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Abstract

The main goal of this thesis is to analyse weak holomorphic structures over
closed Kahler manifolds and to positively several answer strong approxima-
tion questions. For X¢ closed Kihler manifolds with associated Hermitian
bundles we investigate weak structures in W'<-critical regularity and es-
tablish a one to one correspondence between unitary connections satisfying
Fg’Q = 0 and the existence of holomorphic structures. In the smooth frame-
work this is the celebrated Newlander-Nirenberg theorem. In an article to-
gether with my advisor Tristan Riviere, we have proven the analogue for weak
structures over closed Kéhler surfaces [25]. In order to answer this question
we deeply investigate results in the field of complex analysis of several vari-
ables.

Moreover, the calculus of variations yields the question of smooth approxi-
mations of such structures. We can establish strong approximations of weak
holomorphic structures with smooth holomorphic ones.

This thesis goes beyond the case of Kahler surfaces and analyses the case
of closed Kéhler manifolds in general dimensions. We positively answer the
questions of existence of weak holomorphic structures and strong approxi-
mation under critical regularity regime.

Lastly, our techniques naturally lead us to research the case of flat con-
nections under non-compactness of the structure group. The question of
strong approximation of such connections is known in the literature assum-
ing compactness of the structure group. However, the difficulty of the non-
compactness of the structure group is non-trivial. In collaboration with my
advisor and Mircea Petrache we have developed a general framework that en-
ables us to answer strong approximation questions for a large class of weak
solutions to PDEs. The case of flat connections is one such application.






Zusammenfassung

Das Hauptziel dieser Arbeit ist es, schwache holomorphe Strukturen iiber
geschlossenen Kahler-Mannigfaltigkeiten zu analysieren und mehrere Fragen
zur starken Approximation positiv zu beantworten. Fiir geschlossene Kahler-
Mannigfaltigkeiten X mit assoziiertem hermitischen Biindel untersuchen wir
schwache Strukturen mit W1t?-kritischer Regularitit und stellen eine Eins-
zu-Eins-Korrespondenz zwischen unitaren Zusammenhéngen, die ng =0
erfiillen, und der Existenz holomorpher Strukturen her. Im glatten Rah-
men ist dies das beriihmte Newlander-Nirenberg-Theorem. In einem Artikel
zusammen mit meinem Betreuer Tristan Riviere haben wir das Analogon fiir
schwache Strukturen iiber geschlossenen Kéahler-Oberflachen [25] bewiesen.
Um diese Frage zu beantworten, haben wir im Detail Resultate der kom-
plexen Analysis mehrerer Variablen untersucht.

Dariiber hinaus wirft die Variationsrechnung die Frage nach glatten Ap-
proximationen solcher Strukturen auf. Wir kénnen starke Approximationen
schwacher holomorpher Strukturen mit glatten holomorphen Strukturen her-
leiten.

Diese Arbeit geht tiber den Fall von Kahler-Oberflachen hinaus und analysiert
den Fall von geschlossenen Kahler-Mannigfaltigkeiten in allgemeinen Dimen-
sionen. Wir beantworten die Fragen der Existenz schwacher holomorpher
Strukturen und einer starken Approximation unter Annahme kritischer Reg-
ularitat positiv.

Schliesslich fithren uns unsere Techniken natiirlicherweise dazu, den Fall von
flachen Zusammenhangen bei fehlender Kompaktheit der Strukturgruppe zu
untersuchen. Die Frage der starken Approximation solcher Zusammenhénge
ist in der Literatur unter der Annahme der Kompaktheit der Strukturgruppe
bekannt. Die Schwierigkeit bei fehlender Kompaktheit der Strukturgruppe
ist jedoch nicht trivial. In Zusammenarbeit mit meinem Betreuer und Mircea
Petrache haben wir einen allgemeinen Rahmen entwickelt, der es uns ermo-
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glicht, starke Approximationsfragen fiir eine grosse Klasse schwacher Losungen
von PDEs zu beantworten. Der Fall von flachen Zusammenhéngen ist eine
solche Anwendung.
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Chapter 1

Introduction

The calculus of variations of Yang-Mills in 4-dimensions has naturally lead
to the definition of Sobolev connections [10]. In the framework of Sobolev
connections defined on a smooth vector bundle over a base manifold M, we
analyse the case of weak holomorphic structures and the cousin problem of
flat connections.

The strong approximation of Sobolev connections by smooth ones has been
proven in the case of Riemannian manifolds without any other topological
constraints. This is less involved and hence, one of the novelties of this thesis
is exploring how the approximation can be achieved by adding certain topo-
logical constraints as we will see in the next sections.

We note that there has been a definition of weak connections with L? bounded
curvature given by T. Riviere in collaboration with M. Petrache in [26]
and [27]. This definition was motivated in a search of the closure of Sobolev
connections below a Yang-Mills energy level. Roughly speaking a weak con-
nection in real 5-dimensions is defined as being an L? 1-form into a Lie
algebra g such that its restriction on a.e. 4-sphere is a Sobolev connection.
In higher dimensions weak connections are defined in an iterative way. That
is, for n > 5, a weak connection in n-dimensions is an L? form A into the Lie
Algebra such that when restricted to a.e n — 1 spheres is itself a weak con-
nection. This space has been proved to be weakly sequentially closed under
Yang-Mills Energy control. This was one of the main results in [26] and [27].

3



4 Chapter 1.

1.1 Weak holomorphic structures

We consider the above notions in the following complex framework. Let F
be a C'*° complex vector bundle of rank n over a d-dimensional closed Kahler
manifold X? and hy be some reference Hermitian inner product in the fibers
of E: ie. (E, hgy) defines a Hermitian vector bundle. We shall sometimes
consider E issued from its associated GL,(C) principal bundle or from its
associated unitary principal bundle.

The classical Newlander-Nirenberg theorem [23] states that given an almost-
complex structure J over an even dimensional smooth manifold X then the
torsion of J (also called the Nijenhuis tensor) vanishes if and only if J de-
fines a complex structure. Let Fy be the curvature 2-form associated to a
connection V of (E, hy) over a complex manifold X. We will be interested in
the "bundle” version of the Newlander-Nirenberg theorem (see |16, Theorem
2.1.53], [17, Chapter 1, Section 3, Proposition p. 9]). It states that uni-
tary connections satisfying F%Z = () are in one to one correspondance with
holomorphic structures:

Let ¥V be a smooth unitary connection of a C* hermitian bundle (E, hy) over
a complex manifold X. Then X has a holomorphic structure if and only if
Fg* =0.

One of the goals of this thesis is to extend this identification to Sobolev con-
nections. More precisely, we analyse what we call weak holomorphic struc-
tures, that is Sobolev connections (see the definition 1.1 below) satisfying the
integrability condition Fg’z = 0 and study the analogue of the Newlander-
Nirenberg theorem in this regime. Since

F*=0

gives us the integrability of the complex manifold (in the sense that it gives
the existence of a complex structure), then we call such a vanishing condition
the integrability condition.

In addition, because the problem of weak closures naturally appears in the
calculus of variations, we will look at the strong approximation of such weak
holomorphic structures by smooth ones.

We are interested in the space of Sobolev W#? connections of F which are
defined as follows:



1.1 Weak holomorphic structures )

Definition 1.1. Let Vq be a smooth connection of E, we denote
S"P(E, ho) :={V :=Vo+n where neW"(Q' (ady(E)))}

where WP (Q(ady,, (E))) is the space of Sobolev WP 1-form sections into
the sub-bundle of the endomorphism bundle End(E) made of the unitary
endomorphisms for the reference metric hy.

Then S*P(E, hy) is called the space of Sobolev unitary W*P-connections of
(E, ho).

We will heavily use gauge theory in order to obtain our results. To this extent
we find it useful to recall to the reader the notion of a gauge transformation
of a connection V € S¥P(E, hy). Let g be a section of the Hermitian vector
bundle £, then the gauge transformation of V = Vi + n by g is defined as
V9 =V, +n9, where

0! =g ldg+g”ng.

Let {U;}; be a cover of a Kéhler manifold X. Then such a connection V €
S*P(E, hg) can be represented in each U; as

where d is the exterior derivative and A; € W*?P(Q'U; ® u(n)). Hence, for a
local gauge transformation g : U; — U(n) on V we have:

A =gt dg+ g M Aig in U;.

In this framework we study the convergence of Sobolev unitary connections,
and their respective Sobolev structures in the case of closed Kahler manifolds
X?. In particular, we consider unitary connections belonging to the space
SYY(E, hy) over X

Convergence of Sobolev connections is a subtle issue that deserves to be
detailed before going forward. It is customary to define the distance of two
Sobolev connections by fixing a system of charts and trivialisations of the
connections and measuring the Sobolev distance in each trivialisation. In
the calculus of variations of Yang-Mills, however, it is of interest to study
the compactness of the space of connections with bounded L curvature (see
for example [30], [16] and [40]). In this context, the convergence of Sobolev
connections is always taken modulo gauge transformations due to the non-
coerciveness of the Yang-Mills functional. To this extent, we define the gauge
invariant distance between two given connections.
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Definition 1.2. Let X% be a d-dimensional closed Kdhler manifold andp > 1
with its associated Kahler 2-form w. We define the gauge invariant distance
as the functional

diStp : Sl’p X Sl’p — Rzo

given by:

dist,(Vi, Va) i= inf \Y —V‘prd—l—/ Fy, — Fy,o[Pw?
Vi Va) = inf [ Vi vgPet s+ [ (R - Rl

where GH4(G L, (C)) is the space of W4 gauge transformations on E for the
group GL,(C).

We point out to the reader that the problem of existence of weak holo-
morphic structures has been studied in the case of one dimensional com-
plex spaces. Under the assumption that V has L*! regularity (L*! is the
Lorentz space 2,1) for one complex dimensional spaces, F. Helein gives a
solution in [13| Lemma 4.1.7]. The case of L*! regularity is, however, sub-
critical. The critical case of L? connections has been proven by B. Sharp
in [34]. Analysing higher-dimensional cases leads to non-trivial difficulties
and through this work we are building a few mathematical frameworks that
allow us to tackle this problem in the case of critical regularity.

Thus, we positively answer the analogue of the Newlander-Nirenberg theorem
for W'¢ unitary connections and the question of strong convergence. More
precisely, the first main result I obtained in collaboration with my advisor
Tristan Riviere is the following:

Theorem 1.1. Let V be a unitary W2 connection of an hermitian bundle
(E, ho) over a closed Kdhler surface X?. Assume V satisfies the integrability
condition

F&* =0 (1.1)
then there exists a smooth holomorphic structure £ on E and a () W24

q<2
section h of the bundle of positive Hermitian endomorphisms of E such that

V =0y + h™*0ph + O¢ (1.2)

where Og is the 0— operator associated to the holomorphic bundle £ and Oy is
the 1-0 part of the Chern connection assocz'atecﬂ to the holomorphic structure
& and the chosen reference hermitian product hg.

!These connections are not necessarily unitary with respect to hy anymore.
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Recall that the Dolbeault operator 0 induces the Dolbeault cohomology
groups Hp?(X?) (see [12, Chapter 0, p. 25]) which "measure” the failure

of O closed forms to be d exact. Under the assumption that H%’Q(X 2) =0,
the second main result of this thesis obtained in collaboration with my advi-
sor asserts that Sobolev holomorphic structures associated to Sobolev unitary
connections are strongly approximable by smooth ones in 2 complex dimen-
sions (the dimension for which the Yang-Mills energy is critical).

Theorem 1.2. Under the assumptions of Theorem and H%Q(XQ) =0,
there exists a sequence of smooth connections Vi on smooth holomorphic

bundles & satisfying
F2=0

and converging to V in the sense that for any p < 2:

dist,(Vg, V) = inf / Vi — VI[P w? +/ |Fy, — Fyo|Pw? — 0.
0€G12(GL(n,C)) Jx2 X2
(1.3)

Moreover, there exists a family of isomorphisms Hy such that
ggk = Hk_:l @) 58 O %k
That s, the sequence of connections Vy, act on equivalent bundles to E. O

Remark 1.1. We have formulated these theorems by considering closed Kahler
manifolds. This consideration has been done for simplicity, since it allows us
to use the fact that 90" +00 is locally equal to the Hodge-Laplace operator
Ag = dd* +d*d. The reader should take into account the fact that the results
are generalisable to closed complexr manifolds by carefully dealing with error
between the 39 + 0 0 and Ay operators.

In higher even dimensions, for the weak connections defined in [27] over a com-
plex manifold and satisfying in addition the integrability condition FB"Q =0
with W12 regularity on A, we expect theorems and to extend in the
following way: We expect to have necessary singularities and the smooth
holomorphic structures should be replaced by the more general notion of co-
herent sheaves. The question remains to know how smooth these sheaves can
be and if a weak holomorphic structure defines a reflerive sheaf or not.

The motivation for addressing these questions takes its roots in a paper of G.
Tian [39] in which the closure of the space of smooth Yang-Mills fields has
been studied. It leads naturally to the study of Yang-Mills fields on a bundle
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well defined away from a co-dimension 4 closed rectifiable set in the basis.
The attempt in [26] and [27] was to give a suitable notion of such singular
bundles together with a singular connection that enjoys a sequential weak clo-
sure property. The attached singular ”"bundle” to these singular connections
could be thought as a real version of coherent sheaves. The goal of mixing
the notion of weak connection with the integrability condition F%Z =01is to
check whether the corresponding singular bundle coincide with the classical
notion of reflexive sheaves in the complex framework. The present thesis is
bringing a positive answer to this question when the basis is a Kahler surface.

1.1.1 Higher dimensions

We can further extend our results over closed Kéahler manifolds while in-
creasing the regularity assumptions under the same integrability condition
requirements. For X¢, a d-dimensional closed Kihler manifold, we assume
connections of W% Sobolev regularity. In order to solve the strong approx-
imation question, in collaboration with my advisor and Mircea Petrache, we
have developed a more general framework which studies the invertibility of
general Fredholm operators under a certain class of perturbations (see for
example Section [1.3.1)).

There are a few differences in our approach compared to the case of Kahler
surfaces. The main difficulty is that we will not be able to directly obtain
the integrability condition F%Q = 0 for the approximating sequence. We in-
troduce the idea of extended integrability condition and show that this
implies the integrability condition under the assumption that X is closed.

Another difference will be the fact that due to the lack of ellipticity of the
0 operator, surprisingly we will not be able to prove the equivalent of the-
orem in a low energy regime in d-dimensions on unit balls B??. This
is solely due to the fact that B?? has non-empty boundary. Thus, general-
ising our result to bounded domains is more delicate and is an open problem.

The results we obtain are the following:

Theorem 1.3. Let V be a unitary Wh? connection of an hermitian bundle
(E, hg) over a closed Kdihler manifold X?. Assume V satisfies the integrabil-
ity condition

Fo? =0 (1.4)
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then there exists a smooth holomorphic structure €& on E and a [ W24
q<d
section h of the bundle of positive Hermitian endomorphisms of E such that

V =0y + h t0yh + O¢ (1.5)

where Og is the O— operator associated to the holomorphic bundle € and Oy is
the 1-0 part of the Chern connection assocz'atecﬂ to the holomorphic structure
& and the chosen reference hermitian product hyg.

and:

Theorem 1.4. Under the assumptions of Theorem and 7-[%’2(Xd) =0,
there exists a sequence of smooth connections Vi on smooth holomorphic

bundles & satisfying
Fe?=0

and converging to V in the sense that for all p < d:

dist,(V, V) = inf / Vi — VI[P w? +/ |Fy, — Fyo|P w® — 0.
oeGh4(GL(n,C)) J xd xd
(1.6)

Moreover, there exists a family of isomorphisms H; such that
ggk = lel o 55 o Hk

That is, the sequence of connections Vi act on equivalent bundles to E. O

1.2 Flat connections

A problem parallel to obtaining the strong approximation of weak holomor-
phic structures is that of strongly approximating flat Sobolev connections.
As described in Chapter , this problem can be solved in several ways (see
for example [4]) assuming compactness of the structure Lie groups (such as

O(n), SO(n) etc.).

In physics, however, there is a rich range of applications that consider non-
compact Lie groups [38]. We can consider the groups O(p, ¢) which are also
called indefinite orthogonal groups. They are non-compact and are structure
groups of pseudo-Riemannian manifolds. One of the particular examples is

2These connections are not necessarily unitary with respect to hy anymore.
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the Lorentz group O(3,1) which is found in special relativity and electro-
magnetism. In particular, the Minkowski pseudo-Riemannian manifold R3!
with associated structure group O(3,1) has vanishing curvature.

The novelty of this work is to be able to smoothly approximate flat Sobolev
connections without assuming the compactness of the structure group of
the base manifold. In particular, we will positively answer the problem of
approximating flat W2 Sobolev connections in the case of B” as the base
space. Let g be the Lie algebra induced by the Lie group G. We further
assume that g is a subspace of M,.(R), the space of rxr square matrices. Then
the result obtained in collaboration with my advisor and Mircea Petrache is
the following:

Theorem 1.5. A is a g-valued 1-form in W42 over the ball B*, and we
assume that Fp = dA+ ANA = 0. Then there exist a sequence of smooth
1-forms Ay with k € N such that

A, — A in Wh2,
furthermore satisfying

Fu, =0 forallk eN.

In proving this we used the same framework of inverting Fredholm operators
mentioned in section [1.1.1) under appropriate perturbations. This problem
brings a similar difficulty as in the case of closed Kéhler manifolds. Indeed,
we will not be able to achieve the flatness condition F4, = 0 directly, but we
will obtain it through what we will define as the extended flatness condition

(5.3).

1.3 Structure of the thesis

In order to introduce the reader to our ideas and strategies, we start by
analysing the case of abelian bundles. Thus, in Chapter [2| we prove theorems
and in the simplified case of U(1) bundles. This is easier, since the
integrability condition locally translates to Fg’Q = 0A% = 0.

With these ideas in hand, we proceed to Chapter [3] and prove theorems
and in full generality over U(n) bundles. The chapter is structured as
follows:
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Section is devoted to the proof of theorem in the case of small W2
norm. This proof is not going to be used for proving the theorem in its full
generality. However, we thought that it could be useful for the reader to ex-
pose a different approach in this particular case and the scheme of the proof
we are giving in this section is going to be used in later ones.

Under the smallness condition of the W12 norm of the connection V, in
Section we prove that connections satisfying the integrability condition
are locally holomorphically trivialisable, meaning that in any geodesic
ball embedded in our manifold X? where we have the local representation
V ~ d+ A, we show the existence of g € GL,(C) such that A% = —9g-g~".
Using this result, we prove theorem in section |3.3]

Sections [3.4] and [3.5] are dedicated to proving theorem [1.2] The former sec-
tion proves the strong approximation result, and the latter concludes the
statement by proving that the connections Vj act on equivalent bundles to
E.

Afterwards, in Chapter [4] we prove theorems [I.3] and [I.4} In the first section
of the chapter we introduce the idea of extended integrability condition
and describe how we will use it throughout. In section 4.2 we prove the
existence of holomorphic trivialisations by adapting the approach to W4
regularity. This section has a very similar approach to Section [3.2] in the
case of closed Kahler surfaces. We note however, that we will already make
use of the idea of extended integrability condition in order to positively
answer theorem [1.3]

Section discusses density under high energy regime and takes a differ-
ent approach compared to what we have done for the case of closed Kahler
surfaces in Section [3.4 We start by analysing the invertibility of Fredholm
operators, and with these results in hand we are able to solve the strong
approximation question. We emphasize again that we firstly obtain density
under the extended integrability condition and using a topological argument
we conclude the integrability condition as required.

We conclude with Chapter |5 which tackles the related problem of strongly
approximating flat Sobolev connections and positively answers theorem [1.5]

Appendix [A] contains a few results on complex several variables where we
also introduce some regularity results in particular case of the domain B*.
In Appendix [C] we prove certain results regarding linear operators and lastly,
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Appendix [D] brings some regularity results and bootstrapping techniques for
the classes of PDEs we will encounter.

1.4 Open Problems

We introduce a few open problems we find interesting.

The strong approximation results relies on the cohomological constraint:
H%Q(X 4) = 0. It would be interesting to understand this condition fur-
ther:

Open Problem. Without assuming the cohomological constraint 7-[%’2(Xd) =
0, prove or find a counterexample to theorems[1.9 and[1.4. In particular, one
can consider the case where X? is a K3 surface.

When dealing with answering the strong approximation question in theorem
[1.2] we take a global approach. It would be interesting to analyse the prob-
lem from a different perspective:

Open Problem. Under the assumptions of theorem[1.9, obtain local strongly
approrimating sequences satisfying the integrability condition and glue them
in such a way that we obtain a sequence of smooth connections Vy strongly
approzimating V in W2 and satisfying the integrability condition Fg’j = 0.

The difficulty of this question lies in the lack of ellipticity of the d-operator.
Hence, related to the above open problem we suggest another question:

Open Problem. Let 'V be a unitary W¢ connection over a Kdihler manifold
X4 with non-empty boundary satisfying the integrability condition Fg’z = 0.

Assume that in a geodesic ball Bgd V is represented by d + A, where A is a
W4 1-form. Prove or disprove whether one can obtain sequences of smooth
1-forms A, converging strongly in W< to A and Fgf =0 over B*,

A natural question arising from smoothly approximating flat Sobolev connec-
tions is to consider the setting of two connection 1-forms A and B satisfying
Fy = Fg. We want to smoothly approximate A and B while keeping the
curvature equality condition. Thus, we propose the following open problem:

Open Problem. A, B are g-valued 1-forms in W2 over the ball B", and
we assume that Fy = Fg. Show whether there exist two sequences of smooth
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1-forms Ay, By, with k € N such that

A, —A and B,— B inlL",

and furthermore satisfying

Fya, =Fp, forallkeN.

The difficulty of tackling this problem arises from the fact that when ap-
proximating A and B smoothly, we cannot rely on the Bianchi identity, in
particular there isn’t necessarily a 1-form C' such that do(Fp — F4) = 0,
where

de-=d-+][C,].

Such an identity is crucial to solving the flat connection case.
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1.5 Notations

Py (E)

API(X)

QMU ® g

2,p
Wp

Yw

B2d

the space of n x n complex valued square matrices

the Lie algebra associated to the unitary group U(n),
i.e. matrices satisfying A = —A

the space of symmetric matrices A = A" This is short-
hand for the space iu(n).

Dolbeault cohomology (p,q)-group over the complex
manifold X

the space of WP4 gauge transformations on E for the
group GL,(C)

the space of global smooth sections of the vector bundle
E

the space of global W4 sections of the vector bundle E

the space of global (p, ¢)-sections defined over the man-
ifold X

the space of g-valued (p, ¢)-forms on U

the space of Sobolev functions W?2® that vanish on the
boundary of the domain

¥ = — x Ox, formal adjoint of d (see [9, p. 83])
N is the inverse operator of Ay = 90 +090
2d-dimensional unit open ball

2d-dimensional open ball of radius r > 0

[A,B]=AANB+ (-1)*""BAA, if Ais ap form and B
a g-form
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0x - 0 =0-+[A% ] (see Proposition [C.3

Dy - 04 =0 -+% [*5~,WT] (see Proposition |C.3

Vg - U4 =0 -+x [*5-,WT] (see Remark |C.1

(Ao,l)g _ g_laqjtg_lAO’lg

IIT]| - the norm of the operator T': X — Y, for X,Y Banach
spaces

o(T) - the spectrum of the operator T
p(T) - the resolvent of the operator 7', defined as C\ o(7T')
A(x) - for k-forms A =37, xidxy denote A(x) = 3, ai(x)dz;

: ] : ool d o
dist,(Vi, V) aeglvdl(r(l}g,(n,((:)) Jxa Vi =VoPw + [\ |Fy, — FooPw






Chapter 2

Abelian U(1) Bundles

In order to obtain a good understanding of the equivalence between the
integrability condition Fg’Q = 0 and holomorphic local trivialisations in the
weak setting we have outlined in the introductory chapter, we first start
by investigating the simpler case of U(1) bundles for 2-dimensional closed
Kéhler manifolds. Even though this does not capture the difficulties of the
non-abelian case, it shows the steps we should follow later on and what needs
to be changed.

2.1 Existence of holomorphic trivialisations

We consider the setting of theorem [I.1} Since the theorem we want to prove
is local, we can solve the problem of the existence of local holomorphic trivi-
alisations by restricting to geodesic balls B,(x) embedded in the given closed
Kihler surface X2. Without loss of generality, we shall work on unit balls B*.

We observe that for any given connection 1-form A € W12(Q!'B* C), there
exists a perturbation w € W?2(Q%2B* C) such that we obtain the integra-
bility condition

0,2 _

A48 w
and there exists C' > 0 independent of A such that

||w||W272(B4) <C ||A||W172(B4) :

Indeed, since we are working with abelian bundles, the integrability condition
reduces to solving the linear problem:

00w =—F* = —9A%,

17
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According to the 9-Hodge decomposition (A5]), we have

AP = AGNA® = 90" NA™ + 9" ON A",
where N is the operator A~ mapping W'2(Q%!'B*) to W>*(Q%!'B*) such
that the O-Neumann boundary conditions are satisfied:

o(¥,dr)NA™ =0 and o(¥,dr)ONA”" =0,

as defined in Appendix We have A% = 99 N A%, Define w = —9N A%L.
Then by definition it follows

00w = —9A™, (2.1)
and hence the integrability condition is satisfied:

02  _ B 401 L B\ _
Folge, =0(A" +0 w) =0.

We still have to show that w has W22 regularity. A-priori, we only have by
the sub-elliptic estimates of 0 (A.3)), that

HWHH3/2(B4) = HgNAo’lHH;;/z(Bz;) <C HAOJHWLQ(BAL) .

It remains to bootstrap to W*? regularity. Since w is a (0, 2)-form in B* then
0 w = 0. Thus, the equation (2.1)) which w solves is elliptic. In particular:

20w = Agw = 89 w = A" (2.2)

Moreover, we know that from w = —ONA%! and the 9-Neumann boundary
conditions satisfied by NA®!' it follows that (9, dr)w = 0 on B* by Ap-
pendix [A] According to the equation (A.2) in Appendix [A] this is equivalent
to

OrAN+w =0 on 0B

We need to understand what this condition means. w is a (0,2) form and
can be written as w = f dZ; AdZ, = f 7 A Or, where f is a function on B*.
Then *w = f 7 AJr and it follows that the boundary condition implies f = 0
on OB*, which in turn implies that

w =0 on OB (2.3)

Remark 2.1. Unlike the case of differential forms whose normal components
(containing dr ) vanish on the boundary OB*, the complex normal components
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(containing either 5_7“ or Or) do not vanish. Indeed, by (A.10) we have Or =
dr +iJdr and igga0r = iJdr.

Putting (2.2) and ({2.3)) together, we have a solution w to the PDE:

90w =—0A%  in B*
ihgaw =0 on 0B*

Since this is an elliptic problem with vanishing boundary condition, we have
the classic estimate:

|wllwezpy < C ||5A0’1||L2(B4) ;

for some constant C' > 0. Hence, we have shown that there exists w €
W22(Q%2B* C) such that
0,2 — O
A4+9"w
Denote the form A + 9 w by A. We show that for A we can find a gauge
g : B* — C* such that 3 i
dg = A%g.

Proposition 2.1. There exists £g > 0 such that if A € W'?(Q'B* C)

with FE’Q = 0 satisfies szl L, S e then there exists v € (0,1) and
w1l

g€ () W*P(B*,C*) such that dg = —A%'g.

p<2

Proof of Proposition[2.1. Since FE’Q = JA%! = 0, then by the d-Hodge de-
composition ({A.5)) there exists a function

U:=9d NA ¢ H**(B* C)

such that . B
A% = 9U.

Moreover, there exists ro € (0,1) such that
[Vl ) < C Al

for some constant C' > 0. Thus, by the embedding |3, Theorem 4.6] W22 —
BMO, we obtain the estimate

“UHBMO < C HAHW1,2(B4) < 080.
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We choose g9 > 0 such that Cey < $2%. It follows that ¢ := 4 < (2*e¢Ceo) ™ <
(2% ||U|l gpr0) " and as a consequence of |11, Corollary 3.1.7], for any com-
pact set K C B* C R* we have

/ exp c|Uldz < 0.
K

4

In particular, for K = B, , we have

/ exp4|U| < 0. (2.4)
B

4
0

Define g = exp(—U). By the above estimate (2.4)), we have g € L*(B;).
Moreover, g solves the required PDE:

0g = —0U - exp(—U) = —A%g.
By Lemma it follows that there exists € (0,79) such that

g€ [\W**(B},C).

p<2

]

Thus, putting everything together we can prove theorem in the case of
abelian bundles. We formulate the statement for U(1) bundles:

Theorem [1.1] Let V be a unitary W? connection of an hermitian U(1)
bundle (E,hg) over a closed Kdhler surface X*. Assume V satisfies the
integrability condition

F&? =0 (2.5)

then there exists a smooth holomorphic structure £ on E and a () W24
q<2
section h of the bundle of positive Hermitian endomorphisms of E such that

V =9y + h7'0yh + O¢ (2.6)

where Og is the 0— operator associated to the holomorphic bundle £ and Oy is
the 1-0 part of the Chern connection associatecﬂ to the holomorphic structure
& and the chosen reference hermitian product hg.

!These connections are not necessarily unitary with respect to hy anymore.
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Proof of Theorem [I.1. We pick geodesic balls B(x;) covering X? on which
the connection can be trivialised as V ~ d + A; and

||A’L ||W172(B$(a:i)) S €0,

where g¢ is given by Proposition . Because X? is a compact manifold,
there are finitely many such balls covering X2. By Proposition there
exists ' € (0,r), o; € WP(B%(x;),C*) and h; = 7,0, € W*P(B%, Ry,), for
any p < 2 so that A7 = h; '0h;. Hence

V7 ~d+ h;tOh; in B (z;). (2.7)

It is worth noting that since A; is unitary (4; = —A4;), then A; is purely
imaginary. However, due to the fact that h; is a positive real valued function
then A7" is only complex valued, not necessarily unitary.

It remains to show that V defines a connection on a holomorphic vector
bundle structure £. In order to achieve this, it is enough to find holomorphic
transition functions. On the initial bundle F, there exists gauge transition
functions g;; € W*%(B2(x;) N B (x;),U(1)) such that

Define the transition functions
0ij = 07 ' gij0;. (2.8)

We show that these functions are holomorphic and consequently since they
define a cocycle, they define a holomorphic vector bundle structure £ over
the Kahler manifold X?:

50’1']' = gaz‘_l * 9ij0; + Ui_lggijaj + Ui_lgijgaj
= 0';114?71,91']'0']' + U;lggij()'j — U;lgijA?’lo'j
- 0,1 0,1 =
=0 (g5 (A = A7) + 0gyj) 0,
where we have used the abelian property of our bundle. Since
9 0gij + A} =AY,

the above equation gives:
80’@‘ =0.

This shows that the transition functions are holomorphic. Thus, there exists
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a holomorphic vector bundle structure £ which is compatible with V since
(V)79 = V7 in local coordinates. From the local representation (2.7)) we
obtain:

Vo’l = 55.

2.2 Global approximation

It remains to prove theorem in the context of U(1) bundles. In order to
do so, we focus on proving the following result:

Lemma 2.1. Given V a unitary connection over X?* with H%Z(XQ) =0
satisfying
Fo* =0,

then there exists Vi a sequence of smooth connections with Fgf =0 and
Vi — V as k — co in WH(X?),

It is worth noting that in this section we will emphasize a few different ap-
proaches. Firstly, we introduce the global approach we will also take in
Chapters |3l and . Secondly, we show that under the setting of U(1) bundles
we can achieve a gluing procedure and obtain the required strong approxi-
mation. Lastly, we draw a parallel to an analogue construction using sheaf
theoretical methods.

We warn the reader that in order to prove Lemma [2.1| we will use the ”clas-
sical” notion of W2 convergence of connections. We fix a system of finitely
many charts {U;}; covering X? and trivialisations V &~ d + A; in U;. Then
the distance function we use is

N
cdist(V, V') := > | Ai = Afllyprn, - (2.9)
=1

for any W'? connections V,V’ over X?. Thus, when we say V; — V in
W2 as k — oo, we mean cdist(V, V') — 0.

The distance between V and a connection 1-form A} on a chart U; is naturally
defined as:
cdist(V, A7) = [|A; — A;”WLZ(UZ-) )

where V &~ d + A; in U;.



2.2 Global approximation 23

Later on, when discussing convergence of connections attaining weak holo-
morphic structures, we will use the gauge invariant distance dist, as defined

in Definition [[L.2

Global Approach

We start with a global approach which is the abelian analogue to how we
will solve the more difficult problem in the non-abelian settings.

Proof of Lemma[2.1 Let Vi be a sequence of smooth connections over X2
converging to V in Wh?(X?). Such a smooth sequence exists by [15]. In the
case of U(1) bundles, we have (9}7@’5 = 0, where 0 is the operator mapping
AP1(X?) to APt (X?). Thus, by the condition H%Q(XQ) = 0 and the 0-
Hodge decomposition (A.4)), there exists (0,1) forms

up € C°(Q" X% ® M,(C))
such that Fg’Q = Juy.
k

This sequence converges by construction in L? to 0 = F%Q. Since the decom-
position is taken over a compact manifold X2, then 0 is an elliptic opera-
tor |12, p. 93] and hence the sequence of maps uy is uniformly bounded in
W12, Thus, define )

Vi = Vi — ug + uy,

where we have added u; in order to have that V, is unitary. Then by
construction
02 _
FGo =0

and Vi — V in W'? as k — oo (convergence taken in the sense of (2.9)).

Moreover, the convergence of Fg’j — 0 in L? gives that u, — 0 in W2 as
k — oo. ]

Gluing Approach

We construct a global approximation result using a gluing approach. The
general idea is having two smooth connections Vi and Vy on intersecting
open sets U,V C X? that are close in W? distance to the given con-
nection V on X2, then there is a smooth connection V on U,V that is close
in W2 distance to Vy, Vy and V. Thus, by constructing approximating
smooth connection 1-forms on fixed charts and gluing them, we obtain global
smooth connections on X? that are close to V in W12 distance. The main
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difficulty is keeping the integrability condition (1.1) throughout the proce-
dure.

We assume the existence of V a unitary W2 connection over X?2. Moreover,
we fix coordinate charts {Bj ()}, over X? and trivialisations V ~ d + A;
in each B;‘;i (x;). The following proposition gives the existence result we have
just described:

Proposition 2.2. Let U = ., B, (z:) € X? an open set and B, (x;,) such
that B, (i) NU # 0. Moreover, let Vy € W2 N C®(U) be a connection
over U and A € COO(QlB;‘iO (z3,) ® C) a connection 1-form such that

02 _ 202 _
FﬁU_FA = 0.

Then there ezists py € (0, pi,) and a connection

Ve C®nW(U U B2 (z;,),C)
satisfying the integrability condition Fg’z = 0 and the estimate
cdist(V, Vi) + cdist(V, A) < C (cdist(V, Vi) + cdist(V, fl))
for some constant C' > 0.
Proof of Proposition[2.9 In Bﬁio (x;,), we have the representation
Vxd+ A,

where A, € WH(Q'B,, (24,) ® C). In B;‘;io (i) NU # 0, we have the
representation

Va~d+ B
such that there exists a gauge change g : B;li () NU = U(1) satisfying the
gluing compatibility BY = A. Moreover, we have

VU%d—i—B

in Bﬁio(:vio) N U. We want to find a perturbation of A such that we satisfy

B9 = A. Due to the abelian-ness of the bundle, the gluing compatibility we
need to find translates as o
A=DB+gldg.

Denote
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n=A% —B% — 47199 on B;lio (i) N U, (2.10)

and 7 € O NWH(QM B, (z;,), C). Moreover,
on = 0A™ — 9B — 9(g~1dy).

We have _ B _ _ _ B
g '0g9) =09 ' Ndg=—g g Ng '0g.
Because g € U(1), then g and g~! commute and dg A dg = 0. Hence,
g 'OgNgog=9g" 9709 NDg =0
and B _
3(9‘189) =0.

Putting this together with the integrability conditions Fg’2 =0and F 2’2 =0
satisfied by A and B respectively, we obtain

5 0,2 02

By the 9-Hodge decomposition |A.5on Bz‘io (z4,) NU, this implies that there
exists

a =08 NneC®nHB, (x,)NU,C)

satisfying:
n = da (2.11)

with estimate
Il 28, gy < Cr Il gy (2.12)

for some constant C; > 0. However, since « is a function, there exists
po € (0, p;,) such that we have the elliptic estimate:

||Oé||W2»2(B;§O(:ciO)ﬂU) < G (HaaHWL?(B;lZ_O (wig)NV) + HO‘HWL?(B;%Z,O (zip)NU)
(2.13)

for some constant Cy > 0. Putting together (2.11)),(2.12)), (2.13) and the
Sobolev embedding H%/? < W2, the estimate follows:

||a||W2,2(BgO($iO)mU) S C ||77||W1,2(B;4)20 (xzo)mU) 9 (214)
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for some constant C' > 0. In order to obtain a good bound on 7, we can
rewrite equation ([2.10) as:

n = A01 _ A?(;l — ROl 4 ot -I—A?(;l _ B _ 415
_ (401 0,1 50,1 0,1
= (A" = A7) — (B> — B™).

Thus for some constant C' > 0 we have:

||a||W2v2(B§0(xi0)ﬂU) <C HUHWL?(Bﬁio (wiy)NU)
<20 (cdist(v, Vi) + cdist(V, fl)) :

Using the extension result Proposition [B.1] it follows that there exists an
extension & on Bj (x;,) such that & = o on B, (z4,) N U and

1l @y < 2C (cdist(V, Vi) + edist(V, A)) ,
for some constant C' > 0. Thus, we redefine
A:=A—-09a-0aeC®nWQ'B) (z;),C)

and by construction satisfies the gluing compatibility A = BY = B + ¢ tdg
and the integrability condition FE’Q = 0. Hence, it yields a well-defined
smooth connection V on B;‘O (x;,) UU with the required estimate:

cdist(V, Vi) 4 cdist(V, A) < C (cdist(V, Vi) + cdist(V, fl))

for some constant C' > 0. This finishes the proof of Proposition [2.2] O

It is crucial to note that in Proposition we have that 7 = da. In the
general case of U(n) bundles, we can only decompose 1 as Jo + 9 B for some
(0,2)-form 8. Hence, we cannot glue in a similar way and the gluing problem
is open for non-abelian bundles.

Using the Proposition above, we prove Lemma [2.1{ which gives us a strong
W2 global approximation of V under the integrability condition (I.1]) con-
straint.

Proof of Lemma 2.1, By [15], there exists a smooth sequence of connections
VY such that V{ — V in W2 However, unlike [15], there is no need to
smooth out the bundle since we only work in the setting of weak connections
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and not weak bundles. Hence, the transition functions between charts are
smooth.

We want to perturb @2 so that we obtain a smooth sequence which satisfies
the integrability condition. We cover X? by finitely many geodesic balls
{B),(zi)}iL,, where N < oo and p > 0 not necessarily small. On each
Bj (x;) we fix the representations:

Viad+ AL and V~d+ A

We have shown that for each ¢ we can perturb fl' such that we obtain fl‘ sat-
isfying F; 02 = 0, while preserving the convergence: Al — A’ in W 2(B4 (mz))

We construct V. inductively using Proposition

Without loss of generality we will assume that we do not shrink the domains
as in Proposition We can assume this since we have a finite cover and
hence the induction will finish in a finite number of steps.

In the first step we define:

Ep ‘= HA}C — Al

4=

W1,2(B4 11) W12 B4 ( )),

V=V, U:= By (1), Vy=d+ Al A:= A2 By Propositionthere
exists a smooth connection Vj on By (x1)UB), (1) satisfying the integrability

condition (|1.1)) such that
cdist(V}, V9) < Cey,

for some C > 0.

Assume we have obtained a connection V¢ on U, = |, Bj (x;) and we con-
struct a connection Vi over U, = U"+1 B (x;). We apply Proposition

2.2] with

Y

e, = cdist(V7 ¥0) 4+ HAnJrl AL
( k k) k WL2(BS  (tnt1))

V = NZ, U:=U, Vy = ~Z, A= AZH. Then there exists a smooth
connection VZ“ on U, such that:

cdist(VIHL V7)) 4 cdist(VIH A < Ok,

for some constant C' > 0. Thus, we have inductively constructed a smooth
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connection Vj := V& on X? such that:

—0
W2(B, (2:)

N
edist(Vi, V) < O HA;; A
=1

and F%kz = (. Since @2 — V as k — oo, then we conclude that V;,, — V in
wt2, H

Using the result of Lemma [2.1] the proof of theorem in the case of U(1)
bundles follows line by line as in section [3.5

Sheaf Approach

We conclude this chapter by making a geometrical observation. It is useful
to make a connection between the previous construction and sheaf theory.
In order to have a concrete example, we take X? = CP?. The following
approach gives a sheaf theoretical argument on why we are able to perform a
gluing argument. However, it also outlines the difficulties such a proof would
bring regarding the global convergence result.

In essence the above Lemma [2.1]is a gluing result which can be reformulated
as such: there exists p > 0 such that we can cover X? = CP? by finitely
many geodesic balls B,(x;) and in each such ball we have the representation

VadtA
where A* are W2 connection 1-forms satisfying the integrability condition
0,2 T Ai\0,
Fyb=0=0(A)""

Moreover, we have shown that we can strongly approximate A? by sequences
¢ such that )
Al — A"in W and Fg’f = 0.
k

We need to find perturbations to each fl}g to obtain A} such that there
exist gauge transition functions g satisfying the gluing compatibility A} =
(g,if)f1 dg? + A], the strong W2 convergence A% — A" as k — oo for each
1, and Fg’; = 0. Thus, the error of the gluing compatibility of fl}; can be
denoted by:

ij _ Ri i\t g i Ad 00
nl = A, — (gkj) dgy — A, € C*N Wl’z(Qpr(wi) N By(z;),C).
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We have 9(n;))%! = 0, which implies that (/)% are holomorphic. Moreover,
they satisfy the cocycle condition:

()" + ()% + ()™ =0 on By(2:) N By(w;) N By(xs).  (2.15)

Since X2 = CP? we have that H'(X?,0) ~ Hg’l(XQ) = 0 by [12, Dolbeault
Theorem, p.45], where O is the sheaf of holomorphic functions. In particular,
for any indices sq,...,s; we have

H%q<BP(x51> Uu...u Bp(ij)) = Hq(BP<x81) u...u BP(xSJ)’ O) =0

i.e. our cover is acyclic. Thus, by Leray Theorem [12, p. 40] it follows that
H'({B,(x:)}Y.),0) ~ H'(X?,0) ~ H'(X?) = 0.

Hence, we have obtained that the first Cech coholomology is trivial. It follows
that the cocycle condition (2.15)) implies exactness as well, i.e. there exists
functions 7 defined on B,(z;) such that

n = M — M. on By(z;) N By()),

and 9ni, = 0 for each i. Moreover, by definition we have nfcj — 0 in W2 as
k — oo. Hence, it is enough to define

i i i
k= AL —

since these 1-forms satisfy the gluing compatibility and integrability condi-
tion FA?;Q = 0. From this we obtain a sequence of smooth connections V.

k
Although, this sheaf theoretical result strengthens our constructive gluing,
it fails to reveal whether the connections V} we obtain preserve the W12
convergence to V. This is because the co-exactness of

e =ni—nl

does not give W2 convergence of 7, and ni even though nff converges to 0.






Chapter 3

U(n) Bundles in Hilbert Spaces

Having seen the ideas behind solving the problem in the setting of U(1)
bundles, we are now in a position to analyse the case of U(n) bundles.
This Chapter will look at the case of closed Kahler surfaces which is yet
another intermediary step to understanding the problem on closed Kahler
manifolds. Here we will develop the first methods that help us deal with the
non-linearities that occur from lacking the abelian property of the bundle.

3.1 Density under low energy

Given a unitary W'? connection V of the hermitian bundle (E,hg) over
a closed Kihler surface X? satisfying Fg’Q = 0, we assume without loss of
generality that B* is a geodesic ball in X? and that V trivialises as V ~ d+ A
in B*, where A is a connection 1-form. Moreover, in this section we will work
with low W2 connection norm in B* i.e. A satisfies the smallness condition

||AHW1,2(B4) < go(X?w)

for some £o(X?,w) > 0 depending on the surface X? and the Kahler form w.
We will use the smallness assumption throughout this section. Moreover, to
fix ideas we will assume that B* is the flat closed unit ball.

We start by showing how to smooth 1-forms, keeping the approximating
sequence unitary. This method however, does not ensure the integrability

condition (L.1)). Let p > 1 and A € W'?(Q'B* ® u(n)) then we can always
find a sequence of unitary smooth 1-forms A4, € C*°(Q'B*® u(n)) such that

A — Ain W2 (BY).

31
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——T
Indeed, we can write A as A = A% — A0 where A% = a1dz; + adZs.
Since for each i = 1,2, we have a; € W'?(B* M, (C)), then by the density
of C* maps into WP, there exist sequences

a1 — ap in WHP(BY)

and
Qo) — ag in WHP(BY).

—T
By defining A%l = aq ;dZ + a9 dZe and Ay = A%l - Ag’l , we obtain by
construction the convergence of A;, to our initial form A in W1?. Moreover,
Ay is a unitary 1-form.

The next lemma helps us prove that we can always find a perturbation of a
given connection 1-form A € WP with low norm such that the integrability
condition ([1.1)) is satisfied.

Lemma 3.1. Let p > 2. There exists € > 0 depending on p such that for
any A € WHP(Q'BY*@u(n)) satisfying [ Ally1o(pay < €, there ezists a 1-form

AcWh(Q'B* @ u(n))

that satisfies the integrability condition

Fg’z —0
and
A 0,2
HA N AHWI,])(B4) < c HFA HLP(B4)7

for some constant C' > 0 depending on p. Moreover, if A is smooth then A
s also.

In the proof we will use Sobolev embeddings under the assumption that
p € [2,4) - which is the more delicate case. If p > 4, the results hold by
considering the corresponding Sobolev embeddings.

Proof of Lemma[3.1. In order to obtain a form satisfying the integrability
condition, we want to perturb the A with a 1-form V € C®(Q'B* u(n))
such that Fy?,, = 0. We express V by V = v —3", where v € W'"(Q*' B!
M,(C)). We expand Fy?,, = 0 as such:

0=F?y = (dA+V)+(A+V)A(A+ V)2
= (dA+V)?+(A+V)A(A+ V)™
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= (@4 )(A% 4 VOl 4 AN 4 y10))02
F (A% £ VOl ALO L0y A (ADL 4 0L | ALO 4 1/10))02
= 0A% 4 oVl 4 ACL A AOY 4 (A% YO YOl A Y0l
= F3? 4+ 0VO 4+ [A% VOl 4 vOL A YOl
= FY*+0u+ A" v] +vAw.
Thus, we get the following equation

v+ [, A% +ovAv=—Fy2

By the fact that we work on a Kihler manifold, we know that 99 - = %A .
dzi A dzz on the space Q%2B*. Thus, we want to transform the PDE above
into an elliptic one by taking v of the form

=%
v=0 w

with w = 0 on OB* - so that 8 is well defined. We solve the following elliptic
system: o _ B B
90w+ 0w, A+ T wAI w=—F.

Since A%! and FE;Q have small norms, we can use a fixed point argument.
We consider the following Dirichlet problem:

00w =—-[0w A - wAdw—FY in B
w =0 on OB*.

We fix k and we build the following sequence {w;}32, of forms that solve the
PDEs:

%*wl == _F2,2
%*WQ = —[g*wl, Ao’l] - 5*(4}1 A 5*(4)1 - Fga

%*Wj—&—l = —[E*wj, AO’I] - 5*(4}]‘ A g*w]‘ - FS’Q

where w; = 0 on 9B* for all j > 1.
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Claim. {w;}%, exists and is a bounded sequence in W27,

By classical elliptic theory, since Fg’z € LP, there exists a constant C; > 0
depending only on p such that

|’wl”w2,p(34) <C; H%*(JJl

Lr(B*) =G HF/O‘QHLP(B“) <20 HFXQHLP(B‘*) '

By induction we prove that w; exists and satisfies the uniform bound

”WJ‘HWM(B4) <20 HFfOl’zHLp(Bél) :

We assume that w; exists and [|wjlly2p(pey < 2C1 HFg’zHLp(m) and prove
that w;; exists with the same W?P bound. By the Sobolev embedding
Whp s [#/(4=P) there exist constants Cy > 0,C5 > 0 so that

e~

7w

J

< Gy ||ij||wl,p(34)

LAr/(4=p) (B4)
<y ||Wj||W2,p(B4)

<204 - Oy HFXQHLP(B“)

and
HAO’1||L4P/<47P)(B4) < Cs HAOJ”WLP(B‘*) < Cse

In addition, since 4p/(4 — p) > 2p for any p > 2, then WP continuously
embeds into L% and we can bound | Fall oy as such:

2 2
[ Fallpogey < 1Al opay + 1A L2051y < [Allwrs ey + Cs 1 Alssy
< HA||WLP(B4) + Cse ”AHWLp(le)
= (14 Cse) ”A||W17P(B4) .

Define the constant Cy := 1 4+ C3e. Moreover, since p > 2, we have the
embedding L?"/4=P) < LP. Denote

fj = —[g*wj, Ao’l] — g*wj AN g*w]' — ng.
Using the estimates above we obtain:

+ Hg*wj A\ g*wj

16300 ey < |05, A

1

Lp(BY) LP(B4
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<[ a0

) + HE*(JJ]' N E*Wj

LQP/(4*P)(B4 L2p/(4*p)(B4)

172 oo

<[

0,1 a*
A ||L4p/(4—p)(34) + Ha Wi

L4p/(4=p) (B4) H L4r/(4=p)(B4)

2% oo

< G0 |

2

0,2
ye+4CT - Gy | Fy Lo(B

|+ [

2
HLP(B4 Lr(B*)

< (hC3 HF,%QHLp(BQ £+ 4012 ' C(2204 ||Fz?172HLP(B4) HAHW“’(B‘*)
L P

< (CyCse +4C2C3C1e + 1) || FR°|| Ly

Hence, —[0 w;, A% — 8'w; A& w; — FY? € L? and the solution w;; to the
PDE

00 wjy = —[0 wj, A% = w AND w; — FY* in B
(3.1)
wit1 =0 on OB*

exists. Choosing € > 0 such that

02035 + 4012022046 <1

is satisfied, it follows that we can obtain the required bound:

||Wj+1HW2,p(B4) <G d 5Wj—i-l =0 ||fj||Lp(B4) <20, HFfOl’2HLp(B4) :

Lr(B*%)

Hence, by induction, we have proven the claim.

Claim. {w;}22, is a Cauchy sequence.

Since each w; satisfies the elliptic PDE (3.1)), we can estimate the difference
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Wwj41 — wj as such:

IN

[wj+1 = Wil gy C (||wj — Wit lwzwsy A lwies

+ || Fa

}Lp Jw; — Wj—1’|W2,p(B4)>

< 2Ce||lw; — wj—1||W2»P(B4)

where C' > 0 is a constant depending on p. Choosing ¢ such that in addition
2Ce < 1 is satisfied, it then follows that the sequence is Cauchy. Because
W?? is a Banach space and the sequence {w;}32, is Cauchy, we have that
the sequence converges strongly in W?2” to a limit which we denote by w.
Moreover, by construction w satisfies the PDE:

Dw =—-[0w A -dwAdw—FY* inB*
w =0 on OB*.
e =~ rT 0 2
Define A=A+0 w—0 w . Then FA’ =0 and

[4-4

—7T
=k —*
= H@ w—0 w
Wwlp

- saa .
wilp

]

Using the result above, we can prove the following main theorem of this
section:

Theorem 3.1. There exists g > 0 such that if A € WH2(QLB* u(n)) satis-
fies the smallness condition

||A||W1,2(B4) < e&o

and the integrability condition FB{Q = 0, then there ewists a sequence Ay €
C®(Q'B* u(n)) so that:

Ay — A in WH2(Q'B* u(n))
and satisfies the integrability condition ij = 0.

Proof of Theorem[3.1. As we have discussed at the start of this section, we
can always construct a sequence of smooth 1-forms A, that converge in W2
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to A and satisfng’2 — 0= F}*in L? as k — oo. Let € > 0 be the constant
given by Lemma and pick g9 = £/2. Then there exists ky > 0 such that
|4 - 4] <o for all k> ko and:

W12

Ay,

)Ak - AH 1Al pra ey < 220 = &

‘WlQ BY) ‘ W12(B4)

Thus, for each k > kg we can apply Lemma [3.1]in order to obtain a perturbed
sequence Aj, satisfying the integrability condition Fj;f = 0, such that there
exists a constant C' > 0

lae- | <cf#] o
Wl
Thus,
TR PN R P
Wwi2 w2
gCHFQ’Q +)’A—Ak)’ —0
Ag 2 w2
as k — 0o. This concludes the statement. O]

3.2 Existence of holomorphic trivialisations

In this section we prove that under the integrability condition Fg’Q =0 we
obtain the existence of local holomorphic trivialisations assuming low W12
norm for A as in the section before. We state the result:

Theorem 3.2. There erists €9 > 0 such that if A € WH2(Q'B* @ u(n))
satisfies
[ All 2 (pay < o,

and the integrability condition Fg’Q = 0, then there exists r > 0 and g €
W24(B* GL,(C)) for all ¢ < 2 such that

A%t = —9g- g1 in B. (3.2)

Moreover, there exists a constant Cy > 0 such that the following estimates
hold:

lg = 1d|lyy2apry < Cq | Allyr2(psy and ng - idHWZﬂ(B;l) < Gy [ Al gy -
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It follows that A9 = h=*0h where h =g"g.

This result is an analogue of the following real case framework: Let P be a
principal G- bundle over B*, where G is a compact Lie group. Assume A is
a connection 1-form on B*. The flatness condition F4 = 0 together with the
compactness of G imply that A = —dg - g~! where g € W2?(B*) N L>(B*).
This can be easily concluded by using Uhlenbeck’s gauge extraction proce-
dure [41]. In the complex framework, however, due to the lack of compactness
of the group GL,(C), we fail to obtain W2 N L* regularity of g and g~

We can assume that the ball of radius 2 Bj equipped with the canonical
complex structure is holomorphically embedded into CP? (simply take the
embedding (z,w) — [z, w, 1]).

Strategy:

Since this proof is quite technical, we start by describing the strategy. We
will first prove in Proposition that we can extend a small perturbation
A+ V of our connection 1-form A from B* to CP? while also keeping the
integrability condition . Secondly, Lemma shows that this extended
form is holomorphically trivialisable in the sense of . Thirdly, Lemma
proves a technical result which shows the existence of holomorphic triv-
ialisations of forms that are more regular than W12, This will help us later
to cancel the initial perturbation V' we have added.

By combining all these steps, theorem [3.2] proves the existence of holomorphic
trivialisation of our initial form A%! in B? for some r > 0. We conclude the
section with Corollary [3.1| which proves a stability result of the trivialisations
we obtain.

Before we start we need to prove the following technical proposition:

Proposition 3.1. There exists € > 0 such that for any A € W-(Q'CP? ®
u(n)) satisfying the bound H/IH < e, the operator
wi.2(CPp?)
L : W**(Q*CP* ® M, (C)) — L*(Q*CP* @ M, (C))
defined by
Li(w) =080 w+ [A%, 5 w] (3.3)

1s Fredholm and invertible.

Proof of Proposition [5.1. Tt follows from Garding’s Inequality, that the op-
erator 00 = 1A, is elliptic over CP* (see [12, p. 93]). Because CP* is a



3.2 Existence of holomorphic trivialisations 39

compact manifold, then Ker%Ad and Coker%Ad are finite dimensional spaces.
By definition it follows that 98" is Fredholm.

Let € > 0 be as defined in [32, Theorem 4.4.2 (ii), p.185] such that

o <
wi2(cp?)

is small in W2 norm. It follows that the operator [A%! §"-] has small oper-
ator norm W22 to L%

*

)H[Amﬁ*,] (A% 3

|- oo Ji

IIUJHW212:1 L2((CIP2)

e

L4(CP?)

<cfja]

L4(CP?)

W2(CP?) ol e

< Ck,

for some constant C' > 0 coming from the Sobolev embedding W2 — L4
Hence, from the continuity of the index maps [32, Theorem 4.4.2, p.185],
we have that Lj; is Fredholm and has the same index as 90" mapping
W?22(CP?, M, (C)) to L*(CP?, M,(C)).

It is well-known that there are no global nonzero holomorphic (0, 2)-forms
on CP? [12, p. 118]. The lack of holomorphic (0,2)-forms implies that 99"
defined from W?22(CP?) to L?(CP?) is an invertible operator on the space of
(0, 2)-forms and consequently has index 0. Thus, it follows that index(L ;) =
index(99") = 0.

It remains to show that L ; has trivial kernel. Once we have shown this,
we can use the zero index of L ; in order to conclude that L ; is invertible.
Assume w € KerL ;. Hence, w satisfies

00 w = —[A" 9 w].

By the Fredholm Lemma [32, Lemma 4.3.9] and the Sobolev embedding
Wt2 < L4 we obtain

)

L2

lwlhyas < € [887w]| , < CULI @I +[|[A4, ')

< O Lz()5a + [ 4%

e

4 ‘ L4
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S ONLi@)l + Cellwllyya.

for some constants C,C’" > 0. We can take the term C’e ||w||};22 on the left
hand side of the inequality:

(1—C"%) ||wllyez < CLz W), -

Choosing € > 0 such that 1 — C's > %, then we can divide by the positive
factor 1 — C’e. We obtain the bound:

C
[wllypze < T-cn= L)l -

Because w € KerLj, we have that w = 0. Since w was arbitrarily chosen
from the kernel, it follows that the kernel of Lj is trivial: KerL; = {0}.
This finishes the proof. 0

Having this result at our disposal, we can prove the existence of a CP? ex-
tension of our connection form A, keeping the integrability condition ((1.1)).
We assume the holomorphic embedding of B* in CP*.

Proposition 3.2. There exists € > 0 such that for any A € WH(Q'B* ®
u(n)) satisfying FY* = 0 and |Ally2pay < &, there exists A € WH(Q'CP*®
u(n)) that satisfies

in CP? and w € W22(QY2CP? ® M, (C)) such that A% = A%' + 9w in BL.
Moreover, w satisfies the estimate

[wllwzzcezy < C Ay
for some constant C' > 0.

We recall to the reader that according to equation (A.1)), we have J = —x0x,
which is the formal adjoint of 0.

Proof of Proposition[3.9. Step 1. Since A is unitary, we can decompose A
into its (0,1) and (1,0) parts as such: A = A%! — AT where

Ao’l = Oéldz_l + OéQdZ_Q

and o; € WH2(B* u(n)) for i = 1,2. We extend each «; into Bj to a
compactly supported map d&;, so that &; = 0 in B3 \ Bj Jo- For constructing
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«;, for each 7 = 1,2 we solve:

(

Ag; = 0 inBi,\ B!

¢ = a; onIdB}

\ ¢o; = 0 on aB§/2

Such solutions exist by [20, Remark 7.2, Chapter 2] and satisfy

1 \Bh S Cllaill grre@psy < C llaillyregs

”¢i"W1’2(Bd

for some constants C, C’ > 0. We can now define the following extensions on
Bj:

a; in B}

0 inBjy\B; /-
By the construction of ¢;, the functions &; are well-defined W12(Bj3) Sobolev
maps that satisfy the estimate:

HdiHWla?(Bg) <C HaiHWl»?(Bf) :
Define the (0, 1)-form A% = 4yd77 + GodZy and
o ~ ——7T
A=A — A1 c WH(Q'B) @ u(n)).

By covering CP? \ Bj with coordinate charts, we can trivially extend A by
0 on CP?\ BS. Thus, we have obtained A € W'?(Q'CP* ® u(n)) and there

< CllAllyr2(p1y -

exists a constant C' > 0 such that || A <
W1.2(CP?)

Step 2. It remains to perturb the form A so that we obtain the integrabil-
ity condition. This can be done by finding a (0,2)-form solution w to the
integrability condition:
F? =0
A4+0 w—0 w
This amounts to solving the following PDE globally on the complex projective
space CP*:

00w+ [A% 0w = -0 wAIw— Fg’Q (3.4)
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where w is a (0,2) form on CP?. Using the invertibility of the operator L ;
proven in Proposition , we can solve equation (3.4) using a fixed point
method. This is done by mimicking the procedure we have employed before,
in Lemma [3.1] Indeed, consider the sequence given by:

Li(wn) = —F}*

LA(CL)Q) = —5*W1 A 5*w1 — Fg’z
Lj(wk) = =0 wpy AO wy_y — FY° (3.5)

By showing that the sequence w;, converges strongly in W22, we will obtain
a W22 solution to the required equation . Since L 4 is invertible as an
operator from W?2? to L?, it is clear that existence holds for each wy, k > 1.
We need to show that the sequence {wy,}32, is Cauchy in W2,

Claim. {w;}°, is a Cauchy sequence in W22(CP?).

, where C' > 0 is the constant appearing in Fredholm
L2(CP?)

”(b“WQ’Q((CIP’?) <C HLA<¢)HL2(<C1P>2) :

We first show by induction the uniform bound on the sequence ||wg|[yy2.2(cp2) <
2g¢. By the Fredholm Lemma [32, Lemma 4.3.9] we have that

o 0,2
Let gy :=C HFA

inequality:

= g9 < 2¢¢
L2(CP?)

0,2
oot lpaer < € IL 40 s, = C ||

Let k > 1. By the Sobolev embedding W'2(CP?) < L*(CP?) there exists a
constant C7 > 0 so that

Thus, the inequalities follow:

s*wk(

<G[Tw| < OF [willwaacen) -

LA(CP?) W1,2(CP?)

||wk+1||W272((CIP’2) <C ||LA(WI€+1)||L2((C]P>2)

<C Hs*wk AT w

|5
L2(CP?) A lr2(cp?)

<C HwkHi‘i(Cﬂl’z) + o
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<C-Cf ||Wk‘|?4/272(cp2) + <o
By the induction hypothesis, we have the bound [|wg||yy2.(cp2y < 2€0. Thus,

lwns1llwaa(cpzy < 4(C - CY)es + <o (3.6)

Having chosen € > 0 such that 4(C' - C{)e < 1 and

H HWLQ((CIFQ) S C ”A”W1,2(B4) S g,

it follows that 4(C - C})ey < 1. We conclude from (3.6) the estimate:
||Wk+1HW2,2(@P>2) < 2gy.

By induction, we prove that there is a uniform bound for the sequence of
2-forms {wy}:
w2 (ep2) < 20.
for all kK > 1.
It remains to show that {wy} is a Cauchy sequence. Let k > 2. Thus, we

derive the following bounds from the recurrence relation (3.5 satisfied by
the sequence:

[wk1 — WkHW2,2(<CIP2) < C|L s(wpr — Wk)HLz(qc[pﬂ)

<C Hg*(wk — Wg_1) /\g*wk‘

L2(CP?)

C Hg*wk_l Ag*(wk — Wg_1)

L2(CP?)

<A4C - C¥eg ||wr, — wi—1[y2.2(cp2)

To simplify notation, denote g, := 4C - C?gy < 1. We further expand our
estimate above:

[wrs1r = Wrllwezcpey < € llwk — wWially22(cp2)

<<V ||lwy - wollyy2.2(cp2)

Let ¢ > k > 0. It follows that

lwe = willw2zicpy < llwe — weatlyezepy + lwe—1 — willeecp2)
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< 45£ ! 2+ lwe—1 — we— 2||W22 ey T lwe—2 = willy 2. (CP?)

< 4efTled 4 4eb22 L 4 detel
1 _ gtk
:452.5k.—1<€k
L

This is clearly a Cauchy sequence by the inequality above and the claim is
proven.

Hence, since {wy }72; is a Cauchy sequence in the Banach space of (0, 2) forms
W22(Q%2CP? @ M, (C)), it has a limit w and converges strongly in W??2 to

- S —T
it. Hence, by defining A = A+ 0 w — 9 w , we obtain a skew-Hermitian
1-form, satisfying Fg,z = (0 such that A% = A% + 9w = A% +Yw in B

Moreover, by convergence, we have that the uniform bound is satisfied by the
limiting form w, indeed [|wl|yy22 < 259 = 2C || F4],». By construction of A,
it is clear that there exists a constant C' > 0 so that ||F;]|;. < C"||Al[jy1.2-
This leads to the required estimate on w, [|w||y2z2cp2y < C || Allyyre ey, where
C > 0 is some constant. O

We prove that on CP? we can obtain holomorphic trivialisations of A, a
connection 1-form.

Lemma 3.2. There exists € > 0 such that for any form A € W2(Q'CP? ®

u(n)) satisfying the integrability condition and HAH < €, then there
w2

exist gauges §, 5+ € W>4(CP?, GL,(C)) for all ¢ < 2 such that

A% = 9557
Futhermore for each g < 2 there exists a constant Cy > 0 such that

19 = idlly2.0(cp2) < C (3.7)

W1.2(CP?)

and

Hg_l o Z.dHWZq((CIP’Z <G (3.8)

W12(CP?)

Proof of Lemma[3.4. We divide the proof into three steps. Using a fixed
point argument the first two steps show the existence of a map g satisfying
0g = —A%'g. Step 3 shows the existence of g~! and proves the estimates

and (3.
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Step 1. Consider the linear operator:
T : WH(CP?, M,,(C)) — WH(CP?, M, (C))

given by _ .
T(g) = =0 N(A™'§) +id,

where id is the constant identity matrix and N is the inverse operator of Ay
as defined in (A.3)). We verify that T is well-defined. It follows from the
Garding inequality on CP? (see for example [12, p. 93]) that we have the
elliptic estimate

| w(aeg)

<C H%W(Amg)‘

(3.9)

Wi2(CP?) L2(CP?)

for some constant C'. Moreover, using the 0-Hodge decomposition (A.F) we
can decompose A%!g as such:

A% = §TON (A% G) 4+ 00 N (A% g) (3.10)

and because 9 and 0 are orthogonal with respect to the L? inner product,
it follows that

H,meg _ HE*EN(AM@) + H%"N@Ovlg)) .
L2 L2 L2
Consequently,
J9°N (A ( < HAO’“ . 3.11
H ( g) L2(CP?) — g L2(CP?) ( )
Putting (3.9) and (3.11)) together, we obtain:
' N(Ag)| <c|a < c||an| g .
’ (A" 9) W2 (CcB?) — 9 L2(Cp?) = LA(CP?) ||9HL4(<C]P>2)

Furthermore, using the Sobolev embedding in 4-dimensions W12 < L*, there
exists a constant C’ so that

|

Thus, the operator T is well-defined, mapping W2 to W2,

AN 19llwr.2 - (3.12)

E*N(Amg)H <

wt2

w2

We can now show that 7" has a unique fixed point. Consider ¢;,g2 €
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W12(CP?, M, (C)). Then
ITG) = 7@l esy = [0 MA@ = 32))|

W12(CP?)

Using the inequality (3.12)) above, we obtain

and we can choose ¢ > 0 for the bound Hflo’l

AO,l

INIG - L <C
(A% (91 — G2)) WL2(CP?) =

W1.2(CP?) Hgl - §2HW172((CIP2)

< ¢ so that the

W1.2(CP?)
factor C’

A0 H is strictly smaller than 1. Hence, T is a contraction
WL2(CP?)

operator and there exists a unique fixed point § € WH2(CP?, M,,(C)), T(j) =
g. Thus, we have _ o )
9§ = —00 N(A%g). (3.13)

Step 2. We can now prove that the above equation (3.13]) coupled with the

integrability condition ngl = 0 satisfied by A%, imply that § solves the

required PDE: 9§ = —A%'§. The d-Hodge decomposition 1} gives
0§ = —A%g 4+ 9 ON(Ag). (3.14)

Since the operators N and compute, Na: NO (see [8, Theorem 4.4.1 (3)]),
we can further compute the term & ON (A%'§):

D ON(AG) =0 NO(A%§) = 9 N(9A™ G — A% A 9g).
Using the above equation , then
FIN(AVG) = T N@A G — A A T)
=9 N(QAY g+ A" A A% g — A% N O ON(A™ ).

Since A satisfies the integrability condition FE’Q = (0, we have the recurrence
relation:

D ON(A%G) = —9'N(A™ A G ON (A% g)). (3.15)
Thus, it is natural to consider the operator
L: L*(Q'CP? ® M,(C)) — L*(Q'CP? ® M,(C))

Vs —0 N(AY AV).
We need to establish whether £ is a well-defined operator and find its fixed
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points in order to analyse equation (3.15). By the Sobolev embedding W4/3
L? it follows that

||‘C(V)||L2((CIP’2) <C ||£(V)||W1,4/3(<CP2)
for some constant C' > 0. We also have that

IVEO) ey < C||VEN(A A V)

L4/3(CP?)

and consequently, since N(A%' A V) is a (0,2)-form in 4-dimensions, the
elliptic estimate holds:

|vevia av)|

<C H%*N(AOJ A V)‘

L4/3(CP?) L4/3(CP?)

_ofjar ]

L4/3(CP?)

By the Holder inequality and the estimates above, it immediately follows
that: )
eV |z < € || A7

L4(CP?) ||VHL2((CIP2 :

Similarly as before, this means that £ is a well-defined contraction operator
and has a unique ﬁxed point In particular, 0 is its fixed point. We know
from equation (3.15) that 9 ON(A"') is also a fixed point for £ and, thus,
we have that the term 9 ON(A%'3) vanishes. In particular, from - the
equation is solved:

05 =—A"g.

Step 3. It remains to show that § € W24(CP? GL,(C)) for all ¢ < 2 and
that it satisfies the required estimate . Moreover, we need to show that
its inverse satisfies the estimate (3.8). Let ¢ < 2. We know that g is a W2
map and satisfies:

g—id=0 N(A%g).
Since g is a fixed point of T', then it satisfies the estimate , which means:

~ . 10,1 ~
19 = idlyraersy < O A% L, o Nl

<ol

1§ = idlyaz +C |47

WL.2(CP?) W1.2(CP?)

Because HAO’1

< €, where ¢ is small, then there exists a constant
wi.2(Cp?)
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C > 0 such that

19 = idlyraqepsy < € A

W1.2(CP?)

Since g satisfies this estimate, we can bootstrap using Lemma and Re-
mark [D.1fi), from which follows the required estimate and regularity (3.7)

AHWM(W) , (3.16)

||§ - id”w%rz(cmﬁ) < Cq
for some constant C, > 0.

We need to show that § is in GL,(C) over CP? and that its inverse satisfies
a similar estimate as . Arguing in a similar way to Step 1, 2 and the
way we obtained the regularity estimates for g in , we can show that
there exists @ € W2?(CP?, GL,(C)) for any ¢ < 2 such that

O = 2 A%!

and

@ — id”wzq(c[pﬂ) <Gy l|A (3.17)

HW1>2(CIP2)
for some constant C; > 0. In particular, we have that 0(6g) = 0. Hence,
there exists a holomorphic function h such that ug = h. However, since the
only holomorphic functions on CP? are the constant ones [12, p. 118], then
h is a constant.

We can pick 3/2 < gy < 2 so that we obtain the Sobolev embedding W?2% s
L on any 3-dimensional hypersurface. Moreover, by the Sobolev products
regularity results in [31, Section 4.8.2, Theorem 1], there exists ¢1 € (qo,2)

such that for @, g € W24 (CP?, M,(C)), ug € W% and

||7-L§ - Z'dHWQ’qo((C]P’Z) < OQO

A

W1.2(CP?)

for some constant Cy, > 0. By Fubini, there exists a radius » > 0 and
20 € CP? such that

~ o~ . ,
|ag — @d||w2»qo(aB$(zo)) < 20‘10 lez(@??)

where B*(z) is a ball in CP?. Thus, from the embedding of W2% into L>
in 3-dimensions, there exists a constant Cj/ > 0 so that



3.2 Existence of holomorphic trivialisations 49

(3.18)

~ o~ . 1/
|ag — ZdHLoo(aB;;(zo)) < Coo HW”((CIPQ) '

We can choose a possibly smaller € > 0 than we have done for the estimate

A — < ¢ such that we obtain that h = 4§ € GL,(C) over 0B, (z)
WL2(CP

from (3.18). However, because h is a constant, then i € GL,(C) over CP?
and satisfies the estimate:

o] e < 4]

Loo(CP2) — wi2(Bs)’

for some constant C > 0.

Hence, we can define §=! := h~a. Since §~'§ = id by construction, we obtain
that § maps into GL,(C). Moreover, from the fact that A~' is a constant
and from the estimate it follows that g—! € W24(CP? GL,(C)) for all
q < 2. In particular, we obtain that for each ¢ < 2 there exists a constant
Cy > 0 such that

||§_1 o idHqu(@Pﬂ) < G HAHVV“(CPZ) :
This concludes the proof of Lemma |3.2 O]

Before proving the existence of a local holomorphic trivialisation for our
initial W2 form A defined on B*, we need to show a stronger version of
existence of such trivialisations. We consider 1-forms of small norm in WP,
p > 3. This will be a useful result for our final theorem.

Lemma 3.3. Let p > 3. There exists € > 0 such that for any
w e WP(Q" B @ M,(C))

satisfying F%* = 0 and |wllwrp(pey < €, there exists r € (1/2,1) and gauges
u,u”t € W*P(B* GL,(C)) so that

w=—0u-u"" in B2,
with estimates

|u— Zd”W&p(Bé) <C ||w||W17P(B4)
and (3.19)

Huil - idHWQ,p(B;}) <C HwHWLp(B‘l) :
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Remark 3.1. The reader can note the fact that the technique to solve this
lemma is sitmilar to the ideas used in the Lemma |3.4. However, since we
work on B*, the proof will rely more on reqularity results from the literature
on the analysis of several complex variables.

Proof of Lemma[3.3. Step 1. Let ¢ = 4p/(4—p). We show the existence of a
gauge u € GL,(C) that ”almost” solves our equation modulo a perturbation
term. Indeed, in Step 2 we can show that the perturbation term vanishes
and consequentially u is the solution. Let T},T5 be the operators defined as
in and . Note that we can extend 77 and 75 to operators defined
on Sobolev spaces by density arguments.

We define the operator
H: L>(B* M,(C)N{f:0f € LY} — L*(B* M,(C))N{f:0f € L}

given by
H(u) =id+ T1(—w - u),
where ¢d is the constant identity matrix.

Claim. H is well-defined.

Since T; takes (0, 1)-forms to maps we only need to check that H maps
L n{f:0f € Litto L*N{f : df € L1}. By the Sobolev embedding
WP s L[4 there exists a constant C; > 0 so that

||W||Lq(34) <G “w”leP(B‘l) :

The assumption p > 3 implies that ¢ = 4p/(4 — p) > 12. Consequently,
for u € L™(B* M,(C)) N {f : 0f € LI} we have w-u € L9. Moreover
O(w - u) € L% We prove this.

Hg(w ' U)HL‘I/Q(B‘l) < ngHLq/Q(B‘l) ||u||L°°(B4) + Hw AguHLq/Q(B‘l)

< 0| gy el ooy + 10l oy 19| o 0

Crucially, we have that F)? = 0w + w Aw = 0. Because w € L?(B*), then
F%2 =0 gives 0w € L%/?. Thus,

18 )| oy < IeolZamy Nallpoony + 1l zagey 1] i

< Cie ||W||Lq(34) ||UHL<><>(B4) + ||W||Lq(B4) ”51‘“”(34)

< O llwanqey (e + 1P0ll ) - (3:20)
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where we have implicitly used the fact that we can choose ¢ < 1 so that
[wllyrp(pey < €. Hence, we have shown that O(w - u) € L2, Taking into

account that ¢/2 > 6 and the embedding W42 < L4, we can apply Propo-
sition to the (0,1)-form w - u and obtain the estimate:

T2 (@ W)l ey + [[OT1(w - )| 1y oy

<€ (I ullgapy + [0 )| yagan) - (32D

This shows that, #H is well-defined, since the operator T;(w-) is a well-defined
map from L N{f:9f € L9} to L*N{f : df € L1}. We have proven the

claim.

Next, we show that H has a fixed point. From (3.21)), it follows that

1T (w - )| ooy + [[OT1 (@ - )| o

< € (1l gy 1] ey + 100 - 0] rngy)-

Since ||w|yy1p(pey < € and using (3.20)), for any uy, us € L>(B*, M,(C))N{f :
J0f € L9} we have:

HH<U1) - H<u2)HLOO(B4) + ||5H(U1) — 5H<U2

Moo

= T (—w - (u1 — U2))||Loo(34) + Hng(—w (ur = U2))HLq(B4)

< Ce (”Ul - u2||Loo(B4) + Hg(ul - UQ)HL‘Z(B4)> )

where C' depends on the W norm of w. Choosing ¢ > 0 such that
Ce < 1, we obtain that H is a contraction and therefore there exists

u € L®(B*, M,(C))N{f:0f € L1} satisfying
u=1id+Ti(—w-u) = H(u).

This fixed point "almost” solves the required equation. We will show in
the next step that the error we obtain vanishes in light of the integrability
condition F2?% = 0.

Step 2. Having obtained this fixed point, we show that u satisfies gu_: —Ww-u.
Since we have proven that u — id = Ti(—w - u), we get Ju = 0T (—w -
u) € L9. We can apply Theorem from the Appendix to get the integral
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representation of —w - u:
—w-u =0T (~w-u) + Ty (d(~w - u))

and expand the last term in the following way:

Ty(0(~w - u)) = To(—0w - u + w A Ou)
=Ty(—0w-u+wA Iy (—w - u))
=Ty(—0w-u+wA (—w-u—To(d(~w - u)))
= Ty(— (0w + w Aw)u —w A To(O(—w - u))).

By using the fact that w satisfies the integrability condition
F% = 0w+ wAw =0,

we obtain:

To(O(—w - u)) = Ta(w A To(0(—w - u))). (3.22)

We want to show that this recurrence equation implies that T5(0(—w-u)) = 0.
From Proposition [A.1] T} is a well-defined operator mapping L*® to W* for
any s > 1 and the following estimate holds:

|70~ - )| ety < C | T@(= - )| 10030
= C || Ta(w A T2(0(=w - w)||ypr.0
< Cllw A TO(-w - )| ey
< Clwll pagy [| T2(0(~w - “))||L°°(B4)
< CCe | To(0(=w - W) | ey -

where C is the Sobolev constant given by the Sobolev embedding W4 «s [
(g > 6) in 4 dimensions. Moreover, for 1 —C-Cie > 0 there is a contradiction
unless 75(0(—w - u)) = 0 and we can conclude that the d-equation is solved:

ou=—w-u in B*.

Step 8. It remains to show that v € GL,(C) and satisfies the required
estimates (3.19)). We have:

Ju— idHL‘*(B‘*) = [H(u) - idHL‘”@‘*)
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< Cllwllwrpoy 1l o sy

< Cellu— id“LOO(B‘l) +C ||w||W1vP(B4) :

Thus, since € > 0 is small, we get the L*> bound:

C

Ju— Zd||L<>o(B4) < 1-C¢ ||w||W17P(B4) :
Because we can assume that 1 — Ce > % for € small enough, then

i = i e oy < 2C [l (323)

This implies that u € GL,(C). Remark [D.1fiii) gives the existence of r €
(1/2,1) and a constant C' > 0 such that

lu — idHWZp(B;}) <C ||w||W17P(B4) : (3.24)
Moreover, since u~! exists, we have the following L> estimate:
-1 _ _,,~1 ~1 ~1 .
[ Zd||L°°(B4) = flut —u UHLOO(B4) < u HLOO(B‘*) lu = 4d]| oo (1)
< [ = id]] o o 1w = i oo gy + 11 = ] oo 1)

The estimate (3.23) on u also implies that the norm [|u — id|| e gy is small.
Hence, the estimate of ©~! then follows:

lu — id||L°°(B4)

-1 .

u " —ad||, < , < Clwllyiegs
I i = ey = W
for some constant C' > 0. By Remark applied to !, we obtain a similar
estimate. This finishes the proof of Lemma [3.3] ]

Having the results above at our disposal, we are ready to proceed at showing
the existence of local holomorphic trivialisations in B} for some r > 0.

Theorem 3.2. There erists €9 > 0 such that if A € WH2(Q'B* @ u(n))
satisfies
[ All 2 (pay < o,

and the integrability condition FB{Q = 0, then there exists r > 0 and g €
W24(B* GL,(C)) for all ¢ < 2 such that

A% = —9g-g7! in B2, (3.25)
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Moreover, there exists a constant Cy > 0 such that the following estimates

hold:
lg — idHW?vq(Bﬁ) < Cq ||A||W1»2(B4)
and (3.26)

Hgil - Zdez,q(B;l) < Cq HAHWL?(B“) :
It follows that A9 = h™'0h where h =g’ g.

Proof of Theorem[3.9. From Proposition [3.2] there exists a 1-form
A e WH(QICP? @ u(n))

satisfying the integrability condition so that A% = A%! + Yw in B*, where
w € W22(Q02CP? ® M,,(C)) with estimate [wllwze(crry < 1Allwr2pe)- This
implies that

10,1
HA memz) < CllAllwrzgss (3.27)

for some constant C' > 0.

Lemma applied to the form A gives the existence of a gauge
g € W*(CP? GL,(C))

for all ¢ < 2 so that B 3
0§ =—A%g in CP?

and for each ¢ < 2 there exists C; > 0 such that

19 = idlly2.0icpzy < C Ale»?(CP% .

(3.28)
. <q,

197" - id”wzch

A

WL2(CP2)
On the unit ball B* we can rewrite (A%!)? as such:
(AO,l)g — gflgg + gflAO,lg — gflgg 4 g—lAO,lg o gfl,ﬁwg — _g—l ('l9w> g

In order to find a gauge g for A%! that gives a holomorphical trivialisa-
tion, it remains to find a gauge change u that cancels the perturbation term
—5 (Jw) §: B

ou=g " (Ww)g-u. (3.29)
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We claim that the composition of gauges g - u satisfies the statement.

Since the Sobolev embedding W24 — 24/ Ezﬂf) holds for any ¢ < 2, it implies
that g,g~* € () LY. The fact that A and A satisfy the integrability condition

g<oo
on B*: Fg’Q =0 and FE’Q = 0, implies that w € W2?(Q%2B%) satisfies the
following PDE:

1
§Aw = —[A% Yw] — Yw A Yw. (3.30)
Proposition applied to this PDE allows to bootstrap the regularity of w

inside B*. Indeed, we have the much better regularity w € W24(B*, M,(C))
for any ¢ < 4. Sobolev embeddings yield:

Yw € (| Wid(B*, M, = () Lt

q<4 g<oo

Putting together the regularity of Yw, § and g—! we can obtain the regularity
of g7 (Yw) g:

- (ﬂw)g € ﬂ I/Vllocq - ﬂ Lloc (331)

q<4 q<oco

Fix p > 3 and § > 0 small. There exists ¢ € (0, 1) so that

157 () !?||w1,p<3;10) < 0. (3.32)
This (0 1)-form also solves F 0_21( =0in B4 Hence, we apply Lemma

to g~ (Yw) g in By, (by rescahng) to get the existence of r € (r9/2,79) and
u € W?P(B* GL,(C)) that solves the d-equation above ([3.29):

Oou=g"'(Ww)g-u in B2,
and satisfies the estimates

= idll sty < C 137 090) @l oy < C Aoy (333)
and

Hu_l B Z.dHWZP(Bé) <C Hg_l (Yw) gHWL?(Bj%) <C HAHWLQ(B‘*) ! (3.34)

for some constant C > 0.

Define g := ju in B! By construction, the required d-equation is solved:

0g = —A%y in B} (3.35)
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We show that g and ¢g~! satisfy the required estimates (3.26). Let ¢ < 2
arbitrary. The triangle inequality applied on the norm W4 gives:

lg — id”wzq(B;é) <|[(g —id)(u — id)HWZq(Bj})
+ 119 — idllyy2apay + lv = idll o ps -

Using the Sobolev product results of |31, Section 4.8.2, Theorem 1] and the

regularity of § —id € (., W*9(B;}) and u —id € W*?(By), it follows that

(5 — id)(u — id) € () W>U(B)

q<2
with
1(g — id)(u — id) | 2apey < C | — idllya pay - 1w —id|lyonpay

for some ¢; € (¢,2) and constant C' > 0. Hence, from (3.27), (3.28)) and
(3.33) it immediately follows that there exists a constant C; > 0 such that:

lg — id”W?vtI(Bj%) < C ||AHW1,2(B4) : (3.36)

By arguing in a completely analogous way to how the obtained (3.36)), using

and , we obtain
Hgil B Z-dHWQ,q(Bf}) S Cq HAHW1,2(B4) .

It remains to show the existence of h such that A9 = h=10h. We apply g to
A in B! to get:

AT = g7\ (Dg + 0g) + g A g — g VADT g = g0 — g TAOT g,

Since (3.35)) holds, then g7 = —ETAOJT. Hence, (ET)_1 dgl = Aot By
plugging this into the equation above, we get

A= g 09+ g7 (§7) 05" = (379) ' 0(g" ).

We conclude the proof of Theorem by defining h := g'g, and h €
W24(B2 iu(n)) for any ¢ < 2. O

Remark 3.2. From the proof of the theorem[3.4 above the radius r > 0 can be
chosen to be the same under small perturbations of the 1-form A. We shortly
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Justify this fact. We have shown that there exists a 2-form w associated to
A satisfying (3.30)) in B*. Moreover, from Proposition for each q < 4,
there exists a constant Cy > 0 such that

Hw”Wfo’f(B‘l) <y ||A||W1«2(B4) :

Over domains B} we have the estimate

HWHWM(B;‘:) < Cor ’AHWLQ(B‘*) :

for constants C,, > 0 which depend on r and Cy, — 0 asr — 0. Let
0 >0 and p > 3 such that (3.32)) holds. Consider perturbations A. of A with
F3? =0 over B* such that

1A = Acllyrapay < 5 1Aellyrzpa) - (3.37)

N | —

Choose C' > 0 such that

0 )
< .
2H‘AHWLQ(B‘l) HAE”WI,Q(BAL)

C <

Since Cpr — 0 as v — 0, choose ry > 0 such that C,,, < C, where p > 3
was fived. Then any w. associated to A, through (3.30) satisfies

HWEHV[/?,p(B;IO) < Cprg ||A€HW172(B4) <.

Thus, up to constants we obtain the estimate (3.32) for w. and we conclude
that under perturbations A. of A satisfying (3.37)), we can always choose
r:=ry>0.

Having made the above remark, we end the section by proving a stability
result for holomorphic trivialisations. This Corollary will be used to show
the convergence of holomorphic structures later on in Section [3.5|

Corollary 3.1. Let Ay € WH2(Q'B*®@u(n)) and r > 1 so that
g1 € W*Y(B},GL,(C))

satisfies theorem 3.4 There exists 6 > 0 such that for all A, € W'?(Q'B*®
u(n)) with Fg’f = 0 satisfying

[ A1 = Asol[yrr2pay <6,



58 Chapter 3. U(n) Bundles in Hilbert Spaces

there exists a radius ro € (r/2,r) depending only on Ay and a gauge

g2 € [\ W*(B},,GL,(C))

q<2
that trivialises As in the sense that:
Ay = —0gs- gy " mn Bfo

with the following estimates: for any q < 2 there exists Cy, > 0 such that

g2 = idllwsaqsyy < Co (1AtIrogn + 142l )
and there exists C' > 0 such that
lg1 = goll Loy < C'llAT = Asflyrz e

for any p < 12.

Proof of Corollary[3.1. Choose § > 0 such that Ay is a small perturbation
of A;. By Remark and Theorem applied to the forms A; and A, we
obtain the existence of r > 0 and gauges ¢;,g0 € W*4(B% GL,(C)) for all
q < 2 so that

Ogy = —A(l)’l -g1 and Jgy = —Ag’l - gy in B} (3.38)
and there exists a constant C, > 0 such that
g = idllyyzagse < Co lAtlrame
g2 — id”w%q(fz;‘:) < Cy ”AQHWL?(B‘*)
< (HA1HW1,2(B4) + | A — A2HW1,2(B4)) and (3.39)
92" — idez,q(Bgf) < Cy |42l sy
< Cy (Iillyrogsn + 141 = Aallyage)

Since g; and g holomorphically trivialise A; and Ay respectively (3.38]), we
can relate the transition gauge gy lg; with the difference 1-form A, — A,
through the following 0-equation:

(95 1) = 95 1 (Ay — A1) g5 - (95 ). (3.40)
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We first estimate g, ' g, —id using the inequalities (3.39)) and then use equation
(3.40) to show that g, 'g; — id is only bounded by the norm of Ay — A;. Fix

q < 2. The triangle inequality gives:

loz"91 = idllyyaaisy < N(o2" = id) g1 = id)l| ey
+ H951 - idHWQ#J(B;l) + [lg1 — ZdHW?»q(B;*)
Hence, by the results of [31, Section 4.8.2, Theorem 1] applied to the product
(92" — id)(g1 — id)
and estimates , there exists a constant C;; > 0 so that

||92_191 - Z.d“qu(Bé) < Cq<||A1||WL2 + ||A2||W172)

(3.41)
< 2C,([[Axllyprs + [[Ar = Azl 2)-

for any ¢ < 2. We can use equation in order to find an a-posteriori

estimate of g, g1 — id involving only the 1-form Ay — A;. Let s < 4. By

the regularity of 9 in L* (see [18, Theorem 1(b)]) there exists a holomorphic

function h and a constant Cy > 0 such that

”92_191 - h||L6s/(675)(B74) < C; H5(92_191>‘ L5 (BY)
< Cs |92t (A2 — Ay)* o

Lsp/(0=5)(B4) ||95191||Lp(3§) )

where p € (s, 00) arbitrary. Hence, it follows that there exists C' > 0 depend-
ing on A; such that

192 91 = 1| jousio—o gy SCNAL = Azllyra gy L9 o0 — id]| 1 )
+ Cl|Ar = Aslyrz oy -

There exists ¢ < 2 such that W29 < L. Since g, 'g; — id is bounded in
W24 as in (3.41)), then it is also bounded in LP. Hence,

||g2_lgl - h”LGs/(e—s)(Bg) <C ||A1 - A2||W172(B4) :
Since this holds for any s < 4, there exists a constant C' > 0 such that

Hgglgl - hHLp(B;g <C HAl - AQHWLQ(B‘*) )
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for any p < 12. Having this inequality at our disposal, we can turn to
estimate g; — g2 - h. Let p < 12, then:

lgr = g2+ Ml pogay = || (92 — id)(h = 93" 91) + 1o = g7 0o 1y oy

For v € (p,12), we get:

lgr = 92 - 2ll oy < Nlg2 = il oo ) || 92 " 91 — P Lo(BY)

+ Hg2_191 - hHLp(B;}) :
Thus, there exists a constant C,, > 0 depending on v, p and A; such that
191 = 92+ hll popay < Cup [[A1 — Aallypro(pay -
Moreover, gs - h solves the equation:
(g2 h) = A3 (g2 ) (3.42)
in a distributional sense. It remains to show that the g, - h is bounded in

W24 by the norms of A; and A, in a possible slightly smaller ball. Let
ro € (r/2,r), then there exists a constant C' > 0 such that

g2 - h — id”Wl’?(Bﬁo) <C (”592 ' hHL?(Bg) +lg2-h - Z'dHLZ(B?‘)> :

Consequently, by using the 0-equation (3.42)) satisfied by g, - h, it follows
that:

lgz - h = idllyragas ) <C (1142l oy 192 - bllagay
g2+ b = gill 2z + lid = g1l oy ) -
Having shown that g, - h € LP for all p < 12, we obtain in particular
los - h = idl pags,y < C (141 lwragony + el -
Hence, given that ¢, - h € L* and g5 - h — id is bounded by A; and A,, we

get from Lemma and Remark [D.1fii) the estimate: for any ¢ < 2 there
exists a constant C; > 0 such that:

lgs - h = idllyaizy ) < Co (I1Ailwrasn + I Aalra ) -
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By redefining g, as g, - h, we have proven our stability result. ]

3.3 Proof of Theorem (1.1

We pick geodesic balls BX(x;) covering X? on which the connection can be
trivialised: V ~ d + A; and

||Ai||W172(B$(xi)) S 50(X27 UJ),

where (X ?,w) is given by Theorem Because X2 is a compact manifold,
there are finitely many such balls covering X?. By Theorem there exists
r' e (0,r), oy € W*P(B%(z;), GL,(C)) and h; = 5} 0; € W*P(BY, Sym(n))
for all p < 2 so that

A7 = hi 1ok,

where we recall that Sym(n) is the space of symmetric n x n matrices. Hence

V7 >~ d+ h;'Oh; in B (). (3.43)

It remains to show that V defines a connection on a holomorphic vector
bundle structure £ over X2. In order to achieve this, it is enough to find
holomorphic transition maps. On the initial bundle E, there exists gauge
transition maps g;; € W2?(B}(x;) N BX(x;),U(n)) such that

A% = A

je

Define the transition maps

045 = U;lgijO'j. (344)

We show that the o;; are holomorphic and consequently since they define a

cocycle, they define a holomorphic vector bundle structure £ over the Kahler
manifold X2

= 5 1 15 -1, 57

0015 = 8@ . g,-jcrj + Uz’ ng-j . Uj + 0'2- gi]@aj
_ _—1401 -17 -1 0,1
=o0; Ai 9ij0; + 0; agijaj —0; gijAj 0j
| —1 40,1 -15 -1 0,1
=07 9ij9; Ai 9ij05 + 0; 0gij0; — 07 gij A 0

— 0,1 15 -1 — 0,1
=0, lgij (A] — gijlﬁgij) 0j + o, lagijO'j — 0, lgijAj ;.
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This equation gives:
80,-j =0

and shows that the transition maps are holomorphic. Thus, there exists a
holomorphic vector bundle structure £ which is compatible with V since
(V)79 = V9 in local coordinates. From the local representation we
finally obtain:

VoL = 3.

3.4 Density under high energy

Until now we have proven results under the assumption of low W2 connec-
tion norm. In this section we lose this assumption. As before we assume that
we work on the flat unit ball BY. In Section we show how to gener-
alise our results on the closed Kéhler surface X2. We start by investigating
the case when A € W'?(Q'B* @ u(n)) and [|A[[y1,2(p1) < 00. Furthermore,

through-out the section we assume the integrability condition FB{Q = 0is
satisfied.

Difficulty:

If we want to proceed as in the case of low W12 connection norm, we start by
smoothing A inside B* by simple convolutions and thus, obtain a sequence
of smooth forms A converging to A in W'?2 as k — oo. The integrability
condition is, however, lost for A;. Furthermore, since we want to pre-
serve the condition for each k, the argument reduces to finding a sequence
of perturbations w;, € C°*°(2%?B*® M,,(C)) uniformly bounded in W22 such
that for each k, wy, solves

%*wk = — [E*wk, Ag’l] — g*wk A g*wf — Fgf in B*
wp =0 on 0B*

Since A)" is not small in W2 norm, we cannot hope to apply a fixed point
argument even if Fgf is very small in L? norm (it converges to Fg’Q =0). To

make the situation worse, the linear operator 99" - + [5*-, Ag’l] might have

non-trivial kernel..

Hence, in this section we have developed a method that deals with the case
of Aj;, having high W2 norm. We present it below:
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Strategy:

We recall that through Proposition [3.1] and Lemma (3.2, we were able to
find a perturbatlon 8 w to the form A in order to obtam the integrability
condition over CP?. This method, however, heavily used the fact that
the operator L i is invertible under the smallness condition of the W12
norm of A. Following this blueprint, our idea is to find a unitary gauge

change ¢ of A such that the operator 99 - + [5*~, (Ao,1)g] is invertible.

Firstly, we will need to acquaint ourselves with this idea. We found it natural
to start by considering the case of linear perturbations of A and show that
we can always find a smooth perturbation U such that the operator 90 -

+ [5*-, A%t 4 BEU} acting on (0, 2) forms has a trivial kernel for some § > 0.

Having this idea, we search for a unitary gauge change ¢ that forces the
operator 99 - -+ [5*-, (AO’I)Q] to have trivial kernel. Moreover, we show

that for k large enough, the same gauge g gives that the operators 09" -
+ [5*-, (A2,1)g] are also invertible. This enables us to find a perturbation wy
that solves

00w+ [0k, (AP)] + D' AT wn = —
k
with wy, = 0 on dB*, and satisfies the estimate:

HWkHW2,2(B4) < C’HT(IL‘121)9

0,2

L2(B4)’

for some constant C' > 0. Moreover, as k — 0o, we show that the W?? norm
of wy is uniformly bounded. Using this estimate, together with the conver-
gence of A to A in W? and FX’Q = (, we obtain the strong convergence of
the sequence wy to 0.

Hence, we prove the first theorem of this section by also taking into account
that ¢ is a unitary gauge transformation, and we can thus use the invariance

of the L? norm under the action of g: HFgf = Hg‘lF = HF02

I

The local theorem on B* is stated as follows:

Theorem 3.3. Let A € W'2(Q'B* ® u(n)), with Fy* = 0. There exists a
sequence of smooth 1-forms Ay, € C®(Q'B* @ u(n)) satisfying Fy> =0 and
Ak — A in W1’2(34>.

Moreover, using the local theorem, we will show that it implies the global
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existence of an approximating smooth sequence under the cohomological con-
straint H%Q(XZ) = 0. In particular, we obtain:

Theorem 3.4. Let V a W2 unitary connection over X* with H%Q()@) =0,
satisfying the integrability condition

Fg*=0.

Then there exists a sequence of smooth unitary connections Vy,, with Fg’kz =0
such that
diStQ(Vk, V) — 0.

3.4.1 Linear perturbation

We will be looking for a small linear perturbation that forces the operator
Lyos =040 - =00 - +[A% 3]

to have trivial kernel, assuming vanishing boundary conditions. Let U €

C>=(B* M,(C)). W5 is the space of (0,2) forms vanishing on B* and we
define the following operators

Lo : WE(QY2B* ® M, (C)) — L*(2°2B* @ M,(C))

w00 w4 [A% 9 W]

Lay : W (Q%2B* ® M, (C)) — L*(Q2B* ® M,(C))
W ng + BBUw
where By = [0U, 3.

Proposition 3.3. Ly and Lgy are Fredholm operators of index zero from
the space W5*(Q%2B* ® M, (C)) to L*(B*, M,(C)).

Proof of Proposition[3.3 1t is sufficient to prove this statement for Ly. We

argue that Ly is Fredholm. We know that Lg is elliptic on the domain B*.
Thus, by [3] for some C' > 0 the estimate

ol < C (Lol oy + ]2
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holds for all w € W5*(Q°2B*® M,,(C)). From this we can deduce that L is
Fredholm. Moreover, 90" = %Adz_l A dz3 is an elliptic operator of Fredholm
index zero mapping W5*(Q%2B* ® M, (C)) to L*(Q%2B*® M, (C)).

Let Ay be a sequence of smooth 1-forms converging strongly in W12 to A.
Then the bracket operator

w i [AY 9 W]

is compact from W22(Q%2(B*)) to L*(Q%?(B*)). Indeed, Ay, is bounded in
L*>° and hence:

a2 7

<C ||Ak||Loo(B4)

é*w\

L2(B*) (B4’

for some constant C' > 0, where we have used the fact that W2 is compactly
embedded in L? in 4-dimensions, by Rellich-Kondrachov [2|. By the compact
embeddedness, it follows that the operators w +— [A%l , g*w] are compact W22
to L? for all k. Hence, using the compactness of these operators and the fact
that 99 is Fredholm, by [32, Theorem 4.4.2, p.185] we have

index(90" - +[A",0]) = index(09") = 0.

Moreover, for a fixed e > 0 given by [32, Theorem 4.4.2, p.185], then there
exists ko > 0 such that for all k¥ > kg, we have that ’H[A%l — onl,g*]m <e

since Ay, converges strongly to A in W2, Thus, by applying [32, Theorem
4.4.2, p.185] to the perturbation operator [AY' —A%! "] and to Ly, we obtain
that

index(Lg) = index(Lo + [AY" — A®!,9)) = index(99" - +[A>",8"]) = 0

This proves the statement. O]

We will be working with operators of the form Ly and Lgy, where § € R
is small and U € W??(B* M,,(C)). By the Proposition above the kernel of
Ly is finite dimensional. On the L? orthogonal space of KerLy denoted by
(KerLg)™, there exists a compact operator S = Ly! from L? into W3* such
that

S: RanLy — (KerLy)*.

By classical spectral theory, S has discrete spectrum with a possible accu-
mulation point at 0 (see for example |29, Theorem VI.15]). This means that
the spectrum of S is {A1, A2, ..., An, ...} where A\, — 0.
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Thus, on (KerLg)t, the spectrum of Ly is

ot
AW il

where A\, — 0. If we assume KerLy # {0}, we have that 0 has to be in the
spectrum as well and then

0 1 1 1
SWSWAEE W

is the spectrum of the operator L. In addition, Lgy has discrete spectrum
by arguing as before with A%! 4+ 30U instead of A%

The following proposition states that the number of eigenvalues near 0 of Lg 1/
cannot exceed the multiplicity of the 0 eigenvalue of Ly for § small enough.
This was proven in |7, Theorem 1]. We denote by m be the multiplicity of 0
for the operator L.

Proposition 3.4. There exists 3y > 0 so that for each 0 < 8 < By, Lgy has
at most m repeated according to multiplicity A(Ul)(ﬁ), . )\gn)(ﬁ) near 0 that

converge to 0 as  — 0.

Proof of Proposition|3.4]. Denote g := ‘%’ .and let € < g9. Since the ball
B.(0) = {|A] < ¢} C C is compact, then Lgy has finitely many not neces-

sarily distinct mg eigenvalues in B.(0), /\E})(ﬁ), ce /\gnﬁ)(ﬁ). The statement
follows by [7, Theorem 1]. O

Define the following operator:

1
P@U = —— (LB,U — )\)_1 d)\

211 |A|=¢

where ¢ is chosen as in Proposition 3.4, Moreover, from Proposition [3.4] we
have isolated branched points of the spectrum. Thus, we can rewrite Ps as

m

P@U = —— % , (L@U — )\)71 d)\
Z A=A (B)|==1

=1

for some £; > 0 small enough. Each term of this sum is the projection onto
the generalised eigenspace of Lgy corresponding to the eigenvalue )\g) (8)
(see [28, Chapter XII]). By Proposition on the circle |A\| = ¢, we have
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that A € p(Lg,v), where p is the resolvent of Lg . Thus, the resolvent oper-
ator Ry = (Lgy —A)~! is analytic in 8 on the e circle. It follows that Ps s is
also analytic in 8 for § small enough. Similarly, we can define the operator
P, associated to L.

Following [32, Chapter 5], we denote the generalised eigenspace corresponding
to 0 for Ly by

Go = J {v e W5(Q"*B* @ M,(C))|L{v = 0}

k=1

and the range of Psy by
Go = EB {0 e WEO02B" © M,(©)(Lo — N (5))'0 = 0}
k=1 i=1

respectively. The following proposition will show that these two spaces are
isomorphic for small f3.

Proposition 3.5. There ewists By > 0 so that Py : Gy — Ggy is an
1somorphism for all 0 < 8 < (.

Proof of Proposition[3.5. From [28, Theorem XIIL.5], Psy and Py define two
surjective projection operators:

Psy : WEH Q" B* @ M, (C)) — Gau

and
Py : WA (Q%?B* ® M,(C)) — G.

Claim 1. There exists 8y > 0 so that for all 5 < Sy, Py is surjective as an
operator from Gy to Ggp.

Poy—Py= - ﬁ BN (Lgy —A) " = (Lo — A) "t dA
1 i (
T omi |>\6<L0_ Zﬁ (o = 7 (Bulho =07 1)>
(Lo — N~ d
_ o) (3.45)

Thus, there exists 3y such that for all § < 5, we have the following bound
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for the norm of the operator P(3) — P(0):

1

||PB,U — Byl 22 < 1_6

oy

Since Lg — A is a continuous operator from Wf)’z to L? for any A, B € R, we
have that
(Lo —A) "Gy

is closed, since RanPy = G| is closed (see |28, Theorem XIIL.5]). This implies
that PGy is closed as Pg s is a composition of two continuous operators.

Assume that Pz Gy # G Since Pz Gy is closed in Ggpr, we can apply
Riesz Lemma (see for example |32, Lemma 1.2.13]). Then there exists u €
G,y where HuHWLQ),Q =1 and

i _ 1
ve}’?f]Go |lu /U”Wf),Q > 3.

Pgyr is a projection operator and u € Ggy, then w is its own projection -
u = Pgyu. Moreover, the norm distance between u and Fyu satisfies the
following inequality

[ = Poully2> = [[Pavu — Foullyzz < |Psv — Pollyz2 llully2

1
— HP/&U — POHW%2 < E

The last inequality holds because [ is chosen to be small. From the above
estimate, we can estimate the norm of Fyu:

[Poullyze < l[ullyze + lu— Poullyze <1+ 5.
By further computing, we get

HP/&UP[)U—P(]UHW;,Q = ”P@UP()’I,L—P()P()U”W;,Q

P2=P,
< 1P — Pollyase |1 Poulyp e

1 1
< W+1_6
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Thus,

lu = Po.yPoullyyze < || PouPou — Poullyzz + [lu — Poullyze < 5 + 5.

Since PgyPou € PgyGo, we get a contradiction with — inf  ||u — v][ 2. >
UEP&UGO

%. Hence, P3Gy = Gg,r and we have proven the claim that Ps s is surjective
from Gy to G .

Claim 2. P3y is injective as an operator from Gy to G .

We have shown in (3.45)) that

Poy— Py = — (i Bi(Lo — N~ (By (Lo — A)—l)i) dx.
[A=e \;

271
=1

Define Egyy = Psy — Fo. Then Esy is a well-defined bounded operator
defined on the space of W22 (0,2) forms. Moreover, there exists 8y > 0 such
that for all 0 < 8 < By we have

IEsulll < 1.

Let w € Gy such that Pspyw = 0. Without loss of generality we can assume
|wllyy22 = 1. Then we obtain:

1

0=PFuw)=—5— A= (L = A)'wdA
1 i ‘
= omi <(L0 — N =Y B (Lo = N (Bu(L - A)l)l) o
|Al=¢ i=1
=w -+ Eﬁva.

Hence,
1= |wlly2z = 1Esvwliyze < I EBsullllwlly22 = [Esull < 1.

We have obtained a contradiction. Hence, for all 8 < f, we have that Psy
is injective from Gy to G .

From the two claims above, there exists Sy > 0 so that

P&U : Go — G@U
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is an isomorphism for all g < Sy. O]

The last ingredient we need to prove in order to obtain the existence of
a perturbation that makes KerLgy trivial is the next statement. It gives
us the perturbation U which will satisfy the necessary condition to make
the kernel trivial. This next Proposition together with the existence of the
isomorphism Pg g will be key to proving Lemma |3.4]

Proposition 3.6. There exists a smooth map U € C*®(B*,u(n)) such that
By s injective on KerLy.

Proof of Proposition[3.6, Since Ker Ly is finite dimensional, let {e1,...,ex}
be an orthonormal basis of it.

Let v € KerLgy, v # 0. We show that for each such v, we can find U, such that
By, v # 0. Assume by contradiction that Byv = 0 for all smooth maps U on

e \02
B*. Define the linear operator H(w) := <[w,8 v]) : C (' B*@ M, (C)) —
C>=(Q22B*® M, (C)) which satisfies the fact that H(w(z)) = H(w)(z), where
w(z) means that each component of w is applied to z. Moreover, we have

that o
0= Byv = [0U,8 v] = H(dU)

for all smooth maps U on B*. Applying Propositionto H, we obtain that
H = 0. By density of smooth (0, 1)-forms into W2 (0, 1)-forms, it follows

in particular that B
H(AY) = [A% 0] = 0.

Putting this together with the fact that v € KerLg, we obtain:
0= Lov = 90" v.

Since v =0 on B and 9 v = 0, then v = 0 in B*. This is a contradiction
because H’UHWI%,Q = 1. Hence, there exists U, € C>*(B* M,(C)) so that
BUUU 7& 0.

Next, we show that such a U, can be chosen to be Hermitian. Indeed since
U, € M,(C), there exists a decomposition in terms of its Hermitian and
anti-Hermitian part:

Uy =U, + Uy,

where U; € C*(B* u(n)) and Uy € C*(B*,iu(n)). Assume that By,v =0,
otherwise we redefine U, := U;. Under this assumption, by linearity it then

necessarily follows that
BUQU 7£ 0.
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If this condition holds, then by multiplying with i,
iBUQU = BiUQU 7& 0.

Moreover, iUy € C*°(B* u(n)) and in this case we redefine U, := il,. Hence,
there exists

U, € C*(B*,u(n)) so that By, v # 0, for any v € KerLy,v #0. (3.46)

Claim. There exists U smooth Hermitian function such that By is injective
on KerlLy.

We formulate the following inductive hypothesis:

there exists U* € C*(B*,u(n)) supported in V¥ C B* such that
I(k) =

{Byre;}r_, is linearly independent,

where £ < N. We show by induction that Z(/V) holds from which it follows
that By~ is injective on KerLy.

By , there exists U; such that By,e; # 0. Without loss of generality,
by multiplying with a compactly supported function p;, we can localise U; in
Vi € B*. Hence Z(1) holds. Assume that for k& < N, Z(k) holds. We prove
that Z(k 4 1) holds as well.

If {BUkej}?ill is linearly independent, then set U**! = U*. Otherwise there
exists A1, ..., Agyr1 not all 0 such that Zf:ll AiByre; = 0. Notice that \gy 1 #
0.

By ([3.46)) there exists Uy such that By, Zfill Aie; # 0. We can choose a
neighbourhood Vi, and V¥ C V* disjoint from V1 such that {Byre;}i_,

is linearly independent in V* and

k+1

B,Dk+1Uk+1 E /\Z-ei 7é 0 mn Vk+1
i=1

In particular, we can define functions py41 compactly supported in Vi1, pi
compactly supported in V*. Define Uk := p,U* + pri1Upy1.

k+1

It remains to show that { Byr+ie; =1 is linearly independent. Assume there

exists (1, ..., Brr1 such that
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k+1 k+1
Z ﬁjBPkUk+Pk+1Uk+lej = Z /BjBUk-HQj = 0 (347)
j=1 7j=1

In the neighbourhood V¥, we have that

k+1

Z ﬁjBUkej = 0.

J=1

Then (51,...,Bks1) = ¢(A1,..., Ar1) for some constant ¢. Hence, in Vi,

we have that
k+1

C Z )\jBUk_HGj = 0.
j=1

By the choice of Uy1, we obtain that ¢ = 0. Hence 1 = ... = ft41 = 0. To
conclude, define V¥t = V* UV, ;. This proves the induction.

Hence, we have obtained U = U™ such that {Bye;}}_, are linearly indepen-
dent, where {e;}'_, is the orthonormal basis of Ker Ly we picked initially. It
follows that By is injective on KerlLy. O

We are now ready to prove the result of this section.

Lemma 3.4. There exists a small constant § € [0,1] and a smooth map
U € C=(B* M,(C)) such that

KerLg,U = {O}

where

Loy : W5 (Q%2B* @ M, (C)) — L*(Q*?B* ® M,(C)).
Hence, Lgy 1s an invertible operator.

Proof of Lemmal3.4. The case when 5 = 0 and KerLy = {0} is trivial. We
focus on the case when KerLg # {0}.

We assume the worst case scenario dimGy = oo. By Proposition [3.6] there
exists U € C*(B* u(n)) so that By is injective on KerLg. Furthermore it
follows from Proposition that there exists an isomorphism FPj; between
Gy and Gy for all B < By for some By > 0. We want to show the existence
of 8 so that KerLgy = {0}.

Assume that for all 8 < 5y we have that KerLgy # {0}. We aim at showing
by contradiction that for some 5 < (3, we will get that KerLgy = {0}. Thus,
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let the space
Spu = P/B_,é(KerLf;,U).

Since KerLgy is finite dimensional and its dimension is bounded by the di-
mension of KerLg by Proposition Because Py is an isomorphism, then
Ssu is a finite dimensional space in G of dimension at most dimKerLy.
Moreover, KerLy N Sy is also finite dimensional and there exists an or-
thonormal basis of this space. We can complete it, to obtain an orthonormal
basis {eﬂ }y on Sz, where N = dimKerLgy = dimSgy. Fix 1 < j <N
and € > 0 small enough such that A € p(Lg) for all [A\| = e. We compute the
following:

1 _
0= LoyPsve;” =—5—Lav ﬁ . (Lo — N 'elV dA
1
- — — 1L Lo+ BBy — APV dx
27i ]{\I—( o+ BBy —A)" e
1
= — 5—(Lo+ BBv) ]{ (Lo + 8By — \)~'eV dx
27 |A|=e
1
i T(Lo + 6BU)j{ (Lo —N)""
™ |A|=¢

- Z Bi(Ly — \) " (By (Lo — A)l)i) eV dx

1
= — —Lof (LO — )\)_1657[] dA
[Al=

271
+B2—mLO]{| ZBZ YLy — NN (Bu(Lo — )7 1)'el” dx
A

1
- 5—BUj§ (Lo — A) eV dx
Al=e

211

211

—5BU ]{AI Zﬁl (Lo — N) ' (By(Lo — A)*l)ief’U d\

1
_ 7 BU BU -1 —1,8.U
= Loej”" = B5— (BUej — Ly 7l{A| (Lo — A) "' Bu(Lo — A)'e; d)\)
+0(8%) (3.48)

/37U

The last equality holds because e; € G and we have
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1
L p—— jla_ (Lo —A) eV dx = e)v.

7 271

We further discuss two cases:

Case 1. ef’U ¢ KerlLy
Because e? Y is an element of the orthonormal basis, then e? Ve (KerLgy)™*.
Moreover, since L is Fredholm, we have

U
o

1= H
J 2,2
W5

=0(9),

e = 20|
wi?

< 0()

L

where C' > 0 is a constant independent of 5. Since 8 < (3, is small, we get a
contradiction.

Case 2. ef’U € KerLy

Because the equation ({3.48)) vanishes for any f < fy and KerLy # {0} it
follows that

ByelV = L, ﬁ | (Lo — A)'By(Lo — A) eV dA. (3.49)
Using the invertibility of the operator Ly — A, where A € p(Lg) then
(Lo —N) "' (Lo — \) = id.
Thus, by expanding we obtain that
(Lo — N) 'Ly —id = (Lo — ) '\

(Lo — \) ‘& — id)ef’U = (Lo — )\)*165’(]. Since ef’U € KerLy, then

_ 1
(Lo — M) 16?’[] = —Xef’U.

We obtain the following:
349 = _LO ﬁM:e(LO _ )\)—1
— fe (Lo = N1+ 4) Buel” d (3.50)

= —2miBye]” — §,_ (Lo — \) "' Bye[” d
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Putting the above equalities (3.49) and (3.50]) together, we have that

(1+ 2mi)ByeV = — jf (Lo — A) ' Bye¥ d\ = 2miPyBye) "V
[A|=e

We apply F, on both sides of the equation to get
(14 2mi) PyByel¥ = 2miPy Byel Y.

Moreover, since Py is a projection, and thus satisfies B = Py, our computa-
tions then give us the following equality

(1+ 27?2')P0BU6§’U = 27TiPOBU6?’U.
This can be true only if POBUef’U = 0. Together with
(1+ 2mi)Bye¥ = 2miPyByelY|

it implies that BUef U'— 0. This is a contradiction by the choice of our initial
U.

We conclude that for some 5 < f, we have KerLg; = {0}. O

3.4.2 Gauge perturbation

After having acquainted ourselves with the linear perturbation in the section
before, we are now in a position to generalise the previous results. First
consider operators of the form

Tiaonysow) = 09 - +[(A%)0D) 97 ]
where
T goyoev) : WHH QB @ M, (C)) — L*(Q°?B* ® M,(C))

and g(BU) := exp(BU) € C=(B* U(n)). For the following proofs we will
denote T'yo1 and T'yo.145v) by Ty and Tp respectively. We can remark the
fact that Ty = L.

Similar to the linear case, we can deduce that T has a discrete spectrum
for any U and §, with § < 1 small (so that exp is defined). Moreover, the
family of operators have discrete spectrum with no accumulation points and
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we can express them as

Ty =00 - 4[4

=00 -+ [8"An, 0]

n=0

=00 +[AM 9" + 3 "4, 0]
n=1

where A; = A%! and A, are (0,1)-forms. This shows that the resolvent
is an analytic function of 8. Thus, the operator is analytic in the sense of
Kato (see [28]). In a completely analogous way to Proposition we have
the existence of m not necessarily distinct eigenvalues corresponding to T3 1,

namely )\S)(ﬁ), e )\(Um)(ﬁ) There exists € > 0 so that |/\g) (B)] < € for all
B >0and 1<¢<m. In this section we denote Ps by

and it is an analytic function of § on |A| = . Similarly, we define P, for the
operator 1.

We denote the generalised eigenspace corresponding to 0 for Ty by
Go = G {v e WHH(Q"B* ® M,(C))|Tjv =0}
k=1
and the range of Py by
Gou = [OJ é {ve W28 & Mu(C)|(Tou — A (8))v = 0}
k=1 i=1
respectively.

Since g(BU) = exp(BU), we then have the existence of an operator Bgy so
that B
BB = [(AM)P) =AM, 5]

and Bpg s is analytic in 8 (in particular it does not have any poles). Since U
is a smooth Hermitian mapping we can obtain

Bsy- = [0U + [A%, U], 8" + O(B),
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by expanding Bgy in 3. Define

BO,U' = [EU + [A0717 U]ag*]
as a map from W5*(Q%2B*® M, (C)) to L*(Q*2B*® M, (C)). Thus, by again
using the smoothness of U, we can expand T in U and obtain

Tsy =Ty + BBy = Ty + BBoy + O(5?).

In a completely analogous to Proposition way we obtain that Pg is an
isomorphism between Gy and Gz ;. Hence, we can assume this and prove the
reciprocal version of Lemma 3.4 Firstly, we prove an analogue of Proposition
3.6 The proof will follow very similar steps as before.

Proposition 3.7. There exists a smooth map U € C*(B* u(n)) such that
By 15 injective on Ker'ly.

Remark 3.3. [t is important to remark that this proof will give us a map U
that belongs to the Lie algebra u(n). This, in turn, will yield a perturbation
by a gauge that is unitary, since g(fU) = exp(BU). It is crucial to find a
unitary gauge, because it will preserve our Hermitian vector bundle structure
later on.

Proof of Proposition[3.7. Since KerTy is finite dimensional, let {ej,...,ex}
be an orthonormal basis of it.

Let v € KerTy, v # 0. We show that for each such v, we can find U, such
that Byoy,v # 0. Assume by contradiction that Bypyv = 0 for all smooth
maps U on B*. Define the linear operators

Ho(w) = ([[AO’I,w],g*va . C®(B*, M, (C)) = C*(Q2B* @ M,(C))
and
() = (I, é*v])m L C®(Q'BY @ M, (C)) — C®(Q?B @ M,(C))
which satisfies the fact that Ho(w(2)) = Ho(w)(2). Moreover, we have that
0 = Boyv = [0U + [A®Y, U], 8 v] = Hy(dU) + Hy(U)

for all smooth maps U on B*. Applying Proposition to Hy and H,, we
obtain that H; od = 0 and Hy = 0. In particular, we have obtained that for
all U smooth maps on B*,
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Hy(dU) = [0U, 8 v] = 0.

This is a contradiction by Proposition (3.4 Hence, there exists a map U, €
C>=(B*, M, (C)) so that By y,v # 0.

Next, we show that such a U, can be chosen to be Hermitian. Indeed since
U, € M,(C), there exists a decomposition in terms of its Hermitian and
anti-Hermitian part:

Uv - Ul + U27
where U; € C*(B* u(n)) and Uy € C*°(B*,iu(n)). Assume that By v =0,
otherwise we redefine U, := U;. Under this assumption, by linearity it then
necessarily follows that

BO7U2U 7é 0.
If this condition holds, then by multiplying with i,

Z.BQ7U21) = BO,iUQU 7£ 0.

Moreover, iUy € C*(B* u(n)) and in this case we redefine U, := iU,. Hence,
there exists

U, € C*°(B* u(n)) so that Byy,v # 0, for any v € KerTy,v #0. (3.51)

Claim. There exists U smooth Hermitian function such that By s is injective
on KerlTy.

We formulate the following inductive hypothesis:

®) there exists U* € C°°(B*, u(n)) supported in V¥ C B* such that
I(k) =

{BoyUkej}‘];-:zl is linearly independent,

where k& < N. We show by induction that Z(N) holds from which it follows
that By~ is injective on KerTp.

By , there exists U; such that By, e; # 0. Without loss of generality,
by multiplying with a compactly supported p;, we can localise U; in a neigh-
bourhood V; C B*. Hence Z(1) holds. Assume that for ¥ < N, Z(k) holds.
We prove that Z(k + 1) holds as well.

If {Byyre;}it] is linearly independent, then set U™ = U*. Otherwise

there exists Ay, ..., Ax11 not all 0 such that Zf:ll AiBy yre; = 0. Notice that
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Akr1 # 0.
By (3.51)) there exists U1 such that Byy, ijll Aie; # 0. We can choose a

neighbourhood Vj41 and VF C V* disjoint from Viyq such that {Bgre; e,
is linearly independent in V* and

k+1

Bo,pk+1Uk+1 E )\iei 7& 0 n Vk+1

i=1

In particular, we can define functions py,1 compactly supported in Vi1, pi
compactly supported in V¥. Define U := p,U* + pr 1 Up1.

It remains to show that { By yr+1€; fill is linearly independent. Assume there
exists f1,..., Brr1 such that

k+1 k+1
E BjBO,pkU’“+pk+1Uk+1€j = E BjBO,U’“+1 €; = 0. (352)
j=1 j=1

In the neighbourhood V*, we have that

k+1

Z 6jBO,Ukej = 0

j=1

Then (B1,...,Brks1) = ¢(A1, ..., Apy1) for some constant ¢. Hence, in Vi,

we have that
k+1

C E AjBO7Uk+1€j =0.
j=1

By the choice of U1, We~0btain that ¢ = 0. Hence 5y = ... = fBrs1 = 0. To
conclude, define V**! = V¥ UV, ;. This proves the induction.

Hence, we have obtained U = U" such that {Byye;}’L, are linearly inde-
pendent, where e; the orthonormal basis of KerTj we have picked initially.
It follows that By is injective on KerTp. O

The following Lemma proves our perturbation result.

Lemma 3.5. There exists a small constant 3 € [0,1] and U € C*(B*, u(n))
such that
KG’I“T@U = {0}

where
Tsy : WHH(Q"2B* ® M,(C)) — L*(Q**B* @ M,(C)).
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Hence, Ty is an invertible operator.

Proof of Lemma|3.5 We argue as before:

The case when 8 = 0 and KerTy = {0} is trivial. We focus on the case when
KerT, # {0}.

We assume the worst case scenario dimGy = oo. By Proposition [3.7] there
exists U € C*(B*, u(n)) so that Byp is injective on KerTy. To further set
up our proof, it follows from Proposition [3.5]that there exists an isomorphism
Pgs 7 between Gy and Gy for all 8 < By for some By > 0. We want to show
the existence of 5 so that KerTzy = {0}.

Assume that for all 8 < ) we have that KerTzy # {0}. We aim at showing
by contradiction that for some 8 < By we will get that KerTzy = {0}. Thus,

let the space
Ssu = Py (KerLgy).

Since Kerlp is finite dimensional, its dimension is bounded by the dimen-
sion of KerTy by Proposition Because Pgy is an isomorphism, then
Sp.v is a finite dimensional space in Gy of size at most dimKerTj. Moreover,
KerTyNSgy is also finite dimensional and there exists an orthonormal basis
of this space. We can complete it, to obtain an orthonormal basis {ef ’U}jvzl
on Sgy, where N = dimKerlgy = dimSsy. Fix 1 < j < N ande > 0
small enough such that A € p(Tp) for all |A| = . We compute the following:

1
0=TsuPsve;” = 3 -Tﬂ,Uf{ (Tpr =A€7 d
T I\|=¢
_1 -1 _B,U
= —-—(To + BBsu) (To + BBsy — A) ;" dA
2ms A=
1
= ——T Ty — A)'elV dx
2 07|{A5< 0N

271

1
U
— Toejﬁ- — %ﬁ <BB,U — TO fj)\

_ Lﬂ (B@U — TOJ{ (To — \) ' By (Ty — A)_lef’U d/\) + O(p?)
[A|=¢

(To — \) ' Bau(Ty — N tel? dA)
+ O(p?) (3.53)

The last equality holds because ef U e Gy and we have
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1
PyelV = —— f{ (To — AtV dn = .
[A|=€

7 271

By further expanding Bg ¢ in 8 we can rewrite the vanishing equation (3.53))
as such:

1
O = Toef’U—%ﬁ (BO,U — To%
A

We discuss two cases:

Case 1. ef’U ¢ KerTy
IB7U
J

(To — A\) " Bow (To — A)el” d)\> +0(5%).
(3.54)

|=e

Because e is an element of the orthonormal basis, then ef Ve (KerTy)*.
Moreover, since Tj is Fredholm, we have

e

J W;,Q

<c||ne|| <o)

B,U _
where C' > 0 is a constant independent of 5. Since S < [ is small, we get a
contradiction.

Case 2. ef’U € Kerly

Because the equation (3.54]) holds for any 5 < fy and KerTy # {0} we then
have that

BoyeV =T, 7{ (To = N) ' Bow(Ty — A) eV d.
[A|=€

By computing in an analogous way to Lemma [3.4] we get that the equation
above implies that BO,Uef U = 0. This is a contradiction with our initial

choice of U. Thus, we found § and U so that KerTyy = {0}. O

3.4.3 Local density result in the high energy case

We start this section by first proving that under a fixed gauge transformation
the operators TA%I corresponding to the approximating smooth 1-forms have
trivial kernels. Secondly, we prove the existence of perturbations that give
us the integrability condition in B*. Finally, we end this section by
proving the main result - that we can always approximate connection forms
by smooth ones in B* in such a way that we satisfy the integrability condition

(1.1)) throughout.
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Proposition 3.8. Let A € WY(Q'B* ® u(n)) and a sequence of smooth
1-forms Ay — A in W12, Then there exists a gauge g € C>°(B*,U(n)) and
ko € N such that

(i)
Ke’I“T(Ao,l)g = {0} and KE’I"T(AzJ)g = {0}

for all k > kq. In particular, the operators T(Az,l)g and T go.1y9 are all

vertible.

-1
T<A2,1)g

sup
k>ko

<3| 7y

Proof of Proposition[3.8 (i) The existence of a unitary smooth gauge ¢ is
given by Lemma [3.5] We have that

K@TT(Ao,l)g = {0}

It remains to prove that there exists ky € N so that KerT(A%l)g = {0} for
all k& Z k’o.

In order to prove this statement, we assume by contradiction that
KGTT(AgJ)g 7£ {0}

and let 0 # wy € KerT, A21)7- We can also assume without loss of generality
k

that ||WkHW§2(B4) = 1. Since KerTjo1ys is trivial and T 40.1ys is Fredholm,

we then get (see [32, Lemma 4.3.9]):

1= ||Wk||wg»2(34) < Cay HT(AO’I)gwkHH(B‘l) ’
for some constant C'y 4 > 0 depending on the initial 1-form A and on the
gauge change g.
We compute this further:

1< Cay HT(AO’l)gwkHH(B‘l)

= HT(A0,1)9wk - T(A2,1>gwk‘ L2(BY)

_ H [(A%l)g — (A0S ,a*wk} \

L2(BY)
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Indeed, we can bound the last bracket above by [| Ay — Allyy1z2(p1y:

H [(A%l) (A" 5" }H < Cy 1Ak = All gy Wil o,
< Og HAk - A||W1»2(B4) HwkHW%'Z(B‘l)
= Cg HAk - AHWI,Q(BAL) .

for some constant C; depending on g. Since the constants are independent
of k, it follows that

1 S CA’g * Cg ”Ak - AHW1’2(B4) — O as k — OQ.

Thus, for k large enough the above inequality yields a contradiction. We then
have that there exists kg large so that w, = 0 and that K@TT(A%I)Q = {0}

for all k& > ko. We conclude that since T{40.1ys and T (A% for each k > kg

are all operators of index zero and their kernel is trivial, they are invertible.

(ii) Since T{40.1y¢ has trivial kernel and is an operator of index zero, its inverse
Ty
converges strongly to A in W12 and ¢ is smooth by construction, then we can

< o00. Since Aj

exists mapping L? to Wf)z and we have that

assume without loss of generality that H‘T A0y T{a01y9 H‘TAO el < %
for any k > ko. Hence [32, Theorem 1.5. 5(111)] yields
'H o m - H‘TAOI 9 — T{a01)9 A01
AO 1 (A01)9 >~
1 H)TAM s — Ty H‘ e
S H‘T(;ll(m)g

Thus, for k > kg, we have

sl < iy = abor]] < sl <At
Hence, by taking the sup over all k£ > kg, we obtain the result. O

The following Lemma proves the existence of a perturbation under the con-
ditions that Tyo.1 has trivial kernel and that F$? is small in L? norm.
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Lemma 3.6. There exists a constant C' > 0 such that for every

Ae WHQIB @ u(n))

with T o1 invertible and satisfying HF2’2 5, there exists a (0, 2)

< _c
L= el

form w € WE*(Q°2B* ® M,,(C)) solving the PDE:
00w+ A0 W+ T wAD w=—F}?
and satisfying the estimate
- 0,2
fenlgzinn < CNTE I IEL g 359
where C' > 0 is a constant independent of A.

Proof of Lemma[3.6. We construct the following sequence of solutions:

2
T 01wy = —Fg’
= = 0,2
Tpoiw, = —0 wo N\ 0 Wy — FA7
T 01wy = —0 wi ANO wy — FA7
Thoaw, = —0 wWi—1 N0 W1 — FA’

Claim. {w;.}$2, is a Cauchy sequence in W;>.
We first show by induction the uniform bound on the sequence
leoellze < 2000 |92 o e -
Since T40,1 is invertible, then we have the identity:
W = T;o%lTAO,le.

Hence, from the definition of the norm of operators, it follows that:

lwollwzzzey < 1w [ 1Za00w0]l 2y

= T 27N ey
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<2 T IHIFZ* ] o o
Let k > 0. By the Sobolev embedding of W2 < L* there exists a constant
(1 > 0 so that

<4

LA(BY)

_*
8 wkH

=*
0 wk‘

s < O lonlhuzeqs

Then we have:
lorllwze sy < (170l 1Ta0awrll 2oy

< T I 1187 wies A D wis

N A [T

< Cilll T lora 1z + T I oy

< C T (I leon—s vz gy + Tl 27 2 e
By the induction hypothesis we have that

ot llwzzsey < 2l Taon (1 F]] 2y -
Thus,
lolwzzaey < ACTNT s P 174 amey + T IS o e -
Choosing the constant C' > 0 such that % < 4C?%, we obtain by assumption
ACHIT R M I oy < CNTa I IR oy < 1
and we conclude that
lwellwze < 2T (1] 2y

Hence, by induction it follows that the sequence is uniformly bounded in

W12)’2:
leonllywz ey < 2 Tao I 11F2* ] 12 sy

for all £ > 0. It remains to show that {w;}7° is a Cauchy sequence.

Let k& > 0. It follows that

s = ulhugcany < TR T s = ) e
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< ITh 17 @ = wi 1)/\8wk‘L2(B4)
+] Am!H\ 9" (wn — wi1) L
< AC| TP I1ER2 ] o oy Non = @l

Choosing the constant C' > 0 such that % < 4C', we obtain by assumption

AC T IR ey < HI TP 1 ey < 1

and we can conclude that the sequence {wy}72, is Cauchy. Hence, we have
proven the claim.

Moreover, because W]%’Q is a Banach space and {wy } 32, is a Cauchy sequence,
there exists we, such that wi, — ws as £ — 0o In Wfﬁ. Moreover, by the
strong convergence and the uniform bound of the sequence we obtain that

lwscllwzzia < 2 Tas 1127 o) and

00 Woo + [A%, 0 woo] 4+ 0 woo N D wae = —F Y.

We can conclude this section with the main result.

Theorem 3.3. Let A € WY(Q'B* ® u(n)), with Fy* = 0. There exists a
sequence of smooth forms A, € C*(Q'B* @ u(n)), Fj’f =0and A, — A in
Wh2(Q'B* @ u(n)).

Proof of Theorem[3.3. By Lemma there exists a unitary gauge change
g € C®(BY,U(n)) so that T(aoays is invertible W5* to L2. Moreover, we
can obtain a sequence of smooth 1-forms A, by simple convolution such
that HF02 - — 0 and A, — A in W2 as k — oo. By Proposi-
tion ( ) there exists ko so that for all k& > ko, T}y is invertible and that
Ag — AY. Moreover since the change of gauge is unitary we also have that
H F0:2

(%) H illr2pe”

Moreover, by Proposition [3.§[ii) we know that

Ty

sup
k>ko

< 2H)T

A01)9



3.4 Density under high energy 87

Thus, for all & > kg, it follows that L > L 5. Let C > 0 the
1 2| a0ya |

(32"
constant given by Lemma |3.6| There exists k; > kg such that
C C

b S 5 <
o =Tl [y

H 0,2
A}

-

for all k& > k;. Hence, for each £ > k;, Lemma gives the existence of
(0,2) forms wy, satisfying the estimate

<20

L2(B*%)

||WkHWI2;2(B4) T_01 F02 ,

(AO ! )g L2 B4

HFoz

where C” > 0 is a constant independent of k. Moreover, each wy solve the
PDE:

——x% ~ 9 —=x =* =%
00w, + [ (AP1) '] + Tk A D e = —FD, (3.56)
i.e. FZQQJr T = = (. Since HF 02 . converges strongly to 0, the estimates

on the (0, 2) forms wy, give wi, — 0 in W%’Q as k — o0o. Thus, we obtain the
strong convergence

(A1) 4 (A)7 2

Define the sequence of connection forms

~ —x ~ =T 9!
Ay = <<A2’1>9 + 8w — (AP1)9 + 9wy ) e WH(Q'B' @ u(n)) N C™.

Because g is a smooth unitary gauge, and A7 — A9 in W'? by construction,
then this sequence of forms are unitary and convergent in W12, We need
to establish that A, — A in W12, Indeed, we obtain the following L?
convergence:

geU(n

AL =A%) = 0 <= |lg" (Ax — A) g|,. — 0 |4, — A . — 0.

Because the limit is unique, then A, — A in W12, Moreover, the smooth
sequence A, satisfies the integrability condition Fgf = 0 by the construction

of wy in (3.56)). O
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3.4.4 Global density result

In this section we will use the result we have proven in the previous section
in order to obtain a global result for a closed Kahler manifold X2. In order
to be able to generalise, we will work on sections of the vector bundle (£, hg)
over X2. The 0 operator over X? is well-defined and acts on the space of
(p, q)-forms:

01 API(X?) — APITH(X?),

Its corresponding dual operator, 5*, is defined as a map:
d : API(X?) — APITL(X2),
On the space AP?(X?) the 9-Hodge decomposition gives the orthogonal
L? decomposition:
APU(X?) = AP (X?) + 9 APTH(X?) + HPI(X?), (3.57)

where HP4(X?) is the space of holomorphic (p, q)-sections. Since X2 is a
closed Kéhler manifold, then we remark that H?¢(X?) is finite dimensional.
In particular, by 1) under the condition H%’Q(X %) = 0, the (0,2)-form
w € A%?(X?) can be written as follows:

W = %*OA

Since & and 9 define elliptic complexes over closed Kéhler surfaces (see for
example |22, Chapter IV]):

0 — A(X%) S A% (X?) & A°2(X?) - 0
and . N
0 — A°2(X?) & A% (X2) & A°0(X?) = 0

then the operator 99 is elliptic on (0, 2)-sections over closed Kéhler surfaces.
In particular, it is Fredholm and moreover, 00 is self-adjoint. Thus, its
Fredholm index vanishes:

index(99") = dimKer(88") — dimCoker(99")
— dimKer(99") — dimKer(99") = 0. (3.58)
We redefine our operator T'40,1 as such:

Ty : D22 (A% (X?)) = T2 (A(X?))
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where V is a W12 unitary connection over X? and I'y». is the space of
sections of WP regularity. We can directly apply Lemma to obtain the
existence of a global smooth section ¢ so that Kerlys = 0. Moreover, by
and Proposition applied to Ty, it follows that Ty is a Fredholm
operator of index 0. Hence, CokerTys is empty and the operator Tyy is in-
vertible.

It follows that we can apply Lemma to V9 and we can conclude that,
similarly to Theorem [3.3 we have proven:

Theorem 3.4} Let V a W2 unitary connection over X? with ’H%Q(XQ) =0,
satisfying the integrability condition

Fg? =0.

Then there exists a sequence of smooth unitary connections V., with Fg’z =0
such that
disty(Vg, V) — 0.

3.5 Proof of Theorem (1.2

By Theorem applied to the given W'? connection V, we obtain the
existence of a sequence of smooth connections V, that converge to V in the
sense of

diStQ(Vk, V) — 0.
Step 1. There exists r > 0 and a finite good cover { BX(x;)} such that

V ~d+ A; in BXz)

with
HVA1||L2(B7‘3($Z)) S €0,

where gy > 0 is given by Theorem [3.2] Since Vj converges to V in the sense
of disty, it follows that in each ball B(z;) with V}, ~ d+ A¥ we have Fg’,f =0,

AF — A;in W2 and Fye — Fa, in L? as k — oo.

By Theorem [3.2] there exists 7' < r and o; € W?P(B%(x;), GL,(C)) for any
p < 2 such that

01 _ 7. -1
A" =—00;-0; .

Let 6 > 0 be the constant given in Corollary There exists ky > 0 so that
HAf — AiHWL? < 9 for all k > ky. Corollary applied to each A¥ k > kg
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gives the existence of a sequence
ot € W2 (B (2,), GL, (C))
of gauges that holomorphically trivialise A¥:
(A1) = ~of - (oF)
with the estimates

k
HUz’

e || A¥ (3.59)

- O-i”LP(B:f,/Q(:ci - AiHle(B;L(xi)

for some constant C' > 0 and all p < 12. For each ¢ < 2 there exists C; > 0
such that

Haf - Zde;zzev(Bﬁl (21)) < G (”A?wawg(m) + ||Ai||W1’2(B$(CCi)> (3.60)

/2

By an abuse of notations, from now on, we will use 7’ to denote 7’/2. From
3.59), of — o, in LP(B%(z;)) for all p < 12. Moreover, the uniform bound
3.60)) gives that the sequence of converges strongly in W24 for all ¢ < 2.
Since limits are unique, we obtain that o converges strongly to o; in W24
for all ¢ < 2. A¥ is smooth, it follows that each gauge o¥ is smooth.

—T
By defining h¥ = oF - 0¥ we have that each h¥ is uniformly bounded in

W2P(B%, Sym(n)) and
ok -

(AR = (h¥) ™" OnF — h'oh, in WhP (B2 (x;)) for all p < 2. (3.61)
Moreover, the corresponding curvature forms satisfy the following gauge re-
lation: .

(kYT k
Flapyer = (09) (Far) ot

Combining the estimate (3.59) with the L? convergence of the sequence Iy,
we have

F(Akyf — Fyoi in LP(BY(z;)) for all p < 2. (3.62)

Analogously to the proof of theorem [I.T]in Section [3.3] there exists smooth
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holomorphic structures &, such that
01 _ 5

Thus, (3.61) and (3.62)) yield that for all p < 2 we obtain the required
convergence:

diStp(vk, V) —0

over the holomorphic vector bundle structures & and £. In the next step
we prove that this convergence leads to an isomorphism between the two
structures.

Step 2. We construct bundle isomorphisms Hj between the holomorphic
bundles &, and £ such that ggk = H,;l 0 0¢ o Hy,.

Let i,j such that there exist gauge transition maps g; € W?**(B2(z;) N
Bl(x;),U(n)) and g; € C®(B}(x;) N Bl(x;),U(n)) satisfying:
AP =4; i Bi(xz) N B(x;)
and .
(AF)% = Al in BX(z;) N BX(z;).

Since gfj — gij in W?? by construction, from [15] there exist maps ¢ €
W22(By(x;),U(n)) and ¢ € W*?(B(z;),U(n)) such that

k k)1 k
9i; = (¢z> “Gij - ¢j'
Using the notation introduced in Section [3.3] there exists holomorphic tran-

sition maps for the structures £ and & defined as:

_ _ (T kL k
Oij = 0; - Gij - 0 and 0-»—(02-) " i 0
Consider the maps HY := o7 ' - ¢F - oF and ’Hf = aj’l -qb;?-aj’?. By construction,
we have:

O'ij = (Hf>_1 * 045 ¢ Hf

Thus, Hy = {HF}; defines a bundle isomorphism and since o
phic, it preserves the holomorphic structure:

k

i; are holomor-

55,9 = /H;l o 55 o Hy.

This finishes the proof of theorem






Chapter 4

U(n) Bundles in Banach Spaces

Using the ideas developed in the previous chapter, we will generalise all our
results for d-dimensional closed Kéahler manifolds X?. Let V be a unitary
Whd connection of a hermitian bundle (E, hg) over X?. In the last chapter
we have benefited from d = 2 and consequently from the fact that L? is
a Hilbert space. In this chapter we will adapt our techniques from before
and generalise them for L? Banach spaces, where d > 3. Moreover, when
translating the theorems we will encounter an additional difficulty which is
the fact that 99" is not elliptic for d > 3. However, the analogous results
still hold true. We recall the theorems we will prove:

Theorem [1.3| Let V be a unitary W connection of an hermitian bundle
(E, ho) over a closed Kihler manifold X?. Assume V satisfies the integrabil-
ity condition

F* =0 (4.1)
then there exists a smooth holomorphic structure € on E and a () W24

q<d
section h of the bundle of positive Hermitian endomorphisms of E& such that

V =0y + h™'0h + O (4.2)

where Og is the O— operator associated to the holomorphic bundle € and Oy is
the 1-0 part of the Chern connection assocz’ateaﬂ to the holomorphic structure
& and the chosen reference hermitian product hyg.

and:

Theorem Under the assumptions of Theorem and H%’Z(Xd) =0,

there exists a sequence of smooth connections Vi on smooth holomorphic

!These connections are not necessarily unitary with respect to kg anymore.

93
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bundles & satisfying
F2=0

and converging to V in the sense that for all p < d:

dist,(Ve, V) = inf / Ve — VPt + /
Xd

|Fy, — Fyo|[Pw? — 0.
ceGh4(GL(n,C)) xd

(4.3)
Moreover, there exists a family of isomorphisms Hy such that

ggk = 7’[,;1 Ogg o) Hk

That is, the sequence of connections Vi act on equivalent bundles to E. O

4.1 Strategy and Structure of the Chapter

Since the way we will approach the proofs of the theorems will vary in cer-
tain points to a significant degree compared to Chapter [3] it is useful to fix
the ideas first. Let d > 3. The invertibility of 99" as an operator from
W24(Q02X?) to LYN*?X?) fails in particular because L4(Q%2X?) consists
of (0,2)-forms that are not necessarily d-exact. Thus, our methods from Sec-
tions[3.1]and do not translate and we will solve the integrability condition
by using the extended integrability condition. Let

0a =0 +[A, . (4.4)
and 5*A its adjoint operator as defined in Proposition Note that

Fy? = 0A% 4 A% A A% =8 401 )5 A%

For a (0,2)-form w € Q%% with w satisfying the 0-Neumann boundary con-

ditions w, dw € Dom(g*) (see Appendix , we define the extended inte-
grability condition as:

Fg’ig*w + 520,1+5*w5w =0, (4.5)
where 520,1 47, is well-defined by Proposition . We will show that under

certain assumptions on A%!, we can solve such an equation for w since the
above equation can be expanded as the following elliptic PDE:

=% %= =% = T =% =% — =T
(83 +0 8) w=—[0 w,AO’l]—*[*E)w,AOvlT]—ﬁ WAD w—x[x0w, 0 w |—F9°.
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Moreover, we can show that under the d-Neumann boundary conditions
w, 0w € Dom(0 ), we obtain the integrability condition:

02  _

A4+8w
On Kéhler manifolds we have that the Kohn-Laplace is related to the Hodge-

: . =A% k=

Laplace in the following way: Az := 00 + 0 0 = %Ad. However, we have
to point out to the reader that even under such a nice relation, we cannot
expect an immediate translation of the work in Sections [3.1] and Indeed
the conditions w,0w € Dom(0 ) are the d-Neumann boundary conditions

which lead to a problem of lack of coerciveness. Hence, Ay is not an elliptic
operator over B2? under d-Neumann boundary conditions by (A.3)).

We emphasize the fact that if w does not satisfy the 9-Neumann conditions,
then we will use the operator ¥ (see (A.I)) instead of 9" to emphasize the
difference between the two cases. In this case we have Agz := 09 + 190 and
we note that 0 and ¥ are not necessarily L? orthogonal.

Sections [3.1] and took a "local” approach by perturbing the connection
1-form A in the unit ball B* such that it satisfies the integrability condition.
Since Ay is not an elliptic operator from W2%(Q%2B2) to L4(Q%2B%d) under
O0-Neumann boundary conditions, then a density result obtained through
a similar local approach seems out of reach. In order to mitigate for the
lack of ellipticity, we will assume the d-Neumann boundary conditions for

w E W2’d(QO’232d)i

igBde = 0 and ingd(d(JJ) = 0, (46)

where igg24 : 0B% — B? is the canonical inclusion map. For consistency we
will denote the d-Neumann boundary conditions by w,dw € Dom(d*).
Thus, by the classical Hodge decomposition, it is known that A5 = %Ad is
elliptic under the boundary conditions (see [37, Theorem 10.5.1]).

We can use the d-Neumann conditions so that we can solve the extended
integrability condition (4.5) on the unit ball B2?. Moreover, using the tech-
niques we develop, we are able to conclude that globally on the closed Kéahler
manifold X? we obtain the integrability condition from the extended one.

Having fixed these ideas, we can outline the structure of the Chapter. Firstly,
we start by proving the existence of holomorphic trivilisations in Section
4.2 This part will use methods that resemble the same techniques which
have been used in Section Secondly, in Section we show density
under high-energy assumptions over B?? keeping the extended integrability
condition under the d-Neumann boundary conditions . Using this
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construction we show the extended integrability condition can be globally
satisfied on X7 and that this implies the integrability condition.

We prove the key result showing that over closed Kihler manifolds X?, we
have that the extended integrability condition (4.5|) implies the integrability
condition ((1.1)).

Proposition 4.1. Let w € W>4(Q%2X4) and A € WH4(Q1X?) satisfying the
extended integrability condition:

0,2

—x —
ALT w + 8A0,1+5*w8w =0.

Then, _ _

ngé*w =0 and 040,75 ,0w=0.
Proof of Proposition[4.]. We show that the complex variable analogue of
Bianchi’s identity d4F4 = 0 holds:

5 0,2 .
Opi5FY25 =0,

where we have used the fact that [A, AA A] = 0. Thus, Fj’{* ckerd,, 5.
410w +0 w
From the extended integrability condition it follows that
520,1+5*w5w c kel' 514-‘(‘5*(4).

— — _*—Ld
Moreover, we know that 0 401,5,0w € Imd 01,5, . From the Closed
Image Theorem [32, Theorem 4.1.16] we know

ra
— 1 —= —
(ker 6A+5*w) = ImaA0,1+3 w

Thus,
9" 3 5 —L¢
0011 5%,0w € ker 04 5+ NImd 01,5,
and it follows that 520,1 +5*w5w = 0 and consequently iné*w =0. O
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4.2 Existence of holomorphic trivialisations

We setup the framework. Let V be a unitary W connection of the her-
mitian bundle (E, hg) over a closed Kéhler manifold X? satisfying Fg’z =0.
We assume that the unit ball B?? is a geodesic ball in X% and that V triv-
ialises as V ~ d + A in B%*, where A is a connection 1-form. Moreover, in
this section we will work with low W14 connection norm i.e. A satisfies the
smallness condition

HAHWLd(B?d) < ep(X%w)

for some £y(X9¢,w) > 0 depending on the manifold X and the Kéhler form
w. We will use the smallness assumption throughout this section. Moreover,
to fix ideas we will assume that B?¢ is the flat closed unit ball.

We adapt the methods we have developed in Section in order to apply
them in our setting. We will rewrite all the results for completeness. We
prove that under the integrability condition Fj}? = 0 we obtain the existence
of local holomorphic trivialisations assuming low W< norm for A as before.
We state the result:

Theorem 4.1. There exists g > 0 such that if A € WH4(Q1B* @ u(n))
satisfies HAle,d(Bzd) < g9, and the integrability condition FX’Q = 0, then

there exists 1 > 0 and g,g~' € W>4(B?? GL,(C)) for all ¢ < d such that

A% = _9g-g7! in B>, (4.7)

Moreover, there ewists a constant Cy > 0 such that the following estimates

hold:
||g - id||W2,q(Bgd) < Cq ||A||W17d(Bzd)

and
Hg_l - id”qu(Bgd) < Cq HAHled(B?d) :

It follows that A9 = h='0h where h =7g'g.

We skip describing the strategy since it is completely analogous to the Hilbert
case in Section . As before we assume that the ball of radius 2, B3?
equipped with the canonical complex structure, is holomorphically embedded
into CP? (simply take the embedding (z1, ..., 24) = [21, ..., 24, 1]).

We show the invertibility of the operator defined by:

Li(w)=00'w+0 0w+ [A, 5" w] + #[+0w, AT ]
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which is the natural replacement of the operator 99" - +[A%',d ] in order to
obtain the extended integrability Condltlon in CP?. We note that over
CP? we have that trivially w, dw € Domd since CP? has no boundary.

Proposition 4.2. There exists € > 0 such that for any
A e WH(QICP? ® u(n))

satisfying the bound HAH < g, the operator
Whd(CP?)

Lji: W*(Q*CP*® M, (C)) — LYQ*CP* ® M,,(C))
defined by

Lilw)=00w+08 0w+ [A% 9°w] + *[*gw,WT] (4.8)
1s Fredholm and invertible.

Proof of Pmpgsz_tzon [£.3. Since CP? is a Kéahler manifold, it follows that op-

erator 0 + 0 0 = 1A, is elliptic over CP? (see [12 p. 93]). Because CP*
is a compact manlfold then KerlAd and Cokeri 5Aq are finite dimensional

spaces. By definition it follows that 9 + 9 0 is Fredholm.
Let € > 0 be as defined in [32, Theorem 4.4.2 (ii), p.185] such that

|4

is small in W% norm. It follows that the operator [A%',8"-] 4 *[+-, AOJT]
has small operator norm W?2< to L%

<e
wid(Cp?)

H’[onl,_*]ﬂ[*a A01 H‘ = sup

lwllyyr2,a=1

(A% 5] + *[*m,mﬁ\

é*w\

L2d(CP?) H5wHL2d(CPd)

L4(CP?)

< HAO,l

L24(CP%) L24(Cp?)

o

<ol

Whd(Cpd) Iell.eme

< (¥,

for some constant C' > 0 coming from the Sobolev embedding W14 s L24,
Hence, from the continuity of the index maps [32, Theorem 4.4.2, p.185],
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we have that L ; is Fredholm and it has the same index as 99 + 0 0 as an
operator mapping W>¢(CP?, M, (C)) to L*(CP?, M,(C)).

It is well-known that there are no global nonzero holomorphic (0, 2)—£)rms_ on
CP? |12, p. 118]. The lack of holomorphic (0, 2)-forms imply that 20 +30
defined from W?24(CP?) to L¢(CP%) is an invertible operator on the space of
(0, 2)-forms and consequently has index 0. Thus, it we get that index(L ;) =
index(00" + 9 9) = 0.

It remains to show that L ; has trivial kernel. Once we have shown this,

we can use the zero index of L j; in order to conclude that L ; is invertible.
Assume w € KerL ;. Hence, w satisfies

00w+ 8 0w = —[A%, §w] — *[*5@),WT].

By the Fredholm Lemma [32, Lemma 4.3.9] and the Sobolev embedding
Whd s L% we obtain

|wllypaa < C Hﬁ_a*w —i—g*gw‘

Ld

< O (ILa@)le + ||l T+

*[*Ow, WT] ‘

)

7] o |20 1P1)

[2d

< O (ILa@)la+ 4™,

S CLzW) e+ Ce llwllyza

AOJ‘

for some constants C, C' > 0. We can take the term C’¢ [|w||;j2. on the left
hand side of the inequality:

(1—=C") |wlly2a < CILz(w)|la-

Choosing € > 0 such that 1 — C’e > %, then we divide by the positive factor
1 — C’¢ and obtain the bound:

C
[wllyyza < T-c= 1L z(w)ll pa -

Because w € KerLj, we have that w = 0. Since w was arbitrarily chosen
from the kernel, it follows that the kernel of L  is trivial: KerL; = {0}.
This finishes the proof. [

Using a similar technique to Proposition [3.2] we will prove the existence of a
CP? extension of our connection form A, satisfying the integrability condition
(1.1). However, we need to take care in order to obtain this condition. We
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will use Proposition [4.1] in order to achieve the integrability condition. We
assume the holomorphic embedding of B> in CP?.

Proposition 4.3. There exists € > 0 such that for any
A e WHQ'B* @ u(n))

satisfying Fy? = 0 and [ Allypi.apeay < €, there exists A e WH(Q'CP®u(n))
that satisfies the integrability condition

in CP? and w € W24(Q%2CP? @ M, (C)) such that A%' = A% 4+ 9w in B>,

Moreover, w satisfies the estimate ||w||y2acpey < C | Allyracpeay for some
constant C' > 0 and o
50w =0 inCP?

We recall to the reader that according to equation (A.1)), we have ¥ = — %
0%, the formal adjoint of 0. In addition, 8} is the operator defined as in

Proposition [C.3}

J5 =0 4% [+0, AT ],
Proof of Proposition[4.3. Step 1. Since A is unitary, we can decompose A
into its (0,1) and (1,0) parts as such: A = A%! — A0 where

d
Ao’lz E Oéidz
1=1

and a; € WH4(B2d M, (C)) for i = 1,d. We extend each «; to a compactly
supported map &; in B2, so that a; = 0 in B2%\ Bg%. For constructing &,
for each 7 < d we solve:

;

Ag; = 0 in B2\ BY

¢ = o ondB¥H

gbi =0 on 833‘/12

\

Such solutions exist by [20, Remark 7.2, Chapter 2] and satisfy

HgbiHWl’d(Bg%\de) <C ”aiuwlfl/d»d(and) < H@iHWLd(de)
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for some constants C, C’ > 0. We can now define the extensions to B2%:

Q; in B2d
OA{Z' == ¢z n Bg;l? \ BQd
0 in B3\ 33/2

By construction of ¢;, the functions &; are well-defined W1?(B3%) Sobolev
maps that satisfy the estimate:

HdiHWLd(B%d) <C ||ai||w17d(de) :
Define the (0,1)-form A% = 3¢  &,dz and

~ ~ - 7T
A= A% A0 ¢ WHQ B2 @ u(n)).
By covering CP? \ B2¢ with coordinate charts, we can trivially extend A by
0 on CP?\ B2¢. Thus, we have obtained A € W'4(Q'CP* ® u(n)) and there
exists a constant C' > 0 such that HAH ., <C | Allyy1.a(geay -
d(CP

Step 2. Tt remains to perturb the form A so that we obtain the integrability
condition. We first find a solution w to the extended integrability condition.
Note that over CP?, dw automatically belongs to the space Dom(@ ).

0,2 =+ 5
FAO 115%w + 6A0ﬁ1+5*waw =0.

This amounts to solving the following PDE globally on the complex projective
space CP%:
=% — A —x ——7T
90w+ 0 0w+ [A% 9 W]+ * [xdw, AL |
—x —x — =T 0.2
=0 wNO0w—*[x0w, 0w |- F7 (4.9)

where w is a (0,2) form on CP?. Using the invertibility of the operator L i
proven in Proposition , we can solve equation (4.9) using a fixed point
method. We consider the sequence given by:

Li(w) = —F}”

. — _ —T
Li(we) =—0 w1 ANO wy — *[x0wy,0 wy | — ng



102 Chapter 4. U(n) Bundles in Banach Spaces

=% —% — —*—T
LA(OJk) = —0 We—1 A0 Wr—1 — *[*awk,l, 0 We—1 ] — F%Q (410)

By showing that the sequence wy, converges strongly in W24, we will obtain
a W24 solution to the required equation . Since L is invertible as an
operator from W2? to L%, it is clear that existence holds for each wy, k > 1.
We need to show that the sequence {wy,}2°, is Cauchy in W24,

Letgg :=C HF2’2’

inequality:

, where C' > 0 is the constant appearing in Fredholm
L4(CP?)

1@llwa.a(cpty < C LA La(cpay -
Claim. {w;}$2, is a Cauchy sequence in W24(CP%).
We first show by induction the uniform bound [lwyl|yy2.a(cpey < 2€0. By the
Fredholm Lemma [32, Lemma 4.3.9] we have that

=9 < 2¢

o 0,2
||W1||W2,d(@]pd) S C ||LA(OJ1)||Ld(CPd) =C HFA ‘ Le(CP?)

Let & > 1. By the Sobolev embedding W¢(CP?) < L?*¢(CP?) there exists
a constant C > 0 so that

Similarly for Owy: ngkHLQd(md) < CF ||wlly2a(cpsy- Thus, from (4.10) the
inequalities follow:

=k

0

<

Wk’ =
WLd(CP?)

[2d ((C[P’d)

lwrtrllwzaicpsy < C L4kl pacpe)

_ T
+ |[*[*Owg—1, 0 wr—1 |

LA(CP%) +

L(CPY)

chW%A#%

Ld((ClP’d))

<C Hwkuiw(@?d) + <o

0,2
+ HFA

2
<C-Cf ||Wk||w27d(<cw) +¢co
By the induction hypothesis, we have [|wl|yy2.q(cpe) < 2€0- Thus,

W s1llyy2.a(cpey < 4(C - Ct)eg + eo-
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Having chosen ¢ > 0 such that 4(C' - C{)e < 1 and

HHWWW%SCwMWWWQSa

it follows that 4(C - C})eo < 1 and we conclude

HwarIHWZ,d((CPd) S 280.

By induction, we have proven that we have a uniform bound for the sequence
of (0,2)-forms {wy}:

Hwkﬂww(cpd) < 2¢o.
for all k£ > 1. It remains to show that {wy} is a Cauchy sequence. Let k > 2.

We derive the following bounds from the recurrence relation (4.10)) satisfied
by the sequence:

lwe1 = WkHWZd((c[Pd) < C|L 4(wpsr — Wk)”Ld((c[pd)
< C e ||lwr — wr-1llyzacps
for some C' > 0 and Cey < 1. Because Cgy < 1, it follows immediately that
the sequence is Cauchy and the claim is proven.

Because {w;,}2°, is a Cauchy sequence in the Banach space W2?(Q02CP? ®
M,(C)), it has a limit w and converges strongly in W2 to it. Moreover,
from the W29 convergence, we have that the uniform bound is satisfied by
the limiting form w, indeed ||w||; 2.0 < 260 = 2C' || F4|| 4. By construction of

~

A, it is clear that there exists a constant C’ > 0 so that
||FA||Ld((c[p>d) < ||A||W1»d(B2d) :

This leads to the required estimate on w, [|wllyzaicpsy < Cl|Allyyra(peay,
where C' > 0 is some constant.

By construction, w satisfies the extended integrability condition (4.5 and
from Proposition [4.1], it follows that

ngé*w =0 and 0 +5,0w=0 in CP%

it ~ i~ e~ T
We conclude by defining A = A+0 w—0 w to be a skew-Hermitian 1-form,
satisfying Fg’g =0 in CP? and A% = A% + Yw = A% 4+ Yw in B,

This finishes the proof of Proposition [4.3] ]
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We are ready to prove the existence of a holomorphic trivialisation of A over
CP“.

Lemma 4.1. There exists € > 0 such that for any form A € WH(Q'CP? @

u(n)) satisfying the integrability condition and ”AH <& then there
wt,

exist gauges §, 5+ € W>4(CP?, GL,(C)) for all ¢ < d such that

A = 9557
Furthermore for each q < d there exists a constant Cy > 0 such that

g — idHW%q(@Pd) <y

AH (4.11)
led((CIP’d)

and

157" = ][y cos) < Co

Ame(@d) . (4.12)

Proof of Lemma[{.1. We divide the proof into three steps. Using a fixed
point argument the first two steps show the existence of a map g satisfying
0g = —A%'§. Step 3 shows the existence of g~! and proves the estimates

and (LTD).

Step 1. We consider the linear operator:
T : WH(CP?, M,(C)) — Wh4(CP%, M, (C))
given by

T(§) = —0 N(A*'g) +id, (4.13)

where id is the constant identity matrix and N is the inverse operator of Az
as defined in ({A.3)). Consequently up to a constant N is the inverse operator
of Ay on CP?, since CP? is Kdhler. We verify that the operator T is well-
defined. On CP? we can use the fact that 9 is an elliptic operator and hence
we get the following estimate:

for some constant C. Since CP? is Kéhler, we have %Ad = Az on CP? and
the 0-Hodge decomposition follows from the d-Hodge decomposition
for 1-forms. The lack of global holomorphic (0, 1)-forms on CP? (see [12, p.
118]) gives us the following decomposition:

"N (A% g) (4.14)

<C H%*N(onlg)

wld(Cp?) L4(CP?)
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AMG = JON(A™g) + 99 N(A™g) = %AdN (A™'g) (4.15)

From the elliptic regularity of A, [37, Theorem 10.5.1] we have the estimate:

30,1 0,1
|veg)| L <14l
from which it follows that
H% N < HAOvlg " (4.16)
Putting the inequalities (4.14]) and (4.16)) together, we obtain:
B Ar( 70,1~ 70,1~ 70,1 ~
‘ o N(4 g>HW1»d((C[P’d) s¢ HA g) L4(CP) s¢ HA ‘ L24(CPY) 1912 ey -
(4.17)

Furthermore, using the Sobolev embedding in 2d-dimensions W14 < L2d
there exists a constant C’ so that

A 191lwr.a - (4.18)

Thus, the operator T is well-defined, mapping W4 to Wt

HE*N(AOJQ)

<
d

wh wld

We can now show that 7" has a unique fixed point. Consider g;,g, €
Whd(CP? M,(C)). Then

~ ~ _|Ia* 10,1/~ ~
(@) = T @)l = [T NEH G = D)

From (4.17), we obtain

|

and we can choose € > 0 such that the bound Hflﬂvl H < £ is small such
Wl’d((CIPd)

401

5*]\/([}0,1(% — f]z))Hde(CPd) <

Wl’d((CIPd) Hgl - gQHWI,d((CIPd)

that the factor C’

A0t H vacp is strictly smaller than 1. Hence, T is a con-
Wd(CPY)

traction operator and there exists a unique fixed point § € WH¢(CP?, M, (C)),
T(g) = g. Thus, we have

9§ = —00 N(A%g). (4.19)
Step 2. We can now show that the equation (4.19) above coupled with the
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integrability condition Fg’oz,l = 0 satisfied by A%, imply that § solves the

required PDE: 9§ = —A%'§. The d-Hodge decomposition 1} gives

0§ = —A%G 43 IN(A%g). (4.20)

Since the operators N and 0 compute, Na: NO (see [8, Theorem 4.4.1 (3)]),
we can further compute the term & 0N (A%'§):

D ON(A%G) =0 NO(A™g) = 0 N(9A% g — A% A D).
Using (4.20)), then we have
DON(AYG) = 9" N(DA% g — A% A Dg)
T N@AM g 4 A A A0 - A0 A TN (A ).

Since A satisfies the integrability condition FE’Q = 0, we have the recurrence
relation:

TIN(A*G) = —F N(A™ ATIN(A%G)) = L (5*5]\7(/10’1@)) (4.21)

where we defined
L: LYQ'CP! ® M,(C)) — LYQ'CP* ® M, (C))
Vs —0 NAY AT).

We need to establish whether £ is a well-defined operator and find its fixed
points in order to analyse equation (4.21]).
Since N is the inverse of an elliptic operator, we have:

HN(AOJ/\V)H <CHAOJAV‘

W2,2d/(d+1) (CPd) -

,2d/(d+1) ((CPd)

<o

L24(CPY) IVlzscces

for some constant C' > 0. Moreover, by the Sobolev embedding W 124/ (@+1)
L4 it follows that

Hﬁ(V)HLd((CPd) <C HE(V)HWde/(dH)(CPd) :
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and consequently,

eV aezey < C|| A% A V|

<C HAO,I

L2d/(d+1) (CP) £24(CPY) HVHLd((C]P’d) .
Similarly as before, this means that £ is a well-defined contraction operator
and has a unique fixed point. In particular, 0 is its fixed point. We know
from equation (4.21) th_at_a*a{\f (A%1g) is also a fixed point for £ and thus,
we have that the term @ dN(A%'§) vanishes. In particular, from (£.20) the

equation is solved: _ ~
8§ _ —A071§.

Step 3. We prove that § € W2¢(CP?, GL,(C)) for all ¢ < d and satisfies the
required estimate (4.11]). Afterwards, we show that ¢! satisfies (4.12). Let
g < d. We know that g is a W¢ map and satisfies:

g—id=0 N(A%g).

Since § is a fixed point of T (4.13)), then it satisfies the estimate (4.18)), which

means:

~ . 70,1 ~
18— idlyracesy < O A o 181
<C HAOJ § —id + Hflo’l :
N ( WLd(CP?) g le’d Whd(Cp?)
Because HAO’1H < g, where ¢ is small, then there exists a constant

Wlld((CIPd)
C > 0 such that

~ . ’“071
19 — ZdHWLd(CPd) <C HA levd(wd) '

Since g satisfies this estimate, we can bootstrap using Lemma |D.1| and Re-
mark [D.1fi), from which the required estimate (4.11]) follows:

(4.22)

1 — Zld“qu(@W) < Cq AHWLd((CIPd) )

for some constant C; > 0.

We need to show that § is in GL,(C) over CP? and that its inverse satisfies
a similar estimate as (4.22)). Arguing in a similar way to Step 1, 2 and the
way we obtained the regularity estimates for ¢ in (4.22)), we can show that
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there exists & € W249(CP% GL,(C)) for any ¢ < d such that
du = 1A%

and

it — idllyzaqeen < Co (4.23)

whd(cp?)

for some constant C; > 0. In particular, we have that 0(6g) = 0. Hence,
ug =: h is holomorphic. However, since the only holomorphic functions on
CP? are the constant ones [12, p. 118], then A is a constant.

We can pick (2d — 1)/2 < gy < d so that we obtain the Sobolev embedding
W2 — L[> on any 2d — 1 dimensional hypersurface. Moreover, by the
Sobolev products results in |31}, Section 4.8.2, Theorem 1], there exists ¢; €
(go,2) such that from @,§ € W29 (CP% M,(C)) we have 4§ € W?% and

HUQ - Zd”w2 a0 (CP?) < Cy

AH for some constant C;;, > 0. By Fubini,
Wd(Cp?)

there exists a radius 7 > 0 and zo € CP? such that

~~ . !
129 = idllyy 200 (2324 (0)) < 2C0, le,d(@d)

where B2?%(z) is a ball in CP?. Thus, by the embedding of W% into L* in
2d — 1 dimensions, there exists a constant Cj/ > 0 so that

1"

||Z~L§ o idHLOO(aBEd(Zo)) < Ctlo (4'24>

HWLd(CPd) ‘

We can choose a possibly smaller ¢ > 0 than we have done for the estimate
< ¢ such that we obtain that h = 4§ € GL,(C) over dB>(z).

Wd(CP4)
Because h is a constant, then h € GL,(C) over CP? and satisfies the estimate:

Hﬁ—z’d

<c|4]

’LOO((C]P’d) Wid(p2d)

for some constant C' > 0.

Hence, we can define ! := h~14. Since G~ 'g = id by construction, we obtain
that g takes values in GL,(C). Moreover, from the fact that A~' is a constant
and from the estimate - it follows that g~' € W24(CP%, G L, (C)) for all
g < d, and by the estimates on u, we obtain that for each ¢ < d there exists
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a constant C; > 0 such that

~—1 . bt
167 ~ il ey < Co 4]
This concludes the proof of Lemma O

Before proving the existence of a local holomorphic trivialisation for our
initial W'? form, we show a stronger version of existence similar to Lemma,

3.3] We consider forms of small norm in W'® p > 2d — 1. This will be a
useful result for our final theorem.

Lemma 4.2. Let p > 2d — 1. There exists € > 0 such that for any w €
WH2(Q¥ B* @ M, (C)) satisfying F3* = 0 and [|w|ly1p(peay < €, there exists
r € (1/2,1) and gauges u,u~t € W*P(B2¢ GL,(C)) so that

w=—0u-u" in B,
with estimates
Ju — idHW2vP(B$d) <C Hwle,p(Bzd)
and (4.25)
Hu_l - idHW%p(Bgd) <C ||WHW1,p(B2d) :

Remark 4.1. We note that in proving this result, we will use a more direct
approach than in Lemmal3.5. The techniques can be easily interchanged. We
do not have to worry about working in a Hilbert setting, since this result is
not formulated in it in the case B* either.

Proof of Lemmal[{.9. Step 1. Let ¢ = 2dp/(2d — p). We show the existence
of a gauge u € GL,(C) that "almost” solves our equation modulo a per-
turbation term. Indeed, in Step 2 we can show that the perturbation term
vanishes and consequentially v is the solution. Again, let N be the inverse
operator of Ag.

We define the operator
H : L=(B* M,(C)) — L>*(B*, M,(C))
given by

H(u) = id+ 9 N(—w - u), (4.26)
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where id is the constant identity matrix and N is the inverse of the operator
Ay as defined in (|A.3]).

Claim. H is well-defined.
Using the fact that & N maps L9 to W1/24 in B2 [5, Theorem 4], then

[H (u) — idHWl/?,q(BM) <Cl-w- U||Lq(B2d) <C ||W||Lq(B2d) ||u||L°0(B2d) 3

where C' > 0 is a constant. By the Sobolev embedding W? < L on B%*,
then

[#H(w) = idllyr/2ap2a) < Cllwllwrozeay [0l oo 24y

for a constant C' > 0. Moreover, since 1/q — 1/(4d) < 0, then W'/24 embeds
into L> over B* and we get

[H (u) — id||L°°(B2d) <C ”WHWLP(B%) ||u||L°°(B2d) < Ce ||u||Loo(B2d) :

Thus, by picking € > 0 such that Ce < 1, then H is well-defined and has
a fixed point u € L*(B%! M,(C)). This fixed point "almost” solves the
required equation. We will show in the next step that the error we obtain
vanishes in light of the integrability condition F2? = 0.

Step 2. Having obtained the fixed point u for the operator H, we show that
u satisfies u = —w - u. Since we have proven that u —id = 8 N(—w - u), we
get by [5, Theorem 1] that

Ou =09 N(—w-u) € L. (4.27)
We can apply the 9-Hodge decomposition (A.F) to get:

—w-u=09 N(—w-u)+9 ON(-w - u) (4.28)
and by using F2? = 0, we expand the last term to get

D ON(—w-u) =8 N(wAd ON(—w - u)),

which is similar to (4.21). We want to show that this recurrence equation
implies that & ON (—w - u) = 0.

H5*5N(—w : u))H < HE*EN(—W - u)H

Lo (B2d W1/2,q(B2d)

<C Hw AN ON(—w - u)‘

La(B2d)
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< Cllwll ogpoa

‘E*EN(—W : U)H

Loo(BQd)

< CCe Hg*gN(—w : u)H ,

oo (BQd)

where C' > 0 is the Sobolev constant given by the Sobolev embedding
Wl/24a — [ For 1 — C' - Cie > 0 there is a contradiction unless

9 ON(—w-u) = 0.
From (4.27) and (4.28)), we conclude that the d-equation is solved:
ou=—w-u in B*,

Step 3. Since the procedure is identical to Step 3 in the proof of Lemma 3.3
we refer the reader to it in order to show that u € GL,(C) and satisfies the

required estimates (|4.25).
This finishes the proof of Lemma [.2 ]

Having the results above at our disposal, we are ready to proceed with show-
ing the existence of local holomorphic trivialisations of V ~ d + A in B2¢ for
some 1 > 0:

Theorem 4.1. There exists gy > 0 such that if A € WH(Q'B?*® @ u(n))
satisfies || Allyrapea) < €0, and the integrability condition Fy* = 0, then
there exists 1 > 0 and gauges g,g~* € W24(B?? GL,(C)) for all ¢ < d such
that

A = —0g-g7" in B2, (4.29)

Moreover, there exists a constant Cy > 0 such that the following estimates
hold:

lg = idllwaaipaey < Co llAllyragpa
and (4.30)
e idea,q(Bgd) < Cy | Allyyr.agpeay -
It follows that A9 = h='0h where h =7g"g.
Proof of Theorem[.1. From Proposition [£.3] there exists a 1-form

A e WH(QICP? ® u(n))
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satisfying the integrability condition FA?O , = 0 so that A% = A% 4 Yy in
B?? where
w € Wr4Q"2CP! @ M, (C))

with estimate [|w[y2.a(cpey < [|Allyy1.a(pea)- This implies that

HAO,l

led((CIP"i) S c HAHWI’d(BM) (431)

for some constant C' > 0.

Lemma applied to the form A gives the existence of a gauge
g € W24(CP*, GL,(C))

for all ¢ < d so that B .
95 =—-A"5  inCP

and for each ¢ < d there exists C; > 0 such that

19 = idlwaaicen < Cal|Al| L epa

and (4.32)

H§71 o ZdHWM((CIF"d S C Wid(Cpd)

On the unit ball B2 we can rewrite (A%)7 as such:
(A071)§ — g—lgg + g—lAO,lg — g—lgg _{_g—lAO,lg _ g—l,l?wg — _g—l (/ﬂw)g

In order to find a gauge g for A%! that gives a holomorphical trivialisa-
tion, it remains to find a gauge change u that cancels the perturbation term

—g " (Vw) g

Ou=g"'(Ww)g-u. (4.33)
We claim that the composition of gauges g - u satisfies the statement.

Since the Sobolev embedding W4 — L44/(?9) holds for any ¢ < d, it implies
that g,g~' € () L% The fact that A and A satisfy the integrability condition

q<oo
on B%: Fg’Q =0 and FE’Q = 0, implies that w € W24(Q%2B??) satisfies the
following PDE: _
Mw = —[A™ Yw] — Jw A Yw.
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Moreover, by Proposition 4.3, we also know that
V0w = — * [*gw,WT] - *[*gw,%T].

Thus, using the fact that 99 + 09 = %Ad, it follows that
1 0,1 5 7017 = T
éAdw + [A%, Yw] + *[*0w, A% | + [Yw, Yw] + *[¥0w, Jw | = 0.

Proposition applied to this PDE allows to bootstrap the regularity of w
inside B??. Indeed, we have an improved inner regularity w € W24(B??, M,,(C))
for any ¢ < 2d. Sobolev embeddings yield:

l,q9 2d
Jw € ﬂ I/Vloc B ﬂ Lloc
q<2d q<oo

Putting together the regularity of Yw, § and g—!

of g7 (Yw) g:

we can obtain the regularity

! (190.})9 < ﬂ Vvlicq - m Lloc (434)

q<2d g<oco

Fix p > 2d — 1 and 0 > 0 small. There exists ry € (0, 1) so that
= (ﬂw)gle,p(ng) < 0.

This (0, 1) form also solves R_1 )5 = = 0in B2d. Hence, we apply Lemma
to g~ (Yw) g in B2 (by rescahng) to get the existence of r € (r9/2,70)
and uw € W?P(B2? GL,(C)) that solves the d-equation above (4.33)):

Ou=g"'(Ww)g-u in B
and satisfies the estimates
it = idllyaszoy < C 117 0) 3l yrppey < ClAwragany  (4:35)

and

|u™ —zd||W2pBQd < Cllg" (Yw) gledBQd < CNAllyraggeay . (4.36)

for some constant C' > 0.

Define g := gu in B*. By construction of g, the required O-equation is
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solved:

0g = —A%lg in B (4.37)

We show that g and g~! satisfy the required estimates (4.30). Let ¢ < d
arbitrary. The triangle inequality applied on the norm W24 gives:

lg — Z'd“WZQ(BZd) <|[(g —id)(u — id)HWZq(Bzd)
+ g - idHWZq(B,%d) + |lu — Z'd||w2,q(B$d) :
Using the Sobolev product estimates of |31, Section 4.8.2, Theorem 1], from
the regularity of § —id € (., W>%(B2%) and u — id € W*P(B}?), it follows
that
(§ —id)(u — id) € [ W>9(B2)

q<d

with
1(g — id)(u — id)|| 2 (p2ay < Cl|G — 1d|ypar (g2ay * |u = idl[ 2 p2ay »

for some ¢; € (q,d) and constant C' > 0. Hence, from (4.31), (4.32) and
(4.35) it immediately follows that there exists a constant C, > 0 such that:

19 = 1dl[y2.0(p2ay < Cq | Allwr.acpeay -

By arguing in a completely analogous way to how we obtained the regularity
of g, we obtain

”g_l - idezq(Bgd) < Cq ”AHWLd(BQd) :

It remains to show the existence of h satisfying A9 = h=10h. We apply g to
Ain B¥ to get:

_ . .
AV =g (g4 0g) + g tAY g — gt AW g =g 0g — g T AL g

Since (4.37) holds, then 97" = —ETAOJT. Hence, (ET)fl gl = Sy By
plugging this into the equation above, we get

_ _ ! —1 A _ _ _
AV=g'og+¢7' (") 99" g=(3"9)'0(7"9).

We conclude the proof of Theorem by defining h := g'g, and h €
W24(B2 ju(n)) for any q < d. O



4.2 Existence of holomorphic trivialisations 115

Taking into account Remark [3.2] we end the chapter by proving a stability
result for holomorphic trivialisations similar to Corollary [3.1]

Corollary 4.1. Let Ay € WY (Q'B* @ u(n)) and r < 1 so that g, €
W?24(B2 GL,(C)) satisfies theorem|4.1. There exists § > 0 such that for all
Ay € WH(Q' B @ u(n)) with Fg’j = 0 satisfying

”Al - AQle,d(BQd) S 57
there exists a radius ro € (r/2,r) depending only on Ay and a gauge

g2 € () W>9(B2, GL,(C))

07
g<d

that trivialises Ay in the sense that:
Ay = —0gy-g;" m Bfgl

The following estimates hold: for all ¢ < d there exists Cy > 0 such that

g2 = idlsasa < Co (1Al ragen + 142 llyragsas)
and there exists C' > 0 such that
g1 — 92||Lp(ng) < CO|A - A2||W1ad(32d)
for all p < d(2d +2).

Proof of Corollary[3.1. Choose § > 0 such that A is a small perturbation
of A;. By Remark and Theorem applied to the forms A; and A, we
obtain the existence of r > 0 and gauges g1, 9> € W?9(B*, GL,(C)) for all
q < d so that

Ogy = —AV g and  dgy, = —AY' - g, in BX (4.38)
and there exists a constant C, > 0 such that
Hgl - id||W2yq(Bgd) < Cq ||A1‘|W17d(32d) )
192 = idlly2a(paey < Cq |l Aallyyr.apee
S C(q <||A1||W1vd(32d) + ||A1 - A2||W1,d(32d)>

and (4.39)
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H92_1 - ideZq(Bzd) < Cq ”A?“Wl’d(B?d)
S Cq <||A1||W1,d(32d) + ||A1 - A2||W1,d(32d)>

By (4.38)), g1 and g5 holomorphically trivialise A; and A, respectively, we can
relate the transition gauge gy 191 with the difference 1-form A, — A; through
the following 0-equation:

gyt g1) = g5 ' (As — A) " g2 - (95 o). (4.40)

We first estimate g, ' g, —id using the inequalities (4.39)) and then use equation
([4.40)) to show that g, 'g, — id is only bounded by the norm of Ay — A;. Fix

q < d. The triangle inequality gives:
H92_191 - Z.d”Wz,q(Bng) < H(92_1 - Zd)(gl - id)HWQ,q(B%d)

+ Hggl - ideQ,q(Bzd) + ”gl - Z‘dHWQ’q(B,?d)
Hence, by the results of [31], Section 4.8.2, Theorem 1] applied to the product
(95" —id)(g1 — id) and estimates (4.39)), there exists a constant C, > 0 so
that

H92_191 - ideQ,q(Bgd) < Cq(HAlHled + HAZHWLd)

< 2C(|Atllyra + [[Ar = Aslya). (4.41)
for all ¢ < d. We can use equation (4.40) in order to find an a-posteriori
estimate of g, 'g1 — id involving only the 1-form Ay — A;. Let s < 2d. By

the regularity of 9 in L* (see [18, Theorem 1 (b)]) there exists a holomorphic
map h and a constant Cs > 0 such that

H92_191 - h"L(2d+2)s/((2d+2)—s)(3%d) < C; ||5<92_191)’
< Cy[lgy ' (Ay — Ap)' go

L (B2%)

Lsp/(=3) (B2d) HgglngLP(Bgd) ’

where p € (s,00) arbitrary. Hence, it follows that there exists C' > 0 depend-
ing on A; such that

“95191 - hHL(2d+2)s/((2d+2)—s)(3%d) SC HAl - AZHWLd(B?d) Hgglgl - idHLp(Bgd)

+ C HAl - A2Hw1,d(32d) .

There exists ¢ < d such that W29 < [P, Since g;'¢g; — id is bounded in



4.2 Existence of holomorphic trivialisations 117

W24 by (4.41]), then it is also bounded in LP. Hence,
||92_lgl - h”L(2d+2)s/((2d+2)—s)(Bzd) S C ||A1 - AQle,d(B2d) .
Since this holds for any s < 2d, there exists a constant C' > 0 such that

HQQ_IQI - hHLp(Bzd) S C ||A1 - A2||W1vd(B2d) 5

for all p < d(2d 4 2). Having this inequality at our disposal, we can turn to
estimate g; — go - h. Let p < d(2d + 2), then:

g = g2 - Pl poszay = [[(92 = id) (e = g3 g1) + b = 97" g2| o oy

For v € (p,d(2d + 2)), we get:

g1 — g2 - hHLp(Bgd) <llg2 — z'd||m/(v_p)(33d) “95191 - h‘ Lv(B2d)

+ "92_191 - hHLp(B,%d) :
Thus, there exists a constant C,, > 0 depending on v, p and A; such that
g1 — g2 - hHLp(Bgd) < Cup |AL - A2||W1»d(B2d) :

Moreover, gs - h solves the equation:

d(ga-h) = A3l (g2~ ) (4.42)
in a distributional sense. It remains to show that the g, - h is bounded in

W24 for all ¢ < d by the norms of A; and A, in a possible slightly smaller
ball. Let ro € (r/2,7), then there exists a constant C' > 0 such that

ng ~h — id|’W1,d(Bzg) <C (HEQZ ) hHLQ(BEd) + Hg2 ~h— id‘|Ld(33d)) ’

Consequently, by using the O-equation ({.42)) satisfied by g, - h, it follows
that:

HQQ -h — Zd”Wl,d(ngl) <C (HAQHLM(BEd) Hg2 ' h’HLQd(B?d)

+ g2 - b = g1ll pagp2ey + llid — 91||Ld<B%d)> :
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Having shown that go - h € L? for all p < d(2d + 2), we obtain
lgs - b = il aggzey < € (1 Aulhyragzms) + 1 4sllynagzen) ) -

Hence, given that g, - h € W4 and g, - h — id is bounded by A; and A, we
get from Lemma and Remark [D.1f(ii) the estimate: for any ¢ < d there
exists a constant C, > 0 such that:

g2 b = idllysaagy < Co (41 yragon, + el -

By redefining ¢ as g, - h, we have proven our stability result. O]

4.3 Density under high energy

For proving theorem we have to show that for any smooth approximating
sequence of V, there exists a perturbation of the sequence such that the
integrability condition Fg’2 = 0 is satisfied throughout. In the previous
chapter, we have heavily used the fact that 99" is an elliptic operator on
Kéhler surfaces. However, this is not the case for Kahler manifolds as we have
explained in section [4.1] Thus, we aim at solving the extended integrability
condition locally and consequently showing that globally this implies
the integrability condition.

Over B?? we assume without loss of generality that V ~ d + A. We start by
studying the invertibility of the operator

La: W*4(Q%2B*) N Dom(L,) — LY(Q%*B*)
defined by

= = = —T
AW = ) > 0171 :
Law = 0Yw + 90w + [A® Yw] + *[xOw, AOL" ] (4.43)

where Dom(L,) = {w : wy = 0, (dw)y = 0} and by wy we understand
the components of the form w involving dr, i.e. Dom(L,) = {w : w,dw €
Dom(d*)} by (4.6). In particular, since Az = 1A, the boundary conditions
wy =0, (dw)y = 0 make the operator L, elliptic. Globally we do not need
these conditions since we are working over a closed Kahler manifold.

We show that for perturbations g of A with ||g —id|| - small, Lss is an
invertible operator that maps W2?(Q%2B%? @ u(n)) to L4Y(Q%2B%* @ u(n)).



4.3 Density under high energy 119

In order to be able to study the invertibility of L4, we first need a set of
general results derived from the theory of Fredholm Operators. Secondly, we
prove that under linear perturbations of A, we can find u(n)-valued maps U
such that L, g5, 1s invertible for all 0 < 8 < [, for some Sy > 0. Finally,
we generalise these ideas in Section [4.3.3| and find gauge changes g of A such
that L 4s is invertible.

The first result of this Chapter is the analogous of Proposition |3.3|
Proposition 4.4. The operator

Ly : W*HQ2B* @ u(n)) N Dom(Ly) — LYB*, u(n))
s Fredholm and has index zero.

Proof of Proposition[{.4 Firstly, L4 is elliptic, because it is a lower order
perturbation of Ay = %Ad under well-posed boundary conditions, thus it is
Fredholm.

Next, note that Az is an elliptic operator of Fredholm index zero from
W24(Q%2B2 @ u(n)) N Dom(L,) into LY(Q2B?*? @ u(n)).

Let Aj be a sequence of smooth 1-forms converging strongly in W14 to A.
Then the bracket operator

_ —=T
w i [AYY 9] + #[x0w, AP

is compact W2%(Q%%(B%)) to L4(Q%%(B?%)). Indeed, Ay is bounded in L*>
and hence:

0,1 = o1l
(AR, 9] + (B, AT ] < C Akl e ey (190

Ld(BZd)
+ HEWHWLd(B?d)> ’

for some constant C' > 0, where we have used the fact that W< is compactly
embedded in L? in 2d-dimensions, by Rellich-Kondrachov [2] and therefore
the operators

— =T
w i [APY 9] + #[x0w, AP

are compact W2? to L¢ for all k. Hence, using the compactness of these
operators and the fact that Ay is Fredholm, by [32, Theorem 4.4.2, p.185])
we have

indexL 4, = index(Ag).
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By the Hodge decomposition, we know that Ay has index zero over Dom(L,).
Thus, Az has index zero as well and we have

indexL,, = index(Az) = 0.

Moreover, for a fixed € > 0 given by [32, Theorem 4.4.2, p.185], there exists
ko > 0 such that for all k£ > ky:

_ T
H‘[AZ’I - A071719'] + *[*6'7‘4271 — A0 ]H‘ =<

since A, converges strongly to A in W1,
Thus, by applying [32, Theorem 4.4.2, p.185] to the perturbation operator

_ ——T
[Ag’l — A% 9] + x[x0-, Ag’l — A%1 ] and Ly, we obtain that

_ ——7T
ind@d@;zind@c(LA4—VﬁJ——Aaﬂﬁj4_ﬂ*awA%1—aAQ1])
= indexL 4, =0

This proves the statement. O

In the following section we will discuss the invertibility of general Fredholm
operators. The results we prove here will be crucial to our density arguments.

4.3.1 Invertibility of Fredholm Operators

Recall that a bounded linear operator L : X — Y between Banach spaces
is Fredholm if it has closed range and its kernel and cokernel are finite-
dimensional. If L : X — Y is Fredholm and P : X — Y is another bounded
linear operator, we can write X = Ker(L) & X’ and Y = Y’ & Ran(L), as
direct sum decompositions of X,Y. Then L, P and L + P can be written in
the form

0 0 P1 PQ Pl P2
L= P= ., L+P:= o (4.44)

0 L, P, P, Py L,

where Ly : X’ — Ran(L) is a bounded invertible operator, L, = L4+ Py,
and where via the expression
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Li'=(Ls+P)™' =) (~Ly'P)FLy!, for |L7' Py < 1 (4.45)
k=0

we see that if ||Py|| < ||L;'||~* then Ly is invertible with bounded inverse. In
particular, we have

1

Z—lm < |ll; - (4.46)
I < W e
In this case we can use the Schur complement of E4 and write
PP
L+P= (4.47)
Py Ly
Iy, PL;! P —PL'Py 0 Iker(zy O
0 IRan(L) 0 54 521]33 IX’

We note that the first and last operators in are bounded and invertible,
acting respectively on Y and on X, thus the index of L + P is equal to the
index of the middle operator in . Considering the middle operator in
(4.47)), since it is block-diagonal and L, + Pj is invertible, its kernel and
co-kernel dimensions are determined by the upper-left block

L =P —PL;'Py: Ker(L) = Y', (4.48)

which is a bounded linear operator between finite-dimensional spaces.

Note that denoting zy € KerL and z; € X’ according to the decomposition
X =KerL & X', we have

Pll'o + PQ.ﬁEl = 0, le[) = O,
Ker(L+P)3z0+ 11 & &

P3[L’0 + Z4(L’1 = O, T = —Zngxo.
(4.49)
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Note that the map written in block form as
Jp.p = (Iker(ry, =L 'P3) : Ker(L) — Ker(L) ® X’ (4.50)

is injective, and thus an isomorphism between Ker(L) and its range, which
is

Kpp = {xo+a1: 20 € Ker(L), 2, = —L; " Psxo}. (4.51)

Also note that Ker(L + P) C K, p C X, and that the map J; p depends
continuously on P.

Lemma 4.3. Let L, P : X — Y be bounded linear operators between Banach
spaces such that L is Fredholm and that decomposition (4.44) holds, with
furthermore ||Py|| < ||[L;Y||7*. Let the operator Ly be defined as in (4.48)

using (4.45)). Then the following hold:

1. The map P 'El 18 continuous with respect to the operator norms
induced by the Banach space norms on X,Y,Ker(L),Y".

2. There holds Ker(L + P) ~ Ker(Ly) and CoKer(L + P) ~ CoKer(Ly).

3. There holds dimKer(L + P) < dimKer(L) and dimCoKer(L + P) <
dimCoKer(L).

Sketch of proof: Points 1 and 2 follow from the decomposition (4.44) and
formula (4.45)). Point 3 follows from point 2 and (4.48)). O

In view of Lemma [£.3], the following result gives us a necessary and sufficient
condition for dimKer(L + P) = dimKer(L):

Proposition 4.5. Let L, P : X — Y be bounded linear operators between
Banach spaces, such that Plxe(r) is injective and ||Py|| < || Ly"]|™* with no-
tation as in (4.44). Then dimKer(L + P) = dimKer(L) if and only if

P, =PL;'P3=0. (4.52)

Proof of Proposition[4.5. By (4.47) we have the following decomposition in-
duced by the direct sum Y =Y’ @ Ran(L):

P
P’Ker(L) = . (453)

Py
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First assume that dimKer(L + P) = dimKer(L). By the isomorphism
we obtain that dimKer(L + P) = dimK, p and since Ker(L+ P) C dimK7 p,
we obtain Ker(L + P) = K|, p. Comparing the rightmost system in to
(4.49), we deduce L = 0, and via we find

P, = P,L;'P;. (4.54)
Inserting this in (4.53)), we get
PL;!
Plker(r) = Ps. (4.55)
TRan(L)

Since by hypothesis P|ker(z) is injective, (4.55)) implies that
P; : Ker(L) — Ran(L)
is also injective. Hence,

dimRan(Ps) = dimKer(L). (4.56)

On the other hand, since the decomposition (4.53]) comes from a direct sum
expression of Y, we have dimKer(L) > dimRan(P;) 4+ dimRan(Ps). This
together with (4.56) implies that dimRan(P;) = 0, and thus P; = 0. This,

together with (4.54)), concludes the proof of (4.52)).

Conversely, assume that (4.52)) holds. In particular by (4.48]) L, = 0. Thus,
from (4.49) we obtain that dimKer(L + P) = dimKer(L). O

Crucially, we are now able to show that for perturbation operators P that
are injective on the kernel of L we can decrease the dimension of the KerL.

Proposition 4.6. Let L, P : X — Y be bounded linear operators between
Banach spaces, such that Plke(r) is injective. Then there exists f > 0 such
that

dimKer(L + gP) < dimKer(L). (4.57)

Proof of Proposition[{.6. Assume that dimKer(L+ SP) = dimKer(L) for all
B € (0,1). Since P|ker(z) is injective, so is BP|ker(r). We use notation
and define By := || L4l||||B4]|, so that ||SPs|| < ||L4|| 7! for all 3 € (0, o). Then
we can apply Proposition to L and SP in order to get SP; = 0 and
Py =0 on Im(Ly + BP,) "' BP; for all 8 € (0, 5).
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Let 0 #£ e € KerL. Since P, = 0, all elements in KerL are mapped into RanL
by Ps. Thus, there exists w, € X’ such that Pe = Lw, and for g € (0, 3y),
we also have

(BP)e = L(Bw,).
This implies the following relation:
(BP)e = L(Bw.) <= (BP3)e = Ly(Buwe).

The above equivalence together with the fact that P, = 0 on the space
Im(Ly + BPy) '8P, give the following equation:

0= (Ly + BPy) "' BPse = (Ly + BP) ' L(Bwe)

= (Ly+ BPy) ' Ly(Bwe) = Z(—l)kﬂk(llllpzx)kLZle@we

k=0
SR P B
k=0
= 5“’6 + 0(ﬁ2>'

Since this holds for all g € (0, 5y), we find w, = 0, and thus e = 0. We have
obtained a contradiction. Hence, there exists § > 0 such that dimKer(L +
fP) < dimKer(L). O

4.3.2 Linear perturbation

Having Proposition [4.6| at our disposal, we can now construct linear pertur-
bations P of L4 (4.43)) such that

dimKer(L4 + P) < dimKer(Ly). (4.58)

In particular, we find a small perturbation of the form

— =T
P = Py = [0U, 9] + *[x0-,0U | (4.59)

that satisfies (4.58]), where U is a smooth u(n)-valued map over B%.

The following proof resembles Proposition however now we want to show
the existence of perturbation U such that P is injective on KerlL 4.
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Proposition 4.7. There exists P = Py with the same domain and range as
L and of the form (4.59)) such that U is a smooth, u(n)-valued map and P
15 1njective on KerlL 4.

Proof of Proposition[{.7. Since KerL, is finite dimensional, let {e1,...,en}
be an orthonormal basis of it.

Claim 1. For each v € KerL \ {0}, there exists U, € C*(B"™,g) such that
PUUU 7& 0.

Let v € KerL 4\ {0}. We show that for each such v, we can find U, such that
Py,v # 0. Assume by contradiction that Pyv = 0 for all smooth M, (C)-
valued maps U on B??. Define the linear operator

H(w) = [w, Yv]+x[x0v, @] : C*(Q™ B* @ M,(C)) — C=(Q°?B* @ M,(C)).

Observe that H(w(z)) = H(w)(z), in which w(x) is identified to the constant
form equal to w(z). Moreover, we have that

_ =T _
0 = Pyv = [0U, %v] + *[x0v,0U | = H(OU)

for all smooth maps U on B??. Applying Proposition to H, we obtain
that H = 0. By density of smooth 1-forms into W'? 1-forms, it follows in
particular that

H(A) = [A, 9v] + #[dv, A0 | = 0.
Putting this together with the fact that v € KerL 4, we obtain:

0= LA'U = Agv.

Since v € KerAg, then v = 0. This is a contradiction, since we have picked
v # 0. Hence, there exists U, € C*(B*, M,(C)) so that Py,v # 0, as
claimed.

Next, we show that such a U, can be chosen to be u(n)-valued. Indeed, since
U, € M,(C), there exists a decomposition in terms of its Hermitian and
anti-Hermitian part:

U’U - Ul +U27

where Uy € C®(B?! u(n)) and Uy € C*(B?? iu(n)). Assume that Py,v =0,
otherwise we redefine U, := U;. Under this assumption, by linearity it then
necessarily follows that

PUQU 7£ 0.
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If this condition holds, then by multiplying with 7,
iPUzl) = RLUQU 7& 0.

Moreover, il € C®°(B* u(n)) and in this case we redefine U, := ilUs.
Hence, there exists

U, € C=(B* u(n)) so that Py v # 0, for any v € KerL,,v #0. (4.60)

Claim 2. There exists U smooth u(n)-valued map over B** such that Py is
injective on KerlL 4.
We formulate the following inductive hypothesis:

there exists U* € C°°(B?? u(n)) supported in V¥ C B?? such that
Z(k) -

the forms Pyrey, ... Py, e are linearly independent.

We show by induction that Z(k) holds for £ < N, from which it follows that
Py is injective on KerLy.

By Claim 1, there exists U; such that Py, e; # 0. Without loss of generality,
by multiplying with a compactly supported function p;, we can localise U
in V; € B?!. Hence Z(1) holds. We now assume that for k < N, Z(k) holds,
and we prove Z(k 4 1).

If Pyrey, ..., Pyreyq already are linearly independent, then we just set U1 =
U*. Otherwise there exists \q, ..., A\y41 not all 0 such that Zf:ll AiPrre; = 0.
In this case A1 # 0.

By Claim 1 there exists U1 such that Py, Zf;l Aie; # 0. We can choose

a neighbourhood V11 and V¥ C V* disjoint from Vjyq such that {Ppre; i,
is linearly independent in V* and

k+1

Ppk+1Uk+1 E )\iei 7& 0 m Vk+1
=1

In particular, we can define functions py11 compactly supported in Viy1, px
compactly supported in V*.

We now define Ut := p,U*+pj41Uss1, and show that Pyrsier, ..., Prrsiegy
now are linearly independent. Assume there exists (1, ..., Bx11 such that
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k+1 k+1
ZBJPPkUk+Pk+1Uk+16j = ZﬁjPUk‘Hej =0. (461)
7=1 j=1

In the neighbourhood V*, we have that

k+1

ZﬂjPUkej =0.

j=1

Then (B1,. .., Brks1) = ¢(A1, ..., Apy1) for some constant c¢. Hence, in Vi,

we have that
k41

CZ )\jPUk+1ej = 0.
j=1

By the choice of U1, we obtain that ¢ = 0. Hence Br=...=0ry1 =0. To
conclude, define V**! = V¥ U V}.,1. This proves the induction.

Hence, we have obtained U = U" such that {PUej}j-V:l are linearly indepen-
dent, where e; the orthonormal basis of KerL 4 we have picked initially. It
follows that Py is injective on KerlL 4. ]

The above construction of P = Py allows us to apply Proposition to the
operator L, as follows:

Proposition 4.8. Let Ly be defined as in (4.43)) and assume that L4 is not
injective. There exists P = Py as in Proposition[{.7], such that furthermore

dimKer(L4 + P) < dimKer(Ly). (4.62)

Proof of Proposition[{.8 By Proposition , there exists a 1-form U such
that the operator

~ _~ _ —==T

P = [0U, 9| + *[x0-,0U |
is injective on KerL 4. After rescaling U, we can assume that P is small in
operator norm. Applying Proposition to L, and P, we obtain P that

— _ =T
is of the form [0U, ¥-] + *[x0-,0U | and satisfies (4.62). This concludes the
statement. ]

Having now the result that shows that we can always find a perturbation that
decreases the dimension of the kernel of L 4, we want to iterate the procedure
such that we obtain a perturbation P that makes the kernel of L 4+ P trivial.
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In light of the fact that L4 is an operator of index zero, we can conclude that
L4 + P is invertible.

Theorem 4.2. Let Ly be defined as in (4.43)) and assume that La is not
injective. There exists P with same domain and range spaces as La, of the
form

P(n) := [0U,9n] + *[*gn,%T]

and small in operator norm such that L + P is invertible.

Proof of Theorem[{.2 By applying Proposition [4.§ to L4, we obtain a per-
_ T

turbation P, = [0Uy, 9] + *[*5,5_1]1 ] such that
dimKer(L4 + P;) < dimKer(Ly).

The operator Ly + P, = L, Loy, 18 in addition Fredholm of the same index
as L4, since P; is compact. Similarly we can find a perturbation operator P
for L, 5y, = La+ P1. This leads us to the idea of iterating the procedure.
Since ¢ = dimKer(L,) is finite, after at most n perturbations Py, k < ¢, we
obtain that

dimKer(Ly + P+ ...+ F) = 0.

Thus, by denoting P := P; 4+ ...+ P, we obtain a linear perturbation that
makes the kernel of L4 + P trivial. Moreover, because L, is a Fredholm
operator of index zero and P is a compact operator, it follows that L4 + P
is an operator of index zero and trivial kernel. Hence, L4 + P is invertible.

— pa— __T
Moreover, since each Py is of the form [0Uy, -] 4+ x[x0-, 0Uy | for each k < ¢,
then

_ —T
P = [0U, 9] + *[x0-,0U |
where U = U; + ...+ U,. This concludes the statement. O

4.3.3 Gauge perturbation

As in the Hilbert case in Chapter [3| we now consider perturbations of A of the
form A9 = g7'dg+ g1 Ag with g a U(n)-valued gauge transformation. Using
the approach we took in the previous section and relying on Proposition [4.6]
we find a smooth u(n)-valued function U such that for g = expU € U(n),
the operator L4 is invertible.
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Consider the family of gauges g, = exptU, t = [0,1]. We can analytically
expand A% in ¢ € [0, 1] to obtain

A% — A= 1t(dU + [U, A]) + O(t).
In particular, we have

(AP — A% = ¢(QU + [U, A°Y)) + O(82). (4.63)

Moreover, it will be useful to define the bounded linear operators
Gru : WH(Q"B*? @ M, (C)) — LY Q" B* ® M,(C))
given by

Gy = [(A™)" — A% —4(@U + U, 4°%)), 0

w53, (AVY — A0 40U 1 (U, AM]) ] (4.64)

and
Py W*4(Q%2B* @ M,(C)) = LYQ**B* @ M,(C))

given by
_ =T
Py = [0U + [U, A°!,9-] 4 x[x0-,0U + [U, A% .

Observe that

Lo = Lg—+ [(Ao’l)gt — A% 9] + *[*57 (A0T)T" — AO,IT]
and we can write Gy as Gy = Las — Lg +tPy. It follows that

Gl < A" = All agaay + LI Pl (4.65)

for some constant C' > 0. Moreover, there exists ty such that for all ¢t < ¢,
we have that the operator

(A1) = AP0 4 [, (AT — AT ]

is small in operator norm mapping W24(Q%2B% @ M, (C)) to L4(Q%2B%* @
M, (C)) and by [32, Theorem 4.4.2]:

indexL40.1y9 = indexLy = 0. (4.66)

We show that it is enough to find a perturbation Py that is injective on the
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kernel L4 in order to decrease the kernel size. We start with a proposition
which is a non-linear analogue to Proposition [4.7}

Proposition 4.9. There exists P = Py with the same domain and range as
L and of the form

_ =
Py(n) := [0U + [U, A%, 9n] + *[x0n, OU + [U, A%] ]

for U u(n)-valued smooth, such that P is injective on KerL .

Proof of Proposition[4.9. Claim. For each v € KerLa,v # 0, there exists
U, € C=(B* u(n))

such that Py,v # 0.

Let v € KerTy, v # 0. We show that for each such v, we can find U,
such that Py v # 0. Assume by contradiction that Pyv = 0 for all smooth
M,,(C)-valued maps U on B??. Define the linear operators

Hy : C*(B*, M,(C)) = C*(Q"?B* @ M, (C))
given by
Hy(w) = [[W7A0,1]7191)] + *[*EU’WT]

and
Hy : C=(Q" B* @ M, (C)) — C=(Q"B* @ M,(C)).

given by B
Hi(w) := [w, Jv] + *[x0v, w" .

We have Hy(w(z)) = Hy(w)(z), where w(z) is identified with a constant form.
Moreover,

— _ =T —
0 = Pyv = [0U + [U, A%, 9] + «[xdv, OU + [U, A% | = H,(dU) + Hy(U)

for all smooth maps U on B?*!. Applying Proposition to Hy and Hy, we
obtain that H; o9 = 0 and Hy = 0. In particular, we have obtained that for
all U smooth functions on B??,

H,(U) = [9U, 90] + #[+3v,dU | = 0.

This contradicts Proposition . Hence, there exists U, € C°°(B*, M,(C))
so that Py,v # 0.
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The rest of the proof (the existence of hermitian U, such that Py,v # 0 and
the existence of U such that Py is injective on KerL ,4) follows exactly as in
Proposition [4.7] O

Proposition 4.10. Let La be defined as in (4.43)) and assume that Ly is
not injective. There exists a unitary smooth gauge perturbation g such that

dimKer(L4s) < dimKer(Ly) (4.67)
and indexL 4o = indexL 4 = 0.

Proof of Proposition[{.10. By Proposition[4.9] there exists U smooth hermi-
tian such that the operator

— _ =T
Py = [0U + [U, A, 9] + ¥[x0-,0U + [U, A%] ]

is injective on KerL 4. Moreover, there exists tg such that for ¢ < ty, we can
assume that P,y = tPy is small in operator norm ||-|| such that Proposition
4.0| applies to L4 and tP. Then L4 + tPy is Fredholm and

dimKer(L4 + tPy) < dimKer(Ly).

With the same notation as in Section [4.3.1] applied to the operator L, and
perturbation t Py, we can rewrite L4 + tPy as:

La+tPy = ;
0 Hy

where Hy = (Ls + tPy)4 is a bounded invertible operator depending on L,
and Py. Note that it will not be sufficient to only include P, in the estimates,
but we need the operator mranr, ,+¢p, PU](Ker La+tPy)Ls Where Tranr 1P, 18 the
projection onto the range of the operator L4 + tPy. Denote this operator

TRanLa+tPy Fu|(kerr y+¢pp)t by Py Thus, Hy = Ly + P,. We have by (4.46))
the estimate applied to Hy:

1
i ]

I[(La+tPo) || < (Il 22

and hence for some t; € (0,%y) we obtain for all ¢t < t;:
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1

ka2 7 2 g (1=l :

) 2 sz

Since exp tU is continuous in ¢t > 0 and converging to 0 uniformly, then

P,

|42 = Al ey = 0

Bn
as t — 0. Choose ty € (0,¢;) such that

1

and | Pyl < =
S Al

1
Aexth_A o < —

for all ¢ <t,. Thus, by the operator norm estimate (4.65) we obtain

1 1 —1
Gl < ST < (L +tPo) |

for all t < ty,. Hence, Lemma applied to the operator Ly + tPy and
perturbation Gy together with the definition of the operator Gy (4.64)
that

dimKerL 4o = dimKer(Ls+tPy+G.p) < dimKer(Ls+tPy) < dimKer(Ly4),

for all t <ty. Thus (4.67) holds if we define g := exptU for t < ¢, and from
the construction of U, g is unitary and smooth. By (4.66]), we can also choose
t > 0 slightly smaller so that we also guarantee that indexL 4o = indexLy =
0. O

With this result in hand, we are ready to prove the main theorem of this
section - that we can find a gauge perturbation g such that L 4¢ is invertible.

Theorem 4.3. Let Ly be as in (4.43)). There exists a unitary smooth gauge
perturbation g such that Lae is Fredholm and invertible.

Proof of Theorem[{.3. We know that L, is Fredholm and by choosing g =
exp(tU), for t > 0 sufficiently small, we obtain (4.66)): indexL 4 = indexL s =
0. It suffices to prove that L4 is injective. Let

¢ := dimKer(Ly).

If £ = 0 then it suffices to take g = id, so let us assume now that ¢ > 0.
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By applying Proposition to L4, we obtain a gauge perturbation g; such
that
dimKer(L e ) < dimKer(Ly).

The operator L 44, is in addition Fredholm of the same index as L 4. Similarly
we can find a gauge perturbation operator gs for L 44:, and so on. By iterating

the procedure for at most ¢ times and denoting g := ¢y - ... - g;, we obtain a
gauge perturbation that makes the kernel of L 44 trivial. This concludes the
proof. [

4.3.4 Local density result in the high energy case

Having built the framework that allows us to find a unitary gauge trans-
formation g such that L ¢ is invertible, we can proceed with a very similar
procedure as in section [3.4.3|in order to show a local density result that pre-
serves the extended integrability condition throughout the sequence.
More specifically, we find a sequence of unitary smooth 1-forms A; converg-
ing to A and such that A, satisfies the extended integrability condition .
Locally on B?? we cannot conclude the integrability condition. This will be
done globally in the next section.

We state an analogous result to Proposition [3.8 and refer the reader to its
proof. Since the arguments are identical, we will not prove it.

Proposition 4.11. Let A € WH(Q'B* ® u(n)) and a sequence of smooth
1-forms Ay — A in W4, Then there ezists a gauge g € C*(B*?,U(n)) and
ko € N such that

(i)
KerLys = {0} and  KerLy, = {0}

for all k > kq. In particular, the operators LAi, k > ko and Lys are all
wnvertible.

(i)

sup ||| LZHI| < 2| L3 ]-

sup [ 255 | < 222
Remark 4.2. Unlike the proof of Proposition[3.8, the existence of g is now
given by theorem [{.3

Under the assumption that the norm of FX’Q is sufficiently small, the next

lemma allows us to perturb the 1-form A such that the extended integrability
condition (4.5 is satisfied.
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Lemma 4.4. There exists C',C > 0 such that for every A € WH(Q!B*

u(n)) such that L, is invertible and ”Fg’QHLd < ﬁ, there exists w €
A

W22N Dom(L4)(Q%2B% @ M,(C)) such that the extended integrability con-
dition holds: B
FY2 g+ Va0 19,0w = 0.

and

[wl[y2.a(peay < CH‘LEIH‘ | Fall papeay - (4.68)

Proof of Lemmal{.4 Observe the fact that the extended integrability condi-
tion can be obtained by solving

La(w) + [Yw, dw] + *[*Ew,%T] = —sz,

for w € W24(Q%2B%) N Dom(L,). In order to achieve this, we argue via
a fixed point argument using the fact that L4 is invertible. We construct a
sequence of (0,2)-forms wy, -, wy, - such that:

Lawo = —Fy°
Law, = — ([ﬁwo,ﬁwo] 4 *[*EWO,MT]) — F9?

Ljwy = — ([ﬁwl,ﬁwl] + *[*gwl,TmT]) — FY?
= 7T 0,2
LAwk = — <[’L9wk_1, ﬁwk_l] —+ *[*8a}k_1, ﬁwk_l ]) — FA

where wy, € Dom(L,) for each k£ € N. Thus, the boundary conditions are
(wi)y =0 and (dwg)y =0 on 9B*.
Claim 1. For each k € N there holds

leoellyaagzy < 2NEZAl 1S - (4.69)

Since we have assumed that L 4 is invertible as a map W2¢NDom(L,4) — L4,
then we have the identity:

-1
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Hence, from the definition of the norm of operators, it follows that:

HWOHWZ!d < ’HLATI‘H ||LAw0||Ld(BQd)
= NEZ N IFL ] asaay

< 2L M| o

Let k£ > 0. By the Sobolev embedding of W14 < L?¢ there exists a constant
C; > 0 so that

HﬁWkHLQd(Bzd) S Cl ”ﬁwkuwl’d(B?d) S Cl HwkHWQ,d(BZd)

and similarly B
HawkHde(Bmi) <y ”wkHW?vd(BZd) :

Then wy, satisfies the following estimate:

leonllwz.aggza) < [[La ] LAkl agpaay
< A N1, D]l oo

NP1, P ]

Ld(BQd)
S8 (10 (1 Rorig Py
< 20 || L2 9117 agmaay + N E2H I S]] o

< 2G| LA I oMz + IR IR o
By inductive hypothesis we have [lwy_1[|yy2a < 2[|| L5 1 Fall pa(peay- Thus,
el < ACHILA I IEANZ ooy + 12 I IFR]] om0y -

If 1/C" > 4C?% then
o < T <
SR 1y ter{ g

(11 2

and this allows to prove (4.69) and conclude the proof of Claim 1.

Claim 2. {w;}2, forms a Cauchy sequence.
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Let £ > 0. It follows that

lwrr = wrllwaa LR IEA@R1 = we)llpagsany
§H|LZI|H 9 (wx — Wk—l)ﬂ%)k]HLd(B?d)

+ H!L?H\ [Pwi—1 A D (wi, — wk‘—l)HLd(BQ‘i)

]

T

1L @k — Feg1), B i

Ld(BQd)

T

+ |

<SCUNLA I 1Al paseay o — wrerllypea

*[*gwk, ﬁwk - ﬁwk,l

Ld(BQd)

If we choose C’ > 0 such that 1/C” > 8C then

ooy < Ty <
P = sadiz:l

(1o

Thus, the factor 801|HL;11H}2 HF,Z’QHLd(Bzd) is strictly less than 1 and hence,

we can conclude that the sequence {wy}72, is Cauchy, proving the claim.

As W24 is a Banach space and {w;}2°, is a Cauchy sequence, there exists
Weo stch that wy, — ws as k — oo in W24, By the strong convergence of wy,
and (4.69), we obtain that [|we||y2.a(pedy < 2/[| 25l [ Fall pa(peay and

La(woso) + [Yw, dw] + *[*gw,%T] = —F%”.
Thus, we have obtained the extended integrability condition:

0,2 o,
FA+19w + 19Ao,1+19w8w = 0.

Using the above arguments, we can prove the local density result:

Theorem 4.4. Let A € W'(Q'B* @ u(n)), with FY> = 0. There exists a
sequence of smooth 1-forms Ay € C®(Q'B*@u(n)) and wy, € C®(Q*?B*
M, (C) such that the extended integrability condition is satisfied for all k:

Fg’kg + ﬁA2,15wk =0
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and Ay, — A in Whe w, — 0 in W29,

Proof of Theorem[{.4] By Theorem there exists a gauge change g €
C*>(B%*,U(n)) so that L4 is invertible W??NDom(L,) to L¢. We can obtain
2
~ k Ld(BQd)

and A, — A in W' as k — oo. By Proposition M(l) there exists ko
so that for all £ > kg, L i is invertible. Since g is a smooth gauge change

a sequence Ay of smooth u(n)-valued 1-forms such that HFE

independent of k, it also follows that fli — A9 in Wb as k — oo.

Moreover, by Proposition [4.11](ii) we know that

sup 23] < 2121

Because LAgLZ; = id, then H|LA9L:1;H| = 1. It follows that

1< ([ Zas [I]|| Z22

}LATHH_I < |IL asl|- Using this inequality, we can choose gy > 0

and hence,

such that )

)

L=}

1
e < — i

Cl
uniformly in &, where C” is the constant given by Lemma 4.4, Hence, we can

<l

pick ki large enough such that HF A‘ZH i < gg for all k > ky. For each
Li(B
k > ki, Lemma 4.4] gives the existence of 2-forms wy, that satisfy

—~1 -1
Jenllweaqeny < OY 38| | F2 ] sy < 2EMERN 1R
and the extended integrability condition
Fﬁ;@ s T (4001 40, Ok = 0 (4.70)

Since HF A, H La(p2ay CONVerges strongly to 0, the estimates on the 2-forms wy,

give wy, — 0 in W2? as k — oco. Thus, we obtain the strong convergence
~ — T X
AZ + ﬂwk — ﬁwk — A% in Wl’d.

The connection forms

-1

A= (A + i —T") € QB @ u(n)
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are uniformly bounded in W4 and Ay — A9 in W'¢ automatically. In
particular, we obtain

JA] — A%)|,0 = 0 <= |lg7" (A — A) g|| .. — 0.
Moreover, since g is a smooth gauge change, we have the following estimates:
A — All o = |lgg™" (A — A) g9~ | L
< llgllp llg™" (Ax = A gl 97| -

Hence, ||Ay — A||;« — 0. Similarly, we can prove the strong convergence of
their gradients, and hence A; — A in W'¢. In addition, the smooth sequence
Ay, satisfies the extended integrability condition:

Fgf + 19A2,15wk =0

by construction of wy. O]

4.3.5 Global density result

Using the results in the previous section, we show that they can be immedi-
ately generalised and applied to the whole closed Kahler manifold X¢. We
conclude that the extended integrability condition over X implies the
integrability condition by Proposition . This observation is be possi-
ble since X¢ does not have any boundary. We will work under the assumption
that the (0,2) Dolbeaut cohomology group vanishes ’H%’Q(X 4) = (. This is
equivalent to saying that H2(X9, O) = 0, where O is the sheaf of holomor-
phic functions [12, Dolbeault Theorem, p. 45]. We use similar arguments as

in Section [3.4.4l

We work on sections of the vector bundle (E, hg) over X¢. The 0 operator
over X% is well-defined and acts on the space of E-valued (p, ¢)-forms:

0 : APY(XY) — APITH(X D),
Its corresponding dual operator, 5*, is defined as a map:
9 API(XD) - APaTL(XD),
On the space AP4(X?) the 9-Hodge theorem gives the L% decomposition:

AN = DA (X + 3T AP (X £ WX, (4T



4.3 Density under high energy 139

where HP4(X?) is the space of holomorphic (p, q)-sections. Since X? is a
closed Kihler manifold, then we remark that #H?4(X9) is finite dimensional.
In particular, by any (0,2)-form w € A%?(X?) over X¢ can be decom-
posed as follows:

w =200 a++0 da,

under the assumption that 7-[%’2()( 4) = 0.

Recall that since & and 8 define elliptic complexes over closed Kéhler sur-
faces (see for example |22, Chapter IV]) then the operator 99" +0 0 is elliptic
on (0, 2)-sections over closed Kéhler manifolds. In particular it is Fredholm
and moreover, 90 +09 0 is self-adjoint. Thus, its Fredholm index vanishes.

We globalise our operator L4 from the previous sections as such:
Ly : Tyea(A%( X)) — Tra(A% (X))

where V is a W14 unitary connection over X¢ and I'y». is the space of
sections with W4 regularity. We can directly apply theorem to obtain
the existence of a smooth section g so that Ly is Fredholm and invertible.

Remark 4.3. Since X is a closed Kahler manifold, we trivially have that
w,0w € Domd . Thus, ¥ and & coincide.

It follows that we can apply Lemma[d.4to V and obtain similarly to Theorem
4.4

Lemma 4.5. Let V a W4 unitary connection over X¢ with H%Q(Xd) =0,
satisfying the integrability condition

Fg? =0,

Then there exists a sequence of smooth unitary connections Vi, and smooth
(0,2) sections wy satisfying the extended integrability condition

Fgf + g*vg,lgwk =0

such that
disty(Ve, V) =0 and  wi — 0 in Dy,

It remains to show that this lemma implies that the integrability condition
(1.1]) is satisfied for each connection V.
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Theorem 4.5. Let V a WY¢ unitary connection over X with H%’2(Xd) =0,
satisfying the integrability condition

FY*=0.

Then there exists a sequence of smooth unitary connections Vy, satisfying the
integrability condition
02 _
FG =0

such that
distd(Vk, V) — 0.

Proof of Theorem[{.J. From Lemma [4.5] there exists a sequence of smooth
unitary connections V., and smooth (0, 2) sections wy, satisfying the extended
integrability condition
Y
Fg? + 0010wy, = 0

k

such that
disty(Vg, V) =0  and  wp — 0in Tyra.

Note that since X¢ does not have any boundary then dw;, € Dom(d"). Hence,
by applying the earlier Proposition to Vi, we obtain the integrability
condition:

Fg?=0.

4.4 Proof of Theorems (1.3 and (1.4

We have obtained complete analogous results of Theorem [3.2] and Theorem
in the setting of Banach spaces see: Theorem [£.1]and Theorem 4.5 Then
the proofs of Theorem [1.3| and Theorem [1.4] are completely analogous to the
proofs of Theorem[I.T|and Theorem|[I.2] Thus, we refer the reader to Sections
3.3l and 3.5



Chapter 5

Weak Flat Connections

Through our work we have worked on several techniques that deal the issues
of the invertibility of Fredholm operators. We have realised that these can
tackle other problems as well. In this Chapter we prove one of them.

Let B™ be the n-dimensional unit ball. For a compact Lie group G and its
associated Lie algebra g, theorem holds and it can be easily proven with
results from the literature (see below):

Theorem [1.5] A is a g-valued 1-form in W'™? over the ball B", and we
assume that Fy = dA+ AN A = 0. Then there exist a sequence of smooth
1-forms Ay with k € N such that

Ak — A mn Wl’n/Q,

furthermore satisfying

Fu, =0 forallk €N,

This result can be proven using the same approach as in |4, Lemma 3|. In-
deed, from the flatness condition F4 = 0 and the compactness of the gauge
group G, it is shown that A = u~'du for v a G-valued gauge transformation.
Since v can be bootstrapped to W?™?2 regularity, by [6] or [33] there exists
a sequence of smooth G-valued maps u;, such that u; — w in W2™/2. Thus,
we can define A, := u;lduk.

Note that the technique used in [4, Lemma 3] requires only L? regularity of
A in n-dimensions in order to get the existence of u € W12, Another way
of obtaining w is using the Uhlenbeck gauge extraction method for W1m/2
forms [41]. This gives us a gauge u € W?2"/2 such that for a constant C' > 0

141
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we have [|AY||y1n2 < C||Fallpn2 and d*A* = 0. However, since Fq = 0,
then A* = 0 and consequently A = u~1du.

All the above techniques rely on the compactness of the group G in order
to be able to show the density result. In this chapter we propose a more
general approach to this result that does not rely on the compactness of the
Lie group. Moreover, we will conclude the chapter with an open problem.
The strategy we will use relies heavily on the techniques presented in Section

43l

Hence, we will assume from now on that G is a Lie group not necessarily
compact inducing a matrix-valued Lie algebra g C M, (R). The reader can
notice that, unlike in Chapter [, we can prove the result on the bounded
domain B™. This is possible due to the ellipticity of the operator d.

5.1 Strategy

We describe the strategy of proving Theorem [I.5] The first idea is to mollify

A in order to obtain a sequence of smooth 1-forms A;. Note that Fz does

not necessarily vanish, and instead we find a perturbation by d*wy such that
FAk+d*wk - 0,

where wy, is a sequence of 2-forms. In particular, due to Cartan formula

Fy =dA+1[A Al and to the formula [w, 7] = w AT+ 7 Aw valid for 1-forms

w, T, the above translates into the following PDE for wy:

dd*wy, + [Ag, d*wi] + d*wp A d*wp = —F; (5.1)

iy
The leading-order operator dd* in the above PDE is not elliptic. In particular,
it is not Fredholm. We note however that in general there holds the Bianchi
identity dsF'4 = 0, where

daf :=dp+[A, 5] for all g-valued p-forms .

In order to complete the symbol of , note that the linear part of
reads dj, d*wy, and thus we can complete it in a canonical way to an elliptic
(self-adjoint with respect to the L2-scalar product) operator by adding the
term dd}k.

We are now helped in the computations by the fact that so-called “Bianchi
identity” daFs = da(dA+1[A, A]) = 0 holds for any A. This follows directly
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from the formula

[A,B]=AAB+ (-1)""BAA if Ais a p-form and B is a ¢-form. (5.2)

The Bianchi identity implies (d%7, Fa) = (7,daF4) = 0 for any 3-form 7,
where by Proposition we have

dy7 = d*1 + *[*1, AT].
Then we find the extended flatness condition

Fa+diyr =0. (5.3)

Under appropriate boundary condition on 7 this is then actually equivalent
to F A= dikAT =0.

Applying the above with A — A, + d*w; and 7 — dwy, we find the equation

dd* wpA-d* dwy+[ Ay, d*wi|+*[xdwy, AL +d* wpAd* wpA-*[dwy,, (d*wi)T] = —Fj, -

(5.4)
Now the linear part of equation ([5.4) is formally self-adjoint and we pass to
investigate its Fredholmness. To do that we define the operator

Ly : W20 Dom(L,)(Q*B" @ g) — L?*(Q?B" ® g)
by

L= dd* + d*d + [d*, A] + #[«d, AT], (5.5)

where Dom(L,) = {w : wy = 0, (dw)y = 0 on OB"}, where wy are forms
with components involving dr. In particular over the space Dom(L,) we
have Ker(dd* + d*d) = {0}.

Remark 5.1. We will show that on the space W>™2(Q?B" @ g) N Dom(L,)
we obtain that indexL 4 = 0 and

indexL 4 = index(d*d + d*d) = 0.
Going back to our initial problem, (5.4)) reduces to:
Lz, + d*wi A d*wy, + *[*dwy, (d*wp)T] = —Fy,,

where, as we have shown above, L; is a 0-index operator. This equation
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cannot be solved using a fixed point argument due to lack of invertibility of
L 4. However, using the Fredholm-ness of the operator and the fact that it
has 0 index, we show that under smooth gauge perturbations g, the operator
L 44 is invertible. Thus, using all these pieces of information, we will solve

LA)Z + d*wk A d*wk + *[*dwk, (d*wk)T] = —FAz,

and from this we will prove the theorem.

5.2 Invertibility of L4

Since L4 is a Fredholm operator, we can immediately assume the results of
Section [£.3.1] In particular, Proposition [4.6] enables us to decrease the kernel
of L4 by applying perturbations to it. Since the strategy is analogous, then
it is enough to adapt our arguments from Section [£.3.3] We only replace

Propositions [£.9 and and then Theorem [.3] will follow. We set up the
perturbation problem in our setting.

Consider the family of G-valued gauges g, = exptU, t = [0,1]. We can
analytically expand A% in t € [0, 1] to obtain

A% — A= t(dU + [U, A)) + O(t?). (5.6)

Moreover, it will be useful to define the bounded linear operators

Gt,U . W2,n/2(QQBn ® g) N Ln/Z(Q2Bn ® g)

given by
Gy = [A% — A —t(dU + [U, A]), d*|
+ x[xd, (A% — A — t(dU + [U, A]))"], (5.7)
and
PU . W?,n/?(QQBn ® g) N Ln/Q(QQBn ®g)
given by

Py = [dU + [U, A], d*] + *[*d, (dU + [U, A])"].

Observe that

Las = La+ [A% — A d*] + *[*d, (A% — A)T]
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and we can write Gy as Gy = Lo — La + tPy. It follows that

Gl < ClIAT = Al o gmy + I Pull, (5.8)
for some constant C' > 0. Moreover, there exists t; such that for all ¢t < ¢y,
we have the operator

[A% — A, d*] + *[*d, (A% — A)"]

is small in operator norm mapping W2"/2(Q2B" ® g) to L™?(Q2B" ®g) such
that (see [32]):

indexL 4o, = indexL 4 = 0. (5.9)

As we have seen before it is enough to find a perturbation Py that is injective
on the kernel L, in order to decrease the kernel size. Thus, we prove the
analogous result of Proposition 4.9|in our setting.

Proposition 5.1. There exists P = Py with the same domain and range as
L4 and of the form Py(n) := [d*n, dU + [U, A]] + *[*dn, (dU + [U, A])*] for U
smooth, such that P is injective on KerL 4.

Proof of Proposition[5.1. Since L, is Fredholm, KerL 4 is a finite dimensional

space. Let {eq,...,en} be an orthonormal basis of KerL .
Claim 1. For each v € KerLy,v # 0, there exists U, € C*®(B™,g) such that
PUUU 7& 0.

Let v € KerLs, v # 0. We show that for each such v, we can find U,
such that Py v # 0. Assume by contradiction that Pyv = 0 for all smooth
g-valued maps U on B". Define the linear operators

Hy: C®(B", g) — C=(Q0’B" ® g)

given by

Ho(w) := [[w, A], d*v] + *[xdv, (Jw, A])T]
and

H: C®(Q'B"®g) - C*(*B"®g).
given by

Hy(w) = [w, d*v] + *[*dv, w]

We have Hy(w(x)) = Ho(w)(x), where w(x) is identified with a constant form.
Moreover,

0 = Pyv = [d*v,dU + [U, A]] + *[*dv, (dU + [U, A])"] = H\(dU) + Hy(U)
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for all smooth maps U on B™. Applying Proposition to Hy and Hy, we
obtain that H; od = 0 and Hy = 0. In particular, taking into account that
(dU)T = d(U"), we have obtained that for all U smooth maps on B",

H,(dU) = [dU, d*v] + *[*dv, (dU)"] = 0.
Define the linear operator
H(w) = (Hyod)(w) : C®(Q'B"®g) — C*(Q*B" ®g).
Thus, we have
0 = [dU, d*v] + *[*dv,d(U")] = H(dU)

for all smooth maps U on B". Applying Proposition to H, we obtain
that H = 0. By density of smooth 1-forms into W'™? 1-forms, it follows in

particular that
H(A) = [A, d*v] + *[*dv, AT] = 0.

Putting this together with the fact that v € KerL 4, we obtain:
0= Lav=(dd" + d*d)v.

Since the kernel of L4 is empty when v € Dom(Ly4), then v = 0. This is a
contradiction with the fact that v # 0. Hence, there exists U, € C*°(B", g)
so that Py,v # 0, as claimed.

Claim 2. There exists U smooth g-valued map such that Py is injective on
KerLA.

The proof of this claim follows identically as in Proposition [4.7] n

Proposition 5.2. Let Ly be defined as in (5.5) and assume that L4 is not
injective. There exists a smooth gauge perturbation g such that

dimKer(L 40) < dimKer(L,) (5.10)

and indexL 49 = indexL 4 = 0.

Proof of Proposition[5.3. By Proposition [5.1], there exists a 1-form U such
that the operator Py = [d*, dU + [U, A]] + *[*d, (dU + [U, A])*] is injective on
KerL 4. Moreover, there exists to such that for ¢t < ¢, we can assume that
P,y = tPy is small in operator norm such that Proposition |4.6| applies to L4
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and tP. Then Ly + tPy is Fredholm and
dimKer(L4 + tPy) < dimKer(Ly).

The rest of the proof follows exactly as in Proposition [4.10] and by the oper-
ator norm estimate (|5.8]) we obtain

Gl < < (La+eP)7 !

L
222

for all t < ty, with the notation as in Section [£.3.1 Hence, Lemma
applied to the operator L4 + tFPy and perturbation G,y together with the
definition of the operator Gy (5.7)) that

dimKerL s = dimKer(Ls+tPy+Gip) < dimKer(Ls+tPy) < dimKer(Ly),

for all t < t5. Thus (5.10) holds, if we define g := exptU for t < t5. By
(15.9), we can also choose t > 0 slightly smaller so that we also guarantee that
indexL 49 = indexL 4 = 0. O

5.3 Density for non-compact groups G

Having obtained the results above results, we are now able to show theorem
1.5/ under non-compactness of the Lie group G.

We start the section by showing that if we satisfy the extended flatness
condition, under the boundary conditions imposed by the space Dom(L4)
we recover the flatness condition.

Proposition 5.3. Let w € W20 Dom(L)(Q22B"®g) be a solution to the
PDE:

La(w) + d*w A d*w + *[*dw, (d*w)"] = —F4, (5.11)
which is equivalent to w satisfying the extended flatness condition:
FA+d*w —+ dik4+d*wdw - O

Then
Fatgnw =0 and 4 ge,dw = 0.
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Remark 5.2. Since w € Dom(L,) then w € Dom(d*) and dw € Dom(d*).
Thus, the terms dy_ 4., dw and Fyyq- are well-defined.

Proof of Proposition[5.3 We expand L4 in the PDE (5.11):
dd*w + d*dw + [A, d*w] + *[xdw, AT] + d*w A d*w + *[xdw, (d*w)"] = —Fa.
By rearranging the terms, we obtain:

Fa+dd'w+ [A, d'w] + d*w A d*w + d*dw + *[xdw, T| + *[xdw, (d*w)] = 0.

~~

:FA+d*w :d*A+d*wdw

Hence, (5.3)) translates to the extended flatness condition:

FA+d*w ‘I‘ dz_,'_d*wdw = 0 (512)

Note that by the second Bianchi identity dsF4 = 0 we have Fa,4+, €
Kerd 4 4+, Moreover, the equation above gives us that d ;. dw € Kerd 4 g«
Clearly we also have

x T L L
iy grodw € Imdy 4.~ = (Kerdayaew)™

where the set equality holds by the Closed Image Theorem. Thus, because
&'y geodw € Kerda gy and  dy g dw € (Kerda, )",

we obtain d_ ;. ,dw = 0. Moreover, since holds, then we also get that

Fyi4+, = 0. This concludes the proof. ]

We restate without proof the analogue of Proposition [3.6in our setting:

Proposition 5.4. Let A €¢ W/2(Q'B" ® g) and a sequence of smooth 1-

forms A, — A in WY2. Then there exists a gauge g € C=(B",G) and
ko € N such that

(i)
KerL = {0} and KerLjzs = {0}

for all k > ko. In particular, the operators L ;o and L g are all invert-
Ak
wble.
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(i)

sup 23] < 212311

Similarly as Lemma [4.4] we show that for small enough curvature form Fj,
we can perturb A such that we satisfy the extended flatness condition (/5.3]).

Lemma 5.1. There exists C',C > 0 such that for every A € L"(Q'B" ® g)
such that L4 is invertible and || Fal| ;2 < H’LL_IIH’, there exists w € W™2 N
A

Dom(LA)(Q*B™ ® g) such that the extended flatness condition is satisfied:
Frvigeo + diyy godw = 0
and

lollwznrzggny < CIIZZ I IFAlloraan) - (5.13)

Proof of Lemma |5.1. We construct the following sequence of solutions:

LAwO = —FA

LAwl = —d*wo A d*wo — *[*d(.do, (d*UJO)T] — FA

Laws = —d*wy A d*wy — *[xdwy, (d*w1)T] — Fy

LAwk = —d*wk_l A d*wk_l — *[*dwk_l, (d*wk_l)T] — FA

where each wy € Dom(L,), i.e. it satisfies the boundary conditions:
(we) vy =0 and (dwg)y =0 on dB".

Claim 1. For each k£ € N there holds

[wkllyznre < 2 Lall 1Fall /2 pny - (5.14)

Since L4 is invertible, then we have the identity:

-1
Wy = LA LA(UO.

Hence, from the definition of the norm of operators, it follows that:

H("JOHI/VQW/2 < ‘HLZlH‘ HLAWOHan(Bn)
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= H‘Lfm ||FA||Ln/2(Bn)
< 2H|LZI|H [ Fall gy

Let k > 0. By the Sobolev embedding of W'™/2 < L" there exists a constant
C > 0 so that

Hd*wk”Ln(Bn) < Cl Hd*wk‘le,n/2(Bn) < Cl Hwk‘HWZ,n/Q .
Then we have:

lwrllansz < 122 IZawell /2 gam)
< |23 w1 A d*wrall ey
+ 2 b, (@ 1) gy + I1EZ I IEAll 2
< 2G| L5 Il g + L I AN o2

< 207 (|| L3 [ lwe-alliyznre + LA IIEAN ooy
By inductive hypothesis we have [|wy,_1 [yy2n2 < 2|||L3"]] [ Eall pos2(ny- Thus,
lwrllwznsz < ACEILZ N IEANT w2 gmy + IIEZ N IEAl sz my -

If 1/C" > 4C?% then
< ¢ < !
B S g = -
3P 4c?lza

Il vz 7

and this allows to prove (5.14)) and conclude the proof of Claim 1.

Claim 2. {wy}72, forms a Cauchy sequence.

Let k > 0. It follows that
||wk+1 - WkHW2,n/2 S H|LZI|H ||LA(wk+1 — wk)HLn/Q(Bn)
<[ LY d* (wr = wr1) A d*Wll sz my
+ 122 d e A d* (@i = W)l s gny
+ 22 0 (door = dwg—), (d°wr) ] Lo oy

I 22 b (deor = 1) ]| o o
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12
< 8CI|HLA1H| ||FA||Ln/2(B") lwr — wi—1llyp2me
If C" > 0 is such that 1/C" > 8C then

o 1
HFAHLn/2(B") < —1112 < IETIER
Lz szl

Thus, the factor 801‘”[/;11}”2 | Fallnr2(pny is strictly less than 1 and hence,
we can conclude that the sequence {wy}32, is Cauchy, proving the claim.

As W2n/21 Dom(L,) is a Banach space and {w;}32, is a Cauchy sequence,
there exists wa such that w, — we as k — oo in W22 N Dom(L,). By
strong convergence and (5.14)), we obtain that

lwsollwamrz < 2[[ L[| 1Fll sz mmy
and
LA(Weo) + d*woe A d*woe + *[*dwso, (d*wee)T] = —F4.

Thus, by defining w := w,, we recover the extended integrability condition:
FA+d*w —+ dik4+d*wdw - O

]

Having all the necessary results in hand, we can now proceed to proving
theorem [L5

Proof of Theorem[1.5. We can apply Theorem [£.3]to L4 since we have ob-
tained Proposition . Then there exists a gauge change g € C*°(B", ) so
that L,, is invertible W2™/2 N Dom(L,4) to L™?. Moreover, there exists a

sequence Ay of smooth g-valued 1-forms such that HF AkH Lna(pny 0 and

Ay — Ain Wh/2 as k — co. By Proposition (1) there exists kg so that for
all k > kg, L p is invertible. Since g is a smooth gauge change independent

of k, it also follows that fli — A9 in W2 as k — oo.

Moreover, by Proposition [5.4](ii) we know that

sup |21 < 2flLz2]).

k>ko

Because Lo L, = id, then H|LA9L;1HH = 1. It follows that
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1< |1 Zas|l[|| L2

Z;H‘fl < ||| Las|||- Using this inequality, we can choose gy > 0
such that

1 1 2
go < 5 L Ag < 5 L Ag ,
uniformly in &, where C” is the constant given by Lemmal5.1} Hence, we can
pick k; large enough such that HF i H s < g for all £ > k;. For each
L/2(Bn

k > ki, Lemma gives the existence of 2-forms w;, that satisfy

-1 -1
Jelanoqamy < C| L3 [Fag]1 gy S 2OMERINIER ] oo
and
L (wi) + d*wi A d*wy + *[xdwy, (d*wp)T] = — - (5.15)
By Proposition [5.11| implies that FAZ+d*w 0. Since “FAk“Ln/Q (gny COT-

verges strongly to 0, the estimates on the 2-forms wy, give wy, — 0 in W?2™/2
as k — co. Thus, we obtain the strong convergence

flz +d*w,, — A9 in Wwin/2,
The connection forms
- g !
Ap = (AZ + d*wk> e C™

are uniformly bounded in W'™/2 and A — A9 in W'™/2 automatically. In
particular, we obtain

A7 — A% ;e = 0 <= ||g (Ap — )g||Ln/2 — 0.
Moreover, since g is a smooth gauge change, we have the following estimates:
Ak = Al po = ||l997" (Ar — A) gg7 || 0
< Nglzee ll™ (Ax = A) gl e [l ] -

Hence, ||Ay — Al ./ — 0. Similarly, we can prove the strong convergence
of their gradients, and hence A, — A in W52, In addition, the smooth
sequence Ay satisfies the flatness condition F)4, = 0 by construction of wy. O



Appendix A

Results in Several Complex
Variables

We briefly recall some of the results we will be using from the theory of
several complex variables. Valuable reads include [36], [8] and [9)].

Definition A.1. Let D be a bounded domain in C*. We say D has boundary
of class C* if for every p € 9D and U neighbourhood of p, there exists a C*
function v : U — R such that UND ={z € U| r(z) <0}, UNID = {z €
Ul r(z) =0} and Vr(z) # 0 on UNAD. Thenr is called a C* local defining
function for D. If D C U, then r is a global defining function.

Moreover, we need to define what pseudoconvexity is:

Definition A.2. Let D be a bounded domain in C* and r a C? defining
function. D is pseudoconvex at p € 0D if the Levi form

ttr >0
Z@zzaz] F

7/]7

for all t € T;°(0D). D is strictly pseudoconvex at p if Ly(r,t) > 0
whenever t # 0. If D is (strictly) pseudoconvex for all p € 0D then D is
(strictly) pseudoconvex.

Over a bounded domain D C C", we define the operator
0:OPID — QPITID

acting on forms w =), wrydz; A dzZ; by

gw = Z(%kwIszk A\ dZ[ VAN dZ],
k1J

153
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where [ is an index set of size p and J is an index set of size q. Let ¢ € QP9D
and Y € Qp’q*iD a compactly supported form. Then, we compute the dual
operator ¥ of O with respect to the L? scalar product:

/D br (w*ﬁ) — (6,30)

= (Z Grydzr Ndzy, Z &zkwIszk ANdzp N dZ})) .

1J kIJ

where * is the Hodge star operator mapping QP?D to Q"~2""P, Using the
fact that (dz;, dz;) = 20,5, then by integrating by parts and rearranging the

terms we get
(¢, 00) = 2770y (Z azkgzsfj,wa) ,
kJ

IH

for H index set of size ¢ — 1, J index set of size ¢ and [ index set of size p.
Hence, by defining
?9¢ =2 Z 8Zk¢[JdZ[ A dEH,

kIJH

we obtain the required duality
(6, 00) = (9¢,9)).

In geometric applications, it is useful to work on local orthonormal basis
T1 - T, spanning the complex tangent space at a point P, T};.’OD. Thus, we
can replace the frame {dz;} with {7;} and define L; the vector fields dual to
7;. Note that 7; are not necessarily 0-closed and error terms or lower order
will appear when applying the 0 operator on forms. We have:

9¢ = kawwﬂ ATr ATy + terms of order zero,
KI1J

and
Vo = Z Lygrymr AN Ty + terms of order zero.
kIJH

Moreover, we can also obtain the following expression of 9 in terms of the
operator O:

V= — x O, (A.1)

see |9, Proposition 5.1.1]. If ¢ and ¢ do not necessarily have compact support,
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then
(96, 1) = (6,50) + / (o(9, dr), )dS,

oD

where ¢ is a (p, g)-form and ¢ a (p, ¢ —1)-form and we are using the notation
in the literature o (v, dr)¢ to denote

o (9, dr)p = 0r A *aTT. (A.2)

More explicitly, o(9, dr)¢ is the form whose components are in the Or frame
of ¢. We denote the components of ¢ that are in the Or frame, by ¢n. Thus,
if o(¥,dr)¢ = 0, then ¥ = 8", where 9 is the Hilbert adjoint operator. In
this case we say that ¢ € Dom(d ), i.e. ¢ is in the domain of & .

It is also useful to remark the fact that if a (0,q)-form « vanishes on the
boundary, it follows that « vanishes component wise on the boundary. This
is because the frame Or does not vanish on the boundary, unlike dr which
does vanish! In terms of the notation above, ¢ = 0 on 9D is equivalent to
o(¥,dr)¢ = 0 and o(0,dr)¢ = 0 on dD, where o(d,dr)- = Or A - is the
adjoint operator of o (1, dr).

Before we state a few results regarding regularity and Hodge type decom-
position, we say that ¢ is in the domain of the Kohn-Laplace Ay (also de-
noted in the literature by 0) ¢ € Dom(Ay) if and only if ¢ € Dom(d")
and d¢ € Dom(d). These conditions are called the J-Neumann boundary
conditions over the domain D, i.e. they amount to saying that ¢ = 0 and
(0¢)n = 0 over OD.

Moreover, it was shown for Hilbert spaces [9] and Sobolev spaces [5] that
over pseudoconvex domains D there exists the inverse operator

N : WP(QPID) — W2 (QPa D) (A.3)
of the operator Az and moreover N¢ € Dom(Ag), AgN¢ = ¢,
ING|lyyss1o < Cll@llyyen for any ¢ € QPD.
We also have the estimate:

[ONG] 1720 + | < C 16y

x|

Ws+1/2,p

This shows that over domains with boundary the operators Az, 0 and con-
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sequently 8" are not elliptic, but they do satisfy the above sub-elliptic esti-
mates.

We also obtain the 9-Hodge decomposition for any form ¢ € QP

¢ =00 Np+ 03 ON¢ + h, (A.4)

where h is a holomorphic form, i.e. it satisfies: Oh = 0 and & h = 0. For
domains D with vanishing (p, q) Dolbeault cohomology Hz“(D) = 0 or for
domains D C C™ for some n we have

¢ =00 No+ 0 ONo. (A.5)

We refer the reader to [8] and [12]. In particular, over Stein manifolds (man-
ifolds that holomorphically embedd into C", for some n), there are no holo-
morphic forms in the 0-Hodge decomposition.

We recall the Integral Representation Theorem which was proven in [24]
for (0, g)-forms and initially in [14] for (0, 1)-forms. Before doing so, we will
have to define a few key operators. Let D be a strictly pseudoconvex domain
in C" with defining function r such that

" 9%

—tit; > clt)?
&mﬁxj 7= C| |

ij—1
for some ¢ € R and t € R?*".

The Bochner-Martinelli-Koppelman kernel (see |8, Theorem 11.1.2]) is given
by:

1 S (G —zdG (S (dE — dz) AdG "
Gy ¢ A( I ) - (A5)

We define the kernel K, as being the form of (0, ¢) degree in z and (n,n—g—1)
degree in (. Moreover, the boundary kernels K9, K& are given by

K(¢,2) =

LY, (G—Z)dG A > iy Or(€)dG
(2mi)n ¢ — 2|2 > i1 0 (O)(G — )

S ( (G z-)d@-) " ( S 2 B (O A dg) -

K? =

¢ — =] 2 2im1 O (Q) (G — 2)

ki1+ko=n—2
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and

LS (G - EdG ( ST 0 0er(C)dC, A d@) o

K§ =
Wm0 2 e O (O)(G = 21)

For each ¢ > 1 we can, thus, define
T, : C=(Q™D) — C=(Q"'D)

given by

Ty (a) = / KoNa— KA a when ¢ = 1 (A.7)

D oD
and
Ty(o) = / K, 1 Na when ¢ > 1, (A.8)
D

where by K¢ we understand the form of (0,0) degree in z.

We now formulate the representation theorem (this can be found in [24}
Section 3] and [8, Theorem 11.2.7]):

Theorem A.1. Let D be a bounded strictly pseudoconver domain in C™ with
C? boundary, 0 < ¢ <n and a € C*(Q%D,C). Then we have the following
representations:

o) = [ K¢ 2)al) + Ti@a) when g =0
oD
a(z) = 0(T,a) + Ty (0a) when q > 0.
Moreover, for results concerning regularity of operators Tj, we recommend to
the reader [19] (optimal L? results for (0, 1)-forms) and [24] (L? and Holder

regularity results for (0, ¢)-forms).

The operators T, are key to proving Lemma which is used to prove
theorem .11

A.1 Results in the unit ball B*

Since the operators d, ¥ have been stated in their full generality, in this
section we will be more concrete and deal with the case when the domain
D is chosen as B*, embedded into C2. At the end of this section we prove
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regularity results for the operators T} and T; we have defined above and can
also be found in [24].

In particular, on B* we define
r(z) =|z]* - 1.

Then r is a global defining function for B*. Thus, B* is an example of
a strictly pseudoconvex domain. Indeed, if the pick the defining function
above, we have that the Levi form

Ly(r,t) =t} >0

for all p € B*, t € T,°(0B*), t # 0. On B* we take the canonical complex
structure J. At each point p € dB*, we can find an orthonormal (0, 1) fields
L= and Ly, that span the complexified tangential space T, ;,C(@B‘l). We will
explictly compute them.

Let e*, Je*, dr, Jdr define the Hopf frame. These define the orthonormal
basis for (0, 1)-forms. Namely,

F=c tile (A.9)

and B
Or =dr +Jdr. (A.10)

In terms of Z; and Z,, they satisfy:
L _ L 1 _
dr = 2—(21d21 + 21d21 + ZQdZQ + ZQdZQ) = 5(87‘ + 87“)
r

1 1 =
Jdr = 2—.(—2_1d21 + 21dZ1 + 20dZs — Zadzy) = 5(87” —Or)

wr
1 1
e = 2—(22d21 — 21dzy + ZadZ] — Z1dZ) = 5(7’ +7)
r
1 1
Je* = %<Z_2d,21 - Z_leQ - ZQle + ZleQ) = 5(? — 7').

We obtain the explicit formulation of 7 and Or:

7 =L (mds — Tdn)
(A.11)

or = 1(zdz + 2dz)
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Moreover, the vector fields Lz and Ly, can be computed as follows:

1 1
Lz = 3 (Oer — 100 ) = — (2005, — 210,)

r

—_

1 , - -
Ly, = 2 (Or —10ar) = = (2105, + Z205,) -

<

We prove a regularity result for (0, 2)-forms in the domain B*, which comes
in-handy in our results, for example in the proof of Lemma We are
unaware of such a result being available in the literature.

Proposition A.1. The operator Ty (A.8)) maps LP(Q%2B*) into WP (Q%1 B)

whenever p > 1.

Proof of Proposition[A.1 From the formula (A.6]), we obtain

1 LG -EdG B, —dE A dG

D) =" =N P P

We expand the equation above to get:

1

Ki((,2) = TR —

((Cy = Z1)dG Adz AdGo + (Cy — Z2)dGa A dzr AdGy)

Let a = fdz, A dz, € LP(Q%2B*). From the formula of T} it follows that:

1 1 _ _ _
Ty(a) = (—R/B4 W(CQ — Z9) fdG A dCy A dGa A ng) dz

1 1 _ _ _
+ < / (G —51)de1Ad<1/\d<2/\dC2) dz;.

An? B [C—2[*

Since each component of K is a quasi-potential in the sense of [21], Definition
3.7.1], then we can apply [21, Theorem 3.7.1] component wise to Ty () to get
the required result:

”T2(O‘)”W1’P(B4) < ‘|CVHLP(B4)'
O

In addition, the following result builds upon the sharp estimates of the Henkin
operator (77 in our notation) found by [19]. In particular, we show that for
estimating Ty, where o is a (0, 1) form, we can relax the condition dar = 0.
The estimates we find are not sharp.
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Proposition A.2. Let p > 6 and q > 6 such that W'*(B*) — LY(B*) and
a € LYQ% BY) satisfying do € LP(B*). Then there exists a constant C > (
depending on p and q such that:

Tl + [0T0 oy < € (ol + [0 o) -

Proof of Proposition[A.2 We refer to the proofs presented in [19]. We recall:

Ti(a)= | KoAa-— K Ao (A.12)
B4 oB*

In [19, Section 5] it is shown that the first term has "good” regularity. In
particular it follows that [ g+ oA belongs to a Lipschitz space when o € L4
for ¢ > 6. We focus our attention to the second term in (A.12)), which is
problematic. By Stokes Theorem we obtain:

Kina= | OK¢Na— | KA. (A.13)
0B+ B4 B4

Note that da # 0 in general. The first integral in (A.13) is estimated in [19,
Section 5,6] and yields the regularity result:

1

for some constant C' > 0. It remains to deal with the term: [, K§ A Ja.

OKY N a

< Cllellpapsy -
B4

Loo(BY)

However, since K¢ is more singular than K¢, since da € LP, we have the
estimate:

K¢ A da
B4

< C0al Logpy -
Loo(B4)

Hence, we have that there exists a constant C' > 0 such that

1730 sy < C (0l oy + 100 o) - (A.14)

Since da is well-defined, by density of smooth forms, we obtain by Theorem
the following equation:

a = IT1(a) + To(0a),

and _ _
H8T1<a)"Lq(B4) < ||0‘||Lq(34) + HT2(804)HM(B4) '

By Proposition , we have that T5(0a) € WP < L4, In particular, there
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exist constants C, C’ > 0 such that:
BTl 0 < € (Il + 7230 o
< €' (llall ooy + 1190 ey ) - (A.15)
Hence, by putting (A.14) and (A.15)) together we get:

||T1a||L°°(B4) + HngaHLq(B‘l) =C (“O‘HL‘?(B“) T HEQHLP(B‘*)) '






Appendix B

Extension Procedures

This appendix section introduces a short result concerning extensions of
(0, q)-forms.

Proposition B.1. Let U,V be bounded smooth domains in C" with UNV = )
and o € W2P(Q%U NV). Then there exists a W>P extension & of o in U
such that @ =a in UNV.

This extension will be used in Chapter [2 for the gluing procedure.

Proof of Proposition[B.1] It is sufficient to extend o component wise in C”
and then restrict each component to U. Hence, the problem reduces to
harmonic extensions. We solve the PDEs:

(

A%y =0 inCr\UNV

Owr =0 ondUNYV)

Wy =g on d(UNV),

\
where o = ), o;dZ;, I index of size g. Such a solution exists and elliptic
estimates give

||WI”W2,p(<cn) <C ||Of||W2qp(UmV) ’

for some constant C' > 0. Moreover w; = a; on U NV by construction.
Hence, by defining & = ), w;dZ; and restricting it to U, we obtain our
result. O
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Appendix C

Linear Operators

We prove the following results that are be used in several chapters.

Proposition C.1. Let D be a bounded domain in R™, g a Lie algebra and
for k e N, let
H:C®Q'D®g) — C®(QD®g)

be a linear operator such that H(A)(z) = H(A(x)) for allx € D and A €
C*(QUD®g). If for allU € C*(D, g) we have

H(dU) =0 (C.1)
then H = 0.

Before we prove this statement we remark that the condition H(A)(z) =
H(A(z)) in general prevents H from being a differential operator acting on
forms A. Otherwise the statement cannot be true. For example take H = d,
H(dU) = 0 - since d*> = 0, but d # 0.

Proof of Proposition[C1. Fix A € C*(Q'D ® g), then we can write it as
A = 3" adr;. Fix zyp € D arbitrary and define the function V(z) :=
o ai(xo)w;. Then dV = A(xg). Moreover, by (C.1)) we have

H(dV) = H(A(x)) = H(A)(x) = 0.

Hence, because z is arbitrary, we have that H(A) = 0 and since A was an
arbitrarily chosen smooth 1-form, then H = 0. O]

Next, we prove a more general statement than the one above:

165
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Proposition C.2. Let D be a bounded domain in R™, g a Lie algebra and
for ke N, let
Hy: C>®(D,g) = C®(Q*"D ® g)

and

H : C®(Q'D®g) = C®(Q*D ®g)
be linear operators such that Hy(U)(x) = Ho(U(x)) for all x € D. If for all
U e C>®(D,g) we have
Hy(U) + Hy(dU) = 0 (C.2)
then Hy =0 and Hyod = 0.

Proof of Proposition[C-3. Fix U € C*°(D,g) and « € D. Define V, := U(z)
a constant function. Then by ((C.2]), we have

Ho(V2) = Ho(U(x)) = Hy(U) () = 0.

Since x is arbitrary in D, then we have that Ho(U) = 0. Since U is an
arbitrarily chosen smooth function, then Hy = 0. Hence, from this and
(C.2), we also obtain H; od = 0. This concludes the proof. O

The following results find the expression of the adjoints of 94 and d4. These
expressions will be of critical use in Chapters [4 and [5

Proposition C.3. Let g C M,.(C) a Lie algebra, A be a g-valued 1-form and
Dy O°(PIB% @ g) — C°(QPIT1 B @ g), be the operator given by:

0w = 0w + [A™, w)].

Then the formal adjoint 52 to da with respect to the L? inner product over

(p, q)-forms induced by the Frobenius inner product (A, B) — tr(AET) on g,
is defined on C=(QP4H1 B2 @ g) N Dom(d") by

527 —J T+ k[T, WT].

Remark C.1. 52 defines the Hilbert adjoint of 04. We can similarly find
D4, the formal adjoint of 04. Indeed, assuming compactly supported forms,
we analogously find

Wy = U7 + *[*T, WT].
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Proof of Proposition[C.3. Let k > 0, w € Q"% and 7 € QP! N Dom(d"),
then: B B _
(@aw, 7) = (Bw + [A%, 0], 7) = (w,0"7) + ([A™, ], 7).

Recall that [A%1, w] & A% A w + (—1)PH+1w A A% when w is a (p, ¢)-form
and A a 1-form. Thus,

2d

(A" A w, T) wf / tr(A Aw A 7T = —/ tr(w A *70 A A%,
B2 B

Where we used the fact that tr(ABC) = tr(BCA) and the antisymmetry of
the wedge product. Using the fact that

* % 1) = (—1)(p+q)277 if n is a (p, q)-form,

we obtain by linearity of the trace and noting that 72 A A%! is a (d—p, d—q)-
form:

(A% Aw, ) = —(—1)w+? / tr (w A xx (x77 A AM)

B2d

= —(—1)t* / tr (w A Fx(+70 A A0
B2d

= —(—1)(p+‘”2/ tr (u) A *(*WT)T>

= (— 1) (4T A ADL) ).

Using the fact that for matrices we have (AB)T = BT AT and the antisym-
metry of the wedge product, we obtain:

(A% A7) = ()PP () o (AT A wr))
= (_1)(p+q)2+p+q<w’ *(WT A 7).
Interchanging now the role of ¥77 A A%! with A%' A 77, we get as above

((—=1)Pratly A A% 7)) = (—1)Pratt / tr (w A A% AT
B2d

= (_1)(p+q)2+p+q+1 (w, %(AOL A *;T)T>

= (—1)PF0 (g w7 A AT ),
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Note now that *7 is a (d — ¢ — 1,d — p)-form thus
[*T, AOJT] = *T A AOJT + (—1)p+qA0’1T N *T,
and by the above computations we get
(A w]. ) = (~1) 0RO, ey, AT
= (—1)PrOETarD) (4 y[sr, A0,1T]>'

Using the fact that (p+q)(p+¢+1) is a product of two consecutive integers,
we obtain

([A%, W], 7) = (w, *[s7, AOT ]).

This allows to obtain the desired formula for the adjoint operator to 04

(w,47) = @aw,7) = (0,37 + #lar, AOT)),

which concludes our proof. O

Proposition C.4. Let g C M, (R) a Lie algebra, A be a g-valued 1-form and
da: C®(QFB" @ g) — C®(Q*B" ® g), be the operator given by:

dpw = dw + [A,w].

Then the formal adjoint d* to da with respect to the L? inner product over
k-forms induced by the Frobenius inner product (A, B) — tr(ABT) on g, is
defined as

dy - C=(QF' B ® g) N Dom(d*) — C=(Q*B" @ g)

by
it =d't + (—1)k(”_k+1) * [x7, AT).
In particular if k = 2, then dy7 = d*1 + *[x7, AT].
Remark C.2. By Dom(d*) we mean the forms T whose normal component

(involving the frame dr) vanishes over the boundary of the domain, in this
case the boundary of B™.

Proof of Proposition[CJ Let k >0, w € Q% and 7 € Q™ N Dom(d*).
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Since 7 € Dom(d*), by definition 75 = 0 (i.e. the normal component vanishes
over the boundary of B™) and using integration by parts we have:

(daw, 7y = (dw + [A,w], T) = (w,d*T) + ([A,w], 7).

Recall that [A, w] Y ANw+ (=1)*1w A A when w is a k form and A a
1-form, and

(ANw,T) ) / tr(AAwA *77) = (=1)"! / tr(w A *77 A A),

Where we used the fact that tr(ABC) = tr(BC'A) and the antisymmetry of
the wedge product. Using the fact that
s xn = (=1)F""Fy if nis a k-form,

we obtain by linearity of the trace and noting that *7 A A is a (n — k)-form:

(ANw,T) = (=1)"1(=1)kn=h / tr(w A x* (x77 A A))

n

= (P [ (e AT A AT

n

_ (_1)k(n—k)+n—1<w7*<*7_T/\A)T>'

Using the fact that for matrices we have (AB)T = BT AT and the antisym-
metry of the wedge product, we obtain:

(ANw,T) = (—1)’“("%)*”*1(—1)"*’“*1<w, #(AT A x7))
= (—1)k(”_k)+k<w, *(AT A *T)).

Interchanging now the role of x7 A A with A A %7, we get as above

(—1)F 1w A A, 7) = (—1)F+ / tr(w A A A #77)

= (=1)FO=RHREL k(A A 7 THT)
= (=D)F=RFn iy s (r A xAT)).
Note now that *7 is a (n — k — 1)-form thus,

[x7, AT] = %7 A AT + (=1)"FAT A x7,
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By the above computations we get
([A,w],m) = (=R w[xr, AT]) = (=DM 0, x[xr, AT)).
This allows to obtain the desired formula for the adjoint operator to d:

(w,dy1) = (daw, 7) = (w,d"T + (—1)’“(”_"”“) * [*T, AT]),

which concludes our proof. O



Appendix D

Estimates

In this section of the Appendix, we will prove a few results that help us
bootstrap certain d-equations. These results have been heavily used in order
to prove the regularity of sections which yield a holomorphic structure over
a given closed Kéahler surface or manifold.

Lemma D.1. Let D a domain holomorphically embedded in CP? and w €
Wh(QOLD ® M, (C)) such that w satisfies the integrability condition (1.1]).
Let g € L**(D, M, (C)) be a distributional solution of the equation:

0g=—w-g

satisfying the estimate ||g —id|| joapy < C'||wllyraipy- Then there exists a
subdomain Dy C D, and for each g € (1,d), a constant Cy > 0 such that:

lg — id“wz,d(Do) <y ||w||W1vd(D) :

Proof of Lemma[D.]. We start with a bootstrapping procedure. Firstly, let
Dy be a slightly smaller subdomain of D such that we obtain the existence
of a constant C' > 0 and the following inequality holds:

lg = il < C (139] s, + g = il oo
< C (Il sy N9l 2000) + g = il )

By using the embedding of W14 into L?? in 2d-dimensions, it follows that
for some constant C' > 0, we have:

||g — Z'dHled(D()) SC (”w”led(D) ||g - id||L2d(D)
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1w lwrago) + 9 = il ) -
Hence, by [|g — id|| j2a(py < C'[|wllypr.4(py, We obtain:
lg = idllwracpyy < Cllwllwrapy -

Once we have obtained the W4 estimate on D, we can proceed to boot-
strapping to W24 regularity. We can apply 9 to the 0-equation to obtain the
elliptic PDE:

V09 = —V(w - g) = —dw - g — *(xw A 0g),

which holds in a distributional sense. Since 90 is equal to the Hodge Lapla-
cian d*d acting on functions, we can apply Proposition and obtain that
g € W24(Dy, M,,(C)) for all ¢ < d and for each ¢ < d there exists a constant

oc

C, > 0 such that

”gHWfo’f(Do) <y ”w”led(Do) : (D.1)

Without loss of generality, we can assume g € W249(Dy, M, (C)) for all ¢ < d,
otherwise we pick a slightly smaller domain than Dy. It remains to show the
required bound. Since 93 is elliptic we have the a-priori estimate:

Hg - Z.dHW?wq(DO) <C <||ﬁag||Lq(D0) + ”g - idHLtJ(D@) ) (D2>

for any ¢ € (1,d). We estimate 90g:
HﬁEQHLq(DO) < ||VWHLd(DO) HQHqu/(dfq)(Do) + HWHLQd(DO) HVQHLQd‘I/(Zd*q)(DO) :
Since W? embeds into L??, it follows that
HT@QHL(I(DO) <C Hwﬂwl,d(p) <H9Hm/<d—q>(po) + vaHLqu/(zd—q)(Do)) 3
for some constant C' > 0. Moreover, W24 embeds into L%/(@=9) and W4
embeds into L?%/(24=4)  Using these embeddings, there exists a constant
Cy > 0 and C' > 0 such that:
HﬁggHLq(DO) <Gy HwHled(D) ||g||W2vq(D0) +C ||w||W1’d(D) :

By the bound (D.1)), it follows that there exists C, > 0:

HﬁggHLq(DO) <y HWHWM(D) ”w”wlﬂd(Do) +C HWHWM(D) :
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Then for some constant C; > 0, we have

||7959||Lq(D0) < Cyllwllwrapy -

Putting this together with the fact that

lg — idl (o) < lg = idl oy < Co Il

and (D.2), there exists a constant C, > 0 such that

lg — Z.dHWZQ(DO) <y HWHWM(D) :

Since ¢ € (1,d) is arbitrary, we have proven the result. ]

Remark D.1.

(i)

(i)

(iii)

In the statement above, if D = CP¢, then Dy = D = CP%. This is the
case because O is elliptic on CP?.

Assume instead of ||g — id|| 20y < Cl|wllyracpy, the slightly perturd
nequality:
lg = idl| f2aipy < Cllwllyyragpy + Co,

where Cy > 0 is a small constant. We can conclude from the proof
of the statement that all arguments pass through and we can reach the
natural conclusion:

lg = idllyaainy < C (kuwl,dw) + 00) for all g < d.

If we higher reqularity of w, we can obtain similar estimates using clas-
sical elliptic reqularity results. Letp > d, a (0,1)-formw € WHP(Q%'D®
M, (C)), satisfying a smallness condition and the integrability condition

. Moreover,

lg — id”LOO(D) <C ||W||W1,p(D) :

Then we can bootstrap the equation solved by g to show that g € I/Vlif
with the expected estimate:

lg — id”wﬁf(D) <G HWHWLP(D) :
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This means that there exists a domain Dy C D such that

lg — idHWZ,p(DO) <Gy ||W||W1,p(D) :

We can start proving two bootstrap procedures for two types of PDE-s. The
general technique is to use show the boundedness of Morrey norms in order
to bootstrap beyond the critical embedding level. We use the ideas from [30].

Proposition D.1. Let N € N*, A € WY4(B? CV) and f4 € C=(CN,C")
such that there exists C' > 0 satisfying:

|fa(&)] < CIEIIVA] + [A][VE]
and u € WH(B2?® RY) solving the equation:
Au = fa(u)

m a distributional sense, then u € VVl2O’p(BQd,(C) for any p < d there exists

C

Cp > O Such that ||u||Wl20,§7(Bgd) S Cp ||A||W17d(32d)'
Proof of Proposition [D.1 Dimension 4 is critical in this case because W24/ —

L?? and we cannot directly bootstrap. In order to improve on the regularity
of u, we will use the Adams-Morrey embedding.

Claim. 3v > 0 such that

sup p”/ lu* + |Vu|?dz** < 0o
1063572(0), 0<p<1/4 B24(xo)

Let € > 0 to be fixed later. There exists py > 0 such that:

Sup HAHWLCI(Bgd(wo)) <é&
xoer%(o), 0<p<po

We can always find such e and py since p — | B24(z0) is continuous. Fix
P

Ty € 31272(0) and p < py arbitrary. To prove this claim we first consider:

Ap = fa(u) in Bgd(xo)

e =0 on dB2%(x,)
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Let v := u—¢. Then Av = 0 and it is easy to see that Alv|?*? > 0, and A|Vov|? >
0 in B,(x). Applying the divergence theorem, we get that Vr < p:

v/ o|Vul|?
>0, and > 0.
9B2(zy) OT oB2(zg)  OT

These inequalities imply that:

d |1 d| 1
— %/ lv*?dz**| > 0 and — %/ |Vo|4dz? | > 0.
dr |r B2d(z) dr | r B2d(z0)

Since these derivatives are non-negative, it follows that the functions

1 1
T Td/ lv[*?dz**  and r > Td/ |Vo|¢da?
"B @) ™ J B2 (wo)

are increasing in 7. In particular:

/ |U|2ddI2d S 42d/ ‘U’Mdl‘%
B24,(wo) B34(w0)

and

/ |Vu|tdx* < 42d/ |Vu|tdx?.
B29,(x0) B2 (x0)

Using these decays, we can bound [ ( |u|??dx?? and [ 2a |Vu|idz?
pa(%0) pa(70)

as such:

2d 7,.2d 2d—1 2d 2d 7,.2d
f3574(x0)\u| de?d < 2 fB§74(xo)‘v| + |o|**dx

S 2—2d—1 fBgd(xO) ’U’Qdd.f[}2d+22d_1 fBgd(xO) ‘g0|2ddilf2d

IN

9—2 fBgd(xo) |u|2ddzd + 22 fBgd(mo) |p|2dda?
(D.3)

Similarly, for Vu we get the bound:

/ |Vu|ldzr® < 2_2d_2/ |Vu|ddx2d—|—2d/ |Vop|4dz?*®. (D.4)
B29,(x0) B3 (wo)

B2d(x0)
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There exists a constant C' > 0 so that we can bound Ay in the L?*¥/3 norm:

HASDHLM/:%(Bgd(xO)) = || fa(u)]] 1243 (B24(x0))
< C (1Al agsogany) IVl agipocany

1V All gy 1l sy ) -

Since ¢ vanishes on the boundary, by Calderon-Zygmund inequality [35], it
follows that

lelwasorsisgia < € (140 sz 1Vl Loszicen)

+ HVAHLd(B?,d(Io)) Hu”LZd(Bgd(xo))> )

for some constant C' > 0. Moreover, the Sobolev embedding Wh4 — [%
gives:

ng||W272d/3(Bgd(xo)) S C ”AHWLd(B?,d(Io)) (”quLd(Bgd(xo))

+ ||u||L2d(BZd(x0))> s (DE))

Thus, combining (D.5)) with the inequalities (D.3)) and (D.4]), we obtain the

decay:

/ |u?+| Vu|*dz>
By jalw0)

S <2_2 + CO HAHWLd(Bgd(xo))) / |u|2d + |VU|dd(L’2d
BQd(

2% (xo0)
for some constant Cy > 0. We can choose € > 0 so that Cye?? < 272 to get:

/ |u|? 4 |Vu|?d2z®? < 2_1/ |u|? 4 | Vu|?dz®?. (D.6)
3274(x0) Bgd(xo)

This estimate gives the required existence of v > 0, and proves the claim.

It remains to prove the main regularity result using the claim. From the
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equation satisfied by v and the decay inequality , we obtain the bound:

sup ,0_7/ | Au)?¥3d2z* < oo
20€B7Y,(0), 0<p<1/4 B2d(x)

By Adams-Morrey embedding, we get a bound on ||IlAu||Lp(B%72(0)), p>d
where I; is the Riesz potential (see [1]). We obtain Vu € L (B, C) for

loc

p > d. Hence, the PDE becomes sub-critical and we can bootstrap to get
w e W2P(B%, C) for any p < d. O

loc

Proposition D.2. Let A € L*(B*,C) and fq € C=(B*,C) such that
there exists C' > 0 satisfying:

|fa(&)] < ClEl” + 1All¢]
and u € W2 B2 RN) satisfying
Au = fa(Vu)

then u € W2P(B%,C) for any p < 2d and HuHle,p < Gy [|All foa(poay where

loc
C, is a constant.

Proof of Proposition[D.Z Dimension 4 is critical in this case because Vu €
Whd — L2 and we cannot directly bootstrap. In order to improve on the
regularity of u, we will use the Adams-Morrey embedding.

Claim. 3v > 0 such that

sup p‘”/ |Vu|*dz®? < oo
xOEBf;lQ(O), 0<p<1/4 B2d(x0)

Let € > 0 to be fixed later. There exists py > 0 such that:

sup ||A||L2d(Bgd(x0)) <€
onBf/dQ(O), 0<p<po

We can always find such ¢ and po since p — | B24(z0) is continuous. Fix
P

To € B%%(O) and p < po arbitrary. To prove this claim we first consider :
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Ap = fa(Vu) in B2%(x)
¢ = 0 on 9 B2 (o)

Let v := u — ¢. Then Av = 0 and it is easy to see that A|Vv|** > 0 in
B24(x), for some r < p. Applying the divergence theorem, we get that

Vr < p:
’ o|Vu|*
o, S50
3Bgd(m0) 87“

d| 1
. Td/ |VU|2ddl’2d
dr |r B2d(z0)

1
and consequently the function r — —= [1.0,  [V0[**d2*? is increasing. In
T T

L.

24 (o)

This implies that

>0

particular,
|V'U|2dd$2d S 4—2(1/ |V'U|2dd$2d

B2d(x0)

Using this decay, we can obtain a bound for fBgd (z0) |Vu|2ddx2d:
p/4

/ |Vu|2dd:c2d S 22d1/ ‘VU|2d+ |Vg0|2ddx2d
B2d( )

. BJJ4(o)

S 2—2d—1/ |VU|2ddl’2d+22d_1/ |Vg0|2ddl’2d
B2d(z) B2d(z0)

S 2—2/ |VU‘2ddI2d—|—22d/ |Vg0|2ddl’2d
B24(xo) B24(2o)

Moreover, there exist constants C; > 0 and Cy > 0 such that

||A<p||Ld B2(a0)) < Cl||fA(VU)||%‘ii(Bgd(mo))
< O (14l sty 190 sy + 19 i)
< 2¥-1c, (HAHL2d(B2d (z0)) HVU“LM B2d(x))

+ |Vl 2 B2d(w0))>
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Since ¢ vanishes on the boundary of Bﬁd(xo), then by elliptic estimates, we
have for some constant C' > 0 the inequality:

||SD||W2d (B24(z)) < OHA%DHLd(B?d (z0))°

from which we deduce that HVngLM(BQd (o)) < C||Ap||24 (B24(z0))"

Putting this inequality together with the bound on Ap, we get the following
decay:

L.

|vu|2dd$2d <2 + COHAHLQd(BQd ro))) / |Vu|2dd1:2d
o7a(T0) B2d(zo)

We can choose £ > 0 so that Cpe?? < 272 and obtain:

/ |Vu[*dz? < 2_1/ |Vul*dz??,
B24,(wo) B2d(x0)

This decay implies the existence of v > 0 and proves the claim.

Thus, there exists v > 0 such that

sup p_“*/ | Au|?dr*® < oo
B2d($0)

xo€B2%_(0), 0<p<1/4

1/2

By Adams-Morrey embedding, we get a bound on ||I[;Aul|zs, p > d where
I, is the Riesz potential (see [1]). Thus, it follows that Vu € LP (B!, C)
for p > 2d. Since the PDE becomes sub-critical, we can bootstrap to get
e W2P(B%* C) for any p < 2d. O

loc
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