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Abstract

We consider non-local linear Schrodinger-type critical systems of the type

A% =0Qv iR, (1)

where €2 is antisymmetric potential in LZ(R, so(m)), v is an R valued map and £2v denotes the matrix
multiplication. We show that every solution v € LZ(]R, R™) of (1) is in fact in Lf; R, R™), for every

2 < p < 400, in other words, we prove that the system (1) which is a-priori only critical in L? happens to
have a subcritical behavior for antisymmetric potentials. As an application we obtain the C 2}3 regularity of

weak 1/2-harmonic maps into C 2 compact sub-manifolds without boundary.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider maps v = (vq, ..., vy) € L>(R, R™) solving a system of the form
m
Vi=1--m A% =3 Q% 2)
=1

where 2 = (.Ql.j),-,j=1...m € L*>(R, so(m)) is an L? map from R into the space so(m) of m x m

antisymmetric matrices. The operator A!/4

follows

on R is defined by means of the Fourier transform as

ALy = (g%

(given a function f, f or F[ f] denotes the Fourier transform of f).
We will also simply denote such a system in the following way

A%y = Qu.

We remark that the system (5) is a-priori critical for v € L?(R). Indeed under the assumptions
that v, £2 € L?> we obtain that A/*v € L' and using classical theory on singular integrals we
deduce that v € LIZO’CO_O, the weak-L? space, which has the same homogeneity of L?. Thus we
are more or less back to the initial assumption which is a property that characterizes critical
equations.

In such a critical situation it is a-priori not clear whether solutions have some additional regu-
larity or whether weakly converging sequences of solutions tend to another solution (stability of
the equation under weak convergence), etc.

In [10] and [11] the second author proved the sub-criticality of local a-priori critical
Schodinger systems of the form

m
Vi=1---m —Aulzzg;-w, (3)
j=1

where u = (u!, ..., u™) € WH2(D? R™) and 2 € L*(D?, R? ® so(m)), or of the form
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m
Vi=1---m —Avi:ZQ;vj, 4)
j=1

where v € L =2 (B" R™) and 2 € L"/2(B", so(m)). In each of these two situations the an-
tisymmetry of £2 was responsible for the regularity of the solutions or for the stability of the
system under weak convergence.

Our first main result in this paper is to establish the sub-criticality of non-local Schrédinger
systems of the form (2). Precisely we prove the following theorem which extends to a non-local
setting the phenomena observed in [10] and [11] for the above local systems.

Theorem 1.1. Let 2 € L2(R, so(m)) and v € L*(R) be a weak solution of

A% = Q. (5)
Then v € LZC(R) forevery 1 < p < 400.

As in the previous works the main technique to prove Theorem 1.1 is to perform a change of
gauge by rewriting the system after having multiplied v by a well-chosen rotation valued map
P € HY2(R, SO(m)).! In [10] the choice of P for systems of the form (3) was given by the
geometrically relevant Coulomb Gauge satisfying

div[P~'vP+ P '2P]=0. (6)

In this context there is not hope to solve an equation of the form (6) with the operator V replaced
by A'/4 since for P € SO(m) the matrix P~! A!/# P is not in general antisymmetric. The novelty
here, like in [11], is to choose the gauge P satisfying the following (maybe less geometrically
relevant) equation which involves the antisymmetric part of P~ A1/4p 2:

Asymm(P~'AVAP) =27 [P IAYAP — AVAPT P = 2. (7)
The local existence of such P is given by the following theorem.

Theorem 1.2. There exist ¢ > 0 fznd C > 0 such that for every 2 € L*(R; so(m)) satisfying
fR 1212 dx < &, there exists P € HY/?(R, SO(m)) such that

G P 'AVAp _AlV4p-lp =20
(ii) /\A1/4P\2dx<c/|9|2dx. O (8)
R R

1 SO(m) is the space of m x m matrices R satisfying R’ R = RR' =Id and det(R) = +1.
2 Given an m x m matrix M, we denote by Asymm(M) and by Symm(M) respectively the antisymmetric and the

symmetric part of M, namely Asymm(M) := MEM[ and Symm(M) := M+TM’ , M is the transpose of M.
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The proof of this theorem is established by following an approach introduced by K. Uhlenbeck
in [16] to construct Coulomb Gauges for L? curvatures in 4 dimension. The construction does
not provide the continuity of the map which to §2 € L? assigns P € H'/2. This illustrates the
difficulty of the proof of Theorem 1.2 which is not a direct consequence of an application of the
local inversion theorem but requires more elaborated arguments.

Thus if the L? norm of £2 is small, Theorem 1.2 gives a P for which w := Puv satisfies

AV =[PP = AYV*PP ! w + N(P,v)
= —Symm((AY*P)P~")w + N(P,v), ®)

where N is the bilinear operator defined as follows. For an arbitrary integer n, for every Q €
H'2(R", Mysm(R™), £>03 and v € L2(R", R™), N is given by

N(Q,v):=AY*(Qv) — oA 4y + A4 0w, (10)

One of the key result used in [4] establishes that, under the above assumptions on Q €
H'2(R", M,,(R)) and v € LZ(R",R™), N(Q, v) is more regular than each of its three gen-
erating terms respectively A4(Qv), OAY4y and AV4Qv.* We proved that N(Q, v) is in fact
in H~/2(R, R™). Such a result in [4] was called a 3-commutator estimate (see Theorem 1.3).

In the paper [5] we improve the gain of regularity by compensation obtained in [4]. In order
to make it more precise we recall the definition of the Hardy space 7! (R") which is the space of
L' functions f on R” satisfying

/Sup | * fl(x)dx < +o00,
R teR

where ¢, (x) :=t "¢ (t~'x) and where ¢ is some function in the Schwartz space S(R") satisfy-
ing [pn ¢(x)dx =172

Lemma 1.1. There exists a constant C > 0 such that, for any Q € HY2R", M,,(R)) and
v e LZR", R™), N(Q,v) = AY4(Qv) — QAY*v 4+ AY4Qu is in HY(R") and the following
estimate holds

[N, )| <ClQHg12 IV 2Ry (11)

Thus in Eq. (9) the last term in the r.h.s. happens to be slightly more regular. It remains to
deal with the first term in this r.h.s.: —Symm(A1/4PP_1)w. A-priori Symm((A1/4P)P_1) =
271 [AV4PP~1 4+ PAY4P~1]is only in L? but here again we are going to take advantage of a
gain of regularity due to a compensation. Though, individually each of the terms A/4P P~ and
its transposed PA'/4#P~1 are only in L?, the sum happens to belong to the “slightly” smaller
space L>! defined as follows: L>!(R) is the Lorentz space of measurable functions satisfying

3 M ¢xm (R) denotes, as usual, the space of £ x m real matrices.
4 The last one for example being only a-priori in L.
5 For more properties on the Hardy space H! we refer to [7] and [8].
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/t_l/zf*(t) dt < 400,

R4

where f* is the decreasing rearrangement of | f.

The fact that Symm/( (AV4pyp—1h belongs to L%1(R) comes from the combination of the fol-
lowing lemma according to which Al/4 (Symm((Al/ 4PyP~1)) e HY(R) and the sharp Sobolev
embedding® which says that f € H!(R) implies that A~'/4 f € L>!. Precisely we have

Lemma 1.2. Let P € H'/>(R, SO(m)) then AY*(Symm(AY*PP~Y)) is in the Hardy space
H! (R) and the following estimate holds

A4 A PP 4+ PAYAEPT]| L S CIPIG, 0
where C > 0 is a constant independent of P. This implies in particular that
| Symm((A'*P) P o1 < CUPIG 1. (12)

The proof of Lemma 1.2 is a consequence of the 3-commutator estimates in [4] (see Theo-
rem 1.5 below).

Remark 1. The fact that, for rotation valued maps P € W2"2(R" SO(m)) (n > 2),
Symm(A P P~1) happens to be more regular than Asymm(APP~!) was also one of the key
points in [11].

As we explain in Section 3, Theorem 1.1 is a consequence of this special choice of P for which
the new r.h.s. in the gauge transformed equation (9) is slightly more regular due to Lemma 1.1
and Lemma 1.2. More precisely this gain of regularity in the right of Eq. (9) combined with
suitable localization arguments permit to obtain the following local Morrey type estimate for Pv
and thus for v (since P is bounded in the L°° norm)

sup r# |A1/4v|dx <C, (13)
x0€B(0,p)
O<r<p/8 B(xo,r)

for p small enough, 0 < 8 < 1/2 independent of xp and C > 0 depending only on the dimension.
Proposition 3.2 in [1] yields that v € L;]O -(R) for some g > 2.7

Our study of the linear systems has been originally motivated by the following non-linear
problem.

In the joint paper [4] we proved the Cloa’g regularity of weak 1/2-harmonic maps into a
sphere S”~!. The second aim of the present paper is to extend this result to weak 1/2-harmonic
maps with values in a k-dimensional sub-manifold N/, which is supposed at least C2, com-
pact and without boundary. We recall that 1/2-harmonic maps are functions u in the space

6 The fact that v € H! implies A~V4y e L2 is deduced by duality from the fact that A3y e 200 implies that
v € BMO(R) - this last embedding has been proved by Adams in [1].

" Ina paper in preparation [S] we show that the solutions of (5) are actually in L?{f’C(R).
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HY2R,N) = {u € HY2(R,R™): u(x) € N, a.e.}, which are critical points for perturbation
of the type IT J]\V/ (u+1tp) (9 e C* and IT J]\V/— is the normal projection on N) of the functional

L(u) = /\A1/4u(x)|2dx, (14)
R

(see Definition 1.1 in [4]). The Euler-Lagrange equation associated to this non-linear problem
can be written as follows:

A2unvu)=0 in D (R), (15)

where v(z) is the Gauss Maps at z € N taking values into the grassmannian Grm—k (R™) of
oriented m — k planes in R” which is given by the oriented normal m — k-plane to T,\ .2

The Euler-Lagrange equation in the form (15) is hiding fundamental properties of this equa-
tion such as in particular its elliptic nature and is difficult to use directly to solve problems related
to regularity and compactness. One of the first task is then to rewrite it in a form that will make
some of its analysis features more apparent. This is the purpose of the next proposition. Before
stating it, we need some additional notations

We denote by P” (z) and PV (z) the projections respectively to the tangent space T, A/ and to
the normal space N, N to N at z € N. For u € H/2(R, N') we simply denote by PT and PV
the compositions P7 o u and P™ o u. In Section 5 we establish that, under the assumption N to
be C2, PT o u as well as PV o u are matrix valued maps in H'2(R, M, (R)).

A useful formulation of the 1/2-harmonic map equation is given by the following result.

Proposition 1.1. Let u € H'/2(R, N') be a weak 1/2-harmonic map. Then the following equation
holds

A4 =21 + 200 + Q2v, (16)
where v € L>(R, R¥™) is given by
PT AV
' (RPNA1/4M>’

and where 'R is the Fourier multiplier of symbol o (§) = i%.

Q2 € L3R, so(2m)) is given by

922(—0) wR )
wr —Ror

the maps w and wg are in L>(R, so(m)) and given respectively by

8 We can identify the unit simple m — k vector v(z) with an oriented m — k plane (see for instance [6]). Moreover since
we are assuming that A is Cc2,visaC! map on A and the paracomposition gives that v(u) is in HY2(R, /\m_k R™)
hence, since A1/2y is a-priori in H~ Y2 the product AY2y A v(u) makes sense in D’ using the duality HY?—g-1/2,
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A1/4PTPT _ PTA1/4PT
w= ,

2

and

B (RA1/4PT)PT _ PT(RA1/4PT)

WR

Finally the maps 2 := £1(PN, PT) € H™'2(R,R?") and 2, = (PN, PT, AV*y) €
L>'(R, My, (R)) satisfy

121 1| gp—1/2m R2my < C(||1°NH2 “ip ||PTH2 L) (17)
(R,R=™) H H
and

12201 20 @ ptay @) S CUPY | ore + NPT [ a2 [ 820 ooy O (18)

The explicit formulations of f?l and f?z are given in Section 5. The control on 2 1 and Qz 1s
a consequence of regularity by compensation results on some operators that we now introduce.
For every Q, v € L?(R") we define the operator F by

F(Q,v) :=R(Q)R(v) — Qv. (19)

From the commutator estimates obtained in [3], one can deduce that F(Q,v) € H~/?(R)
and

|F(Q.v) HHfl/Z(R) S ClIQl 2@ lvll2w)- (20)

By a suitable estimate on the dual operator of ' (Lemma B.5) we show the following sharper
estimate

|F(Q.v) ”Hfl/Z(R) SCIQl 2wy llvli20om)- (21)

Next we recall some commutator estimates we obtained in [4].

Theorem 1.3. Let n € N* and let u € BUOR"), Q € H/2(R", Mgy (R™)). Denote
T(Q,u):=AYH(QAY ) — QA 2u + A unl4Q,
then T(Q,u) € H™Y2(R") and there exists C > 0, depending only on n, such that

|70 )] 12 @ny < CIQI 12 lullBMO®RY. O (22)
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Theorem 1.4. Let n € N* and let u € BUOR"), Q € HY2(R", Myym(R™)). Denote
S(Q,u) = AV OAY U] — R(QVU) + R(AV*QRAY ).
Then S(Q,u) € H™1/2(R") and there exists C depending only on n such that

1S(Q, ) a-12@n S ClOl 2@ llullBro®n). 0 (23)

As it is observed in [4], Theorems 1.3 and 1.4 are consequences respectively of the following
results which are their “dual versions”.

Theorem 1.5. Let u, Q € H'/2(R"), and denote
T*(Q,u):A1/4(QA1/4u) —Al/z(Qu)+A1/4((A1/4Q)u),
then T*(Q, u) € H'(R") and
IT*(Q, )| 11 gy < Ul 12y 1l 12 @eny- O (24)
Theorem 1.6. Let u, Q € H'/2(R™), and denote
S*(Q,u) = AV QAY*u) — V(QRu) + RAVAH AV QRu).
Then S*(Q,u) € H'(R") and
|5, 1) |31 ny < CIQN g1 el frgany- O (25)

Since the operators 7* and S* are the duals respectively of 7' and S, by combining Theo-
rems 1.3 and 1.5 and Theorems 1.4 and 1.6 one gets the following sharper estimates for 7 and S:

” T(Q,u) ” H-1/2(Rm) <l Q”HI/Z(RH)

HS(Q» M) ”Hfl/Z(]Rn) < C” Q”Hl/z(R")

N . (26)

NG . @)

)
An adaptation of Theorem 1.1 to the Euler—Lagrange equation of the 1/2-energy written in
the form (16) leads to the following theorem which is the second main result of the present paper.

Theorem 1.7. Let N be a closed C* submanifold of R™ without boundary Let u € HY*(R, N)
be a weak 1/2-harmonic map into N, then u € Cloo’g R,N), forall0 <a <1. O

Finally a classical elliptic type bootstrap argument leads to the following result (see [5] for
the details of this argument).

Theorem 1.8. Let N be a smooth closed submanifold of R™. Let u be a weak 1/2-harmonic map
in HY/2R, N), then u is C*®. O
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The regularity of critical points of non-local functionals has been recently investigated by
Moser [9]. In this work critical points to the functional that assigns to any u € H'/2(R, ) the
minimal Dirichlet energy among all possible extensions in N are considered, while in the present
paper the classical H!/? Lagrangian corresponds to the minimal Dirichlet energy among all
possible extensions in R”. Hence the approach in [9] consists in working with an intrinsic version
of H'!/2-energy while we are considering here an extrinsic one. The drawback of considering the
intrinsic energy is that the Euler—Lagrange equation is almost impossible to write explicitly and is
then implicit while in the present case it has the explicit form (15). However the intrinsic version
of the 1/2-harmonic map is more closely related to the existing regularity theory of Dirichlet
energy minimizing maps into .

Finally the regularity of n/2 harmonic maps in odd dimension n > 1 with values into a sphere
has been recently investigated by Schikorra [13]. In this work the author extends the results
obtained in [4] by adapting some compensation arguments introduced by Tartar [14].

The paper is organized as follows.

— In Section 3 we prove Theorem 1.1.

— In Section 4 we prove Theorem 1.2.

— In Section 5 we derive the Euler—Lagrange equation (16) associated to the Lagrangian (14)
and we prove Theorem 1.7.

— In Appendix A we prove some localization estimates related to the solutions to the linear
non-local Schrodinger systems (9).

— In Appendix B we provide some commutator estimates that are crucial for the construction
of the gauge P.

2. Preliminaries: function spaces and the fractional Laplacian

In this section we introduce some notations and definitions we are going to use in the sequel.

For n > 1, we denote respectively by S(R") and S’ (R") the spaces of Schwartz functions and
tempered distributions. Moreover given a function v we will denote by v and F[v] the Fourier
transform of v:

0(&) = Fl(€) == / v(x)e 5 dx.
Rn

Throughout the paper we use the convention that x, y denote variables in the space and &, n the
variables in the phase.
We recall the definition of fractional Sobolev space (see for instance [15]).

Definition 2.1. For areal s > 0,
H*(R") = {ve L*(R"): |£|°Flv] € L*(R")}.
Forareal s <O,

s/2

H' (R") ={veS'(R"): (1+ 7)) Fvle L*(R")}. O
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It is known that H % (R") is the dual of H*®(R").

For 0 < s < 1, another classical characterization of H*(R") which does not make use the
Fourier transform is the following (see for instance [15]).
Lemma 2.1. For 0 <s < 1, u € H*(R") is equivalent to u € L*(R") and

_ 2 1/2
([ [T )ax) v

RH Ri‘l

O

For s > 0 we set
il sy = Nl 2 eny + [1E1° FT01 12y
and
||u||HS(Rn) = ” |$|sf[v] ”LZ(R")
For an open set £2 C R", H*(£2) is the space of the restrictions of functions from H*(R") and
el g5 2y = IE{ U || s gy, U =u on £2}.

Inthecase 0 <s < 1 thenu € H*(£2) if and only if u € L?(£2) and

_ 2 1/2
(f s avar) - <voe
2 R

Moreover

_ 2 1/2
([ (527 ) v
2 2

see for instance [15].
Finally for a submanifold N of R™ we can define

H*(R",N)={ue H'R",R"): u(x) e N, ae.}.
Given g > 1 we also set
WS4 (R") :={v e LY(R"): |&°F[v] € L1(R")}.
We shall make use of the Littlewood—Paley dyadic decomposition of unity that we recall
here. Such a decomposition can be obtained as follows. Let ¢ (§) be a radial Schwartz function

supported in {§ € R": |&| < 2}, whichisequal to 1 in {£ € R": |&| < 1}. Let ¢ (&) be the function
given by
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V(&) :=¢(E) — ((25).

¥ is then a “bump function” supported in the annulus {§ € R": 1/2 < [§] <2}.
Let Yo = ¢, ¥;(§) = Y (277&) for j # 0. The functions ;, for j € Z, are supported in
(€ e R": 271 < |g| <2711} and they realize a dyadic decomposition of the unity:

v =1.

JEZ
We further denote
J
$i) = Y (&)
k=—o00

The function ¢, is supported on {§, |&] <2/ +1, .
We recall the definition of the homogeneous Besov spaces B;, q(R”) and homogeneous

Triebel-Lizorkin spaces F ; q (R™) in terms of the above dyadic decomposition.

Definition 2.2. Let s € R, 0 < p, g < o0. For f € S'(R") we set

00 1/61
sy o = ( 3 o uf—l[wjﬂunuip(m) irg <o,

j=—00

Il gy = sup 2/8 | F~ [y Flul] |}L,,(Rn) if g = 0. (28)
’ JEZ

When p, g < oo we also set

00 l/q
( 2 2"”\f‘1[%f[ul]lq>

j==00

”u”Ff:,q(R") = ‘
LP
The space of all tempered distributions u for which the quantity ||u|| B, (R is finite is called

the homogeneous Besov space with indices s, p, ¢ and it is denoted by Bs (R”) The space of all
tempered distributions f for which the quantity || | zs ®") is finite is called the homogeneous
p.q

Triebel-Lizorkin space with indices s, p,q and it is denoted by F ;’ q (R™). A classical result
says® that W*P(R") = B;’Z(R”) = F;Q(R").

Finally we denote by H'(R") the homogeneous Hardy space in R”. A less classical result!?
asserts that H! (R") ~ Fg |» thus we have

1/2
||u||H1(Rn)_/<Z|}" [v; Flul]] ) dx.

9 See for instance [7].
10 See for instance [8].
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We recall that in dimension n = 1, the space HYV2(R) is continuously embedded in the Besov
space Bgo’oo(R). More precisely we have

H'?(R) — BMOR) — BY, . (R), (29)
where BMO(R) is the space of bounded mean oscillation dual to H(R") (see for instance [12,

page 31)).
The s-fractional Laplacian of a function u : R” — R is defined as a pseudo differential opera-

tor of symbol |£|>:
Asu(®) = g7 a ). (30)
In the case where s = 1/2, we can write A2y = —R(Vu) where R is Fourier multiplier of

symbol %

To conclude we introduce some basic notations.

We denote by B, (x) the ball of radius r and centered at x. If x =0 we simply write B,. If
x,y €R" x -y denote the scalar product between x, y.

Given a subset K of R", 1 denotes the characteristic function of B.

For every function u : R” — R we denote by M (u) the maximal function of u, namely

M) = SupR }B(x,r)}_l / |u(y)|dy. (31)
r>0,xeR” BCe.r)

Given ¢ > 1 we denote by ¢’ the conjugate of g: ¢! +¢' 1 = 1.
In the sequel we will often use the symbols < and = instead of < and =, if the constants
appearing in the estimates are not relevant and therefore they are omitted.

3. Regularity of non-local Schrodinger type systems

In this section we prove Theorem 1.1. The proof is based on “ad-hoc” localization estimates
given in Appendix A and on the 3 terms commutator estimates (26) and (24).

Proof of Theorem 1.1. Let p > 0 be such that ||1p(,p) 21,2 < €9, with &9 small enough. We
decompose .Q as follows £21 =1p(0,)§2 and 27, = (1 — 1 p(,p))$2.
Let P € H'/2(R, SO(m)) be given by Theorem 1.2 (with £2 replaced by £21). We have

A Pvy=[P2P7" — (AY*P)P~]Pv+ N(P,v) (32)

where N is the operator defined in (10).
Since P satisfies (8)(i) we have

Aaipyp=t 4 pal/ip-l
2
= —Symm((A'*P)P~). (33)

PP ' _AVAppl =
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From Theorem 1.5 it follows that Symm((Al/ ipyp~hHe Lz’l(]R). We stress that the fact that
Symm((Al/ 4PyP~ 1) isin L2 1(R) (which is strictly contained in L?) will play a crucial role.

Claim 1. From Theorems 1.3 and 1.5 we can deduce the estimate (26), which can be expressed

in term of the operator N as follows:

[NCQ. ) 12y < ClVlL200 o 1 2 112y
for every Q € HY2®R") and v € LE(R").

Proof.

INQ. )| g12@ny = sup f N(Q,v)hdx
A ||H1/2<1

=  sup /U[Q(A1/4h)—A1/4(Qh)+(A1/4Q)h]dx

IIhllgl/zéan

= sup /UA_1/4(T*(Q,h))dx

IIhllgl/zéan
by applying Theorem 1.5

S osup ol |[ATVHTHQ. )| 2
Al 51/2<1

Slvllp2e @l
This concludes the proof of Claim 1. O
We set now w = Pv and w = —Symm((A1/4P)P_1) and rewrite Eq. (32) as follows
AV w =ww+ N(P, P w) + 2,P w,
where by construction |[w|| 2.1, | Pl 12 < €0
Claim 2. There exists g > 2 such that v € L;ZO (R).

Proof. In order to establish Claim 2, we are going to establish the following bound

sup r_’s||w||L2,m(B(x0’r)) < +00.
x0€B(0,0/8),0<r<p/16

(34)

(35)

Let xo € B(0, p/8) and r € (0, p/16). We argue by duality and multiply (35) by ¢ which is given
as follows. Let g € L>(R), with [[gll;21 < 1 and set gro = 1B(xg,ra)&> With 0 < & < 1/4 and
¢ =A"V4(g.4) € L®(R)N H'/2(R). We take the scalar product of both sides of Eq. (35) with ¢

and we integrate.
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The left-hand side of Eq. (35):

sup /¢Al/4wdx: sup fgrawdx
g2 <l lellp2 1<l

= [[wll L2.00(B(xg.ra))-

1313

(36)

The right-hand side of Eq. (35): We apply Lemmas A.5, A.3, A.4 and A.6 and we respec-

tively obtain

f powdx < ol 2.1 11gll 21 1wl 2.5 (5exg.r)
R

+00
1/2 —h/2
+a' 2 272 o]l 2 llgll g2 1w 200 B 2010\ Bxg. 281y
h=-—1
“+00
1/2 —h/2 .
S eollwll 2oepirg.ry + % D 27wl 200 3y 2010\ By 201
h=-1

/(bN(P, P_lw) dx < 80”w”L2’°°(B(xO,r))

R
+00
+ C()[l/2 Z Z_h/zll w ”LZvOO(B(xo,ZhHr)\B(xO,Zh*]r)) y
h=1
and finally

fQZP_lw¢dx < Call?r1/2,
R

Thus combining (36)—(38) we get

lwll 2200 (Bxg,ray) S E0IWIL2.00(B(xg,r)

- A\ 172

1/2 —h/2 - 2

+ o Zz “w||L2,oo(32h+1r(x0)\32h—lr(XO)) + (,0) o7,
h=1

(37)

(38)

(39)

(40)

If « and ¢ are small enough the formula (40) implies that for all xo € B(0, p/8) and 0 < r <
p/16 we have [[wll z2.00(p(xy.r)) S CrP, for some B € (0, 1/2) and C > 0 independent of r. Since

P~! e L, this implies that

sup  r P / |AY 4] dx < +o0.
x0€B(0,0/8)
O<r<p/16 B(xo,r)

(41)
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Proposition 3.2 in [1] yields that v € L;]OC(R) for some g > 2 which finishes the proof of
Claim2. O

Claim 3. v € LZC(R) for every p > 2.

Proof. We argue as in the proof of Claim 2. We consider again p > 0 such that
1180,0)82|l;2 < €0, With g9 small enough. We write 2 = §21 + £2, with 21 =1, )$2 and
§£22 = (1 —1p0,p))$2. We consider an arbltrary g >2suchthatve LY .

Let xo € B(0, p/8), r € (0, p/16), g € LY (R), with lgll; < 1 and set gro = Lp(x, m)g,
with 0 <@ < 1/4 and qb A~ 1/4(gm) We observe that ¢ € W1/2: q (R). Moreover since ¢’ < 2
and W1/2.4' (R) — Lq 2(R) we also have ¢ € Lq = (R).

We write Eq. (5) as follows

+o0
1/4
AV = 211G,V + ) @1 gy 20\ Blrg, 211V
h=0
+ 2yv. (42)

We take the scalar product of Eq. (42) with A~1/4(g,) and integrate. By using Lemmas A.6-A.9
we get that

IVllLa(B(xg.ra)) S €0llVILa(B(xo.r/4))

+ o/ ZZ_ /q||w”Lq(B2h+1r(x0)\82h_lr(xo)) + (;) alld. (43)
h=1

If « and ¢ are small enough, the formula (43) implies

1/q
sup r_”|: / [v|? dx] < 400, (44)
x0€B(0,p/8)
0<r<p/16 B(xo,r)

with 0 < y < 1/4 independent of ¢g. Thus by plugging (44) in Eq. (5) we obtain for the same
y > 0 independent of ¢

sup 7 HA1/4 dx < +00. (45)
xo€B(0,0/8)
O<r<p/16

v ” L24/@+2) B(xq,r)

Theorem 3.1 in [1] yields that v € L? . with q > q given by

loc?

f?_l :q—l . 2—1[1 . y(q—l _|_2—1)—1]—1.

Since g > 2 we have
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By repeating the above arguments with g replaced by ¢, one finally gets that v € Li) . for
every p > 2. This concludes the proof of Theorem 1.1. O

4. Construction of an optimal gauge P: the proof of Theorem 1.2

Proof of Theorem 1.2. We follow the strategy of [11] to construct solutions to
Asymm(P~' A P) = 2 which was itself inspired by Uhlenbeck’s construction in [16] of Coulomb
Gauges solving (6).

Let 2 < g < 400 and consider

Ul = !Q e LY(R, so(m)) N LY (R, so(m)): f|9|2dx < s}.
R

Claim. There exist € > 0 small enough and C > 0 large enough such that

2 €Ul there exits P € WY/24(R, SO(m)) N WY/24' (R, SO(m))
VI o= { satisfying (8)(i)~(ii) and
Jo|AVAP19dx < C [1217dx,  [p|AV4P|7 dx < C [ 1219 dx

is open and closed in Ug and thus V¢ =U{. Actually the set U is star-shaped with respect to
the origin (if 2 € Ug, then t2 € U for every 0 <t < 1) and therefore it is path connected.

Proof. We first observe that V! . ## (0 € V! ).

Step 1: For any ¢ > 0 and C > 0, VZ,C is closed in L1 N Lq/(]R, so(m)).

Let 2, € Vgc such that £2,, - 24 in the norm L7 N Lq/, as n — +oo and let P, be a
solution of

P IAYAp, — AVAP-lp, =20,

with

/|A1/4Pn}"dx < cof 12,19 dx,
R R

/‘A1/4Pn|q/dx <cof 12,19 dx.
R R

Since £2,, — 24 in the norm L7 N L9 and fR |.Qn|2dx < &, we can pass to the limit in this
inequality and we have

f|szoo|2dx <e (46)
R

which implies that 2, € U;.
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One can extract a subsequence P, — Py, In Wl/2anwl/zd, By the Rellich—Kondrachov
Theorem we also have P, — Py in leoc and hence P, € SO(m) ae. Thus Py €

Wl/z’q(R, SO@m)) N Wl/z’q/(R, SO(m)) and the lower semi-continuity of the HY2 w1/2.4 and
W1/2:4" norms implies that

f}A1/4POO}2dx <c0/|900|2dx,
R R

/|A1/4Poo|qu <c0f|.(zoo|4 dx
R R

and

/|A1/4Poo|q/ dx < CO/ 120017 dx. (47)
R R

We have
PIAVAP, — AVAP-Ip o P IAY AP — AP 1P in D'(R).
Since Pn_lAl/ ip, — AY 4Pn_1Pn = 2, — 2o in D’ as well, we deduce that
PIAYVAP, — AVAP P =20 ae. (48)

and combining (46), (47) and (48) we deduce that 2, € Vz ¢ Which concludes the proof of
Step 1.
Step 2: For ¢ > 0 small enough and C > 0 large enough Vz c Is open.
For every Py € WY24(R, SO(m)) N Wwl/2d' (R, SO(m)) we introduce the map
Ffo.wl/24an Wl/z’q/(R, so(m)) — LN Lq/(]R, so(m))
U— (PyexpU) " 'AY4(PyexpU) — A4 (PyexpU) ™' (Pyexp U).

We claim first that F70 isa C! map between the two Banach spaces wl/2an Wl/Z’q/(]R, so(m))
and LN LY (R, so(m)).

i) Since W1/24 for g > 2 embeds continuously in C?, the map V — exp(V) is clearly smooth
from W1/24 0 W1/24 (R, so(m)) into W'/24 0 W1/24 (R, SO(m)).
ii) The operator A% is a smooth linear map from Wwl/Za n Wl/z*q,(]R, M,,(R)) into L9 N
LY (R, My (R)).
iii) Since again W!/29 embeds continuously in L>® — W1/24 0 W/ 2.4" is an algebra — the fol-
lowing map

Wi n w24 (R, M,(R)) x LI N LY (R, M,(R)) — LI N LY (R, M, (R))
(A, B) —> AB

is also smooth.
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Now we show that d FOPO =Pl

LY@y = —nPy AV Py + AV (P Py
+ Py A4 (o) — AYAPT Pon.

e Differentiability of FF at U = 0:

[ EPotm) = FP©) = L0 00
= |[F™a) = FP©) +npy ' ARy

— APy Py — Py AV (Pom) + AP Pon]| Ly

First of all we estimate

| (Poexp() ™' A4 (Pyexpn) — Py A4 Py + 0Pyt VAR — P AYA PO Ly
< [AYA PO oy | (Poexpan) ™ = Py + 0P o
+ [ (Poexpm) ™| o | A4 (Poexp(n) — AV4(Po) — A4 | 1oy
+ | AYHPom)|| Lyt | Poexp(m) — Pol|
< Co(lnlli/zawy)- (49)

The estimate of
| (Poexpm) =t A4 (Pyexp () — Py AYA(Po) — Py A (Pon) + AP Pon | Ly

is analogous. Hence we have proved that d FOP0 =L,
e dyFP is an isomorphism from W24 n Wl/z’q'(R,so(m)) into L1 N L‘I'(]R, so(m)).
Precisely we prove the following lemma.

Lemma 4.1. There exists € > 0 such that if $2y € Z/IZC and if Py € Wwl2an Wl/z’q,(]R, SO(m))
is a solution of (8)(1)—(i1), satisfying

/|A1/4Po|qu <cf 12019 dx,

R R

: , (50)
/|A1/4P0|q dx < Cf |20/ dx,
R R

then for every w € L1 N Lq/(R, so(m)) there exists a unique n € w24 n W1/2"1/(R, so(m))
such that

' In order to define L0 as a map from W!/2:4 n W1/2.4" into L9 N L9 we recall again that we make use of the
embedding Wl/2.4(R) — L®R) if q > 2 (see for instance [12, page 33]).
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w=—nP; APy + AV (0 Py ) Py + P A A (Pon) — (AP Pon (51)
and
||77||W1/2,qu1/2,q’ < C“a)”Lquq"

Proof. Let 20 € U .. Suppose that Py € W1/24 N W1/24 (R, SO(m)) is a solution of (8)(i)~(ii),
satisfying (50).

Claim 1. Let 1 <r < 2. L™ is an isomorphism between Wl/z”(]R, so(m)) and L" (R, so(m)),
namely for any o € L" (R, so(m)) there exists a unique n € WY/>" (R, so(m)) solution to
L*o (n) =w and
I71lyi1/2r < CllollLr
for C > 0.
We rewrite Eq. (51) in the following way
w=2AY4 — 2P AV Py — 2AVA P Py

+ 0, Po) — Q' (n, Py), (52)

where

Q(n, Po) = A4 (nPy )Py + Pyt AYA Py — A4y, (53)

From Lemma B.2 and Lemma B.3 it follows that

Lr S C”’7po_1 ”Wl/Z,r | Poll 172
< Clinllyzr( |1Do_1 HLoo + H Po_1 HHI/Z)”PO”[.'II/Z

< Clnllyprzzr (1 Poll e Poll iz + 11Poll%12)- (54)

o, Po)|

Since 27! + (2 —r)(2r)~! =r~!, by applying Holder Inequality we get

[nPg " AR

1A 1/4
o Snllperen|[ Py A / Pl ;-

since W27 (R) < L7 (R)

< Clinllar | Py A4 R o (55)
We consider the following map H %0 : WYZr (R, so(m)) — L" (R, so(m)),
H () = —2nP; ' AV Py — 284 Py Pon + Q(n, Po) — Q' (n, Py).

From (54) and (55), it follows that there exists a constant C > 0 (independent of Py) such that

O]

2
L < Clnllpuar (1Pollze= 1 Poll gz + 1 Poll %0 ).
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Because of (50), [[Pollgi < (Ce)'/2 and hence, if ¢ > 0 is small enough, Lo =2AV4 4
Hp,: W21 (R, so(m)) — L™ (R, so(m)) is invertible which proves the first claim.

Claim 2. Let ¢’ <r <2. Letwe LI1NL" and n € W12 be the solution of L™ (n) = w, then n
is in W/24 nwl/2r,

We apply Lemma B.3 to
A4y — P0_1A1/4(P017) _ A1/4(P0_1P077) _ P0_1A1/4(P0n)
and we obtain

AV = P AV P | < POl

-1
Py ” W1/2.4(R,SO(m))
by Lemma B.2

< Cllnllypr [ Polloe + 1 Poll g2 11 Pollyi 20 @ sogmy s (56)

o 1 _ 14 2-r
where ¢ is given by ; = st
In a similar way we have

| a4y — A* P Y Pol| 1 < Clinllar [IPollos + I Poll g2 )1 Pollyirt/2a g.somy) -

On the other hand we also have

[(nPg ) A 4P|y < limll e A Po] (57)

Thus Q (1, Po), Q' (1, Po) and Hp,(n) arein L'. Since w € LY NL", we have A4y e L' as well.

Sinceq/<r<2and%=l l—%,Wehavethatt>2.
q r

The fact that A4y e L™ N L' for some r <2 and r > 2 implies that n € L™ (see for in-
stance [2, page 25]).

From the fact that n € L°° we deduce that nPO_1A1/4P0 € LY and (A1/4P0_1)P077 € L1. Now
we apply Lemma B.4 respectively to a = Pyn € HY2NL® b= PO_1 e W24 and a = nPO_l,
b = Py and we get that Hp, () € LY. Since w € LY N L" we have A4y e L4 as well. Moreover
the following estimate holds

[ Y40, < Cllolizane,
which proves Claim 2.

Claim 3. Lerw € LY N LY and n € N
W24 12

7 <r<q W1/27 be the solution of L™ (1)) = w. Then 1 is in

It is enough to apply Lemma B.4 respectively to a = Pon € L°°, b = PO_1 e W24 and

a= nPO_l, b = Py in order to get that Hp () € L9 . Since w € LY N LY we have A4y e LY
as well.
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Combining Claim I, Claim 2 and Claim 3 we obtain that for any w € LN Lq/(]R, so(m))
there exists a unique 1 € W24 n w24 (R, so(m)) such that

LYy =w,
and
||77||W1/2,qu1/2,q’ < C“a)”Lquq"
This finishes the proof of Lemma 4.1. O

Proof of Step 2 continued. We take 2 € Vg’ .- By definition of Vg . there exists Py €

Wl/24" nywl/i2g (R, SO(m)) that solves (8)(i)—(ii) and satisfies (50). Now we apply the Implicit
Function Theorem to F0 and we deduce that for every P in some neighborhood of Py and £2
in a neighborhood of £2¢ (both neighborhoods having a size depending on Py and £2¢ of course)
Eq. (8)(1) is satisfied and for some constant C > 0 independent of g one has

|aY4P] L, <CIRle. and [AYVEP], <CIRIL ©8)

The inequality (58) is satisfied by £29 and Py by definition of Vg’ o
By possibly taking a smaller neighborhood of Py we may always assume that

/|A1/4P|2dx <ée < 1.
R

Step 3:The fact that [ |A'* P> dx <&’ < 1implies that [ |AV*P|>dx < C [; |2]* dx.
We write

P IAYAp = %(P_1A1/4P —(P7IAYAPY) + %(P—IAI/“P +(P'AV4 P
= Asymm(P A4 P) + Symm(P~' AV P).
We apply the estimate (12) and we get

HP—1A1/4P n A1/4P—1PHL2(R)
<clavp|;,
<clpatpl,
<CIAVEP] o (| Symm(PTEAVEP) [ o + [Asymm(PTIAVEP) ).
Thus we get

[ Symm(P=EAVEP)| 2 < Ce ([sym(PTIAVEP)| o + [ Asymm(PTAVEP) | ).

If C¢’ < 1/2 then
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HSymm(P A1/4P)HL2 CHAsymm(P A]/4P)HL2—C||.Q||L2

which ends the proof of Step 3.

Step 4. Take now £2 € L? and f 1212dx < e. Let 2, € U be such that 2; — £ as k —
+o00 in L%. By arguing as in the proof of that V¢ is closed one gets that there exists P € H'!/?
satisfying (8)(1)—(ii). O

S. Euler equation for half-harmonic maps into manifolds

We consider a compact k-dimensional C? manifold without boundary A C R™. Let [T be
the orthogonal projection on N. We also consider the Dirichlet energy (14).

The weak 1/2-harmonic maps are defined as critical points of the functional (14) with respect
to perturbation of the form [Tz (u + t¢), where ¢ is an arbitrary compacted supported smooth
map from R into R™.

Definition 5.1. We say that u € H'/?(R, \) is a weak 1/2-harmonic map if and only if, for every
maps ¢ € H'/2(R, R™) N L® (R, R™) we have

EE(HN(M +1¢)), =0 O (59)

We introduce some notations. We denote by /\ (R™) the exterior algebra (or Grassmann Alge-
bra) of R and by the symbol A the exterior or wedge product. Forevery p=1,...,m, /\ p(Rm)
is the vector space of p-vectors.

If (€;)i=1....m is the canonical orthonormal basis of R™, then every element v € /\ » (R™) is
written as v = Z, vrer where I ={iy,...,ip} with I <iy <--- <ip <m, v :=v;, and
€] =1=¢€j; N A€,

By the symbol L we denote the interior multiplication L: /\ (R™) x /\ (R"™) — /\ ]Rm)
defined as follows.

Lete; =€, AN €,y €] =€ji NN €, withg > p. Thene;Le; =0if I ¢ J, otherwise
ejLe; =(—=1)Meg where ek is a ¢ — p vector (with K U I = J) and M is the number of pairs
(i,j)el x J with j > i.

Finally by the symbol * we denote the Hodge-star operator, : /\ R™) = A\,,— R’”) de-
fined by % = (€] A --- A €,) L B. For an introduction of the Grassmann Algebra we refer the
reader to the first chapter of the book by Federer [6].

In the sequel we denote by PT and PV respectively the tangent and the normal projection to
the manifold V.

They verify the following properties: (PT)" = PT, (PN)! = PV (namely they are symmetric
operators), (PT)?> = PT, (PN)2=pPN, PT + PN =14, PNPT = PT PN =0,

Wesete=€e; A---Aeand v =¢€ry 1 A--- A €y. For every z € N, e(z) and v(z) give the
orientation respectively of the tangent k—plane and the normal m — k-plane to T, N

We observe that for every v € R we have

PTo= (=D ((eLv) Av), (60)
Ny=(=D""Tx(erwLle)). (61)

We observe that PV and PT can be seen as matrices in H!/2 (R) N L*°(R).
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Next we write the Euler equation associated to the functional (14).

Proposition 5.1. All weak 1/2-harmonic maps u € H'/?>(R, N) satisfy in a weak sense the fol-
lowing three equivalent equations:

1) the equation
/(Al/zu) vdx =0, (62)
R

for every v € H2(R,R™) N L®R, R™) with v € Tu)yN almost everywhere;
1) the equation

PTAY2y =0 inD; (63)

and
11) the equation

AVAHPTAY ) =T (P u) — (AYAPT)AY Y. O (64)

The Euler—Lagrange equation (64) can be considered together with by the following “structure
equation” involving the normal projection of A!/4y.

Proposition 5.2. All maps in H'/2(R, N) satisfy the following identity
AYHR(PY A ) =R(S(PY, u)) — (AVAPY)(RAY* ). O (65)

For the proofs of Proposition 5.1 and 5.2 we refer the reader to [4].

Next we see that by combining (64) and (65) we can obtain the new equation (16) for the
vector field v = (PT A4y, R(PN AY%u4)) whose right-hand side contains an antisymmetric
potential.

We introduce the following matrices

(A1/4PT)PT + PTA1/4PT _ Al/4(PTPT)

wi = 7 (66)
wy = (AVAPTYPN  PTAVAPN — AV4(PT PN), (67)
(A1/4PT)PT _ PTA1/4PT
w= ; (68)
2
and
(RA]/4PT)PT + PTA1/4(RA1/4PT) _ RA1/4(PTPT)
w3 = > : (69)
ws = (RAYAPT)PN 4 PN (RAYVAPT) —RAYA (PN PT), (70)
(RA1/4PT)PT _ PT(RA1/4PT)
wR = . 1)

2
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We observe that Theorem 1.3 and Theorem 1.4 imply respectively that A4 (w), AV*(wy)
and AY*(w3), AY*(wy) are in the homogeneous Hardy space H'(R). Therefore w;, ws,

@3, w4 € L*1(R). The matrices w and wp are antisymmetric.

Proof of Proposition 1.1. From Propositions 5.1 and 5.2 it follows that u satisfies in a weak

sense Egs. (64) and (65).
The key point is to rewrite the terms (AYAPTY(AY4Y) and (A PNYR(AV40).
e Rewriting of (A1/4PT)Al/4y,

(34P7) a0 = (ATHPTY(PT (81%) 4 P (21

= ((A*PT)PTY(PT (A u)) + ((ATAPT) PY) (PN (a1 ).

Now we have

A1/4PT
2 9

(AP PT =01 + 0+
and

(A1/4PT)PN — (A1/4PT)PN + PTA1/4PN _ A1/4(PTPN) _ PTA1/4PN
=602+PTA1/4PT
A1/4PT
2 9

=w+w—w+

where in (73) we use that A'/4 PN = —Al/4pT Thus

A1/4PT PTA1/4

( )(2 u) =w1(PTA1/4u) —|—a)(PTA1/4u),
A1/4PT PNA1/4

( )(2 u) — (0] +a)2)(PNA1/4u) B a)(PNAl/4u)

=R(w1 + @) R(PY AV u) — R(w)R(PYN AY*u)
+ F(—a) + w; + wy, (PNA1/4M)).

e Rewriting of (A/4PN)(RA/%u). We have
(A PN)(RAM4u) = (R(AY*PN)) (T (A 0) + P (8 1V40))
+ F((R(AY*PN)), Al%).
We rewrite the terms (RAY4PNYPT (AV4y) and (RAV4PNYPN (A/44). We have

(RA1/4PN)PT — —(RA1/4PT)PT
(RA1/4PT)

=—w3 —wR — >

(72)

(73)

(74)

(75)
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(RA1/4PN)
= —(,()3 _— (,()R + ]
2
and
= [(RAVAPT)PY + PT(RAVAP) ~ RAVA(PV )]
+ PT(RA4 PN
(RA1/4PN)
:—a)4—a)3+a)72+#-
Thus
1/4 pNy pT A 1/4
(RAY®P 2)P AV u _ —a)3(PTAl/4M) —a)R(PTAl/4M), (76)
1/4 pNy pN A 1/4
RATPIPIATH oy (PY A1) - an(PY AV0) + o (P a1V
=R(~w3 — wn)R(PN A*u)
+ R(@r)R(PN A4u)
+ F(or — w3 — w4, PN AVH0). (717)

By combining (74), (75), (76) and (77) we obtain

s ( PTAYu -~ ( PTAVYy
A =81+ 82

RPN A4y RPN A4y
42 <_w “R ) ( PrA T > (78)
or —Ror RPNAVAY )’
where £2| and 2, are given by
B —2F(—w 4 w1 + wy, (PN A4 + T(PT, u)
21 = 1/4 pN 1/4 N, Al/4 N )
—2F(R(AYAPN) R(AV*u)) — 2F (wr — w3 — wa, PN (AY4u)) + R(S(PY, u))

PR (—a)l —[R(w1 + @2) + (R(w) — wn)])
2 s —R(w3 — wy) '

The matrix

-0
or —Ror
is antisymmetric.

We observe that from the estimates on the operators F, T and S it follows that le €
H~ 2R, R¥") and
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[Fed) la-12@) < C(”PN”HW(R) + ”PT”HI/Z(R))”A]M”HLlw (79)
On the other hand £, € L% (R, M>,,) and

122121 < CUIPY Ly + [P TGy (80)
This concludes the proof of Proposition 1.1. O

Proof of Theorem 1.7. From Proposition 1.1 it follows that v = (PT (AY4u), R(PN (A%u)))
solves Eq. (78) which is of the type (5) up to the terms 21 and £2,v. The important point here is
that the terms §2; and $2,v are not “dangerous” because of the key estimates (79) and (80).
Therefore the arguments are very similar to those of Theorem 1.1 and we give only a sketch
of the proof.
We aim at obtaining that A4y e Lp -(R), for all p > 1. To this purpose we take p > 0 such
that

with g9 > 0 small enough. Let xg € B(0, p/8) and r € (0, p/16). As in the case of Eq. (5) we
argue by duality and multiply both sides of Eq. (78) by ¢ = A~1/*(g,4), with g € L>'(R),
lgllz21 < 1and grq = Lp(xy,ra) 8> With 0 < < 1/4.

It is enough to estimate the integral

- (ATVAPT (g4)
/ @ (A—l/“PN(gm)) o e
R

(the other terms have already estimated in the proof of Theorem 1.1).
We observe that

[V o < Y (PT (A14) 4 (R(PY (A0 | = 0l 2 52)

By combining Lemma A.5-A.10 and the estimate (82) we obtain

400
(81) S o H Ay ” 2ot o2 Z 27"/ H Ay ” L2:%°(B(xg,2" 1 1)\ B(x0,2"~1r))

h=1
+00
1/2 ~h/2
Seolvllpze +a' 22 / V1 L2020 (B (g, 2841 r)\ B2~ 1))
h=1

Since v satisfies an estimate of the type (40), for « and gp small enough, we have

sup ”U”LZ,OO(B(XOJ,)) < Cl"ﬁ,
x0€B(0,0/8),0<r<p/16

for some C > 0 and B € (0, 1/2).
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By arguing as in Theorem 1.1 we deduce that v € Li) -(R), for all p > 1. Therefore A4y e
LY (R), forall p>1 as well.

This implies that u € C2® for all 0 < & < 1, since W./>7 (R) < C2*(R) if p > 2 (see for
instance [2]). This concludes the proof of Theorem 1.7. O
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Appendix A. Localization estimates

The aim of this appendix is to provide localization estimates for weak solutions to Egs. (32)
and (78).
Forr >0, h € Z and xp € R we set

Ap,xy (r) = B(xo, 2h+1r) \ B(xo, 2h_1r) and A, (r) = B(xo. 2hr> \ B(xo. 2h_1r).

h,xq

In the following two lemmas we prove some estimates that will be often used in the sequel.
In Lemma A.1 we estimate the L' and H'/? norms of A~1/4g respectively in a ball and in an
annulus, where g € L9(R), g > 1 has compact support.

Lemma A.1. Let g € L1(R), g > 1, suppg C B(xg, rae), with xo € R, @ > 0. Then

—1/4 1/21/2 %
A o' 2 gl oy (83)

<
(B(xg,yr)) ~ Y

forall y >0 and

- - D)
HA l/4gH1{n/2(Ai, (r))§2 MMyt gllza - (84
X0

Proof. First of all we may assume without restriction that xo = 0.
1. Estimate of (83). We have

A=, =2 *g”LuB(o,yr»

(B(0,yr)) 5 H| )
< x|/ HLl(B(O,yr))Hg”Ll(B(OJ’Ol))

<) ra) g L.



F. Da Lio, T. Riviere / Advances in Mathematics 227 (2011) 1300—1348 1327

2. Estimate of (84). We have

_ 2
H le;l’O(r)A Vg HI-'Il/Z(A;lyO(r))

1 1 1 2
/ / |t—s|2< / g(x)(|x—s|1/2_|x—r|1/2)dx> drds

Ay () A () lx|<ro

by the Mean Value Theorem

1 1 g
/ /(/g(x)max(|x—t|3/2’|x—s|3/2>dx> e

A;lyo(r) A;l’o(r) |x|<ra

2/q
/ / 2_3h7‘_3(l"a)2/q/( / }g(x)‘qu> dtds

Aj, o) A () |x|<ra

—h _2/q" . . —142/q’ 2
S22 g3,

This concludes the proof of Lemma A.1. O

In the next lemma we estimate the integral over a ball of the product of A/4vy with v € L>*,
suppv C Ap x,(r) and A~V4g with g e LY(R), g > 1, supp g C B(xg, ra).

Lemma A.2. Let g € L1(R), g > 1, suppg C B(xp,ra), with xo € R, 0 < a < le and let v €

L%, suppv C Ap x,(r) with h > —1. Then for all 5§ > 0 we have
;L1
] AV ol pegsn AT g de S27M P r 2 g oy IVl 2oy 0y (8D)
R

Proof. We assume without restriction that xo = 0. We have

f (A4 0) (@) (Lo A~ ) (x) dx
R
by the Plancherel Theorem

/ FL(AY*0)]E F[(Lp0.sm A V48)]¢) de
/}“ 12 @) [v * (Lpo.sn A~ 4g)] dE. (86)

Now we observe that supp[v * (1(0.6r)A~/*g)] C B(0,2"+2r) \ B(0,2"~2r).
Thus we have

85) < [16172 Loo(B€(0,2-2r)) Jv* (1so.snA") [ . (R)

SR 00 [ LB 0.0 AT [ 1 g
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—3/2h..—3/2 -1/
S22 Rl oen 187 ¢l
by (83)

;11
S22 T gl Loy 10 200 4y 00y -
This concludes the proof of Lemma A.2. O
A.1. Localization of the term N(Q, v) = AV*(Qv) — QAY4v + A4 Qv

Lemma A.3. Let Q € H'2(R)NL®R), [|Qll g12g) < €0, v € L*[R), g € L*'(R), suppg C

B(xg,ra), withxp e R, 0 <a < zlt’ r > 0. Then we have

/ N(Q, v)A_1/4g dx
R

5 80||g||L2»1 ”v”LZ’OO(B(xo,V))
+o0

+ o210l gy + 121 gl Y2 0l e ay o &7
h=1

Proof. We suppose without restriction that xo = 0.
We consider a dyadic decomposition of the unity ¢; € Cg°(R) such that

00
supp(¢;) C Byiv1,(0)\ Byi-1,(0), > ¢ =1. (88)

We set x, := Z(ioo(pj' -
We observe that the function A~!/%g € L®°(R) N H'/2(R).
We take the scalar product of N(Q, v) with A1/4 g and we integrate. We write

f N(Q,v)A V*gdx = / N(Q, x,v)A~V4gdx
R R

()]

400
+ /ZN(Q, wkv)A_1/4gdx.

2)
To estimate (1) we use the fact that N(Q, v) € H™1/2 (R) and (34) holds.

M S [A7 ] i@ Cllgzg IVl 2o

Seollgllp2a IVl L2.00(B(0.r))-

Next we split (2) in two parts:
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(0, @]
(2) = ZfN(Q,‘ka)]lB(O,r/4)A_1/4gdx

3
o0 o0
—1/4
#3000 [Nty oo gdr.
k=1h=—15
C))
We observe that in (3) and (4) we can exchange the integral with the infinite sum ]:zocl’”.

Indeed one can easily check that

n——+0o

0
lim /ZN(Q,gokv)A_l/4gdx:0.
R k:f’l

(See also the arguments of Lemma A.3, Lemma A.4 and Corollary A.1 in [4].)
We estimate (3). We first observe that since 1 g(o,r/4) and ¢ have disjoint supports, we have

N(Q, gkv)Lpo.rmA~ g =[A*(Qprv) — QA (@) |10,y A7 .

‘We have

Ziffmfﬂm

x [Q(gkv) * (10,4 A" g) — (@rv) * (QLp0,r 0y A~ *g)] dt
by applying Lemma A.2

o0
S Z |1€177 ”LOO(BC(O,Zk*Zr))

bl
—

WE

<Y 27 P10l 10l 2o ag ooy 1€ 221 ) ]

k=1

00
1/2 -
S,CY/ ||Q||L°°(R)||g||L2,1(R) E 2 kHv“LZ,OO(AkYO(r))-
k=1
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Next we split (4) as follows.

H=> > / N(Q.¢xv)ly; A gdx

k=1 |k—h|<5
o)
(.¢]
- 1y A V4ed
=Y > [ NQ @) Al o) gdx.
k=1 [k=h|>5 5
(6)

We estimate (5).

0]
G52 D INQ o oo 14,087 8l i)

k=1 |k—h|<5
by applying (34)
o0
S 2 IQlaegloevlizee | A7 el g o)
k=1 |k—h|<5 |
by applying (84)
0
S PO g gl 2w (Zz_k/z||v||L2’°o(Ak,O(”))>'
k=1

In order to estimate (6) we observe if |k — h| > 6 then ¢xv and 1 A O(r)A_l/ 4¢ have disjoint
supports. Thus by arguing as in (3) we get ’

+00
©) Sa' 21 Qlllgl 2@ Y27 vl 2o ag o0y
k=1

—+00

Sal 10l lglaim D27 vl o0
k=1

This concludes the proof of Lemma A.3. O
Lemma A4. Let Q € H'/2(R) N L®(R), supp Q C B(0, p) for some p >0, v e L2(R), xo €

B(0, p/8), g € L>'(R), suppg C B(xg, ra), with 0 <a <1,0<r < p/16.
Then we have

A A\ 172
f N(Q.v)A™Vigdx < (;) gl 21 @y 1 QN 12y 1V 1l 200 (Bxg.ry)
R

+00
+a”2||Q||Loo||g||Lz,1(R)(Zz—h/2||v||Lz.oo(Ah,xO(r))>. (89)

h=1
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Proof. We write

/ N(Q,v)A™gdx = / N(Q, x,v)A™ g dx
R R

)

+ fN(Q,(l — x)v) A" g dx,
R

®

where x, is defined as in Lemma A.3.

We denote by Q, = |Bp(0)|_1 pr(O) O(y)dy =0 and write Q = Z;ﬁil on(Q — Qp), with
supp(@n) C B(0, 2" p)\ B(0,2"~1p), @), partition of unity.

We recall two key results obtained in [4]. The first one is a sort of the Poincaré Inequality
for functions in H'/2(R) having compact support and the second one concerns with a geometric
localization property of the H'/2 norm on the real line.

Precisely from Lemma A.2 in [4] it follows that

[2n(Q — Q)] ;1 < C2" 0l QN 112 gy (90)

and from Lemma 4.1 in [4] one can deduce that

+00
Y 27 @n(Q = 00| iy S 112y O1)
h=0
We estimate (7).
+00
(7 =fN< > Q- Qp>,xrv)(A‘1/4g) dx
R h=-1

+00
-z f [=6n(Q — ) A4 u0) A g + AVA(@(0 — 00)) (o)A~ g ] dx

h=—1p
by applying the Plancherel Theorem

400
-y f FIAY 000 F[-@n(Q — 0,) A~ ]

+ F[AYHon(Q — 0)) ] F[(xrv) A~ 4 g] dE

= io ff‘l[l'l”z]m

h=—1}

X [=(rv) * (§h(Q — 0p)A™4) + Gn(Q — Q) * (xrvA™V4g)]dx
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+00

S Y NET g 0.20-2,)
h=—1

X [[=0ov) * (#r(Q = Q) AT g) + 9n(Q = Q) % (v A 4e) ]| 11 gy
+00

S D0 NET 2 e geo.n2p vl on(@ = 0| i [A~ g ]
h=-—1

Now we apply (90) and (91) and we get:

+00
DS D270 20l oo gy 2" 0 00 (Q = Q)| 12w
h=-—1

+00 1/2
—h2( T
,SIlgIILz,l(R) E 27h (;) ||U||L270°(B(x0,r))”§0h(Q_Qp)HI_'Il/Z(R)
h=—1

1/2
.
S,(;) ”gHLzs‘(]R)”Q”[-'II/Z(R)”U”LlOO(B(xO,r))-
By arguing as in (3) and (4) we get
+00
®) S 110l ||g||Lz,1(R)a”2<Z2"“||v||Lz,oo(Ah,xo<r»)- (92)

h=1

This concludes the proof of Lemma A.4. O

The localization of the operator S(Q, A~Y4y), with v € L2(R) is similar to that of N(Q, v)
and we omit it.

A.2. Localization of a term of the type Av with A € L>! and v € L?

LemmaA.5.LerA e L>'(R), xoe R, r>0,0 <« < 1/4and g € L>L(R), supp g C B(xg, ra).
Then

/ AvA g dx SNAl 2o llgl 20 Il 2oe (Bxgry)
R

+00
+a' Al gl Y 27l 24, - (93)
h=-—1

Proof. We suppose again for simplicity that xo = 0. We write

+00
—1/4 —1/4 —1/4
fAvA 1/ gdx = /Av]lB(oyr)A 1/ gdx + Z/AU]IAL,OA 1/ gdx.
R R h=0g

&) (10)
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Now we observe that A~1/4g = |x|7!/2 % g € L(R) since |x| /% € L*>*(R) and g € L*'(R)
(see for instance [7]). Thus we have

@) < [AAT g || oVl 2oom00y)

< ||A||L2,1 ” A_1/4g HLoo ”v”LZ»OO(B(O,r))

S Al L2 ligl 2 vl L2000,y

10~ / F- 7] @08 * (L, Avyde

h=07

+o00
S MET 2] e geoito 18 % @ay AV
h=0

400
—h/2 —1/2
S 2T P lgl g vl
h=0

+00

S 2R Pl l Al 2 vl 2oy, o)
h=0

+o00
1/2 —h/2
S gl paallAll 2 27" vl 2o ca, o0y
h=0

This concludes the proof of Lemma A.5. O
A.3. Localization of a term of the type 2v with 2 € L> and ve L1, g >2
Lemma A.6. Let 2 € L2(R, My5m(R)) be such that supp 2 C B€(0, p), ve LI(R), g >2

x0 € B0, p/8), g € L‘I/(R), suppg C B(xp,ra), with0 <a <1/4,0<r < p/16.
Then we have

1/q
_ r
f QuaTigdx S (;) '/ gll g 1211 2110 ]l o (94)

Proof. We give the proof for the case g > 2 (the case ¢ =2 is similar and even simpler). We use
the fact that £2 and g have disjoint supports.

f.(zm 1/4gdx—/;f T2) () (g * 2v) dE

S~ - g x 20l 2
L‘? 2(B‘(O o/4) +2

SoT gl 2vl 2
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1/q
’
S(;) al/"llglqu/IISZIILzlleILq-

This concludes the proof of Lemma A.6. O

Lemma A.7. Ler 2 € L2(R, Myuxm(R)), v € L1(R), qg>2 x0eR, ge Lq/(R) and r > 0.
Then we have

/ 21,20 A " gdx Slgl o 121 2110 La (Bxo.r/2))- (95)
R

/ 29
Proof. We observe that 1 < ¢’ < 2 and wl/24q (R) — Lq—q2 (R). Thus we have A_l/4g €
2
L72(R).
Moreover one has

q—2+1+1
2g 2 ¢

Thus by applying the generalized Holder Inequality we get

/ 2Ly A gdx Sligl o 121 2101 La (B, r/2)-
R

This concludes the proof of Lemma A.7. O

An analogous result of Lemma A.7 for ¢ = 2 still holds provided g € L>!(R). Indeed in this
case we use the fact that A~1/4g e L™,

Lemma A.8. Let 2 € L>(R, Myxm(R)), v € L>(R), ¢ > 2, xg € R, g € L>'(R) and r > 0.
Then we have

/ Q1 o.rvA” g dx Sllgl 2 121 210l 28y r /2y O (96)
R

The proof of Lemma A.8 is similar to that of Lemma A.7 and we omit it.

Lemma A.9. Let 2 € L2(R, Myyxm(R)), v € LI(R), ¢ > 2, xo € R, g € LY (R), suppg C
B(xg,ra), with) <o < 1/4, and r > 0.
Then we have

o0 o0
3> / Q11 VA edx SalTY Mgl 120 2 vl Ley, on- O7)
h=0 h=0

R



F. Da Lio, T. Riviere / Advances in Mathematics 227 (2011) 1300—1348 1335

Proof. We assume xo = 0. We have

Z/Q(RA/ AT gdx—Z/f [1-172](0)g * 214, ¢yvdx

h=07 h=07
< =2 lg * 214, ¥l
;)H | 2, ok, ool 2
o0
h —1
S 27 gl L g0, ray 192247 V] o,
h=0
0

S 27 M) gl g 121 2ol e gar o)
h=0

(0.¢)
Sy 27 Mgl L 1210 210l Laay, -
h=0

This concludes the proof of Lemma A.9. O
A.4. Localization of the operator F(Q,v) :=R(Q)R(v) — Qv

Lemma A.10. Let Q € L*(R) N L®R), |Qll;2w) < €0, v € L2(R), g € L2 (R), suppg C

B(xg, ra), withxp e R, 0 <o < 411’ r>0.

Then we have

fF(Q, VA"V g dx
R
Seollgllzilvilp2ecop, (xg))

+00

V(12N 2y + 1Q1L) gl 21 Y 27 vl 2oy 1) (98)
h=1

Proof. We assume xoy = 0. We take the scalar product of F'(Q, v) with AL/4 g and we integrate.
We get

/F(Q,U)A_1/4gdx= /F(Q,er)A_1/4gdx

R R

an

fZF(Q orv) A4

12)
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To estimate (11) we use the fact that F/(Q, v) € H_I/Z(R) and

| F(Q.0) | 1oy S N2y 101l 2005
—1/4
AD < A ] gipg Il 2@ vl 200 B0,
Sliglpaall Q||L2(R)||U||L2,00(B(o,r))

rg EOHg”LZ’l Hv”szOO(B(O,r))-

Next we split (12) in two parts:

x
(12) = Z/F(Q,<ka)113(0,r/4)A_1/4gdx
k=14

(13)

e} (0.¢)
+> ) f F(Q, )Ly, A~ igdx.
1
R

k=1 h=—

(14)

Estimate of (13):

+00
(13) =Z/F(Q,wkv)llB(o,r/4)A_l/4gdx
k=1p

+00
= Z/R(Q)R(¢kv)]1B(0,r/4)A_l/4g dx
k=11

+00
22[ d _1[ﬁ]<s>[<¢kv>*(Qnmo,rm)A‘”“g)]d%
k=1R

<

~Y

“+00
1

1 1 A4

lorvlipiwy | QLB 0.r/4) gHLl(R)
§ oo (seo.2k-1r)
+00

SY 27T e R o ooy o QN Lol gl 2
k=1
+00

S ee)' 20l liglzzn Y 27 2 vl 200 ay -
k=1

The estimate of (14) is analogous to (4) in the proof of Lemma A.4 and we omitit. O

Lemma A.11. Ler Q € L>(R) N L>®(R), supp Q C B¢(0, p) for some p >0, v e L2(R), xo €
B(0, p/8), g € L>'(R), suppg C B(xg, ra), withO <a < 1/4, 0 <r < p/16.
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Then we have

1/2
_ r
f F(Q,v)A™V4gdx < [a1/2+(;) }uQanngan,l||v||Lz,OO(B(xO,r))

R

+00
+a!2(1Q1 2 +1Q1e)lgl2r Y2720l 2o(ay oy 99
h=1

Proof. We just give a sketch of the proof.
We write

/F(Q’U)A_l/‘lgdx: /F(Q,xrv)JlB(xo,r/4)A‘l/4gdx
R R

(15)

%\

(16)

+ /F(Q, (11— Xr)v)A_1/4gdx.
R

17
To estimate (15) we write Q =", , 1 (Q — Q,) with supp@;, € B(0,2"1p\ B(0,2"!p))

and ¢y, partition of unity.

(15 = Z fR(¢h(Q — 00)) R 0) Ly rm A~ g dx

=y / f—l[ﬁ]u)[@h(g — 00)]* [ROG-V) L. A g dx
h:—z]R

o0
S Z Hx_l HLOO(BC(O,zhp)) ”95’1(Q - Qp)”Ll ”R(er) HL‘(B(xO,r/4)) ”A_l/‘lgHLOO(]R)
h=—2

12 oo
r —h/2
5”g”Lz’lHR(er)||L2’°°(B(xo,r/4))(;> > 2721012, 00
h=-2

A\ 172
S(5) el vl s

Now we write
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+0o0 400

1=y Y f F@Q. 1)y, A gdx

+00
— Z Z /F((ﬁkQ,er)]lAz’xo(r)A—lmgdx

h=—2k—h|<5%

+00
YT f F@Q, 1oy, oA gd

h=—2|k—h|>5%

by arguing as in (5) and (6)
A\ 172
S gl ”Q”L2|:(;> +a1/2] V1l 2.0 (B(xg,r))-

The estimate of (17) is analogous to (2) in the proof of Lemma A.3 and we omitit. O
Appendix B. Commutator estimates

We consider the Littlewood—Paley decomposition of unity introduced in Section 2. For every
Jj €Zand f € S'(R) we define the Littlewood—Paley projection operators P; and Pg; by

Pif=v;f, Peif=¢;f.
Informally P; is a frequency projection to the annulus (2771 < &) < 2/}, while Pg; is a fre-

quency projection to the ball {|£] < 2/}. We will set f; = Pj f and f/ = P< f.
We observe that f/ =Y"1_ _ frand f = 3 i fi (where the convergence is in S’(R)).

k=—o00

Given f, g € S'(R) we can split the product in the following way

f&=1IN(f,8) +1I(f, & + II3(f, &), (100)

where

+00 +o00
M=) fi >, a=y_ fig™

—00 k<-4

400 —+00
M(f.)=Y fi > &=y gf’™

o0 k=j+4

400
M(f=Y fi Y, &

—00  |k—j|<4

We observe that for every j we have
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supp F[ £/ %g;] c {2772 < g1 <2712,

Jj+3

suppf[ >, fjgk:| c {lgl <2/},

k=j—3

The three pieces of the decomposition (100) are examples of paraproducts. Informally the first
paraproduct I7; is an operator which allows high frequencies of f (~ 2/) multiplied by low
frequencies of g (< 2/) to produce high frequencies in the output. The second paraproduct I,
multiplies low frequencies of f with high frequencies of g to produce high frequencies in the
output. The third paraproduct IT3 multiply high frequencies of f with high frequencies of g to
produce comparable or lower frequencies in the output. For a presentation of these paraproducts
we refer the reader for instance to the book [8]. The following two lemmas will be often used in
the sequel. For the proof of it we refer the reader to [4].

Lemma B.1. For every f € S’ we have

sup| £/ < M(f). O
jezZ

In the sequel we will often use the following property: for every vector field X € W (R)
with s < 0 we have

r/2 N2
/( T 2205 (x) ) dx:/(ZXng 3 zzfs) dx
j=—00 Rkt 4>k, j—4>0
r/2
f(zxk( Xg)zz(kﬂ)s) dx
by Cauchy—Schwarz Inequality

r/4 r/4
( > s X,%) ( > o X,%) dx
k k

12

lk—0|<2

74\
P —~—

r/2
( 22“<Xk)2> dx =X}, (10D
]——OO

%\

(see also Section 4.4.2 in [12, page 165]).
Now we start with a series of preliminary lemmas which will be crucial for the construction
of the gauge P in Section 4.

LemmaB.2. Let 1 <r <2, ae WY/2"(R) and b € HY*(R) N L°®(R). Then

labll /2. < Cllallypyar (181 g1z + 151l o).
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Proof. e Estimate of |[IT; (A4 (ab))| L.

) . r/2
‘ §/<sz|aj|2\bf—4}2> dx

R J

r/2
[ (Zm)
R J

) r/2 . r/2
gf\M(b)r(ZzuajR) dx < ||b||goo/(22f|aj|2> dx
R j R

S 1Bl lally .-

14 (g;574)

Lr

e Estimate of |[IT;AY4(ab)| .

Y a4 @l=ty)| = fZa] b AVAn;
j

L ||h|| /<1

. . 1/2 1/2
< sup /sqp|a1_4}(221|bj|2> (Zlhjl) dx
J J

Il <1

_ 1/2 1/2
< sup /}M(a)\(zzubnz) (Z|h,-|) dx
J J

IIhIILr/SI]R

1 1 2-
by the generalized Holder Inequality: — + 5 + 5 U
r r

S bllgzllallyzr -

e Estimate of || IT3(AY4(ab))| - .
ZA1/4(61J j
j

~  sup /Z > AYajb; )hkdx+/ZA1/4(a b 4a’x

||h||Lr/<l j |k— j|<3

= sup /Z > (ajbp) Al hydx +/Z(a,b DAl AR 4a’x :

||h||Lr’<1 j |k J|<3

ey @

We estimate the term (2).

12 12
—jlAl/dy j—412 i 9
<2>5||b||3gm/(§jz NG \) (szaj) dx
J J

R
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. . 5 r' /2 1/r ‘ r/2 1/r
S ||b||Bgo’oo(/(ZZ_J\A”‘%J“W ) dx) (/(sz;) dx)
R R

by applying (101) to A/4h

S oligo, Al llallr

The term (1s) is estimated in a similar way. Thus we get

This concludes the proof of Lemma B.2. O

S bl giellaliyper
Lr

ZA1/4((ljbj)
J

LemmaB3.Let1 <r <2<q ac W2 (R)and b € W/>4(R) and t = 29— . Then

2r4+qQ2—r) -
| a4 @by = (AY2a)b|| 1 gy < Cllallyprrze gy 161y 2 gy

Proof. e Estimate of | ITo(AY4(ab))|| ..

1/2
HZA1/4(aJ—4bj) 5/<sz|aj_4‘2|bj|2> a’x
J R J

t
Lt

t/2
< [suplar=* (L 21e,7)
R/ J

i -7 , a/2  \t/q
< (fM(a)W dx) (/(Zzub,ﬂ) dx)
R J

R

< ! £ < L .
~ ”a”LZzTrr ”bllwl/Z,q ~ ”allwl/Z,r(R)||bllwl/2,q(R)

In the above expression we use the fact that % = szrr
e Estimate of |[IT,((AY%a)b) | ..

t

(=,

J

. ‘ t ‘ t/2
§/<sup2_f/2|A1/4aJ_4|) (Zz%ﬁ) dx
j X
R

J

Lt

. . t/2 . t/2
5/(2 :2_1‘A1/4a1_4‘2> <§ :21|b,~|2) dx
R / J

J

1341
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‘ 40 1q9/2(g—0)\ 1-t/q _ q/2 t/q
S([(Zoarer) ) (Smr) )
R ' J

J

S lally iqrq- 1B1 S llalifye, 1511

Wl/2.q ~ Wl/2.r Wl/2.q°

e Estimate of ||[IT3(AY4(ab)) |-

1/4(aj j

>~  sup fA1/4hZajbjdx

IIhIILffélR j

< [fz Z (AY*hi)a;bjdx + /Z AYA I a b, dx]
||h|| ,/<1 j

Jolj—k|<4

3) “

We estimate the term (4).

(4)§/sup(2_j/2|A1/4hj_4‘)Z2j/2|aj||bj|dx
R/ J

5/(;|A1/4hj—4‘2>1/2<;|aj| ) (22% | >1 2dx
g T (Eomel T
st [(2ie) "] [ me) ]

S ”h”Lt’ ”a“tq/q—t ”b”WUZJI

S Al lallwizr 16w

The estimate of (3) is similar.
e Estimate of || IT3((AY4a)b) | 1.

| (e

J

t

L[

1/4
ZA / aij
J

(z ) (o)

t
S ”a”zq/q_tnbllwlﬂq ~ ”a”Wl/Z,r ||bllwl/2,q'
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e Estimate of | IT;(AY4(ab) — (AY4a)b)|| .

> (a4 @b) — (a'*a)b)

J

~ s f S [AV4 (b ) — (AY4a;)bT 4] dx
J

IIhIIL,/él]R

= sup /Zb] 4 1/4h hj(A1/4aj)]dx

1l 1 S <1

Ll

= sup fZf[b]j_4(n)(/}"[h]j(é)f[a]j(n — )11 —1n —sﬂ/z]ds) d
J R

Il <1
(102)

Now we observe that in (102) we have || <2/73 and 2/72 < |&] < 2/72. Thus |%| < 1. Hence

6112 —In— 81" = |§|1/2[ ’1——

n 1/2]
§
1/2}—1

_ 1/23[1 ’1—9
€] g + :
|$|1/2i—"( )Hl (103)
k= k! .

We may suppose that > po k,( 1yk+1 is convergent if |$| —, otherwise one may consider a
different Littlewood—Paley decomp0s1t10n by replacing the exponent j —4 with j — 5,5 >0
large enough. We introduce the following notation: for every k > 0 we set

Skg=F ' [67“VIg1V2Fg].
We note that if g € L' then Spg € W!/2Hk",

We have

Al <15

S +1
« Uf[h,-](n)f[aj]@ —n)[m”z(;) ]dn]
R

- sup Zev / (' Fp ) @)

(102)= sup Z%ff[bf“‘](é)
R
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x [ / (0= O 2 FIRh 1) ) Flaj1E —n)dn]
R

< /Z > VI [(Sehr)ag](x) dx

”h” r’<1e = ¢ Jok—j1<3
EH1 =41
< sup zvfz > [V [(Sehi)ag](x) dx
Il <to=o J k—j1<3

S (E+1/2)j b1, j =47 [ C+1/2)j
i tm% 0! /Z 2 vy T2 (Sehj)a;](x) dx

< sup _/Sup (2412 (5¢m )]
Il <152
12
X <Z|a]|2) (Zz—2(5+1/2)j}Ve+1bj—4‘2> dx
' j

1/2
5N

Il <152 — ¢

12 ) o 1/2
X (Zlaj|2) (22—2(€+1/2)J}v5+1b1—4‘ ) dx
J

J

. NI
< sup (/(Z2J|A_l/4hj|2> )
IRl <1 5 F
qt/2(q—1)qq9—1/qt q/211/q
(o)™ T [ ()]
R J R J

S lallpara-1blw2a S llallyzr 101wz

We observe that Y2, %272¢ < 400 since we have supposed that Y _ge ) % x*

|x| < 1/2. This concludes the proof of Lemma B.3. O

is convergent for

LemmaB4. Leta € L°(R), be W/24(R), 1 <q < +00. Then
| a4 (ab) — (A1/4a)bHLq(R) < Clblly g llallLem.

Proof. e Estimate of [|[IT;(AY4(ab))||%,

‘ ZA”“(a"“b-)Hq Nf(Z?\a"“Izw)q/z
J L‘i_R - J

J

SalZolblf .-
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o Estimate of || IT;((A%a)b) 1,

1/4 j—4\y 1 < 1/4 j—412,2 2 a2
(a1 YA T b
L4 :
J

J R
. . ) q/2
< supl22 a4, f (S2e2)" as
J j

S bl

laly S lalfwlbl]

wl/2.q wl/2.q-"

o Estimate of ||[IT3(A1/4(ab))| 4.

' Yia;b))
L4
= sup /(Al/4h)2ajbjdx
Il g <12 -
= sup [/Z Z 1/4hka]b dx—l—/z 1/4h/4abdx:|
Wlg TR 7 =< j
(D )
We estimate (2):
1/2

@ < llallgy

> 27A
j

dx
R

, ‘ 261//2 1/’ .
< ||a||Bgm</‘22"}A1/4h1—4| ) (/‘Zz”bjlz
e Rl

S Ibliwizalallgy S llallzellbllyizg.

q/2> 1/q

The estimate of (1) is similar.
o Estimate of || IT3((AY%a)b)|| 4.

Ky

= sup / A1/4ajbjdx
L Al <1
LESREY,

1345

= sup [/Z > h(A*a;)b; dx—l—/th ~4(AY4a;)b; dx]

Il <L Ty

We estimate the last term [, - A/ ~* A a ;b dx.
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To this purpose we show that ) j AVA(hi=4p j) € H! and the conclusion follows from the
embedding H'/2(R) < BMO(R). We have

ZA1/4 hi b)) ” /(Zz]\hf b, )1 dx
/|hf 4|( 2J|b |2>1/2dx
< </Sljlp‘ q,>1/q/(/(szlbj|2>q/2)l/q

J
S Al 161wz

e Estimate of ||IT;(AY*(ab) — (AY4a)b)|| 4.

| m(a' @by — (A a)b) |

>~ sup /Zhj(Al/4(ajbj_4)—Aajbj_4)dx
J

7l o <1 ®

>~ sup /ij_4(A1/4(hj)aj—thaj)dx
Il <1

= sup / Zﬂb]f ‘) f Flh1;j€)Flalj(n—E)(1E1'> — In — &%) dk

1l 4 <1
R
by arguing as in (102)

< sup lallge [bllwizalikly
Al <1 ’
< llallzo 1l

This concludes the proof of Lemma B.4. O

In the next lemma we prove an estimate for the dual of the operator F introduced in (19). It is
defined as follows: given Q € L%(R), v e H/2(R) we have

F*(Q,v) = A4 (Qv) — AVAR(R(Q)V).

Lemma B.5. Let Q € L*(R), v € H'/2(R). Then

|AY4(Qv) — AVAR(R(Q)V) 45 S QI 211Vl 12 (104)
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Proof. e Estimate of IT;(A1/4(Q, v)).

Yoo 1/2
HHz(A]M(Q,U))”Hl :/< Z 2i(Qi—4)2(vi)2> dx

+00
< /\M(Q)\( > 2"<vl~>2> dx

SOl 2l gy

The estimate of ITo(AY*R((RQ)v)) is analogous to (105).
e Estimate of IT3(A'/4(Q, v)).

i+6
@y, =, 0 / Q) [ N Amh},

t=h—-5

/2
S osup IIhIIBgm/T/ |Qivildx
_ ,
Il <1 J

. 1/2 1/2
S <f221”i2dx> (/ZQizdx) =[Ol 2llvll g1s2-
R ! R ¢

The estimate of IT3(AY*R((RQ)v)) is analogous to (106).
o Estimate of ||H1(A1/4(Qv) — AV{AR(R o)v))ll B ®) We show that

|11 (AY4(Qv) — AV*R((RO)V)) =0.

” B?,I(R)

We have

[m(a(Qv) = AV*RROW) | o g

~  sup > (A4 Qv ™) = AVAR((RQ v/ ™)k dx

h -
I IIBgQOO<1 R

= sup D v QiA h — (RQHRAY R dx

h -
g, <1l

— fo [v/=*]F[Q;AY*h; — (ROHRAY*h;]dt

||h||
Flo 4 [ FropF[a (14 L 520 Y ay =
el l

|h|| Inl 1§ —n|

This concludes the proof of Lemma B.5. O

1347
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