Tori in S® minimizing locally the conformal volume.

Tristan Riviere*

Abstract : We prove that the conformal immersions of complex two tori into S* which
locally minimize their conformal volume in their conformal class all satisfy some elliptic
PDE. We prove that they are either minimal tori, CMC flat tori, elliptic conformally con-
strained minimal tori or critical point of the area under some fixed conformally congruent
area. On the way to establish this result we prove that tori which are critical points of the
area for perturbations within a given conformal class and which are degenerate points of
the conformal class mapping - i.e. isothermic - are either minimal surfaces or flat CMC
tori. These results are all proved in the general framework of weak immersions.

Math. Class. 49Q10, 53A05, 53A30, 35J20

I Introduction

The notion of conformal volume introduced by P.Li and S.T.Yau in [LiYa] has stimulated
a broad interest in mathematics beyond the differential geometry of submanifolds.

Let G(S®) be the Mobius group of conformal transformations of S® we are considering
immersions ® of the two torus T2 which are critical for the conformal volume

V(®):= sup A(Vod) (1.1)
TeG(S3)

within their conformal class. Precisely for any smooth path ®, such that &, = & and
such that the conformal class defined by the metric @} ggs, where ggs denotes the standard
metric on the 3—sphere S3, is equal to the one defined by ®*g we have

—Ve(®y) =0 (12)

Absolute minimizers of V, in a given family of conformally equivalent metrics, when they
exist, do satisfy (I.2) for instance. Beside the case of rectangular tori, which is partly
solved in [MR], it is not known which conformal class possess a minimizer for the conformal
volume. It is expected that not every class posses a minimizer of V.. Indeed, while taking
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a minimizing sequence ®;, and the optimal Wy, if it exist, satisfying %(5@ = A(Vy 0 (5k)
one cannot a-priori exclude that the sequence of immersions Wy, o o, weakly converges to
a geodesic sphere. This degeneracy in the minimization process is believed by the author
to be the only possible one and, when the minimal conformal volume within a conformal
class is strictly larger than 4, it should be achieved by an immersion of T2 satisfying
(1.2).

The purpose of the present work is to give a characterization of 2-dimensional tori in
S3 which are local minimizers of the conformal volume in their conformal class. In other
words we aim to give a characterization of complex 2-tori (tori equipped with a given
complex structure) minimizing locally the conformal volume for immersions defining this
given complex structure.

In [Ri4] the author derived the infinitesimal characterization of the variations of rie-
mann surfaces : a PDE satisfied by critical points of functional such as the area for
variations within a given conformal class was derived in this work. This was a delicate
issue at least for isothermic surfaces which are the degenerate points of the conformal
class mapping and for which a direct application of Lagrange multiplier theory was ex-
cluded a-priori. It is proved that, for any o satisfying (I1.2) for any variation ®, within
the conformal class of qD, there exists an holomorphic quadratic form @) of the underlying

riemann surface such that
H=R<Qh" >, (1.3)

where gz = 5*953 is the induced metric on the surface, H is the mean curvature of the
immersion and A is the Weingarten form given in complex coordinates by

W= 2715(0%®) d2? | (1.4)

where 7 is the projection onto the normal direction to the surface in T'S®. Solutions to
(1.3) are called conformally constrained minimal surfaces.

Hopf tori - i.e. the preimages by the Hopf fibration from S? into S? of closed curves
on S? - are examples of conformally constrained minimal surfaces (see [BPP]). These
surfaces are not necessarily smooth and it suffices to have a weak notion of second fun-
damental form as well as a notion of conformal coordinates in order to give a meaning to
equation (I.3). In [Ri3] (see also [Ril]) the author introduced a notion of weak immersions
compatible with variational purposes, for which conformal coordinates exist and for which
the mapping assigning the conformal class is smooth for some topology. The motivation
originally was to produce a suitable framework for studying the variations of Willmore
Lagrangian. It appears moreover that this is a "minimal” requirement for ensuring the
smoothness of the mapping assigning the conformal class. This is the framework we shall
consider here.

A weak immersion of T? into S3 is a map ® from T2 into S3 such that

i)

e Wh(D,RY) |



ii) there exists a constant C'y > 1 such that
VeeX VXeT,X  CF' go(X) < |d(X)]* < Cg go(X)

where g is some given smooth reference metric on 72 i.e. in other words the metric
on T2 equal to the pull back by ® of the canonical metric of R* is equivalent to any
reference metric on 72,

iii)
ity € WH(T? S?)
where 77 is the Gauss map associated to d i.e. the unit vector perpendicular to the
surface in T'S® and positively oriented.

This space is usually denoted Ep2. This is a Banach manifold modeled on Wh* N
W22(T% R3). Each element in &2 defines uniquely a conformal class and, for a fixed
choice of generators of the m;(7T?) the mapping which to o assigns the corresponding
Teichmiiller class is C! (see [Ri3]).

The analysis of the equation (I.3) is made particularly complex due to the fact that
it includes both hyperbolic and elliptic regimes. Strictly elliptic regime is observed in the
domain given by B

E(P):={zeT?; 2 Qg (x) <1}

The splitting between these two regimes can be seen formally in the following way. On
a two torus an holomorphic quadratic form is either zero or never vanish. Then, locally
there exist complex coordinates in which Q = 47! dz?. In these coordinates the equation
(I.3) reads

AP 428 e =0, (e 8,,B) — 0y, (¢ 2 9,,P)

where gg = e** [da} + dx3]. Observe that [Q[,. = 27'e"*" hence the domain of strict

ellipticity ,(®) corresponds to the set of points z where A(z) > 0 in these special coor-
dinates and hence the principal symbol of the conformally constrained minimal surfaces
equation which reads

By, ((1 _ e amcﬁ) 48, ((1 e amq?) 123 P =0 (L5)

is exactly invertible on this domain. Following [MS] and [He|, we proved in [Ril] that for
any weak immersion d in any conformal coordinates, the induced metric is continuous and
hence Q?S((ﬁ) is an open subset of T2. The elliptic nature of the conformally constrained
minimal surfaces equation on the domain of strict ellipticity is reinforced by the following
result



Theorem I.1. Let ® be a weak immersion satisfying the conformally constrained minimal

surface equation
H=R<Q,h” >,

for some holomorphic quadratic form on T? equipped with the conformal class defined by
®. Then ® is analytic in conformal coordinates within the domain of strict ellipticity

-

(D) given by
E(®) == {z e T?; 2|Q|y,(x) < 1}
a

The theorem is clearly optimal since Hopf tori, which are solutions to the conformally
constrained minimal surface equation, satisfy 2[Q|y.(r) =1 on T 2 and can be nowhere
C? by taking the lifting of a nowhere C? curve I' on S but still satisfying [ [s[* dl < +o0
where k is the geodesic curvature of the curve in S? which ensures that this is a weak
immersion.

Definition 1.1. A weak immersion is said to satisfy the elliptic conformally constrained
minimal surface equation (resp. strictly elliptic) if it satisfies

H=R<Q1 >,

]igr some holomorphic quadratic form on T? equipped with the conformal class defined by
® and .
@) :={zeT”; 2 Qg () < 1}

concide with the whole torus (resp. €,(®) = T?). O

Strictly elliptic conformally constrained minimal surface could be seen as general-
ization of minimal surfaces sharing many features with minimal surfaces. In particular
one deduces from the analysis for proving theorem I.1 that the space of strictly elliptic
conformally constrained minimal surface satisfying 2 |Q|,_(z) < 1—gp for any 0 <gp <1
with uniformly bounded area and controlled conformal class is compact in C! topology
for any [ € N.

Regarding now the similar problem in the euclidian space R?, in [Ri4] it is proved
that critical points of the area among weak immersions of a compact surface ¥ into R?
with prescribed conformal class satisfies also the conformally constrained minimal surface
equation

H=R<Q,h >,

By multiplying the equation by ® and integrating by parts one gets the following propo-
sition which is reminiscent to the corresponding result for minimal surfaces.

Proposition I.1. There exists no weak immersion into R® of a closed two dimensional
manifold satisfying the conformally constrained minimal surface equation. ]
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Observe that an arbitrary cylinder over a plane curve in R? is an example of an elliptic
(non strictly elliptic) non compact conformally constrained minimal surface satisfying
H = R(H") in cylindrical coordinates in which the Weingarten Operator takes the form

(00)
I=
0 0
It is also isothermic since S(H®) = 0. In [BPP] the authors show that surfaces with
rotational symmetry are conformally constrained minimal everywhere away from the axis
points. Such surfaces are not necessarily smooth and therefore should not be in general
elliptic conformally constrained minimal.
Finally, it would be interesting to study non compact strictly elliptic conformally
constrained minimal surface with ends in R? and in particular bounds on their index...etc.
Going back to immersions in S3, in section IV of the present paper, we establish the

following result which identifies the space of isothermic conformally constrained minimal
immersions of tori.

Theorem 1.2. A weak immersion of the torus T? in S® is both isothermic and a critical
point of the area under constrained conformal class if and only if it is either minimal
or realizes a flat CMC torus. Such tori are all solving the strictly elliptic conformally
constrained minimal equation. O

For instance, the Weingarten Operator of Hopf tori in coordinates given by the Hopf
fibers and parallel lifts of the curve I' in S? - whose lift by the Hopf fibration is equal to
the torus - is given by - see [Pi] identity (21) -

2k 1
I=
1 0
It is clearly solving the conformally constrained minimal surface equation H = R(H°). Tt

is moreover isothermic if and only if K = kg > 0 is constant - i.e. I is a circle in S? and
the torus is a CMC Clifford torus -. It solves the isothermic equation

R(1+ikg)H) =0

together with the strictly elliptic conformally constrained minimal equation

H:@%( o _HO) ,
Ko + 1

where A = 0 and Q = 4*1%6&2 satisfies 2|Q|, = ,/% < 1. Finally theorem 1.2 can
0
be put in perspective with a result by J. Richter, see [Ric| and [BuPP], asserting that

>



conformally constrained Willmore tori in S® which are in addition isothermic are CMC
surfaces for some constant sectional curvature.

The main result of the present paper is the following theorem which identifies tori
minimizing locally the conformal volume within their conformal class.

Theorem 1.3. Let & be weak immersion locally minimizing the conformal volume V,
in it’s conformal class. Assume V,(®) ¢ 47N and that V, is differentiable at ®, then the
following alternative holds : if there is no other Mobis transformation 0f<f> realizing VC(Cﬁ)
then either

e i) O is a minimal immersion,

T?%) is a flat CMC clifford torus congruent to aS* x v/1—a2S' for some

(
a€(0,1),

o ii) ®
(

o iii) ® is an elliptic conformally constrained minimal surface.

|

In the ”"degenerate case” of the existence of at least two non isometric Mobius trans-

-

formations realizing V,(®) we have the following proposition.

Proposition 1.2. Let d be a weak immersion of T? into S3, solution to the conformally
constrained equation (1.3) and realizing it’s conformal volume : A(®) = Vu(P). Assume
V.(®) ¢ 47N and that V, is differentiable at ®. If V,(®) is also achieved by ¥ o ®, a non
1sometric Mobius transformation of ® and that any such Mébius transformation satisfy
also the conformally constraint minimal equation, then d is a critical point of the area A

-

under the constraint that A(¥ o ®) is constant. O

The paper is organized as follows. In section II we compute the first and second
variations of the area functional within a fixed conformal class. In section III we prove
theorem I.1. In section IV we identify the isothermic conformally constrained minimal
surfaces. In section V we construct families of deformations which reduces the conformal
volume for non-elliptic conformally constrained minimal surfaces. In the last section we
collect the informations obtained from the previous ones to prove theorem I.3.
Acknowledgments : The author is grateful to the referee for very useful observations
and comments.



II The first and second variations of a weak immer-
sion locally minimizing the conformal volume in

SS
II.1 Preliminaries : notations and some computations.

Consider Cf% = d +ti.
We have in local coordinates (that we can choose to be conformal for 5)

. 0, B A0, D
Ty = Hpa | Py N —2 L2t (IL.6)
|0,, Dy A Oy, By

We have .
ﬁt =17 +1 (a1 51 + a9 €2 + b(I)) + O(t) (117)
They can be identified as follows:
Aa={ee, —h - i(a cf>) 7Y = — (0,10, )
7dttt:0 dt Tl £t toa 1Y )
and similarly one obtains ay = —e™* (9,,w, 71). Let v := g 1 = - 1. We have
— d_»
=0 =y
t
(I1.8)

Hence we have .
n - — — - = — =

% = _eiA [<8$1w7n> €1 + <azgw7n> 62] —vd

We now compute the time derivative of the second fundamental form. We have

2
dit ,
[ D, b agixjw} dr; ® da;

dI
@~ 2| @
i,7=1
2
. [e—w 0y 10 - 71 Oy @ a;x]@} d; ® da; (1L.9)
i,7,k=1
2
o g+ Y -0, 0 dr; @ da;
i,j=1
(11.10)

Recall that . B
6—2)\ &cké . 8;%@ = 6jk ze)\ + 5219 0%)\ — 52’]’ ka>\



Combining (I1.9) and (II.10) we obtain

% = — (0p A0y W - 71 — Opy A Oy, - 1) (da? — da3)
— (Opy A Oy W - T+ Dy A O W - 1) (dy @ dg + dae ® day) (L11)
2
+v g+ Z - 8;_%_117 dx; @ dw;
ij=1
Recall that H, = 53, (g:)” (I);; Hence
= %%j@twd(fg“ 33 1907 1),
Using (II.11) we have )
: ;@tvﬂ‘d(g;)” SPER (1L12)
We have (g;)ij = ((’“)xifﬁt, ijcﬁt}, thus
d aa 7 AP
E(gt)ij o (02, W, Op; @) + (00, @, 0 1) (I11.13)

Since >°.(9:)*(g)i; = 0rj and g;; = €** I, where Iy is the (2 x 2)-identity matrix, we have

d d

4 k) 2X -2x 2 , = I1.14
A M (11.14)
from which we deduce
d kj a4 —4X = 5 5 =
@) == gy == (00,0, 8) + (0,8, 0,@)) . (1L15)
=0 t=0

The previous computation gives then

dH n - ~
12 (I1.16)
a3 e [axlw L0y, B + 0, axicp] 0, 7 - 0y, ®
ij=1
We write . .
W=010,,P+ 020, +v1T . (I1.17)
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and with these notations we compute in one hand
i Ay UU _
§~Agw:—g 2)\26 O'] ij
, u=t (I1.18)
+e™ Y 070, (P H)
i=1

and using in particular (I1.10) we have

b ) ) (I1.19)
= |I[|3v — e Z L Op0;j —2H Zak O A

ij=1 k=1

Combining (I1.16), (II.18) and (II.19) we obtain

dH

— =3 [A + (12 +2)v —i—Zal 0, H (11.20)

Let § := G;; do; @ dxj = a[do} — dz3] 4 b[dzy ® dxg + dry ® day] for some functions a
and b independent of ¢. We have

(L)~ n(En)  aa

- H <d~‘7 q> —2H ¢ [a (0,103 - Oy ® — Oy, - Dy, D)

We have in one hand

at (1I1.22)
b (DT - Dy, + 0,7 - 0, )|
In the other hand we have
@ g)=ae (ﬁ-82 w— 1T - 8 >+2b€_4)\_’ 0% @
dt7q - x% T1T2
—2a e (O, X Oy W - 1 — Oy A D10 - 77) (I1.23)

—2b e (9, A Dy W - 71 + Dpy \ Oy 10 - 77)



Thus, combining (I1.21), (I1.22) and (I1.23) gives

arl
<_,G> :a6_4)\ (ﬁa22w—ﬁa2zw>+2b 6_4>\ﬁ'a§xw
dt g . " .

—2a e (D A Dy W - 7 — Dpy\ Oy, 0 - 77)

2 H e |00, - 0y, ® — 0yyf - Dy ®) + b (0, 1 - Dy, B + Dy, - a,mq?)]
We have then after some computations
W = 0y, (M - Opy W) — O, (M - OpyW) — Oy T+ Oy W + Oy 11 - Oy W
= 020 — 0% — v (|0, 71> — |00, 71]%) + H €*}(05,01 — Ou,02)
FEB I (D, (P01) + Dy (202)) + € Iy (D, (P0) — Dy, (P)
+0u, (liyo1 + T1202) — O, (Ti201 + Ia2072)
Similarly we have

271+ 02, 15 = Oy (71 - DgyD) + Oy (7 - Oy 15) — Dy 71 - Dy lf — Dyl - Dy 1T

=202 0 =207 Op,it v+ H e0py01 + Oy, 02)

r1T2

FEP I (00, (P01) = 00, (02) + ¢ T (01, (P01) + 0 (202))

+8m1 (]1120'1 + HggO’g) -+ 8@ (]1110'1 + ]1120'2)

We have also

Oy N Oy 0 - 7 — Dy N\ Dy - 1 = Dy A Dy v — Dy A Doy 0

+€2>\ H (alﬁxl)\ — 028332)\) + ]I(l)l (alﬁxlA + 0'2(912)\> -+ H?Q(UQ&xl)\ — O'lax2>\)
and

O\ D8 - 1+ gy \ O 0 - 7 = D, X\ Dy 0 + Dy X Dy, 0

+e2 H (0100, + 0205, A) + 19, (0100, — 0902, \) + 195(0105, A + 0202, \)
Finally we have in one hand

O W+ Oy, ® — Oy - 0, ® = — 20 19, + € (0,01 — Dy 02)

10
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(I1.26)

(11.27)

(11.28)

(I1.29)



and in the other hand
Oy T - Dy ® + Oy - 0y, ® = — 20 19, + €2 (8,00 + Opy01) (11.30)

Combining (I1.24)...(I1.30) we obtain

di »q
—e ™ Ha (8x1(62’\01) — 8$2(62)‘O'2)) — e HYD (611(62’\02) + 83;2(62’\01))

0
<di _> —qge (83;1(6_2’\&011)) — 812(6_2)\8@7})) +bhe 2 ((911(6_2)‘8@1)) + Os,y (6_2>\8$1U))
g

+e™ (al9, 4 b1%) (8,01 + Opy02) + e (al — 1Y) (9p,00 — Ory01)
+e P a [0x, (T1101 4 Ly209) — Oy (L1207 + Ie09)]

+6_4)\ b [811 (]11201 + ]1220'2) + 812 (I[110'1 + ]1120'2)]
(I1.31)
Assume now that a — b is holomorphic - i.e. 9,,a+ 0,,b = 0 and 0,,b — 0,,a = 0 then we
have for instance

a (05, (e7205,0) — Dpy (€722 05,0)) + b (Ony (€7220y,0) + Oy (€720, 0))

=0y, (a e’”@xlv) — Oy, (a 672’\&521}) + 0y, (b e’QAﬁxQU) + 0., (b e’”é’xlv)
or we have also

a [8w1 (]1110'1 + H120'2) — 8332 (H1201 + ]IQQO’Q)] + b [8331 (]1120'1 + HQQO'Q) + 8352 (]1110'1 + 1[120'2)]

=0y, (a [H1101 + ]11202] +b [(]I1201 + 112202]) — O, (a []11201 + H2202] —b []I1101 + 111202])

and hence

di , 4
—e ™ Ha (8271(6”01) — 8952(6”\02)) —e ™ Hp (0x1(62/\02) + am(e%l))

0
<ﬂ _> = 672)\ [811 (CL 672)\8x1v) - (9932 (a 672)\ax27}) + aml (b 672)\8232@) + axZ (b 672)\(9111})]
g

+e (ally + bI%) (0p,01 + Opy02) + e (ally — bIY,) (0p,00 — Dyyo1)
+e " 8, (a [Iy01 4+ I3500] + b [(I3501 — 1Y, 05] )
—e " 8y, (a [1%y01 — IY,02] — b [I3,01 + 11500])

+e [0y, (2 H (a0y +b02)) + s, (2 H (boy — a0y))]
(11.32)
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We now compute

d _ ; _ ng dr’
P q,1 ( Z 9" 9" Gy w) =2 Z I3 G, + <%;Q> (I1.33)
9

igkl=1 ijk=1

Using (I1.15) we obtain, using also (I1.10),

dg' ) o L L
T —2ul; e e M; [&Ci(al 0, ®) - 00, ® + Oy, (01 00, D) - ax;p}
) (I1.34)
=20 [; e — 2 (02,0 + Op,04) — 2 e 2 dij Z 01 Oz, A
I=1
Combining (I1.33) and (I1.34) we obtain
d _ . ~ o (T
%<Q,H >_4€ kzl]lm]lqujk—f- %7q
i (I1.35)

e~ Z 0r,0 +8m]al) ik Qi — 4 < g,1° > Zal O, A

1,5,k =

Observe that

2 2 2
0~ 10 _ 0~ 10 0 - 0
Z L ar; Iy = Z I, L + Z 010 Q415 1

1,5,k=1 1,j=1 i,j=1

2 2

_ 0 10 0 10

=a § ]Ilz Hzl a § ]I21 ]17,2 b E H]—i—lz ij
=1 =1 2,j=1

Since I, = —I9, and I{, = I3, we deduce
E ]Im ng =—=b E : G+1i zj
1,7,k=1 3,7=1

2 2
==b Z Iy, Iy — b Z I5; 15 = —bI, 1Yy — b1} I3, — OIS, IV, — B3, 15, = 0
Combining this identity and (I1.35) we obtain

d d1n°
— 1° =4 H g, 10 —.q
dt<q’ >4 v <4, >g+<dt,q>

2 (I1.36)
2 e S (00,054 00) 1 G — 4 <TI0 >4 D01 O\

i,k =1
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A short computation gives

—2 6_4>\ Z(aﬂcigj + 8;(;]-0‘2‘) ]I?k qjk =—2 (85“0'1 + azQUQ) <q, ]IO =g (1137)

gk
Combining (I1.36) and (I1.37) one obtains

d< I°>=4Hv <gI°> +<dﬂ0 q>
. Qa = v q, T
dt ! ToNdt’/, (I1.38)

—2e7 (0, (€2 1) + Oy (eP 02)) <G, 1" >

Together with (I1.32) this gives

% <gI">,=4Hv <q,1">, —2e (04, (e* 1) + Opy(e* 02)) <G, 1° >
+e 2 [3 (ae 22 0,,0) — Oy (a e 22 0p,v) 4 Oy, (be 22 0yyv) 4 Oy (b 6_2’\&517))]
—e ™ Ha (0,,(e*01) — 04, (e*02)) — e Hb (9,,(e*02) + 0y, (e*01))
e~ (all)) + b13,) (0n,01 + uy0) + €= (aly — b1Y,) (0,00 — ay01)
+e " 0, (a [I01 + Iy0s] + b [(I501 — 19, 05] )
—e ™ 0, (a (3501 — 1Y 00] — b [I},01 + ,00])

+€74)\ [811 (62)\ H (a0'1 + bO'Q)) -+ 8x2 (62)\ H (b(j'l — a,0'2)>:|

(IL.39)
Observe

d d
— (dvol det(g);i)?| dxy A d
dt ( vo Qt> o dt ( € (gt> ]) 0 15 €T

1 —2X d 2
=56 o ((gn (90)22 = (90)12)|  dwa A dy

t=0

1 ( d d (IL.40)
= - | (9 + —(9¢)22 ) dxy N dxs

2 \ dt oA

- (amq? DT+ 0y, B - amw) dzy A di

— —2H - dvol, + (00, (e201) + Oy, (€™ 02)) day A dazs.
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I1.1.1 The first and second derivatives of the area under constrained confor-
mal class

We consider ® a weak immersion in . We fix generators of the m; and we denote by

—

C(®) the corresponding Teichmiiller class of immersions which are conformal isotopic to
® - immersions = such that there exists a Lipschitz diffeomorphism W isotopic to the
identity and conformal from (3, ®*ggs) into (X, Z*ggs) -. Let Do((—1, 1), &) be the space
of mapping from (—1,1) into & which are continuous and differentiable at 0. We say
that & is a critical point of the area under constrained conformal class if

V&, € Dy((—1,1),E) st. Vie(=1,1) C(®,)=C(P)

. (I1.41)
then aA((I)t)(O)ZO

As shown in [Ri4], a weak immersion of ¥ is a critical point of the area under constrained
conformal class if and only if there exists an holomorphic quadratic form ¢ such that

H=R<Q,h >,, . (11.42)
writing locally Q = (Q + i Q) dz?, since
RO = & [Hpy + i HY) dz* = (I, —i1%) d2? = — (I3, +i1%,) d2?
, we have that
R< Q. >up=4e "R ((Q1 =i Qo) (I}, —ily)) = 4™ [Qul], — Q]
where we are using that [dz?|2 = 4e™*. Let
7:=2R(Q) =2Q [dr] — dz3] — 2Qy [dz1 dvy + dry dvy]

then we have
<qI°>, =4 [Q 1 — QuI%] =R < Q,h° >,

Hence @ is a critical point of the area under constrained conformal class if and only if there
exists q := 2Q [da? — dx3] — 2 Qs [dxy dxg + dwy dxy] such that Qp + i Qs is holomorphic
and

H=<gqI'>, . (11.43)

Let @, be a mapping in C2((—1,1), &) such that C(®,) = C(®) for ¢ € (—1,1) and

such that 50 = @ is a critical point of the area under constrained conformal class. We
are now computing the second derivative of A(®;) at 0. Using (I1.40) we obtain

dA(B,) d / /~ A%,
2 o, | =—2 [ H - dvol 11.44
dt dt{EQ V0% Lt g Y% (11.44)
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where ¢; denotes the metric on ¥ given by ¢; := (132‘953 and H, is the mean curvature
vector of the immersion ®;.

d2A(®,) dH i
TQt(O) = _2/2 o —(0) v dwvol,, —2/ H— W dvol,

AP
_2/H dt( L dv0l9t>

Combining (I1.45) and (I1.20) gives

(I1.45)

d®A(B,)
dr?

0) = / |dv|? dvol, — /[|]I|3 + 2] v* dvol,,
/ Zak 0z, H dvol, — 2/ H— W dvol,, (I1.46)

AP
_2/H 7 ( L dv0l9t>

Since C(®;) = C(P) we have that

AP
Cfft E = 0

we have that for any () holomorphic quadratic form for the conformal class defined by
(I)*g53

- AP - AP
0= / R<Q h >, -d—t’f dvol,, = / <g, >, -d—tt dvoly, . (11.47)
b Y

Taking the derivative of this identity gives

d i3, o d [d,
/ 0 << 7,0 >gt> T dvol,, = _/2 <q,I; >, o (E dvolgt> (I1.48)

We then have

d [dP d
—2/2Hn-d (dtt dvolgt) _2/Edt (< q,]IO gt) v dvol,

d—)
+2/ (<319 >,,) d—"-wduozg
> t

(I1.49)
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Combining (I1.46) and (I1.49) we obtain

AP
—dtg t)(O):/\dv]f] dvolg—/[\]l\5+2] v? dvol,

_2/ Zok Oy H dvol, + 2 /5 (< 7,1 > gt) v dvol,

The identity (I1.39) gives

2
_2/21; Zak Oy, H dvol, + 2 / jt (< q,]IO gt) v dvol,
k=1

:/8[—]21}2 dvolg—2/<§,dv®dv >, dvolg
b b

(11.50)

—2/ v iak Op H dvoly, — 4 /EHU (0, (€** 01) + Oy (€®* 7)) dy A divy

i
9 / Ho e [a (0 (6201) — 0y(P02)) + b (81, (2 09) + Bun(Pon))] diy A dy
+2 /E ve ™ [(all; +b1Y,) (85,01 + 05y00) + (ally — bIY)) (9p,00 — Dyy01)] dy A das
+2

v 672)\ &El (CL []I[l)lal + Htl)20'2} + b [(H&)QO'l — H?lag}) dl’l N d£C2

v e Oy, (a 101 — 1Y 02 — b 13,01 + 10500]) day A das

|
— o — o

+2 [ ve® [0, (2 H (a0y +b02)) + 0y, (¢2* H (boy — a03))] day Adxy
(IL.51)
We have in one hand
+2 / ve 0y, (a[Iy01 4 I5,00] + b [(Iy01 — I,00]) day A das
s
-2 / ve 0, (a [I3y01 — 1Y,00] — b [IY,01 + [0,00]) day A das
¥ (11.52)

=2 /(a I, +b0%,) [0n(ve ™) o1 4 Oy (ve ™) 0o dzy Adas
s

-2 /(a [0, = b1%)) [Ouy (Ve ™) 00 — Oy (ve ™) o1 day Adas
s
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Using the fact that H = 2e ** (a 19, + b1%,), a short computation gives

-2 / H v (0, (€% 01) + Oy (€2 03)) dy A day

s
+2 / ve ™ [(al)y +bI3,)] (9p,01 + Duy02) day A dy

> (I1.53)
—2 /(a I, +b13,) [0n(ve™) o1 4 Oy (ve ™) 0o dzy Adas

o

= / ve* [0 0y H + 090y, H] day A dacy
)
Another short computation gives also

-2 / Huve a (0, (€22 01) — O, (€203)) + b (0, (e*03) + O, (e ’\01))} dxy A dxo
5

+2 / ve ™ [0, (2 H (aoy +b02)) + 8y, (e H (boy — ao2))] day Adas
2

=2 / v [(aoy+bog) 0, H+ (boy — aog) Oy, H] dxy A daxg
s

(I1.54)
We have also
2
—2/ v Zak Oy H dvol, — 2 / H v (0, (€2 01) + Oy (e** 03)) dy A day
s i s
-, (I1.55)
=2 /H Zak Oy, v dvol,
¥ k=1
Combining (I1.50)....(I1.55) gives
d2A(®,) _
d; 2(0) = /2 [|dv]? =2 <q.dv®@dv >, —[[1]?+2—8H? v*] dvol,
2 2
+2 /H Zak Og, v dvol, +/ v Zak Oy H dvol,
¥ k=1 X k=1
+2 /U [(aoy +bog) 0, H + (boy — aog) Oy, H| dxy A dxs (I1.56)
>

— / v %<Q,h0>wp (O, 09 — Oy,01) dvol,,
>

+ / e 3(Q, h0> (00, (ve™) 03 — Oy (ve™) o4] dwvol,
s
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We denote wr to be the following vector-field tangent to the surface wy := @ — W - i 1.
We have for instance

2 2
fok a:vkv = (dvyu_jT)T*E,TE and Zak 3ka = (dH, ’LUT)T*E,Tz
k=1 k=1

Observe that we have

— v (O, 09 — Opp01) + e [8x1(1) e’”) 09 — Oy, (V e’zA) 01}

= _—pe [8:61(62)‘ 03) — Oy, (e* 01)} + (O, v 09 — Oz, v 01)

Denote wy the 1-form dual to the vector-field wy for the induced metric on the surface.
We have in particular

* dwy = e [am (62’\ 09) — 85,;2(62)‘ 01)]

Finally we denote by gLdH = 2R(Q)LdH the following contraction between the real
part of the holomorphic quadratic form 2 ) and the one form dH

GLdH = e a(0y, H dxy — Oy, H dxy) + ¢ b (0, H dag + 0, H da,)
We can summarize the results obtained so far in the following lemma.

Lemma I1.1. Let & be a weak immersion in Es(S?). Assume that & is a critical point

of the area within the conformal class defined by (ﬁ, then there exists an holomorphic
quadratic form @) such that
H=R<Q,h">,, . (I1.57)

Taking now a path such that ®, is a mapping in C?*((—1,1),&x)(S?) satisfying that C(@t) =
C(D) fort € (—1,1) and such that &y = & and dd,/dt(0) =

—

w, we have

2A(D

—d; o) = /E [ldvl2 — 4 < R(Q),dv & dv >, —[[I]7 +2 — 8 H?| v*] dvol,

+/ [2H dv +vdH + 4vR(Q)LdH + S (Q,h°) * dv] - wr dvol, (I1.58)
P

—/%<Q,h0> v * diwy dvol,
b

where v := -1, where Wy is the vector-field tangent to the surface obtained by projecting
W orthogonally (i.e. Wr := & — 1 - i) onto ®,TL. We denote i} the 1-form dual to ©
for the induced metric g. We have denoted R(Q)LdH the contraction with respect to the
iduced metric g between the real part of the holomorphic quadratic form Q and dH. The
brakets < , > denotes the scalar product between quadratic forms induced by the metric
g. Finally - is the canonical contraction between 1-forms and vector-fields on 3. O
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The computation of the second derivative (I1.58) was a bit long due to the fact that
we were considering general variations of the form @, where d®, /dt(0) = 0 is not neces-
sarily parallel to n. This was needed due to regularity issues. Since we are considering
variations around a weak immersion which is not necessarily smooth 7 is only in W2
and a deformation such as ® + tv i would not be within the class of weak immersions
anymore.

III Proof of theorem 1.1.

Let ® be a weak immersion satisfying the strictly elliptic conformally constrained minimal
surface equation that is to say, there exists an holomorphic quadratic form () such that

H:§R<Q,h0>% and  2[Q|, (r) <1 on T°

We can choose locally complex coordinates such that @ = 47! dz?. In these coordi-
nates that we can assume to be defined on the disc D?, the strict ellipticity condition
2|Qlg;(z) < 1 becomes A > 0 where gg = ¢* [da} + dr3] and the conformally con-
strained minimal equation becomes

H=e2H) . (I1L.1)
From the Codazzi equation (A.4) we then have
A(eH) = 0,,(e**0,, H) — 0,,(e**0,, H) (I11.2)

Let u := ¢ H, assuming ® is a weak immersion gives that in complex coordinates VA €
WHl and hence A € C° from which we deduce that v € L2 The function u satisfies
moreover the elliptic PDE

Dp, (1 = ™) 0, u0) + Opy (1 + €72 Dyu) = —2 [0z, (Dp, 67 1) — Oy (0™ w)] (1IL.3)

This PDE ! is indeed elliptic since A > 0 and A € C° thus we can assume that there exists
co > 0 such that A > ¢ on D? and the symbol in the Lh.s. of (IIL.3) is invertible. If we
can show that v € L} (D?) for some p > 2, this will make the PDE subcritical which

implies imply by standard bootstrap arguments that Vu € L?»' and then VH € L>!.
Bootstraping this information respectively in

AG 4+ & |V =27

LObserve that this equation is critical for u € L? or even u € L*»*. Indeed, Ve?* is in the Lorentz
space L?1 (see [Ril]) and thus Ve?* u € L'. The Laplacian of a function being a divergence of an L'
function implies that this function is in L?°° and we are back to the space we are starting from which is
the definition of being critical.
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using Wente integrability by compensation theory (see [Ril]) we obtain that V2P €
Mp<tooLP....which finally implies, using equation (1.5), that ® is analytic.

We sketch now the proof of the fact that u € L” for some p > 2 which is the only
claim that remains to be proven in order to complete the proof of theorem 1.1. Before
establishing the fact that v € L} (D?) for some p > 2 we first prove the existence of
a > 0 such that

sup r- ¢ ||u||L2,oo(BT($O)) < 400 (1114)

zOED%/2 , 0<r<1/4

Let 20 € Df/Q and 7 < ro where 1y is going to be fixed later in the proof. Let y be a

cut-off function on R? such that x = 1 on B?(0) and supp(x) C B2%(0). We denote by
X (z) the function given by x*' () := x(r (x — 2°)). A short computation gives

Or, (1= ™) 00, (2" W) + 0y (147 00, (0 )

=2X~ [8961(8116’2’\ ) — Oy, (83626’2’\ u)]

+20,, (1= )0, () 1) + 20, (14 0 (") u) (I11.5)
+ aﬂ&l (Xf ) axle—Q/\ u— axz (X;fo) aLL‘Qe_Q)\ (%

— (1= )% ) u— (1+e) 0% ) u
We shall now use the following 3 lemmas.

Lemma III.1. Let A measurable such that X\ > co > 0. For any p € (1,2) there ezists
Cy(co) such that for any X € LP(D* R?) and f € L' there exists a unique solution
v € WyP(D? R) of

Opy (1 — €722 0 0) + 0py (1 + €M) 0ppv) = div X + f  in D?
v=20 on 0D?

moreover we have

IVl o2y < Cleo) [[[ XN Leo2y + [1FI1] - (ITL.6)
O

The proof of this lemma is standard and can be done using the Stampacchia duality
method. We then have the following result

Lemma II1.2. Let A measurable such that A > co > 0. Let v € WH(D? R) such that

Op, (1 — €722 0y v) + 0y (1 + M) 0pv) =0 in D?
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Then for any 6 € (0,1) there exists 0 € (0,1) independent of v such that
||,U||L2’°°(Bg) < O lvllpeeesz) - (I1L.7)
O

This lemma is a straightforward consequence of the fact solutions to such an elliptic
equation are smoother than L*°° from De Giorgi-Moser classical result we know that
they are W;"? for some p > 2 with ad-hoc estimates which imply (II1.7) Finally we are

loc
going to make use of the following third lemma.

Lemma II1.3. Let A € L*Y(D* R) such that A\ > ¢y > 0. For any f € L*'(D?) there
exists a unique w € WH*(D? R) such that

O, (1 — e’”) Op,w) + Oy (1 + e’”)@mw) =g in D?
w =10 on OD?

moreover we have
IVwllzee(p2) < C([[VAll2,1, c0) llgllrzp2) - (IIL.8)
O
The proof of the previous lemma is classical if one replaces the Lorentz space L*! by
any L7 space for ¢ > 2. Since the improved Sobolev embedding gives that identity map
going from the space of functions with derivatives in the Lorentz space L?! into CY is

continuous and since Calderon Zygmund theory extends from the L? spaces to the Lorentz
L*! space (see [He]), the proof of lemma II1.3 follows easily.

We go back to the proof of (III.4). We introduce v € WS’S/Q(BST(xO)) given by
lemma III.1 solving

Doy (1 =€) 0p,0) + 0ny (1 + €72Y) 0,,0)

=20, (1= ™) 0., (") 1) + 200, (147 000" u) (IIL.9)
(1= e B0 u— (1) 06 )

Then v satisfies
||'U||L2,oo(B§r(xO)) S C(Co) HUHLQOO(BST(mO)) . (IIIlO)

Observe that the r.h.s of (II1.9) is supported on the annulus B3 .(z°)) \ B%(z°)) hence,
making use of lemma III.1 we deduce from the previous estimate that

Vo e (0, 1) d60 € (O, 1) S.t. HUHLQ’O"(BgT(IO)) < 0 HUHLQO"(B;(:CO)) (IIIll)
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Now for any function g € L*'(B2.(z°)) we consider w?’ given by lemma IIL3 for A on
B2 (2°) and satisfying then

O, (1 — 6_%) amwfo) + Oy (1 + 6_2)‘)8@10?0) =g 1n Bgr(xo)

(I11.12)
w=0 on OB3 (2°)
Due to scale dependancies of the norms we have
x()
IVwi || Lo (82, @0y) < CUIVAl L2182, (20)): €0) | f L2282, (0)) (1I1.13)

Multiplying by w*’ — w_ﬁ?o equation (IIL.5) to which we have subtracted equation (IIL.9)
and integrating by parts, where w2’ is the average of w®’ on BZ2,(z°), gives

20 o
/32 (29) f (Xr u — U) S C ||VA|’L2,1(B§r(xO)) HU’”L2’°°(B§T(IO)) var ||Loo(B§r(1.O)) (III].4)
2r T

Taking the sup over any f supported in B?(z°) whose L*' norm is less than one gives
then

||u - U||L2,oo(B7g($0)) < C ||V)‘||L271(B§T(:c0)) ||U|IL2,oo(B§T(z0)) . (11115)
We choose now 1y small enough in such a way that SUDsep? , C [[VAllp2asz, oy < 1/4
70

and choosing 6 in (I11.10) for § = 1/4, we have found 6 € (0, 1) independent of r such
that

HUHLZOO(BgT(xO)) < 27! HUHL%O(B;(QCO))

A classical iteration procedure of this inequality implies (III.4) and theorem I.1 is proved.

IV Isothermic conformally constrained surfaces.

This section is devoted to the proof of theorem 1.2.

Let ® be a weak immersion of the torus 7 equipped with a conformal structure ¢ into
S3. We assume that ® satisfies simultaneously the conformally constrained équation

H=R<Q,h>,, (IV.1)
for some holomorphic quadratic differential Q of (72, ¢) and the isothermic condition
R < QR >,,=0 (IV.2)

for another non zero holomorphic quadratic differential '
Assume first H = 0, that is ® is minimal, it is clearly a critical point of the area
under constrained conformal class. The Codazzi equation implies that the Weingarten
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quadratic form h? = ﬁ-@fztf dz? is a holomorphic. h° cannot be identically zero, otherwise
one would contradict Liouville equation, since H = 0. Taking Q' := i h® # 0, we have
(IV.2) which implies that ® is isothermic.

We shall exclude the case H = 0 in this part from now on. Assuming (IV.1), since
@Q # 0 and since the vector space of holomorphic quadratic differential on T2 is a complex
one dimensional space, we can then assume that there exist # € R such that

Ql — eiGQ

Since we are excluding the special case where H = 0 we have 6 ¢ m Z. Modulo composition
with a diffeomorphism we can assume that ® is conformal from R2 /A equipped with
the flat metric where A = w1Z @ woZ with w; # 0 and wo/w; ¢ R into S®. In the
canonical complex chart of R? ~ C : z = 21 + ixy we have that QQ = f(z) dz* where [ is
holomorphic and periodic on C and therefore constant. Modulo rotations we can assume
that f(z) = 1/4 and then

R < Q,h° >,p=e * HY

where g = e?* (dz? + dz2) and the following system is satisfied

H=e*H)
(IV.3)
cos ) Hyy, — sinf H3 = 0
and sinf > 0. Let ¢t := cos6/sin 6, the Codazzi identity (A.4) gives then
+1t) 05 (e =e ), (e™ . .
14it) 0z (e Hy) = € 0. (e7 Hy V.4
We have 2 (1+it)0; = (0py, — tOp,) + @ (t Oz, + Os,). Hence (IV.4) becomes
(8961 - taxQ)]Igl = 6_2)\ 8061]191 + 62)\ 8061(6_4>\) H(1)1
(IV.5)
(t 0351 + a:vz)]l(l)l = _6_2>\ 8902]1(1)1 - €2>\ aﬁm (6_4>\) H?l
This gives
(1- 6_”\) 8961]1(1)1 -t am]l(l)l =2 83;1(6_2/\) H?l
(IV.6)
t O 1Y) + (1472 0,10 = —20,,(e ) 1Y
From this identity we deduce
1+ —e™) 0,10 =21+ e )0y, (e7) 1Y) — 2t Dy (e7>) T,
(IV.7)

(1 4+ = e™) Ou TNy = =20, (™) I} = 2(1 — ™) Oy (e7) T

23



This implies the following conservation laws

O, [(1 +¢2 - e’”) H?l] =2 &El(e’”) ]I(fl — 210y, (e’”‘) ]I(fl
(IV.8)
Oy [1+ 12 — eI, ] = =280, (e7*) 1Y) — 20,, (™) 1Y,

The fact that we are dealing with conservation laws can be seen as follows. Since, for
a weak immersion, the conformal factor is continuous, we have on the open set ) :=

T2\ ()7 {1+ 2} = T%\ (') {sin 0}

O [A+ 82 —e ™) I)] = [00 F — t 05, F) (1482 —e NI

(IV.9)
0y [(14 82— )] = [~ 10, F — 0, F] (148 — S,
where . .
e*" + sin
= si 1 _ V.1
F(z):=sinf log [62/\ — sin@] (IV.10)

Since V) € L?!(T?) where L*! is the Lorentz space whose dual is the weak Marcinkiewicz
space L% (see the previous section) we have that G := (1 +t? — e=*) I%; satisfies on
the following PDE

0-G = A(z) G(z) (IV.11)
where A(z) € L2}

i2.(€). This equation implies AG = 40,(AG) which is critical for G €
L?*. The same approach as the one we employed for proving theorem 1.1 implies that
VG € L and G € LS. Hence (1+t>—e~*) 19, € L2 (Q2) and using (TV.3) together with

the fact that A € L, the Liouville equation gives that A\ € L7° (€2). Hence a standard
bootstrap equation gives that & is smooth on Q. Thus both G and A are smooth on Q.
Carleman unique continuation argument applied to Beltrami equation (IV.11) gives
that G, and hence H, has only isolated zeros (we are excluding the fact H = 0 since the
beginning of this section. Denote Q) the open set obtained by removing to €2 the possibly

existing isolated zeros of H, we then have

Oy, [log G| = [0, F — t 0, F]

(IV.12)
Oy, [log Gl = [t 0, F — 0y, F]
Or in other words we have
O.log G = (1+41it)o:F . (IV.13)
This implies in particular
¢ [ajm - a§2F} 1202 F=0 onQ (IV.14)
1 2

24



Since VF € L2 (Q), we have t [85%]7 — aggF] +20%  F € H,;}(Q) and is supported at

loc 122

isolated points. A standard argument gives then

i [83%F - aggF} 1202, F=0  onQ (IV.15)
Let o such that sinh 20 = —t, which is satisfied for
cosh?’c =27'(1+sin"'0) and sinh*c =27'(—1 +sin"'0)

and let 7 € R such that

2
: cosh” o 1 ,
cos“ T = = —(1+sin@
cosh? o + sinh’c 2 ( )
and )
inh 1
sin 7 = i = —(1 —sin#)

cosh®o +sinh’c 2
In particular we choose cosT > 0 and sgn(sin 7) =sgn(—t). Hence, since we are assuming
0 € (0,7), we take

T =

N D
AN

With these notations equation (IV.15) becomes
(cOST Oyy +SINT Oy, ) (—SINT Oy, +€OSTOyy) =10 on (IV.16)

We proceed to a rotation of R? by 7 and denote (y;,%2) the canonical coordinates after
this rotation :

i—COST—a +sin7’—a

oy, 0 0

gl = 2 (IV.17)
a—y2 = —SlnTa—xl—|-COS7'8—.:C2

Then we have in these rotated coordinates

P F=0 on €2

Y1y2

Hence we deduce the existence of two functions R and S which are smooth on €2 such
that
e +siné

e2X —sinf

F(y1,y2) = sin 0 log [ } =sin 6 [R(y1) + S(y2)] - (IV.18)

The system (IV.17) can be rewritten as follows 0,, +i 0., = €7 (9, +10y,) or & = €' I
where we denote respectively z = x; +i 29 and w = 3, +iy». We have 0, = e~ 7 0,, hence
dz = €™ dw which implies

—ie? duw?® = dz?
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Let HO = ﬁg + zﬁ% be the expression of the Weingarten quadratic form in the w coor-
dinates. The intrinsic nature of the Weingarten quadratic form gives

HOdw? = H°d? — H°= —ie?H°

This gives R
H{, = sin@ Hy + cos @ HY = (sin6) ™" Hy
(IV.19)
HY = —cos Hy +sinf H = 0
Hence, y; and ys are principal directions for I and the principal curvatures are given by

—2A

Ky = Hy+ H = Sim (e** +sin ) HY
R (IV.20)
ko = —H% + H = ;ﬁ (—e* +sin ) Hy
In these new coordinates the equation (IV.13) becomes
Oplog G = (1+it)e*' 7 OxF . (IV.21)
We have (1+it) = (sin )~ 1ie ™ and since '™ = —i e, we have
By log G = (sin )19 F = 271 [R(yl) +iSly)| . (IV.22)

Hence, for each connected component of 2, we deduce the existence of a constant C' € R
such that

log G = R(y1) — S(y2) + C (IV.23)
The identity (IV.18) gives
o) ) €R+S + 1
e~ =sinf m (IV24)
and then
4 eB+S
1+t —e = (IV.25)

sin? @ (efitsS +1)2

Liouville equation reads
—AN=e [1+H? — e (1Y) + (IY,)7]] (IV.26)
Using the fact that H = e ** 19, and that 1%, = ¢19, we have

—AN=e? [1—e™ (I, 142 —e ] (IV.27)
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Recall that G = (142 —e~) 19, thus combining (IV.23), (IV.24) and ((IV.25) we obtain

N2 1412 —e P =2 —G2 = f e (et — 792 (IV.28)
n I PR ‘

Using (IV.24) a short computation gives

9 ph+S R
e 2 (1) e
and hence ) RS o ' ames) 4
M= Sms T {R + S —[(R)* + (5)% m} (IV.30)
So the following ”double ODE” is satisfied
B+S—[(R)?+ (97 zzii: ti _ sir219 (eR;i;: 1)? { B ez;c W
(IV.31)

where R depends on y; and S depends on y5. Hence both R and S are analytic functions.
Assume both R and S are non constant on each connected component of €2 then each
of them would satisfy infinitely many independent second order ODE which is a contra-
diction. So, on each connected component of €2, A\ and I depend either on y; or on ¥,
exclusively.

Assume that R is constant and that both A and I only depend on y, in a connected
component of 2. For any y9 the curves L'y given by

L= {B0ns) 5 (nsh) €0

are made of portions of planar circles. Indeed the unit tangent direction to I' ¢ are given
by 7(y1) = e A¥2) 3y15(y1, yg) We have

D5a® = —AN13) 0 ® (w1, y3) + w1 (43) €2 filyr, ) — 20D By, )
and

D%a® = —A(y9) 02, B(y1,98) + k1 (98) € 0, (yr, 13) — €2 0, D(y1, 48)

We have

—

92, ®(y1,15) = e P2 By, 43) - 0y, P 9y, B = A1) 9, ®

Yy1y2 Y1y2

and

— —

aylﬁ(ylv yg) = 6—2)\(y8) ay P - aylﬁ(yb yg) 83/15 = — ki1 (yg) aqu)
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Thus '
0ps® = — | \*(y3) + K7 + 6”] Dy ®(y1, )

So the k—th osculating plane for k& > 2 is constant equal to the 2 dimensional 2nd
osculating plane. The fundamental theorem of curves in euclidian spaces asserts that each
connected component is included in a 2-dimensional plane. Moreover it has a constant
curvature, so it is a portion of circle. The boundary of 2 is made of points where e** = sin 6
and ) is continuous on R?, so if A\(39) # 27! logsin @, which is always the case for 39 for
which there exists y; € R with (y1,49) € Q, the closure of I'yo does not intersect the
boundary of 2 and Ly is a closed planar circle in S®. Hence we have proved that each
connected component of €2 is a union of lines y, = cte or y; = cte. Both situations cannot
coexist and since again \ is C° on R? and since A is constant on each component of the
complement of € and equal to 27! logsin @, we have proved that \ is either a function of
Yo globally or a function of y; globally. In any case, the immersed torus posses a foliation
by planar circles giving principal directions.
We claim that these planar circles belong to parallel 2-planes. We have first

02, ® = \ys) e 20, ¢ . (IV.32)
Then we have
3§2y%§ - - )\+)\2 +/‘€1/‘€2€2>\ +€2>\ ay25+62>\ f'{l +2/€1).\— KJQ}\] ﬁ— )\ 62)\5

The Liouville equation reads
= K1 Ko e + ,

and the Codazzi equation reads

I%Jl = —)\ (Iil — I€2>
Thus we have proved

A P

8y2y%<l> = Aay%q) : (IV.33)
The identities (IV.32) and (IV.33) imply that there exist generators of the osculating
2-planes, 9,,® and 8?3%(13, whose ¥, derivatives still belong to the osculating 2-plane. We
deduce that these 2-planes are independent of 35 and the immersed torus is then axially
symmetric. R

Since in the y coordinates we have H = e 2 H{ = sinf e=?* H{ we have the following

system
—\ = Ky Ky 2 4+ 2

I.il = —)\ (lil - Iig) (IV34)

K14 Ky = sinfe 2 (

K1 — :‘ig)
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the last equation implies

sinf — e*
= — Iv.
2 sin 0 + e2* i (IV.35)
Thus in particular
9 62)\
S — IV.36
2T sin 6 + e2A ( )
Substituting (IV.36) in the second equation of (IV.34) gives
fa 26
K sinf+ e
from which we deduce the existence of C' € R such that
(e 4+ sin ) Ky = e© (IV.37)
Combining (IV.35) and (IV.37) gives
K1+ Ko sin 6 o . 9
H = T T mgrem 1T sinfky . (IV.38)
Combining (IV.36) and (IV.37) gives
Ky — k1 = —2+2e¢ sinf ry (IV.39)
Combining (IV.38) and (IV.39) gives
k1 =1+esind (k2 — k1) . (IV.40)

Hence we deduce that k4 is constant on each connected component of 2 and A is constant
too. So @ is flat on that component and X is constant with ¢ # sinf. The boundary of
() is made of points where e?* = sin 6, since \ is continuous on R?, 2 has no boundary and
X and I are constant on R. So ® is a flat CMC torus. So the immersion ® is a conformal
covering of the rectangular embeddings isometric to a torus of the form a S x v/1 — a2 S?
(see [?] and [7]).

Assuming now e?* = sin on the whole torus. Equations (IV.3) and (IV.19) give

HY=H and  H)=0

Hence we deduce that the Gaussian curvature is identically equal to 1 which contradicts
Liouville equation (IV.26). Hence we have proved theorem I.2. O
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V  Pairs of conformally constrained minimal surfaces
which are conformally congruent.

Let ® be a weak immersion of the torus 72 which is a conformally constrained minimal
surface in S® and assume there exists a conformal transformation ¥ of S? which is not an
isometry and such that W o D is again a conformally constrained minimal surface. Hence
there exists @ € B*\ {0} such that ¥z o ® is a conformally constrained minimal surface
where

ﬂ Loy Y—a o
Va(y) =(1—|a Hh L V.1
(4) = (1 —al )|y_a’2 (V.1)
Its conformal factor is given by
Y 3 ¥ 1— ‘5|2 Y
VY eTyS |dVz - Y| = Y| . (V.2)

1+ld?—2a-y
Denote pz(z) the function on T2 given by

piiae) _ L —af”
L+ [a?—2a-o(x)

From now on we shall omit the subscript @ and simply write ¥ and pu. We introduce the
following parallelisation of S®

\V/j € Z3 ﬁj(y) =Yji+ ayj_1 —Yj—1 ayj+1 + Y 8y4 — Ys ayj
One has
Dﬁj+1ﬁj = ﬁj—l ] Dﬁj—1ﬁj == ﬁj-i—l and Dﬁjﬁj =0 (V'S)

Where D is the covariant derivative on S® associated to the Levi-Civita connection for
the standard metric. One also verifies that (7, 72, 773) realizes an orthonormal frame of
S3. Hence for each y € S® the three unit vectors e #9; ¥(y) realizes an orthonormal basis

of Ty S3. Let ail be the real numbers such that
3 .
D505 % = af, 0¥
j=1

Or in other words

al, = e D0z V- 05U = — e D0y V- 03,V + 28, Ot
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Let 75 be the projection onto the tangent plane at y € S® to S3, we have

D505,V = Z 7 (O, (%‘Pﬁk) 77l)

i,7=1
4

=75 Z (ayz(aygqj"h) — 0y ‘I]nk 8%771 T 8%‘1’771 % nk) (V4)
ij=1

- anam\l/ 8D* m\I/ + aDn TIk

705V +20p, 7,V
We are first computing Dy, 05 V. We have
@l =e Dy 05V 05V =0y 1 (V.5)
and, using (V.3) and (V.4)
@/l =e Dy 05V 05,V =e Dy 0y, V05,V =05 (V.6)
Regarding the third coordinate a] +1j we have in one hand using (V.3) and (V.4) again
Dy, 05,0 - 05, W = —Dy 05 V- 05,0
= —Dy, 05,V - 05V —20p, 5,V 05V (V.7)

= 05,V - O \I/+262“

MNj+1

In the other hand we have

Dy, 05,9 - Oy Dy 0, W - Oy W+ 2 aDﬁj+1ﬁj\p 0, Y
— D0y U0y, T 426
(V.8)
= TIJ amqj a77J+1\Ij_aD77j77J - an +1\I]+2€2,u
= 05,V - O,
Summing (V.7) and (V.8) gives then
@y =e Dy 05005 V=1 . (V.9)
Combining now (V.5), (V.6) and (V.9) gives then
Dy, 07,% = O, jt O,V + O, pb Oy, ¥ + O, ¥ (V.10)

31



We are first computing Dy, 05 ¥. We have

aj_y;=e Dy 05,V - O W = Oy, (V.11)

Jj—1j

and, using (V.3) and (V.4)

a/_}; =e Dy 05V 05 VU =e Dy g V-0 U =0 p (V.12)
Regarding the third coordinate ajiﬂ ; we have seen
ajﬂ] = 672'u Dﬁjilaﬁj\I’ : 8ﬁj+1\11 =-1 (Vlg)

Combining now (V.11), (V.12) and (V.13) gives then

Dy, ,0,% = Oy, ju 95,¥ + O, pu 05, ¥ — Oy, ¥ (V.14)

Mi+1

A short computation gives also

Dﬁjaﬁjqf = 8ﬁju 8,7],\11 — 8,71.71# 8@,71\11 — aﬁjHu Or W . <V15)

Mj+1

We shall now establish the following lemma which is well known to experts in conformal
geometry.

Lemma V.1. Let & be a weak immersion of the torus T? into S3 and let ¥ be a conformal
transformation of the sphere S®. Denote by h% and by h?poq; the Weingarten operators

respectively for the immersions ® and U o ® then the following identity holds
70 _ 70
hy.z=Y:hg . (V.16)
O

Proof of lemma V.1. We can assume that ® is conformal from a riemann surface
into S%. In some local complex coordinates we denote by e** = |3, @[ = |8,,P[%. We
have ﬁ% = e Dz(e*”@zq_ﬁ) dz* where D is the covariant derivative in S® issued from the
Levi-Civita connection of the standard metric. Let e* be the conformal factor of the
conformal transformation ¥. We have then 7Y, = e} D_(e7247229, (U 0 B)) dz2. We
compute

D.(e 7 20,(Wo®)) = —20, e 2 9,(V o P)

3 (V.17)
L2 Z D. <6—2A 05,0 1 - az(f))
j=1
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We have

i D (e P a0 - 0.8) = w. (. (P 0.5))

(V.18)
”ZD (07,9) 7 acI>+e”Za U D7 - 0.P
7=1
Observe first that, using (V.3), we have for any j € Z;
D.if; - 0.® = Dy, ,if; - 0.® 7jj_1 - 0.® + Dy, 7; - 0. 711 - 0.®
(V.19)
=141 0P ;1 0. P+ 17;_1-0.P 7j41-0.2=0
Hence
>0 (205 7 0.8) = w. (D. (e 0.5))
j=1
3 (V.20)
+e Y "D, (05, 7) 7 - 0.P
j=1
We have

D. (97,%) = Dy,_, (85,¥) 7j—1-0.9+Dy, (95,9) 7;-0.0+ Dy, (03,¥) 7j11-0.® (V.21)
We make now use of (V.10), (V.14) and (V.15) and we deduce
D, (8ﬁj\11) = 0.1 O, ¥
05, O[Oy Ty 08 — O i 7y 0.8+ 7y - 0.8 (V.22)
1

05, U (O Ty 0.8 — O i 7y 0.8 — 7y - 0.

A relatively short computation gives

3
> D. (9 0.8 =20, 0.(V o D) Za U 95T (7 - 9.D)> (V.23)

Jj=1 gk=1

Observe that

3 3
3 (- 0.8)? = 4 12[ (00, B )2 — 200y, B - 7 Dy B -
k=1 k=1 (V.24)

- [\axlcp\? —10,,®[? —2269015-8502(13] —0
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Combining (V.20), (V.23) and (V.24) we obtain finally
3
D. (e*2A 05,0 77, - azcﬁ) — v, <Dz (e*” aﬁ)) + 20,0 0.(V o D) (V.25)

1

j
Combining (V.17) and (V.25) gives (V.16) and lemma V.1 is proved. O
We establish now the following lemma.

Lemma V.2. Let ® be a weak immersion of the torus T? into S® and let ¥ be a conformal
transformation of the sphere S®. Denote by Hg and by H,, g the mean curvature vectors

respectively for the immersions ® and U o d then the following identity holds

Hy o= 20, [F[q, Vg p ﬁé] (V.26)

Yod

where €**'gss = W*ggs is the conformal factor of the conformal transformation U, 7ig is

the Gauss map of the immersion ® and YV is the gradient of the function p over S® for
the standard metric on S3. 0

Proof of lemma V.2. We can assume that ® is conformal from a riemann surface into
S3. In some local complex coordinates we denote by e?* = |9,, ®|* = |0,,P|>. We have

Hyg=2e" D:0.(Vod) . (V.27)
We compute 3
D:0.(V o ®) = . D:0.8 + ) ;¥ 0.8 - 1]
3 - (V.28)
+ > D0V 050 - i3, 0.9 -

Jk=1

Using (V.3) we obtain in one hand
3 3
N 0,0 0.8 0.7 = > 0y, [az@ iy 0.8 i — OB - i OB - ﬁj_l] (V.29)
j=1 j=1
Using (V.10), (V.14) and (V.15) we obtain in the other hand

3 3
> D050 0P 0.0 iy = Y Oy W 0.8 - if; Oy 0= - i

Jk=1 Jk=1

3 3
+ 37 05,0 0.8 - Oy .8 Tl — Y 0,V Oy 0B - 7y D= - (V.30)

Jk=1 jk=1

3
- Z%‘I’ [3z<1> i1 Oz® i1 — 0@ - iy 0P - 77].71]
7j=1
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Combining (V.28), (V.29) and (V.30) gives then
D0.(V 0 ) = ), Dz0,B + 0,(V 0 ®) dzpt + d=(V 0 B) D,

R (V.31)
0.5 3 g0y
j=1
Observe that we have
ach)’ a?,u + a%(ﬁ 82# =271 [axuu 89515 + aﬂczﬂ 89625} (V-32)

By definition Vu := 2321 O, ;1175 Denote 7 the orthogonal projection onto the 2-plane
tangent to 5(T2). We have at each point of the immersed surface

2 3

(V) =Y 0 iy - 05,8 0,8 = Za 0, P (V.33)

=1 j=1

Combining (V.32) and (V.33) gives

8% Ozp+ 0:® O = 27 ' wp(Vi) (V.34)
Thus ;
0-(W 0 ®) Depu + 0=(V 0 B) Doyt — [0.D* Y Dy 0z ¥
= (V.35)
= 2712 U, (V) = 2712, [Vﬁiu iig)
Combining (V.27), (V.31) and (V.35) gives (V.26) and the lemma V.2 is proved. O

We shall now prove the following lemma.

Lemma V.3. Let ® be a weak immersion of the torus T?. Assume d is a conformally
constrained minimal surface which is not isothermic, assume moreover it realizes it’s
conformal volume A(®) = V,(®) which is also assumed not to be a multiple of 4w .
Assume moreover ® is a differentiable point of the conformal volume in W1 NW?22(T?)
and that there exists a conformal transformation WU of S® which is not an isometry such
that A(Wo®) = A(®) and such that any such Uo® also satisfy the conformally constraint
equation . Then & is a critical point of the area under the constraint AT o Cﬁ) being
constant. O

Proof of lemma V.3. Let () and (Qy be the two holomorphic quadratic differential of
the torus T? equipped with the conformal class defined by P gg3, or equivalently o* Jg3
,such that
Hy=R<Q,hy >
(V.36)

H\IJOCD R < Q‘I” Tod Z 940d
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We now exclude the case Hg = 0 or Hy, z = 0. Indeed if & is minimal it is then isothermic
and we are not considering this case and if U o P is minimal, it is well known that it is
a strict maximum of the it’s conformal volume and we could not have A(®) = A(¥ o ®).
Since we are excluding from now on the cases Hg = 0 or H g = 0, then there exists
¢ € C* such that

Q =cQu

Assume first ¢ € R. From lemma V.1 we have
R < Qu, Y g >g,..=ce MU (R<Q,hY >y,)
Therefore for any @ € W N W22(T?) such that @ - ® = 0 on T2

dAy.g - V.l = —2c¢ /T2 w-R<Q, i_i% >4, dvoly = c dAg - W (V.37)

So the differential of ® — A(¥ o ) and & — A(®) are proportional to each other. This
implies the lemma in the case when ¢ € R*.

Now we are going to rule out the case ¢ € C* \ R*. Let @ € W N W?22%(T?) such
that @-® = 0 on T2 and @ € B* and denote for ¢ small enough ®; := ( + ) /|D + tai.
We denote Uy the conformal transformation given by (V.1). Using (V.2) we have for ¢
small

— -

A(Tz0®,) — AT

dvolg, dvol,, (V.38)
/Tz (1+ @] —2a- ®,)> /T (1+|@]?—2a-®)?

o ®)

ST}

= (1 - faP?

Hence we have

. R .
A(Wz0®,) — A(Vz0 D) — | (A(D,) — A(D
(508) — (Vs 0 8) - |1 155 (AB) - A(B) v
< Cg lt]la] [[|d]l o + [ V]| ]
We have
A(Uz0®,) — A(V; 0D +2t/ IU-§R<Q,EOH>A dvol,, .
‘ (¥ao ) = Al ) 72 ¢ 7oa T (V.40)

< Cg [t]a] [|0]l + [[V]|o] 4 o(t)

Taking now the variation ®; since V,(®) ¢ 477, for ¢t small enough there exists @ such
that A(¥g o ®) = V.(P;) and d; converges to the set U C B* of @ € B* such that

36



A(Uz 0 @) = A(®) = V,(B). From our hypothesis for all @ € U ¥z o & is a conformally
constrained minimal surface. Then from [Ri4] there exist for each @ an holomorphic
quadratic form Q7 = ¢z () such that

_ 0
H\I'aoff’ =R < Qa, h\I/qu_S >

(V.41)

99 ;08

Recall that we are assuming U # {0} and there exists @y € U \ {0} such that ¥ = Uy,
and with our notations we have Qz, = Q. It is also clear that U is closed.

We are assuming that V, is differentiable at ® and hence there exists a linear form L
on Whe N W?22 such that

Ve(®¢) = Ve(®) — £ L(w)] = o1)

We claim now that

L(w) = ma {— 2 / w- R < Qg, ﬁ% >4 dvol%} (V.42)
T2

acu
Proof of the claim. Let d; such that
V(D) = A(Tg, 0 B,)

such a sequence exists for ¢ small enough since we are assuming 1/(3(5) ¢ 4AnZ. In order to
simplify the presentation we can assume that there exists ¢, — 0 such that @, converges
to 0 since all the U for @ € U play the same role. We also omit to mention the subscript
k. Using (V.40) we have

—

V.(P —A\I/gtoéf) +2t/ u7~3%<Q,ﬁ(l>, dvol,, .
(B) = AW 0®)+2¢ | § >0s dvoly, s

< Cg [t ar| [ @l + [Villoc] + o)

We deduce from this estimate

V(®,) < V(D) — 2t /T R <Q, hS >4 dvoly. + o(t) (V.44)
This implies then
L(w) < max {— 2 /T2 - R < Qz, hy >4 dvol%} (V.45)

Let now d such that

Iéleagi{—2 /T2 weR < Q(—i,l_i% >gs dvol%} =—2 /T2 w-R< Qa,ﬁ% >g. dvoly,
(V.46)
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We can assume without loss of generality that @ = 0. We have
V(B;) > A(D,) = A(D) — 2 /T @R < QhY >, dvoly, + oft)
This implies
acU

L(wW) > max {— 2 / w- R < Qg, ﬁ% >0 dvol%} (V.47)
T2

and the claim is proved.

Since we are assuming that )y and () are not R—parallel and since d is assumed not to
be isothermic, the space generated by the linear forms —2 [, @-R < Qg, ﬁ% >g, dvoly.
for @ in U is two dimensional. Then there exist two independent linear forms L; (&) and
Lo(w) and two functions o and 8 on U such that such that

VaeU Y€ WheenW?22(T? R?)

9 /T TR < Qa Bl >4 dvoly, = a(@) () + B(d@) Lo()
Since the space is bi-dimensional there exist W # @’ and @ # @' such that
a(d) Li(W) + B(@') Ly (W) < a(a@) L1(wW) + B(d) Le (W) = L(W) (V.48)

and
a(@) Ly (@) + B(@) Ly(w') < a(d’) Li(w") + B(@") Lo(w') = L(w') (V.49)

For any s,¢ € R one has, using the maximality property of L we have for instance
L(sw+tw') = s L(W) + t L(W') > a(d) Li(swW + t") + B(@) La(sw + tu')
The three previous identities imply
(@) (@) + B(@) Lo(i@)) > t (al@) Lu(i@) + B(@) L))

This contradicts (V.49) for t < 0. Hence the assumption that Q¢ and @) are not R—parallel
contradicts the fact that V, is differentiable at ®. Lemma V.3 is then proved. O

V1 Bounding the norm of the Lagrange Multiplier
for Tori minimizing locally their conformal vol-
ume in their conformal class.

Let ® be a weak immersion of the Torus i.e. an element in Er2. We denote by
Tre(®)
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the subspace of €72 made of weak immersion which define the same Teichmiiller class for
some fixed generator of the m(T?).

In this subsection @ shall denote a weak immersion of T2 minimizing locally the
conformal volume in it’s Teichmiiller class.

A(D) = inf sup AT o) (VL1)
£eld weG(S3)

where G(S%) denotes the Mdbius group of conformal transformation of the sphere S* and
U is an open neighborhood of ® in T72(®P) .

VI.1 Families decreasing the area for small variations in the
Mobius group in a neighborhood of a non isothermic con-
strained minimal surface.

The goal of the present subsection is to prove the following lemma

Lemma VIL.1. Let ® be a weak immersion of the torus. Assume ® is a critical point of the
area under constrained conformal class which is not isothermic. Let () be an holomorphic
quadratic differential such that

H=%R(<Q,h >,,)

Then for H*—almost every point x° such that 2|Q|, (2°) > 1 there exists €05 > 0,
Vg >0 anddog >0 such that

Ve<eog YaeBL (0) A(Wz0®5(d,05¢)) < A(Wz0d)— et C(z,®) (VI.2)

V()*

for some positive constant C(xo, ) > 0 depending only on x° and ® and not on ¢ and
where (IDiO( ) is the family defined in lemma A.2. O

Proof of lemma VI.1. Let 2y be a point in 7? which is a Lebesgue point for V2o
and for V®. Let U 0§ be the open set given by lemma A.2 and denote by <I>5 (t) the
family of weak immersions of T given by this lemma for (¢,¢) in U053 We have

‘%‘(0) ~0 (VL3)

and, due to lemma II.1, d satisfies the constraint minimal surfaces equation

H=R<Qh >, . (VI1.4)
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for some holomorphic quadratic form ). Hence in particular

AB(0) = A®) + [ . w "

t
:A(@')—Q/ (t—1) dT— /HEO : ”CO dvoly: )]
0

> ¢ dHe, do°
:A((I))—Q/(t—T)dT/—xo- Odvol
0 b)) dr dr

dde
_2/ (t—1) dT/ [d;«” dvolye ()]

A(@o (1) = AB) — ¢ /E %m) ‘f(m dvol,,

2/t d/d EH dl
T T S d82 dS VO

—2/ (t—71) dT/ ds /dHE — [— dvoly ] (VL6)
2 /0 t(t—r) dr /E [Ho(r) = Ho(0)] % [g dvolg(T)]

¢ , d |do
) - e (0)- 2 |2 .
/0 (t—7) d7‘/E =0 (0) o [dT dvol g )]

Since H %(0) = H satisfies (V1.4) we have, omitting to write the subscript 2° and the
superscript € from now on ,

(VL5)

Thus

t - d | dd
— 92 [ (t=7)d Ao 2 dwol
/0( 7) 7/23?<Q, (7) >g(r) o [dT vo g(ﬂ]

—Z/t(t—T)dT/éﬁ[<Ql_io(O)> — < QK1) > ]i @dvol
i . : 90 : o] - 7 | g doler)
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¢ d - dd
= /0 (t —7)dr /EE [5}? <Q,h°(7) >g(7)} o dvoly(r (VI.8)
t - . d | dd
-2 t—7)d h° — hY - — | — dwvol
A ( 7_) T /E§R [< Q7 >g(0) < Q? (7—) >9(7'):| dr [dT vo g(‘l‘)]
and then
t . d |dd
d - dd
_p2 [ 4 0 a®
—t /E R < Q) 40| (0) - (0 dvol,
(VL.9)
+2/t(t—7')d7'/T dsi /i[%<Qh0(s)> ] —(I)dvol
0 0 d - ds ) g(s) ds g(s)

t
2 [ (t—r)dr | R h° —<Q,h° ol | 5= dvoly.
/0( 7) T/z [< Q. h" >g0) = < @ h(T) >y )] o [dT voly( )]
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Combining (VI.6) and (VI.9) gives then

- - dH ,  d®
A(Bo(t)) = A(B) — £ | ==

@o(t) = A®) — £ [ £20)- 510) duo,
4%

/giT [% <Q.R(7) >g(7)} (0) - =~(0) dvol,
0
0

ds® ds

d
t T 2H (I)
(t—T)dT/ ds /d 4 dvoly(s
(t

dH d al<I>E
-7 dT/ ds/ dvolg(s]

t J (VI.10)
=) [ 1)~ FO)-

dT dUOlg (7—)]

! § d? . o
(t —7)dr / ds / e [% < Q,h°(s) >g(s)] i dvoly(s

o
N
of
N
=y d
+2/ t_TdT/ is [ ER<Qi6) 0] 5

-2 / (t—71)dr / R [< Q, h° >g0) — < @, EO(T) >g(7)} o
0 b T

Using (I1.46), (I1.49) and (I1.58) we obtain

dH d AP
-2 [ |==(0) - — h°
/Z[dT( )= = [R < QA() >y (0)] == (0) dvol,
= / [[dv\g —2 <G, dv®dv>, +8 H*v* — (|]ﬂf] +2) ’UQ] dvol,
= (VL.11)
—|—/ [2Hdv—|—vdH—{—4v§R(Q)I_dH+§<Q,hO> *dv] - Wy dvol,
b

—/S<Q, h0> v * dwp dvol,
>

dde -
where v = —£2(0) - 7i. Using the explicit formula of ®¢,(¢) we obtain

2
v = Boo(x) Xoo (@) W) -7+ Fra(x) Y a;(0,e) @ - it (V1.12)
j=1
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and
|Wr| = [WAT| < Celil — ﬁ(:vo)| 150 + Oq;’xo(ag)

Moreover . o
Vo] < C (| = ie”)] +eTly) 15+ Og (=) [,

Inserting the previous expressions in (VI.11) gives then

di d . doe,
-2 /2 [E@) i [% < Q,h°(1) >g(7)] (0) >g(T)] - —2(0) dvol,

=2 / |VX|2 dx? — 4¢2 6—2/\(3[;0) Ql(fL’O)/ |ax1X|2 - |8x2X|2 da? (VI.IB)
¢ C

— 4226 9, (29) / 20, X Oy X da® 4 0g 4o(€?)
C

We proceed to a rotation of the domain in such a way that Q2(z°) = 0. Combining
(VI.10), the estimates in lemma A.2 and (VI.13), one has finally

|ABea(t) — A(®) — 6% F(o)| < Cgo € 8+ 1 05,0(%) (VI.14)
where B(z?) is the number given by
2F, (2°) = / IVx|? da? — 462 Ql(xo)/ 100, XI? — 0w, x| d* . (VIL.15)
C C

For any @ € B* we denote by ¥; the following element of the Mdbius group

U

<y

—

—Qa

Va(y) = (1 —a])

| 2

S

<y

Its conformal factor is given by

1 — |l

VY € T.83 AV, Y| =
Y | | L+ a)?—2a-y

Y]

Hence we have

A(D

ST

oci;):/z( (L —|ap® s— dvol,

1+1d?—2a- o)?
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For (¢,¢) in the neighborhood of the origin 4, & given by lemma A.2 we estimate for
|d| < v < 1 the following difference

-

AWz 0 0 (t)) — A(Vz 0 D)

. L T
s (I+|a? —2a-5(t)* (1+]d?—-2a-®)?
[ delgEO(t) - dUOlg (VIlG)
(- fa | [ e
w (14 |d]?2—2d- d5,(t))?
[ 1 1
+(1 — |a])? / = - = dvol,
/s (L+ a2 —2a- () (1+]a?—2a-P)?
We have in one hand
/ dvolye 1) — dvol,
s (1+1a@2 —2a@- %, (t)(x))?
1
= - dvol e 1y — dvol
TR T K WD
/ dvolgso(t) — dvol, dvolgeo(t) — dvoly
o (L4 ]a? =2 85,(0)(20)*  (1+ a2 — 23 - B (1)(x))?
Hence, using the estimate (A.12), we obtain for |a| < 1/4
/ dvolg: 1y — dvoly B dvolge 1y — dvoly
s (14 |a? —2d- &%,(t)(2)2 (1+]al® —2a- 5, (t)(20))?
<Csz ot | [150(|7— 7 4+ 8) + &%+ te2] |a] |B0(t)(z) — Do (t)(2°)| dvol
<Gyt [ [1aii—+1 | 1 1Ba(0)@) ~ B deoly

<41 Cq;’xo/[t53+t252] dvol,, + |a|gth;/ (|7 — ) + ¢) dvol,
X B

< (20)

< Cg o ld] (1% +1° €7

In the other hand we have, using the explicit expression of 5i o(t) and the estimate (A.10),

1 1
/ — — — dvol,
M (1+|&’|2—2d’~®§0(t))2 (1+1d?>—2a- o)?

(VI.19)
< |a| [/ e tIx|loodvoly + C 0 / t el dvolg} < Cg o ld] te
Ba(l'o) >
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Combining (VI.14), (VL.16), (VL.17), (VI.18) and (VI.19) we obtain for |a| < 1/4 and
(t,e) € U

2 .2 0
AT 0 350(1)) — A(Tz 0 B) — NG
(1+a]* —2a- @5 (¢)(2"))?

(VI.20)
S C<f>,z0 g t3 + t2 Oq;’xo (82) + C@»JJO ‘6’ (t 53 + t? 52)

Let now ¢(s) € Cg°(R) be an arbitrary non zero function compactly supported on R. For
any 7 € R’ we denote

Xr (71, 72) 1= (T 21) @(22)
We have

@)= [P [ s [g (1= 472 Qu(a) + 5 (144626 Qu(a")

Assuming
420 Q%)) > 1

which corresponds to assume 4 |Q|> > 1 since Q, = 0 and |dz°|2 = 4e™**, we can choose
7 € RY such that F\ (2°) < 0. Hence by choosing t = dz 0 ¢ for ¢ < 6Q Lo and g2

(1) 0
is chosen small enough and |@| < vg o for some vg o > 0, also chosen small enough but
independent of €, we obtain from (VL.20) the lemma VI.1. O

VII Proof of theorem 1.3.

Let ® be a weak immersion of the torus 72 in S and assume that ® is a local minimizer
of the conformal volume in it’s conformal class and that there is no non isometric Mobius
transformation W such that V,(®) = A(Wo®). Since & is assumed to achieve uniquely it’s
conformal volume, classical variations arguments combined with the computations from
section II give that P is a conformally constrained minimal surface. If d is additionally
isothermic then we apply section IV and the theorem is proved in that case. We assume
now that @ is not isothermic. Since it achieves uniquely it’s conformal volume ® satisfies

VaeBY0)\ {0} A(®) >AW;0d) |,
then, since A(®) ¢ 47N, for all v > 0 there exists d > 0 such that
VideBY0)\ BX0)  A(®) > A(Wzo0d)+48 . (VIL1)

Assume there would exists a non zero measure set of points 2° € 7% such that 2 |Q|,_(z°) >

1 then, using lemma VI.1, there exists ¢y > 0, vy > 0 and a family of deformations ®° in
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the same conformal class defined by & such that such that ©° converges to $ase— 0in
the space of weak immersions and

Ve<e VaeBL(0) A(Tz08°) < A(Ws0®) — &t O (VIL.2)

for some positive constant Cy > 0 which is independent of . Let v := vy and let 69 > 0
such that (VIL.1) holds. Then there exists £; > 0 such that

Vae BY0)\BL(0) Ve<e  A(®) > A(Wz00%) +6/2 . (VIL3)
Hence for any 0 < € < min{eg, e, } we would have
Vo(®) < V()

This contradicts the assumption that o locally minimizes the conformal volume in it’s
conformal class and theorem 1.3 is proved in all cases.

A Appendix

A.1 Codazzi identity.

Recall the definition of the Weingarten form of the immersion o
RO = 275(0%®) dz @ dz = e H® dz ® dz
where

H° =20, (e*”azcﬁ) =27 (050 — 02®) —i e 7p(07,,,P) = [Hy +i HY) @i,

T1T2

where 0, = 271(0,, — 1 0,,). This gives

We have
O-HO = 2620, (e*Q’\ azcﬁ) —28.0- (e’” azcﬁ)

— 40, <e‘2’\ 2\ azq?) 120, (e_”‘ ag;ﬁ) — 40, (e‘Q’\ B azcﬁ) 1219, (e‘”‘ Acﬁ)
Hence we have obtained the following identity so far

azﬁ'O R 82 <6—2>\ &z/\ 625> + azﬁ' _ 825 . (AQ)
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Taking the scalar product with 7 gives then
0:H" = —20:\H° + 0.H (A.3)

from which we deduce

O: (e HY) =e* 0.H . (A.4)

This can also be rewritten locally as follows

0, 19, 4+ 0,10, = e* 0, H

(A.5)
03,19, — 0, 1% = —e** 0, H
Hence we have proved the following
Lemma A.1. Let b’ :=27 - 852613 dz? and denote gc := e** dz ® dz we have
o’ =gc®OH . (A.6)
O

A.2 Construction of infinitesimal perturbations within a con-
formal class.

Recall that 772 denotes the Teichmiiller Space of T2 and, having fixed generators of the
71 (T?), for any metric g on T? we denote by [g] the Teichmiiller class associated to g. Let
® be a weak immersion of 72 and assume it is not isothermic. Using [Ri3], we decuce the
existence of two maps d; in the space W2 N W'>(T? R*) such that

—

(dCg - @;)j=1,2 forms a basis to the tangent space at [®*grs] of Tr2
and @;(z) - ®(z) = 0 on T2,

Lemma A.2. Let 2y be a point in T? which is a Lebesque point for V2® and for V.
Let x be a smooth function on C supported in By(0). In some fized conformal chart in a
neighborhood of 2° we denote x%o(x) =€ x(e7'(x — 2)). There exists a neighborhood of
0 in R?, Lo g, and there ewists two C* maps o(t,€) such that

20

V(te) €flg C (*6 (t)) = ()
B ) (A7)
where  ®%4(t) := B (x,t) [(I)(x) +t Xo(w) 1i(wo) + 1 25:1 a;j(t,e)a;(z)|
|00, €)| = Og 0 () (A.8)
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B (x,t) is chosen such that |5 (t)| = 1 (A.9)

Moreover a;(t,e) is C* with respect to t for e > 0. Finally the following estimates hold
for all (t,e) € o g and k =0,1,2

2

dk

Z ﬁ(taj(t,g))‘ < Cgpoe” [inf{e ft]' 1} + [¢*7F] (A.10)
7j=1
and
d Te € 3 2
V8 ()| < O [1360 + Cpp0 (& + [t] )] . (A.11)
and p
98 (¢
—0 < O (15— 7 + 1) + Oy (° + [t )] (A.12)
and p p
EVQ(I;ZO@)‘ + '%H‘i;o(t) S C(f) 120 |:571 +é ’V2q;‘:|
) (A.13)
+C00 (€0 +1t[%) |14 ) |V?a|
7=1
and finally
2, -
VB < Ca Lot CoalL+ V8] (419, (A0

where Cg > 0 is independent of (t,¢€) € Uyo g, where 15, is the characteristic function of
the geodesic ball of center 2° and radius € > 0 for g, the constant scalar curvature metric
of volume 1, and Cg o 1s a constant depending only on x , on

sup52/ [Tg]2 + 1] dvol,
e>0 Be(a9)
and on ||Vay || () + || 10g | VP || (- D
Proof of Lemma A.2. We Assume

e <¢€p and ’t| < 4~1 He/\”L"O(BaO(xO)) <A15)

for some gy > 0, where the ball B.(z°) is the ball of radius ¢ for the flat metric of volume
one gy conformally equivalent to gz. We use a chart in a neighborhood of z° in which
go = dz? + da3 and gz = € go. &0 has been then chosen sufficiently small in order for
this chart = (21, 22) to contain the support of x%,(z).

48



Denote

i’ = 7i(2°)

Under these assumptions, for €3 small enough, the perturbation of P
B+ X0 (o)

is still an immersion. Consider now «; € R such that
2

Z\%HI%HL& <AMe Mo - (A.16)

Under the assumptions (A.15) and (A.16), the map
2
5 +tX;0 ﬁo +tZOéj 5j
j=1

B0 (t, a1, ) = Bty &, a1, a0)(2)

is again an immersion where § is chosen in such a way that [®%| =1 on 77 :

2
Ztaj a]]

5(75,8,041,0(2)(1'): 1—|—2t(I) n X0+t2 Xxo

(A.17)

2 —-1/2
+2tXio [Ztozjc_ij ﬁ()]]

j=1
For (t,e, a1, az) in the open neighborhood Uz of (0,0, 0,0) given by (A.15) and (A.16)
we define I'(¢, e, o, ag) by

Y (te,an,0) €Uy, t#0 T(te, a1, ag) = C(B(t, a1, a0))

For any ¢ < gy we denote by (al(g),a9(¢)) the unique element of R? such that

2
dCs - [X;O i + ZO&?(é) ﬁj] =0
j=1

We are using in this assertion the fact that dCy - @; realizes a basis of the tangent space to
the Teichmiiller space T2 at C ((13) Let (Q', Q%) be a pair of 2 independent holomorphic
quadratic forms of (772, [5*9R3]), chosen to be orthonormal with respect to the Weil-
Peterson metric. One has (see [Ri3]), denoting by gy the flat metric of volume one on

(T2, [€"ges))

dCs - [\oo 7] = @ / Xoo R < Q7 R0 >y, 7 - ii(0)dvoly,
2
= Z Q’ / Xoo <@, I5 >, 7i-7i(x0) dvoly,
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where ¢’ is the following trace free symmetric real 2-differential given in any conformal
coordinates by

7 = 2Q] [da? — dad] — 2 Q) [dxy day + drydry]  where QI = (Q) +1iQ)) dz?
and then in any conformal chart one has (see previous sections)
<7, H% Zgs= 4emMQ] Y, — Q) 19,

where gg = €* [da? + d23] in these coordinates. Therefore we have

1/2
iy Do ol < et ([ ] <0pu@) Ay
Since xg is chosen to be a Lebesgue point for the second fundamental form we have

lim e /Bgo( 0 |13 [Pdvoly, = m |I%[* (o) e2A(x0) (A.19)

e—0
So we deduce from (A.18) and (A.19)
]oz?| = O3 40 (%) . (A.20)

We claim that the mapping I' is C* in Uz. The C* property of " at (¢, 0, ay, ) requires
a justification : We have

OI'(t e, 01, a0) = dCg- |0-logf3 D5+ B e 'Vx(e Ha—a0) - (2 — xo)]

Observe that
le V(e (o — 2%) - (@ — 29 ey < VKo

This implies in particular using the explicit expression of § given by (A.17)

1+ Z | H%Hoo]

and using the explicit expression of qu;SO we obtain that

|0c1og ] < [t] [Vxlleo[1 + [2]]

1/2
0-L(t e, o, 00)] < C e |oc € [Vxloo[L + [£])? IH%\Q]

14+ Z || HaJHoo] U

thus 0.I'(t, €, a1, ag) extends continuously by 0 at (¢,0, ay, ae) and the claim is proved.

5x
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Observe that we have
04,1(0,0,0,0) = dCg - d; (A.21)
By assumption on (@;);—12 the pair (9,,I'(0,0,0,0));—12 generates the tangent space to
the Teichmiiller space Ty at C (5) We can then apply the local inversion theorem and
deduce the existence of a neighborhood £t of (0,0) and the existence of two C! functions

ai(t,e) and as(t,e) defined on 4 such that there exists a neighborhood U of (0,0,0,0)
included in Us for which

UNCTHCD)) = {(t,e,on(t,e), as(t, €))}

It is clear that
&j(ov 6) = Q?(€>

Denote f%(z,t) := B(t, e, ayi(t, €), as(t,e)) and

Do () = 5w, 1)

2
B 1) )

j=1

We have for any (¢,¢) in U

DB, (t 2L d(tay(t
0= dc&o . 20 (1) = B(z,1) dcéfo(t)' [XZO 70 4 Z M gj] (A.22)

(t) ot T

Jj=1

where we have used the fact that
2
qu;;O Py = ZQJ /ECD;()- < qﬁ,]I% >0z dvol%EO =0
j=1 :

Hence

2
d(ta;(t, <)) ) o
D g Loy G = ey X0 (A.23)

J=1

For any @ € L? the map

T

2
= J i< T
dc‘l’io(t) W= ZQ /Ew <q ’H‘I’Zo >g$£0 dvol%e0
j=1 v

Hence we have the existence of two maps ﬁj(x,p, q) forx € ¥, p e RZ@R* and ¢ €
R? ® R? @ R* which is algebraic in p and linear in ¢ and such that for any 0 < § < land
for p = p1 ® p satistying d[p|* < p1 A p2 < 67'p|?

|F9(x,p,q)| < Cs |p| 2 |q]
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where Cs only depends on § and such that
2
dC- 0 = Z / T (2, VB0 (1), V2D (1)) dvoly,

Combining this fact and the explicit expression of 5;0 (t) we deduce that, for € positive,

—

t — qu_Sgo(t) - w

is a C! function. Thus the following functions are C'* with respect to t as long as ¢ > 0 :

- e =0
dc‘f)io(t) -a; and qu;;O(t) “Xgo T

Since dcéeo(o) -a; = dCg - @; forms a basis of the tangent space to T2 at C(P), for ¢
small enough (qu;EO(t) - d;) is a C' map into the space of basis of Trz at C(®). The

d(t oj(t,e))
dt

functions are then the coordinates of the C! map dCge (1" X0 7Y in the C* frame

(qu)g () - @j)j=12. Thus M are C! functions of ¢ in a neighborhood of 0 for £ > 0.
We shall establish now the estimates (A.10), (A.12), (A.13) and (A.14). We take ¢ > 0

to simplify the notations. Using the definition (A.17) denoting by 1Z, the characteristic
function of the geodesic ball B.(x°) for the metric gy, we have

‘ Po ‘< Ce1 |Jii(z) — i to‘] ]
(A.24)
d[t
+CZ|1& ol O‘J
and
d? 5, E d[t o] d*[t o]
dt2 (l‘,t)’ < C€1x0 ] - TQJ
= i ) (A.25)
taj €
+CZ|t ol | =7 Z et)
We have moreover
2
V35| < Cz 15 [ateﬂﬁ(x) — i+ t)i(zx) - A +et? 4t Z|mj|]
= (A.26)

2

+C5 > [tayl?

=1

52



and

2
IV2B5| < Cg 1%, [t e Jii(z) — i +te V2O + 7+t |taj|]

Jj=1

: (A.27)
+Cg > [t [L+ Vel + C VB
j=1
We have also
A,
’V o < Cg [Hn( ) — 1 ton]
- (A.28)
+c~2|t ol |20 | g, <x,t>\
and
d? B3, ta d*[t o]
T < ] .7
‘v dt?2 | — Z dt2 ]
5 2
tozj] dt o] A.29
+CO3 Z|t]| — ZT (A.29)
BN LN L ap5 | 465
Bl [T 0] + 195l S 0|+ [0 2| [T

Finally, regarding this time the second derivatives of 37, we have the following pointwise
estimates

dﬁso . 2 2
2% € -1z ~0 2 -1
‘V o < Cz 1% [5 |i(z) =" | +e|V®|+t+e jEl |tozj|+t]§ ‘dttaj ]
+Cs §j|t ool |22 14 192,
e |2 6;0 2 e d ;0 € d ;0
0 at 0 7t 0 7t
HY Bl % )|+ (9285 %2 )| + 920 |72 0t)

(A.30)
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and

V2d2ﬁio < Czli |14e 12 d [t o] —i—alti & [t oy
dt? = il e
2 2
d?| [t o] 5 d[tOzj]
+Cy ;[|taj| |+ Cs ; + |V2aq, 7
2 Qe dﬁ dBe d2 5
2 ne 20 0 € 20
+|V=55| W(m,t)’—i—‘ o (x,t)’ ‘Vw(sc,t)‘+|V6Io\ \Y4 e (a:,t)‘
d € € € 2 d2 €
Hve e ) [P0 ) wpal | e |+ vaae | S
dt dt?
dpe
vl |2 |

(A.31)
We shall now estimate successively (t«;(t,¢)), d/dt(ta;(t,e)) and d?/dt*(t a;(t, ).
Since qu;io(o) - d; = dCg - a; forms a basis of the tangent space to Tr2 at C’((Ig) using

(A.18) and the pointwize inequality

L o] < sl + Co +t2 ()] [IV%ae| + 1
we have J
Stajte| < C ‘dC~5 NG| = Oy (63 4 127) (A.32)
Inserting this estimate in (A.24) gives
d B c (7 ~0 3 22
e < Czelp [|i(x) —ad|+te] + ¢ O ((e”+te%)7) . (A.33)
in (A.26) in also gives
VA < Cg 120 [ti0) =70 + 2] + £ 0 gl(E 442D . (A3Y
and
V285| < Cj 1% [ts_l 7i(z) — @) + te | V2P| + 2
(A.35)
+1% 0,0 (€% +12)%) [1 + [V?a]]
Inserting (A.24) and the previous two estimates in (A.28) give
v | Cs 150 [|7 I O St te?)? A.36
dt [[n(az)—n\—i—te]—{—t wa((e” +te)7) . (A.36)
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Finally inserting (A.24)and the previous two estimates in (A.30) give

dpe .
‘v2% < Cg 1% [g—l [7i(z) — 7°| + & | V2P| + ¢

(A.37)
+1 0,0 5((7 +1%))[1 + |V2al]

We shall now estimate d(gqjs ))/dt as well as d( )/ dt. We first have

z

’—V@ ’ ’—Vﬁ ‘ )+ Cs

G0 W+ eyt 2]
(A.38)

d d
+C<f) [120 + ‘%(t ij(t, 8))‘ + ‘Vﬁio‘ |i€ 120 + ’%(f Oéj(t, 8))’:|:|

From which we deduce using the previous estimates

d Fe € 3 2

ZVE(1)] < O 10+ 0,0 5(e% +13)] (A.39)
Regarding the metric 9§ 1) We have

93, (1) = V&, (1) SV P(1)

So we deduce
dp

d =g —
_ 52% (am(ﬁfl D20 (1)) - Oy, (B q)fco(t)))’ <Cy HvE

df

+'dt ez '-vq» ()H

Observe that we have
(00,87 B2a(0)) -0, (57 B0 (1) = 8,2

it [7 — ] [&Cix(s_l(x — 1) 0, & + 0y, x(= Mz — %)) axié’]

2
> a(t) [0n,dr - 0p,® + Oy, iy - O, P

k=1
2

+t Z (0w x (e (@ — 2®)) @0 Op,ak + O, x (e (x — 1)) ° - Oy, ]

(A.40)

2
205 x (e (= 1) D, x (e (@ = 2°)) + 12~ anlt) Duylit - Y ck(t) Or, ik
k=1
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We deduce from the previous identities

9=, 1)
dt

IN

Cs [ oIt = +1) + 00 5(e° + taﬂ (A.41)

Now we have

d d d
EVQ )' S 'd—tv25;0(t)‘ + Oq; |Vﬂio| |:1§0 + 'd—t(t Oéj(t,é))H
d d
+Cy EVﬁ;o(t)‘ +Cy [5_1 150+ ‘%(t aj(t,e))‘ ]VQaj|] (A.42)

d
+C<I_5 |V25§0| |:€ 120 + ‘E(t Oéj(t, 8))”
From which we deduce using the previous estimates

d .
O 23, (t )‘ <05 1% [5—1 te |v2<1>|] + 0,0 5(" +162)

e (A.43)

2
L+ V2|
j=1

This gives then

<Cg 15 [e_l +¢ ]V%f)@ + OIO@’(E:S +te?)

2
1+Z]v2(zjy] . (A44)
j=1

Taking now the ¢ derivative of the identity (A.23)

2 2 d (dCsze (- d;
d*(t a;(t,€)) . d(t a;(t,€)) Beo(t) " 4
E +dcq;g(t).aj:_§: J ( )

a2 : dt dt
=1 ’ =1 (A.45)
+ ‘ <dc<f’io () Xao ﬁo)
di

Since again qu;aO(O) -a; = dCg - d; forms a basis of the tangent space to T2 at C@) we
deduce that forzj =1,2

Ptay(te) tozj (t,e)] @ (dc&o(n -6]-)
dt2 Z

(A.46)
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Using (A.41) and (A.44) we obtain in one hand

d (qu;iO(t) - @)
dt < Oxo,tf(g) (A47)

and in the other hand
dt

< 0,0 4(€%) (A.48)

Hence combining (A.46), (A.47) and (A.48) we obtain

PN < 0,050 (A.49)

We bound now d?(V2®,)/dt2. We have

d2
— V255, ’ ’

d
e )‘+’—V2 ()’ [|V(I>|+Ctlo+0|tozj(t g)@

V25| HjQ(ta](t g))H jﬂw%( )‘ [|V<1>| + Ot 15+ Cltay(t, 5)@

d(t Oéj (t, 5))

d?(t%«t,e))‘

n %Vﬁio(t)‘ {c 15+ C ‘ ‘ ] +C V()]

dt dt?
d> - 1
+ @ ;o(t)’ |:|V(I)’+ Cte™ 1;0+C|t&j(t,€)]
d e 1qe d(t o;(t,€)) d?
+ E xo(t)‘ [08 lxo‘f‘o ‘T +C ﬁ(tOéj(t,g))
(A.50)
Inserting the previous estimates in this inequality gives, after a lengthy computation,
‘@v% ‘ < Cgao Lo+ [14|V2®]] O 5(e% +te) . (A.51)
which concludes the proof of lemma A.2. O
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