
Angular Energy Quantization for Linear Elliptic Systems with

Antisymmetric Potentials and Applications

Paul Laurain & Tristan Rivière

November 28, 2011

Abstract

In the present work we establish a quantization result for the angular part of the energy of solu-

tions to elliptic linear systems of Schrödinger type with antisymmetric potentials in two dimension.

This quantization is a consequence of uniform Lorentz-Wente type estimates in degenerating annuli.

Moreover this result is optimal in the sense that we exhibit a sequence of functions satisfying our

hypothesis whose radial part of the energy is not quantized. We derive from this angular quantization

the full energy quantization for general critical points to functionals which are conformally invariant

or also for pseudo-holomorphic curves on degenerating Riemann surfaces.
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Introduction

Conformal invariance is a fundamental property for many problems in physics and geometry. In the last
decades it has become an important feature of many questions of non-linear analysis too. Elliptic confor-
mally invariant lagrangians for instance share similar analysis behaviors : their Euler Lagrange equations
are critical with respect to the function space naturally given by the lagrangian and, as a consequence,
solutions to these Euler Lagrange equations are subject to concentration compactness phenomena. Ques-
tions such as the regularity of solutions or energy losses for sequences of solutions cannot be solved by
robust general arguments in PDE but require instead a careful study of the interplay between the highest
order part of the PDE and it’s non-linearity.
For example, in dimension 2, let (Σ, h) be a closed Riemann surface, it has been proved, see theorem I.2
of [Ri3], that every critical point of a conformally invariant functional, u : Σ → Rn, solves a system of
the form1

−∆u = Ω · ∇u on Σ, (1)

where Ω ∈ so(n) ⊗ TΣ and ∆ is the negative Laplace-Beltrami operator 1√
|h|
∂i(
√
|h|hij∂j). The funda-

mental fact here that has been observed in [Ri3] and exploited in this work to obtain the Hölder continuity
of W 1,2−solutions to (1) is the anti-symmetry of Ω.

The analysis developed in [Ri3] permitted to generalize to general 2-dimensional conformally invariant
Lagrangians the use of integrability by compensation theory as it has been introduced originally by H.Wente
in the framework of constant mean curvature immersions in R3 solving the following CMC-system

∆u = 2ux ∧ uy on Σ. (2)

Solutions to this CMC system are in fact critical points to the following conformally invariant lagrangian

E(u) =
1

2

∫

Σ

|du|2h dvolh +
∫

Σ

u∗ω

where ω is a 2-form in R3 satisfying dω = 4 dx1 ∧ dx2 ∧ dx3. The natural space to consider the equation
(2) is clearly the Sobolev space W 1,2. The CMC-system (2) is critical for W 1,2 in the following sense :
the r.h.s. of (2) is a-priori only in L1. Classical Calderon Zygmund theory tells us that derivatives of
functions in ∆−1L1 are in the weak L2 space locally which is ”almost” the information we started from.
Hence in a sense both the quadratic non-linearity for the gradient in the r.h.s of the system and the
operator in the l.h.s. are at the same level from regularity point of view and it requires a more careful
analysis in order to decide which one is leading the general dynamic of this system.

H. Wente discovered the special role played by the jacobian in the r.h.s. of (2), see [He] and references
therein, and was able to prove that if u satisfies (2) then

‖∇u‖2 ≤ C‖∇u‖22 , (3)

where C is independent on Σ and equals2
√
3/16π . This inequality implies that if

√
3/16π‖∇u‖2 < 1

then the solution is constant. This is what we call the Bootstrap Test and it is the key observation for

1In coordinates this system reads

∀i = 1 · · ·n −∆ui =
n∑

j=1

Ωj
i
· ∇uj on Σ

where the · operation is the scalar product between the gradient vector fields ∇uj and the different entries of the vector
valued antisymmetric matrix Ω.

2This later fact has been discovered later on by Y.Ge in [Ge], see also [He].
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proving Morrey estimates and deduce the Hölder regularity of general solutions to (2) which bootstraps
easily in order to establish that solutions to (2) are in fact C∞ .

Another analysis issue for this equation is to understand the behavior of sequences uk of solutions to
the CMC system (2). Inequality (3) tells us again that if the energy does not concentrate at a point then
the system will behave locally like a linear system of the form ∆u = 0 : the non-linearity 2ux ∧ uy in
the r.h.s is dominated by the linear highest order term ∆u in the l.h.s.. As a consequence of this fact we
deduce that sequences of solutions to (2) with uniformly bounded energy strongly converge in Cp norm
for any p ∈ N, modulo extraction of a subsequence and possibly away from finitely many points3 in Σ,
{a1∞ · · · al∞} where the W 1,2−norm concentrates, towards a smooth limit that solves also (2)

uk −→ u∞ strongly in Cploc(Σ \ {a1∞ · · · al∞}) ∀p ∈ N.

The question remains to understand how the convergence at the concentration points ai∞ fails to be
strong, in other words we want to understand how and how much energy has been dissipated at the
points ai∞. A careful analysis shows that the energy is lost by concentrating solution on R2 of the CMC
system (2), the so called bubbles, that converge to the ai∞ : there exists points in Σ aik → ai∞ and a
familly of sequences of radii λik converging to zero such that

uk(λ
i
kx+ aik) −→ ωi(x) strongly in Cploc(R

2 \ {finitely many points}) ∀p ∈ N.

where ωi denote the bubbles, solutions on R2 of the CMC system (2). Because of the nature of the
convergence it is clear that the Dirichlet energy lost in the convergences amount at least to the sum of
the Dirichlet energies of the bubbles ωi :

lim inf
k→+∞

∫

Σ

|duk|2h dvolh ≥
∫

Σ

|du∞|2h dvolh +
l∑

i=1

∫

R2

|∇ωi|2 dx1 dx2 (4)

The question remains to understand if the inequality in (4) is strict or is in fact an equality. This question
for general conformally invariant problems is known as the energy quantization question : is the loss of
energy only concentrated in the forming bubbles or is there any additional dissipation in the intermediate
regions between the bubbles and shrinking at the limiting concentration points ai∞ in the so called neck
region. Since the work of Sacks and Uhlenbeck [SaU] where it has been maybe first considered, in the
particular framework of minimizing harmonic maps from a Riemann surface into a manifold, this question
has generated a special interest, intensive researches and several detailed results have been obtained in
the last decades on the subject. We refer to [Ri2] and reference therein for a survey on the energy
quantization results. Positive results establishing energy quantization (i.e. the inequality in (4) is in fact
an equality) often make use of some special geometric objects such as isoperimetric inequality or the
hopf differential , see for instance [Jo] or [Pa]. In [LR1] and [LR2] the second author in collaboration
with F.H. Lin introduced a more functional analysis type technique based on the use of the interpolation
Lorentz spaces in order to prove energy quantization results in the special cases where the non-linearity
of the conformally invariant PDE can be written as a linear combination of jacobians of W 1,2−functions.
Using this technique we can for instance prove that equality holds in (4) : energy quantization holds
for the CMC-system, the whole loss of energy exclusively arises in the bubbles. The main step in the
proof consists in using an improvement of Wente inequality (3) which has been obtained by L.Tartar and
R.Coifman, P.L.Lions, Y.Meyer and S.Semmes in [CLMS]. This improved Lorentz-Wente type inequality
reads

‖∇u‖L2,1 ≤ C ‖∇u‖22 , (5)

3In our notations we can have some a
i
∞

that coincide with another.
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where this time C depends a-priori on (Σ, h) and where L2,1 denotes the Lorentz space ”slightly” smaller
than L2 given by the space of measurable function f on Σ satisfying

∫ ∞

0

|{x ∈ Ω s.t. |f(x)| ≥ λ}| 12 dλ < +∞ .

The goal of the present paper is to extend energy quantization results to sequences of critical points to
general conformally invariant lagrangians using functional analysis arguments in the style of [LR2].

The constant in the inequality (5) depends a-priori on the domain, at least on its conformal class
since the equation is conformally invariant. But our neck regions connecting the bubbles are conformally
equivalent to degenerating annuli. The first task of the present work is to prove different lemma which
give some uniform estimates on the L2,1-norm of the gradient for solution to Wente type equations on
degenerating annuli. This is the subject of section 2.

In the following sections, we use these uniform estimates established in section 2 for proving various
quantization phenomena. In particular we get the quantization of the angular part of the gradient for
solution of general elliptic second order systems with anti-symmetric potentials. What we mean here by
the angular part is the component of the gradient in the orthogonal of the radial direction with respect
to the nearest point of concentration. Precisely the first main result in the present work is the following.

Theorem 0.1. Let Ωk ∈ L2(B1, so(n)⊗ R2) and let uk ∈W 2,1(B1,R
n) be a sequence of solutions of

−∆uk = Ωk · ∇uk, (6)

with bounded energy, i.e. ∫

B1

(
|∇uk|2 + |Ωk|2

)
dz ≤M. (7)

Then there exists Ω∞ ∈ L2(B1, so(n) ⊗ R2) and u∞ ∈ W 2,1(B1,R
n) a solution of −∆u∞ = Ω∞ · ∇u∞

on B1, l ∈ N∗ and

1. ω1, . . . , ωl a family of solutions to system of the form

−∆ωi = Ωi∞ · ∇ωi on R
2

where Ωi∞ ∈ L2(R2, so(n)⊗ R2),

2. a1k, . . . , a
l
k a family of converging sequences of points of B1,

3. λ1k, . . . , λ
l
k a family of sequences of positive reals converging all to zero,

such that, up to a subsequence,

Ωk ⇀ Ω∞ in L2
loc(B1, so(n)⊗ R

2),

uk → u∞ on W 1,p
loc (B1 \ {a1∞, . . . , al∞}) for all p ≥ 1

and ∥∥∥∥∥

〈
∇
(
uk − u∞ −

l∑

i=1

ωik

)
, Xk

〉∥∥∥∥∥
L2

loc(B1)

→ 0,

where ωik = ωi(aik + λik . ) and Xk = ∇⊥dk with dk = min
1≤i≤l

(λik + d(aik, . )).

Moreover, if we have ‖Ωk‖∞ = O(1) or even just Ωk = Λ(uk,∇uk) where Λ(., p) = O(|p|) hence the
convergence to the limit solution u∞ is in fact in C1,η

loc for all η ∈ [0, 1[.
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This theorem is optimal in the sense that we have also exhibited a sequence of functions satisfying
the hypothesis of the theorem whose radial of the energy is not quantized. Moreover, the loose of energy
in the neck region is very rigid. We explain this two facts after the proof of the theorem 0.1.

The proof of theorem 0.1 is established through the iteration of the following result. It says that, if
the L2 norm of the potential Ω is below some threshold on every dyadic sub-annuli of a given annulus,
the angular part of the Dirichlet energy of u on a slightly smaller annulus is controlled by the maximal
contribution of the Dirichlet energy of u on the dyadic sub-annuli. Precisely we prove the following.

Theorem 0.2. There exists δ > 0 such that for all r, R ∈ R
∗
+ satisfying 2r < R for all Ω ∈ L2(BR \

Br, so(n)⊗ Rn) and u ∈ W 1,2(BR \Br,Rn) satisfying

−∆u = Ω · ∇u

and

sup
r<ρ<R

2

∫

B2ρ\Bρ

|Ω|2 dz ≤ δ.

Then there exists C > 0, independent of u, r and R, such that

∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
2

L2

(

BR
2
\B2r

) ≤ C‖∇u‖2
[

sup
r<ρ<R

2

∫

B2ρ\Bρ

|∇u|2 dz
]1/2

.

Thanks to the quantization of the angular part for general elliptic systems with anti-symmetric po-
tential, we can derive the energy quantization for critical points to an arbitrary continuously conformally
invariant elliptic Lagrangian with quadratic growth.

Theorem 0.3. Let Nk be a C2 submanifold of Rm and ω be a C1 2-form on Nk such that the L∞-norm
of dω is bounded on Nk. Let uk be a sequence of critical points in W 1,2(B1, N

k) for the Lagrangian

F (u) =

∫

B1

[
|∇u|2 + ω(u)(ux, uy)

]
dz (8)

with uniformly bounded energy, i.e.
‖∇uk‖2 ≤M.

Then there exists Λ ∈ C0(TN⊗R2, so(n)⊗R2) and u∞ ∈W 1,2(B1,R
n) a solution of −∆u = Λ(u,∇u)·∇u

on B1, l ∈ N
∗ and

1. ω1, . . . , ωl some non-constant Λ-bubbles, i.e non-constant solution of

−∆ω = Λ(ω,∇ω) · ∇ω on R
2,

2. a1k, . . . , a
l
k a family of converging sequences of points of B1,

3. λ1k, . . . , λ
l
k a family of sequences of positive reals converging all to zero,

such that, up to a subsequence,

uk → u∞ on C1,η
loc (B1 \ {a1∞, . . . , al∞}) for all η ∈ [0, 1[

and ∥∥∥∥∥∇
(
uk − u∞ −

l∑

i=1

ωik

)∥∥∥∥∥
L2

loc(B1)

→ 0 ,

where ωik = ωi(aik + λik . ).
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Previous works establishing energy quantizations for various conformally invariant elliptic Lagrangian
usually require more regularity on the Lagrangian ( see for instance [Jo], [Pa], [St], [DiT] , [LiWa],[Zhu]).
For instance in [Pa] or [LiWa] the energy quantization for harmonic maps in two dimension is obtained
through the application of the maximum principle to an ordinary differential inequality satisfied by the
integration over concentric circles of the angular part of the energy. The application of this procedure
required an L∞ bound on the derivatives of the second fundamental form, see lemma 2.1 of [LiWa]. We
insist on the fact that, in comparison to the previously existing energy quantization results, theorem 0.3
above requires an C0 bound on the second fundamental form only, which is a weakening of the regularity
assumption for the target of a magnitude one with respect to derivation. Another application of theo-
rem 0.3 is the energy quantization for solutions to the prescribed mean curvature system, see corollary
4.1, assuming only an C0 bound on the mean curvature. Again, previous energy quantization results were
assuming uniform C1 bounds on H , see [BeRe] and [CaMu]. Theorem 0.3 in the prescribed mean curva-
ture system corresponds again for this problem to weakening of the regularity assumption for the target
of a magnitude one with respect to derivation in comparison to previous existing result .This weaker
assumption moreover are the minimal one in order for the Lagrangian to be continuously differentiable
and this is why it coincides with the original one appearing in the formulation of the Heinz-Hildebrandt
regularity conjecture in the 70’s.

In a last part, we present some more applications of the uniform Lorentz-Wente estimates we estab-
lished in section 2. The first one, for instance, deals with sequences of pseudo holomorphic immersions
of sequences of closed Riemann surfaces whose corresponding conformal class degenerate in the moduli
space of the underlying 2-dimensional manifold. In particular we give a new proof of the Gromov’s com-
pactness theorem in all generality, see theorem 5.1. We also give some cohomological condition which
garanties the energy quantization for sequences of harmonic maps on degenerating surfaces. Finally we
give a very brief introduction to the quantization of the Willmore surface established recently in [BR],
where the uniform Lorentz-Wente estimates of section 2 play a crucial role.

Acknowledgements: The first author was visiting the Forschungsinstituts für Mathematik at E.T.H.
(Zurich) when this work started, he would like to thank it for its hospitality and the excellent working
conditions. Moreover, the two authors would like to thank Francesca Da Lio for her useful comments on
the manuscript.

Notation: In the following, if we consider a norm with out specified its domains, it is implicitly
assume that its domain of definition is the one of the function. We denote BR(p) the ball of radius R
centered at p and we just denote BR when p = 0.

1 Lorentz spaces and standard Wente’s inequalities

Lorentz spaces seems to be the good spaces in order to get precise Wente’s inequalities, here we recall
some classical facts about these spaces, [StWe] and [Gra] for details.

Definition 1.1. Let D be a domain of Rk, p ∈]1,+∞[ and q ∈ [1,+∞]. The Lorentz space Lp,q(D) is
the set of measurable functions f : D → R such that

‖f‖p,q =
(∫ +∞

0

(
t
1
p f∗∗(t)

)q dt
t

) 1
q

< +∞ if q < +∞

or
‖f‖p,∞ = sup

(
t
1
p f∗∗(t)

)
if q = +∞
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where f∗∗(t) = 1
t

∫ t
0
f∗(s) ds and f∗ the decreasing rearrangement of f .

Each Lp,q may be seen as a deformation of Lp. For instance, we have the strict inclusions

Lp,1 ⊂ Lp,q
′ ⊂ Lp,q

′′ ⊂ Lp,∞,

if 1 < q′ < q′′. Moreover,
Lp,p = Lp.

Furthermore, if |D| is finite, we have that for all q and q′,

p > p′ ⇒ Lp,q ⊂ Lp
′,q′ .

Finally, for p ∈]1,+∞[ and q ∈ [1,+∞], L
p

p−1 ,
q

q−1 is the dual of Lp,q.

In the case p, q = 2, 1 we can give an equivalent definition. First we note that the norm ‖ ‖p,q is
equivalent to

(∫ +∞

0

(
t
1
p f∗(t)

)q dt
t

) 1
q

,

which only a semi-norm, see [Zie]. Then let φ(λ) = |{t ∈ [0, |D|] s.t. f∗(t) ≥ λ}|, we make the change of
variable t = φ(λ) in the definition of the Lorentz-norm, which gives

‖f‖2,1 ∼ 2

∫ 0

sup |f |

φ−
1
2 (λ)λφ′(λ) dλ.

Hence integrating by part, we get

‖f‖2,1 ∼ 4

∫ +∞

0

|{x ∈ Ω s.t. |f(x)| ≥ λ}| 12 dλ. (9)

To finish this preliminary, we quickly present the standard Wente’s inequalities for elliptic system in
Jacobian form. Indeed if a and b are in W 1,2 this is clear that axby − aybx is in L1 but in fact thanks to
its structure, it is subject to compensated phenomena and axby − aybx is in H1 the Hardy space which is
a strict subspace of L1 which as a better behaviour than L1 with respect to Calderon-Zygmund theory,
since the convolution of a function in H1 and the Green kernel log(|z|) is in W 2,1. This improvement of
integrability is summarized in the following theorem.

Lemma 1.1 ([We],[Tar],[CLMS]). Let a and b be in W 1,2(B1). Let φ ∈W 1,1
0 (B1) be the solution of

∆φ = axby − aybx on B1

Then there exists a constant C independent of φ such that

‖φ‖∞ + ‖∇φ‖2,1 + ‖∇2φ‖1 ≤ C‖∇a‖‖∇b‖2. (10)

A consequence of the previous theorem was obtain by Bethuel [Bet] using a duality argument.

Lemma 1.2. Let a and b be two measurable functions such that ∇a ∈ L2,∞(B1) and ∇b ∈ L2(B1). Let
φ ∈W 1,1

0 (B1) be the solution of
∆φ = axby − aybx on B1

Then there exists a constant C independent of φ such that

‖∇φ‖2 ≤ C‖∇a‖2,∞‖∇b‖2. (11)
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2 Wente type lemmas

In this section we are going to prove some uniform Wente’s estimates on annuli whose conformal class is
a priori not bounded. In fact those estimate were already known for the L∞-norm and the L2-norm of
the gradient, since it has been proved that the constant is in fact independent of the domain considered,
see [To] and [Ge]. But this fact is to our knowledge new for the L2,1-norm of the gradient.

Lemma 2.1. let a, b ∈ W 1,2(B1), 0 < ε < 1
2 , and φ ∈ W 1,1

0 (B1 \Bε) a solution of

∆φ = axby − aybx on B1 \Bε.
Then ∇φ ∈ L2,1(B1 \ Bε) and, for all λ > 1, there exists a positive constant C(λ) independent of ε and
φ such that

‖∇φ‖L2,1(B1\Bλε) ≤ C(λ)‖∇a‖2 ‖∇b‖2.

Proof of lemma 2.1:

First we consider a solution of our equation on the whole disk, that is to say ϕ ∈ W 1,1
0 (B1) which

satisfies
∆ϕ = axby − aybx on B1.

Then thanks to the classical Wente’s inequality (10), we have

‖ϕ‖∞ + ‖∇ϕ‖2,1 ≤ C‖∇a‖2 ‖∇b‖2., (12)

where C is a positive constant independent of ϕ.

Then we set ψ = φ− ϕ, which satisfies





∆ψ = 0 on B1 \Bε,
ψ = 0 on ∂B1,

ψ = −ϕ on ∂Bε.

Hence ψ̃ = ψ −
(∫

∂Bε
ψ dσ

)
ln(|z|)

2πε ln(ε) satisfies the hypothesis of the lemma A.1, then

‖∇ψ̃‖L2,1(B1\Bλε) ≤ C(λ)‖∇ψ̃‖2 for all λ > 1.

Hence, computing the L2-norm of the gradient of the logarithm on B1 \Bλε, we get that

‖∇ψ̃‖L2,1(B1\Bλε) ≤ C(λ)


‖∇ψ‖2 +

(∫

∂Bε

|ψ| dσ
)

1

ε
√
ln
(
1
ε

)


 . (13)

But ψ is the harmonic on B1 \Bε and is equal to −ϕ on the boundary, then

‖∇ψ‖2 ≤ ‖∇ϕ‖2 and ‖ψ‖∞ ≤ ‖ϕ‖∞. (14)

Hence we get that ∫

∂Bε

|ψ| dσ ≤ εC(λ)‖∇a‖2 ‖∇b‖2, (15)
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which gives, using (13) and (14), that

‖∇ψ̃‖L2,1(B1\Bλε) ≤ C(λ)‖∇a‖2 ‖∇b‖2. (16)

Finally, computing the L2,1-norm of the gradient of the logarithm on B1 \Bλε, we get that

‖∇ ln r‖L2,1(B1\Bλε) = 4
√
π ln

(
1

λε

)
. (17)

Hence, thanks to (15), (16) and (17), we get that

‖∇ψ‖L2,1(B1\Bλε) ≤ C(λ)‖∇a‖2 ‖∇b‖2. (18)

Then, thanks to (12) and (18), we get the desired estimate. �

Lemma 2.2. let a, b ∈ W 1,2(B1), 0 < ε < 1
4 , and φ ∈ W 1,1(B1 \Bε) a solution of





∆φ = axby − aybx on B1 \Bε
∫

∂Bε

φ dσ = 0,

∣∣∣∣
∫

∂B1

φdσ

∣∣∣∣ ≤ K,

(19)

where K is a constant independent of ε. Then, for all 0 < λ < 1, there exists a positive constant C(λ)
independent of ε such that

‖∇φ‖L2,1(Bλ\Bλ−1ε)
≤ C(λ)(‖∇a‖2 ‖∇b‖2 + ‖∇φ‖2 + 1) .

�

Proof of lemma 2.2 :

Let u ∈ W 1,1(B1 \Bε) be the solution of




∆u = 0 on B1 \Bε,

u = φ on ∂B1 ∪ ∂Bε.

Hence ‖∇u‖2 ≤ ‖∇φ‖2. Moreover thanks to lemma A.2 and lemma 2.1 we have ∇u ∈ L2,1(Bλ \ Bλ−1ε)
and ∇(u− φ) ∈ L2,1(B1 \Bλ−1ε) with

‖∇u‖L2,1(Bλ\Bλ−1ε)
≤ C(λ) (‖∇φ‖2 + 1)

‖∇(u− φ)‖L2,1(Bλ\Bλ−1ε)
≤ C(λ)‖∇a‖2‖∇b‖2,

which proves lemma 2.2. �

Remark: As in lemma A.2 we cannot control the L2,1-norm of ∇φ by its L2-norm, as it is shown by the
following example

z 7→
ln
(

|z|
ε

)

ln
(
1
ε

) .
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Lemma 2.3. let a, b ∈ W 1,2(B1), 0 < ε < 1
4 and φ ∈W 1,2(B1 \Bε) be a solution of

∆φ = axby − aybx on B1 \Bε. (20)

Moreover, we assume that
‖φ‖∞ < +∞. (21)

Then, for 0 < λ < 1 a positive constant C(λ) independent of ε and φ such that

‖∇φ‖L2,1(Bλ\Bλ−1ε)
≤ C(λ) (‖∇a‖2 ‖∇b‖2 + ‖φ‖∞) . (22)

Proof of lemma 2.3. :

We introduce first ϕ ∈W 1,2
0 (B1 \Bε) to be the unique solution to





∆ϕ = axby − aybx on B1 \Bε

ϕ = 0 on ∂B1 ∪ ∂Bε.
Then thanks to lemma 2.1, we have

‖∇ϕ‖L2,1(B1\Bλ−1ε)
≤ C(λ) ‖∇a‖2 ‖∇b‖2,

where C(λ) is a positive constant depending on λ but not on φ and ε.

Then we set ψ = φ− ϕ, which is harmonic. Thanks to standard estimates on harmonic function, see
[HaLi] for instance, there exists C(λ) > 0 a positive constant independent of ψ and ε such that

‖ψ‖L2,1(Bλ\Bλ−1ε)
≤ C(λ)‖ψ‖L∞(∂B1∪∂Bε) ≤ C(λ)‖φ‖L∞ .

Which proves the desired inequality and lemma 2.3 is proved. �

Lemma 2.4. let a, b ∈ L2(B1), 0 < ε < 1
4 , assume that ∇a ∈ L2,∞(B1) and that ∇b ∈ L2(B1), let

φ ∈W 1,(2,∞)(B1 \Bε) a solution of

∆φ = axby − aybx on B1 \Bε, (23)

Denote, for ε ≤ r ≤ 1, φ0(r) := (2π r)−1
∫
∂Br(0)

φdσ and assume

∫ 1

ε

|φ̇0|2 r dr < +∞ . (24)

Then, for 0 ≤ λ < 1, there exists a positive constant C(λ) > 0 independent of ε and φ such that

‖∇φ‖L2(Bλ\Bλ−1ε)
≤ C(λ)

(
‖∇a‖2,∞ ‖∇b‖2 + ‖∇φ0‖L2(B1\Bε)

+ ‖∇φ‖L2,∞(B1\Bε)

)
.

(25)

Proof of lemma 2.4 :

First we consider ϕ ∈W 1,2
0 (B1) to be the solution of





∆ϕ = axby − aybx on B1

ϕ = 0 on ∂B1

.

10



Then thanks to the generalized Wente’s inequality, see (11), we have

‖∇ϕ‖2 ≤ C ‖∇a‖2,∞ ‖∇b‖2 . (26)

Consider the difference v := φ−ϕ− (φ0−ϕ0), it is an harmonic function on B1 \Bε which does not have
0−frequency Fourier modes :

v =
∑

n∈Z∗

(cnρ
n + dnρ

−n) ei nθ

which implies in particular that
∫

∂Bρ

∂v

∂ν
dσ = 0 for all ε < ρ < 1. (27)

Moreover, due to the assumption (24) and due to (26) we have

‖∇v‖L2,∞(B1\Bε) ≤ 2‖∇ϕ‖2 + ‖∇φ0‖2 + ‖∇φ‖L2,∞(B1\Bε)

≤ C
(
‖∇a‖2,∞ ‖∇b‖2 + ‖∇φ0‖2 + ‖∇φ‖L2,∞(B1\Bε)

)
.

(28)

Here, we used the fact that L2,∞ norm is control by the L2 norm on a set of finite measure, see [Zie]. Let
λ ∈]0, 1[, then standard elliptic estimates on harmonic function give that ∀ρ ∈ (λ−1ε, λ)

‖∇v‖L∞(∂Bρ) ≤ C(λ) ρ−1 ‖∇v‖L2,∞(Bλ−1ρ\Bλρ)

≤ C(λ) ρ−1
(
‖∇a‖2,∞ ‖∇b‖2 + ‖∇φ0‖2 + ‖∇φ‖L2,∞(B1\Bε)

)
.

(29)

Denote Ωε := Bλ \Bλ−1ε. We have that

‖∇v‖L2(Ωε) = sup
{X ; ‖X‖L2(Ωε)≤1}

∫

Ωε

∇v ·X dz (30)

For such an X ∈ L2(Ωε) we denote X̃ it’s extension by 0 in the complement of Ωε in B1. Let g be the
solution of 




∆g = −divX̃⊥ in B1

g = 0 on ∂B1

where X̃⊥ = (−X̃2, X̃1). We easily see that

‖∇g‖L2(B1) ≤ C ‖X̃‖L2(B1) ≤ C . (31)

Poincaré lemma gives the existence of f ∈ W 1,2(B1) such that

X̃ = ∇f +∇⊥g .

and we have
‖∇f‖L2(B1) ≤ ‖∇g‖L2(B1) + ‖X̃‖L2(B1) ≤ C + 1 . (32)

We have ∫

Ωε

∇v ·X dz =

∫

Ωε

∇v · ∇f dz +
∫

Ωε

∇v · ∇⊥g dz

11



We write ∫

Ωε

∇v · ∇⊥g dz =

∫

∂Bλ

∂τv g dσ −
∫

∂Bλ−1ε

∂τv g dσ

=

∫

∂Bλ

∂τv (g − gλ) dσ −
∫

∂Bλ−1ε

∂τv (g − gλ−1ε) dσ

(33)

where ∂τ is the tangential derivative along the circles ∂Bλ and ∂Bλ−1ε and gλ (resp. gλ−1) denote the
average of g on ∂Bλ (resp. Bλ−1ε).

We have for any ρ ∈ (0, 1)

1

ρ

∫

∂Bρ

|g − gρ| dσ ≤ C ‖g‖H1/2(∂Bρ) ≤ C ‖∇g‖2 ≤ C (34)

where C is independent of ρ. Combining (29), (34) and (33) give in one hand

∣∣∣∣
∫

Ωε

∇v · ∇⊥g

∣∣∣∣ dz ≤ C(λ) ‖∇v‖L2,∞(B1\Bε) . (35)

In the other hand one using the fact that v is harmonic and satisfies (27) we have

∫

Ωε

∇v · ∇f =

∫

∂Bλ

∂νv f −
∫

∂Bλ−1ε

∂νv f

=

∫

∂Bλ

∂νv (f − fλ)−
∫

∂Bλ−1ε

∂νv (f − fλ−1ε)

(36)

We have for any ρ ∈ (0, 1)

1

ρ

∫

∂Bρ

|f − fρ| ≤ C ‖f‖H1/2(∂Bρ) ≤ C ‖∇f‖2 ≤ C (37)

Combining now (29), (36) together with (37) we obtain

∣∣∣∣
∫

Ωε

∇v · ∇f
∣∣∣∣ ≤ C(λ) ‖∇v‖L2,∞(B1\Bε) . (38)

Combining (35), (38) with (30) gives

‖∇v‖L2(Ωε) ≤ C(λ) ‖∇v‖L2,∞(B1\Bε) (39)

This inequality together with (24), (26) gives (25) and the lemma is proved. �

3 Angular Energy Quantization for solutions to elliptic systems

with anti-symmetric potential

The aim of this section is to prove that the angular part of the energyy of a bounded sequence of solutions
of an elliptic system with anti-symmetric potential is always quantized. But before starting the proof of
the quantization, we remind some fact about elliptic systems with antisymmetric potential which have
intensively studied by the second author [Ri3].

Let Ω ∈ L2(B1, so(n)⊗ Rn) we consider u ∈W 1,2(B1,R
n) a solution of the following equation

−∆u = Ω · ∇u on B1.

12



One of the fundamental fact about this system is the discover a conservation law using a Coulomb
gauge for Ω when its L2-norm is small enough which is the aim of the following theorem.

Theorem 3.1 (Theorem I.4 [Ri3]). There exists ε0 > 0 such that for all Ω ∈ L2(B1, so(n)⊗R2) satisfying
∫

B1

|Ω|2 dz ≤ ε0,

then there exists A ∈W 1,2 ∩ L∞(B1, Gln(R)) such that

div(∇A−AΩ) = 0

and ∫

B1

(
|∇A|2 + |∇A−1|2

)
dz + dist({A,A−1}, SO(n)) ≤ C

∫

B1

|Ω|2 dz,

where C is a constant independent of Ω.

Then, using this theorem and Poincaré’s lemma, we get the existence of B ∈ W 1,2(B1,Mn(R)) such
that

div(A∇u) = ∇⊥B · ∇u
and ∫

B1

|∇B|2 dz ≤ C

∫

B1

|Ω|2 dz.

Hence the system is rewrite in Jacobian form and we can use standard Wente’s estimates. In particular,
this permits to prove three fundamental properties of the solutions of this equation which are the ε-
regularity, the energy gap for solution defined on the whole plane and the passage to the weak limit in
the equation. This properties are summarized in the following theorem.

Theorem 3.2. [Ri3], [Ri6] There exists ε0 > 0 and Cq > 0, depending only on q ∈ N∗, such that if
Ω ∈ L2(B1, so(n)⊗ R2) (reps. L2(R2, so(n)⊗ R2)) satisfies

‖Ω‖22 ≤ ε0,

then

1. (ε-regularity) If u ∈ W 1,2(B1,R
n) satisfies

−∆u = Ω · ∇u on B1 (40)

then we have the following estimate

‖∇u‖
Lq

(

B 1
4

) ≤ Cq‖∇u‖2 for all q ∈ N
∗.

2. (Energy gap) If u ∈W 1,2(R2,Rn) satisfies

−∆u = Ω · ∇u on R
2 (41)

then it is constant.

3. (Weak limit property) Let Ωk ∈ L2(B1, so(n) ⊗ R2) such that Ωk weakly converge in L2 to Ω and
uk a bounded sequence in W 1,2(B1,R

n) which satisfies

−∆uk = Ωk · ∇uk on B1.

Then, there exists a subsequence of uk which weakly converge in W 1,2(B1,R
n) to a solution of

−∆u = Ω · ∇u on B1. (42)

13



For the convenience of the reader we recall the arguments developed in [Ri3] and [Ri6] to prove
theorem 3.2.

Proof of theorem 3.2 :

In order to prove the ε-regularity, let us prove that it suffuse to show, for α > 0, that we have

sup
p∈B1/2 , 0<ρ<

1
2

ρ−α
∫

Bρ(p)

|∆u| dz ≤ C‖∇u‖L2(B1) . (43)

Indeed, a classical estimate on Riesz potentials gives

|∇u|(p) ≤ C
1

|x| ∗ χB1/2
|∆u|+ C‖∇u‖L2(B1) ∀ p ∈ B1/4 ,

where χB1/2
is the characteristic function of the ball B 1

2
. Together with injections proved by Adams in

[Ad], see also 6.1.6 of [Gra], the latter shows that

‖∇u‖
Lr

(

B 1
4

) ≤ C‖∇u‖L2(B1) ,

for some r > 1. Then bootstrapping this estimate, see lemma IV.1 of [Ri6] or theorem 1.1 of [ShTo], we
get

‖∇u‖Lq(B 1
4
) ≤ Cq‖∇u‖L2(B1) for all q ∈ N

∗,

which will prove the ε-regularity.

In order to prove (43), we assume that ε0 is small enough to apply theorem 3.1 . Hence there exists
A ∈W 1,2 ∩ L∞(B1, Gln(R)) and B ∈W 1,2 ∩ L∞(B1,Mn(R))such that

∫

B1

(|∇A|2 + |∇B|2) dz + dist({A,A−1}, SO(n)) ≤ C

∫

B1

|Ω|2 dz.

and 



div(A∇u) = ∇⊥B · ∇u,

curl(A∇u) = ∇⊥A · ∇u.
(44)

Let p ∈ B 1
2
and 0 < ρ < 1

2 , we proceed by introducing on Bρ(p) the linear Hodge decomposition in

L2 of A∇u. Namely, there exist two functions C and D, unique up to additive constants, elements of
W 1,2

0 (Bρ(p)) and W
1,2(Bρ(p)) respectively, and such that

A∇u = ∇C +∇⊥D . (45)

with
∆C = div(A∇u) = ∇⊥B · ∇u

and
∆D = −∇A · ∇⊥u .

Wente’s lemma 1.1 guarantees that C lies in W 1,2, and moreover

∫

Bρ(p)

|∇C|2 dz ≤ C

(∫

Bρ(p)

|∇B|2 dz
)(∫

Bρ(p)

|∇u|2 dz
)

. (46)
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Then, we introduce the decomposition D = φ+ v, with φ satisfying





∆φ = −∇A · ∇⊥u in Bρ(p)

φ = 0 on ∂Bρ(p) ,

(47)

and with v being harmonic. Once again, Wente’s lemma 1.1 gives us the estimate

∫

Bρ(p)

|∇φ|2 dz ≤ C

(∫

Bρ(p)

|∇A|2 dz
)(∫

Bρ(p)

|∇u|2 dz
)

.

Using the fact that ρ 7→ 1

ρ2

∫

Bρ(p)

|∇v|2 dz for any harmonic function, see lemma II.1 of [Ri6]. We get,

for any 0 ≤ δ ≤ 1, that ∫

Bδρ(p)

|∇v|2 dz ≤ δ2
∫

Bρ(p)

|∇v|2 dz.

Finally, we have

∫

Bδρ(p)

|∇D|2 dz ≤ 2δ2
∫

Bρ(p)

|∇D|2 dz

+2

∫

Bρ(p)

|∇φ|2 dz .

(48)

Bringing altogether (45), (46), and (48) produces
∫

Bδρ(p)

|A∇u|2 dz ≤ 2δ2
∫

Bρ(p)

|A∇u|2 dz

+C ε0

∫

Bρ(p)

|∇u|2 dz.
(49)

Using the hypotheses that A and A−1 are bounded in L∞, it follows from (49) that for all 0 < δ < 1,
there holds the estimate

∫

Bδρ(p)

|∇u|2 dz ≤ 2‖A−1‖∞ ‖A‖∞δ2
∫

Bρ(p)

|∇u|2 dz

+C ‖A−1‖∞ε0
∫

Bρ(p)

|∇u|2 dz .

(50)

Next, we choose ε0 and δ strictly positive, independent of ρ et p, and such that

2‖A−1‖∞ ‖A‖∞δ2 + C ‖A−1‖∞ε0 =
1

2
.

For this particular choice of δ, we have thus obtained the inequality
∫

Bδρ(p)

|∇u|2 dz ≤ 1

2

∫

Bρ(p)

|∇u|2 dz .

Classical results then yield the existence of some constant α > 0 for which

sup
p∈B1/2(0) , 0<ρ<

1
2

ρ−α
∫

Bρ(p)

|∇u|2 dz < +∞ ,
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which prove the ε-regularity as already remark above.

Then, the energy gap follows easily remarking that, thanks to the conformal invariance, for all R > 0
and some q > 2, we have

‖∇u‖
Lq

(

BR
4

) ≤ Cq

R
q−2
q

‖∇u‖L2(BR).

Finally, the weak limit property is a just a special case of theorem I.5 of [Ri3] which is one of the many
consequences of theorem 3.1. �

Then we will be in position to prove theorem 0.2 which is the main result of this section once we will
have established the following lemma.

Lemma 3.1. There exists δ > 0 such that for all r, R ∈ R∗
+ satisfying 2r < R, Ω ∈ L2(BR\Br, so(n)⊗Rn)

and u ∈ W 1,2(BR \Br,Rn) satisfying
−∆u = Ω · ∇u

and

sup
r<ρ<R

2

∫

B2ρ\Bρ

|Ω|2 dz ≤ δ.

Then there exists C > 0, independent of u, r and R, such that

‖∇u‖L2,∞(BR\Br)
≤ C

[
sup

r<ρ<R
2

∫

B2ρ\Bρ

|∇u|2 dz
]1/2

. (51)

Proof of lemma 3.1:

Let

ε := sup
r<ρ<R

2

∫

B2ρ\Bρ

|∇u|2 dz.

We assume δ to be smaller than ε0 in the ε-regularity result theorem 3.2 in such a way that for any
2r < ρ < R/4 one has [

1

ρ2

∫

B2ρ\Bρ

|∇u|4 dz
] 1

4

≤ C

√
ε

ρ
. (52)

Let λ > 0. Let f(x) := |∇u| in BR
2
\B2r and f = 0 otherwise, we have that

∀ρ > 0

∫

B2ρ\Bρ

f4 dz ≤ C
ε2

ρ2
. (53)

For any ρ > 0 denote
U(λ, ρ) := {z ∈ B2ρ \Bρ ; f(z) > λ} .

Let j ∈ Z such that 2jρ−1 ≤ λ < 2j+1ρ−1. For any j, one has using (53) that

λ4 |U(λ, ρ)| ≤ C
ε2

ρ2
.

Let k ∈ Z by summing over j ≥ k one obtains

λ2
∣∣{z ∈ R

2 \B2kλ−1 ; f(x) > λ
}∣∣ ≤ C

∞∑

j=k

2−2j ε2 ≤ C 2−2k ε2
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So we deduce that for any k ∈ Z

λ2
∣∣{z ∈ R

2 ; f(z) > λ
}∣∣ ≤ C 2−2k ε2 + π 22k (54)

Taking 22k ≃ ε we obtain

‖∇u‖
L2,∞

(

BR
2
\B2r

) ≤ C

[
sup

r<ρ<R
2

∫

B2ρ\Bρ

|∇u|2 dx
]1/2

. (55)

using now the triangular inequality for the norm L2,∞ and the fact that the L2,∞ norm of ∇u is controled
by the L2 norm of ∇u over respectively BR \BR

2
and B2r \Br, (55) implies (51) and lemma 3.1 is proved.

�

3.1 Proof of theorem 0.1 and 0.2

Proof of theorem 0.2:

Let ε0 > 0 be the one of the theorem 3.1.

Step 1: We reduce the problem to an L2,1 estimate

Indeed, we use the duality L2,1 − L2,∞ in order to infer

∫

BR
2
\B2r

∣∣∣∣
1

ρ

∂u

∂θ

∣∣∣∣
2

dx ≤
∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
L2,1

(

BR
2
\B2r

)

∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
L2,∞

(

BR
2
\B2r

)

Combining this inequality with (51) we obtain

∫

BR
2
\B2ρ

∣∣∣∣
1

ρ

∂u

∂θ

∣∣∣∣
2

dx ≤ C

∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
L2,1

(

BR
2
\B2r

)

[
sup

r<ρ<R
2

∫

B2ρ\Bρ

|∇u|2 dx
]1/2

(56)

Hence, thanks to duality, it suffices to control the L2,1-norm of 1
ρ
∂u
∂θ by the L2 norm of ∇u in the annulus

in order to prove the theorem.

Step 2: We prove the theorem assuming that

∫

BR\Br

|Ω|2 dz < ε0.

We start by extending Ω, setting

Ω̃ =





Ω on BR \Br

0 on Br .

Hence, thanks to theorem 3.1, there exists Ã ∈W 1,2(BR, Gln(R)) ∩ L∞(BR, Gln(R)) such that

div(∇Ã− Ã Ω̃) = 0

and ∫

BR

(|∇Ã|2 + |∇Ã−1|2) dz + dist({Ã, Ã−1, }, SO(n)) ≤ C

∫

BR

|Ω̃|2 dz. (57)
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Then, thanks to Poincaré’s lemma, there exists B̃ ∈W 1,2(BR(0),Mn(R)) such that

∇Ã− Ã Ω̃ = ∇⊥B̃ (58)

and, thanks to (57) and (58), we get

‖∇B̃‖L2(BR) ≤ C‖Ω‖L2(BR\Br),

here C is a constant independent of Ω. Hence, u satisfies

div(Ã∇u) = ∇⊥B̃ · ∇u on BR \Br.

We extend u to BR by ũ using the Whitney’s extension theorem, see [AdFo] or [Ste] for instance, then
we get ũ ∈W 1,2(BR) such that

∫

BR

|∇ũ|2 dz ≤ C

∫

BR\Br

|∇u|2 dz. (59)

We consider the Hodge decomposition of Ã∇ũ on BR, i.e there exists C ∈ W 1,2
0 (BR) and D ∈ W 1,2(BR)

such that
Ã∇ũ = ∇C +∇⊥D. (60)

Moreover, thanks to (59), we get

∫

BR

|∇C|2 dz +
∫

BR

|∇D|2 dz =

∫

BR

|Ã∇ũ|2 dz ≤ C

∫

BR\Br

|∇u|2 dz .

Here we use the fact that C vanishes on the boundary to get that
∫

BR

∇C · ∇⊥Ddz = 0.

Then, on BR \Br , C satisfies

∆C = ∇⊥B̃ · ∇u.
As usual, we split as follows C = v + φ where φ ∈ W 1,2

0 (BR \Br) and v ∈ W 1,2(BR \Br) which satisfy

∆φ = ∇⊥B̃ · ∇u

and
∆v = 0.

On the one hand, thanks to lemma 2.1 we get, for 0 < λ < 1, that

‖∇φ‖L2,1(BR\Bλ−1r)
≤ C(λ) ‖∇B̃‖2 ‖∇u‖2 .

On the other hand, we decompose v as a Fourier series,

v = c0 + d0 log(ρ) +
∑

n∈Z∗

(cnρ
n + dnρ

−n)einθ.

Since 1
ρ
∂v
∂θ has no logarithm part, we conclude as in lemma A.2 that for any 0 < λ < 1 we have

∥∥∥∥
1

ρ

∂v

∂θ

∥∥∥∥
L2,1(BλR\Bλ−1r)

≤ C(λ) ‖∇v‖2.
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The Dirichlet principle implies that
‖∇v‖2 ≤ ‖∇C‖2,

then we get ∥∥∥∥
1

ρ

∂C

∂θ

∥∥∥∥
L2,1(BλR\Bλ−1r)

≤ C(λ) ‖∇u‖L2(BR\Br). (61)

Now we estimate D, which satisfies the following equation

∆D = ∇Ã · ∇⊥ũ on BR.

Then, we also decompose D as D = v + φ where φ ∈W 1,2
0 (BR) and v ∈W 1,2(BR).

∆φ = ∇Ã · ∇⊥u

and
∆v = 0.

In the one hand, thanks to lemma 1.1, we have

‖∇φ‖2 ≤ ‖∇φ‖L2,1(BR) ≤ C ‖∇Ã‖2 ‖∇ũ‖2

≤ C ‖∇u‖L2(BR\Br).

in the other hand, since v is harmonic, for any 0 < λ < 1, we have

‖∇v‖L2,1(BλR) ≤ C(λ) ‖∇v‖L2(BR)

≤ C(λ) ‖∇D‖L2(BR)

≤ C(λ) ‖∇u‖2.

Finally
‖∇D‖L2,1(BλR\Bλ−1r)

≤ C(λ) ‖∇u‖2. (62)

Combining (60), (61) and (62), we get

∥∥∥∥Ã
1

r

∂ũ

∂θ

∥∥∥∥
L2,1(BλR\Bλ−1r)

≤ C(λ) ‖∇u‖2.

Finally, using (57), we get that

∥∥∥∥
1

ρ

∂ũ

∂θ

∥∥∥∥
L2,1(BλR\Bλ−1r)

≤ C(λ) ‖∇u‖2, (63)

which proves, as remark at the hand of step 1, the theorem under the extra assumption.

Step 3: General case

We construct two sequences of radii ri and Ri such that

r = r0 < r1 = R0 < · · · < ri+1 = Ri < · · · < RN = R
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with ∫

BRi
\Bri

|Ω|2 dz ≤ ε0

and

N ≤
∫
BR\Br

|Ω|2 dz
ε0

.

First, applying (63) of step 2, we get that
∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
L2,1(BλRi

\Bλ−1ri
)

≤ C(λ) ‖∇u‖L2(BRi
\Bri

) (64)

We chose δ such that
δ <

ε0
4

hence for all i we have ∫

B4ri
\B ri

4

|Ω|2 dz < 4δ < ε0

Let Si = min(R, 4ri) and si = max(r, ri4 ), then we apply again (63) of step 2 on BSi \Bsi , which gives
∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
L2,1(BλSi

\Bλ−1si
)

≤ C(λ) ‖∇u‖L2(BSi
\Bsi

) (65)

Finally, summing (64) and (65), for i = 0 to N , we get
∥∥∥∥
1

ρ

∂u

∂θ

∥∥∥∥
L2,1(BλR\Bλ−1r)

≤ C(λ) ‖∇u‖2,

which achieves the proof of theorem 0.2 . �

We shall now make use of the theorem 0.2 in order to prove the quantization of the angular part of
the energy for solutions to antisymmetric elliptic systems.

We wil call a bubble a solution u ∈ W 2,1(R2,Rn) of the equation

−∆u = Ω · ∇u on R
2,

where Ω ∈ L2(R2, so(n)⊗ R2).

Proof of theorem 0.1 :

First we are going to separate B1 in three parts: one where uk converge to a limit solution, some
neighborhoods where the energy concentrates and where blow some bubbles and some neck regions which
join the first two parts. This ”bubble-tree” decomposition is by now classical, see [Pa] for instance, hence
we just sketch briefly how to proceed.

Step 1 : Find the point of concentration

Let ε0 be the one of theorem 3.2 and δ the one of theorem 0.2. Then, thanks to (7), we easily proved
that there exists finitely many points a1, . . . , an where

∫

B(ai,r)

|Ωk|2 dz ≥ ε0 for all r > 0. (66)
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Moreover, using theorem 3.2, we prove that there exists Ω∞ ∈ L2(B1, so(n)⊗R2) and u∞ ∈ W 2,1(B1,R
n)

a solution of −∆u = Ω∞ · ∇u on B1, such that, up to a subsequence,

Ωk ⇀ Ω∞ in L2
loc(B1, so(n)⊗ R

2),

and
uk → u∞ in W 1,p

loc (B1 \ {a1, . . . , an}) for all p ≥ 1.

Of course, if ‖Ωk‖∞ = O(1) or Ωk = Λ(uk,∇uk) where Λ(., p) = O(|p|), then uk is bounded in W 2,∞

which gives the convergence in C1,η
loc for all η ∈ [0, 1[.

Step 2 : Blow-up around ai

We choose ri > 0 such that ∫

B(ai,ri)

|Ω∞|2 dz ≤ ε0
4
.

Then, we define a center of mass of B(ai, ri) with respect to Ωk in the following way

aik =




∫

B(ai,ri)

xα|Ωk|2 dz
∫

B(ai,ri)

|Ωk|2 dz




α=1,2

.

Let λik be a positive real such that

∫

B(aik,r
i)\B(aik,λ

i
k)

|Ωk|2 dz = min
(
δ,
ε0
2

)
.

If λik 6= o(1), then we restart the process replacing ri by lim inf λik until λik = o(1). Then we set

ũk(z) = uk(a
i
k + λikz), Ω̃k(z) = λik Ωk(a

i
k + λikz) and N

i
k = B(aik, r

i) \B(aik, λ
i
k).

Observe that the scaling we chose for defining Ω̃k(z) guaranties that

∫

B

(

0, ri

λi
k

)

(
|Ω̃k|2 + |∇ũik|2

)
dz =

∫

B(aik,r
i)

(
|Ωk|2 + |∇uik|2

)
dx ≤ C < +∞

moreover we have
−∆ũik = Ω̃ik · ∇ũik .

Modulo extraction of a subsequence, we can assume that for each i

∇ũik ⇀ ∇ũi∞ in L2
loc(R

2,Rn) Ω̃ik ⇀ Ω̃i∞ in L2
loc(R

2, so(n)⊗ R
2).

The weak limit property of theorem 3.2 implies that ũ∞ and Ω̃∞ satisfy what we call a bubble equation

−∆ũi∞ = Ω̃i∞ · ∇ũi∞ .

In fact the convergence of uik to ui∞ is in W 1,p
loc (R

2 \ {a1i , . . . , ani }) for all p ≥ 1 where the aji the possibly

point of concentration of Ω̃ik where

∫

B(aji ,r)

|Ω̃ik|2 dz ≥ ε0 for all r > 0, (67)
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which are necessary in a finite number and in B1.

Step 3 : Iteration

Two cases have to be considered separatly:

Either Ω̃k is subject to some concentration phenomena as (66), and then we find some new points
of concentration, in such a case we apply step 2 to our new concentration points. Or, ũk converges in
W 1,p
loc (R

2) to a bubble (possibly trivial).

Of course this process has to stop, since we are assuming a uniform bound on ‖Ωk‖2 and each step is
consuming at least min

(
δ, ε02

)
of energy of Ωk. This process is sketched in the following picture.

×

×
×

×

××

Figure 1: Decomposition of B1

Analysis of a neck region:

A neck region is an annullar region union of a finite number of annuli N i
k = B

(
aik, µ

i
k

)
\ B

(
aik, λ

i
k

)

such that

lim
k→+∞

λik
µik

= 0,

∫

Ni
k

|Ωk|2 dz ≤ min
(
δ,
ε0
2

)
(68)

and
Xk = ∇⊥d(aik, . ).

In order to prove theorem 0.1, we start by proving a weak estimate on the energy of gradient in the region
N i
k . First we remark that, for all ε > 0, there exists r > 0 such that for all ρ > 0 such that

B2ρ(a
i
k) \Bρ(aik) ⊂ N i

k(r)

where N i
k(r) = B

(
aik, rµ

i
k

)
\B

(
aik,

λi
k

r

)
, we have

∫

B2ρ(aik)\Bρ(aik)

|∇u|2 dz ≤ ε . (69)

22



If this would not be the case there would exist a sequence ρik → 0 such that, up to a subsequence,
ûk = uk(a

i
k + ρikz) converge with respect to every W 1,p−norm to a non-trivial solution of

−∆û = Ω̂∞ · ∇û on R
2 \ {0},

where Ω̂∞ is a weak limit, up to a subsequence, of Ω̂k. Using the fact that the W 1,2-norm of ûk is
bounded, we deduce using Schwartz lemma that it has to be in fact a solution on the whole plane. Using
this time the second part of theorem 3.2 we deduce that Ω̂∞ have energy at least ε0, which contradicts (68).

Finally, using theorem 0.2 on each N i
k(r) , we obtain

lim
r→0

lim
k→+∞

‖〈∇uk, Xk〉‖L2(Ni
k
(r)) ≤ C lim

r→0
lim

k→+∞

(
sup
ρ

∫

B2ρ(aik)\Bρ(aik)

|∇u|2 dz
)

= 0.

Which achieves the proof of theorem 0.1. �

This phenomena of quantization of the angular part of the gradient seems to be quite general for
systems with antisymmetric potentials, in a forthcoming paper [LaRi] we investigate the quantization for
some fourth order elliptic systems in 4-dimension.

3.2 Description of the function in the neck regions :

In this subsection we give a precise description of the behavior of ∇uk in the neck regions when the radial
part is not quantized. We assume that our equation is at most critical, that is to say Ωk = O(|∇uk|).
Which is quite reasonable since when the equation is super-critical it is naturally subject to loose of
compactness.

Proving the theorem 0.2, we have proved, see (60) and what follows, that if the L2 norm of Ω is
smaller then a positive constant δ0 on an annulus BR \Br, then there exists A ∈W 1,2 ∩L∞(B1, Gln(R)),
h ∈ L2(B1,R

2 ⊗Rn) and C ∈ R2 ⊗Rn such that

A∇u =
C

r
+ h,

where ‖h‖L2,1 is uniformly bounded by the L2 norm of ∇u, independently of the conformal class of the
annulus. Moreover, up to choose ε0 small enough, we can assume that A is very closed from SO(n).

We are going to prove that this decomposition is also available in a neck region. Indeed, a neck region
is an annular region of the form BRk

\Brk . Since the L2 norm of Ωk is uniformly bounded we can divide
the annulus in a finite number of annuli where the L2 norm of Ωk is smaller than ε0

2 . In fact we make
this decomposition in such a way that on each annulus the L2 norm of Ωk is bigger than ε0

4 .
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Figure 2: Decomposition of the neck region

Let (Bri+1
k

\Brik)1≤i≤N be the different annuli, where r1k = rk and rN+1
k = Rk. If there is one or two

annuli, there is nothing to prove since the L2 norm of Ωk on BRk
\Brk is smaller than δ0. Now, we are

going to prove the result for three annuli and the result will follow by induction.

r1k r2k r3k r4k

Figure 3: Decomposition of the neck region

On Br3k \ Br1k and Br4k \ Br2k the L2 norm of Ωk is smaller than δ0, then there exists Aik ∈ W 1,2 ∩
L∞(Bri+2

k
\Brik , Gln(R)), h

i
k ∈ L2(Bri+2

k
\Brik ,R

2 ⊗Rn) and Cik ∈ R2 ⊗Rn such that

Aik∇uk =
Cik
r

+ hik on Bri+2
k

\Brik ,

where ‖hik‖L2,1 is uniformly bounded. Then we remark that

C̃2
k − C̃1

k

r
is uniformly bounded on L2,1(Br3k \Br2k),

where C̃ik = (Aik)
−1Cik. If the conformal class of Br2k \Br1k is bounded by the one of Br3k \Br2k , that is to

say
r2k
r1k

= O
(
r3k
r2k

)
, then

C̃2
k − C̃1

k

r
is uniformly bounded on L2,1(Br2k \Br1k).

Finally, we have

∇uk =
C̃2
k

r
+ h̃ on Br4k \Br1k ,

where ‖h̃‖L2,1 is uniformly bounded, which achieves the proof. Else we can assume that
r3k
r2k

= o
(
r2k
r1k

)
.

But since the L2 norm of ∇u is bounded on Br2k \Br1k we have

C̃1
k

(
log

(
r2k
r1k

)) 1
2

= O(1).
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Then

C̃1
k

(
log

(
r3k
r2k

)) 1
2

= o(1).

Which means that the L2 norm of
C̃1

k

r goes to zero on Br3k \Br2k but h̃1 also goes to zero in L2 norm.

Indeed its L2,1 norm and its L2,∞ norm goes to zero as the one ∇u and
C̃1

k

r , hence we conclude using
H{ölder inequality. Hence Ωk which is controls by |∇uk| has to go to zero in L2 norm on Br3k \Br2kwhich
is a contradiction with our hypothesis. Arguing by contradiction we claim that

∇uk =
C̃2
k

r
+ h̃ on Br4

k
\Br1

k
.

Hence we have the following theorem

Theorem 3.3 (Theorem 0.1 bis). Let Λ(z, p) be a map in C0(Rn × (Rn ⊗ R2), (so(n) ⊗ R2)) such that
Λ(., p) = O(|p|) with respect to p. Let uk ∈W 1,2(B1,R

n) be a sequence of solutions of

−∆uk = Λ(uk,∇uk) · ∇uk, (70)

with uniformly bounded energy, i.e. ∫

B1

|∇uk|2 dz ≤M. (71)

Then there exists u∞ ∈W 1,2(B1,R
n) a solution of −∆u∞ = Λ(u∞,∇u∞) · ∇u∞ on B1, l ∈ N∗ and

1. ω1, . . . , ωl a family of solutions to system of the form

−∆ωi = Ωi · ∇ωi on R
2,

where Ωi ∈  L2(B1, so(n)⊗ R2),

2. a1k, . . . , a
l
k a family of converging sequences of points of B1,

3. λ1k, . . . , λ
l
k a family of sequences of positive reals converging all to zero,

4. c1k, . . . , c
l
k a family of sequences of nonnegative reals converging all to zero,

such that, up to a subsequence,

uk → u∞ on C1,η
loc (B1 \ {a1∞, . . . , al∞}) for all η ∈ [0, 1[

and ∥∥∥∥∥∇
(
uk − u∞ −

l∑

i=1

(
ωik + cik log(λ

i
k + d(aik, . ))

)
)∥∥∥∥∥

L2
loc(B1)

→ 0,

where ωik = ωi(aik + λik . ) .

3.3 Counterexample to the quantization of the radial part of the gradient

Thanks to the previous subsection, we know that the failure of quantization is given in the neck region
by a function of the form ck log(r). Hence we look for uk : B1 → R3 whose third component behaves as
ck log(r). For this we define the following smooth functions

U3
k (r) =

{
0 if 0 ≤ r ≤ 1

2
log(r)

log(k)
1
2

if r ≥ 2,

25



such that |(U3
k )

′(r)| ≤ 1

log(k)
1
2
on [ 12 , 2],

φ(r) =





2r if 0 ≤ r ≤ 1
4

1 if 1
2 ≤ r ≤ 2

2
r if r ≥ 4,

such that |φ′(r)| ≤ 4 on [ 14 ,
1
2 ]∪ [2, 4], and we set ψ = r(rφ′)′

φ −1, we easily see that ψ is a smooth function

with compact support in [ 14 , 4]. Finally we set

uk(r, θ) =




cos(θ)φ(kr)
sin(θ)φ(kr)
U3
k (kr)


 ,

and

Ωθk(r, θ) =




0 ψ(kr)
r sin(θ)r∆u3k

−ψ(kr)
r 0 −cos(θ)r∆u3k

−sin(θ)r∆u3k cos(θ)r∆u3k 0


 .

We easily verify that ∆uk = Ωk · ∇uk where Ωk = Ωθkrdθ and that the L2 norm of ∇uk and Ωk are
bounded on B1. We have a bubble which blow up at radius 1

k , and

lim
R→+∞

lim
k→+∞

∫

B 1
R
\B

R 1
k

|Ωk|2 dz = 0,

but

lim
R→+∞

lim
k→+∞

∫

B 1
R
\B

R 1
k

|∇uk|2 dz = 1,

which is a failure of energy quantization and proves the optimality of the conclusion of theorem 0.1.

4 Energy Quantization for critical points to conformally invari-

ant lagrangians.

In the present section we are going to use theorem 0.1 in order to prove theorem 0.3

In his proof of the Heinz-Hildebrandt’s regularity conjecture, the second author prove that the Euler
Lagrange equations to general conformally invariant lagrangians which are coercive and of quadratic
growth can be written in the form of an elliptic system with an antisymmetric potential. Precisely we
have

Theorem 4.1 (Theorem I.2 [Ri3]). Let Nk be a C2 submanifold of Rm and ω be a C1 2-form on Nk such
that the L∞-norm of dω is bounded on Nk. Then every critical point in W 1,2(B1, N

k) of the Lagrangian

F (u) =

∫

B1

[
|∇u|2 + u∗ω

]
dz (72)

satisfies
−∆u = Ω · ∇u,

with

Ωij = [Ai(u)j,l −Aj(u)i,l] ∇ul +
1

4
[Hi(u)j,l −Hj(u)i,l] ∇⊥ul . (73)

26



where A and λ are in C0(B1,Mm(R)⊗∧1
R2) satisfy

m∑

j=1

Aji,l∇uj = 0

and Hi
j,l := d(π∗ω)(εi, εj, εl) where, in a neighborhood of Nk, π is the orthogonal projection onto Nk and

(εi)i=1···m is the canonical basis of Rm. �

From (73) we observe that for critical points to a conformally invariant C1−Lagrangian, there exists

Λ ∈ C0(TN ⊗ R
2, so(n)⊗ R

2) (74)

such that
Λ(v) = O(|v|), (75)

moreover we remark that Λ(u,∇u) · ∇u is always orthogonal to ∇u in the following sense

〈
∂u

∂xk
,Λ(u,∇u) · ∇u

〉
= 0 for k = 1, 2. (76)

For Λ ∈ C0(TN ⊗ R2, so(n)⊗ R2), we call a Λ-bubble a solution ω ∈ W 2,1(R2,Rn) of the equation

−∆ω = Λ(ω,∇ω) · ∇ω on R
2.

Theorem 4.2. Let uk ∈ W 1,2(B1,R
n) be a sequence of critical points of a functional which is conformally

invariant, which satisfies
−∆uk = Λ(uk,∇uk) · ∇uk, (77)

where Λ satisfies (74), (75) and (76). Moreover we assume that uk has a bounded energy, i.e.

‖∇uk‖2 ≤M.

Then there exists u∞ ∈W 1,2(B1,R
n) a solution of −∆u∞ = Λ(u∞,∇u∞) · ∇u∞ on B1, l ∈ N∗ and

1. ω1, . . . , ωl some non-constant Λ-bubbles

2. a1k, . . . , a
l
k a family of converging sequences of points of B1

3. λ1k, . . . , λ
l
k a family of sequences of positive reals converging all to zero.

such that, up to a subsequence,

uk → u∞ on C1,η
loc (B1 \ {a1∞, . . . , al∞}) for all η ∈ [0, 1[

and ∥∥∥∥∥∇
(
uk − u∞ −

l∑

i=1

ωik

)∥∥∥∥∥
L2

loc(B1)

→ 0 ,

where ωik = ω(aik + λikz). �
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Since (76) holds for any system issued from a lagrangian of the form (72), it is clear that theorem 0.3
is a consequence of theorem 4.2.

Proof of theorem 4.2 :

From the previous section, we have the quantization of the angular part of the gradient. To prove
theorem 4.2 it suffices then to prove the energy quantization for the radial part of the energy. Since uk
satisfies (77) then uk ∈ W 2,p(Bµi

k
(aik)) for all p < ∞, see theorem IV.3 of [Ri6] or lemma 7.1 of [ShTo],

hence we can multiply (77) by ρ∂uk

∂ρ and integrate. Using (76) we have, for any r ∈ [0, µik],

0 =

∫

Br

〈ρ∂uk
∂ρ

,Ω · ∇uk〉 dz =
∫

Br

〈ρ∂uk
∂ρ

,∆uk〉 dz.

Using Pohozaev identity, we get for all r ∈ [0, µik]

∫

∂Br

∣∣∣∣
∂uk
∂ρ

∣∣∣∣
2

dσ =

∫

∂Br

∣∣∣∣
1

ρ

∂uk
∂θ

∣∣∣∣
2

dσ

Finally, we have
lim
r→0

lim
k→+∞

‖∇uk‖L2(Ni
k(r))

= 0,

which concludes the proof of the theorem. �

In particular we get the quantization for the solution of the problem of prescribed mean curvature.
Indeed, an immersion of a Riemann surface Σ into R

3 with prescribed mean curvature H ∈ C0(R3,R)
satisfies the following H-system

∆u = 2H(u)ux ∧ uy, (78)

where z = x+ iy are some local conformal coordinates on Σ.

In order to state precisely our theorem, we define the notion of H-bubble as being a map ω ∈
W 1,2(R2,R3) satisfying

∆ω = 2H(ω)ωx ∧ ωy on R
2.

We shall also rescale the Riemann surface around a point. To that aim we will introduce some conformal
chart. Precisely there exists δ > 0 such that for any a ∈ Σ and 0 < λ < δ there exists a map Φa,λ :
B(a, δ) → R

2 which is a conformal-diffeomorphism, sends a to 0 and B(a, λ) to B(0, 1). We also associate
to each point a cut-off function χa ∈ C∞(Σ) which satisfies





χa ≡ 1 on B(a, δ2 )

χa ≡ 0 on Σ \B(a, δ) .

Corollary 4.1. Let Σ be a closed Riemann surface, H ∈ C0(R3,R) and uk ∈W 2,1(Σ,R3) a sequence of
non-constant solution of (78) on Σ then there exists, u∞ ∈W 2,1(Σ,R3) a solution of (78) , k ∈ N∗ and

1. ω1, . . . , ωl a family of H-bubbles

2. a1k, . . . , a
l
k a family of converging sequences of point of Σ

3. λ1k, . . . , λ
l
k a family of sequences of positive reals converging all to zero
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uk → u∞ on C1,η
loc (Σ \ {a∞1 , . . . , a∞k }) for all η ∈ [0, 1[

and moreover ∥∥∥∥∥∇
(
uk − u∞ −

l∑

i=1

χaik

(
ωi ◦ Φaik,λi

k

))∥∥∥∥∥
2

→ 0 .

We end up this section by mentioning a recent work by Da Lio, [DaL] in which energy quantiza-
tion results for fractional harmonic maps (which are also conformally invariant in some dimension) are
established using also Lorentz space uniform estimates.

5 Other applications to pseudo-holomorphic curves, harmonic

maps and Willmore surfaces

In this section we give some more applications of the uniform Lorentz-Wente estimates of section 2 to
problems where the conformal invariance play again a central role.

In the present section we are interested with Wente’s type estimate for first order system of the form

∇φ =

n∑

i=1

ai∇⊥bi (79)

Taking the divergence of this system gives the classical order 2 Wente system

∆φ =

n∑

i=1

∇ai · ∇⊥bi (80)

The gain of information provided by a first order system of the form (79) in comparison to classical second
order system (80) is illustrated by the fact that, in the first order case, no assumption on the behavior
of the solution φ at the boundary of the annulus is needed in order to obtain the Lorentz-Wente type
estimates of section 2. This is proved in lemma 5.1. This fact can be applied to geometrically interesting
situations that we will describe at the end of the present section.

5.1 Lorentz-Wente type estimates for first order Wente type equations.

The goal of this subsection is to prove the following lemma.

Lemma 5.1. Let n ∈ N∗, (ai)1≤i≤n and (bi)1≤i≤n be two families of maps in W 1,2(B1), 0 < ε < 1
4 and

φ ∈W 1,2(B1 \Bε) which satisfies

∇φ =

n∑

i=1

ai∇⊥bi. (81)

Then, for 0 < λ < 1, there exists a positive constant C(λ) independent of φ, ai and bi such that

‖∇φ‖L2,1(Bλ\Bλ−1ε)
≤ C(λ)

(
n∑

i=1

‖∇ai‖2 ‖∇bi‖2 + ‖∇φ‖2
)
.

�
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Proof of lemma 5.1 :

Taking the divergence of (81), gives

∆φ =

n∑

i=1

∇ai · ∇⊥bi .

Hence, as in the previous lemma, we start by considering a solution of this equation on the whole disk
and equal to zero on the boundary. Let ϕ ∈W 1,1

0 (B1) be the solution of

∆ϕ =

n∑

i=1

∇ai · ∇⊥bi .

Then, thanks to the improved Wente’s inequality (10), we have

‖∇ϕ‖L2,1(B1) ≤ C
n∑

i=1

‖∇ai‖2 ‖∇bi‖2 . (82)

We now consider the difference v = φ−ϕ, which is an harmonic function on B1 \Bε. Following the proof
of the lemma A.2, it suffices to control the logarithmic part of the decomposition in Fourier series. To
that aim we set

φ(ρ) =
1

2π

∫ 2π

0

φ(ρ, θ) dθ.

We have

dφ

dρ
=

1

2π

∫ 2π

0

∂φ

∂ρ
(ρ, θ) dθ =

1

2π

n∑

i=1

∫ 2π

0

ai
∂bi
∂θ

dθ

ρ

=
1

2π

n∑

i=1

∫ 2π

0

(ai − ai)
∂bi
∂θ

dθ

ρ
.

Hence

∣∣∣∣
dφ

dρ

∣∣∣∣ ≤
1

2π

∑

i=1

(∫ 2π

0

|ai − ai|2 dθ
) 1

2

(∫ 2π

0

∣∣∣∣
1

ρ

∂bi
∂θ

∣∣∣∣
2

dθ

) 1
2

.

Which gives, thanks to Poincaré’s inequality on the circle,

∣∣∣∣
dφ

dρ

∣∣∣∣ ≤ C
∑

i=1

(∫ 2π

0

∣∣∣∣
∂ai
∂θ

∣∣∣∣
2

dθ

) 1
2
(∫ 2π

0

∣∣∣∣
1

ρ

∂bi
∂θ

∣∣∣∣
2

dθ

) 1
2

,

where C is a constant independent of φ.

Then integrating over [1, ε], we get

∫ 1

ε

∣∣∣∣
dφ

dρ

∣∣∣∣ dρ ≤ C
n∑

i=1

∫ 1

ε

(∫ 2π

0

∣∣∣∣
∂ai
∂θ

∣∣∣∣
2

dθ

) 1
2
(∫ 2π

0

∣∣∣∣
1

ρ

∂bi
∂θ

∣∣∣∣
2

dθ

) 1
2

dρ

≤ C

n∑

i=1

(∫

D(0,1)\Bε

∣∣∣∣
1

ρ

∂ai
∂θ

∣∣∣∣
2

ρ dρ dθ

) 1
2
(∫

D(0,1)\Bε

∣∣∣∣
1

ρ

∂bi
∂θ

∣∣∣∣
2

ρ dρ dθ

) 1
2

≤ C

(
n∑

i=1

‖∇ai‖2 ‖∇bi‖2
)
.

(83)
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Moreover, by duality, we obtain

∫ 1

ε

∣∣∣∣
dϕ

dρ

∣∣∣∣ dρ ≤
∥∥∥∥∇ϕ

1

ρ

∥∥∥∥
1

≤ ‖∇ϕ‖L2,1

∥∥∥∥
1

ρ

∥∥∥∥
L2,∞

≤ C‖∇ϕ‖L2,1 . (84)

The combination of (82), (83) and (84) gives then

∫ 1

ε

∣∣∣∣
dv

dρ

∣∣∣∣ dρ ≤ C

(
n∑

i=1

‖∇ai‖2‖∇bi‖2
)

(85)

Following the approaches we used in the proofs of the various lemma in section 2, we decompose v as a
Fourier series, which gives

v(ρ, θ) = c0 + d0 ln(ρ) +
∑

n∈Z∗

(cnρ
n + dnρ

−n)einθ.

We have
v(ρ) = c0 + d0 ln(ρ)

Thanks to (85), we get that

|d0| log
1

ε
≤ C

(
n∑

i=1

‖∇ai‖2 ‖∇bi‖2
)

. (86)

We have moreover

‖∇v‖L2,1(B1\Bε) ≃ |d0|
∫ ∞

0

|{x ∈ B1 \Bε ; |x|−1 > t}|1/2 dt

= |d0|
∫ ∞

0

|(B1 \Bε) ∩B1/t|1/2 dt ≤ π |d0|
∫ 1/ε

0

dt

max{t, 1} = π |d0|
[
1 + log

1

ε

]
(87)

Thus combining (86) and (87) we have in one hand

‖∇v‖L2,1(B1\Bε) ≤ C

(
n∑

i=1

‖∇ai‖2 ‖∇bi‖2
)

, (88)

in the other hand, as in lemma A.2, we have

∥∥∥∥∥
∑

n∈Z∗

(cnρ
n + dnρ

−n)einθ

∥∥∥∥∥
L2,1(Bλ\Bλ−1ε)

≤ C(λ)‖∇v‖2 ≤ C(λ) ‖∇φ‖2. (89)

Combining (88), (89) we have for any λ ∈ (0, 1) the existence of a positive constant C(λ) > 0 such that

‖∇v‖L2,1(Bλ\Bλ−1ε)
≤ C(λ)

(
n∑

i=1

‖∇ai‖2 ‖∇bi‖2 + ‖∇φ‖2
)
. (90)

Finally summing (82) and (90) gives the desired inequality and lemma 5.1 is proved. �
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5.2 Quantization of pseudo-holomorphic curves on degenerating Riemann

surfaces

We consider a closed Riemann surfaces (Σ, h), where Σ is smooth compact surface without boundary, and
h a metric on Σ. Since we are only interested in the conformal structure of Σ, we can assume, thanks to
the uniformization theorem, see [Hub], that h has constant scalar curvature. We consider (N, J) to be a
smooth almost-complex manifold and we look at pseudo-holomorphic curves between (Σ, h) and (N, J),
in other words we consider applications u ∈W 1,2(Σ, N) satisfying

∂u

∂x
= J(u)

∂u

∂y
, (91)

where z = x+ iy are some local conformal coordinates on Σ. These objects are fundamental in symplec-
tic geometry, see [McDS]. In the study of the moduli space of pseudo-holomorphic curves in an almost
complex manifold, the compactification question comes naturally. In other words it is of first importance
to understand and describe how sequences of pseudo-holomorphic curves with possibly degenerating con-
formal class behave at the limit.

The so-called Gromov’s compactness theorem [Gr], see also [PW], [Si] and [Hum], provides an answer
to this question.

Theorem 5.1. [Gr] Let (N, J) a compact almost manifold, Σ a closed surface and (jn) a sequence of
complex structures on Σ. Assume un : (Σ, jn) → (N, J) is a sequence of pseudo-holomorphic curves of
bounded area with respect to an arbitrary metric on N . Then un converge weakly to some cusp curve4

u : Σ → (N, J) and there exists finitely many bubbles, holomorphic maps (ωi)i=1···l from S2 into (N, J),
such that, modulo extraction of a subsequence

lim
n→+∞

E(un) = E(u) +
l∑

i=1

E(ωi) .

�

In fact the bound, on the energy is not necessary assuming that the target manifold is symplectic, i.e
if there is ω a closed 2-form on N compatible with J . Indeed, in that case, see chapter 2 of [McDS] for
instance, all u : Σ → N(J, ω), regular enough, satisfies

A(u) =

∫

Σ

dvolu∗g ≥
∫

Σ

u∗ω

where g = ω(., J.), with equality if and only if u is pseudo-holomorphic. Hence, for symplectic manifold,
pseudo-holomorphic curves are area minimizing in their homology class. In particular, they are minimal
surfaces, i.e. conformal and harmonic, and we can use the general theory of harmonic maps, see remark
4.2 of [Zhu].

We propose below a proof of theorem 5.1 that follows the main lines of the most classical one (i.e.
we shall decompose our curves in thin and thick parts at the limit) but the argument we provide in
order to prove that there is no energy in the neck and collar regions is new. We don’t make use of the
standard isoperimetric machinery but we simply apply the first order Wente’s estimate on annuli given by
lemma 5.1 which fits in an optimal way the particular structure of the pseudo-holomorphic equation (91) .

4we refer to chapter 5 of [Hum] for precise definitions
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Proof of theorem 5.1:

The proof consists in splitting the surface in several pieces where the sequence converges either strongly
to a non-constant limiting map or weakly to a constant. Then in a second step, we prove that there is
in fact no energy in the pieces where the converge is weak. Note that in contrast to the previous section,
in the present case the complex structure of the surface is not fixed and is a priori free to degenerate.
Our aim is to show how lemma 5.1 can be used in this context and therefore we shall be more brief on
the classical parts such as the limiting Deligne-Mumford thin-thick decomposition which is described for
instance in [Hum] or in [Zhu]. Observe that due to the structure of the equation the ε-regularity theorem
for pseudo-holomorphic curves is a consequence of theorem 3.2 .

For simplicity, we will also assume that we have a surface of genus g greater or equal to 2. Hence let
hn be the hyperbolic metric of volume 1 associated to the complex structure jn,

According to the Deligne-Mumford compactification of Riemann surfaces, see chapter 4 of [Hum],
modulo extraction of a subsequence, (Σ, hn) converges to an hyperbolic Riemannian (Σ, h) surface by
collapsing p (0 ≤ p ≤ 3g − 3) pairwise disjoint simple closed geodesics (γin).

Far from the collapsing geodesics, the metric uniformly converges, and we have a classical ”bubble-
tree” decomposition, that is to say un converges to a pseudo-holomorphic curves of the (Σ, h) expect
possibly at finitely many points where, as in the previous section, un is forming bubbles (i.e pseudo-
holomorphic curves from C to N) which are ”connected” to each other by some neck regions N i

n =
B(ain, µ

i
n) \B(ain, λ

i
n) where the weak L2 energy goes to zero,

lim
r→0

lim
n→+∞

‖∇un‖L2,∞(Ni
n(r))

= 0,

where N i
n(r) = B(ain, rµ

i
n) \ B(ain,

λi
n

r ). This can be established by combining the fact that, on such
annular regions, the maximal L2 energy of ∇un on dyadic annuli has to vanish (otherwise we would have
another bubble) and the fact that lemma 3.1 and 5.1 applies to this situation.

Near the collapsing geodesics, our surface becomes asymptotically isometric to an hyperbolic
cylinder of the form

Al =

{
z = reiφ ∈ H : 1 ≤ r ≤ el, arctan (sinh(

l

2
)) < φ < π − arctan (sinh(

l

2
))

}
,

where the geodesic correspond to
{
rei

π
2 ∈ H : 1 ≤ r ≤ el

}
and the line {r = 1} and {r = el} are identified

via z 7→ elz. This is the collar region. It is sometimes easier to consider the following cylindrical
parametrization, i.e.

Pl =

{
(t, θ) :

2π

l
arctan (sinh(

l

2
)) < t <

2π

l

(
π − arctan (sinh(

l

2
))

)
, 0 ≤ θ ≤ 2π

}

in this parametrization the constant scalar curvature metric reads

ds2 =

(
l

2πsin( lt2π )

)2

(dt2 + dθ2),

where the geodesic corresponds to {t = π2

l } and the line {θ = 0} and {θ = 2π} are identified.
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Then, as ln, the length of the degenerating geodesic, goes to zero, Pln = [0, Tn]×S1 up to translation,
which can be decompose as follows, see proposition 3.1 of [Zhu].

For each such a thin part, one can extracts a subsequence such that the following decomposition holds.
There p ∈ N and exists 2p sequences (a1n), (b

1
n), (a

2
n), (b

2
n),. . . , (a

p
n), (b

p
n) of positive numbers between 0

and Tn such that

lim
n→+∞

bin − ain
Tn

= 0.

and up to rescaling and identifying ] − ∞,+∞[×S1 with C \ {0}, there exists a bubble ωi (i.e pseudo-
holomorphic curve from C to N) such that

un
(
ain + bin

2
+

t

bin − ain
, θ

)
→ ωi on C2

loc(C \ {0}) .

Moreover, for any ε > 0, there exists r > 0 such that for any T ∈ [bin + r−1, ai+1
n − r−1]

∫

[T,T+1]×S1

|∇un|2 ≤ ε . (92)

Denoting J in = [ain, b
i
n] × S1, I0n = [0, a1n] × S1, Iin = [bin, a

i+1
n ] × S1 and Ipn = [bpn, Tn] × S1 and Iin(r) =

[bin + r−1, ai+1
n − r−1], (92) combined with lemma 3.1 implies

lim
r→0

lim
n→+∞

‖∇un‖L2,∞(Iin(r))
= 0 . (93)

This decomposition is illustrated by the following picture.
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ain bin ai+1
n bi+1

n ai+2
n bi+2

n

Bubbles

Neck regions

Figure 4: Decomposition in necks and bubbles

As in the previous section, in order to prove that there is no energy at the limit in the neck regions

of the thin parts, we combine the vanishing of the L2,∞−norm given by (93) with a uniform estimate
on the L2,1 norm of |∇un| on each Iin(r), which is a direct consequence of the lemma 5.1 applied to the
pseudo-holomorphic equation

∇un = J(un)∇⊥un .

This concludes the proof of theorem 5.1. �

Remark 5.1. Here again, in addition to the fact that our argument is not specific to J-holomorphic
curves, our proof, in comparison with previous ones such as the one given in [Zhu], has the advantage
to require less regularity on the target manifold N . In fact, following the approach of [Pa] or [LiWa], in
order to establish the angular energy quantization, M.Zhu goes through a lower estimate of the following
second derivative

d2

dθ2

∫

S1×{t}

|uθ|2 dθ

Such an estimate requires for the metric of N to be at least C2. In the alternative proof we are providing,
in order to apply lemma 5.1, we only require the almost complex structure and the compatible metric to
be C1 which corresponds to a weakening of the assumption of magnitude 1 in the derivative.

5.3 Quantification for harmonic maps on a degenerating surfaces, a coho-

moligical condition.

The aim of this section is to shed a new light on the quantization for harmonic maps on a degenerating
surfaces, which has been fully described by M.Zhu in [Zhu].

The main result in the present subsection is the following results which connects energy quantization
for harmonic maps into spheres with a cohomological condition.

Theorem 5.2. Let (Σ, hn) be a sequence of closed Riemann surfaces equipped with their constant scalar
curvature metric with volume 1. Let un be a sequence of harmonic maps from (Σ, hn) into the unit sphere
Sm−1 of the euclidian space Rm. Assume

lim sup
n→+∞

E(un) < +∞
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and assume that the following closed forms

∀i, j = 1 · · ·m ⋆ (uin du
j
n − ujn du

i
n)

are all exact. Then the energy quantization holds : modulo extraction of a subsequence, on each component
of the limiting thick part, un converges strongly, away from the punctures, to some limiting harmonic
map u and there exists finitely many bubbles, holomorphic maps (ωi)i=1···l from S2 into (N, J), - forming
possibly both on the thick and the thin parts - such that, modulo extraction of a subsequence

lim
n→+∞

E(un) = E(u) +

l∑

i=1

E(ωi) . (94)

. �

Proof of theorem 5.2:

In fact, assuming that our sequence of harmonic maps un get valued into a sphere Sm, the equation
simply write

∆uin =
(
uin∇(un)j − (un)j∇uin

)
∇ujn.

But div
(
uin∇(un)j − (un)j∇uin

)
= 0 = d(∗un ∧ dun). Hence assuming that the closed ∧2Rm valued

1-form ⋆(un ∧ dun) is exact , there exists bn ∈W 1,2 such that

⋆(un ∧ dun) = dbn,

and
‖bn‖W 1,2 = O (‖un‖W 1,2) .

Then we have
div(∇un −∇⊥bn un) = 0.

If we are on a neck region such as B1 \D(0, εn), it can be integrated as

∇un = ∇⊥bn un +∇⊥cn + dn∇ log(ρ), (95)

where cn ∈W 1,2(B1) and dn ∈ R. Then we try to control the gradient of the logarithmic part, remarking
that

d

dρ

∫ 2π

0

un dθ =

∫ 2π

0

1

ρ

∂bn
∂θ

uk dθ + 2π
dn
ρ

=

∫ 2π

0

1

ρ

∂bn
∂θ

(uk − uρn) dθ + 2π
dn
ρ
,

where uρn is the mean value of un over ∂Bρ. Integrating the previous identity from εn to an arbitrary ρ
gives

2π(uρn − uεnn ) =

∫ ρ

εn

∫ π

0

1

t

∂bn
∂θ

(uk − utn) dθ dt+ 2π log

(
ρ

εn

)
. (96)

And, thanks to Poincaré’s inequality, we get

∣∣∣∣
∫ ρ

εn

∫ π

0

1

t

∂bn
∂θ

(uk − utn) dθ dt

∣∣∣∣ ≤ ‖∇bn‖2‖∇un‖2. (97)
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Then, combining (96) and (97), we finally obtain that

dn = O


 1

log
(

1
εn

)


 .

Which implies, as in the proof of lemma 5.1, that the L2,1-norm of dn∇ log(ρ) in B1\D(0, εn) is uniformly
bounded. By the mean of lemma 5.1 and thanks to (95), we see that he L2,1-norm of ∇(un − dn log(ρ))
is also uniformly bounded and these two uniform bounds imply the uniform L2,1 bound of ∇un in neck
regions. Combining the uniform L2,1 bound of ∇un in neck regions together with the lemma 3.1 gives
the desired energy quantization (94) and theorem 5.2 is proved. �

More generally we can raise the following question : Considering a sequence of harmonic maps

from a degenerating surface to a general target manifolds, is there is a simple cohomological

condition similar as the one in theorem 5.2 ensuring the quantization of the energy in collar

region?

5.4 Energy Quantization for Willmore Surfaces.

Finally we would like to recall a last application of lemma 5.1 that has been used in a recent work by
Y.Bernard and T.Riviere in [BR] for proving Energy Quantization for sequences of Willmore surfaces
with uniformly bounded energy and non-degenrating conformal classes. The problem can be described
as follows : for a sufficiently smooth immersion u : Σ → Rm, where Σ is a closed two dimensional
Riemannian surface, we can define its mean curvature vector ~H and we consider the following functional

W (u) =

∫

Σ

| ~H |2 u∗(dy).

where u∗(dy) denotes the metric induced on Σ by the immersion u. This functional is called, the Willmore
functional and is known to be conformally invariant (see [Ri6]). Critical points to the functional W are
called Willmore immersions or Willmore surfaces. Hence as for harmonic maps or pseudo holomorphic
curves the question of the quantization of sequences of Willmore surfaces arise naturally. The second
author has developed appropriate tools to study weak critical points toW in [Ri4] and [Ri5] and proved the
ε-regularity for these weak critical points. Using in particular lemma 5.1 the following energy quantization
has been established

Theorem 5.3. [BR] Let un be a sequence of Willmore immersions of a closed surface Σ. Assume that

lim sup
n→+∞

W (un) < +∞

that the conformal class of u∗n(ξRm) remains within a compact subdomain of the moduli space of Σ. Then,
modulo extraction of a subsequence, the following energy identity holds

lim
n→+∞

W (un) =W (u∞) +

L∑

l=1

W (ωl) +

K∑

k=1

(W (Ωk)− 4πθk)

where u∞ is a possibly branched smooth Willmore immersion of Σ. The maps ωl and Ωk are smooth ,
possibly branched, Willmore immersions of S2 and θk is the integer density of the current (Ωk)∗(S

2) at
some point pk ∈ Ωk(S

2), namely

θk = lim
ρ→0

H2(Bρ(pk) ∩ Ωk(S
2))

πρ2
.
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A Lorentz Estimates on Harmonic Functions.

Here we prove two lemmas on harmonic which insure that we can control the L2,1-norm by the L2 on a
smaller domain up to some appropriate boundary condition.

Lemma A.1. Let 0 < ε < 1
2 and f : B1 \Bε → R an harmonic function which satisfies

f = 0 on ∂B1,∫

∂Bε

f dσ = 0.
(98)

Then, for all λ > 1, there exists positive a constant C(λ) independent of ε and f such that

‖∇f‖L2,1(B1\Bλε) ≤ C(λ)‖∇f‖2.

�

Proof of lemma A.1 :

We start by decomposing f as a Fourier series, which gives

f(ρ, θ) = c0 + d0 ln(ρ) +
∑

n∈Z∗

(cnρ
n + dnρ

−n)einθ.

Hence, using (98), we easily proved that c0 = d0 = cn + dn = 0, then we get

f(ρ, θ) =
∑

n∈Z∗

cn(ρ
n − ρ−n)einθ.

Then we estimate the gradient as follows

|∇f(ρ, θ)| ≤ 2
∑

n∈Z∗

|n cn|(ρn−1 + ρ−n−1).

Then, we estimate the L2,1-norm of the fm(z) = |z|m on B1 \Bλε, for m ∈ Z \ {−1} and λ ∈]1, 2], which
gives

‖fm‖L2,1(B1\Bλε) ≤
√
π

∫ (λε)m

0

t
1
m dt ≤ 2

√
π(λε)m+1 for m < −1

and

‖fm‖L2,1(B1\Bλε) ≤
√
π for m ≥ 0.

(99)

Here we use the following characterization (9). Hence we get

‖∇f‖L2,1(B1\Bλε) ≤ 4
√
π

(
∑

n>0

|n cn|
(
(λε)−n + 1

)
+
∑

n<0

|n cn| ((λε)n + 1)

)
.

Hence, thanks to the Cauchy-Scharwz and the fact that λ > 1, we get

‖∇f‖L2,1(B1\Bλε) ≤ 8
√
π


∑

n6=0

|n|λ−2|n|




∑

n6=0

|n| |cn|2ε−2|n|




1
2

.
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Finally we compute the L2-norm of ∇f

‖∇f‖2 =


2π

∫ 1

ε

∑

n6=0

|n cn|2(ρ2n−2 + ρ−2n−2) ρdρ




1
2

≥
√
π

2



∑

n6=0

|n| |cn|2ε−2|n|




1
2

which achieves the proof of lemma A.1 . �

Lemma A.2. let 0 < ε < 1
4 and f : B1 \Bε → R an harmonic function which satisfies

∫

∂Bε

f dσ = 0,

∣∣∣∣
∫

∂B1

f dσ

∣∣∣∣ ≤ K,

(100)

where K is a constant independent of ε. Then, for all 0 < λ < 1 there exists positive constant C(λ)
independent of ε and f such that

‖∇f‖L2,1(Bλ\Bλ−1ε)
≤ C(λ)(‖∇f‖2 + 1).

�

Proof of lemma A.2 :

We start by decomposing f as a Fourier series, which gives

f(ρ, θ) = c0 + d0 ln(ρ) +
∑

n∈Z∗

(cnρ
n + dnρ

−n)einθ.

Hence, using (100), we easily proved that c0 + d0 ln(ε) = 0 and |c0| = O(1). Hence

d0 = O

( −1

ln(ε)

)
. (101)

Then we estimate the gradient as follows

|∇f(ρ, θ)| ≤ |d0|
1

ρ
+
∑

n∈Z∗

|n cn|ρn−1 + |n dn|ρ−n−1.

Then, we estimate the L2,1-norm of the fm(z) = |z|m on Bλ \ Bλ−1ε, for m ∈ Z \ {−1} and 0 < λ < 1,
which gives

‖fm‖2,1 ≤
√
π

∫ (λ−1ε)m

0

t
1
m dt ≤ 2

√
π(λ−1ε)m+1 for m < −1

‖fm‖2,1 ≤
√
πλm for m ≥ 0,

and

‖f−1‖2,1 = O(− log(ε)).

(102)

Here we use the following characterization (9). Thanks to (101) and (102), we get

‖∇f‖L2,1(Bλ\Bλ−1ε)
≤ 2

√
π

(
∑

n>0

(
|n cn|λn + |n dn|(λ−1ε)−n

)
+
∑

n<0

(
|n cn|(λ−1ε)n + |n dn|λ−n

)
)

+O(1).
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Hence, thanks to the Cauchy-Scharwz and the fact that 0 < λ < 1, we get

‖∇f‖L2,1(Bλ\Bλ−1ε)
≤ 4

√
π


∑

n6=0

|n|λ2|n|


(
∑

n<0

|n| (|cn|2 + |d−n|2)ε−2|n| +
∑

n>0

|n| (|cn|2 + |d−n|2)2−n
) 1

2

+O(1).

Finally we compute the L2-norm of ∇f

‖∇f‖2 = |d0|
(∫ 1

ε

1

ρ
dρ

) 1
2

+


2π

∫ 1

ε

∑

n6=0

(
|n cn|2ρ2n−2 + |n dn|2ρ−2n−2

)
ρdρ




1
2

≥
√
π

2

(
∑

n<0

|n| (|cn|2 + |d−n|2)ε−2|n| +
∑

n>0

|n| (|cn|2 + |d−n|2)2−n
) 1

2

which achieves the proof of lemma A.2. �
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