.55)

Since by hypothesis P |Ker(L) is injective, (4.55) implies that

P3 : Ker(L)→ Ran(L)

is also injective. Hence,

dimRan(P3) = dimKer(L). (4.56)

On the other hand, since the decomposition (4.53) comes from a direct sum
expression of Y , we have dimKer(L) ≥ dimRan(P1) + dimRan(P3). This
together with (4.56) implies that dimRan(P1) = 0, and thus P1 = 0. This,
together with (4.54), concludes the proof of (4.52).

Conversely, assume that (4.52) holds. In particular by (4.48) L̃1 = 0. Thus,
from (4.49) we obtain that dimKer(L+ P ) = dimKer(L).

Crucially, we are now able to show that for perturbation operators P that
are injective on the kernel of L we can decrease the dimension of the KerL.

Proposition 4.6. Let L, P : X → Y be bounded linear operators between
Banach spaces, such that P |Ker(L) is injective. Then there exists β > 0 such
that

dimKer(L+ βP ) < dimKer(L). (4.57)

Proof of Proposition 4.6. Assume that dimKer(L+βP ) = dimKer(L) for all
β ∈ (0, 1). Since P |Ker(L) is injective, so is βP |Ker(L). We use notation (5.5)
and define β0 := ‖L4‖‖β4‖, so that ‖βP4‖ ≤ ‖L4‖−1 for all β ∈ (0, β0). Then
we can apply Proposition 4.5 to L and βP in order to get βP1 = 0 and
βP2 = 0 on Im(L4 + βP4)

−1βP3 for all β ∈ (0, β0).
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Let 0 6= e ∈ KerL. Since P1 = 0, all elements in KerL are mapped into RanL
by P3. Thus, there exists ωe ∈ X ′ such that Pe = Lωe and for β ∈ (0, β0),
we also have

(βP )e = L(βωe).

This implies the following relation:

(βP )e = L(βωe) ⇐⇒ (βP3)e = L4(βωe).

The above equivalence together with the fact that βP2 = 0 on the space
Im(L4 + βP4)

−1βP3, give the following equation:

0 = (L4 + βP4)
−1βP3e = (L4 + βP4)

−1L(βωe)

= (L4 + βP4)
−1L4(βωe) =

∞∑
k=0

(−1)kβk(L−14 P4)
kL−14 L4βωe

=
∞∑
k=0

(−1)kβk(L−14 P4)
kβωe

= βωe + o(β2).

Since this holds for all β ∈ (0, β0), we find ωe = 0, and thus e = 0. We have
obtained a contradiction. Hence, there exists β > 0 such that dimKer(L +
βP ) < dimKer(L).

4.3.2 Linear perturbation

Having Proposition 4.6 at our disposal, we can now construct linear pertur-
bations P of LA (4.43) such that

dimKer(LA + P ) < dimKer(LA). (4.58)

In particular, we find a small perturbation of the form

P = PU = [∂U, ϑ·] + ∗[∗∂·, ∂U
T

] (4.59)

that satisfies (4.58), where U is a smooth u(n)-valued map over B2d.

The following proof resembles Proposition 3.4, however now we want to show
the existence of perturbation U such that P is injective on KerLA.
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Proposition 4.7. There exists P = PU with the same domain and range as
LA and of the form (4.59) such that U is a smooth, u(n)-valued map and P
is injective on KerLA.

Proof of Proposition 4.7. Since KerLA is finite dimensional, let {e1, . . . , eN}
be an orthonormal basis of it.

Claim 1. For each v ∈ KerLA \ {0}, there exists Uv ∈ C∞(Bn, g) such that
PUvv 6= 0.

Let v ∈ KerLA \{0}. We show that for each such v, we can find Uv such that
PUvv 6= 0. Assume by contradiction that PUv = 0 for all smooth Mn(C)-
valued maps U on B2d. Define the linear operator

H(ω) := [ω, ϑv]+∗[∗∂v, ωT ] : C∞(Ω0,1B2d ⊗Mn(C))→ C∞(Ω0,2B2d ⊗Mn(C)).

Observe that H(ω(x)) = H(ω)(x), in which ω(x) is identified to the constant
form equal to ω(x). Moreover, we have that

0 = PUv = [∂U, ϑv] + ∗[∗∂v, ∂U
T

] = H(∂U)

for all smooth maps U on B2d. Applying Proposition C.1 to H, we obtain
that H = 0. By density of smooth 1-forms into W 1,d 1-forms, it follows in
particular that

H(A) = [A0,1, ϑv] + ∗[∗∂v,A0,1
T

] = 0.

Putting this together with the fact that v ∈ KerLA, we obtain:

0 = LAv = ∆∂v.

Since v ∈ Ker∆∂, then v = 0. This is a contradiction, since we have picked
v 6= 0. Hence, there exists Uv ∈ C∞(B2d,Mn(C)) so that PUvv 6= 0, as
claimed.

Next, we show that such a Uv can be chosen to be u(n)-valued. Indeed, since
Uv ∈ Mn(C), there exists a decomposition in terms of its Hermitian and
anti-Hermitian part:

Uv = U1 + U2,

where U1 ∈ C∞(B2d, u(n)) and U2 ∈ C∞(B2d, iu(n)). Assume that PU1v = 0,
otherwise we redefine Uv := U1. Under this assumption, by linearity it then
necessarily follows that

PU2v 6= 0.
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If this condition holds, then by multiplying with i,

iPU2v = PiU2v 6= 0.

Moreover, iU2 ∈ C∞(B2d, u(n)) and in this case we redefine Uv := iU2.
Hence, there exists

Uv ∈ C∞(B2d, u(n)) so that PUvv 6= 0, for any v ∈ KerLA, v 6= 0. (4.60)

Claim 2. There exists U smooth u(n)-valued map over B2d such that PU is
injective on KerLA.

We formulate the following inductive hypothesis:

I(k) :
there exists Uk ∈ C∞(B2d, u(n)) supported in V k ( B2d such that

the forms PUke1, . . . PUkek are linearly independent.

We show by induction that I(k) holds for k ≤ N , from which it follows that
PUN is injective on KerLA.

By Claim 1, there exists U1 such that PU1e1 6= 0. Without loss of generality,
by multiplying with a compactly supported function ρ1, we can localise U1

in V1 ( B2d. Hence I(1) holds. We now assume that for k < N , I(k) holds,
and we prove I(k + 1).

If PUke1, . . . , PUkek+1 already are linearly independent, then we just set Uk+1 =
Uk. Otherwise there exists λ1, . . . , λk+1 not all 0 such that

∑k+1
i=1 λiPUkei = 0.

In this case λk+1 6= 0.

By Claim 1 there exists Uk+1 such that PUk+1

∑k+1
i=1 λiei 6= 0. We can choose

a neighbourhood Vk+1 and Ṽ k ⊆ V k disjoint from Vk+1 such that {PUkej}kj=1

is linearly independent in Ṽ k and

Pρk+1Uk+1

k+1∑
i=1

λiei 6= 0 in Vk+1

In particular, we can define functions ρk+1 compactly supported in Vk+1, ρk
compactly supported in Ṽ k.

We now define Uk+1 := ρkU
k+ρk+1Uk+1, and show that PUk+1e1, . . . , PUk+1ek+1

now are linearly independent. Assume there exists β1, . . . , βk+1 such that
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k+1∑
j=1

βjPρkUk+ρk+1Uk+1
ej =

k+1∑
j=1

βjPUk+1ej = 0. (4.61)

In the neighbourhood Ṽ k, we have that

k+1∑
j=1

βjPUkej = 0.

Then (β1, . . . , βk+1) = c(λ1, . . . , λk+1) for some constant c. Hence, in Vk+1,
we have that

c

k+1∑
j=1

λjPUk+1
ej = 0.

By the choice of Uk+1, we obtain that c = 0. Hence β1 = . . . = βk+1 = 0. To
conclude, define V k+1 = Ṽ k ∪ Vk+1. This proves the induction.

Hence, we have obtained U = UN such that {PUej}Nj=1 are linearly indepen-
dent, where ej the orthonormal basis of KerLA we have picked initially. It
follows that PU is injective on KerLA.

The above construction of P = PU allows us to apply Proposition 4.6 to the
operator LA as follows:

Proposition 4.8. Let LA be defined as in (4.43) and assume that LA is not
injective. There exists P = PU as in Proposition 4.7, such that furthermore

dimKer(LA + P ) < dimKer(LA). (4.62)

Proof of Proposition 4.8. By Proposition 4.7, there exists a 1-form Ũ such
that the operator

P̃ = [∂Ũ, ϑ·] + ∗[∗∂·, ∂Ũ
T

]

is injective on KerLA. After rescaling Ũ , we can assume that P̃ is small in
operator norm. Applying Proposition 4.6 to LA and P̃ , we obtain P that

is of the form [∂U, ϑ·] + ∗[∗∂·, ∂U
T

] and satisfies (4.62). This concludes the
statement.

Having now the result that shows that we can always find a perturbation that
decreases the dimension of the kernel of LA, we want to iterate the procedure
such that we obtain a perturbation P that makes the kernel of LA+P trivial.
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In light of the fact that LA is an operator of index zero, we can conclude that
LA + P is invertible.

Theorem 4.2. Let LA be defined as in (4.43) and assume that LA is not
injective. There exists P with same domain and range spaces as LA, of the
form

P (η) := [∂U, ϑη] + ∗[∗∂η, ∂U
T

]

and small in operator norm such that LA + P is invertible.

Proof of Theorem 4.2. By applying Proposition 4.8 to LA, we obtain a per-

turbation P1 = [∂U1, ϑ·] + ∗[∗∂·, ∂U1

T
] such that

dimKer(LA + P1) < dimKer(LA).

The operator LA + P1 = LA+∂U1
is in addition Fredholm of the same index

as LA, since P1 is compact. Similarly we can find a perturbation operator P2

for LA+∂U1
= LA + P1. This leads us to the idea of iterating the procedure.

Since ` = dimKer(LA) is finite, after at most n perturbations Pk, k ≤ `, we
obtain that

dimKer(LA + P1 + . . .+ P`) = 0.

Thus, by denoting P := P1 + . . . + P`, we obtain a linear perturbation that
makes the kernel of LA + P trivial. Moreover, because LA is a Fredholm
operator of index zero and P is a compact operator, it follows that LA + P
is an operator of index zero and trivial kernel. Hence, LA + P is invertible.

Moreover, since each Pk is of the form [∂Uk, ϑ·] + ∗[∗∂·, ∂Uk
T

] for each k ≤ `,
then

P = [∂U, ϑ·] + ∗[∗∂·, ∂U
T

]

where U = U1 + . . .+ U`. This concludes the statement.

4.3.3 Gauge perturbation

As in the Hilbert case in Chapter 3, we now consider perturbations of A of the
form Ag = g−1dg+g−1Ag with g a U(n)-valued gauge transformation. Using
the approach we took in the previous section and relying on Proposition 4.6,
we find a smooth u(n)-valued function U such that for g = expU ∈ U(n),
the operator LAg is invertible.
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Consider the family of gauges gt = exp tU , t = [0, 1]. We can analytically
expand Agt in t ∈ [0, 1] to obtain

Agt − A = t(dU + [U,A]) +O(t2).

In particular, we have(
A0,1

)gt − A0,1 = t(∂U + [U,A0,1]) +O(t2). (4.63)

Moreover, it will be useful to define the bounded linear operators

Gt,U : W 2,d(Ω0,2B0,2 ⊗Mn(C))→ Ld(Ω0,2B2d ⊗Mn(C))

given by

Gt,U := [
(
A0,1

)gt − A0,1 − t(∂U + [U,A0,1]), ϑ·]

+ ∗[∗∂·, (A0,1)gt − A0,1 − t(∂U + [U,A0,1])
T

] (4.64)

and
PU : W 2,d(Ω0,2B2d ⊗Mn(C))→ Ld(Ω0,2B2d ⊗Mn(C))

given by

PU = [∂U + [U,A0,1, ϑ·] + ∗[∗∂·, ∂U + [U,A0,1
T

].

Observe that

LAgt = LA + [
(
A0,1

)gt − A0,1, ϑ·] + ∗[∗∂·, (A0,1)gt − A0,1
T

]

and we can write Gt,U as Gt,U = LAgt − LA + tPU . It follows that

|||Gt,U ||| ≤ C ‖Agt − A‖Ld(B2d) + t|||PU |||, (4.65)

for some constant C > 0. Moreover, there exists t0 such that for all t ≤ t0,
we have that the operator

[
(
A0,1

)gt − A0,1, ϑ·] + ∗[∗∂·, (A0,1)gt − A0,1
T

]

is small in operator norm mapping W 2,d(Ω0,2B2d ⊗Mn(C)) to Ld(Ω0,2B2d ⊗
Mn(C)) and by [32, Theorem 4.4.2]:

indexL(A0,1)gt = indexLA = 0. (4.66)

We show that it is enough to find a perturbation PU that is injective on the
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kernel LA in order to decrease the kernel size. We start with a proposition
which is a non-linear analogue to Proposition 4.7:

Proposition 4.9. There exists P = PU with the same domain and range as
LA and of the form

PU(η) := [∂U + [U,A0,1], ϑη] + ∗[∗∂η, ∂U + [U,A0,1]
T

]

for U u(n)-valued smooth, such that P is injective on KerLA.

Proof of Proposition 4.9. Claim. For each v ∈ KerLA,v 6= 0, there exists

Uv ∈ C∞(B2d, u(n))

such that PUvv 6= 0.

Let v ∈ KerT0, v 6= 0. We show that for each such v, we can find Uv
such that PUvv 6= 0. Assume by contradiction that PUv = 0 for all smooth
Mn(C)-valued maps U on B2d. Define the linear operators

H0 : C∞(B2d,Mn(C))→ C∞(Ω0,2B2d ⊗Mn(C))

given by

H0(ω) := [[ω,A0,1], ϑv] + ∗[∗∂v, [ω,A0,1]
T

]

and
H1 : C∞(Ω0,1B2d ⊗Mn(C))→ C∞(Ω0,2B2d ⊗Mn(C)).

given by
H1(ω) := [ω, ϑv] + ∗[∗∂v, ωT ].

We have H0(ω(x)) = H0(ω)(x), where ω(x) is identified with a constant form.
Moreover,

0 = PUv = [∂U + [U,A0,1], ϑv] + ∗[∗∂v, ∂U + [U,A0,1]
T

] = H1(∂U) +H0(U)

for all smooth maps U on B2d. Applying Proposition C.2 to H1 and H0, we
obtain that H1 ◦ ∂ = 0 and H0 = 0. In particular, we have obtained that for
all U smooth functions on B2d,

H1(∂U) = [∂U, ϑv] + ∗[∗∂v, ∂U
T

] = 0.

This contradicts Proposition 4.7. Hence, there exists Uv ∈ C∞(B2d,Mn(C))
so that PUvv 6= 0.
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The rest of the proof (the existence of hermitian Uv such that PUvv 6= 0 and
the existence of U such that PU is injective on KerLA) follows exactly as in
Proposition 4.7.

Proposition 4.10. Let LA be defined as in (4.43) and assume that LA is
not injective. There exists a unitary smooth gauge perturbation g such that

dimKer(LAg) < dimKer(LA) (4.67)

and indexLAg = indexLA = 0.

Proof of Proposition 4.10. By Proposition 4.9, there exists U smooth hermi-
tian such that the operator

PU = [∂U + [U,A0,1], ϑ·] + ∗[∗∂·, ∂U + [U,A0,1]
T

]

is injective on KerLA. Moreover, there exists t0 such that for t ≤ t0, we can
assume that PtU = tPU is small in operator norm |||·||| such that Proposition
4.6 applies to LA and tP . Then LA + tPU is Fredholm and

dimKer(LA + tPU) < dimKer(LA).

With the same notation as in Section 4.3.1 applied to the operator LA and
perturbation tPU , we can rewrite LA + tPU as:

LA + tPU =

 0 0

0 H4

 ,

where H4 = (LA + tPU)4 is a bounded invertible operator depending on L4

and PU . Note that it will not be sufficient to only include P4 in the estimates,
but we need the operator πRanLA+tPUPU |(KerLA+tPU )⊥ , where πRanLA+tPU is the
projection onto the range of the operator LA + tPU . Denote this operator
πRanLA+tPUPU |(KerLA+tPU )⊥ by P̃4. Thus, H4 = L4 + P̃4. We have by (4.46)
the estimate applied to H4:∣∣∣∣∣∣(LA + tPU)−14

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣L−14

∣∣∣∣∣∣ 1

1− t
∣∣∣∣∣∣L−14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣P̃4

∣∣∣∣∣∣∣∣∣
and hence for some t1 ∈ (0, t0) we obtain for all t ≤ t1:
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∣∣∣∣∣∣(LA + tPU)−14

∣∣∣∣∣∣−1 ≥ 1∣∣∣∣∣∣L−14

∣∣∣∣∣∣ (1− t
∣∣∣∣∣∣L−14

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣P̃4

∣∣∣∣∣∣∣∣∣) ≥ 1

2
∣∣∣∣∣∣L−14

∣∣∣∣∣∣ .
Since exp tU is continuous in t > 0 and converging to 0 uniformly, then∥∥Aexp tU − A

∥∥
Ln(Bn)

→ 0,

as t→ 0. Choose t2 ∈ (0, t1) such that∥∥Aexp tU − A
∥∥
Ln(Bn)

≤ 1

4
∣∣∣∣∣∣L−14

∣∣∣∣∣∣ and t|||PU ||| ≤
1

4
∣∣∣∣∣∣L−14

∣∣∣∣∣∣
for all t ≤ t2. Thus, by the operator norm estimate (4.65) we obtain

|||Gt,U ||| ≤
1

2
∣∣∣∣∣∣L−14

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(LA + tPU)−14

∣∣∣∣∣∣−1
for all t ≤ t2. Hence, Lemma 4.3 applied to the operator LA + tPU and
perturbation Gt,U together with the definition of the operator Gt,U (4.64)
that

dimKerLAg = dimKer(LA+tPU +Gt,U) ≤ dimKer(LA+tPU) < dimKer(LA),

for all t ≤ t2. Thus (4.67) holds if we define g := exp tU for t ≤ t2 and from
the construction of U , g is unitary and smooth. By (4.66), we can also choose
t > 0 slightly smaller so that we also guarantee that indexLAg = indexLA =
0.

With this result in hand, we are ready to prove the main theorem of this
section - that we can find a gauge perturbation g such that LAg is invertible.

Theorem 4.3. Let LA be as in (4.43). There exists a unitary smooth gauge
perturbation g such that LAg is Fredholm and invertible.

Proof of Theorem 4.3. We know that LA is Fredholm and by choosing g =
exp(tU), for t > 0 sufficiently small, we obtain (4.66): indexLA = indexLAg =
0. It suffices to prove that LAg is injective. Let

` := dimKer(LA).

If ` = 0 then it suffices to take g = id, so let us assume now that ` > 0.
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By applying Proposition 4.10 to LA, we obtain a gauge perturbation g1 such
that

dimKer(LAg1 ) < dimKer(LA).

The operator LAg1 is in addition Fredholm of the same index as LA. Similarly
we can find a gauge perturbation operator g2 for LAg1 , and so on. By iterating
the procedure for at most ` times and denoting g := g1 · . . . · g`, we obtain a
gauge perturbation that makes the kernel of LAg trivial. This concludes the
proof.

4.3.4 Local density result in the high energy case

Having built the framework that allows us to find a unitary gauge trans-
formation g such that LAg is invertible, we can proceed with a very similar
procedure as in section 3.4.3 in order to show a local density result that pre-
serves the extended integrability condition (4.5) throughout the sequence.
More specifically, we find a sequence of unitary smooth 1-forms Ak converg-
ing to A and such that Ak satisfies the extended integrability condition (4.5).
Locally on B2d we cannot conclude the integrability condition. This will be
done globally in the next section.

We state an analogous result to Proposition 3.8 and refer the reader to its
proof. Since the arguments are identical, we will not prove it.

Proposition 4.11. Let A ∈ W 1,d(Ω1B2d ⊗ u(n)) and a sequence of smooth
1-forms Ãk → A in W 1,d. Then there exists a gauge g ∈ C∞(B2d, U(n)) and
k0 ∈ N such that

(i)
KerLAg = {0} and KerLÃgk

= {0}

for all k ≥ k0. In particular, the operators LÃgk
, k ≥ k0 and LAg are all

invertible.

(ii)

sup
k≥k0

∣∣∣∣∣∣∣∣∣L−1
Ãgk

∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣.

Remark 4.2. Unlike the proof of Proposition 3.8, the existence of g is now
given by theorem 4.3.

Under the assumption that the norm of F 0,2
A is sufficiently small, the next

lemma allows us to perturb the 1-form A such that the extended integrability
condition (4.5) is satisfied.
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Lemma 4.4. There exists C ′, C > 0 such that for every A ∈ W 1,d(Ω1B2d ⊗
u(n)) such that LA is invertible and

∥∥F 0,2
A

∥∥
Ld

< C′

|||L−1
A |||

, there exists ω ∈

W 2,d ∩Dom(LA)(Ω0,2B2d ⊗Mn(C)) such that the extended integrability con-
dition holds:

F 0,2
A+ϑω + ϑA0,1+ϑω∂ω = 0.

and

‖ω‖W 2,d(B2d) ≤ C
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ld(B2d) . (4.68)

Proof of Lemma 4.4. Observe the fact that the extended integrability condi-
tion can be obtained by solving

LA(ω) + [ϑω, ϑω] + ∗[∗∂ω, ϑωT ] = −F 0,2
A ,

for ω ∈ W 2,d(Ω0,2B2d) ∩ Dom(LA). In order to achieve this, we argue via
a fixed point argument using the fact that LA is invertible. We construct a
sequence of (0, 2)-forms ω0, ·, ωk, · such that:

LAω0 = −F 0,2
A

LAω1 = −
(

[ϑω0, ϑω0] + ∗[∗∂ω0, ϑω0
T

]
)
− F 0,2

A

LAω2 = −
(

[ϑω1, ϑω1] + ∗[∗∂ω1, ϑω1
T

]
)
− F 0,2

A

. . .

LAωk = −
(

[ϑωk−1, ϑωk−1] + ∗[∗∂ωk−1, ϑωk−1
T

]
)
− F 0,2

A

. . .

where ωk ∈ Dom(LA) for each k ∈ N. Thus, the boundary conditions are

(ωk)N = 0 and (dωk)N = 0 on ∂B2d.

Claim 1. For each k ∈ N there holds

‖ωk‖W 2,d(B2d) ≤ 2|||LA|||
∥∥F 0,2

A

∥∥
Ld(B2d)

. (4.69)

Since we have assumed that LA is invertible as a map W 2,d∩Dom(LA)→ Ld,
then we have the identity:

ω0 = L−1A LAω0.
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Hence, from the definition of the norm of operators, it follows that:

‖ω0‖W 2,d ≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖LAω0‖Ld(B2d)

=
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥F 0,2

A

∥∥
Ld(B2d)

< 2
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥F 0,2

A

∥∥
Ld(B2d)

Let k > 0. By the Sobolev embedding of W 1,d ↪→ L2d there exists a constant
C1 > 0 so that

‖ϑωk‖L2d(B2d) ≤ C1 ‖ϑωk‖W 1,d(B2d) ≤ C1 ‖ωk‖W 2,d(B2d)

and similarly ∥∥∂ωk∥∥L2d(B2d)
≤ C1 ‖ωk‖W 2,d(B2d) .

Then ωk satisfies the following estimate:

‖ωk‖W 2,d(B2d) ≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖LAωk‖Ld(B2d)

≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖[ϑωk−1, ϑωk−1]‖Ld(B2d)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥∥∗[∗∂ωk−1, ϑωk−1T ]

∥∥∥
Ld(B2d)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥F 0,2

A

∥∥
Ld(B2d)

≤ 2C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖ϑωk−1‖2L2d(B2d) +
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥F 0,2

A

∥∥
Ld(B2d)

≤ 2C2
1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖ωk−1‖2W 2,d +
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥F 0,2

A

∥∥
Ld(B2d)

By inductive hypothesis we have ‖ωk−1‖W 2,d < 2
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ld(B2d). Thus,

‖ωk‖W 2,d ≤ 4C2
1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣3 ‖FA‖2Ld(B2d) +
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥F 0,2

A

∥∥
Ld(B2d)

.

If 1/C ′ > 4C2
1 then

∥∥F 0,2
A

∥∥
Ld(B2d)

≤ C ′∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ≤ 1

4C2
1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ,
and this allows to prove (4.69) and conclude the proof of Claim 1.

Claim 2. {ωk}∞k=0 forms a Cauchy sequence.
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Let k > 0. It follows that

‖ωk+1 − ωk‖W 2,d ≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖LA(ωk+1 − ωk)‖Ld(B2d)

≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖[ϑ(ωk − ωk−1), ϑωk]‖Ld(B2d)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖ϑωk−1 ∧ ϑ(ωk − ωk−1)‖Ld(B2d)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥∥∥∗[∗(∂ωk − ∂ωk−1), ∂∗ωkT ]

∥∥∥∥
Ld(B2d)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥∥∗[∗∂ωk, ϑωk − ϑωk−1T ]

∥∥∥
Ld(B2d)

≤8C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ‖FA‖Ld(B2d) ‖ωk − ωk−1‖W 2,d

If we choose C ′ > 0 such that 1/C ′ > 8C1 then

∥∥F 0,2
A

∥∥
Ld(B2d)

≤ C ′∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 < 1

8C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 .
Thus, the factor 8C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ∥∥F 0,2
A

∥∥
Ld(B2d)

is strictly less than 1 and hence,

we can conclude that the sequence {ωk}∞k=0 is Cauchy, proving the claim.

As W 2,d is a Banach space and {ωk}∞k=0 is a Cauchy sequence, there exists
ω∞ such that ωk → ω∞ as k →∞ in W 2,d. By the strong convergence of ωk
and (4.69), we obtain that ‖ω∞‖W 2,d(B2d) ≤ 2

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ld(B2d) and

LA(ω∞) + [ϑω, ϑω] + ∗[∗∂ω, ϑωT ] = −F 0,2
A .

Thus, we have obtained the extended integrability condition:

F 0,2
A+ϑω + ϑA0,1+ϑω∂ω = 0.

Using the above arguments, we can prove the local density result:

Theorem 4.4. Let A ∈ W 1,d(Ω1B2d ⊗ u(n)), with F 0,2
A = 0. There exists a

sequence of smooth 1-forms Ak ∈ C∞(Ω1B2d⊗u(n)) and ωk ∈ C∞(Ω0,2B2d⊗
Mn(C) such that the extended integrability condition is satisfied for all k:

F 0,2
Ak

+ ϑA0,1
k
∂ωk = 0
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and Ak → A in W 1,d, ωk → 0 in W 2,d.

Proof of Theorem 4.4. By Theorem 4.3 there exists a gauge change g ∈
C∞(B2d, U(n)) so that LAg is invertibleW 2,d∩Dom(LA) to Ld. We can obtain

a sequence Ak of smooth u(n)-valued 1-forms such that
∥∥∥F 0,2

Ãk

∥∥∥
Ld(B2d)

→ 0

and Ãk → A in W 1,d as k → ∞. By Proposition 4.11(i) there exists k0
so that for all k ≥ k0, LÃgk

is invertible. Since g is a smooth gauge change

independent of k, it also follows that Ãgk → Ag in W 1,d as k →∞.

Moreover, by Proposition 4.11(ii) we know that

sup
k≥k0

∣∣∣∣∣∣∣∣∣L−1
Ãgk

∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣.

Because LAgL
−1
Ag = id, then

∣∣∣∣∣∣LAgL−1Ag ∣∣∣∣∣∣ = 1. It follows that

1 ≤ |||LAg |||
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣

and hence,
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣−1 ≤ |||LAg |||. Using this inequality, we can choose ε0 > 0

such that

ε0 <
1

C ′

∣∣∣∣∣∣∣∣∣L−1
Ãgk

∣∣∣∣∣∣∣∣∣−2 ≤ 1

C ′

∣∣∣∣∣∣∣∣∣LÃgk∣∣∣∣∣∣∣∣∣2,
uniformly in k, where C ′ is the constant given by Lemma 4.4. Hence, we can

pick k1 large enough such that
∥∥∥FÃgk∥∥∥Ld(B2d)

< ε0 for all k ≥ k1. For each

k ≥ k1, Lemma 4.4 gives the existence of 2-forms ωk that satisfy

‖ωk‖W 2,d(B2d) ≤ C
∣∣∣∣∣∣∣∣∣L−1

Ãgk

∣∣∣∣∣∣∣∣∣ ∥∥∥FÃgk∥∥∥Ld(B2d)
≤ 2C

∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣ ∥∥FÃk∥∥Ld(B2d)

and the extended integrability condition

F 0,2

Ãgk+ϑωk
+ ϑ(Ãgk)

0,1+ϑωk
∂ωk = 0 (4.70)

Since
∥∥FÃk∥∥Ld(B2d)

converges strongly to 0, the estimates on the 2-forms ωk

give ωk → 0 in W 2,d as k →∞. Thus, we obtain the strong convergence

Ãgk + ϑωk − ϑωk
T → Ag in W 1,d.

The connection forms

Ak :=
(
Ãgk + ϑωk − ϑωk

T
)g−1

∈ C∞(Ω0,1B2d ⊗ u(n))
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are uniformly bounded in W 1,d and Agk → Ag in W 1,d automatically. In
particular, we obtain

‖Agk − A
g‖Ld → 0 ⇐⇒

∥∥g−1 (Ak − A) g
∥∥
Ld
→ 0.

Moreover, since g is a smooth gauge change, we have the following estimates:

‖Ak − A‖Ld =
∥∥gg−1 (Ak − A) gg−1

∥∥
Ld

≤ ‖g‖L∞
∥∥g−1 (Ak − A) g

∥∥
Ld

∥∥g−1∥∥
L∞

.

Hence, ‖Ak − A‖Ld → 0. Similarly, we can prove the strong convergence of
their gradients, and hence Ak → A in W 1,d. In addition, the smooth sequence
Ak satisfies the extended integrability condition:

F 0,2
Ak

+ ϑA0,1
k
∂ωk = 0

by construction of ωk.

4.3.5 Global density result

Using the results in the previous section, we show that they can be immedi-
ately generalised and applied to the whole closed Kähler manifold Xd. We
conclude that the extended integrability condition (4.5) over Xd implies the
integrability condition (1.1) by Proposition 4.1. This observation is be possi-
ble since Xd does not have any boundary. We will work under the assumption
that the (0, 2) Dolbeaut cohomology group vanishes H0,2

∂
(Xd) = 0. This is

equivalent to saying that H2(Xd,O) = 0, where O is the sheaf of holomor-
phic functions [12, Dolbeault Theorem, p. 45]. We use similar arguments as
in Section 3.4.4.

We work on sections of the vector bundle (E, h0) over Xd. The ∂ operator
over Xd is well-defined and acts on the space of E-valued (p, q)-forms:

∂ : Ap,q(Xd)→ Ap,q+1(Xd).

Its corresponding dual operator, ∂
∗
, is defined as a map:

∂
∗

: Ap,q(Xd)→ Ap,q−1(Xd).

On the space Ap,q(Xd) the ∂-Hodge theorem gives the Ld decomposition:

Ap,q(Xd) = ∂Ap,q−1(Xd) + ∂
∗Ap,q+1(Xd) +Hp,q(Xd), (4.71)
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where Hp,q(Xd) is the space of holomorphic (p, q)-sections. Since Xd is a
closed Kähler manifold, then we remark that Hp,q(Xd) is finite dimensional.
In particular, by (4.71) any (0, 2)-form ω ∈ A0,2(Xd) over Xd can be decom-
posed as follows:

ω = ∂∂
∗
α + +∂

∗
∂α,

under the assumption that H0,2

∂
(Xd) = 0.

Recall that since ∂ and ∂
∗

define elliptic complexes over closed Kähler sur-
faces (see for example [22, Chapter IV]) then the operator ∂∂

∗
+∂
∗
∂ is elliptic

on (0, 2)-sections over closed Kähler manifolds. In particular it is Fredholm
and moreover, ∂∂

∗
+ ∂

∗
∂ is self-adjoint. Thus, its Fredholm index vanishes.

We globalise our operator LA from the previous sections as such:

L∇ : ΓW 2,d(A0,2(Xd))→ ΓLd(A0,2(Xd))

where ∇ is a W 1,d unitary connection over Xd and ΓW p,q is the space of
sections with W p,q regularity. We can directly apply theorem 4.3 to obtain
the existence of a smooth section g so that L∇ is Fredholm and invertible.

Remark 4.3. Since Xd is a closed Kähler manifold, we trivially have that
ω, ∂ω ∈ Dom∂

∗
. Thus, ϑ and ∂

∗
coincide.

It follows that we can apply Lemma 4.4 to∇ and obtain similarly to Theorem
4.4:

Lemma 4.5. Let ∇ a W 1,d unitary connection over Xd with H0,2

∂
(Xd) = 0,

satisfying the integrability condition

F 0,2
∇ = 0.

Then there exists a sequence of smooth unitary connections ∇k, and smooth
(0, 2) sections ωk satisfying the extended integrability condition

F 0,2
∇k + ∂

∗
∇0,1
k
∂ωk = 0

such that
distd(∇k,∇)→ 0 and ωk → 0 in ΓW 1,d .

It remains to show that this lemma implies that the integrability condition
(1.1) is satisfied for each connection ∇k.
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Theorem 4.5. Let ∇ a W 1,d unitary connection over Xd with H0,2

∂
(Xd) = 0,

satisfying the integrability condition

F 0,2
∇ = 0.

Then there exists a sequence of smooth unitary connections ∇k satisfying the
integrability condition

F 0,2
∇k = 0

such that
distd(∇k,∇)→ 0.

Proof of Theorem 4.5. From Lemma 4.5 there exists a sequence of smooth
unitary connections∇k, and smooth (0, 2) sections ωk satisfying the extended
integrability condition

F 0,2
∇k + ∂

∗
∇0,1
k
∂ωk = 0

such that
distd(∇k,∇)→ 0 and ωk → 0 in ΓW 1,d .

Note that since Xd does not have any boundary then ∂ωk ∈ Dom(∂
∗
). Hence,

by applying the earlier Proposition 4.1 to ∇k, we obtain the integrability
condition:

F 0,2
∇k = 0.

4.4 Proof of Theorems 1.3 and 1.4

We have obtained complete analogous results of Theorem 3.2 and Theorem
3.4 in the setting of Banach spaces see: Theorem 4.1 and Theorem 4.5. Then
the proofs of Theorem 1.3 and Theorem 1.4 are completely analogous to the
proofs of Theorem 1.1 and Theorem 1.2. Thus, we refer the reader to Sections
3.3 and 3.5.



Chapter 5

Weak Flat Connections

Through our work we have worked on several techniques that deal the issues
of the invertibility of Fredholm operators. We have realised that these can
tackle other problems as well. In this Chapter we prove one of them.

Let Bn be the n-dimensional unit ball. For a compact Lie group G and its
associated Lie algebra g, theorem 1.5 holds and it can be easily proven with
results from the literature (see below):

Theorem 1.5. A is a g-valued 1-form in W 1,n/2 over the ball Bn, and we
assume that FA = dA + A ∧ A = 0. Then there exist a sequence of smooth
1-forms Ak with k ∈ N such that

Ak → A in W 1,n/2,

furthermore satisfying

FAk = 0 for all k ∈ N.

This result can be proven using the same approach as in [4, Lemma 3]. In-
deed, from the flatness condition FA = 0 and the compactness of the gauge
group G, it is shown that A = u−1du for u a G-valued gauge transformation.
Since u can be bootstrapped to W 2,n/2 regularity, by [6] or [33] there exists
a sequence of smooth G-valued maps uk such that uk → u in W 2,n/2. Thus,
we can define Ak := u−1k duk.

Note that the technique used in [4, Lemma 3] requires only L2 regularity of
A in n-dimensions in order to get the existence of u ∈ W 1,2. Another way
of obtaining u is using the Uhlenbeck gauge extraction method for W 1,n/2

forms [41]. This gives us a gauge u ∈ W 2,n/2 such that for a constant C > 0

141
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we have ‖Au‖W 1,n/2 ≤ C ‖FA‖Ln/2 and d∗Au = 0. However, since FA = 0,
then Au = 0 and consequently A = u−1du.

All the above techniques rely on the compactness of the group G in order
to be able to show the density result. In this chapter we propose a more
general approach to this result that does not rely on the compactness of the
Lie group. Moreover, we will conclude the chapter with an open problem.
The strategy we will use relies heavily on the techniques presented in Section
4.3.

Hence, we will assume from now on that G is a Lie group not necessarily
compact inducing a matrix-valued Lie algebra g ⊂ Mr(R). The reader can
notice that, unlike in Chapter 4, we can prove the result on the bounded
domain Bn. This is possible due to the ellipticity of the operator d.

5.1 Strategy

We describe the strategy of proving Theorem 1.5. The first idea is to mollify
A in order to obtain a sequence of smooth 1-forms Ãk. Note that FÃk does
not necessarily vanish, and instead we find a perturbation by d∗ωk such that

FÃk+d∗ωk = 0,

where ωk is a sequence of 2-forms. In particular, due to Cartan formula
FA = dA+ 1

2
[A,A] and to the formula [ω, τ ] = ω∧ τ + τ ∧ω valid for 1-forms

ω, τ , the above translates into the following PDE for ωk:

dd∗ωk + [Ãk, d
∗ωk] + d∗ωk ∧ d∗ωk = −FÃk . (5.1)

The leading-order operator dd∗ in the above PDE is not elliptic. In particular,
it is not Fredholm. We note however that in general there holds the Bianchi
identity dAFA = 0, where

dAβ := dβ + [A, β] for all g-valued p-forms β.

In order to complete the symbol of (5.1), note that the linear part of (5.1)
reads dÃkd

∗ωk and thus we can complete it in a canonical way to an elliptic
(self-adjoint with respect to the L2-scalar product) operator by adding the
term dd∗

Ãk
.

We are now helped in the computations by the fact that so-called “Bianchi
identity” dAFA = dA(dA+ 1

2
[A,A]) = 0 holds for any A. This follows directly
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from the formula

[A,B] = A ∧B + (−1)k+pB ∧ A if A is a p-form and B is a q-form. (5.2)

The Bianchi identity implies 〈d∗Aτ, FA〉 = 〈τ, dAFA〉 = 0 for any 3-form τ ,
where by Proposition C.4 we have

d∗Aτ := d∗τ + ∗[∗τ, AT ].

Then we find the extended flatness condition

FA + d∗Aτ = 0. (5.3)

Under appropriate boundary condition on τ this is then actually equivalent
to FA = d∗Aτ = 0.

Applying the above with A 7→ Ãk + d∗ωk and τ 7→ dωk, we find the equation

dd∗ωk+d
∗dωk+[Ãk, d

∗ωk]+∗[∗dωk, ÃTk ]+d∗ωk∧d∗ωk+∗[∗dωk, (d∗ωk)T ] = −FÃk .
(5.4)

Now the linear part of equation (5.4) is formally self-adjoint and we pass to
investigate its Fredholmness. To do that we define the operator

LA : W 2,n/2 ∩Dom(LA)(Ω2Bn ⊗ g)→ Ln/2(Ω2Bn ⊗ g)

by

LA := dd∗ + d∗d+ [d∗, A] + ∗[∗d,AT ], (5.5)

where Dom(LA) = {ω : ωN = 0, (dω)N = 0 on ∂Bn}, where ωN are forms
with components involving dr. In particular over the space Dom(LA) we
have Ker(dd∗ + d∗d) = {0}.

Remark 5.1. We will show that on the space W 2,n/2(Ω2Bn⊗ g)∩Dom(LA)
we obtain that indexLA = 0 and

indexLA = index(d∗d+ d∗d) = 0.

Going back to our initial problem, (5.4) reduces to:

LÃk + d∗ωk ∧ d∗ωk + ∗[∗dωk, (d∗ωk)T ] = −FÃk ,

where, as we have shown above, LÃk is a 0-index operator. This equation
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cannot be solved using a fixed point argument due to lack of invertibility of
LA. However, using the Fredholm-ness of the operator and the fact that it
has 0 index, we show that under smooth gauge perturbations g, the operator
LAg is invertible. Thus, using all these pieces of information, we will solve

LÃgk
+ d∗ωk ∧ d∗ωk + ∗[∗dωk, (d∗ωk)T ] = −FÃgk ,

and from this we will prove the theorem.

5.2 Invertibility of LA

Since LA is a Fredholm operator, we can immediately assume the results of
Section 4.3.1. In particular, Proposition 4.6 enables us to decrease the kernel
of LA by applying perturbations to it. Since the strategy is analogous, then
it is enough to adapt our arguments from Section 4.3.3. We only replace
Propositions 4.9 and 4.10, and then Theorem 4.3 will follow. We set up the
perturbation problem in our setting.

Consider the family of G-valued gauges gt = exp tU , t = [0, 1]. We can
analytically expand Agt in t ∈ [0, 1] to obtain

Agt − A = t(dU + [U,A]) +O(t2). (5.6)

Moreover, it will be useful to define the bounded linear operators

Gt,U : W 2,n/2(Ω2Bn ⊗ g)→ Ln/2(Ω2Bn ⊗ g)

given by

Gt,U := [Agt − A− t(dU + [U,A]), d∗]

+ ∗[∗d, (Agt − A− t(dU + [U,A]))T ], (5.7)

and
PU : W 2,n/2(Ω2Bn ⊗ g)→ Ln/2(Ω2Bn ⊗ g)

given by
PU = [dU + [U,A], d∗] + ∗[∗d, (dU + [U,A])T ].

Observe that

LAgt = LA + [Agt − A, d∗] + ∗[∗d, (Agt − A)T ]
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and we can write Gt,U as Gt,U = LAgt − LA + tPU . It follows that

|||Gt,U ||| ≤ C ‖Agt − A‖Ln(Bn) + t|||PU |||, (5.8)

for some constant C > 0. Moreover, there exists t0 such that for all t ≤ t0,
we have the operator

[Agt − A, d∗] + ∗[∗d, (Agt − A)T ]

is small in operator norm mapping W 2,n/2(Ω2Bn⊗g) to Ln/2(Ω2Bn⊗g) such
that (see [32]):

indexLAgt = indexLA = 0. (5.9)

As we have seen before it is enough to find a perturbation PU that is injective
on the kernel LA in order to decrease the kernel size. Thus, we prove the
analogous result of Proposition 4.9 in our setting.

Proposition 5.1. There exists P = PU with the same domain and range as
LA and of the form PU(η) := [d∗η, dU + [U,A]] + ∗[∗dη, (dU + [U,A])T ] for U
smooth, such that P is injective on KerLA.

Proof of Proposition 5.1. Since LA is Fredholm, KerLA is a finite dimensional
space. Let {e1, . . . , eN} be an orthonormal basis of KerLA.

Claim 1. For each v ∈ KerLA,v 6= 0, there exists Uv ∈ C∞(Bn, g) such that
PUvv 6= 0.

Let v ∈ KerLA, v 6= 0. We show that for each such v, we can find Uv
such that PUvv 6= 0. Assume by contradiction that PUv = 0 for all smooth
g-valued maps U on Bn. Define the linear operators

H0 : C∞(Bn, g)→ C∞(Ω2Bn ⊗ g)

given by
H0(ω) := [[ω,A], d∗v] + ∗[∗dv, ([ω,A])T ]

and
H1 : C∞(Ω1Bn ⊗ g)→ C∞(Ω2Bn ⊗ g).

given by
H1(ω) := [ω, d∗v] + ∗[∗dv, ωT ]

We have H0(ω(x)) = H0(ω)(x), where ω(x) is identified with a constant form.
Moreover,

0 = PUv = [d∗v, dU + [U,A]] + ∗[∗dv, (dU + [U,A])T ] = H1(dU) +H0(U)



146 Chapter 5. Weak Flat Connections

for all smooth maps U on Bn. Applying Proposition C.2 to H1 and H0, we
obtain that H1 ◦ d = 0 and H0 = 0. In particular, taking into account that
(dU)T = d(UT ), we have obtained that for all U smooth maps on Bn,

H1(dU) = [dU, d∗v] + ∗[∗dv, (dU)T ] = 0.

Define the linear operator

H(ω) := (H1 ◦ d)(ω) : C∞(Ω1Bn ⊗ g)→ C∞(Ω2Bn ⊗ g).

Thus, we have

0 = [dU, d∗v] + ∗[∗dv, d(UT )] = H(dU)

for all smooth maps U on Bn. Applying Proposition C.1 to H, we obtain
that H = 0. By density of smooth 1-forms into W 1,n/2 1-forms, it follows in
particular that

H(A) = [A, d∗v] + ∗[∗dv,AT ] = 0.

Putting this together with the fact that v ∈ KerLA, we obtain:

0 = LAv = (dd∗ + d∗d)v.

Since the kernel of LA is empty when v ∈ Dom(LA), then v = 0. This is a
contradiction with the fact that v 6= 0. Hence, there exists Uv ∈ C∞(Bn, g)
so that PUvv 6= 0, as claimed.

Claim 2. There exists U smooth g-valued map such that PU is injective on
KerLA.

The proof of this claim follows identically as in Proposition 4.7.

Proposition 5.2. Let LA be defined as in (5.5) and assume that LA is not
injective. There exists a smooth gauge perturbation g such that

dimKer(LAg) < dimKer(LA) (5.10)

and indexLAg = indexLA = 0.

Proof of Proposition 5.2. By Proposition 5.1, there exists a 1-form U such
that the operator PU = [d∗, dU + [U,A]] +∗[∗d, (dU + [U,A])T ] is injective on
KerLA. Moreover, there exists t0 such that for t ≤ t0, we can assume that
PtU = tPU is small in operator norm such that Proposition 4.6 applies to LA
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and tP . Then LA + tPU is Fredholm and

dimKer(LA + tPU) < dimKer(LA).

The rest of the proof follows exactly as in Proposition 4.10 and by the oper-
ator norm estimate (5.8) we obtain

|||Gt,U ||| ≤
1

2
∣∣∣∣∣∣L−14

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(LA + tPU)−14

∣∣∣∣∣∣−1
for all t ≤ t2, with the notation as in Section 4.3.1. Hence, Lemma 4.3
applied to the operator LA + tPU and perturbation Gt,U together with the
definition of the operator Gt,U (5.7) that

dimKerLAg = dimKer(LA+tPU +Gt,U) ≤ dimKer(LA+tPU) < dimKer(LA),

for all t ≤ t2. Thus (5.10) holds, if we define g := exp tU for t ≤ t2. By
(5.9), we can also choose t > 0 slightly smaller so that we also guarantee that
indexLAg = indexLA = 0.

5.3 Density for non-compact groups G

Having obtained the results above results, we are now able to show theorem
1.5 under non-compactness of the Lie group G.

We start the section by showing that if we satisfy the extended flatness
condition, under the boundary conditions imposed by the space Dom(LA)
we recover the flatness condition.

Proposition 5.3. Let ω ∈ W 2,n/2∩Dom(LA)(Ω2Bn⊗g) be a solution to the
PDE:

LA(ω) + d∗ω ∧ d∗ω + ∗[∗dω, (d∗ω)T ] = −FA, (5.11)

which is equivalent to ω satisfying the extended flatness condition:

FA+d∗ω + d∗A+d∗ωdω = 0.

Then
FA+d∗ω = 0 and d∗A+d∗ωdω = 0.
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Remark 5.2. Since ω ∈ Dom(LA) then ω ∈ Dom(d∗) and dω ∈ Dom(d∗).
Thus, the terms d∗A+d∗ωdω and FA+d∗ω are well-defined.

Proof of Proposition 5.3. We expand LA in the PDE (5.11):

dd∗ω + d∗dω + [A, d∗ω] + ∗[∗dω,AT ] + d∗ω ∧ d∗ω + ∗[∗dω, (d∗ω)T ] = −FA.

By rearranging the terms, we obtain:

FA + dd∗ω + [A, d∗ω] + d∗ω ∧ d∗ω︸ ︷︷ ︸
=FA+d∗ω

+ d∗dω + ∗[∗dω, T ] + ∗[∗dω, (d∗ω)T ]︸ ︷︷ ︸
=d∗

A+d∗ωdω

= 0.

Hence, (5.3) translates to the extended flatness condition:

FA+d∗ω + d∗A+d∗ωdω = 0. (5.12)

Note that by the second Bianchi identity dAFA = 0 we have FA+d∗ω ∈
KerdA+d∗ω. Moreover, the equation above gives us that d∗A+d∗ωdω ∈ KerdA+d∗ω.
Clearly we also have

d∗A+d∗ωdω ∈ Imd∗A+d∗ω
Ln/2

= (KerdA+d∗ω)⊥ ,

where the set equality holds by the Closed Image Theorem. Thus, because

d∗A+d∗ωdω ∈ KerdA+d∗ω and d∗A+d∗ωdω ∈ (KerdA+d∗ω)⊥ ,

we obtain d∗A+d∗ωdω = 0. Moreover, since (5.12) holds, then we also get that
FA+d∗ω = 0. This concludes the proof.

We restate without proof the analogue of Proposition 3.6 in our setting:

Proposition 5.4. Let A ∈ W 1,n/2(Ω1Bn ⊗ g) and a sequence of smooth 1-
forms Ãk → A in W 1,n/2. Then there exists a gauge g ∈ C∞(Bn, G) and
k0 ∈ N such that

(i)
KerLAg = {0} and KerLÃgk

= {0}

for all k ≥ k0. In particular, the operators LÃgk
and LAg are all invert-

ible.
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(ii)

sup
k≥k0

∣∣∣∣∣∣∣∣∣L−1
Ãgk

∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣.

Similarly as Lemma 4.4, we show that for small enough curvature form FA,
we can perturb A such that we satisfy the extended flatness condition (5.3).

Lemma 5.1. There exists C ′, C > 0 such that for every A ∈ Ln(Ω1Bn ⊗ g)
such that LA is invertible and ‖FA‖Ln/2 <

C′

|||L−1
A |||

, there exists ω ∈ W 2,n/2 ∩
Dom(LA)(Ω2Bn ⊗ g) such that the extended flatness condition is satisfied:

FA+d∗ω + d∗A+d∗ωdω = 0

and

‖ω‖W 2,n/2(Bn) ≤ C
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn) . (5.13)

Proof of Lemma 5.1. We construct the following sequence of solutions:

LAω0 = −FA
LAω1 = −d∗ω0 ∧ d∗ω0 − ∗[∗dω0, (d

∗ω0)
T ]− FA

LAω2 = −d∗ω1 ∧ d∗ω1 − ∗[∗dω1, (d
∗ω1)

T ]− FA
. . .

LAωk = −d∗ωk−1 ∧ d∗ωk−1 − ∗[∗dωk−1, (d∗ωk−1)T ]− FA
. . .

where each ωk ∈ Dom(LA), i.e. it satisfies the boundary conditions:

(ωk)N = 0 and (dωk)N = 0 on ∂Bn.

Claim 1. For each k ∈ N there holds

‖ωk‖W 2,n/2 ≤ 2|||LA||| ‖FA‖Ln/2(Bn) . (5.14)

Since LA is invertible, then we have the identity:

ω0 = L−1A LAω0.

Hence, from the definition of the norm of operators, it follows that:

‖ω0‖W 2,n/2 ≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖LAω0‖Ln/2(Bn)
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=
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn)

< 2
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn)

Let k > 0. By the Sobolev embedding of W 1,n/2 ↪→ Ln there exists a constant
C1 > 0 so that

‖d∗ωk‖Ln(Bn) ≤ C1 ‖d∗ωk‖W 1,n/2(Bn) ≤ C1 ‖ωk‖W 2,n/2 .

Then we have:

‖ωk‖W 2,n/2 ≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖LAωk‖Ln/2(Bn)

≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖d∗ωk−1 ∧ d∗ωk−1‖Ln/2(Bn)
+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥∗[∗dωk−1, (d∗ωk−1)T ]

∥∥
Ln/2(Bn)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn)

≤ 2C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖d∗ωk−1‖2Ln(Bn) +
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn)

≤ 2C2
1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖ωk−1‖2W 2,n/2 +
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn)

By inductive hypothesis we have ‖ωk−1‖W 2,n/2 < 2
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn). Thus,

‖ωk‖W 2,n/2 ≤ 4C2
1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣3 ‖FA‖2Ln/2(Bn) +
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn) .

If 1/C ′ > 4C2
1 then

‖FA‖Ln/2(Bn) ≤
C ′∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ≤ 1

4C2
1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ,
and this allows to prove (5.14) and conclude the proof of Claim 1.

Claim 2. {ωk}∞k=0 forms a Cauchy sequence.

Let k > 0. It follows that

‖ωk+1 − ωk‖W 2,n/2 ≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖LA(ωk+1 − ωk)‖Ln/2(Bn)

≤
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖d∗(ωk − ωk−1) ∧ d∗ωk‖Ln/2(Bn)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖d∗ωk−1 ∧ d∗(ωk − ωk−1)‖Ln/2(Bn)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥∗[∗(dωk − dωk−1), (d∗ωk)T ]

∥∥
Ln/2(Bn)

+
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ∥∥∗[∗dωk, (d∗ωk − d∗ωk−1)T ]

∥∥
Ln/2(Bn)
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≤ 8C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ‖FA‖Ln/2(Bn) ‖ωk − ωk−1‖W 2,n/2

If C ′ > 0 is such that 1/C ′ > 8C1 then

‖FA‖Ln/2(Bn) ≤
C ′∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 < 1

8C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 .
Thus, the factor 8C1

∣∣∣∣∣∣L−1A ∣∣∣∣∣∣2 ‖FA‖Ln/2(Bn) is strictly less than 1 and hence,
we can conclude that the sequence {ωk}∞k=0 is Cauchy, proving the claim.

As W 2,n/2 ∩Dom(LA) is a Banach space and {ωk}∞k=0 is a Cauchy sequence,
there exists ω∞ such that ωk → ω∞ as k → ∞ in W 2,n/2 ∩ Dom(LA). By
strong convergence and (5.14), we obtain that

‖ω∞‖W 2,n/2 ≤ 2
∣∣∣∣∣∣L−1A ∣∣∣∣∣∣ ‖FA‖Ln/2(Bn)

and
LA(ω∞) + d∗ω∞ ∧ d∗ω∞ + ∗[∗dω∞, (d∗ω∞)T ] = −FA.

Thus, by defining ω := ω∞ we recover the extended integrability condition:

FA+d∗ω + d∗A+d∗ωdω = 0.

Having all the necessary results in hand, we can now proceed to proving
theorem 1.5.

Proof of Theorem 1.5. We can apply Theorem 4.3 to LA since we have ob-
tained Proposition 5.2. Then there exists a gauge change g ∈ C∞(Bn, G) so
that LAg is invertible W 2,n/2 ∩ Dom(LA) to Ln/2. Moreover, there exists a
sequence Ak of smooth g-valued 1-forms such that

∥∥FÃk∥∥Ln/2(Bn) → 0 and

Ãk → A in W 1,n/2 as k →∞. By Proposition 5.4(i) there exists k0 so that for
all k ≥ k0, LÃgk

is invertible. Since g is a smooth gauge change independent

of k, it also follows that Ãgk → Ag in W 1,n/2 as k →∞.

Moreover, by Proposition 5.4(ii) we know that

sup
k≥k0

∣∣∣∣∣∣∣∣∣L−1
Ãgk

∣∣∣∣∣∣∣∣∣ ≤ 2
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣.

Because LAgL
−1
Ag = id, then

∣∣∣∣∣∣LAgL−1Ag ∣∣∣∣∣∣ = 1. It follows that
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1 ≤ |||LAg |||
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣

and hence,
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣−1 ≤ |||LAg |||. Using this inequality, we can choose ε0 > 0

such that

ε0 <
1

C ′

∣∣∣∣∣∣∣∣∣L−1
Ãgk

∣∣∣∣∣∣∣∣∣−2 ≤ 1

C ′

∣∣∣∣∣∣∣∣∣LÃgk∣∣∣∣∣∣∣∣∣2,
uniformly in k, where C ′ is the constant given by Lemma 5.1. Hence, we can

pick k1 large enough such that
∥∥∥FÃgk∥∥∥Ln/2(Bn) < ε0 for all k ≥ k1. For each

k ≥ k1, Lemma 5.1 gives the existence of 2-forms ωk that satisfy

‖ωk‖W 2,n/2(Bn) ≤ C
∣∣∣∣∣∣∣∣∣L−1

Ãgk

∣∣∣∣∣∣∣∣∣ ∥∥∥FÃgk∥∥∥Ln/2(Bn) ≤ 2C
∣∣∣∣∣∣L−1Ag ∣∣∣∣∣∣ ∥∥FÃk∥∥Ln/2(Bn)

and

LÃgk
(ωk) + d∗ωk ∧ d∗ωk + ∗[∗dωk, (d∗ωk)T ] = −FÃgk . (5.15)

By Proposition 5.11, implies that FÃgk+d∗ωk
= 0. Since

∥∥FÃk∥∥Ln/2(Bn) con-

verges strongly to 0, the estimates on the 2-forms ωk give ωk → 0 in W 2,n/2

as k →∞. Thus, we obtain the strong convergence

Ãgk + d∗ωk → Ag in W 1,n/2.

The connection forms

Ak :=
(
Ãgk + d∗ωk

)g−1

∈ C∞

are uniformly bounded in W 1,n/2 and Agk → Ag in W 1,n/2 automatically. In
particular, we obtain

‖Agk − A
g‖Ln/2 → 0 ⇐⇒

∥∥g−1 (Ak − A) g
∥∥
Ln/2
→ 0.

Moreover, since g is a smooth gauge change, we have the following estimates:

‖Ak − A‖Ln/2 =
∥∥gg−1 (Ak − A) gg−1

∥∥
Ln/2

≤ ‖g‖L∞
∥∥g−1 (Ak − A) g

∥∥
Ln/2

∥∥g−1∥∥
L∞

.

Hence, ‖Ak − A‖Ln/2 → 0. Similarly, we can prove the strong convergence
of their gradients, and hence Ak → A in W 1,n/2. In addition, the smooth
sequence Ak satisfies the flatness condition FAk = 0 by construction of ωk.



Appendix A

Results in Several Complex
Variables

We briefly recall some of the results we will be using from the theory of
several complex variables. Valuable reads include [36], [8] and [9].

Definition A.1. Let D be a bounded domain in Cn. We say D has boundary
of class Ck if for every p ∈ ∂D and U neighbourhood of p, there exists a Ck

function r : U → R such that U ∩D = {z ∈ U | r(z) < 0}, U ∩ ∂D = {z ∈
U | r(z) = 0} and ∇r(z) 6= 0 on U∩∂D. Then r is called a Ck local defining
function for D. If D ⊂ U , then r is a global defining function.

Moreover, we need to define what pseudoconvexity is:

Definition A.2. Let D be a bounded domain in Cn and r a C2 defining
function. D is pseudoconvex at p ∈ ∂D if the Levi form

Lp(r, t) =
n∑

i,j=1

∂2r

∂zi∂zj
tjtk ≥ 0

for all t ∈ T 1,0
p (∂D). D is strictly pseudoconvex at p if Lp(r, t) > 0

whenever t 6= 0. If D is (strictly) pseudoconvex for all p ∈ ∂D then D is
(strictly) pseudoconvex.

Over a bounded domain D ⊂ Cn, we define the operator

∂ : Ωp,qD → Ωp,q+1D

acting on forms ω =
∑

IJ ωIJdzI ∧ dzJ by

∂ω =
∑
kIJ

∂zkωIJdzk ∧ dzI ∧ dzJ ,
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where I is an index set of size p and J is an index set of size q. Let φ ∈ Ωp,qD
and ψ ∈ Ωp,q−1D a compactly supported form. Then, we compute the dual
operator ϑ of ∂ with respect to the L2 scalar product:∫

D

tr

(
φ ∧ ∗∂ψ

T
)

= (φ, ∂ψ)

=

(∑
IJ

φIJdzI ∧ dzJ ,
∑
kIJ

∂zkψIJdzk ∧ dzI ∧ dzJ)

)
.

where ∗ is the Hodge star operator mapping Ωp,qD to Ωn−q,n−p. Using the
fact that (dzi, dzj) = 2δij, then by integrating by parts and rearranging the
terms we get

(φ, ∂ψ) = 2p+q
∑
IH

(∑
kJ

∂zkφIJ , ψIH

)
,

for H index set of size q − 1, J index set of size q and I index set of size p.
Hence, by defining

ϑφ = 2
∑
kIJH

∂zkφIJdzI ∧ dzH ,

we obtain the required duality

(φ, ∂ψ) = (ϑφ, ψ).

In geometric applications, it is useful to work on local orthonormal basis
τ1 · τn spanning the complex tangent space at a point P , T 1,0

P D. Thus, we
can replace the frame {dzi} with {τi} and define Li the vector fields dual to
τi. Note that τi are not necessarily ∂-closed and error terms or lower order
will appear when applying the ∂ operator on forms. We have:

∂φ =
∑
kIJ

LkωIJτ k ∧ τI ∧ τJ + terms of order zero,

and
ϑφ =

∑
kIJH

LkφIJτI ∧ τH + terms of order zero.

Moreover, we can also obtain the following expression of ϑ in terms of the
operator ∂:

ϑ = − ∗ ∂∗, (A.1)

see [9, Proposition 5.1.1]. If φ and ψ do not necessarily have compact support,
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then

(ϑφ, ψ) = (φ, ∂ψ) +

∫
∂D

〈σ(ϑ, dr)φ, ψ〉dS,

where φ is a (p, q)-form and ψ a (p, q−1)-form and we are using the notation
in the literature σ(ϑ, dr)φ to denote

σ(ϑ, dr)φ = ∗∂r ∧ ∗φT
T

. (A.2)

More explicitly, σ(ϑ, dr)φ is the form whose components are in the ∂r frame
of φ. We denote the components of φ that are in the ∂r frame, by φN . Thus,
if σ(ϑ, dr)φ = 0, then ϑ = ∂

∗
, where ∂

∗
is the Hilbert adjoint operator. In

this case we say that φ ∈ Dom(∂
∗
), i.e. φ is in the domain of ∂

∗
.

It is also useful to remark the fact that if a (0, q)-form α vanishes on the
boundary, it follows that α vanishes component wise on the boundary. This
is because the frame ∂r does not vanish on the boundary, unlike dr which
does vanish! In terms of the notation above, φ = 0 on ∂D is equivalent to
σ(ϑ, dr)φ = 0 and σ(∂, dr)φ = 0 on ∂D, where σ(∂, dr)· = ∂r ∧ · is the
adjoint operator of σ(ϑ, dr).

Before we state a few results regarding regularity and Hodge type decom-
position, we say that φ is in the domain of the Kohn-Laplace ∆∂ (also de-

noted in the literature by 2) φ ∈ Dom(∆∂) if and only if φ ∈ Dom(∂
∗
)

and ∂φ ∈ Dom(∂). These conditions are called the ∂-Neumann boundary
conditions over the domain D, i.e. they amount to saying that φN = 0 and
(∂φ)N = 0 over ∂D.

Moreover, it was shown for Hilbert spaces [9] and Sobolev spaces [5] that
over pseudoconvex domains D there exists the inverse operator

N : W s,p(Ωp,qD)→ W s+1,p(Ωp,qD) (A.3)

of the operator ∆∂ and moreover Nφ ∈ Dom(∆∂), ∆∂Nφ = φ,

‖Nφ‖W s+1,p ≤ C ‖φ‖W s,p for any φ ∈ Ωp,qD.

We also have the estimate:∥∥∂Nφ∥∥
W s+1/2,p +

∥∥∥∂∗Nφ∥∥∥
W s+1/2,p

≤ C ‖φ‖W s,p .

This shows that over domains with boundary the operators ∆∂, ∂ and con-
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sequently ∂
∗

are not elliptic, but they do satisfy the above sub-elliptic esti-
mates.

We also obtain the ∂-Hodge decomposition for any form φ ∈ Ωp,q:

φ = ∂∂
∗
Nφ+ ∂

∗
∂Nφ+ h, (A.4)

where h is a holomorphic form, i.e. it satisfies: ∂h = 0 and ∂
∗
h = 0. For

domains D with vanishing (p, q) Dolbeault cohomology Hp,q

∂
(D) = 0 or for

domains D ⊆ Cn for some n we have

φ = ∂∂
∗
Nφ+ ∂

∗
∂Nφ. (A.5)

We refer the reader to [8] and [12]. In particular, over Stein manifolds (man-
ifolds that holomorphically embedd into Cn, for some n), there are no holo-
morphic forms in the ∂-Hodge decomposition.

We recall the Integral Representation Theorem which was proven in [24]
for (0, q)-forms and initially in [14] for (0, 1)-forms. Before doing so, we will
have to define a few key operators. Let D be a strictly pseudoconvex domain
in Cn with defining function r such that

n∑
i,j=1

∂2r

∂xi∂xj
titj ≥ c|t|2

for some c ∈ R and t ∈ R2n.

The Bochner-Martinelli-Koppelman kernel (see [8, Theorem 11.1.2]) is given
by:

K(ζ, z) =
1

(2πi)n

∑n
i=1(ζ i − zi)dζi
|ζ − z|2

∧
(∑n

i=1(dζ i − dzi) ∧ dζi
|ζ − z|2

)n−1
. (A.6)

We define the kernel Kq as being the form of (0, q) degree in z and (n, n−q−1)
degree in ζ. Moreover, the boundary kernels K∂, K∂

00 are given by

K∂ =
1

(2πi)n

∑n
i=1(ζ i − zi)dζi
|ζ − z|2

∧
∑n

i=1 ∂ζir(ζ)dζi∑n
i=1 ∂ζir(ζ)(ζi − zi)

∧
∑

k1+k2=n−2

(∑n
i=1(ζ i − zi)dζi
|ζ − z|2

)k1

∧

(∑n
i=1 ∂ζi∂ζir(ζ)dζ i ∧ dζi∑n
i=1 ∂ζir(ζ)(ζi − zi)

)k2
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and

K∂
00 =

1

(2πi)n

∑n
i=1(ζ i − zi)dζi
|ζ − z|2

∧

(∑n
i=1 ∂ζi∂ζir(ζ)dζ i ∧ dζi∑n
i=1 ∂ζir(ζ)(ζi − zi)

)n−1

.

For each q ≥ 1 we can, thus, define

Tq : C∞(Ω0,qD)→ C∞(Ω0,q−1D)

given by

T1(α) =

∫
D

K0 ∧ α−
∫
∂D

K∂
0 ∧ α when q = 1 (A.7)

and

Tq(α) =

∫
D

Kq−1 ∧ α when q > 1, (A.8)

where by K∂
0 we understand the form of (0, 0) degree in z.

We now formulate the representation theorem (this can be found in [24,
Section 3] and [8, Theorem 11.2.7]):

Theorem A.1. Let D be a bounded strictly pseudoconvex domain in Cn with
C2 boundary, 0 ≤ q ≤ n and α ∈ C∞(Ω0,qD,C). Then we have the following
representations:

α(z) =

∫
∂D

K∂
00(ζ, z)α(ζ) + T1(∂α) when q = 0

α(z) = ∂(Tqα) + Tq+1(∂α) when q > 0.

Moreover, for results concerning regularity of operators Tq, we recommend to
the reader [19] (optimal Lp results for (0, 1)-forms) and [24] (Lp and Hölder
regularity results for (0, q)-forms).

The operators Tq are key to proving Lemma 3.3, which is used to prove
theorem 1.1.

A.1 Results in the unit ball B4

Since the operators ∂, ϑ have been stated in their full generality, in this
section we will be more concrete and deal with the case when the domain
D is chosen as B4, embedded into C2. At the end of this section we prove
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regularity results for the operators T1 and T2 we have defined above and can
also be found in [24].

In particular, on B4 we define

r(z) = |z|2 − 1.

Then r is a global defining function for B4. Thus, B4 is an example of
a strictly pseudoconvex domain. Indeed, if the pick the defining function
above, we have that the Levi form

Lp(r, t) = |t|2 > 0

for all p ∈ B4, t ∈ T 1,0
p (∂B4), t 6= 0. On B4 we take the canonical complex

structure J . At each point p ∈ ∂B4, we can find an orthonormal (0, 1) fields
Lτ and L∂r that span the complexified tangential space TC

p (∂B4). We will
explictly compute them.

Let e∗, Je∗, dr, Jdr define the Hopf frame. These define the orthonormal
basis for (0, 1)-forms. Namely,

τ = e∗ + iJe∗ (A.9)

and
∂r = dr + iJdr. (A.10)

In terms of z1 and z2, they satisfy:

dr =
1

2r
(z1dz1 + z1dz1 + z2dz2 + z2dz2) =

1

2
(∂r + ∂r)

Jdr =
1

2ir
(−z1dz1 + z1dz1 + z2dz2 − z2dz2) =

1

2
(∂r − ∂r)

e∗ =
1

2r
(z2dz1 − z1dz2 + z2dz1 − z1dz2) =

1

2
(τ + τ)

Je∗ =
1

2ir
(z2dz1 − z1dz2 − z2dz1 + z1dz2) =

1

2r
(τ − τ).

We obtain the explicit formulation of τ and ∂r:

τ = 1
r

(z2dz1 − z1dz2)

∂r = 1
r

(z1dz1 + z2dz2)

(A.11)
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Moreover, the vector fields Lτ and L∂r can be computed as follows:

Lτ =
1

2
(∂e∗ − i∂Je∗) =

1

r
(z2∂z1 − z1∂z2)

L∂r =
1

2
(∂r − i∂Jdr) =

1

r
(z1∂z1 + z2∂z2) .

We prove a regularity result for (0, 2)-forms in the domain B4, which comes
in-handy in our results, for example in the proof of Lemma 3.3. We are
unaware of such a result being available in the literature.

Proposition A.1. The operator T2 (A.8) maps Lp(Ω0,2B4) into W 1,p(Ω0,1B4)
whenever p > 1.

Proof of Proposition A.1. From the formula (A.6), we obtain

K1(ζ, z) = − 1

4π2

∑2
i=1(ζ i − zi)dζi
|ζ − z|2

∧
∑2

i=1−dzi ∧ dζi
|ζ − z|2

.

We expand the equation above to get:

K1(ζ, z) = − 1

4π2|ζ − z|4
(
(ζ1 − z1)dζ1 ∧ dz2 ∧ dζ2 + (ζ2 − z2)dζ2 ∧ dz1 ∧ dζ1

)
.

Let α = fdz1 ∧ dz2 ∈ Lp(Ω0,2B4). From the formula of T2 it follows that:

T2(α) =

(
−

1

4π2

∫
B4

1

|ζ − z|4
(ζ2 − z2)fdζ1 ∧ dζ1 ∧ dζ2 ∧ dζ2

)
dz1

+

(
−

1

4π2

∫
B4

1

|ζ − z|4
(ζ1 − z1)fdζ1 ∧ dζ1 ∧ dζ2 ∧ dζ2

)
dz2.

Since each component of K1 is a quasi-potential in the sense of [21, Definition
3.7.1], then we can apply [21, Theorem 3.7.1] component wise to T2(α) to get
the required result:

‖T2(α)‖W 1,p(B4) ≤ ‖α‖Lp(B4) .

In addition, the following result builds upon the sharp estimates of the Henkin
operator (T1 in our notation) found by [19]. In particular, we show that for
estimating T1α, where α is a (0, 1) form, we can relax the condition ∂α = 0.
The estimates we find are not sharp.
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Proposition A.2. Let p > 6 and q > 6 such that W 1,p(B4) ↪→ Lq(B4) and
α ∈ Lq(Ω0,1B4) satisfying ∂α ∈ Lp(B4). Then there exists a constant C > 0
depending on p and q such that:

‖T1α‖L∞(B4) +
∥∥∂T1α∥∥Lq(B4)

≤ C
(
‖α‖Lq(B4) +

∥∥∂α∥∥
Lp(B4)

)
.

Proof of Proposition A.2. We refer to the proofs presented in [19]. We recall:

T1(α) =

∫
B4

K0 ∧ α−
∫
∂B4

K∂
0 ∧ α. (A.12)

In [19, Section 5] it is shown that the first term has ”good” regularity. In
particular it follows that

∫
B4 K0∧α belongs to a Lipschitz space when α ∈ Lq

for q > 6. We focus our attention to the second term in (A.12), which is
problematic. By Stokes Theorem we obtain:∫

∂B4

K∂
0 ∧ α =

∫
B4

∂K∂
0 ∧ α−

∫
B4

K∂
0 ∧ ∂α. (A.13)

Note that ∂α 6= 0 in general. The first integral in (A.13) is estimated in [19,
Section 5,6] and yields the regularity result:∥∥∥∥∫

B4

∂K∂
0 ∧ α

∥∥∥∥
L∞(B4)

≤ C ‖α‖Lq(B4) .

for some constant C > 0. It remains to deal with the term:
∫
B4 K

∂
0 ∧ ∂α.

However, since ∂K∂
0 is more singular than K∂

0 , since ∂α ∈ Lp, we have the
estimate: ∥∥∥∥∫

B4

K∂
0 ∧ ∂α

∥∥∥∥
L∞(B4)

≤ C
∥∥∂α∥∥

Lp(B4)
.

Hence, we have that there exists a constant C > 0 such that

‖T1α‖L∞(B4) ≤ C
(
‖α‖Lq(B4) +

∥∥∂α∥∥
Lp(B4)

)
. (A.14)

Since ∂α is well-defined, by density of smooth forms, we obtain by Theorem
A.1 the following equation:

α = ∂T1(α) + T2(∂α),

and ∥∥∂T1(α)
∥∥
Lq(B4)

≤ ‖α‖Lq(B4) +
∥∥T2(∂α)

∥∥
Lq(B4)

.

By Proposition A.1, we have that T2(∂α) ∈ W 1,p ↪→ Lq. In particular, there
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exist constants C,C ′ > 0 such that:∥∥∂T1(α)
∥∥
Lq(B4)

≤ C
(
‖α‖Lq(B4) +

∥∥T2(∂α)
∥∥
W 1,p(B4)

)
≤ C ′

(
‖α‖Lq(B4) +

∥∥∂α∥∥
Lp(B4)

)
. (A.15)

Hence, by putting (A.14) and (A.15) together we get:

‖T1α‖L∞(B4) +
∥∥∂T1α∥∥Lq(B4)

≤ C
(
‖α‖Lq(B4) +

∥∥∂α∥∥
Lp(B4)

)
.





Appendix B

Extension Procedures

This appendix section introduces a short result concerning extensions of
(0, q)-forms.

Proposition B.1. Let U, V be bounded smooth domains in Cn with U∩V 6= ∅
and α ∈ W 2,p(Ω0,qU ∩ V ). Then there exists a W 2,p extension α̃ of α in U
such that α̃ = α in U ∩ V .

This extension will be used in Chapter 2 for the gluing procedure.

Proof of Proposition B.1. It is sufficient to extend α component wise in Cn

and then restrict each component to U . Hence, the problem reduces to
harmonic extensions. We solve the PDEs:

∆2ωI = 0 in Cn \ U ∩ V

∂rωI = ∂rαI on ∂(U ∩ V )

ωI = αI on ∂(U ∩ V ),

where α =
∑

I αIdzI , I index of size q. Such a solution exists and elliptic
estimates give

‖ωI‖W 2,p(Cn) ≤ C ‖α‖W 2,p(U∩V ) ,

for some constant C > 0. Moreover ωI = αI on U ∩ V by construction.
Hence, by defining α̃ =

∑
I ωIdzI and restricting it to U , we obtain our

result.
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Appendix C

Linear Operators

We prove the following results that are be used in several chapters.

Proposition C.1. Let D be a bounded domain in Rn, g a Lie algebra and
for k ∈ N, let

H : C∞(Ω1D ⊗ g)→ C∞(ΩkD ⊗ g)

be a linear operator such that H(A)(x) = H(A(x)) for all x ∈ D and A ∈
C∞(Ω1D ⊗ g). If for all U ∈ C∞(D, g) we have

H(dU) = 0 (C.1)

then H = 0.

Before we prove this statement we remark that the condition H(A)(x) =
H(A(x)) in general prevents H from being a differential operator acting on
forms A. Otherwise the statement cannot be true. For example take H = d,
H(dU) = 0 - since d2 = 0, but d 6= 0.

Proof of Proposition C.1. Fix A ∈ C∞(Ω1D ⊗ g), then we can write it as
A =

∑n
i=1 aidxi. Fix x0 ∈ D arbitrary and define the function V (x) :=∑n

i=1 ai(x0)xi. Then dV = A(x0). Moreover, by (C.1) we have

H(dV ) = H(A(x0)) = H(A)(x0) = 0.

Hence, because x0 is arbitrary, we have that H(A) = 0 and since A was an
arbitrarily chosen smooth 1-form, then H = 0.

Next, we prove a more general statement than the one above:
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Proposition C.2. Let D be a bounded domain in Rn, g a Lie algebra and
for k ∈ N, let

H0 : C∞(D, g)→ C∞(ΩkD ⊗ g)

and
H1 : C∞(Ω1D ⊗ g)→ C∞(ΩkD ⊗ g)

be linear operators such that H0(U)(x) = H0(U(x)) for all x ∈ D. If for all
U ∈ C∞(D, g) we have

H0(U) +H1(dU) = 0 (C.2)

then H0 = 0 and H1 ◦ d = 0.

Proof of Proposition C.2. Fix U ∈ C∞(D, g) and x ∈ D. Define Vx := U(x)
a constant function. Then by (C.2), we have

H0(Vx) = H0(U(x)) = H0(U)(x) = 0.

Since x is arbitrary in D, then we have that H0(U) = 0. Since U is an
arbitrarily chosen smooth function, then H0 = 0. Hence, from this and
(C.2), we also obtain H1 ◦ d = 0. This concludes the proof.

The following results find the expression of the adjoints of ∂A and dA. These
expressions will be of critical use in Chapters 4 and 5.

Proposition C.3. Let g ⊆Mr(C) a Lie algebra, A be a g-valued 1-form and
∂A : C∞(Ωp,qB2d ⊗ g)→ C∞(Ωp,q+1B2d ⊗ g), be the operator given by:

∂Aω = ∂ω + [A0,1, ω].

Then the formal adjoint ∂
∗
A to dA with respect to the L2 inner product over

(p, q)-forms induced by the Frobenius inner product (A,B) 7→ tr(AB
T

) on g,
is defined on C∞(Ωp,q+1B2d ⊗ g) ∩Dom(∂

∗
) by

∂
∗
Aτ = ∂

∗
τ + ∗[∗τ, A0,1

T
].

Remark C.1. ∂
∗
A defines the Hilbert adjoint of ∂A. We can similarly find

ϑA, the formal adjoint of ∂A. Indeed, assuming compactly supported forms,
we analogously find

ϑ∗Aτ = ϑτ + ∗[∗τ, A0,1
T

].
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Proof of Proposition C.3. Let k ≥ 0, ω ∈ Ωp,q and τ ∈ Ωp,q+1 ∩ Dom(∂
∗
),

then:
〈∂Aω, τ〉 = 〈∂ω + [A0,1, ω], τ〉 = 〈ω, ∂∗τ〉+ 〈[A0,1, ω], τ〉.

Recall that [A0,1, ω]
def
= A0,1 ∧ ω + (−1)p+q+1ω ∧ A0,1 when ω is a (p, q)-form

and A a 1-form. Thus,

〈A0,1 ∧ ω, τ〉 def=

∫
B2d

tr(A0,1 ∧ ω ∧ ∗τT ) = −
∫
B2d

tr(ω ∧ ∗τT ∧ A0,1),

Where we used the fact that tr(ABC) = tr(BCA) and the antisymmetry of
the wedge product. Using the fact that

∗ ∗ η = (−1)(p+q)
2

η if η is a (p, q)-form,

we obtain by linearity of the trace and noting that ∗τT ∧A0,1 is a (d−p, d−q)-
form:

〈A0,1 ∧ ω, τ〉 = −(−1)(p+q)
2

∫
B2d

tr
(
ω ∧ ∗ ∗ (∗τT ∧ A0,1)

)
= −(−1)(p+q)

2

∫
B2d

tr

(
ω ∧ ∗∗(∗τT ∧ A0,1)

T
T
)

= −(−1)(p+q)
2

∫
B2d

tr

(
ω ∧ ∗(∗(∗τT ∧ A0,1)

T
)
T
)

= −(−1)(p+q)
2〈ω, ∗(∗τT ∧ A0,1)

T
〉.

Using the fact that for matrices we have (AB)T = BTAT and the antisym-
metry of the wedge product, we obtain:

〈A0,1 ∧ ω, τ〉 = −(−1)(p+q)
2

(−1)2d−p−q−1〈ω, ∗(A0,1
T ∧ ∗τ)〉

= (−1)(p+q)
2+p+q〈ω, ∗(A0,1

T ∧ ∗τ)〉.

Interchanging now the role of ∗τT ∧ A0,1 with A0,1 ∧ ∗τT , we get as above

〈(−1)p+q+1ω ∧ A0,1, τ〉 = (−1)p+q+1

∫
B2d

tr
(
ω ∧ A0,1 ∧ ∗τT

)
= (−1)(p+q)

2+p+q+1〈ω, ∗(A0,1 ∧ ∗τT )
T
〉

= (−1)(p+q)
2〈ω, ∗(τ ∧ ∗A0,1

T
)〉.
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Note now that ∗τ is a (d− q − 1, d− p)-form thus

[∗τ, A0,1
T

] = ∗τ ∧ A0,1
T

+ (−1)p+qA0,1
T ∧ ∗τ,

and by the above computations we get

〈[A0,1, ω], τ〉 = (−1)(p+q)
2+p+q〈ω, ∗[∗τ, A0,1

T
]〉

= (−1)(p+q)(p+q+1)〈ω, ∗[∗τ, A0,1
T

]〉.

Using the fact that (p+q)(p+q+1) is a product of two consecutive integers,
we obtain

〈[A0,1, ω], τ〉 = 〈ω, ∗[∗τ, A0,1
T

]〉.

This allows to obtain the desired formula for the adjoint operator to ∂A:

〈ω, ∂∗Aτ〉 = 〈∂Aω, τ〉 = 〈ω, ∂∗τ + ∗[∗τ, A0,1
T

]〉,

which concludes our proof.

Proposition C.4. Let g ⊆Mr(R) a Lie algebra, A be a g-valued 1-form and
dA : C∞(ΩkBn ⊗ g)→ C∞(ΩkBn ⊗ g), be the operator given by:

dAω = dω + [A, ω].

Then the formal adjoint d∗A to dA with respect to the L2 inner product over
k-forms induced by the Frobenius inner product (A,B) 7→ tr(ABT ) on g, is
defined as

d∗A : C∞(Ωk+1Bn ⊗ g) ∩Dom(d∗)→ C∞(ΩkBn ⊗ g)

by
d∗Aτ = d∗τ + (−1)k(n−k+1) ∗ [∗τ, AT ].

In particular if k = 2, then d∗Aτ = d∗τ + ∗[∗τ, AT ].

Remark C.2. By Dom(d∗) we mean the forms τ whose normal component
(involving the frame dr) vanishes over the boundary of the domain, in this
case the boundary of Bn.

Proof of Proposition C.4. Let k ≥ 0, ω ∈ Ωk and τ ∈ Ωk+1 ∩Dom(d∗).
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Since τ ∈ Dom(d∗), by definition τN = 0 (i.e. the normal component vanishes
over the boundary of Bn) and using integration by parts we have:

〈dAω, τ〉 = 〈dω + [A, ω], τ〉 = 〈ω, d∗τ〉+ 〈[A, ω], τ〉.

Recall that [A, ω]
def
= A ∧ ω + (−1)k+1ω ∧ A when ω is a k form and A a

1-form, and

〈A ∧ ω, τ〉 def=

∫
Bn

tr(A ∧ ω ∧ ∗τT ) = (−1)n−1
∫
Bn

tr(ω ∧ ∗τT ∧ A),

Where we used the fact that tr(ABC) = tr(BCA) and the antisymmetry of
the wedge product. Using the fact that

∗ ∗ η = (−1)k(n−k)η if η is a k-form,

we obtain by linearity of the trace and noting that ∗τ ∧A is a (n− k)-form:

〈A ∧ ω, τ〉 = (−1)n−1(−1)k(n−k)
∫
Bn

tr(ω ∧ ∗ ∗ (∗τT ∧ A))

= (−1)n−1(−1)k(n−k)
∫
Bn

tr(ω ∧ ∗(∗(∗τT ∧ A)T )T )

= (−1)k(n−k)+n−1〈ω, ∗(∗τT ∧ A)T 〉.

Using the fact that for matrices we have (AB)T = BTAT and the antisym-
metry of the wedge product, we obtain:

〈A ∧ ω, τ〉 = (−1)k(n−k)+n−1(−1)n−k−1〈ω, ∗(AT ∧ ∗τ)〉

= (−1)k(n−k)+k〈ω, ∗(AT ∧ ∗τ)〉.

Interchanging now the role of ∗τ ∧ A with A ∧ ∗τ , we get as above

〈(−1)k+1ω ∧ A, τ〉 = (−1)k+1

∫
Bn

tr(ω ∧ A ∧ ∗τT )

= (−1)k(n−k)+k+1〈ω, ∗(A ∧ ∗τT )T 〉

= (−1)k(n−k)+n〈ω, ∗(τ ∧ ∗AT )〉.

Note now that ∗τ is a (n− k − 1)-form thus,

[∗τ, AT ] = ∗τ ∧ AT + (−1)n−kAT ∧ ∗τ,
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By the above computations we get

〈[A, ω], τ〉 = (−1)k(n−k)+k〈ω, ∗[∗τ, AT ]〉 = (−1)k(n−k+1)〈ω, ∗[∗τ, AT ]〉.

This allows to obtain the desired formula for the adjoint operator to dA:

〈ω, d∗Aτ〉 = 〈dAω, τ〉 = 〈ω, d∗τ + (−1)k(n−k+1) ∗ [∗τ, AT ]〉,

which concludes our proof.



Appendix D

Estimates

In this section of the Appendix, we will prove a few results that help us
bootstrap certain ∂-equations. These results have been heavily used in order
to prove the regularity of sections which yield a holomorphic structure over
a given closed Kähler surface or manifold.

Lemma D.1. Let D a domain holomorphically embedded in CPd and ω ∈
W 1,d(Ω0,1D ⊗Mn(C)) such that ω satisfies the integrability condition (1.1).
Let g ∈ L2d(D,Mn(C)) be a distributional solution of the equation:

∂g = −ω · g

satisfying the estimate ‖g − id‖L2d(D) ≤ C ‖ω‖W 1,d(D). Then there exists a
subdomain D0 ⊆ D, and for each q ∈ (1, d), a constant Cq > 0 such that:

‖g − id‖W 2,d(D0)
≤ Cq ‖ω‖W 1,d(D) .

Proof of Lemma D.1. We start with a bootstrapping procedure. Firstly, let
D0 be a slightly smaller subdomain of D such that we obtain the existence
of a constant C > 0 and the following inequality holds:

‖g − id‖W 1,d(D0)
≤ C

(∥∥∂g∥∥
Ld(D)

+ ‖g − id‖Ld(D)

)
≤ C

(
‖ω‖L2d(D) ‖g‖L2d(D) + ‖g − id‖Ld(D)

)
.

By using the embedding of W 1,d into L2d in 2d-dimensions, it follows that
for some constant C > 0, we have:

‖g − id‖W 1,d(D0)
≤C

(
‖ω‖W 1,d(D) ‖g − id‖L2d(D)
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+ ‖ω‖W 1,d(D) + ‖g − id‖Ld(D)

)
.

Hence, by ‖g − id‖L2d(D) ≤ C ‖ω‖W 1,d(D), we obtain:

‖g − id‖W 1,d(D0)
≤ C ‖ω‖W 1,d(D) .

Once we have obtained the W 1,d estimate on D0, we can proceed to boot-
strapping to W 2,q regularity. We can apply ϑ to the ∂-equation to obtain the
elliptic PDE:

ϑ∂g = −ϑ(ω · g) = −ϑω · g − ∗(∗ω ∧ ∂g),

which holds in a distributional sense. Since ϑ∂ is equal to the Hodge Lapla-
cian d∗d acting on functions, we can apply Proposition D.1 and obtain that
g ∈ W 2,q

loc (D0,Mn(C)) for all q < d and for each q < d there exists a constant
Cq > 0 such that

‖g‖W 2,q
loc (D0)

≤ Cq ‖ω‖W 1,d(D0)
. (D.1)

Without loss of generality, we can assume g ∈ W 2,q(D0,Mn(C)) for all q < d,
otherwise we pick a slightly smaller domain than D0. It remains to show the
required bound. Since ϑ∂ is elliptic we have the a-priori estimate:

‖g − id‖W 2,q(D0)
≤ C

(∥∥ϑ∂g∥∥
Lq(D0)

+ ‖g − id‖Lq(D0)

)
, (D.2)

for any q ∈ (1, d). We estimate ϑ∂g:∥∥ϑ∂g∥∥
Lq(D0)

≤ ‖∇ω‖Ld(D0)
‖g‖Ldq/(d−q)(D0)

+ ‖ω‖L2d(D0)
‖∇g‖L2dq/(2d−q)(D0)

.

Since W 1,d embeds into L2d, it follows that∥∥ϑ∂g∥∥
Lq(D0)

≤ C ‖ω‖W 1,d(D)

(
‖g‖Ldq/(d−q)(D0)

+ ‖∇g‖L2dq/(2d−q)(D0)

)
,

for some constant C > 0. Moreover, W 2,q embeds into Ldq/(d−q) and W 1,q

embeds into L2dq/(2d−q). Using these embeddings, there exists a constant
Cq > 0 and C > 0 such that:∥∥ϑ∂g∥∥

Lq(D0)
≤ Cq ‖ω‖W 1,d(D) ‖g‖W 2,q(D0)

+ C ‖ω‖W 1,d(D) .

By the bound (D.1), it follows that there exists Cq > 0:∥∥ϑ∂g∥∥
Lq(D0)

≤ Cq ‖ω‖W 1,d(D) ‖ω‖W 1,d(D0)
+ C ‖ω‖W 1,d(D) .
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Then for some constant Cq > 0, we have∥∥ϑ∂g∥∥
Lq(D0)

≤ Cq ‖ω‖W 1,d(D) .

Putting this together with the fact that

‖g − id‖Lq(D) ≤ ‖g − id‖L2d(D) ≤ Cq ‖ω‖W 1,d(D)

and (D.2), there exists a constant Cq > 0 such that

‖g − id‖W 2,q(D0)
≤ Cq ‖ω‖W 1,d(D) .

Since q ∈ (1, d) is arbitrary, we have proven the result.

Remark D.1.

(i) In the statement above, if D = CPd, then D0 = D = CPd. This is the
case because ∂ is elliptic on CPd.

(ii) Assume instead of ‖g − id‖L2d(D) ≤ C ‖ω‖W 1,d(D), the slightly perturb
inequality:

‖g − id‖L2d(D) ≤ C ‖ω‖W 1,d(D) + C0,

where C0 > 0 is a small constant. We can conclude from the proof
of the statement that all arguments pass through and we can reach the
natural conclusion:

‖g − id‖W 2,q(D0)
≤ C

(
‖ω‖W 1,d(D) + C0

)
for all q < d.

(iii) If we higher regularity of ω, we can obtain similar estimates using clas-
sical elliptic regularity results. Let p > d, a (0, 1)-form ω ∈ W 1,p(Ω0,1D⊗
Mn(C)), satisfying a smallness condition and the integrability condition
(1.1). Moreover,

‖g − id‖L∞(D) ≤ C ‖ω‖W 1,p(D) .

Then we can bootstrap the equation solved by g to show that g ∈ W 2,p
loc

with the expected estimate:

‖g − id‖W 2,p
loc (D) ≤ Cp ‖ω‖W 1,p(D) .
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This means that there exists a domain D0 ⊆ D such that

‖g − id‖W 2,p(D0)
≤ Cp ‖ω‖W 1,p(D) .

We can start proving two bootstrap procedures for two types of PDE-s. The
general technique is to use show the boundedness of Morrey norms in order
to bootstrap beyond the critical embedding level. We use the ideas from [30].

Proposition D.1. Let N ∈ N∗, A ∈ W 1,d(B2d,CN) and fA ∈ C∞(CN ,CN)
such that there exists C > 0 satisfying:

|fA(ξ)| ≤ C|ξ||∇A|+ |A||∇ξ|

and u ∈ W 1,d(B2d,RN) solving the equation:

∆u = fA(u)

in a distributional sense, then u ∈ W 2,p
loc (B2d,C) for any p < d there exists

Cp > 0 such that ‖u‖W 2,p
loc (B

2d) ≤ Cp ‖A‖W 1,d(B2d).

Proof of Proposition D.1. Dimension 4 is critical in this case becauseW 2,2d/3 ↪→
L2d and we cannot directly bootstrap. In order to improve on the regularity
of u, we will use the Adams-Morrey embedding.

Claim. ∃γ > 0 such that

sup
x0∈B2d

1/2
(0), 0<ρ<1/4

ρ−γ
∫
B2d
ρ (x0)

|u|2d + |∇u|ddx2d <∞

Let ε > 0 to be fixed later. There exists ρ0 > 0 such that:

sup
x0∈B2d

1/2
(0), 0<ρ<ρ0

‖A‖W 1,d(B2d
ρ (x0))

< ε.

We can always find such ε and ρ0 since ρ 7→
∫
B2d
ρ (x0)

is continuous. Fix

x0 ∈ B2d
1/2(0) and ρ < ρ0 arbitrary. To prove this claim we first consider:

∆ϕ = fA(u) in B2d
ρ (x0)

ϕ = 0 on ∂B2d
ρ (x0)
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Let v := u−ϕ. Then ∆v = 0 and it is easy to see that ∆|v|2d ≥ 0, and ∆|∇v|d ≥
0 in Bρ(x0). Applying the divergence theorem, we get that ∀r < ρ:∫

∂B2d
r (x0)

∂|v|2d

∂r
≥ 0, and

∫
∂B2d

r (x0)

∂|∇v|d

∂r
≥ 0.

These inequalities imply that:

d

dr

[
1

r2d

∫
B2d
r (x0)

|v|2ddx2d
]
≥ 0 and

d

dr

[
1

r2d

∫
B2d
r (x0)

|∇v|ddx2d
]
≥ 0.

Since these derivatives are non-negative, it follows that the functions

r 7→
1

r2d

∫
B2d
r (x0)

|v|2ddx2d and r 7→
1

r2d

∫
B2d
r (x0)

|∇v|ddx2d

are increasing in r. In particular:∫
B2d
ρ/4

(x0)

|v|2ddx2d ≤ 4−2d
∫
B2d
ρ (x0)

|v|2ddx2d

and ∫
B2d
ρ/4

(x0)

|∇u|ddx2d ≤ 4−2d
∫
B2d
ρ (x0)

|∇u|ddx2d.

Using these decays, we can bound
∫
B2d
ρ/4

(x0)
|u|2ddx2d and

∫
B2d
ρ/4

(x0)
|∇u|ddx2d

as such:

∫
B2d
ρ/4

(x0)
|u|2ddx2d ≤ 22d−1 ∫

B2d
ρ/4

(x0)
|v|2d + |ϕ|2ddx2d

≤ 2−2d−1
∫
B2d
ρ (x0)

|v|2ddx2d + 22d−1 ∫
B2d
ρ (x0)

|ϕ|2ddx2d

≤ 2−2
∫
B2d
ρ (x0)

|u|2ddx2d + 22d
∫
B2d
ρ (x0)

|ϕ|2ddx2d

(D.3)

Similarly, for ∇u we get the bound:∫
B2d
ρ/4

(x0)

|∇u|ddxd ≤ 2−2d−2
∫
B2d
ρ (x0)

|∇u|ddx2d + 2d
∫
B2d
ρ (x0)

|∇ϕ|ddx2d. (D.4)
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There exists a constant C > 0 so that we can bound ∆ϕ in the L2d/3 norm:

||∆ϕ||L2d/3(B2d
ρ (x0)) = ||fA(u)||L2d/3(B2d

ρ (x0))

≤ C
(
‖A‖L2d(B2d

ρ (x0))
‖∇u‖Ld(B2d

ρ (x0))

+ ‖∇A‖Ld(B2d
ρ (x0))

‖u‖L2d(B2d
ρ (x0))

)
.

Since ϕ vanishes on the boundary, by Calderon-Zygmund inequality [35], it
follows that

‖ϕ‖W 2,2d/3(B2d
ρ (x0))

≤ C
(
‖A‖L2d(B2d

ρ (x0))
‖∇u‖Ld(B2d

ρ (x0))

+ ‖∇A‖Ld(B2d
ρ (x0))

‖u‖L2d(B2d
ρ (x0))

)
,

for some constant C > 0. Moreover, the Sobolev embedding W 1,d ↪→ L2d

gives:

‖ϕ‖W 2,2d/3(B2d
ρ (x0))

≤ C ‖A‖W 1,d(B2d
ρ (x0))

(
‖∇u‖Ld(B2d

ρ (x0))

+ ‖u‖L2d(B2d
ρ (x0))

)
, (D.5)

Thus, combining (D.5) with the inequalities (D.3) and (D.4), we obtain the
decay:∫

B2d
ρ/4

(x0)

|u|2d+|∇u|ddx2d

≤
(

2−2 + C0 ‖A‖W 1,d(B2d
ρ (x0))

)∫
B2d
ρ (x0)

|u|2d + |∇u|ddx2d

for some constant C0 > 0. We can choose ε > 0 so that C0ε
2d ≤ 2−2 to get:∫

B2d
ρ/4

(x0)

|u|2d + |∇u|ddx2d ≤ 2−1
∫
B2d
ρ (x0)

|u|2d + |∇u|ddx2d. (D.6)

This estimate gives the required existence of γ > 0, and proves the claim.

It remains to prove the main regularity result using the claim. From the
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equation satisfied by u and the decay inequality (D.6), we obtain the bound:

sup
x0∈B2d

1/2
(0), 0<ρ<1/4

ρ−γ
∫
B2d
ρ (x0)

|∆u|2d/3dx2d <∞

By Adams-Morrey embedding, we get a bound on ||I1∆u||Lp(B2d
1/2

(0)), p > d

where I1 is the Riesz potential (see [1]). We obtain ∇u ∈ Lploc(B
2d,C) for

p > d. Hence, the PDE becomes sub-critical and we can bootstrap to get
u ∈ W 2,p

loc (B2d,C) for any p < d.

Proposition D.2. Let A ∈ L2d(B2d,C) and fA ∈ C∞(B2d,C) such that
there exists C > 0 satisfying:

|fA(ξ)| ≤ C|ξ|2 + |A||ξ|

and u ∈ W 2,d(B2d,RN) satisfying

∆u = fA(∇u)

then u ∈ W 2,p
loc (B2d,C) for any p < 2d and ‖u‖W 2,p

loc
≤ Cp ‖A‖L2d(B2d) where

Cp is a constant.

Proof of Proposition D.2. Dimension 4 is critical in this case because ∇u ∈
W 1,d ↪→ L2d and we cannot directly bootstrap. In order to improve on the
regularity of u, we will use the Adams-Morrey embedding.

Claim. ∃γ > 0 such that

sup
x0∈B2d

1/2
(0), 0<ρ<1/4

ρ−γ
∫
B2d
ρ (x0)

|∇u|2ddx2d <∞

Let ε > 0 to be fixed later. There exists ρ0 > 0 such that:

sup
x0∈B2d

1/2
(0), 0<ρ<ρ0

‖A‖L2d(B2d
ρ (x0))

< ε

We can always find such ε and ρ0 since ρ 7→
∫
B2d
ρ (x0)

is continuous. Fix

x0 ∈ B2d
1/2(0) and ρ < ρ0 arbitrary. To prove this claim we first consider :
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∆ϕ = fA(∇u) in B2d
ρ (x0)

ϕ = 0 on ∂B2d
ρ (x0)

Let v := u − ϕ. Then ∆v = 0 and it is easy to see that ∆|∇v|2d ≥ 0 in
B2d
r (x0), for some r < ρ. Applying the divergence theorem, we get that
∀r < ρ: ∫

∂B2d
r (x0)

∂|∇v|2d

∂r
≥ 0

This implies that

d

dr

[
1

r2d

∫
B2d
r (x0)

|∇v|2ddx2d
]
≥ 0

and consequently the function r 7→
1

r2d
∫
B2d
r (x0)

|∇v|2ddx2d is increasing. In

particular, ∫
B2d
ρ/4

(x0)

|∇v|2ddx2d ≤ 4−2d
∫
B2d
ρ (x0)

|∇v|2ddx2d

Using this decay, we can obtain a bound for
∫
B2d
ρ/4

(x0)
|∇u|2ddx2d:∫

B2d
ρ/4

(x0)

|∇u|2ddx2d ≤ 22d−1
∫
B2d
ρ/4

(x0)

|∇v|2d + |∇ϕ|2ddx2d

≤ 2−2d−1
∫
B2d
ρ (x0)

|∇v|2ddx2d + 22d−1
∫
B2d
ρ (x0)

|∇ϕ|2ddx2d

≤ 2−2
∫
B2d
ρ (x0)

|∇u|2ddx2d + 22d

∫
B2d
ρ (x0)

|∇ϕ|2ddx2d

Moreover, there exist constants C1 > 0 and C2 > 0 such that

||∆ϕ||2dLd(B2d
ρ (x0))

≤ C1||fA(∇u)||2dLd(B2d
ρ (x0))

≤ C2

(
‖A‖L2d(B2d

ρ (x0))
‖∇u‖L2d(B2d

ρ (x0))
+ ‖∇u‖2L2d(B2d

ρ (x0))

)2d
≤ 22d−1C2

(
‖A‖2dL2d(B2d

ρ (x0))
‖∇u‖2dL2d(B2d

ρ (x0))

+ ‖∇u‖4dL2d(B2d
ρ (x0))

)
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Since ϕ vanishes on the boundary of B2d
ρ (x0), then by elliptic estimates, we

have for some constant C > 0 the inequality:

‖ϕ‖2dW 2,d(B2d
ρ (x0))

≤ C||∆ϕ||2dLd(B2d
ρ (x0))

,

from which we deduce that ‖∇ϕ‖2dL2d(B2d
ρ (x0))

≤ C||∆ϕ||2d
Ld(B2d

ρ (x0))
.

Putting this inequality together with the bound on ∆ϕ, we get the following
decay:∫

B2d
ρ/4

(x0)

|∇u|2ddx2d ≤
(

2−2 + C0||A||2dL2d(B2d
ρ (x0))

)∫
B2d
ρ (x0)

|∇u|2ddx2d

We can choose ε > 0 so that C0ε
2d ≤ 2−2 and obtain:∫

B2d
ρ/4

(x0)

|∇u|2ddx2d ≤ 2−1
∫
B2d
ρ (x0)

|∇u|2ddx2d.

This decay implies the existence of γ > 0 and proves the claim.

Thus, there exists γ > 0 such that

sup
x0∈B2d

1/2
(0), 0<ρ<1/4

ρ−γ
∫
B2d
ρ (x0)

|∆u|ddx2d <∞

By Adams-Morrey embedding, we get a bound on ||I1∆u||Lp , p > d where
I1 is the Riesz potential (see [1]). Thus, it follows that ∇u ∈ Lploc(B

2d,C)
for p > 2d. Since the PDE becomes sub-critical, we can bootstrap to get
u ∈ W 2,p

loc (B2d,C) for any p < 2d.
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