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Abstract :The paper is devoted to the variational analysis of the Willmore, and other L2 curvature
functionals, for 2-d surfaces immersed in a compact riemannian 3 ≤ m-manifold (Mm, h); the double goal
of the paper is on one hand to give the right setting for doing the calculus of variations (including min max
methods) of such functionals for immersions into manifolds and on the other hand to prove existence of
possibly branched Willmore spheres under curvature or topological conditions. For this purpose, using the
integrability by compensation, we develop the regularity theory for the critical points of such functionals;
a crucial step consists in writing the Euler-Lagrange equation (which is a system), first in a conservative
form making sense for weak W 1,∞∩W 2,2 immersions , then as a system of conservation laws. Exploiting
this new form of the equations we are able on one hand to prove full regularity of weak solutions to
the Willmore equation in any codimension, on the other hand to prove a rigidity theorem concerning the
relation between CMC and Willmore spheres. One of the main achievements of the paper is that for every
non null 2-homotopy class 0 6= γ ∈ π2(M

m) we produce a canonical representative given by a Lipschitz
map from the 2-sphere intoMm realizing a connected family of conformal smooth (possibly branched) area
constrained Willmore spheres (as explained in the introduction, this comes as a natural extension of the
minimal immersed spheres in homotopy class constructed by Sacks and Uhlembeck in [SaU] in situations
when they do not exist); moreover for every A > 0 we minimize the Willmore functional among connected
families of weak, possibly branched, immersions of S2 having total area A and we prove full regularity for
the minimizer. Finally, under a mild curvature condition on (Mm, h), we minimize

∫

(|I|2+1), where I is
the second fundamental form, among weak possibly branched immersions of S2 and we prove the regularity
of the minimizer.

Math. Class. 30C70, 58E15, 58E30, 49Q10, 53A30, 35R01, 35J35, 35J48, 35J50.

I Introduction

Throughout the paper (Mm, h) will be a compact connected m-dimensional Riemannian manifold. For

a smooth immersion ~Φ of a compact 2-dimensional surface Σ into (Mm, h) recall the definition of the
Willmore functional

W (~Φ) :=

∫

Σ

| ~H |2dvolg, (I.1)

where the mean curvature ~H is half the trace of the second fundamental form I and volg is the volume

form associated to the pullback metric g := ~Φ∗h, of the energy functional F

F (~Φ) :=
1

2

∫

Σ

|I|2dvolg, (I.2)

and of the conformal Willmore functional Wconf

Wconf (~Φ) :=

∫

Σ

(

| ~H |2 + K̄(T ~Φ)
)

dvolg, (I.3)

where K̄(T ~Φ) is the sectional curvature of the ambient manifold (Mm, h) computed on the tangent space

of ~Φ(Σ); recall moreover that Wconf is conformally invariant (i.e. is invariant under conformal changes
of the ambient metric h ), see [Wei].
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Observe that, by Gauss Bonnet Theorem, for immersions in the Euclidean space Rm the three func-
tionals W,Wconf and F differ just by a topological constant, so they are equivalent from the variational
point of view. This is not the case for immersions in Riemannian manifolds as it will be clear soon.

The first goal of the present paper is to develop the analysis of the Willmore and the others L2

curvature functionals in Riemannian manifolds of any dimension. Indeed, as for immersions in the
eulidean space, there is the following functional analysis paradox: though the Willmore functional W
defined in (I.1) has perfect meaning for W 2,2 ∩W 1,∞ weak immersions, the classical form of its Euler
Lagrange equation (derived in [Wei]) does not make sense for such weak objects (which are the natural
ones for doing the analysis of the Willmore functional, as it will explained below; exactly as the Sobolev
spaces are the natural framework to studying PDEs). Indeed it requires L3 integrability of second
derivatives being

∆⊥
~H + Ã( ~H)− 2| ~H |2 ~H − R̃( ~H) = 0, (I.4)

where R̃ : T~Φ(x)M → T~Φ(x)M is the curvature endomorphism defined by

∀ ~X ∈ T~Φ(x)M R̃( ~X) := −π~n
[

2
∑

i=1

Riemh( ~X,~ei)~ei

]

, (I.5)

and Ã : T~Φ(x)M → T~Φ(x)M is defined as

∀ ~X ∈ T~Φ(x)M Ã( ~X) :=

2
∑

i,j=1

~I(~ei, ~ej) <~I(~ei, ~ej), ~X > , (I.6)

where π~n is the projection onto the normal space of ~Φ and (~e1, ~e2) is an orthonormal basis of TΣ for

the induced metric g := ~Φ∗h. The same problem appears in the other L2 curvature functionals since the
difference in the Euler Lagrange equations is given just by lower order terms.

A first achievement of the present work is to rewrite the Euler Lagrange equation in a conservative
form which makes sense for such weak immersions. In order to be more accessible, before we perform the
computations and we present the equations in the codimension one case in Section II, then we pass to
the more delicate higher codimensional case.

For this purpose, up to a reparametrization and working on a parametrizing disc D2, we can assume
that the immersion ~Φ is conformal so that it makes sense to consider the standard complex structure of
the disc D2; exploiting the complex notation is very convenient and simplifies also the initial presentation
given by the second author in [Riv1] for immersions in the euclidean space. The main result of Section

III is the following theorem. Before stating it let us define R⊥
~Φ
(T ~Φ) as

R⊥
~Φ
(T ~Φ) :=

(

πT

[

Riemh(~e1, ~e2) ~H
])⊥

(I.7)

where (~e1, ~e2) is a positive orthonormal basis of TD2 for the induced metric g := ~Φ∗h, πT : T~ΦM →
~Φ∗(TD

2) is the tangential projection and .⊥ denotes the rotation of an angle π
2 in ~Φ∗(TD

2) in the

direction from ~e1 towards ~e2, intrinsecally it can be written as ~X⊥ = (~Φ∗) ◦ ∗g ◦ (~Φ∗)
−1( ~X) for any

~X ∈ ~Φ∗(TD
2) where ∗g is the Hodge duality operator on (TD2, g). We shall also denote by π~n the

orthogonal projection π~n : T~ΦM → (~Φ∗(TD
2))⊥ from the tangent space to Mm onto the normal space

to ~Φ(D2).

We shall denote by D the Levi-Civita connection of (Mm, h) and by an abuse of notations we also

denote by D the associated covariant exterior derivative. We also denote by Dg the pull back by ~Φ of D

which is a connection - respectively a covariant exterior derivative - of the pull-back bundle ~Φ−1TMm.
D

∗g
g is the adjoint of the covariant derivative Dg for the induced metric g = ~Φ∗h. ⋆h is the Hodge

operator associated to h on multi-vectors of Mm from ∧pMm into ∧m−pMm. All these objects are
defined in section III in (III.1), (III.2), (III.3), (III.4), (III.5) and (III.7).

Theorem I.1. Let ~Φ be a smooth immersion of the two dimensional disc D2 into an m-dimensional
Riemannian manifold (Mm, h), then the following identity holds

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= ∆⊥
~H + Ã( ~H)− 2| ~H|2 ~H −R⊥

~Φ
(T ~Φ) (I.8)
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where ∆⊥ is the negative covariant laplacian on the normal bundle to the immersion, Ã is the linear map
given in (I.6), R⊥ is defined in (I.7). 2

Notice that though the right hand side does not make sense forW 1,∞∩W 2,2 weak immersions, the left
hand side does. Therefore a straightforward but important consequence of Theorem I.1 is the following
conservative form of Willmore surfaces equation making sense for W 1,∞ ∩W 2,2 weak immersions.

Corollary I.1. A smooth immersion ~Φ of a 2-dimensional disc D2 in (Mm, h) is Willmore if and only
if

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= R̃( ~H)−R⊥
~Φ
(T ~Φ), (I.9)

where R̃ and R⊥ are the curvature endomorphisms defined respectively in (I.5) and (I.7). 2

Remark I.1. The Euler Lagrange equations of the other L2 curvature functionals are computed in Section
III and differ just by terms completely analogous to the right hand side terms of (I.9). 2

Another important corollary is the conservative form of the constraint-conformal Willmore equation.
Let Σ be a smooth closed surface and ~Φ : Σ →֒M be a smooth immersion; the pullback metric g := ~Φ∗h
induces a complex structure J on Σ, and in the associated conformal class there exists a unique constant
curvature metric c0 with total area 1 (see [Jo]); notice that by construction ~Φ : (Σ, c0) →֒M is a conformal

immersion. Recall that the smooth immersion ~Φ of (Σ, c0) is said to be constrained-conformal Willmore if
and only if it is a critical point of the Willmore functional under the constraint that the conformal class is
fixed. Before writing the conservative form of the Willmore functional under constraint on the conformal
class let us introduce some notation. Call Q(J) the space of holomorphic quadratic differentials on (Σ, J)

and let q ∈ Q(J) written in local complex coordinates as q = f(z)dz⊗ dz; let ~H0 be the Weingarten map

is given in local coordinates, for a conformal immersion with conformal factor λ = log(|∂x~Φ|), by

~H0 :=
1

2
e−2λπ~n

(

∂2x2
~Φ− ∂2y2

~Φ− 2i ∂2xy
~Φ
)

=
1

2

[

~I(~e1, ~e1)−~I(~e2, ~e2)− 2 i~I(~e1, ~e2)
]

, (I.10)

where ~n~Φ is the normal space to ~Φ and (~e1, ~e2) = e−λ(∂x~Φ, ∂y~Φ) is a positively oriented orthonormal

frame of T ~Φ; recall also the definition of the Weingarten operator ~h0 given locally by

~h0 := 2 π~n(∂
2
z2
~Φ) dz ⊗ dz = e2λ ~H0 dz ⊗ dz (I.11)

We introduce on the space ∧1−0D2⊗∧1−0D2 of 1−0⊗1−0 form on D2 the following hermitian product1

depending on the conformal immersion ~Φ

.(ψ1 dz ⊗ dz, ψ2 dz ⊗ dz)WP := e−4λ ψ1(z) ψ2(z) (I.12)

where eλ := |∂x1
~Φ| = |∂x2

~Φ|. We observe that for a conformal change of coordinate w(z) (i.e. w is
holomorphic in z) and for ψ′

i satisfying

ψ′
i ◦ w dw ⊗ dw = ψi dz ⊗ dz

one has, using the conformal immersion ~Φ ◦ w in the l.h.s.

(ψ′
1 dw ⊗ dw, ψ′

2 dw ⊗ dw)WP = (ψ1 dz ⊗ dz, ψ2 dz ⊗ dz)WP

for more informations about the Weyl Peterson product see [Jo], [Riv2], [Riv4]. Now we can write the
constraint-conformal Willmore equation in conservative form.

Corollary I.2. Let ~Φ : Σ →֒M be a smooth immersion into them ≥ 3-dimensional Riemannian manifold
(Mm, h) and call c the conformal structure associated to g = ~Φ∗h. Then ~Φ is a constrained-conformal
Willmore immersion if and only if there exists an holomorphic quadratic differential q ∈ Q(c) such that

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= ℑ(q,~h0)WP + R̃( ~H)−R⊥
~Φ
(T ~Φ) . (I.13)

2

1This hermitian product integrated on D2 is the Weil Peterson product.
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Observe that, in local complex coordinates, ℑ[(q,~h0)WP ] = e−2λℑ[f(z) ~H0].
Notice that also the constraint-conformal equations of the other L2 curvature functional differ just by

terms completely analogous to the right hand side terms of (I.9).

Exploiting the conservative form just showed, in Section V we prove that the constraint-conformal
Willmore equation is equivalent to a system of conservation laws (see Theorem V.1) and in Section VI we
prove that weak solutions to this system of conservation laws are smooth. For proving the regularity it is
crucial to construct from the system of conservation laws some potentials ~R and S which satisfy a critical
Wente type elliptic system (see the system (VI.17)). Using integrability by compensation we gain some

regularity on ~R and S which bootstrapped, after some work, gives the smoothness of weak solutions to
the constraint-conformal Willmore equation. Therefore we are able to prove the following full regularity
theorem for weak solutions to the constraint-conformal Willmore equation.

Theorem I.2. [Regularity of weak constraint-conformal Willmore immersions.] Let ~Φ be a
W 1,∞ conformal immersion of the disc D2 taking values into a sufficiently small open subset of the
Riemannian manifold (M,h), with second fundamental form in L2(D2) and conformal factor λ :=

log |∂x1~Φ| ∈ L∞(D2). If ~Φ is a constrained-conformal Willmore immersion then ~Φ is C∞. 2

Remark I.2. As the reader will see, the proof of the regularity is not just a straighforward adaptation
of the Euclidean one. Indeed in the euclidean case ~R and S were real valued and their existence was
ensured by a direct application of Poicaré Lemma. Here the curvature terms make the situation more
delicate. Indeed ~R and S, which now are complex valued, are constructed using the Dz and ∂z operators
(see Lemma VI.2), and their construction makes use of singular integrals and Fourier analysis (see the

Appendix). Notice that, in case of null curvature, the imaginary parts of ~R and S vanish and the two,
a priori different, constructions coincide. Therefore our construction is canonical and has a geometric,
beside analytic, meaning. 2

Remark I.3. The regularity issues regarding minimizers of L2 curvature functionals in 3-dimensional
riemannian manifolds have been studied also in [KMS] using techniques from [SiL]. Beside the fact that
here we deal with higher codimensions, the real advantage of this new approach is that it permits to infer
that any weak solution to the equation is smooth, while in the former the regularity crucially used the
minimality property. Therefore our new approach is more flexible and it is suitable for studying existence
of more general critical points of saddle type. 2

Remark I.4. Since the difference between the Willmore equation and the Euler Lagrange equations of
the other L2 curvature functionals F and Wconf (also under area or conformal type constraint) is made
of subcritical terms, the Regularity Theorem I.2 applies to them as well. 2

Another application of the conservative form of the equation is the following. Recall that an immersion
is called conformal Willmore if it is a critical point of the conformal Willmore functional Wconf defined
in (I.3), and is called constraint-conformal conformal Willmore if it is a critical point of Wconf under the
constraint of fixed conformal class. Notice that, since by the Uniformization Theorem there is just one
smooth conformal class on S2, the two notions coincide for smooth immersions of S2. Recall also that a
smooth immersion ~Φ : Σ →֒Mm of the surface Σ has parallel mean curvature if the normal projection of
the covariant derivative of the mean curvature ~H with respect to tangent vectors to ~Φ is null:

π~n(D ~H) = 0. (I.14)

Observe that in codimension one a surface has parallel mean curvature if and only if it has constant mean
curvature, i.e. it is a CMC surface.

In Section IV, we prove the following Proposition (the analogous proposition for immersions in the
Euclidean space appears in [Riv4]) which ensures abundance of constraint-conformal conformal Willmore
surfaces in space forms. Since, as explained above, the conformal constraint for smooth immersions of a
2-sphere is trivial, the proposition ensures also abundance of Conformal Willmore spheres in space forms.

Proposition I.1. Let (Mm, h) be anm-dimensional Riemannian manifold of constant sectional curvature

K̄ and let ~Φ : Σ →֒Mm be a smooth immersion of the smooth surface Σ.
If ~Φ has parallel mean curvature then ~Φ is constraint-conformal conformal Willmore. 2
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The assumption on the sectional curvature is not trivial, indeed combining results of [PX] and [Mon2]
we get the following rigidity theorem:

Theorem I.3. [Rigidity for Willmore] Let (M3, h) be a compact 3-dimensional Riemannian manifold
with constant scalar curvature. Then M has constant sectional curvature if and only if every smooth
constant mean curvature sphere is conformal Willmore. 2

After having studied the analysis of the Euler Lagrange equation of the mentioned L2 curvature
functionals we move to establish existence of minimizers of such functionals. We will study both curvature
and topological conditions which ensure the existence of a minimizer.

Before passing to the existence theorems observe that minimizing the Willmore and the other L2

curvature functionals among smooth immersion is of course a-priori an ill posed variational problem. In
[Riv2] (see also [RiCours]), the second author introduced the suitable setting for dealing with minimization
problems whose highest order term is given by the Willmore energy. We now recall the notion of weak
branched immersions with finite total curvature.

By virtue of Nash theorem we can always assume thatMm is isometrically embedded in some euclidian
space Rn. We first define the Sobolev spaces from S2 into Mm as follows: for any k ∈ N and 1 ≤ p ≤ ∞

W k,p(S2,Mm) :=
{

u ∈ W k,p(S2,Rn) s. t. u(x) ∈Mm for a.e. x ∈ S
2
}

.

Now we introduce the space of possibly branched lipschitz immersions : a map ~Φ ∈ W 1,∞(S2,Mm) is a
possibly branched lipschitz immersion if

i) there exists C > 1 such that

∀x ∈ S
2 C−1|d~Φ|2(x) ≤ |d~Φ ∧ d~Φ|(x) ≤ |d~Φ|2(x) (I.15)

where the norms of the different tensors have been taken with respect to the standard metric on S2

and with respect to the metric h on Mm and where d~Φ∧d~Φ is the tensor given in local coordinates
on S2 by

d~Φ ∧ d~Φ := 2 ∂x1
~Φ ∧ ∂x2

~Φ dx1 ∧ dx2 ∈ ∧2T ∗
S
2 ⊗ ∧2T~Φ(x)M

m.

ii) There exists at most finitely many points {a1 · · · aN} such that for any compactK ⊂ S2\{a1 · · · aN}

ess inf
x∈K

|d~Φ|(x) > 0. (I.16)

For any possibly branched lipschitz immersion we can define almost everywhere the Gauss map

~n~Φ := ⋆h
∂x1

~Φ ∧ ∂x2
~Φ

|∂x1
~Φ ∧ ∂x2

~Φ|
∈ ∧m−2T~Φ(x)M

m

where (x1, x2) is a local arbitrary choice of coordinates on S2 and ⋆h is the standard Hodge operator
associated to the metric h on multi-vectors in TM .

With these notations we define

Definition I.1. A lipschitz map ~Φ ∈W 1,∞(S2,Mm) is called ”weak, possibly branched, immersion” if ~Φ
satisfies (I.15) for some C ≥ 1, if it satisfies (I.16) and if the Gauss map satisfies

∫

S2

|D~n~Φ|2 dvolg < +∞ (I.17)

where dvolg is the volume form associated to g := ~Φ∗h the pull-back metric of h by ~Φ on S2, D denotes
the covariant derivative with respect to h and the norm |D~n~Φ| of the tensor D~n~Φ is taken with respect
to g on T ∗S2 and h on ∧m−2TM . The space of ”weak, possibly branched, immersion” of S2 into Mm is
denoted FS2 . 2

Using Müller-Sverak theory of weak isothermic charts (see [MS]) and Hélein moving frame technique
(see [Hel]) one can prove the following proposition (see [RiCours]).
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Proposition I.2. Let ~Φ be a weak, possibly branched, immersion of S2 into Mm in FS2 then there exists
a bilipschitz homeomorphism Ψ of S2 such that ~Φ ◦Ψ is weakly conformal : it satisfies almost everywhere
on S2











|∂x1(~Φ ◦Ψ)|2h = |∂x2(~Φ ◦Ψ)|2h

h(∂x1(~Φ ◦Ψ), ∂x2(~Φ ◦Ψ)) = 0

where (x1, x2) are local arbitrary conformal coordinates in S2 for the standard metric. Moreover ~Φ ◦Ψ is
in W 2,2 ∩W 1,∞(S2,Mm). 2

Remark I.5. In view of Proposition I.2 a careful reader could wonder why we do not work with conformal
W 2,2 weak, possibly branched, immersion only and why we do not impose for the membership in FS2 , ~Φ to
be conformal from the begining. The reason why this would be a wrong strategy and why we have to keep
the flexibility for weak immersions not to be necessarily conformal is clear in the proof of the existence
theorems, Section VIII and in the Appendix where we will study the variations of the functionals under
general perturbations which do not have to respect infinitesimally the conformal condition. 2

Now that we have introduced the right framework we pass to discuss the existence theorems.
Fix a point p̄ ∈Mm and a 3-dimensional subspace S < Tp̄M of the tangent space to M at p̄. We denote

Rp̄(S) :=
∑

i6=j,i,j=1,2,3

K̄p̄

(

~Ei, ~Ej

)

(I.18)

where { ~E1, ~E2, ~E3} is an orthonormal basis of S and K̄p̄( ~Ei, ~Ej) denotes the sectional curvature of

(M,h) computed on the plane spanned by ( ~Ei, ~Ej) contained in Tp̄M . Notice that Rp̄(S) coincides with
the scalar curvature at p̄ of the 3-dimensional submanifold of M obtained exponentiating S. Under a
condition on Rp̄(S), in the following theorem we minimize the functional F1 defined on F as

F1(~Φ) :=

∫

S2

(

1

2
|I|2 + 1

)

dvolg = F (~Φ) +A(~Φ). (I.19)

Theorem I.4. Let (Mm, h) be a compact Riemannian manifold and assume there is a point p̄ and a
3-dimensional subspace S < Tp̄M such that Rp̄(S) > 6, where Rp̄(S) is the curvature quantity defined

in (I.18). Then there exists a branched conformal immersion ~Φ of S2 into (Mm, h) with finitely many
branched points b1, . . . , bN , smooth on S2 \ {b1, . . . , bN}, minimizing the functional F1 in FS2 , i.e. among
weak branched immersions with finite total curvature. 2

Observe that the unit round m-dimensional sphere Sm with canonical metric has Rp̄(S) ≡ 6 for any
base point p̄ and any subspace S, so the assumption is that our ambient manifold has at least one point
p̄ and at least three directions spanning S where the manifold is ”more positively curved” than Sm. Let
us make a remark about the regularity in the branch points.

Remark I.6. The removability of point singularities for Willmore surfaces in Euclidean space has been
studied in [KS], [KS2] and [Riv1]; recently Y. Bernard and the second author, in [BRRem], proved that
the parametrization is smooth also in the branch points if two residues vanish. Analogous statements
should hold for branched Willmore immersions in manifolds. 2

Remark I.7. It is always possible to minimize F1 by forcing the immersion to pass through a fixed family
of points. For an arbitrary choice of points sufficiently close to the minimizers we found in theorem I.4,
this should generate a Willmore sphere passing through these points but satisfying the Willmore equation
only away from these points. Since in the variational argument these points cannot be moved the cor-
responding residues obtained in [KS], [Riv1] and [BRRem] have no reason to vanish and the conformal

parametrization ~Φ of a minimizer should be at most C1,α in general. This should contrast presumably
with the situation at the branched points of the minimizers obtained in theorem I.4. Since these points
are left free during the minimization procedure, the first residue ~γ0 (see [BRRem]) should vanish and the

conformal map ~Φ should be at least C2,α at these points. 2
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Now let us consider the problem of minimizing the functional F =
∫

|I|2. In codimension one,
E. Kuwert, J. Schygulla and the first author, in [KMS], proved the existence of a smooth immersion
of S2 without branched points minimizing the functional F under curvature conditions on the compact
ambient 3-manifold (see also [MonSchy] for non compact ambient 3-manifolds); notice that the topological
argument employed for excluding the branch points crucially depends on the codimension one assumption.
Therefore, in higher codimension, it makes sense to look for minimizers of F among branched immersions,
as done in the following theorem.

Theorem I.5. Let (Mm, h) be a compact Riemannian manifold. Assume there is a minimizing sequence
for the functional F = 1

2

∫

|I|2 in FS2 ( among weak possibly branched immersions with finite total

curvature), {~Φk}k∈N ⊂ FS2 , with area bounded by positive costants from below and above:

0 <
1

C
≤ A(~Φk) ≤ C <∞.

Then there exists a branched conformal immersion ~Φ of S2 into (Mm, h) with finitely many branched
points b1, . . . , bN , smooth on S2 \ {b1, . . . , bN}, minimizing the functional F in FS2 , i.e. among weak
branched immersions with finite total curvature. 2

Remark I.8. By analogous arguments to the proof of Theorem I.4, the lower bound on the area is ensured
if Rp̄(S) > 0 for some point p̄ and 3-dimensional subspace S < Tp̄M .

Notice a uniform upper bound on the areas of the minimizing sequence is a crucial information for
compactness issues; moreover generally this is not a trivial property in view of the possibility of totally
geodesic laminations (A similar constraint appears in [Mon3]). 2

Up to here we studied existence of minimizeres of curvature functionals under curvature conditions
on the ambient manifold. Now we move to consider existence of area-constrained Willmore spheres under
topological conditions on the ambient manifold.

For any x0 ∈ Mm we denote respectively by π2(M
m, x0) the homotopy groups of based maps form

S2 into Mm sending the south pole to x0 and by π0(C
0(S2,Mm)) the free homotopy classes. It is well

known that the group π2(M
m, x0) for different x0 are isomorphic to each other and π2(M) denotes any

of the π2(M
m, x0) modulo isomorphisms. Recall that, in [SaU], J. Sacks and K. Uhlenbeck proceeded to

the minimization of the Dirichlet energy

E(~Φ) =
1

2

∫

S2

|d~Φ|2 dvolS2

among mappings ~Φ of the two sphere S
2 into Mm within a fixed based homotopy class in π2(M

m, x0) in
order to generate area minimizing, possibly branched, immersed spheres realizing this homotopy class.
Even if the paper had a great impact in mathematics, the program of Sacks and Uhlenbeck was only
partially successful. Indeed the possible loss of compactness arising in the minimization process can
generate a union of immersed spheres realizing the corresponding free homotopy class but for which the
underlying component in the homotopy group π2(M

m) may have been forgotten (for more details see
also the Introduction to [MoRi1]). It is very hard in the Sacks Uhlenbeck’s work to distinguish the
classes which are realized by minimal conformal immersions from the somehow not satisfying classes. At
least Sacks and Uhlenbeck could prove that the set of satisfying classes generates, as a π1−module, the
homotopy group π2(M

m).
To overcome this difficulty, we minimize a curvature functional - corresponding to A + W in the

absence of branched points - under homotopy constraint and we prove that, even if we still have a
bubbling phenomenon, the limit object must be connected. More precisely we show that for every non
trivial 2-homotopy group of Mm there is a canonical representative given by a Lipschitz map from S2

to M realizing the connected union of conformal branched area-constraint Willmore spheres which are
smooth outside the branched points. Notice that this is a natural generalization of Sacks Uhlenbeck’s
procedure in a sense that, if a class γ in π2(M

m) possesses an area minimizing immersion ~Φ then ~H~Φ ≡ 0,

in particular ~Φ is an area-constraint Willmore sphere minimizing A+W in it’s homotopy class.
Before stating the theorem let us recall that for any Lipschitz mapping ~a from S2 into Mm, (~a)∗[S

2]
denotes the current given by the push-forward by ~a of the current of integration over S2 : for any smooth
two-form ω on Mm

〈

(~a)∗[S
2], ω

〉

:=

∫

S2

(~a)∗ω.
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Moreover we denote with [~a] ∈ π2(M
m) the 2-homotopy class corresponding to the continuous map

~a : S2 →Mm.

Theorem I.6. Let (Mm, h) be a compact Riemannian manifold and fix 0 6= γ ∈ π2(M
m). Then

there exist finitely many branched conformal immersions ~Φ1, . . . , ~ΦN ∈ FS2 and a Lipschitz map ~f ∈
W 1,∞(S2,Mm) with [~f ] = γ satisfying

~f(S2) =
N
⋃

i=1

~Φi(S2) and (I.20)

~f∗[S
2] =

N
∑

i=1

~Φi
∗[S

2] . (I.21)

Moreover for every i, the map ~Φi is a conformal branched area-constrained Willmore immersion which
is smooth outside the finitely many branched points b1, . . . , bNi . More precisely we mean that, outside the
branched points, every ~Φi is a smooth solution to the Willmore equation with the Lagrange multiplier 2 ~H:

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= 2 ~H + R̃( ~H)−R⊥
~Φ
(T ~Φ), (I.22)

where π~n is the projection onto the normal space to ~Φ, ⋆h and ∗g are respectively the Hodge operator on

(M,h) and (S2, g := ~Φ∗h); R̃ and R⊥ are the curvature endomorphisms defined respectively in (I.5) and
(I.7). The operators Dg, D

∗g
g , . . . are defined above (see also more explicit expressions in Section III). 2

Remark I.9. With the same proof, the analogous theorem about existence of a connected family of smooth
branched conformal immersions of S2 which are area-constrained critical points for the functional F and
are realizing a fixed homotopy class holds. 2

Remark I.10. It might be interesting to investigate whether the minimizer in a fixed homotopy class is
really obtained by a Lipschitz realization of more than one smooth branched immersions of spheres or it
is realized by exactly one smooth branched immersion of S2. The asymptotic behavior of the solutions
at possible connection points of 2 distinct spheres in relation with the cancellation of the first residue ~γ0
mentioned in remark I.7 (which should also hold in the situation of theorem I.6) is a starting point for
studying the possibility to have such connection points while considering an absolute minimizer. 2

Let us give here an idea of the proof of Theorem I.6. Consider the following Lagrangian L defined on
FS2

L(~Φ) :=

∫

S2

(

1

4
|I|2 − 1

2
K̄(T ~Φ) + 1

)

dvolg, (I.23)

where K̄(T ~Φ) is the sectional curvature of the ambient manifold (Mm, h) evaluated on the tangent space

to ~Φ(S2) and observe that, by the Gauss equation, outside the branch points it holds

1

4
|I|2 − 1

2
K̄(T ~Φ) + 1 = | ~H |2 + 1− 1

2
K~Φ, (I.24)

where K~Φ is the Gauss curvature of ~Φ, i.e. the sectional curvature of the metric g = ~Φ∗(h) on S2.
Notice that, since the Gauss curvature integrated on compact subsets away the branch points gives a null
lagrangian (i.e. a lagrangian with null first variation with respect to compactly supported variations),

the Euler-Lagrange equation of L coincides with the Euler-Lagrange equation of
∫

(| ~H |2 + 1) outside the
branched points; therefore the critical points of L satisfy the area-constrained Willmore equation (I.31)
outside the branched points.
Our approach is then to minimize L; the space on which the minimization procedure is performed is the set
T of N+1-tuples ~T = (~f, ~Φ1, . . . ~ΦN), where N is an arbitrary positive integer, where ~f ∈ W 1,∞(S2,Mm)

and ~Φi ∈ FS2 satisfy (I.20) and (I.21); naturally we define

L(~T ) =
N
∑

i=1

L(~Φi). (I.25)
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Observe that, up to rescaling the ambient metric h by a positive constant, we can always assume that
K̄ ≤ 1 on allM (or equivalently choose in (I.23), instead of 1, a large positive constant C > maxM K̄). On

a minimizing sequence ~Tk under the constraint that the map ~fk ∈ W 1,∞(S2,Mm) is in the fixed homotopy
class 0 6= γ ∈ π2(M

m), both the areas and the L2 norms of the second fundamental forms are clearly equi-

bounded; therefore, using results from [MoRi1] we construct a minimizer ~T∞ = (~f∞, ~Φ
1
∞, . . . , ~Φ

N∞

∞ ) ∈ T
such that ~f∞ ∈ W 1,∞(S2,M2) is still in the homotopy class γ. Using the regularity theory developed in

Section VI we conclude with the smoothness of the ~Φi
∞ outside the finitely many branched points.

Observe that, for small values of the area, smooth (contractible in M) area constraint-Willmore
spheres have been constructed in [LM2] (see also [CL], [LM], [LMS], [Mon1], [Mon2]) as perturbations of
small geodesic spheres using perturbative methods; notice that instead Theorem I.6 deals with the global
situation when the topology of the ambient manifold plays a crucial role. Moreover in the next theorem
we produce area-constrained Willmore spheres for any value of the area. More precisely consider the
lagrangian WK defined on FS2 as follows

WK(~Φ) :=

∫

S2

(

1

4
|I|2 − 1

2
K̄(T ~Φ)

)

dvolg. (I.26)

Using the Gauss equation, one has

1

4
|I|2 − 1

2
K̄(T ~Φ) = | ~H |2 − 1

2
K~Φ, (I.27)

and, as before, this implies that the critical points of WK satisfy exactly the Willmore equation outside
the branch points. Notice moreover that, if one considers just non branched immersions then WK is
exactly the Willmore functional W up to an additive topological constant by Gauss Bonnet Theorem,
so minimizing WK under area constraint among branched immersions is the natural generalization of
minimizing W under area constraint among non branched immersions; moreover the possibility of having
a branched minimal sphere (for the existence of branched minimal spheres in Riemannian manifolds see
for example [SaU]) for a fixed value of the area suggests that the correct setting, for the global problem
of minimizing the Willmore functional under area constaint for not necessarily small values of the area,
is the one of branched immersions.

Theorem I.7. Let (Mm, h) be a compact Riemannian manifold and fix any A > 0. Then there exist

finitely many branched conformal immersions ~Φ1, . . . , ~ΦN ∈ FS2 and a Lipschitz map ~f ∈ W 1,∞(S2,Mm)
with

N
∑

i=1

A(~Φi) = A , (I.28)

~f(S2) =

N
⋃

i=1

~Φ(S2) and (I.29)

~f∗[S
2] =

N
∑

i=1

~Φi
∗[S

2] , (I.30)

such that for every i, the map ~Φi is a conformal branched area-constraint Willmore immersion which is
smooth outside the finitely many branched points b1, . . . , bNi . More precisely we mean that, outside the
brached points, every ~Φi is a smooth solution to the Willmore equation with the Lagrange multiplier a ~H
(for some a ∈ R)

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= a ~H + R̃( ~H)−R⊥
~Φ
(T ~Φ), (I.31)

with the same notation as in Theorem I.6. Moreover the N + 1-tuple ~T = (~f, ~Φ1, . . . , ~ΦN ) minimizes
the functional WK in the set of tuples T (defined above) having area A, where the area and the WK

functional of an element ~T = (~f, ~Φ1, . . . , ~ΦN ) ∈ T are defined in a natural way as A(~T ) =
∑N

i=1 A(
~Φi)

and WK(~T ) =
∑N

i=1WK(~Φi) respectively. 2
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With the same proof, the analogous theorem about existence of a connected family of smooth branched
conformal immersions of S2 which are area-constrained critical points for the functional F and whose
total area is an arbitrary A > 0 holds; this connected family moreover minimize the functional F in T
under the area constraint A(T ) = A.

Remark I.11. For small area A < ε0, by the monotonicity formula ( the monotonicity formula is a
crucial tool introduced in [SiL], for the proof in this context see Lemma VII.2) the minimizer has also
small diameter and thanks to the estimates contained in [LM], [LM2], the minimum of the functional
WK is close to 2π. With arguments analogous to [LM2] ( using [LY]), one checks that, for small area
A < ε0, the minimizer produced in Theorem I.7 is made of just one smooth non branched area-constrained
Willmore immersion of the 2-sphere. Therefore Theorem I.7 is the natural generalization of the main
theorem in [LM2], where T. Lamm and J. Metzger minimize the Willmore functional under small area
constraint among non branched little spheres. 2
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Notations and conventions

For the Riemann curvature tensor Riemh of (Mm, h) we use the convention of [Will] (notice that other

authors, like [DoC], adopt theh opposite sign convention): for any ~X, ~Y , ~Z ∈ TxM define

Riemh( ~X, ~Y )~Z := D ~XD~Y
~Z −D~YD ~X

~Z −D[ ~X,~Y ]
~Z.

The Hodge operator on Rm or more generally on the tangent space TxM of an oriented Riemannian
manifold (Mm, h) is the linear map from ∧pTxM into ∧m−pTxM which to a p-vector α assigns the
m− p-vector ⋆hα on TxM such that for any p-vector β in ∧pTxM the following identity holds:

β ∧ ⋆hα =< β, α >h
~E1 ∧ . . . ∧ ~Em (I.32)

where ( ~E1, . . . , ~Em) is an orthonormal positively oriented basis of TxM and < ., . >h is the scalar product
on ∧pTxM induced by h. Notice that even if Mm is not orientable, we can still define ⋆h locally.

We will also need the concept of interior multiplication x between p− and q−vectors, p ≥ q, producing
a p−q-vector such that (see [Fed] 1.5.1 combined with 1.7.5): for every choice of p−,q− and p−q−vectors,
respectively α, β and γ the following holds:

< αxβ, γ >=< α, β ∧ γ > (I.33)

We call • the following contraction operation which to a pair of p− and q−vectors (α, β) assigns the
p+ q − 2−vector α • β such that:
- if q = 1, α • β := αxβ,
-if α ∈ ∧pTxM , β ∈ ∧qTxM and γ ∈ ∧sTxM then

α • (β ∧ γ) := (α • β) ∧ γ + (−1)rs(α • γ) ∧ β. (I.34)

II The conservative form of the Willmore surface equation in

3-dimensional manifolds

Let Σ2 be an abstract closed surface, (M,h) a 3 dimensional Riemannian manifold and ~Φ : Σ2 →֒ (M,h)
a smooth immersion. Since the following results are local, we can work locally in a disc-neighborhood of
a point and use isothermal coordinates on this disc. This means that we can assume ~Φ to be a conformal
immersion from the unit disc D2 ⊂ R2 into (M,h).

Let us introduce some notations. Given the conformal immersion ~Φ : D2 →֒ (M,h) we call g :=
~Φ∗h = e2λ(dx21 + dx22) the induced metric; denote (~e1, ~e2) the orthonormal basis of ~Φ∗(TΣ

2) given by

~ei := e−λ ∂~Φ

∂xi
,
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where eλ = |∂x1
~Φ| = |∂x2

~Φ|. The unit normal vector ~n to ~Φ(Σ) is then given by

~n = ⋆h(~e1 ∧ ~e2)

Denoted with D the covariant derivative of (M,h) we have the second fundamental form

~I( ~X, ~Y ) := − < D ~X~n,
~Y > ~n

and the mean curvature
~H :=

1

2

[

~I(~e1, ~e1) +~I(~e2, ~e2)
]

.

Introduce moreover the Weingarten Operator expressed in conformal coordinates (x1, x2) as :

~H0 :=
1

2

[

~I(e1, e1)−~I(e2, e2)− 2 i~I(e1, e2)
]

.

In [Riv1] an alternative form to the Euler Lagrange equation of Willmore functional in euclidean
setting was proposed; our goal is to do the same for immersions in a Rienannian manifold.

Theorem II.1. Let ~Φ be a smooth immersion of a two dimensional manifold Σ2 into a 3-dimensional
Riemannian manifold (M3, h); restricting the immersion to a small disc neighboorod of a point where we

consider local conformal coordinate, we can see ~Φ as a conformal immersion of D2 into (M,h). Then
the following identity holds

−2e2λ∆gH ~n− 4e2λ ~H (H2 − (Kg −Kh)) + 2e2λR⊥
Φ(T

~Φ)

= D∗
[

−2∇H~n+HD~n−H ⋆h (~n ∧D⊥~n)
]

,

(II.1)

where ~H is the mean curvature vector of the immersion ~Φ, ∆g is the negative Laplace Beltrami operator,
⋆h is the Hodge operator associated to metric h, D· := (D∂x1

~Φ·, D∂x2
~Φ·) and D⊥· := (−D∂x2

~Φ·, D∂x1
~Φ·)

and D∗ is an operator acting on couples of vector fields (~V1, ~V2) along ~Φ∗(TΣ) defined as

D∗(~V1, ~V2) := D∂x1
~Φ
~V1 +D∂x2

~Φ
~V2.

Finally recall the definition (I.7) of R⊥
~Φ
(T ~Φ) := (Riem(~e1, ~e2) ~H)⊥ = ⋆h

(

~n ∧Riemh(~e1, ~e2) ~H
)

. 2

A straightforward but important consequence of Theorem II.1 is the following conservative form of
Willmore surfaces equations.

Corollary II.1. A conformal immersion ~Φ of a 2-dimensional disc D2 is Willmore if and only if

2e2λ[R⊥
Φ(T

~Φ) + ~HRich(~n, ~n)] = D∗
[

−2D~H + 3HD~n− ⋆h( ~H ∧D⊥~n)
]

(II.2)

2

Now recall that an immersion ~Φ is said to be constrained-conformal Willmore if and only if it is a
critical point of the Willmore functional under the constraint that the conformal class is fixed. In [BPP]
is derived the Willmore equation under conformal constraint for immersions of surfaces in a 3-dimensional
Riemannian manifold, which, matched with Theorem II.1, gives the following corollary.

Corollary II.2. A conformal immersion ~Φ of a 2-dimensional disc D2 is constrained-conformal Willmore
if and only if there exists an holomorphic function f(z) such that

2e2λ
[

R⊥
Φ(T ~Φ) + ~HRich(~n, ~n) + e−2λℑ(f(z) ~H0)

]

= D∗
[

−2D~H + 3HD~n− ⋆h( ~H ∧D⊥~n)
]

(II.3)

2

We proceed in the following way: first we prove a general lemma for conformal immersions of the
2-disc in (M3, h), then we pass to the proof of the theorem and of its corollaries.
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Lemma II.1. Let ~Φ be a conformal immersion from D2 into (M,h). Denote by ~n the unit normal vector

~n = ∗h(~e1 ∧ ~e2) of the conformal immersion ~Φ and denote by H the mean curvature. Then the following
identity holds

−2H ∇~Φ = D~n+ ⋆h(~n ∧D⊥~n) (II.4)

where D· := (D∂x1
~Φ·, D∂x2

~Φ·) and D⊥· := (−D∂x2
~Φ·, D∂x1

~Φ·). 2

Proof of lemma II.1. Denote (~e1, ~e2) the orthonormal basis of ~Φ∗(TΣ
2) given by

~ei := e−λ ∂~Φ

∂xi
,

where eλ = |∂x1
~Φ| = |∂x2

~Φ|. The unit normal vector ~n is then given by

~n = ⋆h(~e1 ∧ ~e2) .

We have






< ~e1, ⋆h(~n ∧D⊥~n) >= − < D⊥~n,~e2 >

< ~e1, ⋆h(~n ∧D⊥~n) >=< D⊥~n,~e1 > .

From which we deduce










− ⋆h (~n ∧D∂x2
~Φ~n) =< D∂x2

~Φ~n,~e2 > ~e1− < D∂x2
~Φ~n,~e1 > ~e2

⋆h(~n ∧D∂x1
~Φ~n) = − < D∂x1

~Φ~n,~e2 > ~e1+ < D∂x1
~Φ~n,~e1 > ~e2

Thus, by the symmetry of the second fundamental form,











D∂x1
~Φ~n− ⋆h(~n ∧D∂x2

~Φ~n) = [< D∂x2
~Φ~n,~e2 > + < D∂x1

~Φ~n,~e1 >] ~e1

D∂x2
~Φ~n+ ⋆h(~n ∧D∂x1

~Φ~n) = [< D∂x2
~Φ~n,~e2 > + < D∂x1

~Φ~n,~e1 >] ~e2

Since H = −e−λ 2−1[< D∂x2
~Φ~n,~e2 > + < D∂x1

~Φ~n,~e1 >] we deduce (II.4) and Lemma II.1 is proved. 2

Proof of theorem II.1 and its corollaries First let us introduce the operator D∗ acting on couples
of vector fields (~V1, ~V2) along ~Φ∗(TΣ) defined as

D∗(~V1, ~V2) := D∂x1
~Φ
~V1 +D∂x2

~Φ
~V2.

We can again assume that ~Φ is conformal. First apply the operator D∗ to (II.4) and multiply by H . This
gives

−2H2D∗D~Φ− 2H∇H ·D~Φ = HD∗
[

D~n+ ⋆h(~n ∧D⊥~n)
]

. (II.5)

We replace −2HD~Φ in (II.5) by the expression given by (II.4), moreover we also use the expression of

the mean curvature vector in terms of ~Φ :

D∗D~Φ = 2e2λ ~H . (II.6)

So (II.5) becomes

−4H2 ~H e2λ +∇H ·
[

D~n+ ⋆h(~n ∧D⊥~n
]

= H D∗
[

D~n+ ⋆h(~n ∧D⊥~n)
]

.

(II.7)

By the Gauss equations, called Kg the Gauss curvature of Σ and Kh = Kh(~Φ∗(TΣ)) the sectional

curvature of (M,h) evaluated on the tangent plane to ~Φ(Σ) we have

(Kg −Kh)~n = −1

2
⋆h (D~n ∧D⊥~n)e−2λ.
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Using that the Hodge duality ⋆h commutes with the covariant differentiation D we get

D∗[⋆h(~n ∧D⊥~n)] = ⋆h(D~n ∧D⊥~n) + ⋆h[~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ)~n]

where we use the convention that Riemh( ~X, ~Y )~Z := D ~X
~Y −D~Y

~X −D[ ~X,~Y ]
~Z; putting together the last

two equations we obtain

D∗[⋆h(~n ∧D⊥~n)] = −2e2λ(Kg −Kh)~n+ ⋆h[~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ)~n]. (II.8)

Computing (II.7)−2H(II.8) we get

−4e2λ ~H (H2 − (Kg −Kh)) +∇H ·
[

D~n+ ⋆h(~n ∧D⊥~n)
]

+

−2 ⋆h

(

~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ) ~H
)

= HD∗
[

D~n− ⋆h(~n ∧D⊥~n)
]

.

(II.9)

Since D∗(∇H~n) = e2λ∆gH~n+∇H ·D~n we have

HD∗(D~n− ⋆h(~n ∧D⊥~n)) = 2e2λ∆gH~n+∇H ⋆h (~n ∧D⊥~n)+

+D∗[−2∇H~n+HD~n−H ⋆h (~n ∧D⊥~n)] +∇HD~n .

(II.10)

Plugging (II.10) into (II.9) we obtain

−4e2λ ~H (H2 − (Kg −Kh))− 2 ⋆h

(

~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ) ~H
)

+

−2e2λ∆gH ~n = D∗
[

−2∇H~n+HD~n−H ⋆h (~n ∧D⊥~n)
]

.

(II.11)

Now observe that














< ⋆h

(

~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ) ~H
)

, ~e1 >= − < Riemh(~e2, ~e1) ~H, ~e2 >

< ⋆h

(

~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ) ~H
)

, ~e2 >=< Riemh(~e2, ~e1) ~H, ~e1 >

and the normal component is null; hence

⋆h

(

~n ∧Riemh(∂x2
~Φ, ∂x1

~Φ) ~H
)

= −e2λ(Riem(~e1, ~e2) ~H)⊥ =: −e2λR⊥
~Φ
(T ~Φ)

where ·⊥ denotes the rotation in the plane ~Φ∗(TΣ) of
π
2 in the sense from ~e1 to ~e2. Therefore we finally

write the relation (II.11) as

−2e2λ∆gH ~n− 4e2λ ~H (H2 − (Kg −Kh)) + 2e2λR⊥
Φ(T

~Φ)

= D∗
[

−2∇H~n+HD~n−H ⋆h (~n ∧D⊥~n)
]

.

(II.12)

Now recall that the immersion ~Φ is Willmore if and only if

(∆gH)~n+ 2 ~H(H2 − (Kg −Kh)) + ~HRich(~n, ~n) = 0

so, using equation (II.12), ~Φ is a Willmore immersion if and only if

2e2λR⊥
Φ(T

~Φ) + 2e2λ ~HRich(~n, ~n)

= D∗
[

−2∇H~n+HD~n−H ⋆h (~n ∧D⊥~n)
]

.

(II.13)

Observing that D ~H = D(H~n) = HD~n+∇H~n we can rewrite the last relation as

2e2λ[R⊥
Φ(T

~Φ) + ~HRich(~n, ~n)]

= D∗
[

−2D~H + 3HD~n− ⋆h( ~H ∧D⊥~n)
]

(II.14)
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which is the desired identity.
In [BPP] is derived the Willmore equation under conformal constraint for immersions of surfaces in

a 3-dimensional Riemannian manifold; by Proposition 2 of the aforementioned paper, ~Φ is a conformal
constrained Willmore immersion if and only if there exists an holomorphic quadratic differential q ∈
H0(K2) such that W ′(~Φ) = δ∗(q), which is equivalent to ask that there exists an holomorphic function

f(z) such that W ′(~Φ) = e−2λℑ(f(z) ~H0). Hence ~Φ is conformal constrained Willmore if and only if

−(∆gH)~n− 2 ~H(H2 − (Kg −Kh))− ~HRich(~n, ~n) = e−2λℑ(f(z) ~H0) (II.15)

for some holomorphic function f(z); we conclude using the relation (II.12). 2

III Conservative form of the Willmore equation in manifold in

arbitrary codimension

Let us start introducing some notation. Let ~Φ be a smooth immersion of the disc D2 into a Riemannian
manifold (Mm, h) of dimension m ≥ 3. We stress that at this point ~Φ is not assumed to be conformal.

Let us denote with g = g~Φ := ~Φ⋆h the pull back metric on D2 by ~Φ. Call ⋆h and ∗g the Hodge duality
operators, defined in (I.32) for p-vectors tangent respectively to M and to D2. Consider a positively

oriented orthormal frame ~f1, ~f2 of TD2 endowed with the metric g and let ~e1 := ~Φ∗(~f1), ~e2 := ~Φ∗(~f2) the

corresponding orthonormal frame of ~Φ∗(TD
2), called D the covariant derivative in (M,h) we define

Dg : ΓD2(T~ΦM ⊗ ∧pTD2) → ΓD2(T~ΦM ⊗ ∧p+1TD2)

~X ⊗ ~α 7→ D~e1
~X ⊗ (~f1 ∧ ~α) +D~e2

~X ⊗ (~f2 ∧ ~α)

= gij
[

D∂xi
~Φ
~X ⊗

(

∂

∂xj
∧ ~α
)]

, (III.1)

where, in the last line we used coordinates (x1, x2) on D2, ΓD2 denotes the set of the sections of the

cooresponding bundle, and T~ΦM is the tangent bundle of M along ~Φ(D2). Notice that the definition
does not depend on the choice of coordinates choosed on D2, i.e. it is intrinsic. Observe we defined Dg

on a generating family, so the defintion extends to the whole space.
Next extend the definition of ∗g to T~ΦM ⊗ ∧pTD2 as

∗g : T~ΦM ⊗ ∧pTD2 → T~ΦM ⊗ ∧(2−p) TD2

~X ⊗ ~α 7→ ~X ⊗ (∗g~α). (III.2)

Using (III.1) and (III.2) above let us define

D∗g
g := (−1) ∗g Dg ∗g . (III.3)

We also need to extend the definitions of ⋆h, ∧M , scalar product and the projection π~n onto the normal
space to ~Φ as follows

⋆h : ∧pT~ΦM ⊗ ∧qTD2 → ∧(m−p) T~ΦM ⊗ ∧qTD2

~η ⊗ ~α 7→ (⋆h~η)⊗ ~α (III.4)

∧M : ∧pT~ΦM ⊗ ∧qTD2 × ∧sT~ΦM → ∧p+sT~ΦM ⊗ ∧qTD2

(~η ⊗ ~α, ~τ ) 7→ (~η ∧M ~τ)⊗ ~α. (III.5)

< ., . >: (∧pT~ΦM ⊗ ∧qTD2) × (∧pT~ΦM ⊗ ∧qTD2) → R

(~η ⊗ ~α, ~τ ⊗ ~β) 7→ < ~η, ~τ >h< ~α, ~β >g (III.6)

π~n : T~ΦM ⊗ ∧qTD2 → T~ΦM ⊗ ∧qTD2

~X ⊗ ~α 7→ (π~n( ~X))⊗ ~α (III.7)

Define also R~Φ(T
~Φ) to be

R~Φ(T
~Φ) :=

2
∑

j=1

(

< Riemh(I1j , ~e2)~e1, ~e2 > ~ej+ < Riemh(~e1, I2j)~e1, ~e2 > ~ej
)

(III.8)
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and

(DR)(T ~Φ) :=
m
∑

i=1

< (D ~Ei
Riemh)(~e1, ~e2)~e1, ~e2 > ~Ei. (III.9)

The goal of this section is to prove Theorem I.1. Observe that, now, all the terms appearing in the
statement have been defined. Leu us summarize the arguments of the proof.

Proof of Theorem I.1. The proof is almost all the subsection below; more precisely it follows
combining (III.28) of Theorem III.1 with (III.29) in Remark III.1; indeed with some straitforward com-
putation following the defintions (III.1), (III.2), (III.3), (III.4), (III.5) and (III.7) one checks that the left
hand side of (I.8) and the left hand side of (III.29) coincide. 2

Before passing to the proof of the corollaries, some comments have to be done.
In order to exploit analytically equation (I.8) we will need a more explicit expression of π~n(Dg

~H). Recall

the definition of given in (I.33), let as before (~e1, ~e2) be an orthonormal basis of ~Φ∗(TD
2), call ~n the

orthogonal m− 2 plane given by
⋆h(~e1 ∧ ~e2) = ~n

and let (~n1 · · ·~nm−2) be a positively oriented orthonormal basis of the m− 2-plane given by ~n satisfying
~n = ∧α~nα. One verifies easily that























~n ~ei = 0

~n ~nα = (−1)α−1 ∧β 6=α ~nβ

~n (∧β 6=α~nβ) = (−1)m+α−2 ~nα

We then deduce the following identity :

∀~w ∈ T~Φ(x)M π~n(~w) = (−1)m−1 ~n (~n ~w) (III.10)

From (III.10) we deduce in particular

π~n(Dg
~H) = Dg

~H − (−1)m−1 Dg(~n) M (~n ~H)− (−1)m−1 ~n M (Dg(~n) M
~H); (III.11)

where, analogously as before, we define

M : (∧pT~ΦM ⊗ TD2)× ∧qT~ΦM → ∧(p−q) T~ΦM ⊗ TD2

(~α⊗ ~v, ~β) 7→ (~α⊗ ~v) M
~β := (~α ~β)⊗ ~v. (III.12)

A straightforward but important consequence of Theorem I.1 is the conservative form of Willmore
surfaces equations given in Corollary I.1. Let us prove it.

Proof of Corollary I.1. Recall that the first variation of the the Willmore functional in general
riemannian manifolds has been computed in [Wei]; equating it to zero we get the classical Willmore

equation in manifolds: ~Φ is a Willmore immersion if and only if

∆⊥
~H + Ã( ~H)− 2| ~H|2 ~H − R̃( ~H) = 0 (III.13)

where R̃ is the curvature endomorphism defined in (I.5). Collecting (III.13) and the equation (I.8) we
get the thesis. 2

Recall that an immersion ~Φ of Σ is said to be constrained-conformal Willmore if and only if it is a
critical point of the Willmore functional under the constraint that the conformal class is fixed. Let us
prove the conservative form of the constraint-conformal Willmore surface equation given in Corollary I.2.
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Proof of Corollary I.2. Recall (see [Riv2], and the notation given in the introduction before

Corollary I.2 ) that an immersion ~Φ is a constrained-conformal Willmore immersion if and only if there
exists an holomorphic quadratic differential q ∈ Q(J) such that

∆⊥
~H + Ã( ~H)− 2| ~H|2 ~H − R̃( ~H) = ℑ[(q,~h0)WP ] (III.14)

where R̃ is the curvature endomorphism defined in (I.5). The thesis follows putting together (III.32) and
the equation (III.28). 2

Now we prove that also the Euler Lagrange equation of the functional F = 1
2

∫

|I|2 ca be written in
conservative form, being the Euler Lagrange equation of W plus some lower order terms. Let us start
with an auxiliary lemma.

Lemma III.1. Let ~Φ : D2 →֒ (M,h) be a smooth immersion, then the first variation of the functional
∫

D2 K̄(~Φ∗(TD
2))dvolg with respect to a smooth compactly supported variation ~w is given

d

dt

∫

D2

K̄((~Φ + t ~w)∗(TD
2))dvolg~Φ+t~w

(t = 0)

= −
∫

D2

< (DR)(T ~Φ) + 2R~Φ(T
~Φ) + 2K̄(~Φ∗(TD

2)) ~H, ~w > dvolg .

(III.15)

where (DR)(T ~Φ) and R~Φ(T
~Φ) are the curvature quantities defined respectively in (III.9) and III.8. 2

Proof. Let(~e1, ~e2) is an orthonormal frame of ~Φ∗(TD
2) extended in the neighbourood of ~Φ(D2) by par-

allel translation in the normal directions, and πT denotes the projection on ~Φ∗(TD
2) By definition

K̄(~Φ∗(TD
2)) = − < Riemh(~e1, ~e2)~e1, ~e2 >. Observe that using the orthonormality of (~e1, ~e2), the anti-

symmetry of Riemh(., .) and the fact that Dπ~n(~w)~ei = 0 we get

Riemh(D~w~e1, ~e2) = Riemh(I(πT (~w), ~e1), ~e2);

recall moreover that the first variation of the volume element is −2 < ~H, ~w > volg. Collecting these
informations and using the symmetry of the Riemann tensor one gets

−
∫

D2

[

< (D~wRiem
h)(~e1, ~e2)~e1, ~e2 > +2 < Riemh(I(πT (~w), ~e1), ~e2)~e1, ~e2 >

+2 < Riemh(~e1, I(πT (~w), ~e2))~e1, ~e2 > +2K̄(~Φ∗(TD
2)) < ~H, ~w >

]

dvolg. (III.16)

Now the thesis follows recalling the definitions (III.9) and III.8.

Corollary III.1. A smooth immersion ~Φ of a 2-dimensional disc D2 in (Mm, h) is critical for the
functional F = 1

2

∫

|I|2 if and only if

D∗g
g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= 2R̃( ~H)− 2R⊥
~Φ
(T ~Φ) + (DR)(T ~Φ) + 2R~Φ(T

~Φ) + 2K̄(~Φ∗(TD
2)) ~H ,

(III.17)

where R̃ and R⊥ are the curvature endomorphisms defined respectively in (I.5) and (I.7). 2

Proof. The Gauss equation yelds

1

2
|I|2 = 2| ~H |2 + K̄(~Φ∗(TD

2))−K~Φ (III.18)

where K~Φ is the Gauss curvature of the metric g = ~Φ∗h. Integrating over D2, we get

F (~Φ) = 2W (~Φ) +

∫

D2

K̄(~Φ∗(TD
2))−

∫

D2

K~Φdvolg.

Since by Gauss-Bonnet theorem the last integral reduces, up to an additive constant, to an integral on
the boundary, if we take a variations ~w compactly supported in D2 it gives no contribution in the first
variation. Therefore the thesis follows combining the first variation of W given in Corollary I.1 and
Lemma III.1.
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Corollary III.2. A smooth immersion ~Φ of a 2-dimensional disc D2 in (Mm, h) is conformal Willmore

(i.e. critical for the conformal Willmore functional Wconf =
∫

(| ~H |2 + K̄)dvolg) if and only if

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= R̃( ~H)−R⊥
~Φ
(T ~Φ) + (DR)(T ~Φ) + 2R~Φ(T

~Φ) + 2K̄(~Φ∗(TD
2)) ~H .

(III.19)

Notice if (M,h) has constant sectional curvature K̄ then the right hand side is null and we get

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= 0 . (III.20)

2

Proof. The proof of (III.25) follows combining Corollary I.1 and Lemma III.1.

Now assume that the sectional curvature K̄ is constant; then observe thatWconf (~Φ) =W (~Φ)+K̄A(~Φ),

dWconf = dW − 2K̄ ~H. (III.21)

Moreover, K̄ constant implies that (see [DoC] Corollary 3.5 and recall the opposite sign convention in
the Riemann tensor)

< Riemh( ~X, ~Y ) ~W, ~Z >= h( ~X, ~Z)h(~Y , ~W )− h( ~X, ~W )h(~Y , ~Z) ∀ ~X, ~Y , ~W, ~Z ∈ TxM. (III.22)

Therefore, plugging (III.22) directly into the definitions (I.5) and (I.7) we get

R̃( ~H) = −2K̄ ~H, (III.23)

R⊥
~Φ
(T ~Φ) = 0 . (III.24)

Equation (III.26) follows combining (III.21), (III.23), (III.24) and Corollary I.1.

Corollary III.3. Let ~Φ : Σ →֒ M be a smooth immersion into the m ≥ 3-dimensional Riemannian
manifold (Mm, h) and call J the complex structure associated to g = ~Φ∗h. Then the immersion ~Φ is
constraint-conformal conformal Willmore (i.e. critical for the conformal Willmore functional Wconf =
∫

(| ~H |2+ K̄)dvolg under the constraint of fixed conformal class) if and only if there exists an holomorphic
quadratic differential q ∈ Q(J) such that

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= ℑ
[

(q,~h0)WP

]

+ R̃( ~H)−R⊥
~Φ
(T ~Φ) + (DR)(T ~Φ) + 2R~Φ(T

~Φ) + 2K̄(~Φ∗(TD
2)) ~H .

(III.25)

Where ~H0,~h0 and (., .)WP are defined in (I.10), (I.11) and (I.12).
Notice that if (M,h) has constant sectional curvature K̄ then the curvature terms of the right hand

side vanish and we get

1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

= ℑ
[

(q,~h0)WP

]

. (III.26)

2

Proof. The proos is analogous to the proof of Corollary I.2 once we have Corollary III.2.

III.1 Derivation of the conservative form: use of conformal coordinates and

complex notation

We first introduce some complex notation that will be useful in the sequel. In this subsection ~Φ is a
conformal immersion into a Riemannian manifold (Mm, h) of dimension m ≥ 3, denote z = x1 + ix2,
∂z = 2−1(∂x1 − i∂x2), ∂z = 2−1(∂x1 + i∂x2).
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Moreover we denote2










~ez := e−λ∂z~Φ = 2−1(~e1 − i~e2)

~ez := e−λ∂z~Φ = 2−1(~e1 + i~e2)

Observe that


































〈~ez, ~ez〉 = 0

〈~ez, ~ez〉 =
1

2

~ez ∧ ~ez =
i

2
~e1 ∧ ~e2

(III.27)

We also use the shorter notation Dz := D∂z
~Φ and Dz̄ := D∂

z̄~Φ
for the covariant derivative with respect

to the vectors ∂z~Φ and ∂z̄~Φ. Introduce moreover the Weingarten Operator expressed in our conformal
coordinates (x1, x2) :

~H0 :=
1

2

[

~I(~e1, ~e1)−~I(~e2, ~e2)− 2 i~I(~e1, ~e2)
]

.

Theorem III.1. Let ~Φ be a smooth immersion of a two dimensional manifold Σ2 into an m-dimensional
Riemannian manifold (Mm, h); restricting the immersion to a small disc neighboorod of a point where

we consider local conformal coordinate, we can see ~Φ as a conformal immersion of D2 into (M,h). Then
the following identity holds

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= ∆⊥
~H + Ã( ~H)− 2| ~H|2 ~H + 8ℜ

(

< Riemh(~ez , ~ez)~ez , ~H > ~ez

)

,

(III.28)

where ~H is the mean curvature vector of the immersion ~Φ, ∆⊥ is the negative covariant laplacian on the
normal bundle to the immersion, Ã is the linear map given in (I.6), Dz· := D∂z

~Φ·, and Dz· := D∂z
~Φ· are

the covariant derivatives in (M,h) with respect to the tangent vectors ∂z~Φ and ∂z~Φ. 2

Remark III.1. Observe that using the identity (III.34) proved in Lemma III.2, the equation (III.28) can
be written using real conformal coordinates as follows

−e
−2λ

2
D∗
[

D ~H − 3π~n(D ~H) + ⋆h(D
⊥~n ∧ ~H)

]

= ∆⊥
~H + Ã( ~H)− 2| ~H|2 ~H −R⊥

~Φ
(T ~Φ) , (III.29)

observe we used the equation below, which follows by definition (I.7),

R⊥
~Φ
(T ~Φ) = −8ℜ

(

< Riemh(~ez, ~ez)~ez, ~H > ~ez

)

=
(

πT

[

Riemh(~e1, ~e2) ~H
])⊥

.

Notice that identity (III.29) in codimension one gives exactly the previous (II.12). 2

A straightforward but important consequence of Theorem III.1 is the following conservative form of
Willmore surfaces equation in conformal coordinates.

Corollary III.4. A conformal immersion ~Φ of a 2-dimensional disc D2 in (Mm, h) is Willmore if and
only if

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= R̃( ~H) + 8ℜ
(

< Riemh(~ez, ~ez)~ez, ~H > ~ez

)

. (III.30)

Proof. Recall that ~Φ is a Willmore immersion if and only if (III.13) holds. Combining (III.13) and
equation (III.28) we get the desired result.

Now recall that an immersion ~Φ is said to be constrained-conformal Willmore if and only if it is a
critical point of the Willmore functional under the constraint that the conformal class is fixed.

2Observe that the notation has been chosen in such a way that ~ez = ~ez.

18



Corollary III.5. A conformal immersion ~Φ of a 2-dimensional disc D2 in (Mm, h) is constrained-
conformal Willmore if and only if there exists an holomorphic function f(z) such that

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= e−2λ ℑ(f(z) ~H0) + R̃( ~H) + 8ℜ
(

< Riemh(~ez, ~ez)~ez, ~H > ~ez

)

.

(III.31)

Proof of Corollary III.5 An immersion ~Φ is a constrained-conformal Willmore immersion if and
only if there exists an holomorphic function f such that

∆⊥
~H + Ã( ~H)− 2| ~H |2 ~H − R̃( ~H) = e−2λ ℑ(f(z) ~H0) (III.32)

where R̃ is the curvature endomorphism defined in (I.5).
Therefore putting together (III.32) and the equation (III.28) we get the thesis. 2

In order to prove Theorem III.1 some computational lemmas will be useful; let us start with the
following.

Lemma III.2. Let ~Φ be a conformal immersion of D2 into (Mm, h) then

πT (Dz
~H)− i ⋆h (Dz~n ∧ ~H) = −2

〈

~H, ~H0

〉

∂z~Φ (III.33)

and hence
Dz

~H − 3π~n(Dz
~H)− i ⋆h (Dz~n ∧ ~H) = −2

〈

~H, ~H0

〉

∂z~Φ− 2 π~n(Dz
~H) (III.34)

2

Proof of lemma III.2. We denote by (~e1, ~e2) the orthonormal basis of ~Φ∗(TD
2) given by

~ei = e−λ ∂~Φ

∂xi
.

With these notations the second fundamental form h which is a symmetric 2-form on TD2 into (~Φ∗TD
2)⊥

is given by
h =

∑

α,i,j h
α
ij ~nα ⊗ (~ei)

∗ ⊗ (~ej)
∗

with hαij = −e−λ
(

D∂xi
~Φ~nα, ~ej

)

(III.35)

We shall also denote

~hij := ~I(~ei, ~ej) =

m−2
∑

α=1

hαij ~nα

In particular the mean curvature vector ~H is given by

~H =

m−2
∑

α=1

Hα ~nα =
1

2

m−2
∑

α=1

(hα11 + hα22)~nα =
1

2
(~h11 + ~h22) (III.36)

Let ~n be the m− 2 vector of T~Φ(x)M given by ~n = ~n1 ∧ · · · ∧ ~n2. We identify vectors and m− 1-vectors

in T~Φ(x)M using the Hodge operator ⋆h for the metric h; for the Hodge operator we use the standard

notation (see for example [Nak] Chap. 7.9.2)

< α, β > ⋆h1 = (α ∧ ⋆hβ)

for any couple of p-vectors α and β, where we set ⋆h1 := ~e1 ∧ ~e2 ∧ ~n; then we have for instance

⋆h(~n ∧ ~e1) = ~e2 and ⋆h (~n ∧ ~e2) = −~e1 (III.37)
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Since ~e1, ~e2, ~n1 · · ·~nm−2 is a basis of T~Φ(x)M , we can write for every α = 1 · · ·m− 2

D~nα =

m−2
∑

β=1

< D~nα, ~nβ > ~nβ +

2
∑

i=1

< D~nα, ~ei > ~ei

and consequently
⋆h(~n ∧D⊥~nα) =< D⊥~nα, ~e1 > ~e2− < D⊥~nα, ~e2 > ~e1 (III.38)

Hence

⋆h(D
⊥~n ∧ ~H) = − < D⊥ ~H,~e1 > ~e2+ < D⊥ ~H,~e2 > ~e1 =< ~H, π~n(D

⊥~e1) > ~e2− < ~H, π~n(D
⊥~e2) > ~e1

Using (III.35), we then have proved

⋆h(D
⊥~n ∧ ~H) =







− < ~H,~h12 > ∂x2
~Φ+ < ~H,~h22 > ∂x1

~Φ

< ~H,~h11 > ∂x2
~Φ− < ~H,~h12 > ∂x1

~Φ






(III.39)

The tangential projection of D ~H is given by

πT (D ~H) =< D ~H,~e1 > ~e1+ < D ~H,~e2 > ~e2

= − < ~H, π~n(D~e1) > ~e1− < ~H, π~n(D~e2) > ~e2 .

Hence

πT (D ~H) =







− < ~H,~h11 > ∂x1
~Φ− < ~H,~h12 > ∂x2

~Φ

− < ~H,~h12 > ∂x1
~Φ− < ~H,~h22 > ∂x2

~Φ






(III.40)

Combining (III.39) and (III.40) gives

−πT (D ~H)− ⋆h(D
⊥~n ∧ ~H) =







< ~H,~h11 − ~h22 > ∂x1
~Φ+ 2 < ~H,~h12 > ∂x2

~Φ

2 < ~H,~h12 > ∂x1
~Φ+ < ~H,~h22 − ~h11 > ∂x2

~Φ






(III.41)

This last identity written with the complex coordinate z is exactly (III.33) and lemma III.2 is proved. 2

Before to move to the proof of Theorem III.1 we shall need two more lemmas. First we have

Lemma III.3. Let ~Φ be a conformal immersion of the disc D2 into Mm, called z := x1 + ix2, e
λ :=

|∂x1
~Φ| = |∂x2

~Φ| denote
~ei := e−λ ∂xi

~Φ , (III.42)

and let ~H0 be the Weingarten Operator of the immersion expressed in the conformal coordinates (x1, x2):

~H0 :=
1

2
[I(~e1, ~e1)− I(~e2, ~e2)− 2 i I(~e1, ~e2)] .

Then the following identities hold

Dz

[

eλ ~ez
]

=
e2λ

2
~H , (III.43)

and

Dz

[

e−λ~ez
]

=
1

2
~H0 . (III.44)

2

Proof of lemma III.3. The first identity (III.43) comes simply from the fact that Dz∂z~Φ = 1
4∆

~Φ, from
(III.48) and the expression of the mean curvature vector in conformal coordinates

~H =
e−2λ

2
∆~Φ .
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It remains to prove the identity (III.44). One has moreover

Dz

[

eλ~ez
]

= Dz∂z~Φ =
1

4

[

D∂x1
~Φ∂x1

~Φ−D∂x2
~Φ∂x2

~Φ− 2 i D∂x1
~Φ∂x2

~Φ
]

. (III.45)

In one hand the projection into the normal direction gives

π~n

[

D∂x1
~Φ∂x1

~Φ−D∂x2
~Φ∂x2

~Φ− 2 i D∂x1
~Φ∂x2

~Φ
]

= 2 e2λ ~H0 . (III.46)

In the other hand the projection into the tangent plane gives

πT

[

D∂x1
~Φ∂x1

~Φ−D∂x2
~Φ∂x2

~Φ− 2 i D∂x1
~Φ∂x2

~Φ
]

= e−λ
〈

∂x1
~Φ,
[

D∂x1
~Φ∂x1

~Φ−D∂x2
~Φ∂x2

~Φ− 2 i D∂x1
~Φ∂x2

~Φ
]〉

~e1

+ e−λ
〈

∂x2
~Φ,
[

D∂x1
~Φ∂x1

~Φ−D∂x2
~Φ∂x2

~Φ− 2 i D∂x1
~Φ∂x2

~Φ
]〉

~e2 .

This implies after some computation

πT

[

D∂x1
~Φ∂x1

~Φ−D∂x2
~Φ∂x2

~Φ− 2 i D∂x1
~Φ∂x2

~Φ
]

= 2 eλ [∂x1λ− i∂x2λ] ~e1 − 2 eλ [∂x2λ+ i∂x1λ] ~e2

= 8 ∂ze
λ ~ez .

(III.47)

The combination of (III.45), (III.46) and (III.47) gives

Dz

[

eλ~ez
]

=
e2λ

2
~H0 + 2 ∂ze

λ ~ez ,

which implies (III.44). 2

The last lemma we shall need in order to prove Theorem III.1 is the Codazzi-Mainardi identity that
we recall and prove below.

Lemma III.4. [Codazzi-Mainardi Identity.] Let ~Φ be a conformal immersion of the disc D2 into

(Mm, h), called z := x1 + ix2, e
λ := |∂x1

~Φ| = |∂x2
~Φ| denote

~ei := e−λ ∂xi
~Φ , (III.48)

and denote ~H0 the Weingarten Operator of the immersion expressed in the conformal coordinates (x1, x2):

~H0 :=
1

2
[I(~e1, ~e1)− I(~e2, ~e2)− 2 i I(~e1, ~e2)] .

Then the following identity holds

e−2λ ∂z

(

e2λ < ~H, ~H0 >
)

=< ~H,Dz
~H > + < ~H0, Dz

~H > +2 < Riemh(~ez, ~ez)∂z~Φ, ~H > . (III.49)

2

Proof of lemma III.4. Using (III.44) we obtain

< Dz
~H0, ~H >= 2

〈

Dz

[

Dz

(

e−2λ ∂z~Φ
)]

, ~H
〉

= 2
〈

Dz

[

Dz

(

e−2λ ∂z~Φ
)]

, ~H
〉

+2 < Riemh(~ez, ~ez)∂z~Φ, ~H > .

Thus

< Dz
~H0, ~H > = −4

〈

Dz

[

∂zλ e
−2λ ∂z~Φ

]

, ~H
〉

+

〈

Dz

[

e−2λ

2
∆~Φ

]

, ~H

〉

+ 2 < Riemh(~ez , ~ez)∂z~Φ, ~H >

= −2∂zλ
〈

~H0, ~H
〉

+
〈

Dz
~H, ~H

〉

+ 2 < Riemh(~ez, ~ez)∂z~Φ, ~H > . (III.50)
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This last identity implies the Codazzi-Mainardi identity (III.49) and Lemma III.4 is proved. 2

Proof of theorem III.1. Due to Lemma III.2, as explained in remark III.1, it suffices to prove in
conformal parametrization the identity (??). First of all we observe that

4 e−2λ ℜ
(

π~n

(

Dz

[

π~n(Dz
~H)
]))

= e−2λ π~n

(

D∗
[

π~n(D ~H)
])

= ∆⊥
~H (III.51)

The tangential projection gives

4 e−2λ πT

(

Dz

[

π~n(Dz
~H)
])

= 8 e−2λ
〈

Dz(π~n(Dz
~H)), ~ez

〉

~ez + 8 e−2λ
〈

Dz(π~n(Dz
~H)), ~ez

〉

~ez (III.52)

Using the fact that ~ez and ~ez are orthogonal to the normal plane we have in one hand using (III.43)

〈

Dz(π~n(Dz
~H)), ~ez

〉

= −e−λ
〈

π~n(Dz
~H), Dz

[

eλ ~ez
]

〉

= −e
λ

2

〈

Dz
~H, ~H

〉

(III.53)

and on the other hand using (III.44)

〈

Dz(π~n(Dz
~H)), ~ez

〉

= −eλ
〈

π~n(Dz
~H), Dz

[

e−λ ~ez
]

〉

= −e
λ

2

〈

Dz
~H, ~H0

〉

. (III.54)

Combining (III.52), (III.53) and (III.54) we obtain

4 e−2λ πT

(

Dz

[

π~n(Dz
~H)
])

= −4 e−2λ
[〈

Dz
~H, ~H

〉

∂z~Φ +
〈

Dz
~H, ~H0

〉

∂z~Φ
]

. (III.55)

Putting (III.51) and (III.55) together we obtain

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)
])

= ∆⊥
~H − 4 e−2λℜ

[[〈

Dz
~H, ~H

〉

+
〈

Dz
~H, ~H0

〉]

∂z~Φ
]

(III.56)

Using Codazzi-Mainardi identity (III.49) and using also again identity (III.44), (III.56) becomes

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= ∆⊥
~H + 2ℜ

(〈

~H, ~H0

〉

~H0 + 4 < Riemh(~ez, ~ez)~ez, ~H > ~ez

)

.

(III.57)

The definition (I.6) of Ã gives

Ã( ~H) =

2
∑

i,j=1

< ~H,~hij > ~hij ,

hence a short elementary computation gives

Ã( ~H)− 2| ~H |2 ~H = 2−1
〈

~H,~h11 − ~h22

〉

(~h11 − ~h22) + 2 < ~H,~h12 > ~h12 .

Using ~H0 this expression becomes

Ã( ~H)− 2| ~H|2 ~H = 2ℜ
(〈

~H, ~H0

〉

~H0

)

(III.58)

Combining (III.57) and (III.58) gives

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= ∆⊥
~H + Ã( ~H)− 2| ~H|2 ~H + 8ℜ

(

< Riemh(~ez, ~ez)~ez, ~H > ~ez

)

.

(III.59)

which is the desired equality and Theorem III.1 is proved. 2
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IV Parallel mean curvature Vs constraint-conformal conformal

Willmore surfaces

As an application of the Conservative form of the Willmore equation, in this section we prove the link be-
tween parallel mean curvature surfaces and constraint-conformal conformal Willmore surfaces mentioned
in the introduction; notice that Proposition I.1 gives a lot of examples of constraint-conformal conformal
Willmore surfaces.

Proof of Proposition I.1. Observe that the proof in the Euclidean case was given by the second author
in [Riv4], here we adapt the computations to the Riemannian setting. Up to a change of coordinates,

we can assume that ~Φ is a smooth conformal immersion. Since (Mm, h) has constant sectional curvature

K̄, then writing the equation (III.25) using the conformal parametrization gives that ~Φ is constraint-
conformal conformal Willmore if and only if there exists a holomorphic function f(z) such that (see also
(III.31))

4 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= e−2λ ℑ(f(z) ~H0). (IV.1)

Now assume that ~H is parallel, that is π~n(Dz
~H) = π~n(Dz̄

~H) = 0. From Codazzi-Mainardi identity
(III.49), observing that the curvature term vanish as showed in the proof of Corollary III.2 (it is nothing

but R⊥
~Φ
(T ~Φ)) we obtain

e−2λ ∂z

(

e2λ < ~H, ~H0 >
)

= 0,

therefore f(z) := e2λ < ~H, ~H0 > is holomorphic. Since by assumption π~n(Dz
~H) = 0, we can write the

left hand side of (IV.1) as

4 e−2λℜ
[

Dz

(

e2λ < ~H, ~H0 > ∂z~Φ e
−2λ
)]

= 4 e−2λℜ
[

f(z)Dz(e
−λ~ez)

]

;

Now using (III.44) we write the right hand side of the last equation as 2e−2λℜ
(

f(z) ~H0

)

= e−2λℑ
(

2if(z) ~H0

)

.

We have just shown that ~Φ satisfies the constraint-conformal conformal Willmore equation (IV.1) with

holomorphic function 2ie2λ < ~H, ~H0 >. 2

Proof of Theorem I.3. One implication follows directly from Proposition I.1 observing that the
constraint on the conformal class is trivial on smooth immersions of spheres by the Uniformization
Theorem.

Let us prove the opposite implication by contradiction: we assume that the compact Riemannian
3-manifold (M3, h) has constant scalar curvature Scal0 but it is not a space form and we exhibit an
embedded sphere which has constant mean curvature but is not conformal Willmore.
First of all let us denote Sµν := Ricµν − 1

3 Scal hµν the trace-free Ricci tensor of (M,h) and observe that
under our assumptions

m := max
x∈M

‖Sx‖2 > 0. (IV.2)

Indeed if ‖S‖2 ≡ 0 then the manifold is Einstein, but the 3-dimensional Einstein manifolds are just the
space forms (for example see [Pet] pages 38-41).
Now consider the function r :M → R defined as

r(x) := − 11

378
‖Sx‖2 +

55

1134
Scal2(x)− 1

21
△Scal(x) = − 11

378
‖Sx‖2 +

55

1134
Scal20 (IV.3)

where in the last equality we used that Scal ≡ Scal0. The function r we just defined is exactly the
function r defined at page 276 in [PX]; this can be seen using the irreducible decomposition of the
Riemann curvature tensor which implies (notice that we are assuming M to be 3-d, so the Weyl tensor
vanishes)

‖Riemh‖2(x) = 1

3
Scal2(x) + 4‖Sx‖2;

plugging this expression in the formula in [PX] and takingm = 3, after some straighforward computations
we end up with (IV.3). Let us recall Theorem 1.1 of [PX]:
There exists ρ0 > 0 and a smooth function φ :M × (0, ρ0) → R such that
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(i) For all ρ ∈ (0, ρ0), if x̄ is a critical point of the function φ(., ρ) then, there exists an embedded hyper-

surface S♯
x̄,ρwhose mean curvature is constant equal to 1

ρ and that is a normal graph over the geodesic

sphere Sx̄,ρ for some function which is bounded by a constant times ρ3 in C2,α topology.
(ii) For all k > 0, there exists ck > 0 which does not depend on ρ ∈ (0, ρ0) such that

‖φ(., ρ)− Scal+ ρ2r‖Ck(M) ≤ Ckρ
3. (IV.4)

Now, for ρ0 small enough, we claim that at all points of global minimum of φ we have ‖S‖2 > 0. If it is
not the case let xφρ be a point of global minimum of φ(., ρ) and observe that(IV.4) and (IV.3) yelds

φ(xφρ , ρ) ≥ Scal0 +
55

1134
Scal20 ρ

2 − C0ρ
3; (IV.5)

on the other hand, at a maximum point xS for ‖S‖2, we have analogously

φ(xS , ρ) ≤ Scal0 +
55

1134
Scal20 ρ

2 − 11

378
mρ2 + C0ρ

3; (IV.6)

now (IV.5) and (IV.6) together with the crucial fact that m > 0 (ensured by the fact that (M,h) is
not space form) imply that for ρ small enough φ(xS , ρ) < φ(xφρ , ρ) contradicting the minimality of xφρ .
Collecting Theorem 1.1 of [PX] and what we have just proved we conclude the following: for ρ0 small
enough, for every ρ ≤ ρ0 consider a minimum xρ a point for φ(., ρ), then
a) ‖Sxρ‖2 > 0
b) there exists an embedded CMC sphere S♯

xρ,ρ whose mean curvature given by a normal graph over the

geodesic sphere Sx̄,ρ for some function which is bounded by a constant times ρ3 in C2,α topology. Observe
that, since the graph function satisfies the mean curvature equation, bootstrapping the C2,α bound using
Schauder estimates, one gets the graph function is bounded in C4,α norm by a constant times ρ3.

But now, since a) holds, Theorem 1.4 in [Mon2] implies that for small ρ the CMC perturbed geodesic
spheres constructed in b) cannot be conformal Willmore immersions. The proof is now complete. 2

V Conformal constrained Willmore surfaces in manifold in ar-

bitrary codimension via a system of conservation laws

Let us start with a general lemma for surfaces.

Lemma V.1. Let ~Φ be a conformal immersion of the disc D2 into a Riemannian manifold (M,h) and

let ~X be the following L1 +H−1 vector field

~X := −2i
〈

~H, ~H0

〉

∂z~Φ− 2i π~n(Dz
~H); (V.1)

then the following system of equations holds















ℑ
[〈

~ez, ~X
〉]

= 0 (SysX − 1)

ℑ
[

~ez ∧ ( ~X + 2iDz
~H)
]

= 0 (SysX − 2)

(V.2)

where, given two complex vectors fields ~X, ~Y ∈ Γ(TM ⊗ C) : ~X = ~X1 + i ~X2, ~Y = ~Y1 + i~Y2 with
~X1, ~X2, ~Y1, ~Y2 ∈ Γ(TM) we use the notation < ~X, ~Y > to denote the quantity

< ~X, ~Y >:= h( ~X1, ~Y1)− h( ~X2, ~Y2) + i h( ~X1, ~Y2) + i h( ~X2, ~Y1)

where, of course, h(. , .) denotes the standard scalar product of tangent vectors in the Riemannian manifold
(M,h). 2

Proof of Lemma V.1. First of all by Lemma III.2 we can write ~X as

~X := −2i
〈

~H, ~H0

〉

∂z~Φ− 2i π~n(Dz
~H) = iDz

~H − 3iπ~n(Dz
~H) + ⋆h(Dz~n ∧ ~H). (V.3)
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Let us start by the first equation (SysX-1). Since ~ez is tangent and π~n(Dz
~H) is normal to (~Φ)∗(TD

2),
the scalar product symplifies as

ℑ
[〈

~ez, ~X
〉]

= ℑ
[〈

~ez, iπT (Dz
~H)
〉]

+ ℑ
[〈

~ez, ⋆h(Dz~n ∧ ~H)
〉]

. (V.4)

Identity (III.33) together with (III.27) gives

ℑ
[〈

~ez, iπT (Dz
~H)
〉]

= −ℑ
[〈

~ez, ⋆h(Dz~n ∧ ~H)
〉]

. (V.5)

Putting together (V.4) and (V.5) we obtain (SysX-1).
Now let us prove (SysX-2). Since ~ez̄ ∧ ~ez̄ = 0 we have

ℑ
[

~ez ∧ ~X
]

= ℑ
[

~ez ∧
(

−2i π~n(Dz
~H)
)]

= ℑ
[

~ez ∧
(

−2iDz
~H
)]

−ℑ
[

~ez ∧
(

−2i πT (Dz
~H)
)]

. (V.6)

In order to have (SysX-2) it’s enough to prove that ℑ
[

~ez ∧
(

−2i πT (Dz
~H)
)]

= 0. Using (III.27) we

write
πT (Dz

~H) = 2 < Dz
~H,~ez > ~ez̄ + 2 < Dz

~H,~ez̄ > ~ez, (V.7)

hence, again ~ez̄ ∧ ~ez̄ = 0 implies that

ℑ
[

~ez ∧
(

−2i πT (Dz
~H)
)]

= ℑ
[

~ez ∧
(

−4i < Dz
~H,~ez̄ > ~ez

)]

= 4ℜ
[(

< Dz
~H,~ez̄ >

)

~ez ∧ ~ez
]

. (V.8)

Now use that ~H is orthogonal to ~e1, ~e2 and that π~n(D~e1~e2) = I12 = I21 = π~n(D~e2~e1) to conclude that

4ℜ
[(

< Dz
~H,~ez̄ >

)

~ez ∧ ~ez
]

=
1

2

[(〈

D~e2
~H,~e1

〉

−
〈

D~e1
~H,~e2

〉)

~e1 ∧ ~e2
]

= −1

2

[(〈

~H,D~e2~e1

〉

−
〈

~H,D~e1~e2

〉)

~e1 ∧ ~e2
]

= 0.

2

Theorem V.1. Let ~Φ be a conformal immersion of the disc D2 into a Riemannian manifold (M,h),

then ~Φ is a conformal constrained Willmore immersion if and only if there exists an H−1 + L1 vector
field ~Y such that



































ℑ
[〈

~ez, ~Y
〉]

= 0 (Sys− 1)

ℑ
[

~ez ∧ (~Y + 2iDz
~H)
]

= 0 (Sys− 2)

ℑ
[

Dz̄
~Y
]

= −e2λ
(

1

2
R̃( ~H) + 4ℜ

[

< Riemh(~ez , ~ez)~ez , ~H > ~ez

]

)

(Sys− 3) .

(V.9)

2

Proof of Theorem V.1. Let us first prove the ”only if” part: we assume that ~Φ is constrained conformal
Willmore and prove that there exists an H−1+L1 vector field ~Y satisfying the system of equations (V.9).

Recall that ~Φ is a conformal constrained Willmore immersion if and only if there exists an holomorphic
function f(z) such that the equation (III.32) is satisfied, namely

∆⊥
~H + Ã( ~H)− 2| ~H |2 ~H − R̃( ~H) = e−2λℑ(f(z) ~H0) =< q,~h0 >WP .

where ~h0 = ~H0 dz ⊗ dz. We claim that the vector

~Y := e−λf~ez − 2i
〈

~H, ~H0

〉

∂z~Φ− 2i π~n(Dz
~H) (V.10)
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satisfies the system. Recalled the definition of the vector ~X given in (V.1), observe that ~Y = e−λf~ez+ ~X.

Since ~X satisfies the system (V.2) and since < ~ez̄, ~ez̄ >= 0 = ~ez̄ ∧~ez̄ we conclude that ~Y satisfies the first
two equations of system (V.9). Now let us prove the third equation (Sys-3), we have

ℑ
[

Dz̄
~Y
]

= −2ℑ
[

iDz̄

(〈

~H, ~H0

〉

∂z~Φ+ π~n(Dz
~H)
)]

+ ℑ
[

Dz̄(e
−λf~ez)

]

= −2ℜ
[

Dz̄

(〈

~H, ~H0

〉

∂z~Φ+ π~n(Dz
~H)
)]

+ ℑ
[

fDz̄(e
−λ~ez)

]

+ ℑ
[

(∂z̄f) e
−λ~ez

]

.

Recall the identity (III.44), sum and substract e2λ
(

1
2 R̃(

~H) + 4ℜ
[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

])

and get

ℑ
[

Dz̄
~Y
]

= −e2λ
(

1

2
R̃( ~H) + 4ℜ

[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

]

)

+ ℑ
[

(∂z̄f) e
−λ~ez

]

(V.11)

−2ℜ
[

Dz̄

(〈

~H, ~H0

〉

∂z~Φ + π~n(Dz
~H)
)]

+
1

2
ℑ
[

f ~H0

]

+e2λ
(

1

2
R̃( ~H) + 4ℜ

[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

]

)

.

Now recall that ~Φ is conformal constrained Willmore if and only if the identity (III.31) holds, moreover
f is holomorphic so ∂zf = 0, therefore we can conclude that

ℑ
[

Dz̄
~Y
]

= −e2λ
(

1

2
R̃( ~H) + 4ℜ

[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

]

)

as desired.

For the other implication assume there exists a vector ~Y satisfying the system (V.9) and write ~Y as

~Y = A~ez +B~ez + ~V

where where A and B are complex number and ~V := π~n(~Y ) is a complex valued normal vector to the
immersed surface. The first equation of (V.9), using (III.27), is equivalent to

ℑA = 0 (V.12)

Observe that if we write
Dz

~H = C ~ez +D ~ez + ~W

where ~W = π~n(Dz
~H), one has, using (III.43) and the fact that ~H is orthogonal to ~ez

C = 2
〈

~ez, Dz
~H
〉

= −2
〈

Dz(e
λ ~ez), ~H

〉

e−λ = −eλ | ~H |2 . (V.13)

Hence we deduce in particular
ℑC = 0 . (V.14)

We have moreover using (III.44)

D = 2
〈

~ez, Dz
~H
〉

= −2
〈

Dz(e
−λ ~ez), ~H

〉

eλ = −eλ < ~H0, ~H > . (V.15)

Thus combining (V.13) and (V.15) we obtain

Dz
~H = −| ~H|2 ∂z~Φ− < ~H0, ~H > ∂z~Φ + π~n(Dz

~H). (V.16)

Using (III.27), the second line in the conservation law (V.9) is equivalent to











ℑ(i A− 2C) = 0

ℑ
(

~ez ∧
[

~V + 2i ~W
])

= 0 .

(V.17)
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We observe that ~e1 ∧
[

~V + 2i ~W
]

and ~e2 ∧
[

~V + 2i ~W
]

are linearly independent since
[

~V + 2i ~W
]

is or-

thogonal to the tangent plane, moreover we combine (V.14) and (V.17) and we obtain that (V.17) is
equivalent to































ℑ(i A) = 0

~e1 ∧ ℑ
(

~V + 2i ~W
)

= 0

~e2 ∧ ℑ
(

i
[

~V + 2i ~W
])

= 0 .

(V.18)

Combining (V.12) and (V.18) we obtain that the first two conservation laws of (V.9) are equivalent to







A = 0

~V = −2i ~W = −2i π~n(Dz
~H)

(V.19)

Or in other words, for a conformal immersion ~Φ of the disc into Rm, there exists a vector field ~Y satisfying
the first two equations of the system (V.9) if and only if there exists a complex valued function B and a

vector field ~Y such that
~Y = B~ez − 2i π~n(Dz

~H) . (V.20)

We shall now exploit the third equation of (V.9) by taking Dz of (V.20). Let

f := eλB + 2i e2λ
〈

~H, ~H0

〉

. (V.21)

With this notation (V.20) becomes

~Y = e−λ f ~ez − 2i
〈

~H, ~H0

〉

∂z~Φ− 2i π~n(Dz
~H) (V.22)

which is exactly equation (V.10) (recall we defined a vector ~Y in that way starting from a conformal

immersion ~Φ satisfying the conformal constraint Willmore equation). Then repeating the computations
above (i.e. the ones for the ”only if” implication) we get that the equation (V.11) is still valid, but since
~Y satisfies (Sys-3) we get

0 = −2ℜ
[

Dz̄

(〈

~H, ~H0

〉

∂z~Φ+ π~n(Dz
~H)
)]

+
1

2
ℑ
[

f ~H0

]

(V.23)

+e2λ
(

1

2
R̃( ~H) + 4ℜ

[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

]

)

+ ℑ
[

(∂z̄f) e
−λ~ez

]

.

Consider the normal and the tangential projections of (V.23). The tangential projection of identity
(III.28) gives

πT

(

−2ℜ
[

Dz̄

(〈

~H, ~H0

〉

∂z~Φ+ π~n(Dz
~H)
)])

= −4 e2λℜ
[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

]

; (V.24)

on the other hand, the tangential projection of (V.23) gives

0 = πT

(

−2ℜ
[

Dz̄

(〈

~H, ~H0

〉

∂z~Φ+ π~n(Dz
~H)
)])

+4 e2λℜ
[

< Riemh(~ez, ~ez)~ez, ~H > ~ez

]

+ ℑ
[

(∂z̄f) e
−λ~ez

]

,

(V.25)

so, combining (V.24) and (V.25) we obtain

0 = ℑ
[

(∂z̄f) e
−λ~ez

]

. (V.26)

The normal projection of (V.23) gives

0 = π~n

(

−2ℜ
[

Dz̄

(〈

~H, ~H0

〉

∂z~Φ+ π~n(Dz
~H)
)]

+
1

2
ℑ
[

f ~H0

]

+
e2λ

2
R̃( ~H)

)

. (V.27)

27



Therefore, putting togheter (V.24), (V.26) and (V.27) we conclude that (V.23) implies the following
system



























4 e−2λ ℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= e−2λ ℑ(f(z) ~H0) + R̃( ~H) + 8ℜ
(

< Riemh(~ez , ~ez)~ez , ~H > ~ez

)

ℑ (∂zf ~ez) = 0 .

(V.28)

The second line is equivalent to
∂zf ~ez − ∂zf ~ez = 0.

Taking the scalar product with ~ez and using (III.27), observe that (V.28) is equivalent to



























4 e−2λ ℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= e−2λ ℑ(f(z) ~H0) + R̃( ~H) + 8ℜ
(

< Riemh(~ez , ~ez)~ez , ~H > ~ez

)

∂zf = 0 .

(V.29)

The second line gives that f = f(z) is holomorphic and the equation in the first line is exactly the
equation of the conformal constrained Willmore surfaces (III.31); therefore we proved that the existence

of a vector field ~Y satisfying the system of conservation laws (V.9) implies that the immersion ~Φ is
conformal constrained Willmore. 2

VI Regularity for Willmore immersions

We start by using the divergence structure of the constrained-conformal Willmore equation in order to
construct potentials which will play a crucial role in the regularity theory.

Lemma VI.1. Let ~Φ be a W 1,∞ conformal immersion of the disc D2 taking values into a sufficiently
small open subset of the Riemannian manifold (M,h), with second fundamental form in L2(D2) and

conformal factor λ ∈ L∞(D2). Assume ~Φ is a constrained-conformal Willmore immersion; then there
exist the following potential vector fields:

(i) there exists a complex vector field (i.e. a vector field with values in the complexified tangent bundle

of M) ~L ∈ L2,∞(D2) with ∇ℑ~L ∈ L2,∞(D2) satisfying











Dz
~L = ~Y on D2

ℑ~L = 0 on ∂D2 ,

(VI.1)

where ~Y is the vector given in (V.10) in the proof of Theorem V.1;

(ii) there exists a complex valued function S ∈W 1,(2,∞)(D2) with ∇2ℑS ∈ Lq(D2) for every 1 < q < 2
satisfying











∂zS =< ∂z~Φ, ~L > on D2

ℑS = 0 on ∂D2 ;

(VI.2)

(iii) there exists a complex valued 2-vector field ~R ∈ W 1,(2,∞)(D2) with ∇2ℑ~R ∈ Lq(D2) for every
1 < q < 2 satisfying











Dz
~R = ∂z~Φ ∧ ~L− 2i∂z~Φ ∧ ~H on D2

ℑ~R = 0 on ∂D2 .

(VI.3)

2
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Proof. (i): Let ~Y be the vector field given by (V.10) in the proof of Theorem V.1 and observe that, by

our assumption of the immersion ~Φ, we have ~Y ∈ H−1 + L1(D2). Moreover, since ~Y satisfyes equation
(Sys-3) of (V.9), then

‖ℑ(Dz̄
~Y )‖L2(D2) ≤ C‖H‖L2(D2) . (VI.4)

Since ~Φ is taking values into a small open subset V ⊂ M , by choosing Riemann normal coordinates on
V centred in ~Φ(0), we can assume that the functions

γjk := Γj
kl∂zΦ

l, γjk ∈ C0 ∩W 1,2(D2) (VI.5)

are smaller than the ǫ given in the statement of Lemmas IX.1 and IX.2; extend γjk to the whole C and
multiply them by a smooth cutoff function in order to obtain

γjk ∈ C0 ∩W 1,2(C), supp γjk ⊂ B2(0), ‖γjk‖L∞(C) ≤ ǫ . (VI.6)

Using γjk we can extend the operator Dz to complex vector fields ~U ∈ L1
loc(C) in the following way

DzU
j := ∂zU

j +

m
∑

k=1

γjkU
k in distributional sense.

Analogously extend Y j ∈ H−1 + L1(D2) to functions Ỹ j ∈ H̊−1 + L1(C), where H̊−1(C) is the dual of
homogeneous Sobolev space H̊1(C) (this is just a technical point for applying Lemma IX.1) such that

‖Ỹ j‖H̊−1+L1(C) ≤ C‖Y j‖H−1+L1(D2) <∞ ,

‖ℑ(DzỸ
j)‖L1(C) ≤ C‖ℑ(DzY

j)‖L1(D2) ≤ C‖ℑ(DzY
j)‖L2(D2) <∞ .

For convenience, in the following we identify Y j and its extension. Now we apply Lemma IX.1 and define
~L ∈ L2,∞(D2) to be the unique solution to the problem











Dz
~L = ~Y on D2

ℑ~L = 0 on ∂D2 .

Observe that moreover the same lemma gives that ∇(ℑ~L) ∈ L2,∞(D2) which implies that ℑ~L ∈ Lp(D2)
for every 1 < p <∞.

Proof of (ii). Let us start with a computation; from (Sys-1) of (V.9), since by (i) we have Dz
~L = ~Y

on D2, then

0 = ℑ
(

< ∂z̄~Φ, Dz
~L >

)

= ℑ
(

∂z < ∂z̄~Φ, ~L > − < Dz∂z̄~Φ, ~L >
)

.

Using identity (III.43), by complex conjugation we obtain

ℑ(∂z̄ < ∂z~Φ, ~L >) = −e
2λ

2
< ~H,ℑ~L > ∈ Lq(D2) for every 1 < q < 2, (VI.7)

where the Lq bound follows by Hölder inequality observing that by (i) we have ∇ℑ~L ∈ L2,∞(D2) then

ℑ~L ∈ Lp(D2) for every 1 < p <∞; on the other hand, by assumption, ~H ∈ L2(D2).

By (i), we have < ∂z~Φ, ~L >∈ L2,∞(D2) and as before we extend it to the whole C keeping controled the

norms: < ∂z~Φ, ~L >∈ L1 ∩ L2,∞(C) and ℑ(∂z̄ < ∂z~Φ, ~L >) ∈ Lq(C) for every 1 < q < 2.
Now we apply Lemma IX.2, with m = 1 and γjk = 0, and define S ∈ W 1,(2,∞)(D2) to be the unique
solution to











∂zS =< ∂z~Φ, ~L > on D2

ℑS = 0 on ∂D2 ;

moreover ∇2ℑS ∈ Lq(D2) for every 1 < q < 2 which implies, by Sobolev Embedding Theorem,
∇ℑS ∈ Lp(D2) for all 1 < p <∞.
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Proof of (iii). Since ~Y = Dz
~L, equation (Sys-2) in (V.9) gives

0 = ℑ
[

∂z̄~Φ ∧Dz
~L+ 2i∂z̄~Φ ∧Dz

~H
]

= −ℑ
[

Dz̄

(

∂z~Φ ∧ ~L− 2i∂z~Φ ∧ ~H
)

− (Dz̄∂z~Φ) ∧ ~L+ 2i(Dz̄∂z~Φ) ∧ ~H
]

,

using (III.43) we obtain

ℑ
[

Dz̄

(

∂z~Φ ∧ ~L− 2i∂z~Φ ∧ ~H
)]

= −e
2λ

2
~H ∧ ℑ~L ∈ Lq(D2) for every 1 < q < 2, (VI.8)

where the Lq(D2) estimate comes from Hölder inequality since ~H ∈ L2(D2) and ℑ~L ∈ Lp(D2) for every

1 < p < ∞. As in (ii) extend the complex valued vector field ∂z~Φ ∧ ~L − 2i∂z~Φ ∧ ~H ∈ L2,∞(D2) to a

complex valued vector field on C keeping the norms controled: ∂z~Φ∧ ~L− 2i∂z~Φ∧ ~H ∈ L1 ∩L2,∞(C) and

ℑ
[

Dz̄

(

∂z~Φ ∧ ~L− 2i∂z~Φ ∧ ~H
)]

∈ Lq(D2) for every 1 < q < 2.

As in (ii), we apply Lemma IX.2 in order to define ~R ∈ W 1,(2,∞)(D2) as the unique solution to











Dz
~R = ∂z~Φ ∧ ~L− 2i∂z~Φ ∧ ~H on D2

ℑ~R = 0 on ∂D2 ;

moreover ∇2ℑ~R ∈ Lq(D2) for every 1 < q < 2 which implies, by Sobolev Embedding Theorem, ∇ℑ~R ∈
Lp(D2) for all 1 < p <∞.

Next we play with the introduced ~R and S in order to produce, in the following lemma, an elliptic
system of Wente type involving ~Φ, ~R and S.

Lemma VI.2. Let ~Φ be aW 1,∞ conformal immersion of the disc D2 taking values into a sufficiently small
open subset of the Riemannian manifold (M,h), with second fundamental form in L2(D2) and conformal

factor λ ∈ L∞(D2). Assume ~Φ is a constrained-conformal Willmore immersion and let ~R ∈ W 1,(2,∞)(D2)

and S ∈ W 1,(2,∞)(D2) be given by Lemma VI.1; then ~R and S satisfy the following coupled system on
D2:











Dz
~R = (−1)m+1 ⋆h

[

~n • iDz
~R
]

+ (i∂zS) ⋆h ~n

∂zS =< −iDz
~R, ⋆h~n > .

(VI.9)

2

Proof. By definition, ~R satisfies the equation (VI.3) on D2, i.e:

Dz
~R = ∂z~Φ ∧ ~L− 2i∂z~Φ ∧ ~H . (VI.10)

Taking the • contraction defined in (I.34) between ~n and Dz
~R we obtain

~n •Dz
~R = −(~nx~L) ∧ ∂z~Φ+ 2i(~nx ~H) ∧ ∂zΦ

= −[~nxπ~n(~L)]∂z~Φ + 2i(~nx ~H) ∧ ∂zΦ , (VI.11)

where x is the usual contraction defined in (I.33).

For a normal vector ~N , a short computation using just the definitions of ⋆h and x gives

⋆h[(~nx ~N) ∧ ~e1] = (−1)m ~N ∧ ~e2
⋆h[(~nx ~N) ∧ ~e2] = (−1)m+1 ~N ∧ ~e1,

where, as usual, ~e1 and ~e2 is the ortonormal basis of T ~Φ(D2) given by the vectors ∂1~Φ, ∂2~Φ normalized.

Since ∂z~Φ = 1
2

[

∂1~Φ− i∂2~Φ
]

, we get

⋆h[(~nx ~N) ∧ ∂z~Φ] = (−1)m ~N ∧ (i∂z~Φ). (VI.12)
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Combining (VI.11) and (VI.12) we have

⋆h[~n •Dz
~R] = (−1)m+1π~n(~L) ∧ (i∂z~Φ) + 2i(−1)m ~H ∧ (i∂z~Φ) , (VI.13)

multiplying both sides with i(−1)m gives

(−1)m+1 ⋆h [~n • (iDz
~R)] = ∂z~Φ ∧ π~n(~L)− 2i∂z~Φ ∧ ~H . (VI.14)

Combining (VI.10) and (VI.14) we obtain

(−1)m+1 ⋆h [~n • (iDz
~R)] = Dz

~R− ∂z~Φ ∧ πT (~L) . (VI.15)

Observing that, by (III.27)

πT (~L) = 2 < ~L,~ez̄ > ~ez + 2 < ~L,~ez > ~ez̄ ,

then
∂z~Φ ∧ πT (~L) = ∂z~Φ ∧ (2 < ~L,~ez >)~ez̄ = (2 < ~L, ∂z~Φ >)~ez ∧ ~ez̄ ,

using again (III.27), and the definition of S (VI.2) gives

∂z~Φ ∧ πT (~L) = (i∂zS) ⋆h ~n . (VI.16)

The combination of (VI.16) and (VI.15) gives the first equation of (VI.9). The second equation is obtained
by taking the scalar product between the first equation and ⋆h~n once one have observed that

< ⋆h~n, ⋆h(~n •Dz
~R) >= 0 .

This fact comes from (VI.13) which implies that ⋆h(~n•Dz
~R) is a linear combination of wedges of tangent

and normal vectors to T ~Φ(D2). This concludes the proof.

Proposition VI.1. Let ~Φ be a W 1,∞ conformal immersion of the disc D2 taking values into a sufficiently
small open subset of the Riemannian manifold (M,h), with second fundamental form in L2(D2) and

conformal factor λ ∈ L∞(D2). Assume ~Φ is a constrained-conformal Willmore immersion and let ~R ∈
W 1,(2,∞)(D2) and S ∈ W 1,(2,∞)(D2) be given by Lemma VI.1; then the couple (ℜ~R,ℜS) satisfies the
following system on D2











△(ℜ~R) = (−1)m ⋆h [D~n •D⊥(ℜ~R)]− ⋆h[D~n ∇⊥(ℜS)] + F̃

△(ℜS) =< D(⋆h~n), D
⊥(ℜ~R) > +G̃ ;

(VI.17)

where F̃ and G̃ are some functions (F̃ is 2-vector valued) in Lq(D2) for every 1 < q < 2. Moreover we

denoted △(ℜ~R) := D∂x1
~ΦD∂x1

~Φ(ℜ~R) +D∂x2
~ΦD∂x2

~Φ(ℜ~R), observe this differ from the intrinsic Laplace-

Beltrami operator by a factor e2λ. For a more explicit shape of the equations see (VI.25) and (VI.27) in
the end of the proof. 2

Proof. Let us start by proving the first equation. Applying the Dz̄ operator to the first equation of (VI.9)
we have

Dz̄Dz
~R = (−1)m+1i ⋆h Dz̄

[

~n •Dz
~R
]

+ iDz̄ [∂zS ⋆h ~n] ,

whose real part is

ℜ(Dz̄Dz
~R) = (−1)m ⋆h ℑ

(

Dz̄

[

~n •Dz
~R
])

−ℑ (Dz̄ [∂zS ⋆h ~n]) . (VI.18)

Observe that

Dz̄Dz
~R :=

1

4

[

(D∂x1
~Φ + iD∂x2

~Φ)(D∂x1
~Φ − iD∂x2

~Φ)
]

~R =
1

4
△~R− i

4

[

D∂x1
~Φ, D∂x2

~Φ

]

~R, (VI.19)
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where
[

D∂x1
~Φ, D∂x2

~Φ

]

:= (D∂x1
~ΦD∂x2

~Φ −D∂x2
~ΦD∂x1

~Φ) is the usual bracket notation. An easy computa-

tion in local coordinates shows that all the derivatives appearing in [D∂x1
~Φ, D∂x2

~Φ](
~R) cancel out together

with all the mixed terms, giving

[

D∂x1
~Φ, D∂x2

~Φ

]





m
∑

i,j=1

Rij ~Ei ∧ ~Ej





=

m
∑

i,j=1

Rij
[(

Riem(∂x1~Φ, ∂x2~Φ) ~Ei

)

∧ ~Ej + ~Ei ∧
(

Riem(∂x1~Φ, ∂x2~Φ) ~Ej

)]

,

(VI.20)

where as before { ~Ei}i=1,...,m is an orthormal frame of T~Φ(x)M . Putting together (VI.18) and (VI.19) we

obtain

△(ℜ~R) = 4(−1)m ⋆h ℑ
(

Dz̄

[

~n •Dz
~R
])

− 4ℑ (Dz̄ [∂zS ⋆h ~n])−
[

D∂x1
~Φ, D∂x2

~Φ

]

(ℑ~R) (VI.21)

Using that the • contraction commutes with the covariant derivative (this fact follows by the definitions
and by the identity Dh = 0, i.e. the connection is metric) we compute

ℑ
[

Dz̄(~n •Dz
~R)
]

= ℑ
[

~n • (Dz̄Dz
~R) +Dz̄~n •Dz

~R
]

=
1

4
~n • [△(ℑ~R)− [D∂x1

~Φ, D∂x2
~Φ](ℜ~R)] + ℑ

[

Dz̄~n •Dz
~R
]

.

(VI.22)

A short computation gives

ℑ
[

Dz̄~n •Dz
~R
]

=
1

4

[

D∂x1
~Φ~n •D∂x1

~Φ(ℑ~R) +D∂x2
~Φ~n •D∂x2

~Φ(ℑ~R)
]

+
1

4

[

D∂x2
~Φ~n •D∂x1

~Φ(ℜ~R)−D∂x1
~Φ~n •D∂x2

~Φ(ℜ~R)
]

. (VI.23)

Analogously, using that ⋆h commutes with the covariant derivative, another short computation gives

ℑ [Dz̄(∂zS ⋆h ~n)] =
1

4
△(ℑS) ⋆h ~n+

1

4

[

∂x1(ℑS) D∂x1
~Φ(⋆h~n) + ∂x2(ℑS) D∂x2

~Φ(⋆h~n)
]

+
1

4

[

∂x1(ℜS) D∂x2
~Φ(⋆h~n)− ∂x2(ℜS) D∂x1

~Φ(⋆h~n)
]

. (VI.24)

Combining (VI.21),(VI.20), (VI.22), (VI.23) and (VI.24) we conclude that

△(ℜ~R) = (−1)m ⋆h

[

D∂x2
~Φ~n •D∂x1

~Φ(ℜ~R)−D∂x1
~Φ~n •D∂x2

~Φ(ℜ~R)
]

+
[

∂x2(ℜS) D∂x1
~Φ(⋆h~n)− ∂x1(ℜS) D∂x2

~Φ(⋆h~n)
]

+ F̃ (VI.25)

where F̃ ∈ Lq(D2) for every 1 < q < 2, and we used that D~n ∈ L2(D2), ~R ∈ W 1,(2,∞)(D2), S ∈
W 1,(2,∞)(D2),ℑ~R ∈ W 2,q(D2),ℑS ∈ W 2,q(D2) for every 1 < q < 2. This is exactly the first equation of
(VI.17).

The second equation of (VI.17) is obtained in analogous way: applying the ∂z̄ operator to the second
equation of (VI.9) we obtain

△S = 4∂z̄∂zS = −4i∂z̄ < Dz
~R, ⋆h~n > .

A short computation gives

△(ℜS) = 4ℑ
[

∂z̄ < Dz
~R, ⋆h~n >

]

= ∂x1 < D∂x1
~Φℑ~R, ⋆h~n > +∂x2 < D∂x2

~Φℑ~R, ⋆h~n >

− < [D∂x1
~Φ, D∂x2

~Φ]ℜ~R, ⋆h~n >

+ < D∂x1
~Φℜ~R,D∂x2

~Φ(⋆h~n) > − < D∂x2
~Φℜ~R,D∂x1

~Φ(⋆h~n) > . (VI.26)
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Recalling that ℑ~R ∈ W 2,q(D2) and ~R ∈W 1,(2,∞)(D2), and using (VI.20), we conclude that

△(ℜS) =< D∂x1
~Φ(ℜ~R), D∂x2

~Φ(⋆h~n) > − < D∂x2
~Φ(ℜ~R), D∂x1

~Φ(⋆h~n) > +G̃ (VI.27)

where G̃ ∈ Lq(D2) for every 1 < q < 2. This is exactly the second equation of (VI.17).

Now we are in position to prove the C∞ regularity of constraint-conformal Willmore immersions.

Theorem VI.1. Let ~Φ be a W 1,∞ conformal immersion of the disc D2 taking values into a sufficiently
small open subset of the Riemannian manifold (M,h), with second fundamental form in L2(D2) and

conformal factor λ ∈ L∞(D2). If ~Φ is a constrained-conformal Willmore immersion then ~Φ is C∞. 2

Proof. Let us call ~A := (ℜ~R,ℜS) = (ℜRij ,ℜS) the vector of the components (in local coordinates in the

small neighboorod V ⊂ M) of the real parts of the potentials ~R and S. Using coordinates also in the
domain D2, one easily checks that the system (VI.17) has the form

△Ai =
∑

k

[

∂x1Bi
k ∂x2Ak − ∂x2Bi

k ∂x1Ak
]

+ F i, (VI.28)

where F i ∈ Lq(D2) for every 1 < q < 2, ∇Ai ∈ L2,∞(D2), ∇Bi
k ∈ L2(D2).

Step 1 : ∇Ai ∈ L2
loc(D

2). Let us write Ai as

Ai = ϕi + V i +W i on D2, (VI.29)

where ϕi, V i,W i solve the following problems






△ϕi =
∑

k

[

∂x1Bi
k ∂x2Ak − ∂x2Bi

k ∂x1Ak
]

on D2

ϕi = 0 on ∂D2 ;

(VI.30)







△V i = F i on D2

V i = 0 on ∂D2 ;

(VI.31)







△W i = 0 on D2

W i = Ai on ∂D2 .

(VI.32)

Since the right hand side of (VI.30) is sum of L2,∞ − L2−Jacobians, by a refinement of the Wente
inequality obtained by Bethuel [Bet] as a consequence of a result by Coifman Lions Meyer and Semmes,
we have ∇ϕi ∈ L2(D2).
On the other hand, since F i ∈ Lq(D2), for every 1 < q < 2, it follows that V i ∈ W 2,q(D2), which implies
by Sobolev embedding that ∇V i ∈ L2(D2).
Finally, W i is an harmonic W 1,2,∞(D2) function, therefore the gradient ∇W i ∈ L2

loc(D
2).

We conclude that ∇Ai = ∇ϕi +∇V i +∇W i ∈ L2
loc(D

2).

Step 2 : ∇Ai ∈ Lp
loc(D

2) for some p > 2.
We first claim that there exists α > 0 such that

sup
x0∈B 1

2
(0),ρ< 1

4

1

ρα

∫

Bρ(x0)

|∇A|2 <∞ . (VI.33)

Since ∇B ∈ L2(D2), by absolute continuity of the integral, for every ǫ > 0 there exists a ρ0 > 0 such that

sup
x0∈B 1

2
(0)

∫

Bρ0 (x0)

|∇B|2 < ǫ2 . (VI.34)

Consider ρ < ρ0 (ǫ > 0 will be chosen later depending on universal constants) and x0 ∈ B 1
2 (0)

. Analo-
gously to Step 1 let us write

Ai = ϕi + V i +W i on Bρ(x0) , (VI.35)
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where ϕi, V i,W i solve the following problems







△ϕi =
∑

k

[

∂x1Bi
k ∂x2Ak − ∂x2Bi

k ∂x1Ak
]

on Bρ(x0)

ϕi = 0 on ∂Bρ(x0) ;

(VI.36)







△V i = F i on Bρ(x0)

V i = 0 on ∂Bρ(x0) ;

(VI.37)







△W i = 0 on Bρ(x0)

W i = Ai on ∂Bρ(x0) .

(VI.38)

Notice that ϕi, V i,W i are different from the ones in Step 1 since they solve different problems, in any
case for convenience of notation we call them in the same way.

Let us start analyzing ϕi solution to (VI.36). Observe that the right hand side of the equation is a
sum of jacobians which, by Step 1, now are in L2

loc(D
2). By Wente estimate [We] (see also [RiCours]

Theorem III.1 ) we have

‖∇ϕi‖L2(Bρ(x0)) ≤ C‖∇B‖L2(Bρ(x0))‖∇A‖L2(Bρ(x0)) ≤ Cǫ‖∇A‖L2(Bρ(x0)) , (VI.39)

where, in the last inequality, we used (VI.34).
Now we pass to consider (VI.37). Call

Ṽ i(x) := V i(ρx+ x0) F̃ i(x) := ρ2F i(ρx+ x0) (VI.40)

and observe that, since V i satisfyes (VI.37), then Ṽ i solves







△Ṽ i = F̃ i on D2

Ṽ i = 0 on ∂D2 ,

(VI.41)

which implies, by W 2,q estimates on Ṽ i and Sobolev embedding, that

(∫

D2

|∇Ṽ i|2
)

1
2

≤ C

(∫

D2

|F̃ i|q
)

1
q

. (VI.42)

Now, using that the left hand side is invariant under rescaling while the right hand side has a scaling
factor given by the area and the definition of F̃ i, we obtain

(

∫

Bρ(x0)

|∇V i|2
)

1
2

≤ Cρ2−
2
q

(

∫

Bρ(x0)

|F i|q
)

1
q

≤ Cρα for some α > 0 , (VI.43)

where in the last inequality we used that F i ∈ Lq(D2) and 1 < q < 2.
At last we study the decay of the L2 norm of the gradient of the harmonic functionW i solving (VI.38).

Notice that, since W i is harmonic, then △|∇W i|2 = 2|∇2W i|2 ≥ 0. An elementary calculation shows
that for any non negative subharmonic function f in Rn one has d/dr(r−n

∫

Br
f) ≥ 0 (see also [RiCours]

Lemma III.1). It follows that

∫

Bδρ(x0)

|∇W i|2 ≤ δ2
∫

Bρ(x0)

|∇W i|2 ≤ Cδ2
∫

Bρ(x0)

|∇A|2 , (VI.44)

where, in the last inequality, we used that W i solves (VI.38).
Collecting (VI.39), (VI.43) and (VI.44) gives

∫

Bδρ(x0)

|∇A|2 ≤ Cδ2
∫

Bρ(x0)

|∇A|2 + Cǫ2
∫

Bρ(x0)

|∇A|2 + Cρα
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where the stricly positive constants α and C are independent of ǫ, δ, x0 and ρ. Now, in the beginning of
Step 2, choose ǫ and ρ0 such that Cǫ2 < 1

4 , moreover choose δ in (VI.44) such that Cδ2 < 1
4 ; it follows

that for every x0 ∈ B 1
2
(0) and every ρ < ρ0 we have

∫

Bδρ(x0)

|∇A|2 < 1

2

∫

Bρ(x0)

|∇A|2 + Cρα for some α > 0.

It is a standard fact which follows by iterating the inequality (see for instance Lemma 5.3 in [KMS]) that
there exist C,α > 0 such that for every x0 ∈ B 1

2
(0) and every ρ < ρ0

∫

Bρ(x0)

|∇A|2 ≤ Cρα , (VI.45)

which implies our initial claim (VI.33).
Now we easily get that there exists β > 0 such that

sup
x0∈B 1

2
(0),ρ< 1

4

1

ρβ

∫

Bρ(x0)

|△A| <∞ . (VI.46)

Indeed, by (VI.33) and (VI.28), for every x0 ∈ B 1
2
(0) and ρ < 1

4 we obtain

∫

Bρ(x0)

|△A| ≤
∫

Bρ(x0)

|∇B||∇A| +
∫

Bρ(x0)

|F |

≤ ‖∇B‖L2(D2)

[

∫

Bρ(x0)

|∇A|2
]

1
2

+ |Bρ(x0)|
1
q′ ‖F‖Lq(D2) ≤ Cρβ .

By a classical result of Adams [Ad], (VI.46) implies that ∇A ∈ Lp
loc(B 1

2
(0)) for some p > 2. With

analogous arguments one gets that ∇A ∈ Lp
loc(D

2) for some p > 2.

Step 3 : ~H ∈ Lp
loc(D

2) for some p > 2.

From Step 2 we obtain that ∇(ℜ~R) and ∇(ℜS) are in Lp
loc(D

2) for some p > 2; recalling that, by Lemma

VI.1, ∇2(ℑ~R) and ∇2(ℑS) are in Lq(D2) for every 1 < q < 2 then, by Sobolev embedding, ∇~R and ∇S
are in Lp

loc(D
2) for some p > 2.

Using equation (VI.3) and observing that < ∂z~Φ, ∂z̄~Φ >= 1
2e

2λ, a simple computation gives

Dz
~Rx∂z̄~Φ =

e2λ

2
~L− < ~L, ∂z̄~Φ > ∂z~Φ− ie2λ ~H . (VI.47)

Using the definition of ∂z and ∂z̄ we write

ℑ
[

< ~L, ∂z̄~Φ > ∂z~Φ
]

=
1

4

[

− < ∂x1~Φ,ℜ~L > ∂x2~Φ− < ∂x1~Φ,ℑ~L > ∂x1~Φ

+ < ∂x2~Φ,ℜ~L > ∂x1~Φ− < ∂x2~Φ,ℑ~L > ∂x2~Φ
]

. (VI.48)

On the other hand, (VI.2) gives

< ∂x1~Φ,ℜ~L > = 2ℜ(∂zS)+ < ∂x2~Φ,ℑ~L > (VI.49)

< ∂x2~Φ,ℜ~L > = −2ℑ(∂zS)− < ∂x1~Φ,ℑ~L > . (VI.50)

Insering (VI.49) and (VI.50) in (VI.48) we obtain after some elementary computations

ℑ
(

< ∂z̄~Φ, ~L > ∂z~Φ
)

= ℜ
[

∂zS(i∂z̄~Φ)
]

− 2ℜ
[

< ∂z~Φ,ℑ~L > ∂z̄~Φ
]

. (VI.51)

Therefore, combining (VI.47) and (VI.51) we get that

e2λ ~H = −ℑ
[

Dz
~Rx∂z̄~Φ

]

− e2λ

2
ℑ~L−ℜ

[

∂zS(i∂z̄~Φ)
]

+ ℜ
[

< ∂z~Φ,ℑ~L > ∂z̄~Φ
]

; (VI.52)
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since by Step 2 Dz
~R and DzS are in Lp

loc(D
2) for some p > 2 and by Lemma VI.1 ∇(ℑL) ∈ L(2,∞)(D2),

we conclude that ~H ∈ Lp
loc(D

2) for some p > 2.

Step 4 : smoothness of ~Φ by a bootstrap argument.
Since ~Φ is a conformal parametrization, then △~Φ = e2λ ~H and by Step 3 we infer that ~Φ ∈W 2,p

loc (D
2) for

some p > 2. Now the Willmore equation in divergence form (see (III.30) for the free problem and (III.31)

for the conformal-constraint problem) becomes subcritical in ~H : written in local coordinates it has the
form

△ ~H = H̃ with H̃ ∈W
−1, p2
loc (D2)

then ~H ∈ W
1, p2
loc (D2) and by Sobolev embedding ~H ∈ L

2p
4−p , notice that 2p

4−p > p since p > 2; reinserting

this information in the same equation iteratively we get ~H ∈ W 1,p
loc (D

2) for every p < ∞, therefore ~Φ ∈
W 3,p

loc (D
2) for every p < ∞. Inserting this information into the same equation gives that ~H ∈ W 2,p

loc (D
2)

for every p < ∞, therefore ~Φ ∈ W 4,p
loc (D

2) for every p < ∞ . . . continuing this bootstrap argument gives

that ~Φ ∈W k,p
loc (D

2) for every k > 0, 1 < p <∞ which implies that ~Φ ∈ C∞
loc(D

2).

VII A priori geometric estimates under curvature conditions

VII.1 Diameter bound from below on a minimizing sequence

We start by computing the Willmore functional and the Energy functional on small geodesic 2-spheres in
a Riemannian manifold (Mm, h) of arbitrary codimension; the corresponding expansions in codimension
1 were obtained by the first author in [Mon1], [Mon2], [KMS]. First we introduce some notation.

Let (Mm, h) be an m-dimensional Riemannian manifold. Fix a point p̄ and a 3-dimensional subspace
S < Tp̄M of the tangent space to M at p̄. Denote with SS

p̄,ρ ⊂M the geodesic sphere obtained exponen-
tiating the sphere in S of center 0 and radius ρ. An equivalent way to define is the following: consider
normal coordinates (x1, . . . , xm) in M centred at p̄ such that ( ∂

∂x1 |0, ∂
∂x2 |0, ∂

∂x3 |0) are an orthonormal
basis of S, then SS

p̄,ρ := {(x1)2 + (x2)2 + (x3)2 = ρ2} ∩ {x4 = . . . = xm = 0}. Let us denote

Rp̄(S) :=
∑

i6=j,i,j=1,2,3

K̄p̄

(

∂

∂xi
|0,

∂

∂xj
|0
)

(VII.1)

where K̄p̄(
∂

∂xi |0, ∂
∂xj |0) denotes the sectional curvature of (M,h) computed on the plane spanned by

( ∂
∂xi |0, ∂

∂xj |0)) contained in Tp̄M .

Lemma VII.1. We have the following expansions for the Willmore functional,the Energy functional and
the area for small spheres SS

p̄,ρ defined above:

W (SS

p̄,ρ) :=

∫

SS
p̄,ρ

|H |2dµg = 4π − 2π

3
Rp̄(S)ρ2 + o(ρ2) (VII.2)

F (SS

p̄,ρ) :=
1

2

∫

SS
p̄,ρ

|I|2dµg = 4π − 2π

3
Rp̄(S)ρ2 + o(ρ2). (VII.3)

A(SS

p̄,ρ) = 4πρ2 + o(ρ2) . (VII.4)

In particular, if at some point p̄ ∈M there exists a 3-dimensional subspace S < Tp̄M such that Rp̄(S) > 6

then inf~Φ∈F
S2
(W +A)(~Φ) < 4π and inf~Φ∈F

S2
(F +A)(~Φ) < 4π. 2

Proof. Let r < InjM,h(p̄) be less than the injectivity radius of (M,h) at p̄, then the exponential map
Expp̄ : Br(0) ⊂ Tp̄M →M is a diffeomorphism on the image. Call

τ := Expp̄(S ∩Br(0)) ,

the image under the exponential map of the subspace S. Observe that τ is a 3-dimensional submanifold
which is geodesic at p̄ (i.e. every geodesic in τ starting at p̄ is a geodesic of M at p̄) so the second
fundamental form IS →֒M of τ as submanifold of M vanishes at p̄ (for the easy proof see for example
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[DoC] Proposition 2.9 page 132). Endow τ with the metric induced by the immersion and observe that
by the Gauss equations applied to τ →֒ M we get that the sectional curvatures of τ at p̄ coincide with
the corresponding sectional curvatures of M at p̄. Therefore the scalar curvature Rτ (p̄) of τ at p̄ coincide
with Rp̄(S) (see for example [Chav] page 50 for the definition of scalar curvature via sectional curvature):

Rτ (p̄) = Rp̄(S) . (VII.5)

Now consider the geodesic sphere Sp̄,ρ →֒ τ in the Riemannian manifold τ and observe that the compo-
sition of the immersions Sp̄,ρ →֒ τ →֒ M coincides with SS

p̄,ρ; call π~nS֒→M
, π~nS →֒τ

and π~nτ →֒M
the normal

projections onto the normal bundles respectively of Sp̄,ρ relative to M , of Sp̄,ρ relative to τ and of τ
relative to M (i.e. for example in the second case we mean the intersection of the normal bundle of Sp̄,ρ

as immersed in M with the tangent bundle of τ) then we have the orthogonal decomposition

π~nS֒→M
= π~nS →֒τ

+ π~nτ →֒M
. (VII.6)

By definition of second fundamental form we get for all X,Y tangent vectors to Sp̄,ρ

IS֒→M (X,Y ) := π~nS֒→M
(DXY ) = π~nS →֒τ

(DXY )+π~nτ →֒M
(DXY ) =: IS֒→τ (X,Y )+Iτ֒→M (X,Y ). (VII.7)

Therefore we obtain
|IS֒→τ |2 ≤ |IS֒→M |2 ≤ |IS֒→τ |2 + |Iτ֒→M |2 , (VII.8)

and recalled that ~HS֒→M := 1
2

∑2
i=1 [IS֒→M (~ei, ~ei)] where {~e1, ~e2} is an orthonormal frame of TxSp̄,ρ,

| ~HS֒→τ |2 ≤ | ~HS֒→M |2 ≤ | ~HS֒→τ |2 +
1

2
|Iτ֒→M |2 . (VII.9)

Since Sp̄,ρ →֒ τ is a geodesic sphere in the 3-dimensional manifold τ , we can use the expansions of
[Mon1], [Mon2], [KMS] for geodesic spheres in 3-manifolds (more precisely see Proposition 3.1 in [Mon1]
and Lemma 2.3 in [KMS]) and obtain that as ρ→ 0

1

2

∫

Sp̄,ρ

|IS֒→τ |2dµg = 4π − 2π

3
Rτ (p̄)ρ2 + o(ρ2) (VII.10)

∫

Sp̄,ρ

| ~HS֒→τ |2dµg = 4π − 2π

3
Rτ (p̄)ρ2 + o(ρ2). (VII.11)

Observe that
∫

Sp̄,ρ
dµg = O(ρ2) and since Iτ֒→M (p̄) = 0 we have that |Iτ֒→M |2|Sp̄,ρ → 0 as ρ →

0. Therefore
∫

Sp̄,ρ
|Iτ֒→M |2dµg = o(ρ2) and integrating the estimates (VII.8),(VII.9) on Sp̄,ρ, using

(VII.12),(VII.13), we conclude that

1

2

∫

Sp̄,ρ

|IS֒→M |2dµg = 4π − 2π

3
Rτ (p̄)ρ2 + o(ρ2) (VII.12)

∫

Sp̄,ρ

| ~HS֒→M |2dµg = 4π − 2π

3
Rτ (p̄)ρ2 + o(ρ2). (VII.13)

The expansion of the area is straightforward.

The following Lemma is a variant for weak branched immersions of a Lemma proved by Simon [SiL],
notice a similar statement is also present in [KMS] in case of smooth immersions. We include it here for
completeness.

Lemma VII.2. Let ~Φ ∈ FS2 be a weak branched immersion with finite total curvature of S2 into the
Riemannian manifold (Mm, h). Assume W (~Φ) + A(~Φ) ≤ Λ. Then there exists a constant C = C(Λ,M)
such that

A(~Φ) ≤ C
[

diamM (~Φ(S2))
]2

. (VII.14)

2
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Proof. By Nash’s theorem, there is an isometric embedding I : M →֒ Rs for some s ∈ N. The second
fundamental forms of ~Φ, I ◦ ~Φ and I are related by the formula holding volg-a.e. on S2

II◦~Φ(·, ·) = dI|~Φ ◦ I~Φ(·, ·)⊕ (II ◦ ~Φ)(d~Φ, d~Φ) .

Taking the trace and squaring yields for an orthonormal basis ~ei of ~Φ∗(TS
2) that volg-a.e. on S

2

| ~HI◦~Φ|2 = |H~Φ|2 +
∣

∣

∣

2
∑

i=1

1

2
I
I
◦ ~Φ(~ei, ~ei)

∣

∣

∣

2

≤ | ~H~Φ|2 +
1

2
|II |2 ◦ ~Φ .

Analogously, taking the squared norms, one gets

|II◦~Φ|2 = |I~Φ|2 +
∣

∣

∣

2
∑

i,j=1

II ◦ ~Φ(~ei, ~ej)
∣

∣

∣

2

≤ |I~Φ|2 + |II |2 ◦ ~Φ.

Integrating we obtain that ~Φ is a weak branched immersion with finite total curvature and

W (I ◦ ~Φ) ≤W (~Φ) + CA(~Φ) ≤ CΛ,M , (VII.15)

where C = 1
2 max |II |2.

Let {b1, . . . , bN} be the branch points of ~Φ and for small ε > 0 let Kε := S2 \ ∪N
i=1Bε(b

i). Then ~Φ|Kε

is a weak immersion without branch points of the surface with smooth boundary Kε. Recall that for a
smooth vector field ~X on Rs, the tangential divergence of ~X on (I ◦ ~Φ)(S2) is defined by

divI◦~Φ
~X :=

2
∑

i=1

< d ~X · ~fi, ~fi >,

where ~fi is an orthormal frame on (I ◦ ~Φ)∗(TS2). Now, from the first part of the proof of Lemma
A.3 of [RivDegen], the tangential divergence theorem ((A.18) of the mentioned paper) holds for a weak
immersion of a surface with boundary in Rs withouth branch points and

∫

(I◦~Φ)(Kε)

divI◦~Φ
~X dvolg =

∫

∪N
i=1[I◦

~Φ(∂Bε(bi))]

< ~X,~ν > dl − 2

∫

(I◦~Φ)(Kε)

< ~HI◦~Φ,
~X > dvolg, (VII.16)

where ~ν is the unit limiting tangent vector to (I ◦ ~Φ)(Kε) on I ◦ ~Φ)(∂Kε) orthogonal to it and oriented

in the outward direction. Since ~Φ is Lipschitz by assumption and since ~X and ~ν are trivially bounded, it
follows that

∫

∪N
i=1[I◦

~Φ(∂Bε(bi))]

< ~X,~ν > dl → 0 as ε→ 0;

therefore the tangential divergence theorem still holds on a weak branched immersion:

∫

(I◦~Φ)(Sp2)

divI◦~Φ
~X dvolg = −2

∫

(I◦~Φ)(S2)

< ~HI◦~Φ,
~X > dvolg . (VII.17)

Now, as in [SiL], we choose ~X(~x) := ~x− ~x0 where ~x0 ∈ (I ◦ ~Φ)(S2). Then, observing that divI◦~Φ
~X = 2,

by Schwartz inequality we get

A(I ◦ ~Φ) ≤ diamRs [(I ◦ ~Φ)(S2)]W (I ◦ ~Φ) 1
2 A(I ◦ ~Φ) 1

2 .

The last inequality, together with (VII.15), the fact that A(I ◦ ~Φ) = A(~Φ) and diamRs [(I ◦ ~Φ)(S2)] ≤
diamM (~Φ(S2)) ensured by the isometry I, gives that

A(~Φ) ≤ CΛ,M

[

diamM (~Φ(S2))
]2

.
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In the following lemma we collect some inequalities linking the geometric quantities of two close met-
rics. This will be useful for working locally in normal coordinates (the analogous lemma in codimension
one and for smooth immersions appears in [KMS]).

Lemma VII.3. Let h1,2 be Riemannian metrics on a manifold Mm, with norms satisfying

(1 + ǫ)−1‖ · ‖1 ≤ ‖ · ‖2 ≤ (1 + ǫ)‖ · ‖1 for some ǫ ∈ (0, 1].

For any weak branched immersion with finite total curvature ~Φ ∈ FS2 , the following inequalities hold
almost everywhere on Σ for a universal C <∞:

• volg1 ≤ (1 + Cǫ)volg2 , where g1,2 = ~Φ∗(h1,2) and volg1,2 are the associated area forms;

• |I1|21 ≤
(

1+C(ǫ+ δ)
)

|I2|22 +Cδ−1|Γ|2h1
◦ ~Φ for any δ ∈ (0, 1], where Γ := Dh1 −Dh2 and Dhi is the

covariant derivative with respect to the metric hi.

• |H1|21 ≤
(

1 + C(ǫ+ δ)
)

|H2|22 + Cδ−1|Γ|2h1
◦ ~Φ for any δ ∈ (0, 1] and Γ defined above.

2

Proof. To compare the Jacobians of ~Φ with respect to h1,2, we use | · |g1 ≤ (1+ ε)| · |g2 and compute for
v, w ∈ TpΣ with g2(v, w) = 0

|v ∧ w|2g1 = |v|2g1 |w|
2
g1 − g1(v, w)

2 ≤ (1 + ǫ)4|v|2g2 |w|
2
g2 = (1 + ǫ)4|v ∧ w|2g2 .

This proves the first inequality. Next we compare the norms for a bilinear map B : TpΣ×TpΣ → T~Φ(p)M

for p not a branch point. Choose a basis vα of TpΣ such that g1(vα, vβ) = δαβ and g2(vα, vβ) = λαδαβ .
Then

λα = |vα|g2 ≤ (1 + ǫ)|vα|g1 = 1 + ǫ,

and putting wα = vα/λα we obtain

|B|21 =

2
∑

α,β=1

λ2αλ
2
β |B(wα, wβ)|2h1

≤ (1 + Cǫ)

2
∑

α,β=1

|B(wα, wβ)|2h2
= (1 + Cǫ)|B|22.

Now denote by π~n1,2
: T~Φ(p)M → (~Φ∗(TpΣ))

⊥h1,2 the orthogonal projections onto the normal spaces with

respect to h1,2. Then for any δ ∈ (0, 1] and almost every p ∈ Σ we have the following estimate (by
approximation with smooth immersions locally away the branch points)

∣

∣I1

∣

∣

2

1
=

∣

∣π~n1
(Dh1(∇~Φ))

∣

∣

2

1

≤
∣

∣π~n2
(Dh1(∇~Φ))

∣

∣

2

1

≤
∣

∣π~n2

(

Dh2(∇~Φ) + Γ ◦ ~Φ(∇~Φ,∇~Φ)
)∣

∣

2

1

≤ (1 + δ)
∣

∣π~n2
Dh2(∇~Φ)

∣

∣

2

1
+ Cδ−1|Γ|2h1

◦ ~Φ
≤ (1 + δ)(1 + Cε)|I2|22 + Cδ−1|Γ|2h1

◦ ~Φ .

This proves the second inequality. The proof of the third inequality is analogous:

∣

∣H1

∣

∣

2

1
=

1

2

∣

∣I1(v1, v1) + I1(v2, v2)
∣

∣

2

1
=

1

2

∣

∣π~n1
(Dh1

v1 (∂v1
~Φ) +Dh1

v2 (∂v2
~Φ))
∣

∣

2

1

≤ 1

2

∣

∣π~n2
(Dh1

v1 (∂v1
~Φ) +Dh1

v2 (∂v2
~Φ))
∣

∣

2

1

≤ 1

2

∣

∣π~n2

(

Dh2
v1 (∂v1

~Φ) +Dh2
v2 (∂v2

~Φ) + Γ ◦ ~Φ(∂v1~Φ, ∂v1~Φ) + Γ ◦ ~Φ(∂v2~Φ, ∂v2~Φ)
)

∣

∣

2

1

≤ 1

2
(1 + δ)

∣

∣π~n2
(Dh2

v1 (∂v1
~Φ) +Dh2

v2 (∂v2
~Φ))
∣

∣

2

1
+ Cδ−1|Γ|2h1

◦ ~Φ

≤ 1

2
(1 + δ)(1 + Cǫ)

∣

∣π~n2
(Dh2

w1
(∂w1

~Φ) +Dh2
w2

(∂w2
~Φ))
∣

∣

2

1
+ Cδ−1|Γ|2h1

◦ ~Φ

≤ (1 + δ)(1 + Cǫ)|H2|22 + Cδ−1|Γ|2h1
◦ ~Φ .
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Since we are assuming an upper area bound, the lower diameter bound will follow combining Lemma
VII.1 and the fact below (which generalizes to arbitrary codimension and non smooth immersions Propo-
sition 2.5 in [KMS], the proof is similar but we include it here for completeness).

Proposition VII.1. Let Mm be a compact Riemannian m-manifold and consider a sequence ~Φk ∈ FS2

such that supk(W +A)(~Φk) ≤ Λ. If diam ~Φk(S
2) → 0, then

lim
k→∞

A(~Φk) → 0, lim sup
k

F (~Φk) ≥ 4π and lim sup
k

W (~Φk) ≥ 4π .

2

Proof. The first statement follows directly from Lemma VII.2. Let us prove the second one. After passing
to a subsequence, we may assume that the ~Φk(S

2) converge to a point p̄ ∈ M . For given ǫ ∈ (0, 1] we
choose ρ > 0, such that in Riemann normal coordinates x ∈ Bρ(0) ⊂ Rm

1

1 + ǫ
| · |eucl ≤ | · |h ≤ (1 + ǫ)| · |eucl and |Γk

ij(x)| ≤ ε ,

where, of course, | · |eucl is the norm associated to the euclidean metric given by the coordinates and | · |h
is the norm in metric h. We have ~Φk(S

2) ⊂ Bρ(x0) for large k. Denoting by Ie, gek the quantities with
respect to the coordinate metric, we get from Willmore’s inequality and Lemma VII.3

4π ≤ 1

2

∫

S2

|Ie~Φk
|2e dµge

k
≤ (1 + Cǫ)(1 + δ)

1

2

∫

S2

|I~Φk
|2 dµgk + C(δ)ǫ2 Areagk(S

2) .

Since Areagk (S
2) ≤ C by assumption, we may let first k → ∞, then ǫց 0 and finally δ ց 0 to obtain

lim inf
k→∞

F (~Φk) ≥ 4π .

The proof for W is analogous.

VIII Proof of the existence theorems

Proof of theorem I.4 Let ~Φk ⊂ FS2 be a minimizing sequence of F1 = F +A, as before we can assume
that ~Φk are conformal; clearly there is a uniform upper bound on the areas and on the L2 norms of the
second fundamental forms ~Φk:

sup
k

∫

S2

|Ik|2dvolg~Φk
≤ C <∞, (VIII.1)

sup
k
Areag~Φk

(S2) ≤ C <∞ . (VIII.2)

Since we are assuming that Rp̄(S) > 6 for some point p̄ and some 3-dimensional subspace S, by Lemma
VII.1 we have

inf
~Φ∈F

S2

F1(~Φ) < 4π . (VIII.3)

Therefore, Proposition VII.1 yelds

lim inf
k

diam(~Φk)(S
2) ≥ 1

C
> 0 . (VIII.4)

Now, thanks to (VIII.1), (VIII.2) and (VIII.4), we can apply the ’Good Gauge Extraction Lemma’ IV.1

in [MoRi1] and obtain that up to subsequences and up to repametrization of ~Φk via positive Moebius
transformations of S2 the following holds: there exists a finite set of points {a1, . . . , aN} ⊂ S2 such that
for every compact subset K ⊂⊂ S2 \ {a1, . . . , aN} (it is enough for our purpouses to take K with smooth
boundary ) there exists a constant CK such that

| log |∇~Φk| | ≤ CK on K for every k . (VIII.5)
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Since the parametrization is conformal, then |∇2~Φk|2 = e4λk |I~Φk
|2 (where, as usual, eλk = |∂x1~Φk| =

|∂x2~Φk|), and the two estimates (VIII.1)-(VIII.5) give that ~Φk|K are equibounded in W 2,2(K), therefore
by Banach-Alaoglu Theorem together with reflexivity and separability of W 2,2(K) imply the existence

of a map ~Φ∞ ∈ W 2,2(K) such that, up to subsequences,

~Φk ⇀ ~Φ∞ weakly in W 2,2(K) . (VIII.6)

Now by Rellich-Kondrachov Theorem ∂xi~Φk → ∂xi~Φ∞ as k → ∞ strongly in Lp(K) for every 1 < p <∞
and a.e. on K. It follows that ~Φ∞ is a W 1,∞ ∩W 2,2 conformal immersion of K. Moreover by the lower
semicontinuity under W 2,2-weak convergence proved in Lemma IX.8 we have

∫

K

|I~Φ∞

|2dvolg~Φ∞

≤ lim inf
k

∫

K

|I~Φk
|2dvolg~Φk

, (VIII.7)

and the strong Lp(K) convergence of the gradients implies

Areag~Φk
(K) → Areag~Φ∞

(K) . (VIII.8)

Iterating the procedure on a countable increasing family of compact subsets with smooth boundary
invading S2 \ {a1, . . . , aN}, via a diagonal argument we get the existence of a W 1,∞

loc ∩W 2,2
loc conformal

immersion ~Φ∞ of S2 \ {a1, . . . , aN} into M such that, up to subsequences,

∫

S2\{a1,...,aN}

(

1

2
|I~Φ∞

|2 + 1

)

dvolg~Φ∞

≤ lim inf
k

∫

S2\{a1,...,aN}

(

1

2
|I~Φk

|2 + 1

)

dvolg~Φk
≤ C . (VIII.9)

Now, thanks to the conformality of ~Φ∞ on S2 \ {a1, . . . , aN} and the estimate (VIII.9), we can apply

Lemma A.5 of [Riv2] and extend ~Φ∞ to a weak conformal immersion in FS2 possibly branched in a subset
of {a1, . . . , aN}. Since I~Φ∞

∈ L2(S2, volg~Φ∞

), inequality (VIII.9) implies

F1(~Φ∞) ≤ lim inf
k

F1(~Φk) = inf
~Φ∈F

S2

F1(~Φ) , (VIII.10)

therefore ~Φ∞ is a minimizer of F1 in FS2 . By Lemma IX.5, the functional F1 is Frechét differentiable at
~Φ∞ with respect to variations ~w ∈W 1,∞∩W 2,2(D2, T~Φ∞

M) with compact support in S2 \{b1, . . . , bN∞},
where {b1, . . . , bN∞} are the branched points of ~Φ∞. From the expression of the differentials given

in Lemma IX.5 we deduce that ~Φ∞ satisfies the following area constraint Willmore like equation in
conservative form away the branch points, and since ~Φ∞ is conformal, the equation writes

8 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= 2R̃( ~H) + 16ℜ
(

< Riemh(~ez , ~ez)~ez , ~H > ~ez

)

+2 ~H + (DR)(T ~Φ) + 2R~Φ(T
~Φ) + 2K̄(T ~Φ) ~H .(VIII.11)

Observe that the difference between this last equation and the Willmore equation (III.30) are just terms
of the second line which are completely analogous to the curvature terms of the right hand side already
appearing in (III.30) (see the definitions (III.8) and (III.9)). Therefore all the arguments of Sections V

and VI can be repeated including these new terms and we conclude with the smoothness of ~Φ∞ away the
branched points. 2

Proof of theorem I.5 The proof is completely analogous to the proof of Theorem I.4 once we observe
that the lower bound on the areas A(~Φk) ≥ 1

C > 0 together with Lemma VII.2 yelds a lower bound on
the diameters:

diamM
~Φk(S

2) ≥ 1

C
. (VIII.12)

Indeed we still have (VIII.1), (VIII.2) and (VIII.4). Thereofore, as above, we obtain the existence of a

minimizer ~Φ∞ ∈ FS2 ,
F (~Φ∞) = inf

~Φ∈F
S2

F (~Φ),
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satisfing the equation in conservative form

8 e−2λℜ
(

Dz

[

π~n(Dz
~H)+ < ~H, ~H0 > ∂z~Φ

])

= 2R̃( ~H)

+16ℜ
(

< Riemh(~ez, ~ez)~ez, ~H > ~ez

)

+ (DR)(T ~Φ) + 2R~Φ(T
~Φ) + 2K̄(T ~Φ) ~H

(VIII.13)

(now without the Lagrange multiplier 2 ~H) outside the finitely many branched points. The smoothness

of ~Φ∞ outside the branched points follows as before. 2

Proof of Theorem I.6 Recall the discussion after the statement of the Theorem, here we just formalize
that idea. First of all recall the precise Definition VII.2 in [MoRi1] of a bubble tree of weak immersions;
for the proof of the present Theorem we just need to recall (actually the rigorous definition is more precise

and intricate) that a bubble tree of weak immersions is an N + 1-tuple ~T := (~f, ~Φ1 · · · ~ΦN ), where N is

an arbitrary integer, ~f ∈ W 1,∞(S2,Mm) and ~Φi ∈ FS2 for i = 1 · · ·N such that ~f(S2) = ∪N
i=1

~Φi(S2) and
~f∗[S

2] =
∑N

i=1
~Φi
∗[S

2], where for a lipschitz map ~a ∈ W 1,∞(S2,M) we denote ~a∗[S
2] the push forward of

the current of integration over S2. The set of bubble trees is denoted by T and, considered a nontrivial
homotopy class 0 6= γ ∈ π2(M

m) , the set of bubble trees such that the map ~f belongs to the homotopy
group γ is denoted by Tγ .

Consider the lagrangian L defined in (I.23) and (I.25); up to rescaling the metric h by a positive
constant we can assume that K̄ ≤ 1 (or analogously instead of 1, in the definition of L, take a constant

C > maxM K̄). Consider a minimizing sequence ~Tk ∈ Tγ , of bubble trees realizing the homotopy class

γ, for the functional L. Observe that by Proposition I.2 we can assume the ~Φk are conformal. By the
expression of L, there is a uniform bound on the F1 functional

lim sup
k→∞

F1(~Tk) = lim sup
k

∫

S2

(

1 +
|I|2
2

)

dvolgk < +∞ , (VIII.14)

moreover, since ~fk ∈ γ 6= 0, we also have

lim inf
k→∞

Nk
∑

i=1

diamM

(

~Φi
k(S

2)
)

> 0 , (VIII.15)

therefore we perfectly fit in the assumptions of the compactness theorem for bubble trees (Theorem

VII.1 in [MoRi1]). It follows, recalling also Lemma IX.8, that there exists a limit bubble tree ~T∞ =

(~f∞, ~Φ
1
∞, . . . ,

~ΦN∞

∞ ) minimizing the Lagrangian L in Tγ . By the minimality, using Lemma IX.5, we have

that each ~Φi
∞ satisfies the Euler Lagrange equation of L outside the branch points. As remarked in the

introduction, the Euler Lagrange equation of L coincides with the area-constrained Willmore equation.
By the Regularity Theorem I.2, we conclude that each ~Φi

∞ is a branched conformal immersion of S2

which is smooth and satisfies the area-constraned Willmore equation outside the finitely many branched
points. 2

Proof of Theorem I.7. The arguments are analogous to the proof of Theorem I.6. Indeed observe
that, fixed any A > 0, for a minimizing sequence ~Tk ∈ T of the functional WK , defined in (I.26), under
the A-area constraint

A(~Tk) := Area(~fk(S
2)) = A , (VIII.16)

the bound (VIII.14) still holds (by the constrained on the total area and by the boundness of K̄ ensured
by the compactness of M). Moreover, by the monotonicity formula given in Lemma VII.2, the area
constraint (VIII.16) also implies (VIII.15). Then, as before, we apply the compactness theorem for
bubble trees and the thesis follows as above by recalling that the area constraint is preserved in the limit:

A(~T∞) := Area(~f∞(S2)) = lim
k→∞

Area(~fk(S
2)) = A .

2
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IX Appendix

IX.1 Useful lemmas for proving the regularity

In the appendix we prove some technical lemmas used in the paper. In the following we denote H̊−1(C)
the dual of the homogeneous Sobolev space H̊1(C) (for the standard definition see for instance [Gra2]
Definition 6.2.5 )

Lemma IX.1. For j, l ∈ {1, . . . ,m} let γjl ∈ (C0 ∩ W 1,2)(C) be such that supp γjl ∈ B2(0) and

‖γjl ‖L∞(C) ≤ ǫ. For every ~U ∈ (L1
loc)(C) denote, in distributional sense,

(DzU)j := ∂zU
j +

m
∑

k=1

γjkU
k. (IX.1)

Then for every ~Y ∈ (H̊−1 + L1)(C) with ℑ(Dz̄
~Y ) ∈ (H̊−1 + L1)(C) there exists a unique ~U ∈ L2,∞(D2)

with ℑ(~U) ∈ W 1,(2,∞)(D2) satisfying











Dz
~U = ~Y in D′(D2)

ℑ~U = 0 on ∂D2 .

(IX.2)

Moreover the following estimate holds:

‖~U‖L2,∞(D2) + ‖∇ℑ(~U)‖L2,∞(D2) ≤ C
(

‖~Y ‖H−1+L1(C) + ‖ℑ(Dz̄
~Y )‖H−1+L1(C)

)

.

2

Proof. Let us first construct Ũ j ∈ L2,∞(C) satifying DzŨ
j = Y j on C; observe this is equivalent to solve

the fixed point problem in L2,∞(C)

Ũ j = − 1

πz̄
∗
(

Y j −
m
∑

k=1

γjkŨ
k

)

:= T ( ~̃U) . (IX.3)

We prove that the problem has unique solution by the contraction mapping principle in L2,∞. By the
Young and Hölder inequalities for weak type spaces (see Theorem 1.2.13 and Exercise 1.4.19 in [Gra]) we
have

∥

∥

∥

∥

∥

− 1

πz̄
∗ (

m
∑

k=1

γjkŨ
k)

∥

∥

∥

∥

∥

L2,∞(C)

≤ C

∥

∥

∥

∥

− 1

πz̄

∥

∥

∥

∥

L2,∞

∥

∥

∥

∥

∥

m
∑

k=1

γjkŨ
k

∥

∥

∥

∥

∥

L1(C)

≤ Cǫ‖ ~̃U‖L2,∞(C) . (IX.4)

We Choose ǫ > 0 such that Cǫ ≤ 1
2 . Now we claim that

∥

∥

∥

∥

− 1

πz̄
∗ Y j

∥

∥

∥

∥

L2,∞(C)

≤ C‖Y j‖L1+H̊−1(C) . (IX.5)

Recall that Y j ∈ L1 + H̊−1(C) and ‖Y j‖L1+H̊−1(C) := inf{‖Y j
1 ‖L1(C) + ‖Y j

2 ‖H̊−1(C) : Y j = Y j
1 + Y j

2 };
since we can assume Y j 6= 0 otherwise trivially − 1

πz̄ ∗ Y j = 0, we can find Y j
1 ∈ L1(C) and Y j

2 ∈ H̊−1(C)
such that

‖Y j
1 ‖L1(C) + ‖Y j

2 ‖H̊−1(C) ≤
3

2
‖Y j‖L1+H̊−1(C) . (IX.6)

As before, by the Young inequality, we have
∥

∥

∥

∥

− 1

πz̄
∗ Y j

1

∥

∥

∥

∥

L2,∞(C)

≤ C‖Y j
1 ‖L1(C) . (IX.7)

On the other hand called Ŷ j
2 the Fourier transform of Y j

2 ,and observed that the Fourier transform of − 1
πz̄

is (up to a multiplicative constant) 1
ξ we have by the convolution theorem

∫

C

∣

∣

∣

∣

− 1

πz̄
∗ Y j

2

∣

∣

∣

∣

2

= C

∫

C

∣

∣

∣

∣

Ŷ j
2 (ξ)

1

ξ

∣

∣

∣

∣

2

.
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Moreover recalling that ‖h‖H̊1 =
∫

C
|ξĥ(ξ)|2 and that

‖Y j
2 ‖H̊−1(C) = sup

‖h‖H̊1≤1

∫

C

Ŷ j
2 (ξ)

¯̂
h(ξ) = sup

‖h‖H̊1≤1

∫

C

Ŷ j
2 (ξ)

ξ
¯̂
h(ξ)ξ =

∫

C

∣

∣

∣

∣

∣

Ŷ j
2 (ξ)

ξ

∣

∣

∣

∣

∣

2

we get
∥

∥

∥

∥

− 1

πz̄
∗ Y j

2

∥

∥

∥

∥

L2,∞(C)

≤
∥

∥

∥

∥

− 1

πz̄
∗ Y j

2

∥

∥

∥

∥

L2(C)

≤ C‖Y j
2 ‖H̊−1(C). (IX.8)

Combining (IX.6), (IX.7) and (IX.8) we get (IX.5) which was our claim. Now the estimates (IX.4) and
(IX.5) implies that T : L2,∞(C) → L2,∞(C) is well defined and is a contraction; the existence of a unique

~̃U satisfying (IX.3) follows by the contraction mapping principle. Notice moreover we have the estimate

‖ ~̃U‖L2,∞(C) ≤ C‖~Y ‖L1+H̊−1(C). (IX.9)

Now let us consider ℑ( ~̃U). From the equation satisfyied by ~̃U we obtain

1

4
△Ũ j = ∂z̄∂zŨ

j = ∂z̄Y
j − ∂z̄

(

m
∑

k=1

γjkŨ
k

)

,

whose imaginary part gives

1

4
△ℑ(Ũ j) = ℑ(∂z̄Y j)−ℑ

(

∂z̄

(

m
∑

k=1

γjkŨ
k

))

. (IX.10)

Since by assumption ‖γjk‖L∞∩W 1,2(C) ≤ C, then ‖
∑m

k=1 γ
j
kY

k‖L1+H̊−1(C) ≤ C‖~Y ‖L1+H̊−1(C) and we have

‖ℑ(∂z̄Y j)‖L1+H̊−1(C) = ‖ℑ(Dz̄Y
j)−ℑ(

m
∑

k=1

γjkY
k)‖L1+H̊−1(C) ≤ ‖ℑ(Dz̄Y

j)‖L1+H̊−1(C)+C‖~Y ‖L1+H̊−1(C) .

Equation (IX.10) together with (IX.9) and the last estimate gives

‖△ℑ(Ũ j)‖H̊−1+L1+W−1,(2,∞)(C) ≤ ‖ℑ(Dz̄Y
j)‖L1+H̊−1(C) + C ‖~Y ‖L1+H̊−1(C)

which implies, since ‖ℑ(U)j‖L2,∞(C) ≤ C‖~Y ‖L1+H̊−1(C), that

‖∇ℑ(Ũ j)‖L2,∞(C) ≤ C
(

‖ℑ(Dz̄Y
j)‖L1+H̊−1(C) + ‖~Y ‖L1+H̊−1(C)

)

. (IX.11)

Now, since ∇ℑ(Ũ j) ∈ L2,∞(C), the function ℑ(Ũ j) leaves a trace in H
1
2 ,(2,∞)(∂D2) and we can consider

the homogeneous Dirichelet problem










∂zV
j +

∑m
k=1 γ

j
kV

k = 0 on D2

ℑV j = ℑŨ j on ∂D2 .

(IX.12)

We solve it again by contraction mapping principle; given ~W ∈W 1,(2,∞)(D2) with ℑW j = ℑŨ j consider
~V =: S( ~W ) solving











∂zV
j = −∑m

k=1 γ
j
kW

k on D2

ℑV j = ℑŨ j on ∂D2 .

Then the following estimate holds (see hand notes: bring right hand side to the left using convolution

with 1
πz̄ , so get homogeneous equation with different boundary data but still controlled in H

1
2 ,(2,∞) both

real and imaginary part using Hilbert tranform, the estimates then follow from the estimates for the
laplace equation, using Calderon Zygmund theory for estimating the gradients)

‖~V ‖W 1,(2,∞)(D2) ≤ C
(

ǫ‖ ~W‖L2,∞(D2) + ‖ℑ ~̃U‖W 1,(2,∞)(C)

)
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and
‖S( ~W1)− S( ~W2)‖W 1,(2,∞)(D2) ≤ Cǫ‖ ~W1 − ~W2‖L2,∞(D2).

Therefore, for ǫ > 0 small, S : W 1,(2,∞)(D2) → W 1,(2,∞)(D2) is a contraction and there exists a unique
solution of problem (IX.12) satisfying the estimate

‖~V ‖W 1,(2,∞)(D2) ≤ C‖ℑ( ~̃U)‖W 1,(2,∞)(C). (IX.13)

Now we conclude observing that U j := Ũ j −V j ∈ L2,∞(D2) is the unique solution to the problem (IX.2)
and, combining (IX.9), (IX.11) and (IX.13), it satisfyes the estimates

‖~U‖L2,∞(D2) + ‖∇ℑ(~U)‖L2,∞ ≤ C
(

‖ℑ(Dz̄Y
j)‖L1+H̊−1(C) + ‖~Y ‖L1+H̊−1(C)

)

as desired.

Lemma IX.2. For j, l ∈ {1, . . . ,m} let γjl ∈ (C0 ∩ W 1,2)(C) be such that supp γjl ∈ B2(0) and

‖γjl ‖L∞(C) ≤ ǫ. For every ~U ∈ (L1
loc)(C) denote, in distributional sense,

(DzU)j := ∂zU
j +

m
∑

k=1

γjkU
k.

Let ~Y ∈ (L1 ∩ L2,∞)(C) with ℑ(Dz̄
~Y ) ∈ Lq(C) for some 1 < q < 2. Then there exists a unique

~U ∈ W 1,(2,∞)(D2) with ℑ(~U) ∈W 2,q(D2) satisfying











Dz
~U = ~Y in D′(D2)

ℑ~U = 0 on ∂D2 .

(IX.14)

Moreover the following estimate holds:

‖~U‖L2,∞(D2) + ‖∇~U‖L2,∞(D2) + ‖∇2ℑ(U)‖Lq(D2) ≤ C
(

‖~Y ‖L1∩L2,∞(C) + ‖ℑ(Dz̄
~Y )‖Lq(C)

)

.

2

Proof. As in the proof of Lemma IX.1 we first solve the equation Dz
~̃U = ~Y in C proving existence and

uniqueness of solutions to the fixed point problem in W 1,(2,∞)(C)

Ũ j = − 1

πz̄
∗
(

Y j −
m
∑

k=1

γjkŨ
k

)

=: T ( ~̃U) . (IX.15)

Analogously to the proof of Lemma IX.1, for ǫ > 0 small but depending just on universal constants, the

L2,∞(C) norm of T ( ~̃U) can be bounded as

‖T ( ~̃U)‖L2,∞(C) ≤ C‖~Y ‖L1(C) , (IX.16)

and for ~̃U1, ~̃U2 ∈ L2,∞(C) it holds

‖T ( ~̃U1)− T ( ~̃U2)‖L2,∞(C) ≤ Cǫ‖ ~̃U1 − ~̃U2‖L2,∞(C). (IX.17)

L2,∞-Gradient estimate: we have

‖∇T (Ũ j)‖L2,∞(C) =

∥

∥

∥

∥

∥

(

∇ 1

πz̄

)

∗
(

Y j −
m
∑

k=1

γjkŨ
k

)∥

∥

∥

∥

∥

L2,∞(C)

. (IX.18)

Observe that the Fourier trasform of the convolution kernel ∇1
z̄ = ∇(∂z̄ log |z|) satisfies the assumptions

of Theorem 3 pag. 96 in [Stein], therefore
∥

∥

∥

∥

∥

(

∇ 1

πz̄

)

∗
(

Y j −
m
∑

k=1

γjkŨ
k

)∥

∥

∥

∥

∥

Ls(C)

≤ Cs

∥

∥

∥

∥

∥

(

Y j −
m
∑

k=1

γjkŨ
k

)∥

∥

∥

∥

∥

Ls(C)

∀1 < s <∞
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and by interpolation (see for instance Theorem 3.15 in [Stein-Weiss] of Theorem 3.3.3 in [Hel])

∥

∥

∥

∥

∥

(

∇ 1

πz̄

)

∗
(

Y j −
m
∑

k=1

γjkŨ
k

)∥

∥

∥

∥

∥

L2,∞(C)

≤ C

∥

∥

∥

∥

∥

(

Y j −
m
∑

k=1

γjkŨ
k

)∥

∥

∥

∥

∥

L2,∞(C)

≤ C‖Y ‖L2,∞(C) + Cǫ‖ ~̃U‖L2,∞(C) .

(IX.19)

Combining (IX.19), (IX.18) and (IX.16) we get, for small ǫ > 0,

‖T ( ~̃U)‖W 1,(2,∞)(C) ≤ C
(

‖~Y ‖L1(C) + ‖~Y ‖L2,∞(C)

)

. (IX.20)

So T : W 1,(2,∞)(C) → W 1,(2,∞)(C) is a well defined linear operator and the same arguments imply that
T is a contraction. Therefore there exists a unique Ũ j ∈ W 1,(2,∞)(C) satisfying (IX.15) and

‖ ~̃U‖W 1,(2,∞)(C) ≤ C
(

‖~Y ‖L1(C) + ‖~Y ‖L2,∞(C)

)

. (IX.21)

Noticing that ℑ(Ũ j) satisfies also

△(ℑ(Ũ j)) = 4ℑ(∂z̄Y j)− 4ℑ
[

∂z̄

(

∑m
k=1 γ

j
kŨ

k
)]

= 4ℑ(Dz̄Y
j)− 4ℑ

(

m
∑

k=1

γjkỸ
k

)

− 4ℑ
[

∂z̄

(

m
∑

k=1

γjkŨ
k

)]

,

estimate (IX.21), the assumptions on γjk, Hölder inequality and standand elliptic estimates imply

‖∇2ℑ(Ũ j)‖Lq(D2) ≤ C
(

‖ℑ(Dz̄Y
j)‖Lq(D2) + ‖~Y ‖L1(C) + ‖~Y ‖L2,∞(C)

)

. (IX.22)

Now exactly as in the previous lemma it is possible to solve the corresponding homogeneous problem on
D2











∂zV
j = −∑m

k=1 γ
j
kV

k on D2

ℑV j = ℑŨ j on ∂D2 .

(IX.23)

and the solution V j satisfies the estimates

‖~V ‖W 1,(2,∞)(D2) ≤ C‖ℑ( ~̃U)‖W 1,(2,∞)(C). (IX.24)

Moreover the imaginary part ℑ(V j) solves the following problem











△ℑ(V j) + 4ℑ
[

∂z̄

(

∑m
k=1 γ

j
kV

k
)]

= 0 on D2

ℑV j = ℑŨ j on ∂D2 ;

(IX.25)

then, estimate (IX.22) and elliptic regularity imply

‖∇2ℑ(V j)‖Lq(D2) ≤ C
(

‖ℑ(Dz̄Y
j)‖Lq(D2) + ‖~Y ‖L1(C) + ‖~Y ‖L2,∞(C)

)

. (IX.26)

Now, as in the previous lemma, the function U j = Ũ j − V j is a solution to the original problem (IX.14);
moreover collecting (IX.21), (IX.22),(IX.24) and (IX.26) we obtain the desired estimate

‖~U‖W 1,(2,∞)(D2) + ‖∇2ℑ(~U)‖Lq(D2) ≤ C
(

‖ℑ(Dz̄Y
j)‖Lq(D2) + ‖~Y ‖L1(C) + ‖~Y ‖L2,∞(C)

)

.
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IX.2 Differentiability of the Willmore functional in FS2, identification of the

first differential and lower semicontinuity under W
2,2
loc weak convergence

Let us start with two computational lemmas whose utility will be clear later in the subsection.

Lemma IX.3. Let ~Φ be a smooth immersion of the disc D2 into the Riemannian manifold (Mn, h). Let
~X ⊗ ~v ∈ ΓD2(T~ΦM ⊗ TD2) and ~w ∈ ΓD2(T~ΦM), recall the notation introduced in (III.1), (III.2), (III.3)
and (III.6). Then

< D∗g
g ( ~X ⊗ ~v), ~w >=< ~X ⊗ ~v,Dg ~w > −divg~u+ < ~X, ~w > divg~v, (IX.27)

where ~u ∈ ΓD2(TD2) is the vector field defined below. Let ~f1, ~f2 be a positve orthonormal frame of TD2,

write ~v = v1 ~f1 + v2 ~f2, then define

~u :=< v1 ~X, ~w >h
~f1+ < v2 ~X, ~w >h

~f2.

Notice that ~u is independent of the choice of the frame fi, i.e. it is a well defined vector field on D2. 2

Proof. Call ~ei := ~Φ∗(~fi) the positive orthonormal frame of ~Φ∗(TD
2) associated to ~f1, ~f2; a straightforward

computation using just the definitions (III.1), (III.2) and (III.3) gives

< D∗g
g [ ~X ⊗ (v1 ~f1 + v2 ~f2)], ~w >= − < v1D~e1

~X + v2D~e2
~X, ~w > . (IX.28)

Writing the right hand side as − < D~e1(v
1 ~X) + D~e2(v

2 ~X), ~w > + < ~X, ~w >
(

~e1[v
1] + ~e2[v

2]
)

, where
~ei[vi] denotes the derivative of the function vi with respect to ~ei, we can express (IX.28) as

< D∗g
g [ ~X ⊗ (v1 ~f1 + v2 ~f2)], ~w > = < v1 ~X,D~e1 ~w > + < v2 ~X,D~e2 ~w >

−~e1[< v1 ~X, ~w >]− ~e2[< v2 ~X, ~w >]

+ < ~X, ~w >
(

~e1[v
1] + ~e2[v

2]
)

. (IX.29)

Notice that the first line of the right hand side is exactly < ~X ⊗ ~v,Dg ~w > . Observe that, through the

parametrization ~Φ, we can identify TD2 and ~Φ∗(TD
2), moreover noticing that for fixed i = 1, 2 we have

< D~ei~ei, ~ei >=
1
2~ei[< ~ei, ~ei >] = 0, after some easy computations we get that

~e1[v
1] + ~e2[v

2] = ~f1[v
1] + ~f2[v

2] = divg(~v)+ < ~v,D~f1
~f1 +D~f2

~f2 >, (IX.30)

where, by definition, divg(~v) :=
∑

i=1,2 < D~fi
~v, ~fi > and D is intented as the covariant derivative on TD2

endowed with the metric g := ~Φ∗h (notice that the covariant derivative in M along ~Φ(D2) projected on
~Φ∗(TD

2) correspond to the covariant derivative on (D2, g) via the identification given by the immersion
~Φ).

Recall we defined ~u :=< v1 ~X, ~w >h
~f1+ < v2 ~X, ~w >h

~f2 = u1 ~f1 + u2 ~f2 ∈ TD2; an easy computation
gives

~f1[< v1 ~X, ~w >] + ~f2[< v2 ~X, ~w >] = divg~u+ < ~X, ~w >< ~v,D~f1
~f1 +D~f2

~f2 > . (IX.31)

Now combining (IX.29), (IX.30) and (IX.31) we get the thesis.

Lemma IX.4. [Integration by parts in Willmore equation] Let ~Φ be a smooth immersion of the
disc D2 into the Riemannian manifold (Mn, h) and let ~w ∈ ΓD2(T~ΦM) smooth with compact support in
D2. Then
∫

D2

[

<
1

2
D∗g

g

[

Dg
~H − 3π~n(Dg

~H) + ⋆h

(

(∗gDg~n) ∧M
~H
)]

− R̃( ~H) +R⊥
~Φ
(T ~Φ), ~w >

]

dvolg = (IX.32)

∫

D2

(

< ~H,
1

2
D∗g

g [Dg ~w − 3π~n(Dg ~w)] > + < ⋆h

(

(∗gDg~n) ∧M
~H
)

, Dg ~w >

)

dvolg

+

∫

D2

< −R̃( ~H) +R⊥
~Φ
(T ~Φ), ~w > dvolg .

2
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Proof. Let us start considering
∫

D2 < D
∗g
g [Dg

~H ], ~w > dvolg. Fix a point x0 ∈ D2, take normal coor-

dinates xi centred in x0 with respect to the metric g = ~Φ∗h, and call fi :=
∂

∂xi the coordinate frame;
observe it is orthonormal at x0 and Dfi = 0 at x0. By Lemma IX.3, we have

< D∗g
g [Dg

~H ], ~w >=< Dg
~H,Dg ~w > −divg~u+ < D~f1

~H, ~w > divg ~f1+ < D~f2
~H, ~w > divg ~f2

for some vector field ~u compactly supported in D2. Observe that, at x0, the condition D~fi = 0 implies

divg ~fi =< D~f1
~fi, ~f1 > + < D~f2

~fi, ~f2 >= 0.

Therefore taking ~fi to coincide at x0 with the frame associated to normal coordinates centred at x0 we
obtain

< D∗g
g [Dg

~H ], ~w >=< Dg
~H,Dg ~w > −divg~u; (IX.33)

since all the terms are defined intrinsecally, the identity is true intrinsecally at every point x0 ∈ D2. Now
integrate (IX.33) on D2 and, observing that ~u is compactly supported, use the divergence theorem to
infer

∫

D2

< D∗g
g [Dg

~H], ~w > dvolg =

∫

D2

< Dg
~H,Dg ~w > dvolg.

Repenting the same argument we have also
∫

D2 < D
∗g
g [Dg ~w], ~H > dvolg =

∫

D2 < Dg ~w,Dg
~H > dvolg, so

∫

D2

< D∗g
g [Dg

~H ], ~w > dvolg =

∫

D2

< ~H,D∗g
g [Dg ~w] > dvolg. (IX.34)

Using analogous arguments one checks that also

∫

D2

< D∗g
g [π~n(Dg

~H)], ~w > dvolg =

∫

D2

< π~n(Dg
~H), Dg ~w > dvolg =

∫

D2

< Dg
~H, π~n(Dg ~w) > dvolg

=

∫

D2

< ~H,D∗g
g [π~n(Dg ~w)] > dvolg. (IX.35)

Finally, along the same lines, one has

∫

D2

< D∗g
g

[

⋆h

(

(∗gDg~n) ∧M
~H
)]

, ~w > dvolg =

∫

D2

< ⋆h

(

(∗gDg~n) ∧M
~H
)

, Dg ~w > dvolg. (IX.36)

The thesis follows collecting (IX.34), (IX.35) and (IX.36).

Lemma IX.5. [Differentiability of W and identification of dW ] Let ~Φ ∈ FS2 be a weak branched
immersion of S2 into the m-dimensional Riemannian manifold (Mm, h) with branched points {b1, . . . , bN}
and letW (~Φ) :=

∫

S2
|H~Φ|2dvolg~Φ be the Willmore functional. ThenW is Frechét differentiable with respect

to variations ~w ∈ W 1,∞ ∩W 2,2(D2, T~ΦM) with compact support in S2 \ {b1, . . . , bN} in the sense that

W (Exp~Φ[t ~w]) =W (~Φ) + t d~ΦW [~w] +R
~Φ
~w[t], (IX.37)

where Exp~Φ[t ~w](x0) denotes the exponential map in M centered in ~Φ(x0) ∈ M applied to the tangent

vector t ~w ∈ T~Φ(x0)
M and where the remainder R

~Φ
~w[t] satisfyes

sup
{∣

∣

∣R
~Φ
~w[t]
∣

∣

∣ : ‖~w‖W 2,2 + ‖~w‖W 1,∞ ≤ 1 and supp ~w ⊂ K ⊂⊂ S
2 \ {b1, . . . , bN~Φ}

}

≤ C~Φ,Kt
2.

Moreover the differential d~ΦW coincides with the Willmore equation in conservative form: for every
~w ∈ W 1,∞ ∩W 2,2(D2, T~ΦM) with compact support in S2 \ {b1, . . . , bN},

d~ΦW [~w] =

∫

S2

(

< ~H,
1

2
D∗g

g [Dg ~w − 3π~n(Dg ~w)] > + < ⋆h

(

(∗gDg~n) ∧M
~H
)

, Dg ~w >

+ < −R̃( ~H) +R⊥
~Φ
(T ~Φ), ~w >

)

dvolg . (IX.38)
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Also the functional F (~Φ) =
∫

S2
|I~Φ|2dvolg is Frechét differentiable with respect to variations ~w ∈ W 1,∞ ∩

W 2,2(S2, T~ΦM) with compact support in S2 \ {b1, . . . , bN} in the sense above, and

d~ΦF [~w] =

∫

S2

(

< ~H,D∗g
g [Dg ~w − 3π~n(Dg ~w)] > +2 < ⋆h

(

(∗gDg~n) ∧M
~H
)

, Dg ~w >

+2 < −R̃( ~H) +R⊥
~Φ
(T ~Φ)− (DR)(T ~Φ)− 2R~Φ(T

~Φ)− 2K̄(T ~Φ) ~H, ~w >
)

dvolg .(IX.39)

Finally also the area functional A(~Φ) = Areag~Φ(S
2) is Frechét differentiable with respect to variations

~w ∈ W 1,∞ ∩W 2,2(D2, T~ΦM) with compact support in S2 \ {b1, . . . , bN} in the sense above, and

d~ΦA[~w] = −
∫

S2

< 2 ~H, ~w > dvolg. (IX.40)

2

Proof. Let ~Φ ∈ FS2 and observe that the mean curvature ~H~Φ ∈ T~ΦM
n is a function of (∇2~Φ,∇~Φ, ~Φ),

where ∇2~Φ and ∇~Φ are respectively the hessian and the gradient of ~Φ:

~H~Φ = ~̃H(∇2~Φ,∇~Φ, ~Φ), (IX.41)

where
~̃H : ((TS2)2 ⊗ T~ΦM,TS2 ⊗ T~ΦM,M) → T~ΦM, (~ξ, ~q, ~z) 7→ ~̃H(~ξ, ~q, ~z). (IX.42)

Observe that ~̃H is smooth on the open set given by |~q ∧ ~q| > 0; moreover, for every ~q0 and ~z0, the

map ~ξ 7→ ~̃H(~ξ, ~q0, ~z0) is linear. Recall also that the area form dvolg~Φ associated to the pullback metric

g~Φ := ~Φ∗h is of the form

dvolg~Φ = f(∇~Φ, ~Φ) dvolg0
where dvolg0 is the area form associated to the reference metric g0 on (S2, c0), and

f : (TS2 ⊗ T~ΦM,M) → R, (~q, ~z) 7→ f(~q, ~z)

is smooth on the open subset |~q ∧ ~q| > 0. Therefore the integrand of the Willmore functional can be
written as

| ~H~Φ|
2dvolg~Φ = |~F |2(∇2~Φ,∇~Φ, ~Φ)dvolg0 , (IX.43)

where ~F (~ξ, ~q, ~z) := ~̃H(~ξ, ~q, ~z)
√
f(~q, ~z); clearly ~F is smooth on the subset |~q ∧ ~q| > 0 and, for every ~q0 and

~z0, the map ~ξ 7→ ~F (~ξ, ~q0, ~z0) is linear.
Let ~w ∈ W 2,2 ∩ W 1,∞(S2, T~ΦM) be an infinitesimal perturbation supported in S2 \ {b1, . . . , bN~Φ},

where {b1, . . . , bN~Φ} are the branch points of ~Φ; consider, for small t > 0, the perturbed weak branched

immersion Exp~Φ[t ~w], where Exp~Φ[t ~w](x0) denotes the exponential map in M centered in ~Φ(x0) ∈ M
applied to the tangent vector t ~w ∈ T~Φ(x0)

M . Observe that, by definition,

∫

S2

| ~HExp~Φ[t ~w]|2dvolgExp~Φ
[t~w]

=

∫

S2

|~F |2(∇2(Exp~Φ[t ~w]),∇(Exp~Φ[t ~w]), Exp~Φ[t ~w]) dvolg0 .

Recall that, using the construction of conformal coordinates with estimates by Chern-Heléin-Riviére,
we can assume that on every compact subset K ⊂⊂ S2 \ {b1, . . . , bN~Φ}, the immersion ~Φ is confor-

mal with ‖(log |∇~Φ|)‖L∞(K) ≤ CK for some constant CK depending on K. By conformality, it follows
that on every compact subset K ⊂⊂ S2 \ {b1, . . . , bN~Φ} there exist a positive constant cK such that

|d~Φ ∧ d~Φ| ≥ cK > 0. Since ~w is supported away the branch points it follows that, for t small enough,

(∇2(Exp~Φ[t ~w]),∇(Exp~Φ[t ~w]), Exp~Φ[t ~w])|supp(~w) is in the domain of smoothness of ~F . By a Taylor ex-
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pansion in t we get
∫

S2

| ~HExp~Φ[t ~w]|2dvolgExp~Φ
[t~w]

=

∫

S2

| ~H~Φ|2dvolg~Φ

+2t

∫

S2

~F (∇2~Φ,∇~Φ, ~Φ) · ∂ξkij ~F (∇~Φ, ~Φ)∂
2
xixjwkdvolg0

+2t

∫

S2

~F (∇2~Φ,∇~Φ, ~Φ) · ∂qki ~F (∇
2~Φ,∇~Φ, ~Φ)∂xiwkdvolg0

+2t

∫

S2

~F (∇2~Φ,∇~Φ, ~Φ) · ∂zk
~F (∇2~Φ,∇~Φ, ~Φ)wkdvolg0

+t2
∫

S2

∂2xixjwk∂2xrxswlP kl
ijrs(∇~Φ, ~Φ,∇~w, ~w)

+t2
∫

S2

∂2xixjwkQk
ij(∇2~Φ,∇~Φ, ~Φ,∇~w, ~w)

+t2
∫

S2

S(∇2~Φ,∇~Φ, ~Φ,∇~w, ~w) , (IX.44)

where, in the second line ∂ξkij
~F depends just on (∇~Φ, ~Φ) since ~F is linear in ~ξ, in the 5th line the function

~P is smooth in its arguments with ~P (∇~Φ, ~Φ, 0, 0) = 0, in the 6th line the function ~Q is smooth in its

arguments and linear in ∇2~Φ with ~Q(∇2~Φ,∇~Φ, ~Φ, 0, 0) = 0 and in the 7th line the function S is smooth

in its arguments and quadratic in ∇2~Φ with S(∇2~Φ,∇~Φ, ~Φ, 0, 0) = 0. Therefore, called R
~Φ
~w[t] the sum of

the last three lines of (IX.44), we have that

sup
{∣

∣

∣R
~Φ
~w[t]
∣

∣

∣ : ‖~w‖W 2,2 + ‖~w‖W 1,∞ ≤ 1 and supp ~w ⊂ K ⊂⊂ S
2 \ {b1, . . . , bN~Φ}

}

≤ C~Φ,Kt
2.

It follows that
∫

|H~Φ|2dvolg~Φ is Frechét-differentiable with respect to W 2,2 ∩W 1,∞ variations compactly
supported away from the branch points, and the first variation dW~Φε

[t ~w] is given by the sum of lines
2, 3, 4 of (IX.44).

Now we identify the first order term in the expansion of
∫

|H~Φ|2dvolg~Φ with the conservative Willmore
equation we derived before in the paper. Observe that it is not completely trivial since the conservative
Willmore equation has been proved for smooth immersions, while now ~Φ is a weak branched immersion.
First of all, recall that if ~Ψ is a smooth immersion of the disc D2 taking values in a coordinate chart of
M , then for a smooth variation ~w ∈ C∞

0 (D2,Rm) with compact support in D2 we have that
∫

D2

| ~H~Ψ+t ~w|2dvolg~Ψ+t~w
=

∫

D2

| ~H~Ψ|2dvolg~Ψ
+ tdW~Ψ[~w] + R̃

~Ψ
~w [t]; (IX.45)

where the remainder R̃
~Ψ
~w [t] has the same form as the sum of the last three line of (IX.44), and where the

differential dW~Ψ[~w], after the integration by parts procedure carried in Lemma IX.4, can be written as

dW~Ψ[~w] =

∫

D2

(

< ~H~Ψ,
1

2
D

∗g~Ψ
g~Ψ

[

Dg~Ψ
~w − 3π~n~Ψ

(Dg~Ψ
~w)
]

>

)

dvolg~Ψ

+

∫

D2

(

< ⋆h

(

(∗g~Ψ
Dg~Ψ

~n) ∧M
~H~Ψ

)

, Dg~Ψ
~w > + < −R̃( ~H~Ψ) +R⊥

~Ψ
(T ~Ψ), ~w >

)

dvolg~Ψ
.

Now let us start considering the case of ~Φ ∈ W 1,∞∩W 2,2(D2) a weak conformal immersion with finite
total curvature without branch points taking values in a coordinate chart ofM , and let ~w ∈ C∞

0 (D2,Rm)
be a smooth variation with compact support in D2.
Let ϕ be a non negative compactly supported function of C∞

0 (R) such that ϕ is identically equal to 1 in
a neighborhood of 0 and

2π

∫

R

ϕ(t) t dt = 1.

Call ϕε(t) := ε−2 ϕ(t/ε). Denote for ε < 1/4 and for any x ∈ D2
1/2,

~Φε(x) := ϕε(|x|) ⋆ ~Φ :=

∫

D2

ϕε(|x − y|) ~Φ(y) dy .
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By Lemma IX.6 there exists 0 < ε~Φ < 1/4 such that for any ε < ε~Φ the map ~Φε realizes a smooth
immersion from D2

1/2 into the coordinate chart, moreover we have (notice that in order to keep the

notation not too heavy, in the following we replaced D2
1/2 by D2)

~Φε → ~Φ strong in W 2,2(D2) (IX.46)

~Hε → ~H strong in L2(D2) (IX.47)

~nε → ~n strong in W 1,2(D2) (IX.48)

and

sup
0<ε≤ε0

‖~Φε‖W 1,∞(D2) ≤ C <∞ (IX.49)

inf
x∈D2

inf
0<ε≤ε0

|d~Φε ∧ d~Φε| ≥ 1

C
> 0. (IX.50)

Since ~Φε is smooth, the Willmore functional computed on ~Φε + t ~w expands as in (IX.45); observe that,

thanks to (IX.46), (IX.49) and (IX.50), the remainder R̃
~~
εΦ

~w [t] satisfyes

sup
0<ε≤ε0

sup
‖~w‖W1,∞∩W2,2(D2)≤1

∣

∣

∣
R̃

~Φε

~w [t]
∣

∣

∣
≤ C~Φt

2. (IX.51)

Observe moreover that, by (IX.46), (IX.47) and (IX.49), we have that | ~Hε|2dvolgε is dominated in L1(D2)

for ε ≤ ε0, and converges almost everywhere on D2 to | ~H |2dvolg; therefore, by Dominated Convergence
Theorem, we have

∫

D2

| ~Hε|2dvolgε →
∫

D2

| ~H |2dvolg. (IX.52)

Moreover, using (IX.46) and (IX.50) we have that, for ‖~w‖W 1,∞∩W 2,2(D2) ≤ 1 and t small enough,
~Φε+ t ~w → ~Φ+ t ~w strongly in W 2,2(D2) and ~H~Φε+t ~w → ~H~Φ+t ~w strongly in L2(D2); of course it still holds

sup0<ε≤ε0 ‖~Φε + t ~w‖W 1,∞(D2) ≤ C <∞. Therefore, with the same argument above, we get

∫

D2

| ~H~Φε+t ~w|2dvolg~Φε+t~w
→
∫

D2

| ~H~Φ+t ~w|2dvolg~Φ+t~w
. (IX.53)

Combining (IX.44), (IX.52) and (IX.53) gives

dW~Φ[~w] = lim
t→0

W (~Φ+ t ~w)−W (~Φ)

t
= lim

t→0
lim
ε→0

W (~Φε + t ~w)−W (~Φε)

t
= lim

t→0
lim
ε→0

(

dW~Φε
[~w] +

R̃
~Φε

~w [t]

t

)

;

recalling (IX.51), we obtain
dW~Φε

[~w] → dW~Φ[w] as ε→ 0. (IX.54)

Therefore in order to prove that, as in the smooth situation, dW~Φ is the Willmore equation in conservative
form, it is sufficient to show that

∫

D2

(

< ~Hε,
1

2
D

∗gε
gε [Dgε ~w − 3π~nε

(Dgε ~w)] >

)

dvolgε

+

∫

D2

(

< ⋆h

(

(∗gεDgε~nε) ∧M
~Hε

)

, Dgε ~w > + < −R̃( ~Hε) +R⊥
~Φε
(T ~Φε), ~w >

)

dvolgε .

→
∫

D2

(

< ~H,
1

2
D

∗g
g [Dg ~w − 3π~n(Dg ~w)] >

)

dvolg

+

∫

D2

(

< ⋆h

(

(∗gDg~n) ∧M
~H
)

, Dg ~w > + < −R̃( ~H) +R⊥
~Φ
(T ~Φ), ~w >

)

dvolg . (IX.55)

We are going to check the convergence term by term.
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Observe that D
∗gε
gε [Dgε ~w] = gijε D∂xi

~Φε
D∂xj

~Φε
~w and, using the definitions, one computes

(

gijε D∂xi
~Φε
D∂xj

~Φε
~w
)k

= gijε

[

∂2xixjwk + (Γk
pq ◦ ~Φε)∂xjwp∂xiΦq

ε + (< gradhΓ
k
pq, ∂xi~Φε >h ◦~Φε)w

p∂xjΦq

+(Γk
pq ◦ ~Φε)∂xiwp∂xjΦq + (Γk

pq ◦ ~Φε)w
p∂2xixjΦq

+(Γk
lm ◦ ~Φε)(Γ

l
pq ◦ ~Φε)w

p∂xjΦq∂xiΦm
]

= fk
1,ε + fk

2,ε with |fk
1,ε| ≤ F k

1 ∈ L∞(D2) and |fk
2,ε| ≤ F k

2 ∈ L2(D2); (IX.56)

where Γk
pq are the Christoffel symbols of (M,h) which are smooth and C1 bounded by the compactness

of M . Notice that in the last equality we used (IX.46) and (IX.49). Combining (IX.46), (IX.47) and

(IX.56) we get therefore that < ~Hε, D
∗gε
gε [Dgε ~w] > dvolgε is dominated in L1(D2) and converges almost

everywhere to < ~H,D
∗g
g [Dg ~w] > dvolg, then by Dominated Convergence Theorem

∫

D2

< ~Hε, D
∗gε
gε [Dgε ~w] > dvolgε →

∫

D2

< ~H,D∗g
g [Dg ~w] > dvolg as ε→ 0. (IX.57)

Now let us consider the second summand in the first line of (IX.55). Observe that D
∗gε
gε [πnε(Dgε ~w)] =

gijε D∂xi
~Φε
[π~nε

(D∂xj
~Φε
~w)]; using (III.10) we can write

D
∗gε
gε [πnε(Dgε ~w)] = (−1)m−1gijε

[

(D∂xi
~Φε
~nε) (~nε D∂xj

~Φε
~w) + ~nε ((D∂xi

~Φε
~nε) D∂xj

~Φε
~w)

+~nε (~nε (D∂xi
~Φε
D∂xj

~Φε
~w))
]

. (IX.58)

Writing explicitely the right hand side as done for (IX.56), one checks that

D
∗gε
gε [πnε(Dgε ~w)] =

~f3,ε + ~f4,ε with |~f3,ε| ≤ ~F3 ∈ L∞(D2) and |~f4,ε| ≤ ~F4 ∈ L2(D2). (IX.59)

Combining (IX.46), (IX.47) and (IX.59) we get therefore that < ~Hε, D
∗gε
gε [πnε(Dgε ~w)] > dvolgε is domi-

nated in L1(D2) and converges almost everywhere to < ~H,D
∗g
g [π~n(Dg ~w)] > dvolg, then by Dominated

Convergence Theorem
∫

D2

< ~Hε, D
∗gε
gε [πnε(Dgε ~w)] > dvolgε →

∫

D2

< ~H,D∗g
g [π~n(Dg ~w)] > dvolg as ε→ 0. (IX.60)

Now let us consider the first summand of the second line of (IX.55). Observe that

∗gε
∂

∂xj
=
√

det gε εjp g
pq
ε

∂

∂xq
, (IX.61)

where εjp is null if j = p and equals the signature of the permutation (1, 2) 7→ (j, p) if j 6= p; after some
straightforward computations using the definitions (III.1), (III.2),(III.4), (III.5), (III.6), we get

< ⋆h

(

(∗gεDgε~nε) ∧M
~Hε

)

, Dgε ~w > =
√

det gε g
ij
ε εjp g

pq
ε < ⋆h

(

D∂xi
~Φε
~nε) ∧M

~Hε

)

, D∂xq ~Φε
~w >

= f5,ε with |f5,ε| ≤ F5 ∈ L1(D2). (IX.62)

Using analogous arguments as before, by dominated convergence theorem we obtain
∫

D2

< ⋆h

(

(∗gεDgε~nε) ∧M
~Hε

)

, Dgε ~w > dvolgε →
∫

D2

< ⋆h

(

(∗gDg~n) ∧M
~H
)

, Dg ~w > dvolg. (IX.63)

Finally consider the last two curvature terms in (IX.55). By the definition (I.5), the first one writes as

< R̃( ~Hε), ~w >= − <

2
∑

i=1

Riemh( ~Hε, ~e
ε
i )~e

ε
i , π~nε

(~w) > (IX.64)

for an orthonormal frame ~eεi of ~Φε,∗(TD
2); observe it is dominated in L1(D2) and converges a. e. to

< R̃( ~H), ~w > on D2, so as before
∫

D2

< R̃( ~Hε), ~w > dvolgε →
∫

D2

< R̃( ~H), ~w > dvolg. (IX.65)
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Finally, by definition (I.7) and identity (IX.61),

R⊥
~Φε
(T ~Φε) :=

[

πT

(

Riemh(~e1, ~e2) ~H
)]⊥

=
√

det gε g
ij
ε gklε εlp g

pq
ε < Riemh(∂xi~Φε, ∂xj ~Φε) ~Hε, ∂xk

~Φε > ∂xq ~Φε.

(IX.66)

From this explicit formula, as before, one checks that < R⊥
~Φε
(T ~Φε), ~w > dvolgε is dominated in L1(D2)

and converges to < R⊥
~Φ
(T ~Φ), ~w > dvolg a.e. on D2, then by Dominated Convergence Theorem

∫

D2

< R⊥
~Φε
(T ~Φε), ~w > dvolgε →

∫

D2

< R⊥
~Φ
(T ~Φ), ~w > dvolg. (IX.67)

Combining (IX.57), (IX.60),(IX.63),(IX.65) and (IX.67) we obtain (IX.55) as desired. Let us recap what

we have just proved: if ~Φ is a W 1,∞ ∩W 2,2 immersion of the disc D2 into a coordinate neighbourood in
M and ~w ∈ C∞

0 (D2,Rm) is a smooth variation with compact support in D2, then the differential of the
Willmore functional d~ΦW [~w] coincides with the pairing between the Willmore equation in conservative
form and ~w. Now by approximation the same is true for variations inW 1,∞∩W 2,2(D2,Rm) with compact

support in D2. By partition of unity, the same statement holds for ~Φ ∈ FS2 with branched points
{b1, . . . , bN} and any variation ~w ∈W 1,∞ ∩W 2,2(D2, T~ΦM) with compact support in S2 \ {b1, . . . , bN}.

The proof regarding the differentiability of F is analogous since I~Φ is a vectorial function of (∇2~Φ,∇~Φ, ~Φ)
linear in ∇2~Φ. Moreover for smooth immersions and smooth variations, combining Corollary III.1 and
Lemma IX.4, the first variation of F is exactly (IX.39). With the same approximation argument carried
for W one checks that the same expression holds for a weak immersion.

The proof regarding the differentiability and the expression of the differential of the area functional
is easier since dvolg is function just of (∇~Φ, ~Φ), and can be performed along the same lines once recalled
that in the smooth case the differential of the area functional is exactly (IX.40).

Let us now prove the following approximation Lemma used in the proof of Lemma IX.5.

Lemma IX.6. Let ~Φ be a conformal weak immersion in FD2 into Rm without branch points. Let ϕ be a
non negative compactly supported function of C∞

0 (R) such that ϕ is identically equal to 1 in a neighborhood
of 0 and

2π

∫

R

ϕ(t) t dt = 1.

Denote ϕε(t) := ε−2 ϕ(t/ε). Denote for ε < 1/4 and for any x ∈ D2
1/2,

~Φε(x) := ϕε(|x|) ⋆ ~Φ :=

∫

D2

ϕε(|x − y|) ~Φ(y) dy .

There exists 0 < ε~Φ < 1/4 such that for any ε < ε~Φ the map ~Φε realizes a smooth immersion from D2
1/2

into Rm, moreover we have
lim
ε→0

‖g~Φε
− g~Φ‖L∞(D2

1/2
) = 0 , (IX.68)

we have also
lim
ε→0

‖~n~Φ − ~n~Φε
‖W 1,2(D2

1/2
) = 0 , (IX.69)

and
lim
ε→0

‖ ~H~Φ − ~H~Φε
‖L2(D2

1/2
) = 0 . (IX.70)

2

Before to prove the lemma IX.6 we establish the following ϕ−Poincaré inequality.

Lemma IX.7. Let u ∈W 1,2(D2). Let ϕ be a non negative compactly supported function of C∞
0 (R) such

that ϕ is identically equal to 1 in a neighborhood of 0 and

2π

∫

R

ϕ(t) t dt = 1.

Denote ϕε(t) := ε−2 ϕ(t/ε). For ε < 1/4 and x ∈ D2
1/2 denote

uε(x) := ϕε(|x|) ⋆ u :=

∫

D2

ϕε(|x− y|) u(y) dy .
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There exists a constant C > 0 such that for any x ∈ D2
1/2

1

|Bε(x)|

∫

Bε(x)

|u(y)− uε(x)|2 dy ≤ C

∫

Bε(x)

|∇u|2(y) dy . (IX.71)

2

Proof of lemma IX.7. For any x ∈ D2
1/2 and 0 < ε < 1/4 we denote

uε,x :=
1

|Bε(x)|

∫

Bε(x)

u(y) dy =

∫

D2

χε(|x − y|) u(y) dy ,

where χε(t) ≡ (πε2)−1 on [0, ε] and equals to zero otherwize. The classical Poincaré inequality gives the
existence of a universal constant such that

1

|Bε(x)|

∫

Bε(x)

|u(y)− uε,x|2 dy ≤ C

∫

Bε(x)

|∇u|2(y) dy . (IX.72)

We have

1

|Bε(x)|

∫

Bε(x)

|u(y)− uε(x)|2 dy ≤ 2
1

|Bε(x)|

∫

Bε(x)

|u(y)− uε,x|2 dy + 2|uε,x − uε(x)|2 . (IX.73)

We have

uε,x − uε(x) =

∫

Bε(x)

[χε(|x− y|)− ϕε(|x− y|)] u(y) dy . (IX.74)

Since
∫

Bε(x)

[χε(|x− y|)− ϕε(|x − y|)] dy = 0

The identity (IX.74) takes the form

uε,x − uε(x) =

∫

Bε(x)

[χε(|x− y|)− ϕε(|x − y|)] (u(y)− uε,x) dy . (IX.75)

Thus

|uε,x − uε(x)|2 ≤ C ε−4

∣

∣

∣

∣

∣

∫

Bε(x)

|u(y)− uε,x| dy
∣

∣

∣

∣

∣

2

≤ C ε−2

∫

Bε(x)

|u(y)− uε,x|2 dy . (IX.76)

Combining (IX.72), (IX.73) and (IX.76) gives (IX.71) and this proves lemma IX.7. 2

Proof of lemma IX.6. We first establish (IX.68). Since ~Φ is a weak conformal immersion, results from
[Hel] implies that there exists λ ∈ C0(D2) such that

g~Φ = e2 λ [dx21 + dx22] ,

and eλ = |∂x1
~Φ| = |∂x2

~Φ|. Then, for any δ > 0 there exists ε such that

∀ δ > 0 ∃ ε > 0 ∀x, y ∈ D2
3/4 |x− y| < ε =⇒ 1− δ < eλ(x)−λ(y) ≤ 1 + δ . (IX.77)

Since ~Φ ∈ W 2,2(D2,R
m)

∀ δ > 0 ∃ ε > 0 ∀ ε < ε0 sup
x∈D2

1/2

∫

Bε(x)

|∇2~Φ|2(y) dy ≤ δ2 (IX.78)

Applying lemma IX.7 to u = ∇~Φ we deduce then

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 sup
x∈D2

1/2

1

|Bε(x)|

∫

Bε(x)

|∇~Φ(y)−∇~Φε(x)|2 dy ≤ δ2 . (IX.79)
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Using the mean-value theorem we then deduce that

∀ δ > 0 ∃ ε0 > 0 s.t. ∀ ε < ε0 ∀x ∈ D2
1/2 ∃ yx ∈ Bε(x) s. t.

|∇~Φ(yx)−∇~Φε(x)| ≤
√
δ .

(IX.80)

Since
0 < inf

y∈D2
1/2

|∇~Φ(y)|2 = inf
y∈D2

1/2

2 e2λ(y) ≤ sup
y∈D2

1/2

|∇~Φ(y)|2 (IX.81)

then (IX.80) implies for i = 1, 2

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 s.t. ∀x ∈ D2
1/2 ∃ yx ∈ Bε(x)

s. t. 1− δ ≤ |∂xi
~Φε(x)|

|∂xi
~Φ(yx)|

≤ 1 + δ .

(IX.82)

Combining (IX.77) and (IX.82) we obtain for i = 1, 2

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 ∀x ∈ D2
1/2 1− δ ≤ |∂xi

~Φε(x)|
|∂xi

~Φ(x)|
≤ 1 + δ . (IX.83)

Similarly, using (IX.80), (IX.81) and the fact that ∂x1
~Φ(y) · ∂x2

~Φ(y) ≡ 0 we have

∀ δ > 0 ∃ ε0 > 0 ∀ ε < ε0 ∀x ∈ D2
1/2

|∂x1
~Φε(x) · ∂x2

~Φε(x)|
|∇~Φε(x)|2

≤ δ . (IX.84)

It is clear that (IX.83) and (IX.84) imply (IX.68). Finally (IX.69) and (IX.70) are direct consequences

of the fact that (IX.68) and (IX.81) hold together with the fact that ~Φε → ~Φ strongly in W 2,2(D2
1/2).

Lemma IX.6 is then proved. 2

Lemma IX.8. [Lower semi continuity under W 2,2-weak convergence] Let {~Φk}k∈N ⊂ FS2 and
~Φ∞ be weak branched conformal immersions and assume that there exist a1, . . . , aN ∈ S2 such that for
every compact subset (with smooth boundary) K ⊂⊂ S2 we have

~Φk ⇀ ~Φ weakly in W 2,2(K) (IX.85)

sup
k

sup
x∈K

| log |∇~Φk| |(x) ≤ CK <∞ for some constant cK depending on K. (IX.86)

Then the Willmore and the Energy functional are lower semicontinuous:

∫

K

|H~Φ∞

|2dvolg~Φ∞

≤ lim inf
k

∫

K

|H~Φk
|2dvolg~Φk

,

∫

K

|I~Φ∞

|2dvolg~Φ∞

≤ lim inf
k

∫

K

|I~Φk
|2dvolg~Φk

. (IX.87)

2

Proof. Since ~Φk are conformal, then ~Hk = 1
2e

−2λk△~Φk where λk = log |∂x1~Φk| = log |∂x2~Φk| is the
conformal factor. Let us first show that

~Hk

√

volgk =
1

2|∂x1~Φk|
△~Φk → 1

2|∂x1~Φ∞|
△~Φ∞ = ~H∞

√

volg∞ in D′(K). (IX.88)

From (IX.85) and Rellich Kondrachov Theorem we have that |∂x1~Φk| → |∂x1~Φ∞| strongly in Lp(K) for

every 1 < p <∞; moreover assumption (IX.86) guarantees that |∂x1~Φk| ≥ 1
C > 0 independently of k. It

follows that
1

|∂x1~Φk|
→ 1

|∂x1~Φ∞|
strongly in Lp(K) for every 1 < p <∞.

Since, by assumption (IX.85), clearly △~Φk → △~Φ∞ weakly in L2(K), then (IX.88) follows. In order

to conclude observe that (IX.85) implies that ~Φk are uniformly bounded in W 2,2(K), then assumption
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(IX.87) and the conformality of ~Φk give that ~Hk

√

volgk are uniformly bounded in L2(K). This last fact
together with (IX.88) implies that

~Hk

√

volgk ⇀
~H∞

√

volg∞ weakly in L2(K).

The thesis then follows just by lower semicontinuity of the L2 norm under weak convergence. The
proof of the lower semicontinuity of

∫

|I|2 is analogous once observed that in conformal coordinates

|I|2 = e−4λ|∇2~Φ|2.
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