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Abstract

In this note, we prove a fractional version in 1-D of the Bourgain-Brezis inequality [1]. We
show that such an inequality is equivalent to the fact that a holomorphic function f : D → C

belongs to the Bergman space A2(D), namely f ∈ L2(D), if and only if

‖f‖L1+H−1/2(S1) := lim sup
r→1−

‖f(reiθ)‖L1+H−1/2(S1) < +∞.

Possible generalisations to the higher-dimensional torus are explored.
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1 Introduction

In his pioneering work [12], Riesz studied fine properties of the so-called Hardy spaces Hp(D),
which are the spaces of holomorphic functions 1 f : D → C such that

sup
0<r<1

∫ 2π

0

|f(reiθ)|pdθ < +∞ (1)

∗Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.
1In 1915 Hardy observed that if f is holomorphic in D then r 7→ M(r) =

∫ 2π
0 |f(reiθ)|pdθ is a nondcreasing

function.
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for p > 0. Under condition (1), it is known that f(eiθ) exists and

lim
r→1−

∫ 2π

0

|f(reiθ)− f(eiθ)|pdθ = 0 as well as lim
r→1−

f(reiθ) = f(eiθ), (2)

for almost every θ, (see e.g. Section 4 [12]). For f ∈ Hp(D), one defines ‖f‖Hp(D) := ‖f‖Lp(S1).
We can independently consider holomorphic functions in L2(D) which corresponds to the well-

known Bergman space A2(D) 2, see e.g [6].
The connection between Hardy spaces and the Bergman space A2(D) is given by the embedding

H1(D) →֒ A2(D) together with the estimate

‖f‖L2(D) ≤ C‖f‖H1(D) := ‖f‖L1(S1). (3)

In the case limr→1− ‖f(reiθ)‖H−1/2(S1) < +∞, then, by definition, the following inequality holds
as well:

‖f‖L2(D) ≤ C‖f‖H−1/2(S1) := lim
r→1−

‖f(reiθ)‖H−1/2(S1). (4)

In this note, we prove the following combination of (3) and (4):

Theorem 1. Let f : D → C be an analytic function. Then f belongs to the Bergman space A2(D)
if and only if

‖f‖L1+H−1/2(S1) := lim sup
r→1−

‖f(reiθ)‖L1+H−1/2(S1) < +∞.

Moreover, it holds

‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1). (5)

Lastly, in section 7, we provide a proof of the inequalities (3) and (4).
This type of inequalities takes its roots in the pioneering work [1], where Bourgain and Brezis

proved the following striking result:

Theorem 2 (Lemma 1 in [1]). Let u be a 2π-periodic function in Rn such that
∫
Rn u dx = 0, and

let ∇u = f + g, where f ∈ Ẇ−1, n
n−1 (Rn)3 and g ∈ L1(Rn) are 2π-periodic vector-valued functions.

Then

‖u‖
L

n
n−1

≤ c
(
‖f‖

Ẇ
−1, n

n−1
+ ‖g‖L1

)
. (6)

By duality, this implies the following corollary:

Corollary 1 (Theorem 1 in [1]). For every 2π-periodic function h ∈ Ln(Rn) with
∫
Rn h = 0, there

exists a 2π-periodic v ∈ Ẇ 1,n ∩ L∞(Rn) satisfying

div v = h in Rn

and

‖v‖L∞ + ‖v‖Ẇ 1,n ≤ C(n)‖h‖Ln . (7)

One of the main result of this note is a fractional type Bourgain-Brezis inequality on the circle
S1 and on T n. More precisely, we have the following:

2We recall that A2(D) := {f : D → C : f holomorphic and ‖f‖L2(D) < +∞}
3For 1 < p < +∞, we will denote by Ẇ 1,p(Rn) the homogeneous Sobolev space defined as the space of f ∈

L1
loc(R

n) such that ∇f ∈ Lp(Rn) and by Ẇ−1,p′(Rn) the corresponding dual space (p′ is the conjugate of p). Every

function f ∈ Ẇ−1,p′(Rn) can be represented as f =
∑n

i=1 ∂xif
j with fj ∈ Lp′ (Rn).
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Theorem 3. Let u ∈ D′(S1) be such that (−∆)
1
4u,R(−∆)

1
4 u ∈ Ḣ− 1

2 (S1) + L1(S1).4 Then

u− −
∫
S1 u ∈ L2

∗(S
1) and the following estimate holds true:

∥∥∥∥u−−

∫

S1

u

∥∥∥∥
L2

≤ C
(
‖(−∆)1/4u‖Ḣ−1/2(S1)+L1(S1) + ‖R(−∆)1/4u‖Ḣ−1/2(S1)+L1(S1)

)
, (8)

for some C > 0 independent of u.

Theorem 4. Let u ∈ D′(T n) be complex-valued and such that:

(−∆)
n
4 u,Rj(−∆)

n
4 u ∈ (L1 + Ḣ−n

2 )(T n), ∀j ∈ {1, . . . n}.

Then we have u− −
∫
Tn udx ∈ L2

∗(T
n) with

∥∥∥u−−

∫

Tn

udx
∥∥∥
L2

≤ C


‖(−∆)n/4u‖L1+Ḣ−n/2(Tn) +

n∑

j=1

‖Rj(−∆)n/4u‖L1+Ḣ−n/2(Tn)


 , (9)

for some C > 0 independent of u.

The second main result is the equivalence between Theorems 1 and 3, establishing the connec-
tion between fractional Bourgain-Brezis inequalities and Bergman spaces. It would be interesting
to investigate a similar connection in dimensions n ≥ 2.

We would like to add some comments about Bourgain-Brezis’ inequality (6). The inequality (6)
in its general form is of interest in the study of the PDE div Y = f for f ∈ Ln

∗ (T
n), where for finite

p ≥ 1, Lp
∗(T n) denotes the Banach subspace of Lp-functions with vanishing mean over the torus.

Precisely, in [1] the authors found that Y can be chosen to be continuous and in Ẇ 1,n(T n), a result
which is non-trivial due to the fact that Ẇ 1,n(T n) does not continuously embed into L∞(T n). The
key ingredient in the proof is a duality argument based on an estimate similar to (6) and some
general results from functional analysis regarding closedness properties of the image space. This
motivates the general interest in inequalities of the same type, as improved regularity results in
limit cases can be invaluable. Indeed, later, such estimates have been considered and extended in
different directions. In [2] Bourgain and Brezis showed how Theorem 1 in [1] is closely connected to
a remarkable property concerning differential forms with coefficients in the critical Sobolev space
W 1,n(T n) and they got new regularity results for the Hodge decomposition. In [9] Maz’ya extended
the inequality (6) on the Sobolev space H1−n

2 (Rn) leading to a different existence result for the
PDE div Y = f . Finally in [10] Mironescu unified in 2 dimensions the two different approaches in
[1] and in [9] by using elementary properties of fundamental solutions of the biharmonic operator.
In [4], the first two authors of the current paper provide an alternative proof of (6) in 2 dimensions
without assuming the periodicity of the function u. The proof is related to some compensation
phenomena observed first in [5] in the analysis of 2-dimensional perfect incompressible fluids and
then also applied by Rivière in [13] in the analysis of isothermic surfaces. For an overview of the
results in the literature regarding variations of Theorem 2 and Corollary 1, we refer for instance
to the interesting paper by Van Schaftingen [16].

As seen in [4], the inequality (6) also represents the first key ingredient in the study of the
regularity of L2(D,Rn) solutions u to a linear elliptic system of the following form

div (S∇u) =

n∑

j=1

div (Sij ∇uj) =

n∑

j=1

2∑

α=1

∂

∂xα

(
Siju

j
xα

)
= 0, (10)

where S is a W 1,2(D) symmetric n× n matrix, such that S2 = idn.

4We denote by R and Rj the Riesz transform respectively on S1 and with respect to the xj variable on Tn, for
j ∈ {1, . . . , n} and by Ḣ−n

2 (Tn) the space of f ∈ D′(S1) such that f = (−∆)n/4g, with g ∈ L2(Tn). Recall that
L2
∗(S

1) := {u ∈ L2(S1) : −
∫
S1 u = 0}.
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We would like to mention some results on Riesz potentials showing that the 1-dimensional case
plays a particular role in the L1-estimates for Riesz potentials. More precisely, one can deduce
from the results in [15] that for all 0 < α < 1, we have:

‖Iαu‖
L

1
1−α

≤ C(‖Ru‖L1 + ‖u‖L1), (11)

for all u in the Hardy space H1(R). It follows in particular that:

‖u‖
L

1
1−α

≤ C(‖R(−∆)α/2u‖L1 + ‖(−∆)α/2u‖L1).

In [14], the authors show that if N ≥ 2 and 0 < α < N , then there is a constant C = C(α,N) > 0
such that

‖Iαu‖
L

N
N−α

≤ C‖Ru‖L1 (12)

for all u ∈ C∞
c (RN ), such that Ru ∈ L1(RN ). The estimate (12) is however false in 1-D, as seen

in [14].
The inequality (8) generalizes the inequality (11) in the case α = 1/2 and the counter-example

in [14] for the estimate (12) in 1-D shows that the estimate (8) is in some sense optimal.
We finally point out that it may be interesting to investigate a possible generalization of The-

orem 4 in the framework of nonlocal operators on differential forms as it has been done in [2].
The paper is organized as follows: In section 2, we recall the definitions of the fractional

Laplacian on the unit circle and on the torus. In section 3, we provide two distinct proofs of
Theorem 3. In section 4, we establish the equivalence of Theorem 1 and Theorem 3. In section 5,
we provide a short introduction of Clifford algebras and we extend the fractional Bourgain-Brezis
inequality using Clifford algebras to the n-dimensional torus T n. In section 6, we prove existence
results for certain fractional PDE-operators in the same spirit as Corollary 1. In section 7, we
provide a proof of the inequalities (3) and (4) for the reader’s convenience.

2 Fractional Laplacian on the unit circle and on the torus

Before we enter the discussion and the proofs of the main results, let us recall a few notions essential
in our later arguments. We mainly focus on fractional Laplacians, fractional Sobolev.

Throughout this note, we shall denote by T n the torus of dimension n ∈ N. This means:

T n = S1 × . . .× S1

︸ ︷︷ ︸
n times

= Rn/(2πZ)n (13)

where S1 = R/2πZ. We denote by D(T n) := C∞(T n) the Fréchet space of smooth functions on
T n and by D′(T n) its topological dual. The natural duality paring is denoted by 〈·, ·〉.

For u ∈ D′(T n) and m ∈ Zn, we define the Fourier coefficients of u as follows:

û(m) :=
1

(2π)n

∫

Tn

u(x)e−i〈m,x〉dx =
〈
u, e−i〈m,·〉

〉
. (14)

The Fourier coefficients completely determine u as a distribution on T n and convergence in the
sense of distributions obviously implies convergence of the Fourier coefficients. Notice that, for
all u ∈ D′(T n), there exists some N > 0 such that |û(m)| . (1 + |m|)N . Moreover, we recall
that v ∈ C∞(T n) if and only if the Fourier coefficients v̂(m) have rapid decay, i.e. supm(1 +
|m|)N |v̂(m)| < ∞ for all N > 0.

Given s ∈ R, we define the non-homogeneous and homogeneous Sobolev spaces respectively by

Hs(T n) :=

{
v ∈ D′(T n) : ‖v‖

2
Hs :=

∑

k∈Zn

(1 + |k|
2
)s |v̂(k)|

2
< ∞

}
,
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and

Ḣs(T n) :=

{
v ∈ D′(T n) : ‖v‖2Ḣs :=

∑

k∈Zn

|k|2s |v̂(k)|2 < ∞

}
,

where D′(T n) is again the space of distributions on T n. Notice that if s = 0, we have L2(T n) =
H0(T n) and L2

∗(T
n) ≃ Ḣ0(T n).

An important family of operators throughout our considerations are the so-called fractional

Laplacians. Let s > 0 be real, then we define for u : T n → C smooth the s-Laplacian of u by the
following multiplier property:

̂(−∆)su(m) = |m|2sû(m), ∀m ∈ Zn. (15)

Clearly, this definition can immediately be extended to the spaces Hs(T n) or even D′(T n) as a
multiplier operator on Fourier coefficients, possibly defining merely a distribution on T n. Finally,
we recall the definition of the j-Riesz transform on T n as a multiplier operator:

Rju(x) =
∑

m∈Zn

i
mj

|m|
û(m)ei〈m,x〉, ∀x ∈ T n. (16)

In particular, in the case n = 1, we have:

Ru(x) =
∑

m∈Z

i sign(m)û(m)eim·x, ∀x ∈ S1. (17)

3 Fractional Bourgain-Brezis inequality on the unit circle

S1

In this section, we provide two distinct proofs of Theorem 3. The first proof is in the spirit of
the one presented in [1], while the second one is inspired by that in [4] and is based on some
particular compensation phenomena. We assume for simplicity that u is real valued (the proof for
complex-valued function is completely analogous, see Remark 1).

First, we would like to observe that if u ∈ C∞(S1), then by definition:

∥∥∥∥u−−

∫

S1

u

∥∥∥∥
L2

≤ C‖(−∆)1/4u‖Ḣ−1/2(S1). (18)

On the other hand, as we have already observed in the introduction, we also have5:

∥∥∥∥u−−

∫

S1

u

∥∥∥∥
L2(S1)

≤ C
(
‖(−∆)1/4u‖L1(S1) + ‖R(−∆)1/4u‖L1(S1)

)
≃ ‖(−∆)1/4u‖H1(S1)(19)

3.1 A first proof of Theorem 3

Let us suppose that u ∈ C∞(S1), −
∫
S1 u = 0. We assume for simplicity that u is real-valued, see

Remark 1 for the complex-valued case. The proof below follows the main arguments of the original
proof by Bourgain and Brezis. We write:





(−∆)1/4u = f1 + g1

R(−∆)1/4u = f2 + g2
(20)

5Actually, an even sharper inequality than (19) holds true with L2(S1) being replaced by the smaller Lorentz
space L2,1(S1).
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where f1, f2 ∈ Ḣ−1/2(S1), g1, g2 ∈ L1(S1). We set u =
∑

n∈Z∗ une
inθ. Since u is real-valued, it

holds ūn = u−n. We see:

∑

n∈Z∗

|un|
2 =

∑

n∈Z∗

|n|1/2un
u−n

|n|1/2
=
∑

n∈Z∗

f1
n + g1n
|n|1/2

u−n, (21)

∑

n∈Z∗

f1
n u−n

|n|1/2
≤

[∑

n∈Z∗

|f1
n|

2

|n|

]1/2 [∑

n∈Z∗

|un|
2

]1/2
, (22)

∑

n∈Z∗

g1n u−n

|n|1/2
=

∑

n>0

g1n u−n

|n|1/2
+
∑

n<0

g1n u−n

|n|1/2
. (23)

Observe that by definition of the Riesz transform:

R(−∆)1/4u = i

[
−
∑

n<0

|n|1/2une
inθ +

∑

n>0

|n|1/2une
inθ

]
. (24)

Therefore:

un =





f2
n+g2

n

−i|n|1/2 if n < 0

f2
n+g2

n

i|n|1/2 if n > 0

(25)

By combining (23) and (25), we obtain:

∑

n∈Z∗

g1n u−n

|n|1/2
=

∑

n>0

g1n
f2
−n + g2−n

−i|n|
+
∑

n<0

g1n
f2
−n + g2−n

i|n|
. (26)

Let us estimate the different parts of the sum (26) individually:

1. We first estimate

∑

n∈Z∗

sign(n)
g1n f2

−n

|n|
=

∑

n∈Z∗

sign(n)
|n|1/2un − f1

n

|n|1/2
f2
−n

|n|1/2

≤

(∑

n∈Z∗

|un|
2

)1/2(∑

n∈Z∗

|f2
n|

2

|n|

)1/2

+

(∑

n∈Z∗

|f1
n|

2

|n|

)1/2(∑

n∈Z∗

|f2
n|

2

|n|

)1/2

≤ ‖u‖L2‖f2‖Ḣ−1/2 + ‖f1‖Ḣ−1/2‖f
2‖Ḣ−1/2 . (27)

2. It remains to estimate ∑

n∈Z∗

sign(n)
g1n g

2
−n

i|n|
.

For this purpose, we consider the following operator:

A : L1(S1)× L1(S1) → C, (g1, g2) 7→
∑

n∈Z∗

sign(n)
g1n g

2
−n

i|n|
.

Claim 1. The operator A is continuous, i.e. we have the following estimate:

|A(g1, g2)| ≤ C‖g1‖L1‖g2‖L1. (28)
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Proof of Claim 1. It is sufficient to prove the claim in the case where g1 and g2 are arbitrary
Dirac-delta measures.6 Therefore, we consider g1 =

∑
i∈I λiδai and g2 =

∑
j∈J µjδbj . We have

‖g1‖M(S1) =
∑

i∈I |λi|, ‖g
2‖M(S1) =

∑
j∈J |µj |. By bilinearity, we deduce:

|A(g1, g2)| = |A(
∑

i∈I

λiδai ,
∑

j∈J

µjδbj )|

≤
∑

i∈I,j∈J

|λi||µ
j ||A(δai , δbj )|

≤ sup
(a,b)∈S1×S1

|A(δa, δb)|
∑

i∈I

|λi|
∑

j∈J

|µj |

= sup
(a,b)∈S1×S1

|A(δa, δb)|‖g
1‖M(S1)|‖g

2‖M(S1). (29)

If sup(a,b)∈S1×S1 |A(δa, δb)| < +∞, then the claim holds for linear combinations of Dirac measures.

By a density argument, we get claim 1 for arbitrary g1, g2 ∈ L1(S1). Hence, claim 1 is a consequence
of the following:
Claim 2. sup(a,b)∈S1×S1 |A(δa, δb)| < +∞.

Proof of Claim 2. For g1 = δa and g2 = δb , we have g1n = eina and g2n = einb. In this case, we
observe:

A(δa, δb) =
∑

n∈Z∗

sign(n)
g1ng

2
−n

i|n|

=
∑

n∈Z∗

sign(n)
ein(a−b)

i|n|
= 2

∑

n>0

sin(n(a− b))

n
< +∞.7 (30)

This proves claim 2 and from (30), we can deduce claim 1 as well.

By combining (21)-(29) we get

‖u‖2L2 . ‖u‖L2

(
‖f1‖Ḣ−1/2 + ‖f2‖Ḣ−1/2

)
+ ‖f1‖Ḣ−1/2‖f

2‖Ḣ−1/2 + C‖g1‖L1‖g2‖L1

.
1

2
‖u‖2L2 +

1

2

(
‖f1‖2

Ḣ−1/2 + ‖f2‖2
Ḣ−1/2

)
+ ‖f1‖Ḣ−1/2‖f

2‖Ḣ−1/2 + C‖g1‖L1‖g2‖L1

.
1

2
‖u‖2L2 +

(
‖f1‖2

Ḣ−1/2 + ‖f2‖2
Ḣ−1/2

)
+

1

2

(
‖g1‖2L1 + ‖g2‖2L1

)
. (31)

This estimate permits us to conclude the proof of Theorem 3. Since f1, f2, g1, g2 were arbitrary,
one can deduce (8). In the general case where u ∈ D′(S1), one argues by approximation (see
section 3.2 for further details). �

6We recall that the linear span of Dirac measures is dense in the space of Radon measures M(S1) equipped with
the weak-* topology.

7The value of such a series is deduced from the Fourier series of f(x) = x
2π

for 0 < x < 2π and f(x+2π) = f(x).
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3.2 A second proof of Theorem 3

As in the first proof, we will show the following: Let u ∈ D′(S1) be such that:

(−∆)
1
4u = f1 + g1 (32)

R(−∆)
1
4u = f2 + g2, (33)

where f1, f2 ∈ Ḣ− 1
2 (S1) and g1, g2 ∈ L1(S1). Under these conditions, we prove:

u−

∫

S1

udx ∈ L2
∗(S

1) =

{
u ∈ L2(S1) : −

∫

S1

u = 0

}
, (34)

together with the following estimate:

∥∥∥u−

∫

S1

udx
∥∥∥
L2

≤ C
(
‖f1‖

Ḣ−
1
2
+ ‖f2‖

Ḣ−
1
2
+ ‖g1‖L1 + ‖g2‖L1

)
, (35)

where C > 0 is independent of f1, f2, g1, g2 and u. We may assume for simplicity that u is
real-valued (see Remark 1 for the complex-valued case).

Firstly, observe that it suffices to consider the case:
∫

S1

udx = 2π · û(0) = 0, (36)

by merely changing u by a constant. Similarly, by the conditions in (32) and (33), we see that
f j, gj have vanishing integral over S1 and consequently vanishing Fourier coefficient for n = 0.8

For now, let us assume that u, f j, gj are all smooth on S1. The general case can be dealt with
using convolution with an appropriate smoothing kernel and approximation arguments as specified
at the end of the proof.

First, let us define the following operators on D′(S1):

Dv := (−∆)
1
4

(
Id+R

)
v (37)

Dv := (−∆)
1
4

(
Id−R

)
v, (38)

for every v ∈ D′(S1). Consequently, using (32) and (33), we have:

Du = f1 + f2 + g1 + g2 = f + g (39)

Du = f1 − f2 + g1 − g2 = f̃ + g̃. (40)

Let us calculate the Fourier multipliers associated with D,D. For every n ∈ Z, we have:

F
(
Dv
)
(n) = |n|

1
2 (1 + i sign(n))v̂(n) (41)

F
(
Dv
)
(n) = |n|

1
2 (1 − i sign(n))v̂(n) (42)

Claim 1: Given f ∈ Ḣ−1/2(S1), there is a real-valued function F ∈ L2
∗(S

1)9, such that DF = f .
Proof of the Claim 1 In order to solve DF = f , we should have:

F̂ (n) =
1

1 + i sign(n)

f̂(n)√
|n|

, if n 6= 0 (43)

8It would be possible to treat fj , gj with non-vanishing integral, i.e. treat the case (−∆)1/4u,R(−∆)1/4u ∈

L1 +H−1/2(S1) by reducing to vanishing Fourier coefficient at n = 0: We have by the conditions f̂j(0) = −ĝj(0).

Note that |ĝj(0)| . ‖gj‖L1 . Note that ‖fj‖2
H−1/2 ≃ |f̂j(0)|2 + ‖f̃j‖2

Ḣ−1/2 , where f̃j denotes the corrected fj with

vanishing 0th Fourier coefficient. Thus, we could reduce to the case of vanishing integral.
9The observation that F may be chosen real-valued is due to F̂ (−n) = F̂ (n) for all n.
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Using the fact that the L2-norm of F can be characterized in terms of the l2-norm of the Fourier
coefficients, we obtain:

‖F‖2L2 =
∑

n6=0

1

|1 + i sign(n)|2
|f̂(n)|2

|n|

≤
∑

n6=0

|f̂(n)|2

|n|

= ‖f‖2
Ḣ−

1
2
, (44)

where we used the definition of the Ḣ− 1
2 -norm. Observe that a converse inequality could be ob-

tained along the same lines.

Next, by defining ũ := u− F , we observe that due to (39):

Dũ = g. (45)

Let now w ∈ D′(S1) real-valued be such that Dw = ũ and ŵ(0) = 0. Once more, existence of such
a distribution w is easily deduced using Fourier coefficients. We would like to emphasise at this
point that due to the assumed smoothness of u, f j, gj, w is smooth as well, as is F .

By (45), we thus notice:
D2w = g. (46)

Going over to Fourier coefficients, we see that for every n ∈ Z∗:

F
(
D2w

)
(n) = (1 + i sign(n))2|n|ŵ(n) = 2i sign(n)|n|ŵ(n) = 2inŵ(n) = ĝ(n), (47)

or by rearranging:

ŵ(n) = −
i

2

ĝ(n)

n
. (48)

Next, we are going to find a suitable distribution K with coefficients K̂(n) = − i
2n , in order to

express w as a convolution of g with K. To this end, let us consider the function k : [−π, π] → R

defined by:

k(x) =

{
x+ π, if x < 0

x− π, if x > 0
(49)

By slight abuse of notation, let us identify k with its 2π-periodic extension, therefore k : S1 → R.
We calculate the Fourier coefficients of k: If n = 0, it is obvious due to anti-symmetry that k̂(0) = 0.
Otherwise, we have n 6= 0 and so by using integration by parts:

k̂(n) =
1

2π

∫ π

−π

k(x)e−inxdx

=
1

2π

(∫ 0

−π

(x+ π)e−inxdx+

∫ π

0

(x− π)e−inxdx
)

=
1

2π

∫ π

0

(π − x)einx − (π − x)e−inxdx

=
i

π

∫ π

0

(π − x) sin(nx)dx

=
i

n
−

i

π

∫ π

0

cos(nx)

n
dx =

i

n
. (50)
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Consequently, observe that K = − 1
2k precisely yields the desired distribution. Let us notice that

K is therefore bounded and measurable on S1, thanks to the explicit formula for k.

Using (48) and the convolution formula for Fourier coefficients, namely:

f̂ ∗ g(n) = 2πf̂(n)ĝ(n), ∀n ∈ Z, (51)

it is clear that:

w =
1

2π
K ∗ g. (52)

From (52), we obtain by using Young’s inequality on S1:

‖w‖L∞ ≤
1

2π
‖K‖L∞‖g‖L1 =

1

4
‖g‖L1. (53)

To conclude the first part of the proof, let us observe the following10:

∫

S1

(u− F )2dx =

∫

S1

Dw(u − F )dx

≃
∑

n∈Z

D̂w(n)û − F (−n)

=
∑

n∈Z

|n|
1
2 (1 + i sign(n))ŵ(n)û − F (−n)

=
∑

n∈Z

ŵ(n) · |n|
1
2 (1− i sign(−n))û− F (−n)

≃

∫

S1

wD(u − F )dx

=

∫

S1

wDudx−

∫

S1

wDFdx

=

∫

S1

wg̃dx+

∫

S1

wf̃dx −

∫

S1

wDFdx (54)

where we used the Fourier representation of the distribution u− F to justify the second equation.
Observe that this enables us to estimate:

∣∣∣
∫

S1

wg̃dx
∣∣∣ ≤ ‖w‖L∞‖g̃‖L1 ≤

1

4

(
‖g1‖L1 + ‖g2‖L1

)2
, (55)

and: ∣∣∣
∫

S1

wDFdx
∣∣∣ ≤ ‖w‖

Ḣ
1
2
‖DF‖

Ḣ−
1
2
≤ C‖u− F‖L2‖f‖

Ḣ−
1
2
. (56)

The remaining summand may be estimated completely analogous to (56). Notice that we used
the explicit definition of the norms of Sobolev spaces with negative exponents and the Fourier
multipliers to obtain (56), see (44) for the main ideas. Using (55) and (56) yields:

‖u− F‖2L2 ≤
1

4

(
‖g1‖L1 + ‖g2‖L1

)2
+ 2C‖u− F‖L2‖f‖

Ḣ−
1
2

≤
1

4

(
‖g1‖L1 + ‖g2‖L1

)2
+

1

2
‖u− F‖2L2 +

4C2

2
‖f‖2

Ḣ−
1
2
, (57)

10This will actually be the first and only point in the proof where we use the fact that u is real-valued in a
meaningful way. See Remark 1 for an extension to complex-valued distributions.
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using the arithmetic-geometric mean inequality. Note that the factor 2C is due to estimate (56)
also applying to the integral of wf̃ . By absorbing the L2-norm of u− F , we arrive at:

‖u− F‖2L2 ≤
1

2

(
‖g1‖L1 + ‖g2‖L1

)2
+ 4C2‖f‖2

Ḣ−
1
2

≤ max{
1

2
, 4C2}

(
‖g1‖L1 + ‖g2‖L1 + ‖f1‖

Ḣ−
1
2
+ ‖f2‖

Ḣ−
1
2

)2
. (58)

Consequently, by estimating the L2-norm of F by the Ḣ− 1
2 -norm of f1, f2 using (44), we immedi-

ately conclude:
‖u‖L2 ≤ C̃

(
‖g1‖L1 + ‖g2‖L1 + ‖f1‖

Ḣ−
1
2
+ ‖f2‖

Ḣ−
1
2

)
. (59)

The constant C̃ > 0 appearing in the estimate is independent of u, f j, gj.

Now, for a general distribution u ∈ D′(S1) with û(0) = 0, let us observe that if we convolute u
with a smooth function ϕ, the resulting distribution ϕ ∗u will be a smooth function as well (in the
sense of regular distributions). By a direct computation, (32) and (33) will continue to hold true if
we replace u, f j, gj by their corresponding convolutions with ϕ. This is an immediate consequence
of the fact that the operators (−∆)

1
4 ,R are Fourier multipliers as well as the linearity of convo-

lutions. Choosing ϕ to be supported on arbitrarily small neighbourhoods of the neutral element
in S1 (i.e. an approximation of the identity ϕε) ensures that the convolutions of ϕ with f j , gj

converge in the respective norms as we collapse the support of ϕ (i.e. let the parameter ε in ϕε

tend to 0) and the approximations of u converge in the distributional sense. As a result, we obtain
uniform bounds in the respective spaces. This results in an uniform L2-bound for u convoluted
with ϕε independent of ε, which can be seen to imply u ∈ L2

∗(S
1) by using a weak-L2-convergent

subsequence. The estimate follows by the lower semi-continuity of the norm. This concludes our
proof. �

Remark 1. Before we enter the discussion of applications and later a generalisation of Theorem

3, let us quickly discuss the assumption that u is real-valued. In fact, this is merely used at a single

point in the proof, namely in (54). However, if we proceed similar to the proof of the generalised

result in section 5, i.e. we use:

∫

S1

|u− F |2dx =

∫

S1

(u− F ) · u− Fdx =

∫

S1

Dw · u− Fdx ∼
∑

n∈Z

D̂w(n) · û− F (n), (60)

we can easily avoid the use of properties of real-valued distributions. The remainder of the proof

follows then completely analogous, i.e. we can remove the assumption of u being real-valued effort-

lessly. Indeed, this slight generalization will be key to our applications to Bergman spaces below.

4 Fractional Bourgain-Brezis inequality in the Bergman

space A2(D)

We start with the Proof of Theorem 1.

Let us consider an analytic function f : D → C such that lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞.

Now let us write f(z) =
∑

n≥0 fnz
n and u(eiθ) =

∑
n≥1

fn√
n
einθ. We first observe that f − f(0) =∑

n≥1 fnz
n.

1. Assume first that f(eiθ) = g(eiθ) + h(eiθ) with g ∈ L1(S1) and h ∈ H−1/2(S1). Then:

f(eiθ)− f(0) = g −−

∫

S1

g + h− ĥ(0).
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Note that h− ĥ(0) ∈ Ḣ−1/2(S1) with the norm being controlled by ‖h‖H−1/2(S1). We observe that,
using the explicit definitions of the norm:

∥∥∥g −−

∫

S1

g
∥∥∥
L1(S1)

+ ‖h− ĥ(0)‖Ḣ−1/2(S1) . ‖g‖L1(S1) + ‖h‖H−1/2(S1)

Therefore, we may conclude by taking the infimum over all such g, h:

‖f − f(0)‖L1+Ḣ−1/2(S1) ≤ C‖f‖L1+H−1/2(S1). (61)

Assume therefore first that

f(eiθ)− f(0) =
∑

n≥1

fne
inθ ∈ L1 + Ḣ−1/2(S1).

In this case, we get (−∆)1/4u = f − f(0) ∈ L1 + Ḣ−1/2(S1). Additionally, we observe that since
u contains only positive frequencies, we trivially have R(−∆)1/4u ∈ L1 + Ḣ−1/2(S1) as well with

‖R(−∆)1/4u‖L1+Ḣ−1/2(S1) = ‖(−∆)1/4u‖L1+Ḣ−1/2(S1).

From the inequality (8), observing that −
∫
S1 u = 0, we deduce that

‖u‖L2(S1) ≤ C‖(−∆)1/4u‖(L1+Ḣ−1/2)(S1) = C‖f − f(0)‖L1+Ḣ−1/2(S1) ≤ C′‖f‖L1+H−1/2(S1),

where we used (61). Hence
∑

n>0
fn
n einθ ∈ H1/2(S1) and g(z) =

∑
n>0

fn
n zn ∈ H1(D). We have

g′(z) =
∑

n≥0 fn+1z
n ∈ L2(D) and

‖f(z)− f(0)‖L2(D) = ‖zg′(z)‖L2(D)

≤ C‖g‖H1/2(S1) = C‖u‖L2(S1)

≤ C‖f‖L1+H−1/2(S1). (62)

The desired estimate follows by the triangle inequality, if we can show:

|f(0)| ≤ C‖f‖L1+H−1/2(S1)

To achieve this, let us decompose f = g + h with g ∈ L1(S1) as well as h ∈ H−1/2(S1). Then we
denote as usual the Fourier coefficients of g, h by gn, hn for all n ∈ Z and define:

G(z) :=
∑

n≥0

gnz
n +

∑

n<0

gnz
|n|, H(z) :=

∑

n≥0

hnz
n +

∑

n<0

hnz
|n|.

By the summability properties, these define harmonic functions on D having boundary values g, h
respectively. By comparison of the coefficients, we also observe:

f(z) = G(z) +H(z),

in particular for z = 0. Moreover, by the mean value property of harmonic functions over the
boundary of the disc, we can deduce:

|G(0)| . ‖g‖L1(S1).

Using the mean value property over the entire disc, we similarily see by Hölder’s inequality:

|H(0)| . ‖H‖L1(D) . ‖H‖L2(D).



13

It is easy to verify by a direct computation analogous to the same characterisation of the norm in
A2(D) that:

‖H‖2L2(D) ∼
∑

n∈Z

|hn|
2

|n|+ 1
≤ ‖h‖H−1/2(S1).

In conclusion, we have:
|f(0)| ≤ C

(
‖g‖L1(S1) + ‖h‖H−1/2(S1)

)
.

By taking the infimum over g, h such that f = g + h we get

|f(0)| ≤ C‖f‖L1+H−1/2(S1) (63)

By combining (62) and (63), we obtain the desired estimate:

‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1). (64)

2. In the general case when lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞, we consider for every

0 < r < 1 the function fr(z) = f(rz) ∈ C∞(B̄(0, 1)). We can apply (62) to fr and obtain that

‖fr‖L2(D) ≤ C‖fr‖L1+H−1/2(S1). (65)

Since by assumption lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞, we deduce that

sup
0<r<1

‖fr‖L2(D) < +∞. (66)

The inequality implies that actually f ∈ L2(D) as well as11 and

‖f‖L2(D) ≤ C‖f‖L1+H−1/2(S1). (69)

Conversely, let f : D → C be in A2(D2). We write f(z) =
∑∞

n=0 anz
n. We prove the following:

Claim: lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞.

Proof of the claim. We show that lim supr→1− ‖f(reiθ)‖H−1/2(S1) < +∞. For every 0 < r < 1,

we set fr(z) = f(rz) ∈ C∞(B̄(0, 1)). Since f ∈ L2(D), we have

lim sup
r→1−

‖fr‖L2(D) = ‖f‖L2(D). (70)

Moreover

‖fr‖
2
H−1/2(S1) =

∑

n≥0

|fn|
2

1 + n
r2n (71)

11Let f(z) =
∑

n≥0 fnz
n We observe that

‖fr‖
2
L2(D)

=

∫ 1

0

∫ 2π

0
|f(ρreiθ)|2ρdθdρ

= 2π

∫ 1

0

∞∑

n=0

|an|
2r2nρ2n+1dρ = 2π

∞∑

n=0

|an|2r2n

2n+ 2
. (67)

and similarily

‖f‖2
L2(D)

= 2π
∞∑

n=0

|an|2

2n+ 2
. (68)

From (66) and extracting a weakly convergent subsequence which by convergence of the Fourier coefficients must
have limit f , it follows that ‖f‖2

L2(D)
< +∞ and Abel’s Theorem on power series yields that

lim
r→1−

‖fr‖
2
L2(D)

= ‖f‖2
L2(D)

.
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and

∫

D

|fr|
2 = 2π

∫ 1

0

∑

n≥0

|fn|
2r2ns2nsds ≃

∑

n≥0

|fn|
2

2n+ 2
r2n

≃
1

2

∑

n≥0

|fn|
2

n+ 1
r2n ≃ ‖fr‖H−1/2(S1). (72)

By combining (70) and (72), we get that

lim sup
r→1−

‖fr‖H−1/2(S1) . ‖f‖L2(D) < +∞. (73)

We conclude the proof. �

Next we show that Theorem 1 is actually equivalent to Theorem 3.

Proposition 4.1. Theorem 1 implies Theorem 3. Therefore, they are equivalent.

Proof. We have already seen in the proof of Theorem 1 that Theorem 3 implies the fact that a
holomorphic function with the property that lim supr→1− ‖f(reiθ)‖L1+H−1/2(S1) < +∞ is in L2(D),

namely it belongs to the Bergman space A2(D).
Conversely, let us consider u ∈ C∞(S1) such that (−∆)1/4u,R(−∆)1/4u ∈ L1 + Ḣ−1/2(S1).

We assume that
∫ 2π

0
u(eiθ)dθ = 0. We decompose u = u+ + u−, where

u+ =
∑

n>0

une
inθ, u− =

∑

n<0

une
inθ.

Let us first consider u+. By assumption we have
∑

n≥1 n
1/2une

inθ = 1/2((−∆)1/4u−iR(−∆)1/4u) ∈

L1 + Ḣ−1/2(S1). Let f(z) =
∑

n≥1 n
1/2unz

n be the harmonic extension of v = (−∆)1/4u+ in D.

From Theorem 1, it follows that f+ =
∑

n>0 n
1/2unz

n ∈ L2(D) and

‖f+‖L2(D) ≤ C‖f+‖L1+H−1/2(S1) ≤ ‖(−∆)1/4u+‖L1+Ḣ−1/2(S1).

Switching to the homogeneous Sobolev space is possible, as we have Ḣ−1/2(S1) ⊂ H−1/2(S1)
continuously embedded. Since f+(z) =

∑
n>0 n

1/2unz
n ∈ L2(D), it follows that

∑
n>0

un

n1/2 z
n ∈

H1(D) and therefore
∑

n>0
un

n1/2 e
inθ ∈ Ḣ1/2(S1). Hence u+ ∈ L2(S1) with

‖u+‖L2(S1) ≤ C‖(−∆)1/4u+‖L1+Ḣ−1/2(S1)

≤ C
(
‖(−∆)1/4u‖L1+Ḣ−1/2(S1) + ‖R(−∆)1/4u‖L1+Ḣ−1/2(S1)

)
. (74)

The same arguments hold for u−. We conclude the proof. �

5 The Bourgain-Brezis Inequality on the Torus Tn
,n ≥ 2

In this section, we are going to prove Theorem 4 which generalises the result from Theorem 3 to
domains of dimension n ≥ 2. To achieve this while retaining the general structure of the proof, we
first have to determine the right set of conditions and the appropriate domain. Observe that it is
clear, due to the proof for S1 heavily relying on Fourier series, that the natural domain for such
a generalisation is the torus T n. In investigating generalisations of the proof, we have to focus on
two aspects: Clifford algebras and boundedness of the kernel. In the first part of the proof we
introduce complex Clifford algebras and show how to generalize the argument presented in section
3.2. The results and properties of Clifford algebras are due to [7] and [8] and are briefly discussed
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in section 5.1 below. In the second part of the proof we show that the kernel used is actually
bounded, following an argument presented in [1, p.405-406]. In the case n = 1, we have seen that k
has an explicit description as a sawtooth function. In higher dimensions, unfortunately, we are not
aware of an explicit formula for the kernel. However, due to some estimates on alternating sums,
we can remedy this lack of explicit representation and derive the crucial properties abstractly.

5.1 A short introduction to Clifford algebras

The material covered here is due to [7] and [8] and we refer to them for further details on the
topics introduced. For the remainder of this subsection, let K ∈ {R,C} denote a scalar field and
V a finite dimensional K-vector space. Let Q : V → K be a map, such that:

1.) For all λ ∈ K and v ∈ V , we have: Q(λv) = λ2 ·Q(v).

2.) The map B(v, w) := 1
2

(
Q(v + w) −Q(v)−Q(w)

)
defines a K-bilinear map on V × V .

Such a Q will be called a quadratic form and the pair (V,Q) a quadratic space. Standard examples
include real vector spaces equipped with scalar products, but not complex vector spaces with scalar
products due to complex anti-linearity in the second argument. Inspired by this example, we say
that a basis e1, . . . , en of a quadratic space (V,Q) is B-orthonormal, if for all j ∈ {1, . . . , n}, we
have |Q(ej)| = 1 as well as:

B(ej , ek) = 0, ∀j 6= k ∈ {1, . . . , n}. (75)

Given such a quadratic space (V,Q), we call a pair (A, ν) a Clifford algebra for (V,Q), if the
following holds, see [7, p.8, (2.1)]:

i.) A is an associative algebra with unit 1 and ν : V → A is K-linear and injective.

ii.) A is generated as an algebra by ν(V ) and K · 1.

iii.) For every v ∈ V , we have: ν(v)2 = −Q(v) · 1

An important immediate corollary of the definition is the following commutation relation:

ν(v)ν(w) + ν(w)ν(v) = −2B(v, w) · 1, ∀v, w ∈ V. (76)

Thus, pairs of orthogonal vectors with respect to B anti-commute as elements in A. We usually
omit explicitly mentioning ν and therefore identify v with ν(v), which is justified due to ν being
injective.

For the remainder of the section, let us focus on (V,Q) non-degenerate, i.e. for all v ∈ V , there
is a w ∈ V , such that B(v, w) 6= 0. In this case, there actually exists a basis e1, . . . , en, where
n = dimK V , orthonormal with respect to B and, consequently, such that:

ejek + ekej = ±2δjk · 1, ∀j, k ∈ {1, . . . , n}, (77)

(see e.g. Theorem 1.5 in [7]). The signs are determined by the signature of the quadratic form
Q and may vary for different choices j, k. Provided K = C, we may assume that all signs are the
same, see [7].

It can be shown that every Clifford algebra has K-dimension at most 2n. If the dimension is
equal to 2n, the Clifford algebra is called universal.12 An important result in [7, Thm. 2.7] states
that there always exists a universal Clifford algebra for any given quadratic space. Moreover, there
exist explicit descriptions of all universal Clifford algebras up to isomorphisms in terms of matrices,

12This definition is justified, as universal Clifford algebras A have an extension property for linear maps from V

to any Clifford algebra respecting the characteristic multiplication relation in A, see [7].
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see [7].

To conclude this brief treatment of Clifford algebras, let us provide an explicit example: Let
V = Cn, K = C and define Q as follows:

Q(z1, . . . , zn) :=

n∑

j=1

z2j , ∀(z1, . . . , zn) ∈ Cn. (78)

It is clear that (V,Q) is a non-degenerate quadratic space, as B is the standard scalar product
up to a complex conjugation in the second argument. In this case, the standard basis e1, . . . , en
already is B-orthonormal. Thus, we have:

ejek + ekej = −2δjk · 1, ∀j, k ∈ {1, . . . , n}. (79)

The universal Clifford algebra is then spanned by the finite products eα of the basis elements,
where α ⊂ {1, . . . , n} is an ordered subset and we define:

eα =
∏

j∈α

ej

In particular, e∅ = 1 by definition. It can be seen that every complex universal Clifford algebra
associated with a non-degenerate quadratic space of dimension n is isomorphic to this one, see [7]
and the definition of universal Clifford algebra presented there.

Lastly, let us introduce a few definitions from Chapter 1, Section 7 in [7]: We may identify the
universal Clifford algebra A as a vector space with K2n , if dimK V = n. This allows us to generalize
the natural scalar product-induced norm on K2n to the Clifford algebra and we shall denote this
norm by ‖ · ‖. Moreover, there is a notion of conjugation on Clifford algebras defined by:

ej1 . . . ejk := (−1)kQ(ej1) . . . Q(ejk) · ejk . . . ej1 = (−1)
k(k+1)

2 Q(ej1) . . . Q(ejk) · ej1 . . . ejk , (80)

and extending linearily. If K = C, we also conjugate the complex coefficients in the usual manner,
i.e. we extend complex anti-linearily. We highlight the following key property of the conjugation:

xy = y · x, ∀x, y ∈ A. (81)

This is due to the inversion of factors in (80). We emphasise that the definition in (80) is precisely
made with the identity below in mind:

ej1 . . . ejk · ej1 . . . ejk = 1. (82)

The following property will be useful later as well: Let x ∈ A be given and denote by P0 the
linear projection of an element in the Clifford algebra to the coefficient associated with the neutral
element 1. More precisely, P0 : A → K is the following linear map:

P0

(∑

α

xαeα

)
= x∅

We have by a direct computation:

P0(xx) =
∑

α⊂{1,...,n}
xαxα

= ‖x‖2, (83)

where we wrote explicitly x =
∑

α⊂{1,...,n} xαeα with xα ∈ K. It suffices to observe that eα · eβ has
non-vanishing contribution in the e∅ = 1-direction, if and only if α = β. The formula then follows.
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5.2 Proof of Theorem 4.

Let us first note that, if we take T n with n ≥ 2, there are n different Riesz transforms, one for
each basis direction. This suggests that the right conditions should involve some restriction on
each of the Riesz transforms. In addition, considering the symbol of D2, we see that we rely some
cancellation property stemming from the complex nature of i. 13 Therefore, a natural way to
obtain a generalisation would involve Clifford algebras to include sufficiently many anticommuting
complex units.

Firstly, it is immediate that the same simplifications as in the case n = 1 apply here. So we
may assume û(0) = 0. Throughout most of this proof, the coefficient m = 0 will be implicitly
omitted, as it will be vanishing for all functions/distributions considered. Moreover, the reduction
to smooth functions applies equally well in this case. Therefore, we may assume without loss of
generality that u, f j, gj are all smooth.

The heart of the argument lies in the correct definition of D and D on T n. As mentioned in
the introduction of the current section, Clifford algebras and their set of complex units actually
provide the desired framework. Let Cn denote the universal complex Clifford algebra associated
with the quadratic space (Cn, Q), where:

Q(z1, . . . , zn) := −

n∑

j=1

z2j , ∀(z1, . . . , zn) ∈ Cn. (84)

We emphasise that the particular choice of Q is at odds with usual conventions for complex
Clifford algebras, but using our quadratic form, we obtain the appropriate basis commutation
relations while remaining isomorphic to the usual convention. One could reduce to the usual
defining quadratic form by choosing i · ej instead of the standard basis ej throughout our proof. In
fact, the main reason why we decided to use our convention is to use the Riesz operators in their
usual form.
Observe that we then have, for the standard basis denoted by e1, . . . , en:

ejek + ekej = 2δjk, ∀j, k ∈ {1, . . . , n}, (85)

simply by the definition of Clifford algebras and the quadratic form Q. We define now for any
v ∈ C∞(T n,C):

Dv = ∆
n
4 (Id+

n∑

j=1

ejR
j)v (86)

Dv = ∆
n
4 (Id−

n∑

j=1

ejR
j)v. (87)

We emphasise the similarity with [7, (5.14)] used in the context of Hardy spaces. The crucial
observation for our purposes is the following multiplier property for Fourier series for everym ∈ Zn:

F(Dv)(m) = |m|
n
2

(
1 +

n∑

j=1

ej · i
mj

|m|

)
F(v)(m) (88)

F(Dv)(m) = |m|
n
2

(
1−

n∑

j=1

ej · i
mj

|m|

)
F(v)(m), (89)

where |m| denotes the Euclidean norm on Zn. We highlight that at this point, we know that Du
and Du are functions in L1 + Ḣ−n

2 (T n,Cn). Completely analogous to the proof of Theorem 3,

13This refers to the property i2 = −1 which was key to reduce the multiplier of D2 to a simpler form.
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we may find F ∈ L2 (due to the invertibility of non-zero vectors v ∈ Rn in Cn
14). To be precise,

observe that if DF = f , f and g are defined to satisfy Du = f + g by splitting the terms f j, gj in
the natural way, then:

∀m 6= 0 : |m|
n
2

(
1 +

n∑

j=1

ej · i
mj

|m|

)
F̂ (m) = f̂(m), (90)

which may be rewritten as:

F̂ (m) =
1

2|m|
n
2

(
1−

n∑

j=1

ej · i
mj

|m|

)
f̂(m), (91)

by using the multiplication relations and associativity on Cn. To conclude that F ∈ L2, it suffices
to check summability of the Fourier coefficients:

∑

m∈Zn\{0}
‖F̂ (m)‖2 =

∑

m 6=0

∥∥∥ 1

2|m|
n
2

(
1−

n∑

j=1

ej · i
mj

|m|

)
f̂(m)

∥∥∥
2

.
∑

m 6=0

1

|m|n
‖f̂(m)‖2

. ‖f‖2
Ḣ−

n
2
< +∞. (92)

We mention here that the characterisations for regularity and integrability carry over without
problem, even if we use Clifford algebra-valued functions by verifying componentwise regularity.

Consequently, as in the case n = 1, we may define ũ = u − F and observe that Dũ =: g ∈ L1.
Solving Dw = ũ in the sense of distributions leaves us with D2w = g.

The key point behind the second proof of Theorem 3 lies in the fact, that D2 has an inverse
given by the convolution with a bounded function. By a direct computation, we arrive at the
following expression for the multiplier associated with D2:

F(D2w)(m) = |m|n
(
1 +

n∑

j=1

ej · i
mj

|m|

)2
F(w)(m) = 2i · |m|n

( n∑

j=1

ej
mj

|m|

)
F(w)(m), (93)

for every m ∈ Zn. Observe that we used the fact that the complex unit i of C commutes with all
ej (as the Clifford algebra is a complex algebra) and that:

(i · ej)
2 = i2 · e2j = i2 = −1. (94)

Let us identify m =
∑

mjej , i.e. we consider the vector m ∈ Zn ⊂ Cn as an element in Cn.
Therefore, (93) becomes:

F(D2w)(m) = 2i|m|n−1 ·mF(w)(m), ∀m ∈ Zn. (95)

As stated before, all vectors Rn ⊂ Cn are invertible due to:

z2 = −Q(z), ∀z ∈ Cn. (96)

14Observe that for real vectors in Rn, we find m2 = |m|2. For general vectors in Cn, this fails, as can be seen in
the counterexample:

(e1 + ie2)
2 = 0
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So, for the real vector m, we have due to m ·m = −Q(m):

m−1 =
m

|m|2
, ∀0 6= m ∈ Zn. (97)

This means that D2w = g can be restated as:

F(w)(m) =
1

2i
·

m

|m|n+1
F(g)(m), (98)

for every 0 6= m ∈ Zn.

For now, let us assume that a bounded function K on the torus exists, such that:

K̂(m) =
1

2i
·

m

|m|n+1
, ∀m ∈ Zn \ {0}. (99)

In this case, we may check using Fourier coefficients that (keeping in mind that the order of factors
in the convolution matters for products in Clifford algebras):

w =
1

(2π)n
K ∗ g (100)

Thus, we have the following inequality:

‖w‖L∞ . ‖K‖L∞‖g‖L1. (101)

This is an immediate consequence of the definition, Minkowski’s inequality and continuity of the
Clifford multiplication in the Clifford algebra norm.
Moreover, we may deduce:

‖u− F‖2L2 =

∫

Tn

P0

(
(u− F ) · (u− F )

)
dx

= P0

( ∫

Tn

(u − F ) · (u− F )dx
)

≤
∥∥∥
∫

Tn

(u − F ) · (u− F )dx
∥∥∥

=
∥∥∥
∫

Tn

Dw · (u− F )dx
∥∥∥

=
∥∥∥
∫

Tn

(∑

m

D̂w(m)e−i〈m,x〉
)
·
(∑

m̃

û− F (m)ei〈m̃,x〉
)
dx
∥∥∥

≃
∥∥∥
∑

m

D̂w(m) · û− F (m)
∥∥∥

=
∥∥∥
∑

m

|m|
n
2

(
1 +

n∑

j=1

ej · i
mj

|m|

)
ŵ(m) · û− F (m)‖

=
∥∥∥
∑

m

ŵ(m) · |m|
n
2

(
1 +

n∑

j=1

ej · i
mj

|m|

)
û− F (m)‖

=
∥∥∥
∑

m

ŵ(m) · |m|
n
2

(
1−

n∑

j=1

ej · i
mj

|m|

)
û− F (m)‖

=
∥∥∥
∑

m

ŵ(m) · ̂D(u − F )(m)‖

≃
∥∥∥
∫

Tn

w ·D(u− F )dx
∥∥∥. (102)
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Observe that in the first inequality, we used that the norm squared of u − F actually appears
as the coefficient associated with 1 in the product u− F · (u − F ). In addition, the conjugation
in the ninth line can easily deduced from our definition in the preliminary section of the paper,
see (80). The remainder of the argument then follows completely analogous to the 1D-proof, up
to the obvious modifications. Again, simple considerations show that we even have the following
inequality:

∥∥∥u−−

∫

Tn

udx
∥∥∥
L2

.

n∑

j=0

∥∥(−∆)
n
2 Rju

∥∥
Ḣ−

n
2 +L1 , (103)

where R0 = Id.

To complete the proof in the same way as for Theorem 3, we still need to find a bounded kernel
K satisfying:

K̂(m) =
1

2i
·

m

|m|n+1
, ∀0 6= m ∈ Zn. (104)

This is the purpose of the next subsection, so we may conclude the proof of Theorem 4 at this
point. �

5.3 Boundedness of the Kernel

Lastly, let us find an appropriate kernel. We first notice that due to linearity, symmetry and the
splitting into different directions, it is enough to find a bounded function k, such that:

k̂(m) =
m1

|m|n+1
, ∀0 6= m ∈ Zn. (105)

Consequently, we want to study the boundedness of the following conditionally convergent series:

k(x) =
∑

m∈Zn\{0}

m1

|m|n+1
ei〈m,x〉. (106)

Let us fix some notation. We usually identify m ∈ Zn with m = (m1, m̃), where m̃ ∈ Zn−1. We
will sometimes use the same notation for x ∈ Rn. Moreover, for any m, we define m′ = (−m1, m̃).
This allows us to immediately see:

k̂(m′) = −k̂(m), ∀m ∈ Zn \ {0}. (107)

This observation enables us to rewrite (106) as follows:

k(x) = 2i ·
∑

m1>0

∑

m̃∈Zn−1

m1

|m|n+1
sin(m1x1)e

i〈m̃,x̃〉. (108)

The strategy of the proof is based on [1, p.405-406]. Thus, the main point is to split the sum

into partial sums involving m1 and |m̃| being comparable to some dyadic 2k1 and 2k̃ respectively.
Then, we distinguish k1 ≤ k̃ and k1 ≥ k̃ to conclude. Thus, we consider the following sum derived
from (108):

|k(x)| ≤
∑

k1≥0

∑

k̃≥0

∣∣∣
∑

m1∼2k1

∑

|m̃|∼2k̃

m1

|m|n+1
sin(m1x1)e

i〈m̃,x̃〉
∣∣∣. (109)

Let us mention an uniform estimate for fixed k1, k̃. To achieve this, we distinguish two cases:
k1 ≥ k̃ and k1 < k̃. We shall need the following estimate that can be found in [1, (4.22)]:

∣∣∣
∑

ℓ∈I

sin(ℓx)
∣∣∣ . 4k|x| ∧

1

|x|
, (110)



21

for every k ∈ N, x ∈ S1 and subinterval I ⊂ [2k−1, 2k]. Here, ∧ denotes the minimum of two
functions. Let us provide the argument in a more abstract manner: Consider a finite sum of the
form: ∑

m1

∑

m̃

am1bm̃cm1,m̃. (111)

Observe that the summands in (109) inside the absolute value clearly have this form. Let us denote
by Am1 the partial sum of all al up to the m1-th element. In the case of (109), this would be
a sum of sin(lx) over an interval with l comparable to 2k1 , hence we may use the bound (110).
Therefore, we may rewrite (111) as:

∑

m1

∑

m̃

am1bm̃cm1,m̃ =
∑

m1

∑

m̃

(Am1 −Am1−1)bm̃cm1,m̃

=
∑

m1

∑

m̃

Am1bm̃(cm1,m̃ − cm1+1,m̃), (112)

which, in the case of (109), can be estimated using the bound on sums of sinus functions in (110),
the boundedness of the bm̃ which are merely ei〈m̃,x̃〉 and finally the estimate:

∣∣∣ m1

|m|n+1
−

m1 + 1

((m1 + 1)2 + |m̃|2)
n+1
2

∣∣∣ . 1

|m|n+1
. (113)

We mention the slight imprecision, as in (112), the extremal partial sums Al require further at-
tention. However, in the case we are considering, similar techniques can be applied (since we no
longer sum over m1) and we omit further details.

Therefore, we arrive at the following estimate:
∣∣∣
∑

m1∼2k1

∑

|m̃|∼2k̃

m1

|m|n+1
sin(m1x1)e

i〈m̃,x̃〉
∣∣∣ . 2k1

(
2k1 |x1|∧

1

2k1 |x1|

)∥∥∥ 1

|m|n+1

∥∥∥
l1(m1∼2k1 ,|m̃|∼2k̃)

(114)

If k1 ≥ k̃, we may simplify (109) using (114) as follows:

|k(x)| .
∑

k1≥1

2k̃(n−1)2k1
1

2k1(n+1)
· 2k1

(
2k1 |x1| ∧

1

2k1 |x1|

)

≤
∑

k1≥0

2k1 |x1| ∧
1

2k1 |x1|
. C < ∞, (115)

which can be easily bounded by the definition of the minimum.

If k̃ > k1, we find:
∑

k1≥0

∑

k̃≥0

∣∣∣
∑

m1∼2k1

∑

|m̃|∼2k̃

m1

|m|n+1
sin(m1x1)e

i〈m̃,x̃〉
∣∣∣

.
∑

k1

∑

k̃>k1

4k1
(
2k1 |x1| ∧

1

2k1 |x1|

)
·

1

2k1(n+1)

∑

|m̃|∼2k̃

1

(1 + |m̃|2
22k1

)
n+1
2

.
∑

k1≥0

2k1(n−1)4k1

2k1(n+1)

(
2k1 |x1| ∧

1

2k1 |x1|

)

≤
∑

k1≥0

2k1 |x1| ∧
1

2k1 |x1|
≤ C < ∞, (116)

where we estimated the sum over m̃, k̃ by a dominating integral. This shows that k(x) is actually
bounded and possesses the required Fourier coefficients, hence adding the last ingredient missing
in our proof of Theorem 4.
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6 Existence Result for a certain Fractional PDE

Similar to [1], the estimates in Theorem 3 and 4 may be used to derive existence results for a
particular differential operator. However, before turning to the PDE itself, let us briefly provide
an alternative formulation of our main theorems for a more general class of distributions:

Theorem 5. Let u ∈ D′(T n,Cn) be Cn-valued and assume that:

Du,Du ∈ Ḣ−n
2 + L1(T n,Cn). (117)

Here, D and D are the operators defined in the proof of Theorem 4. Then u ∈ L2(T n,Cn) and we

have the following estimate:

∥∥∥u−

∫

Tn

udx
∥∥∥
L2

. ‖Du‖
Ḣ−

n
2 +L1 + ‖Du‖

Ḣ−
n
2 +L1 . (118)

This result is an immediate corollary of the proof of Theorem 4, as we always work with Du
and Du rather than the Rj(−∆)

n
2 . The possibility to generalise to Clifford algebra-valued distri-

butions follows directly, as all arguments involved behave well with respect to the Clifford algebra
product. One could also rewrite the estimate by separating the identity operator from the Riesz
operators.

Let us now turn to the existence result. We would like to consider the following problem:

g = (−∆)
n
4 f0 +

n∑

j=1

(−∆)
n
4 R̄jf j , (119)

where g ∈ L2
∗(T

n) =
{
u ∈ L2(T n) : −

∫
Tn u = 0

}
.15 Obviously, the PDE admits solutions f0, . . . , fn

in Ḣ
n
2 (T n). Again, using Sobolev embeddings, it is also clear that there is a-priori no way to deduce

that the f j may be chosen to be bounded or even continuous. We shall remedy this apparent lack
of regularity:

Corollary 2. Let g ∈ L2
∗(T

n). Then there exist f0, . . . , fn ∈ Ḣ
n
2 ∩C0(T n), such that (119) holds.

Proof of Corollary 2. The proof is completely analogous to the one in [1, Proof of Theorem 1]:
Let us define the following operator:

T :

n⊕

j=0

Ḣ
n
2 ∩ C0(T n) → L2

∗(T
n), T (u0, . . . , un) := (−∆)

n
4 u0 +

n∑

j=1

(−∆)
n
4 R̄juj . (120)

It is clear that T is a bounded, linear operator. Moreover, we have that its dual operator is given
by:

T ∗ : L2
∗(T

n) →
n⊕

j=0

Ḣ−n
2 +M(T n), T ∗(v) :=

(
(−∆)

n
4 v,R1(−∆)

n
4 v, . . . ,Rn(−∆)

n
4 v
)
. (121)

Here, M(T n) denotes the collection of Radon measures on T n. As in [1, (4.3)], it can be easily
seen (using convolutions) that:

‖ · ‖
Ḣ−

n
2 +M = ‖ · ‖

Ḣ−
n
2 +L1 on Ḣ−n

2 + L1(T n). (122)

15The conjugate operator R̄j appears due to the duality used in the proof. This ensures, that we can apply the
result in Theorem 4. It is simpel to see that by suitably exchanging Rj by R̄j throughout the proof of Theorem 4,
the same inequality can be obtained for the dual operators and thus yields the same result as in Corollary 2 for the
usual Riesz operators.
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Therefore, we know by (103) that:

‖u‖L2 . ‖T ∗u‖⊕
Ḣ−

n
2 +M(Tn)

. (123)

This implies that T is surjective (see Theorem 2.20 in [3]). The open mapping Theorem yields that

there is C > 0 such that BL2
∗(0, C) ⊆ T (BE(0, 1)), where E =

⊕n
j=0 Ḣ

n
2 ∩C0(T n). Therefore, for

every g ∈ L2
∗(S

1), there are (f0, . . . , fn) ∈ E such that (−∆)1/4f0 +
∑n

i=1(−∆)1/4R̄jf j = g and

n∑

j=0

‖f j‖
Ḣ

n
2 ∩L∞

≤ C‖g‖L2, (124)

for some fixed C > 0. This concludes the proof. �

Using Corollary 2, we may derive the following simple result:

Corollary 3. Let f ∈ Ḣ
n
2 (T n). Then there exist f0, . . . , fn ∈ Ḣ

n
2 ∩ C0(T n) as well as a smooth

function ϕ ∈ C∞(T n), such that:

f = ϕ+
n∑

j=0

Rjf j . (125)

Proof of Corollary 3. Take g = (−∆)
n
4 f ∈ L2

∗(T
n). By Corollary 2, we see that there exist

f0, . . . , fn ∈ Ḣ
n
2 ∩ C0(T n), such that (119) is satisfied. Therefore, we know:

(−∆)
n
4

(
f −

n∑

j=0

Rjf j
)
= 0. (126)

But this implies that the difference lies in the kernel of (−∆)m, where m is the smallest integer
larger or equal than n

4 . Thus the difference is smooth, leading to the desired decomposition. �

7 Appendix

In this section, we provide for the reader’s convenience a proof of the two inequalities (3) and (4),
since the authors have not found a precise reference in the literature.

1. Assume first that f(z) =
∑

n≥0 anz
n is an analytic function such that limr→1− ‖f(reiθ)‖L1(S1) <

+∞. Let h ∈ L1(S1) be such that limr→1− ‖f(reiθ)−h‖L1(S1) = 0. We set g(z) =
∑

n≥0
an

n+1z
n+1.

We observe that g′(z) = f(z). From our hypothesis, we have limr→1− ‖g′(reiθ)‖L1(S1) < +∞.

Observe that this implies that limr→1−(‖∂θg(re
iθ)‖L1(S1) + ‖∂rg(re

iθ)‖L1(S1)) < +∞. Define
gr(z) = g(rz) for 0 < r < 1. Since g is harmonic in D, we have

0 =

∫

D

(∆grḡr + gr∆ḡr)dx =

∫

∂D

(∂rgr · ḡr + ∂r ḡrgr)dσ − 2

∫

D

|∇gr|
2dx

=

∫

∂D

(∂rg · ḡ + ∂r ḡg)dσ −

∫

D

|g′r|
2dx. (127)

We first have (observe that −
∫
S1 gr = 0)

‖gr‖L∞(S1) . ‖∂θgr‖L1(S1) (128)

and from (127) it follows that

‖fr‖L2(D) ≃ ‖g′r‖L2(D) . ‖gr‖L∞(S1)‖∂rg‖L1(S1) . ‖g′r‖
2
L1(S1). (129)
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We let r → 1 in (129) and get
‖f‖L2(D) . ‖h‖L1(S1). (130)

2. Assume now that f(z) =
∑

n≥0 anz
n is an analytic function such that:

lim
r→1−

‖f(reiθ)‖H−1/2(S1) < +∞.

Claim. Assume a0 = 0 in the power series above. Then the series
∑

n≥1
|an|2
n < +∞ and

∑

n≥1

|an|
2

n
= lim

r→1−
‖f(reiθ)‖2

Ḣ−1/2(S1)
.

Proof of the claim. We set A = limr→1− ‖f(reiθ)‖2
H−1/2(S1)

. We observe that:

‖f(reiθ)‖2
Ḣ−1/2(S1)

=
∑

n≥1

|an|
2r2n

n
.

For every N > 1, we have

A ≥ lim
r→1−

N∑

n=1

|an|
2r2n

n
=

N∑

n=1

lim
r→1−

|an|
2r2n

n

=

N∑

n=1

|an|
2

n
. (131)

By letting N → +∞, we get
∑∞

n=1
|an|2
n < +∞ and by Abel’s theorem on power series, we deduce

that the norms converge

lim
r→1−

∑

n>0

|an|
2r2n

n
=

∞∑

n=1

|an|
2

n
.

Therefore, f(eiθ) ∈ Ḣ−1/2(S1) and limr→1− ‖f(reiθ) − f(eiθ)‖Ḣ−1/2(S1) = 0, by observing that
the convergence holds weakly and the norms converge, which is an equivalent characterisation for
convergence with respect to the norm in Hilbert spaces. This proves the claim.

Consider the function gr(z) =
∑

n≥0
an

n+1 (rz)
n+1. In this case we have gr ∈ Ḣ1/2(S1). We have

r · fr(z) = g′r(z). Since g is harmonic in D we have

‖fr‖L2(D) ≃ ‖∇gr‖L2(D) . ‖gr‖Ḣ1/2 ≡ ‖fr‖H−1/2 (132)

We let r → 1 in (132) and get
‖f‖L2(D) . ‖f‖H−1/2(S1). (133)

Both inequalities (3) and (4) have been proved.
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