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Section 1: Introduction

We consider a domain @ C R?, filled by a superconducting element. Supercon-
ductivity corresponds to the formation of electron pairs, called Cooper pairs, and
is represented by a complex function u on €, such that |u|* equals the density of
Cooper pairs. By applying an external magnetic field H.,;, the superconductor re-
acts with producing a magnetic field h. One may choose a vectorfield A on €) such
that curlA = h and the superconductor’s state is fully characterized by the couple
(u, A), or more precisely by an equivalence class for the relation

(u, A) ~ (uew, A+Ve), (1)

where ¢ is a real valued function on ). Under the influence of the external field, the
superconductor can roughly get into two different states, depending on the intensity

of H..s:

o [u’!=1 and h=0: superconducting state.

o [u>’=0 and h = H.;: normal state.

For superconducting elements of type II (see below), on may observe two critical
values H, < H., such that

o for H.,; < H., the superconductor is in superconducting state ,

o for H.,; > H,., the superconductor is in normal state.

In between H., and H.,, there is a transition phase or mixed state, which is charac-
terized by the formation of filament like non-superconduction zones, called vortices,
in the middle of superconducting areas.



Let ¢ denote the characteristic width of each filament and A the characteristic dis-
tance between two filaments. The parameter x := % then characterizes the nature of
the superconductor and in particular superconductors of type II, considered above,
are those with x larger than some given critical value. Here we are interested in
large xk and will write k = % Empirical observation yields:

e, 1
Hc1 o §logg
Moreover the induced field i verifies an equation, called London equation, of the
form

_)\zAh + h = o Z 5’UOT’t61’ 9

where d,,4c, 1s @ Dirac mass in each vortex. Finally if € is a cylinder, with an
external field H.,; directed parallelly to the axis, the filaments are also parallel to
the axis and looking at a slice of 2, we get a regular pattern of vortices, called
Abrikosov lattice.

For further details on the physical aspects of these problems, see [16].

The action functional put forth by Ginzburg and Landau to describe the free energy
of this system is

Golu, A) = / (¥ — iAuf* + (1 — [u)? + |cwrlA]) de (2)
Q

and for the total energy
Gfm(u,A) = G.(u, A) — 2/ curld - H.,, dx .

These expressions actually are invariant under the equivalence relation given above
in (1); this invariance is known as gauge invariance.

The related mathematical problem, which we are going to consider is the following:
Let (u., A.) be a minimizing couple for Gt ( existence of such a couple in an
adequate function space is a standard problem, see [7] ), for an exterior field H.,:
close to H., ~ %dogé. We then let ¢ tend to 0, in order to amplify the discontinu-
ity produced by a vortex and the goal is to study the asymptotic behaviour of the
couple (u., A.), with the hope of detecting some loss of compactness in the given
function space, as ¢ tends to 0 , describing the creation of vortices.

This problem, in such generality, as it is explained in [6], is mathematically quite
difficult, and not entirely solved so far. In their initial work, F.Bethuel, H.Brezis,
and F.Hélein (cf.[4]) study a simplified model, with neither magnetic field, nor gauge
invariance, where the effect of the exterior magnetic field is simulated by the pre-
scription of some vorticity at the boundary (non-vanishing degree for boundary data



mapping into S'). Precisely, as ¢ tends to zero, they study the behavior of the critical
points of the energy

1 1
ptust) = 3 [ (1Nl + 5L (1= ) e

among the maps
u € W;’z(Q,C) = {u c WI,Q((L(C) | u = gon aQ}

for a smooth boundary data ¢ : 90 — S' having a degree degg = d > 0. They
give a complete description of this behavior (see Theorem 1 and 2 in part 1) which
correspond to an answer to a first question about the relation between vorticity and
the actual formation of vortices:

vorticity = formation of vortices

This first problem and its solution is offered in the second section of this mini-
course. In the third section, we consider a similar problem but including the induced
magnetic field i = curl A, Precisely we minimize the functional

GutuA) = & [ (Jaaf + 19— iuf + 50— ) o

among couples (u, A) in the space

V.= { (u, A) € WH(Q,C) x WH(Q,R?) ‘ lu| =1 on 09,
deg(u,00) =d, < iu,7-Vau >=.J on 8(2}

for a given degree d > 0 and a given regular function J on 9 which corresponds
to the tangential current. We give an answer to the corresponding question (see
theorem 18):

formation of vortices and induction of a magnetic field
vorticity = +
the induced magnetic field verifies the London equation .
Moreover we sketch the solution of the problem

exterior field > H. = vorticity,

under some additional assumptions (see the remark following theorem 18). Let us
mention a recent work of S. Serfaty ( see [17]) where she proves the stability of



solutions of the complete Ginzburg-Landau problem with external magnetic field,
which have more and more vortices as this external magnetic field increases starting
from the critical value H., .

In this paper we restrict ourselves to the static problem in dimension 2. Let us just
give some references for the corresponding static problem in higher dimension [15],
[12] and the corresponding heat-flow problem [9], [10], [8].



Section 2: Asymptotic behaviour of critical points of the
Ginzburg-Landau functional without magnetic field

Consider the Ginzburg Landau functional

1 1
E(u) := Ee(u; Q) := §Z;OVM2+55(L—WPV>dx
defined for maps
u & W;,Q(Q7(C) = {u c WI,Q(Q7(C) | U =gon aﬂ}

with smooth boundary data ¢ : 90 — S! and fixed degree degg =d > 0, for a
smooth, bounded, simply connected, starshaped domain Q in IR?. In this context
starshaped means that there is some a > 0 such that

r-vza>0, Vaee o,

v being the outward unit normal to 0f .

The goal of this lecture is to analyse the asymptotic behaviour as ¢ — 0 of minimizers
as well as of critical points of E. in W} (€2, C). Throughout the general reference
is [4].

Theorem 1 Let {u., }nen be a sequence of minimizers of E., in W} (Q,C), with
e, =0, asn = 0.
Then there is a subsequence, still denoted by {u.,}, there are exactly d = deg g points

ai, ... aq in §) such that
Ue, —> Uy N Cﬁ)c<ﬂ\{a1,... ,ad}>, Yk e N, (3)
in CoX(~A{ar,... ,ad}), for0<a<l, (4)
where uy : Q ~{ay,...,aq} — S' is the following harmonic map

with Ap =0 on Q, u, = g on 0.
Moreover, there is a function (“the renormalized energy”), depending only on 2 and

g
W:Q' SR,

such that (a;)L, minimizes W in Q9.

The previous result has been extended to the case where €2 is only simply connected
and not necessary starshaped by M. Struwe in [16]. The result on the asymptotic
behaviour of critical points, which are not necessarily minimizers, is similar but the
limiting map need not have degree 1 in each singularity (vortex) and there is no
precise information on the number N of singularities, for which one merely obtains
an upper bound.



Theorem 2 Let {u., fnen be a sequence of critical points of E., in W)*(Q,C),
with e, — 0, as n — oo.

Then there is a subsequence, still denoted by {u.,}, there are N points ay,... ,an
in , N integers dy,...,dy

e, =y in CF (@~ A{ar,... ,an}), VkE€N, (5)
in Cll()f<ﬂ\{a1,...,a]\r}>, for0<a<1. (6)
where uy : Q@ ~AHay,...,ay} — S, is the following harmonic map

d d;
() ot
|z — aj]

j=1
with Ap =0 on Q, u, = g on 0.
Moreover there is a function (“the renormalized energy”), depending only on Q@ N
and g,

WOV <xzZ¥N 5 R,

such that (a;)X, is a critical point of W in Q.

The complete definition of W is given in the step 11 of the proof of theorem 1 and
2 bellow. Let us make a digression to the questions which arise from the results
stated just above. Observe that once you know the d; and the a; you know the
limit u,. So the limiting problem ¢ = 0 is included in the finite dimensional one
which consists of finding the critical points of W. Now it would be interresting to
understand what happens just before ¢ = 0 (i.e. £ small but different from zero) :
How many critical points of E. do exist 7 In [1] and [2] critical points of E. which
are not necessary minimizers are found by the mean of topological methods. But in
a more systematic approach we can ask the question of understanding the number
of familly of critical points of E. wich converges to a u, constructed from a given
(aj,d;), critical point of W. The first result in this approach was given by F.H. Lin
and T.C. Lin in [11] : they prove that, in the case where all the d; are equal to
+1, if (a;) is a non degenerate critical point of W, there exists at least a familly of
critical points u. of E. which converges to the corresponding w,. In [13] this result
is extended to the case where d; = +1. Finally the problem of describing exactly
the number of branch of solution converging to a given w, has only be solved, untill
now, in the particular case where we restrict ourselves to minimizers (see [14]). The
general situation is still far from being understood especially when the multiplicity
of the limiting vortices are different from +1.

In the sequel, we will sketch the main ideas of the proof of theorems 1 and 2, which
consist of eleven steps:

Step 1 : The Euler-Lagrange Equation.

The Euler-Lagrange equations for critical points of E.(u) are:

{_Au:;_zu(l_|u|2) in £, (7)

u=yg on 09).



Step 2 : L*— estimate for u:
Lemma 3  Let u be a solution of (7), then |jul[p~@) < 1.

Proof
Note that by elliptic regularity and a standard boot-strap argument, weak W12
solutions are smooth. We thus may take the scalar product with « in (7) and
deduce:

1 1
— 5 Dl = —Vul= < Auu > = —[Fuf + Juf (1 Jul?),

and ,
50 =1) = (45) qur-1) > 0.

Since |u| = |¢g| = 1 on 99, the claim follows by applying the maximum principle to
lul? — 1. O

Step 3 : L™ estimate for the gradient.

Lemma 4  Solutions of (7) satisfy ||Vull. < <.

€

Proof

In [3] the following interpolation inequality is proved:

Lemma 5  Assume u € L*(Q) satisfies Au € L*(Q) for some smooth, open
QO CcC RY, then:

4 2 < - - ||u||%oo
) IVue) < (18uls s + 78 wwen,
i)  Ifin addition u =0 on 09, then:

e (HAuHLw Hun) .

Now the result follows by equation (7) and lemma 3, with a constant depending on
g. 0

Step 4 : Pohozaev identity

Lemma 6  Every critical point u of E. in W}*(Q,C) satisfies
1

52

B ou Ou 1 5
Q<1—|u|>d:1;—— %ET :cho—l—Q/an 1/<|—| |—|>

Here we only need the assumption that Q is smooth and bounded.
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Proof

In the sequel, we will drop the index . The lemma follows from a Pohozaev identity,
which is obtained by multiplying equation (7) by Ele X % and integrating over
Q, noting that

div(Vu' z;0;u') = Au'z - Vu' + [Vul* + l:Jc V(|[Vul?),

w(1= o) = =5 V(1= Jul)?,

nd 0 0 Ou d
u u u du
™ (xVu) = (6_1/)2 3,9,

where v and 7 denote the outward unit normal and a unit tangent vector to 92, we
obtain: | |

— (1—|u|2)2d:1;——/ z-v(1—|ul*)?do

e? Ja 2¢% Jaq —

=0 on 99
0 1
= — T eVudo+ = / z - v |Vul*do
an OV 2 Jaq

so this yields the result. O

Corollary 7 There s a constant C independent of €, such that for every critical
point u. of I in W)*(Q,C), we have:

1
/952(1—|u|) de < C.

Here we essentially need §) to be starshaped.

Proof

By Young’s inequality and the previous lemma, we obtain

Ju Ou Ju Ju
— do| < 6§71 =P do+6 —?d
] avar T el [N dos [ (2R

and since € is starshaped, we may choose § such that 0 < d < a < x-v, Vo € O
and thus we obtain

1 99
1— < —|"do.
S [-npra <o [ (3R

Step 5: A remark.

From equation (7) we see that Aw || u, which is equivalent to

2
Z@Z (uA Q) =: div(u A Vu) = 0.
=1
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In particular, if |u| > % locally on some simply connected subdomain Q@ C Q. we
may write u = pe'?, where ¢ satisfies the following elliptic equation:

div(p*Ve ) = 0,

with % <p <l
Actually for u = pe'? equation (7) transforms into the system

div(p?Vig) = 0 (8)

1
—Lp+plVelt = (1= p%),
C . and smnce u A Vu = this may be written as
(cf [4] p. 109 ) and si \Y p*V thi vy b i
div(u AVu) =0 (9)

1

Juf?

1
~Aful+ Tl A Vul = Sl = Juf).

Note that the first equation is independent of ¢ and will be preserved under weak

WP limits lir% u. = u, for solutions u. of (7). In view of the elliptic equations (8),
e—+

the limit w, can be expected to be regular in the part of the domain where |u| >

1
5
The problem is now to locate the part of the domain where (8) is degenerate, i.e.

where Ju.| < 1.

Step 6 : Locating the “ bad set” , where |u| < 1.

Lemma 8  Let u. denote a minimizer of E. in W, *(Q,C).
There are constants N € N, X > 0 depending only on Q) and g, such that for each
e > 0 there are xi,... 2%, € @ and N. < N with

N,
1 ° .
B, ::{:1; c | |u5| < 5} C L_Jl B/\E(l'j),
where the balls By.(x5) are mutually disjoint.
Proof

In the sequel we omit the index e for u. Suppose |u|(y) < % for some y € Q. Since
IVul| e < %, there is some A\g > 0 independent of ¢ such that

3
u(@)] <5 on Bu(y).

thus
1 2\2
_2(1 —|ul®)* = C1 on By e(y),
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and
L (1= [uP)2de > Co >0,
€ JBy, - (w)
Co being independent of e.
Vitali’s covering theorem applied to the cover { By ,.(x) | « € B.} gives us a

countable subset {2%};cs, C B, such that
Buge(25) 0 Brge(w7) = 0 for @ # 7,

B. C [ Bore(29).

il
From the global bound in Step 4, we deduce:

1
Coll.] < Z/ L Py <—2/<1—|u|2>2dx<c,
]EJ B)\OE € Q

i.e. [J.| < N independently of e.

Set A :=)HAg. .
Furthermore one may chose a subset J’ C J and a constant A > A, such that

lo; — x| 2 8 e, Vi,j€ J' i # j and U B;_(x U By (2%)

ied ieJ!

Indeed we may proceed by induction on card(J) = [J|: If there are z;,z; with
|lzi — 25| < 8Ae, )
set J':=J~{j} and XA := 9.
In particular we obtain a covering of B, by disjoint balls. g

Step 7: Convergence of the “bad set” to limiting singularities.
From step 6 we obtained a covering

%5 C U B/\E(l'])

=1

with mutually disjoint balls.
Since 0 < N. < N, we may select a converging subsequence N,
stationary for n sufficiently large and we may assume N. = N. FExtracting a

which must be

converging subsequence from
(27", ..., 2V Jnen C oy,
we get a covering of B, by N disjoint balls, with converging centers
it —a; (n—o00), 1<j<N.

It might happen that a; € 99 for some j. In [4] they actually prove that the «; lie
in ).

Step 8: Convergence to a limiting map, away from the singularities.
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There are two different approaches, depending on whether we consider minimizers
or merely critical points of F.

i) For minimizers one may derive lower and upper bounds for the energy from
which we deduce a uniform upperbound for the energy outside the singular
set.

i1) For critical points in general we prove uniform W'* estimates, for p < 2.

The second method is more general, so we will merely give a sketch of the first and
develop the second one.

Sketch of the first method:

e On the one hand, we have:

Lemma 9  There are constants g, C' > 0, such that for any minimizer u. of F.

in W2, C), with e <&y we have

1
E.(u.) < 2md log(g) +C.

This can be seen by using test functions of the following form: Fix d = degg distinct
points ay, ... ,aq in Q such that By.(a;) N Bze(a;) =0 for ¢ # j and set

d
H Y i) op Q< U Bsyo(ag), (10)

|z — a;] Pt}

where ¢ is a harmonic function on €2 chosen in such a way that u. = g on 9f.
Further set

N

(%) ::Q<z—a]‘> F 7Y% il o By.(aj), (1 <j<d), (11)

2¢ |z — ;]

where 9 € C*°([0,1]) o(1) =1 and 9 =0 on [0,3] and H; is a harmonic function
determined by

Noting that

z \|? R
VI — || de = 2rlog| — |, (12)
Br(0)~B(0) || r

we see that each vortex a; creates an energy 2w log( ) plus constants independent
of . Indeed, according to (12), (11) produces an energy « 10g< ) + C', but the
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term 27 log(2¢) cancels with the corresponding term of the energy of (10)  ( cf [4]
theorem IIL.1, p.44 ).

e On the other hand, there is an optimal lower bound for the energy around the
vortices (this is the more difficult part to prove):

Lemma 10  For § > 0 there is a constant Cs such that for (sub-)sequence of
minimizers as in step 7, satisfies:

1 1
Vul* + 1 —|u ) > 2nd log(—) — Cs
/U . (| P g (1= ) )

( cf [4] theorems V.2 and V.3 . They also show that there are exactly d vortices,
which is actually a consequence of lemma 9 and 10 .)

e Subtracting both estimates yields a bound on the energy away from the singu-

.. . . 1.2
larities, uniformly in ¢, and ensures weak W, 7(2 ~ {ay,... ,aq}) convergence to a
limiting map.

The second method, W estimate method for critical points of F.:

Lemma 11 For any critical point u. of E. and any p < 2, ||uc|lwirq) is uni-
formly bounded with respect to .

Progf )
Let © := Q. = Q ~ U BM( ) for a covering {B).(« ) 51 of B, as in step 6.

On ) we have |u| > Now we are tempted to write u = |u|ew and use the elliptic

1
equation div(|u|*V¢) = 0 ( cf. step 5 ) which yields appropriate estimates. But u
does not admit such an expression globally, since € is not simply connected. Note

that locally for u = |ule*:

[}

Zu/\@u Ydz; =:u A du = |u|*dp and d(iu/\d@—d(u du)z(),

pa Jul? Jul - Jul

here A denotes the vector product in R2.
But & A Idul is not exact in € because

Iul
d
/i/\—u:/ gNdg = 2nd.
an |U| |u| an

The idea is to subtract the “topologically non trivial part” from |Z—| A % in order
to obtain an exact form which will satisfy the elliptic equation. We thus need some
kind of Hodge decomposition. We present this Hodge decomposition for arbitrary
dimensions, which can be usefull for Ginzburg-Landau problems in higher dimen-
sions, in particular in dimension 3.
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Hodge decomposition

First observe that the topological part of |Z—| A s “finite”:

Jul

d
/ Sy L (13)
OB (w?) ul  Jul
C

and from step 3, we know ||Vu/|e <
bounded.

In order to obtain a decomposition

=, which implies that [d5| must be uniformly

u du 1

— N — = —d"Y+dH , (14)
Jul  Jul o fuf?

for some 2-form ¥ and some 0-form H, where the “topological part” d*i» should

possess as little energy as possible, we consider a solution v of the following mini-

mization problem

Min {[ #M*d) — u A dul*dz for o € WHA(A2Q),
. (15)

d(x)|pg = dr(+¢|o0) = 0}
for ¢» € W'?(A2Q), which projects to @/"aﬁ € W%’Z(Azafl). The index T denotes

restriction of the considered operation or form to the tangential components of 9.
Observe that unlike the usual Hodge decomposition, we do not separate a purely
harmonic part, which contains the topological information. As we will see below,
this information is contained in d*i. Such a decomposition is always possible on
any manifold “whose topology comes from the boundary”(cf (20) below ), typically
an open set in R™

In the sequel we treat the 2-dimensional problem, the same approach might yield
analogous results in higher dimensions. In particular in dimension 2, the boundary
constraint implies #1) = constant on each connected component of 99 and so we
may choose

=0 on 0, (16)

#1p = ¢ on IBy\.(x5) for 1 <j < N..

Now we claim that for minimizers ¢ of this problem
1 d
R d*¢ — i A _u
Jul?

Jul - Jul

is exact.
Indeed the (weak) variational equations for ¢ read as follows:

[<d*§,ﬁ<d*;/}—u/\du>> de = 0 (17)
a u
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for any smooth 2-form ¢ satisfying dr(+£) =0 on .
Choosing a 2-form ¢ with compact support in €, we deduce:

d(ﬁd%—(ﬁ/\%)) =0 in O (18)

du

is closed, also
[u] ’

and since |Z—| A

d(L d*;b) =0 in Q. (19)

Jul?

Moreover combining (17) and (19) it follows:

! th—u Adu) = * L* =
/m*gA'_(d¢ A du) /afz €A d(— &) daz 0,

ul? Jul?
for any 2-form ¢ satisfying dr(*€) =0 on 90 . Now this implies that

G L(clﬁ/;—u/\alu)

" Juf?

is exact. Indeed note that in dimension 2, () is a function. Choosing for *£ the
characteristic function of a given connected component of 92, we see that

/ 3 =0, forevery connected component C of 9 (20)
c

and since every closed path in © is homotopic to an integral sum of connected
components of 9, the Poincaré dual

sing

v = / ¢ (’y a Lipschitz-representent of H'. (Q))
Y

is identically zero and thus the DeRahm-class of 3 must be zero.
We thus obtain a decomposition as in (14) and in the sequel we will derive estimates

for d*¢, dH and |ul.

Estimates on d*i) for p < =+ ( for the case n=2).

We have |
d 1
/ Sy N / —d = 2nd:, (21)
8B« (z%) ul  ful 8B (%) |ul

/ %d*@/} = 2nd.
an |u|
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Combining (21) and (16), this yields in dimension 2 for the function ¢ = %

.1 LA
dllV(u—|2 Vc,o) =0, inf,
1 0
/ — T do = 2md:
8By (z%) [ul? dv
=0 on 09,

p=c; on dB\(x5) forl<j<N..

Note that this is an e— approximation of the following problem:

N
A =21 ) d e in Q,
7=1

P =0 in 09

and since the Green-function in R? is W? for p < 2 we have:

N
[llwer < C Y17
7=1

We actually obtain the following similar estimate for a solution ¢:

(23)

Lemma 12 Let ¢ be a solution of (22), with% <lul <1 on Q= Q\ijzl B/\E(l';),
for some smooth u. Then

Vel < ¢

where the constant C' only depends on X\, and (d3);, and 1 < p < 2.

Proof

For fixed h and some constant ¢ consider the weak solution

(e VPi={&:=(4,8) | & e HY(QC), E=c on OB).(zF)

of

for 1<7< N, ,6€=0on 00}

1
[(—VOVozdx:[hVozdx, Ya e V1.
Q

|u|2 Q

where ¢ is the Holder conjugate of p: zla + 5 = 1. We have:

[l < Cylu) [[]]za
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The proof can be found in [4], Lemma X.8, p.117 and uses a method due to G.
Stampacchia, which consists in testing with ({ — k)% . where k is any real constant.
Now for fixed h = (h1, h2), h; € L1(Q,C), test equation (22) with ¢ solution of (24)

in order to obtain
0:—/ 5 Ve V(d:}c—l—/ 5 Ve v (do
|ul a0 |ul
i.e.
/ " |2W Vde = QW;d §/<8BM( o)

On the other hand inserting ¢ in equation (24) yields

/| |2V<,o V(d:fc—/V@ hdx

SO
N.
\/ Vo hde| <23 1 Clln - (25)
a oy
N.
<20 S Cyu) 1] 1A (26)
7=1

Now by duality:

N
Vel < Cylu) Y 1d5l.
j=1

Thus as expected in (23) the solution 1) = xp of (22) satisfies

V|| < 21 O Z|d5

and by (13) the right hand side is bounded independently of &.

* ok K

Let us digress before finishing the W'* estimates for |ul.
Consider a similar problem in higher dimensions: Let €2 be a smooth, simply con-
nected, bounded domain of R” and let u be a map from ) into C, such that

C
Vulleo < —
&

_Q\UB (27)

[N
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where N. <

d(wdw) — 0

d*i given by (15) satisfies

and for any I', regular curve in 0. :

U
du = 21 d
/|u|2 W= /||2“A u = 2w degrlpy)

dr(+) ‘aﬁ -

(28)

Thus t is an “c—approximation” of a Green function ¢ associated to a Dirac mass
along an n — 2 dimensional manifold I'. with multiplicity given by the degree of u
around each part of this manifold. Because of (27) the total mass of this current is
uniformly bounded independently of ¢ and we have L? estimates for d*¢) indepen-

dently of & for p < —"+. The question is whether we also have L* estimates for d*i
itself,the solution of (28), under the hypothesis (27) independently of ¢ for p < "~

. This is still an open question.
* ok ok

Estimates for VH:
In the decomposition (14) above the 0-form H is given by

dH = Lu A du — —d*;/)

Jul? Jul?
Since u||Au we have d*(u A du) = 0 (cf step 5) and thus
d*(|ul*dH) = 0

FPurthermore 9
/ lu|*=—do=0 by (21)
9B (x;) v

oH 1 A du
ov  |ul? o
by (29) and the boundary constraint for ¢).

and also

on 0B).(x;)

Since u € LOO((NZ,(C) and |u| > 1, this implies

/|VH| de < C

(for a proof see [4] lemma X.9, p.120).

Estimates for V|ul:

(29)
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Following [4] one establishes the following bound
/|V¢| dr < (log( )+ 1)

Moreover, multiplying the variational equation for |u| by (Ju| —1) (cfstep 5 (9)) one
computes

(cf [4] lemma X.10, p.122)

1
[IFlulpar < civ ey [(vop 419G < oty +1) @)
Q Q

(for the exact computation see [4], lemma X.12, p.123).
Now setting S =5, := {:L' €Q | 1 —|u(z)]* = &?} for some (3 €]0,1[ and using the
upper bound = fQ )2 dz < C from lemma 6, we obtain for 1 < p < 2

~ 1
/ [V ]ul["de < ( / [V Jul [Pday’® 5|07 < C (log(<) + 1) =200/
s Q €

by (30), i.e

/ Vlul|de < =
S={ze)/|u(x)P21-=F}

for some o = a(3), 3 €]0,1[, 1 < p < 2 and ¢ sufficiently small.
Finally, multiplying equation (8) by 1 — p, where p = max{|u|?,1 — &} we deduce

1
/ |Vu|[*dx < 0165([|u/\dUI2+02) < 035’3([|V¢|2+|VH|2+02) < 05’3(10g(g)+1)
Q\s Q Q

(cf [4] p.124 (102)-(103)) and this finally yields a uniform bound on [|Vlull| ;g for
I <p<?

Final estimates for u:

Now writing u = |u|e¢*? locally and noting that u A Vu = |[u|*V, we see that

1
[Vul < |V]ul| + m|u A Vu| < \V|u|\+2<|w| + |VH|>

since 2 < Ju] <1 on €. Thus by combining the estimates on V|u|, Vi) and VH, we
obtain the uniform bound

[uellprn@y < Cp forl <p<2. (31)

Finally, by |[Vue||r~q) < C and |Jul|z~ < 1 from lemma 3 and 4, it follows

€

HUEHW172(B>\E(1’§)) <C forl <j<N.
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and so (31) actually holds for € instead of €. O

Step 9: Stronger convergence of {u.,} in K CC O~ {a;};

“Standard” elliptic estimates, derived from the equations for |u|, ¥» and H, im-
ply strong I/Vlif(ﬂ ~Aai, ... ,an})-convergence of a subsequence u., to some u, €
WA~ {ay,... ,an}, S') and using ideas from [3] one obtains convergence in

CE.(Q~Aay,...,an}) VkEN

and

CLo(Q~Hay,...,an}) for0<a<l.

loc

(cf [4] Thm. X.2 p.127 and Thm. X.3 p.130)

Step 10: The limit u, is a harmonic map from Q ~ {a;,... ,ax} into S'.

Indeed Au., A u., =0 implies div(u., A Vu,,) = 0 and we may pass to the limit in
W2(Q)(1 < p < 2) in order to obtain

div(us A Vu,) =0 ae. in Q. (32)
Moreover, by the estimate of lemma 6 we see that
lus| =1 a.e. in €. (33)

By results of L. Almeida (cf [Alm]), equation (32),(33) are not sufficient to conclude
that u, is a strong harmonic map but the additional regularity from step 9 actually
implies

—Auy = u, [V ae in Q:= 0~ {ay,...,a,}

i.e. u, is a smooth harmonic map from Q to S

Step 11: The vortices {a;}?, are critical points of some renormalized
energy W.

1) Definition of W:

Consider the solution ® = @, 4 of

N

A® =Y 2m-d;8, in, (34)
7=1

0P dg

2, =9 A Em on 0}, (35)

for mutually distinct points b; € Q, d; € Z (1 < j < N) with Ej\; d; = d fixed.
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® is unique up to a constant and we may normalize by faQ ® do = 0.
Note that the functions
Si(z) = ®(z) — d; - log|z — bj] (36)

are harmonic on B,(b;) for p sufficiently small and further that

o0d / 05:  d;
b —do = — 4 V(S +d: o do 37
/aB o 8Bp(bj)<a’/ p)( ; +d;log p) (37)

:27Td§ 10g,0+/ 65]5 do+d; — / S;do+d; logp/ 8_Sd0
81/ P JaB,(b;)

:27Td§ log,o—l—/

By(by)

|VS]|2d$—|-27Td] S](b])—l-d] 10g,0/ AS] dl‘
Bp(b])\/

We then compute for () := wa =0~ Ej\; B,(b))

2 — RS J— RS
/Q|V<I)|d:1;—/mq)ayd0 Z/ do

—ZZWdzlog )+ C +O(p)

where C' = (C(b,d) is a constant independent of p and O(p) a function such that
|O(p)| <const.-p, for p close to 0.

Remark: There is a unique harmonic map u = u>: Q~{by,... by} =: Q — S!
associated to @, ; defined by (34), u = u>? being determined by
Au 0% q
du Iy g n 54
u A % == —81’1

(cf [4] p. 10) and we have
div(u A Vu) = Ad®y 4,  deg(u,b;) =d;,
Vul = [Vl

/|Vu|2d:1; = /|V<I)|2d:1;.
Q Q

This motivates the following

and thus

Definition:

1
Wby, ... by, di,....dy):=W(b,d):=1i Vo2 de —2 d21
e b ) = W0 = ([ 9002 )
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which is welldefined for by,... by € © mutually distinct and dy,... ,dy € Z.

2) The vortex configuration {a;}), is a critical point of W for fixed d =
deg g.

For fixed b € OV, d € ZN set

N
z —b; »
upd(z) = H <|Z — bj|>d] @) (38)

7=1
where A® =0 in Q and such that

upg =g on IS

Lemma 13 For fized d € 7%, the point b € QV is a critical point of Wy(b) :=

W (b, d)
if and only if
foreach j € {1,... ,N}, upq may be written as
2= bj i i
upg(z) = (=) '™V 39
= () (39

with

VH]([)]) =0 and AH] =0 (40)

in a sufficiently small neighbourhood of b; in Q).

For the proof see [4] corollary VIII.1, p. 85, and for the definition of W see theorem
L7, p. 20.

Actually one proves the following

d5; d5;
owith) = —2r | d; (5240, 520 )
7=1,....N

—onla (Mg O,
B Qﬁ[d] ( O (%) dxy (b])>:|j:1,...,N

for S; as in (36) and H; as in (39). (cf [4] theorem VIIL3, p. 84).

In the sequel we will sketch the proof of the following result:

Theorem 14 The limit map u, = lim u., from the previous steps with singularities
n— 0o

a=(ay,...,an) satisfies

i) Ue = Uqgq, where d; = deg(ux, a;) = deg(u., dB,(a;))  ( uqq defined as in (38)
).
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i) w. admits local expressions around the a;’s as in Lemma 13, (39).

Corollary 15 The vortex configuration of the limit map u, is a critical point of the
renormalized energy W .

Sketch of the proof of theorem (14):
i) Both the limit map w. and u, 4 defined by (38) are smooth harmonic maps from

Q=0 {ay,...,ay} into S

equal to g on 9Q and deg(us, a;) = deg(u,,q4,a;) by definition.

Now we
Claim
There is a function ¥ such that

Ny =0 in Q=0 {a,...,an}

=0 on 0f) (41)

and
u, = eV Ug.d - (42)
Indeed both u, and wu, 4 satisfy the equation
Au = —u|Vu|> in Q.
Writing locally u, = €% u, 4 = ¢'?, this is (locally) equivalent to the linear equation
Ap = Np, =0 inQ

and in particular since . = ¢ + ¢, ¢ (locally defined) as in (42) must also be
harmonic in . Now since deg(u.,a;) = deg(ua7d,aj),u;7il -u, = ¢ has degree 0

around the a;’s and a continuous ¢ satisfying (41) and (42) defined on all of Q) may
be found.

(For a more rigid and computational proof of the claim see [4] Theorem L5, p. 11).

From step 8 we know that w. € Wh'(Q) and since u, 4 € WH(Q), using |u.| =
|tgq| =1 on , we deduce Vi € L'(Q), by applying V to (41).

Now Ay = divVy = 0 on Q ~ {ay,...,an}, so spt(Ay) C {a1,...an} as a

distribution and therefore

N
A¢ = Z ci(sa,‘ + Z Cij aj(sam (43)
i=1 1K, j=1,2

A1) being a distribution of order 1.
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First note that the constants ¢;; must be zero, since Vi € L'() implies div Vi) €
(WH(Q))*, whereas 0,;3,, & (Wh*°(Q))*. Thus

N
=Y c¢ilogle —a;| + x (44)
7=1
and
Us = Ug g ei 2256 log|1’—a]|€ix 7

where y is a smooth harmonic function on ).

Actually we have ¢; = 0 too, which implies theorem 14 i). The proof is quite lenghty
and in the sequel we will merely sketch the basic ideas, the main reference being [4]

theorem VII.1 and VII.4.

For a sequence u., — u, as in step 9 define the Hopf differentials

Oue, 1y OUe, Ou.,  Ou.,

|G -2

(45)

Wy 1= |

the dot denoting the real scalar product of vectors.
From the variational equations (7) one deduces

Ow,, 0 1
5= g (gt~

Further (cf [4] Lemma VIIL.1)

1
50 — |u6n| Zm] a;

weakly as a Radon measure.

It follows (cf [4] p. 67-69)

Wy — W :ﬁ—|—20z inClkoc(Q\{a17"‘ ,CLN}) (46)

where o, = — E]‘ 7r(27f7;)2 and [ is some holomorphic function on .
J

On the other hand, from the definition (45) we obtain

au*|2_ |%| Y Jus Ju,
oz dy Jdx Oy

in CF(Q~ A{ar,...,an}).

Wy = Wi = |

(47)

Since we have for u = €' there holds

2 2 - 9u‘@:<6_¢_ %)2

o dy oz dy

(46), (47) combined with (44) yield an equation that both implies ¢; = 0 ( cf [4]
p. 70 ) and produces an expression of u. as stated in theorem (14) ii) ( cf [4] p. 70
)

‘8:1; _‘ay
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Section 3: The gauge invariant Dirichlet problem for the
Ginzburg Landau functional with magnetic field.

The goal of this lecture is to develop the same kind of analysis as in the previous
chapter for the functional

Ge(u, A) = %/Q (‘dA‘Q + ‘Vu—iAu‘Q + 2%(1 — |u|2>2> dz (48)

where Q is a 2-dimensional, smooth, bounded, simply connected domain of R? u
is a complex-valued function v € W'2(Q,C) and the "magnetic field” A is a real-
valued one-form over 2, also considered as a vector-valued function A € W?(Q, R?).
Throughout the main reference is [5]. Observe that the above functional differs from
the original one by a scaling factor ¢? after substituting A by 1/¢A.

(i 1s invariant under the action of gauge transforms

s:Q—Stcc

r— s(x) = ¥ (@)

given by
s*u(z) := s(x)u(x) ( complex multiplication )
and
SSA = A—islds = A+ dy.
Therefore we should not impose u = ¢ on 9Q for some given g : 90 — St as

boundary constraint, since this breaks gauge invariance. On the other hand v = ¢
implies Vu - 7 = Vg - 7, for the unit tangent vectorfield 7 on 92 and if we choose

V=V4:=V—-14

this new constraint actually is gauge invariant. In our problem we prescribe |u| =
1 as well as the vorticity deg(u,d€) on the boundary, which are gauge invariant
quantities. Moreover we impose

<, (7-Vu—iTAu) >=<1iu,7-Vau >=J on 09,

where .J is some given real-valued function on 99 and < w,v >:= Re (uv) is the
real scalar product. The one form j :=< 1u, V u > has some physical significance.
Note that locally on the boundary we have u = ¢'¥ and

<iu, Vau >= Re(iu Vu) = iu™' Vu = —(Ve — A)

since ¢ and A are real-valued.
We will look for minimizers of ;. in the following class:

V.= { (u, A) € WhH(Q,C) x WH*(Q,R?) ‘ lu| =1 on 09,
(49)
deg(u, Q) =d, < iu,7-Vau>=.J on 8(2}
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Theorem 16  There is a minimizer (u., A.) € V of G.. It may be chosen in such
a way that

d«A. =0 inQ, A.-v=0 ondQ.

Proof
By gauge invariance, if {(u,, A,)}n € V is a minimizing sequence for G, then so is
{(un + € A, +dpp)}n €V for any ¢, € VV;’?(Q,R) , with Vg, € WH(Q, R).

In order to obtain adequate bounds, we will choose particular representatives in the
gauge classes

[(tny Ap)] := {(ewun, A, + do) ‘ pEG}

with & :={p e W2 (QR) | Vo € WH(Q,R)}

loc

of a minimizing sequence {(u,, An) bn.

Lemma 17  Coulomb gauge

For each (u, A) € WH2(Q,C) x WL3(Q,R?), there is (u, A) € [(u, A)] such that

d+x A= in (),
{A'l/: on 081, (50)
where v denotes the exterior unit normal vectorfield on 0.
Proof of the lemma
Consider £ € W*2(Q,R) such that
AE=+dA in ), (51)

£=0 on 09.

Set A :=*df, thend* A =d?¢=0inQ, A-v = % = 0 on dQ and finally d(A — A) = dA — *AE =0
in 2, thus since  is simply connected there is a function ¢ such that A — A = d.

Note that A = d*A € L? and so ¢ € W2 (Q,R). Now for u = e~ u, we have

(u, A) ~ (u, A) with (50).

QED lemma

In order to prove the existence result of theorem 16, we consider a minimizing se-
quence {(u,, A,)}, in V for i‘r}st. For each A, choose &, as in (51)

A&, = *dA, in Q,

£, =0 on 01).

Since

/‘*dAn‘Qd:z; - / |dA, | de < Golu,, A,) < C
Q Q
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by the Calderon-Zygmund inequality, a subsequence also denoted {€,} converges
weakly in W??% and thus A, = *d¢, converges weakly in W%, The uniform bound
on ||A.|lwiz together with

/\Vun— iAniin|* de < C.
Q

/\unrdx <
Q

imlpies ||Vau,||r: < €7, so {u,} also converges weakly in W2 By weak lower
semi-continuity of (/. with respect to these norms, the weak limit actually is a
minimizer.

and

This minimizer lies in V' and satisfies (50), because all these constraints are preserved
under weak W'2(Q) and W%’z(aﬂ) limits, respectively strong LP(§)) and LP(9)
limits for 1 < p < oco. O

Theorem 18 Consider a sequence ¢, — 0 and corresponding minimizers (ue,, A.,,)

of G, in'V. i
Then there is a subsequence still denoted by {z,} and d points {ay,... a4} C Q
such that
Whe(Q) for1 <p<2,
he, :=*dA., — h. in
e Ck(Q~A{ay,...,as}) forall k€N,
where h, satisfies the London equation
d
— Dbt he =21 ) 6, in Q) (52)
j=1
Oh.,
5 = —J on 09
Moreover the configuration (ay,. .. ,az) minimizes a function W : Q% — R, which is

regular on Q. A\ for /= {(a,...,a) € ‘ a € Q} and has the following form

1
Wiay,...,aq) = 2w Z 10g<7> + R(ay,...,aq) (53)
: |aj — a|
JFk
where R is reqular (C* ) on Q2.
Further each class [(u.,, A.,)] admils a representative (u,, A,) such that

Up = Uy , Ap — Ay inCﬁ)c(Q\{al,...,ad}),‘v’kEN

and the limiting sections satisfy

2

*
Vi, Vau. = u, ,

V 4, Us

i.e. Uy s A.—harmonic.
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Remark:

We would like to point out the link between this result and the problems presented in
the introduction. The Dirichlet boundary conditions and in particular the boundary
constraint |u| = 1 are not meaningfull for the underlying physics. Nonetheless the
preceding result yields a rigorous description of the mechanism

formation of vortices and induction of a magnetic field
vorticity = +
the induced magnetic field verifies the London equation,

which actually is the first question addressed in the introduction. The second ques-
tion, which is still left to be understood, may be formulated in the following way:

1
{ exterior field H.,; > critical value H., ~ ﬁ_l(ﬁlog(/@) + 1) } — vorticity .

A rigorous mathematical theory for the spontanious apparition of vorticity, for the
minimizers of Fy p...(u, A), when applying an external field H.,; ~ H,,, is still to
be found and this seems to be quite difficult. Still the preceding result gives some
light on the phenomenon. Actually the creation of vortices is coupled to an effect
in the vicinity of the boundary, called Meissner effect, which implies that (u, A) is
not superconducting close to the boundary. We now assume that 9 is not the
real boundary of the superconductor, but simply the delimitation of some interior
sample-domain, far away from the real boundary of the superconductor,such that
we can ignore the Meissner effect. It then becomes physically relevant to prescribe
|u| =1 on 9. Moreover we may assume there is a tangent current (iu, Vau) -7 = J
on 02 which is independent of &, but has free vorticity d. We then mimimize

2
Fom.,.(u,A) = / <|VAu|2 + %(1 — |u|2)2 + |dA|2> dr — 2/ dA - H,,.
Q Q

for the preceding constraints. Choosing J = 0, in order to simplify the presentation,
we obtain

/dA'Hext:Hext'/dA:/ A‘TZZQWdHel»t.
Q Q o0

Setting as before k = %, we thus minimize
Fom,.(u,A) = Go(u, A) —4nd Heyy -
The asymptotic developpement of Theorem 18 then yields
Fep., (u, A) = 27r10g§ +Wla)+cd+6(c) —4AnH.py

=2 <logé —2H.t) + W(a) 4+ cd + §(e)

We easily see that there is a value ¢, such that for ¢ < ¢; and H.,; = %log% + ¢, it
is better to have d = 0 (and in the same time W (a) = 0), whereas for ¢ > ¢; this is
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not the case anymore. We can also determine the optimal vorticity as a function of
c.

The above argument and the use of theorem 18 is rigorous, if we assume that d is
a free parameter, which is merely bounded by a given constant for ¢ — 0. It would
be interesting to prove this result without the assumption that d is bounded.

Sketch of the proof of theorem (18):

We will follow the same approach as in the case without magnetic field, but the
proof is not quite the same and also works for non starshaped domains. Actually
this method could also be used to treat the problem without magnetic field and
implies F. Bethuel, H. Brezis and H. Hélein result for arbitrary domains which
was the result established by M. Struwe in [18]. The idea consists in combining
the Pohozaev identity on balls of radius e with the n-compactness lemma, offered
below and the global bound on the energy.

Step 1 : The Euler-Lagrange equations. The Euler-Lagrange equations for
the critical points (u, A) of G, are

ViVau = g—zu(l —Jul?) inQ, (54)

—d"dA =< iu,Viu>=:j5 inQ, (55)
oh

a—V:—j-T:—J on 0f). (56)

Actually in Coulomb gauge (56) follows from (54), (55) since the latter equations
then become elliptic and solutions are smooth up to the boundary. Now since (56)
is gauge invariant, by transforming back, we see that it holds in arbitrary gauge.

Here VAV, = = >, (% - iA) (8% - iA) and as before h := *d A . Note that (56)

may be written as —d*h = j, if we set d*h := % dr; — % dx.
Step 2:  L* bound on u.

Lemma 19 Solutions of the Fuler-Lagrange equations satisfy — ||uc|[p~ < 1.

This follows as in the previous chapter from the maximum principle applied to

1 1
§A|Us| =2 e (1= uel?) + |V ue

2

Step 3:  Global bound on the Energy.

Lemma 20 For minimizers (u., A:) of G. in V we have

1
G(ue, A.) < 27 log(=) + C, (57)

e
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which is obtained by evaluating G.(v.,0) for v. a minimizer of the functional FE.
considered in chapter 1, for some boundary value ¢ solving < i1g,7-Vg >= J and

lg| =1 on 0.

Step 4: A remark

From the previous step we obtain the bounds

/|hs|2d:1; < Clog(
Q

/‘VAEUE
Q

We may nonetheless obtain better local bounds on A. In a way A does not have

) (58)
)- (59)

M | = | =

Yde < Clog(

local effects, but rather global ones: it resorbs the degree of u prescribed at the
boundary.
Indeed, set r = ¢ and choose Coulomb gauge on a ball B,:

VRS0 eos )
i.e. as in the proof of lemma 17 set A, := xd¢ for ¢ given by
ANéE=h. inB.,, £&=0 ondB,.
Now
AP dr < Oy IVEP dx < O |h|?dx < Cyr? log(l),
B, B, B, € (61)
SO
/BEQ |A)? dz < Caswlog(é) = 0. (62)

Suppose we have a vortex of degree 1 in ¢ € Q, i.e. u.(20) =0 and |u.| > 0 on dB,,
with faB e (u A du) = 27.
" ul?

Then one may show that fBga(l’O) ‘vu‘z de > C, 10g<%> 7

whereas [, (o) |A|*dz ~ & log(L). ( cf. [5] proposition IV.3)
Step 5:  Global estimates

Lemma 21 For minimizers (u., A.) of G. in V' we have

o] Q

IV acuellr < (63)
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In particular, this implies

C
and [|Vhlee < =

[V]uelllze <
&

o Q

from equation (55) .

Proof
(63) essentially follows from a scaling argument, the bounds of step 3 and 4 and the
fact that in Coulomb gauge on the unit ball, i.e. for

d*A=0inB, and A-r=0 on 0B;.

/ ‘VA‘zdx—l—/ |A|? da :/ |dA|* de :/ |h|? da . (64)
B B By By

Indeed let (u, A) be a minimizer of G. in V in Coulomb gauge ( cf. theorem 17 ),
where for simplicity we drop the indices ¢. Fix xo =: 0 € 2 and define the rescaled
solutions

we have

u(x) = u(ex), A:=cA(ex)= Z eA(ex)dx;
for x € By := By(0). .
Then ‘VAQ‘(:L') = e‘VAu‘(ex), |h(z)] = e*|h(ex)|. Now (58),(61) and (64) yield

/ <|A|2+ \vAf) dr < 0/ h|*dz < C e 1og(3)
B> B, €

and moreover, keeping in mind that we chose Coulomb gauge, the Euler-Lagrange
equations for the scaled solutions on B, read

—At=u(l—|u]*) —iA% + 2iAVa,
~ANA =t <in, V> .

From the estimate ||i||p~ < 1, elliptic regularity and the usual boot-strap argu-
ments, one concludes
HvaHLOO(B%) < Cv

for a constant C' independent of . Now scaling back and covering 0 with a finite
number of balls of radius 2, combined with boundary-regularity yields ||[Vul[p~ < <
and also |Vau|[p~ < ¢,

€

( cf. [5] proposition 11.6 ) O

Step 6: Pohozaev identity
In the non gauge invariant case of the previous chapter, we obtained the Pohozaev
identity by multiplying the Euler-Lagrange equations by > ._ ., z; % = Sragu,

where £ is the Lie-derivative. This is equivalent to saying that u is a critical point
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with respect to variations induced by translations in the domain, i.e. perturbations
of the form:

u(x) = u(:z; + (xz — :I;O)t> )

Now we also set: A;(x) := A(:L' + (z — :I;O)t> and if (u, A) is a critical point of
Go(u, A) = [, g-(u, A) dz, then we have

d
dt

t:O/ g=(u, A)ydx = 0 VG CCQ.
G

After a translation, we may assume 0 = xq €  and find

Lemma 22 Let (u, A) be a eritical point of G.(u, A) we have

/G (;—2(1 Juft)? - 2h2> de = /aG (z-v) (21?(1 Juft)? - h2> do o

—I—/ (‘VAU'T‘Q—‘VAU'V‘2>CZ0

aG

—2/ (x-T)<T-VAu,V-VAu>d0.
aG

Step 7:  Local estimates

Lemma 23 Let0 < a <1, 29 € Q, (ue, Ac) a minimizer of G. in V and h. = *dA..
Then

1
/ |he|* dx < Csﬂog(—) Vo<ac<l (66)
B.a(z0)NQ €
and
1 2\2
— (I —|ul)"dz < C,, (67)
B.a(zo)nQ €
where C,, depends on o as well as d,J and €.

Remark: We choose £ because it is the largest scale for which the Pohozaev
identity yields a bound of the form fBaa = (1 = |uc|?)*de < C, . In particular this
implies, as in the previous chapter, that the number of bad discs B.a is finite, which
will be discussed in step 8.

Proof
In the sequel we will drop the index . Noting that & is a function, we deduce from

(55) and (56)

|dh| = |Vh| < |Vau| (68)
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Indeed since in Coulomb gauge the variational equations (54), (55) are elliptic, weak
solutions are actually smooth and the equations hold pointwise. Now since the above
quantities are gauge invariant, (68) holds for weak solutions in any gauge.
Combining with (59) we obtain

1
/ (Va|* de < Clog(—)
B.a €
, 1
|h|*de < Clogl| — ).
B.a €
P <

Using the Sobolev injections W2(Q) — LP(), 1 <
we deduce

/ h|?de < (2me)s (/ |h|pd:z;> <Cp(5a)%/ (\Vh\2+|h|2>dx
Baa BEOt Bao‘

with zla + 5 = 1, which gives the first result by setting p =4 .
For the second estimate, let 0 < o« < 1 and write

and from (58) we have

oo and Holder’s inequality,

g:() 1= ¢. (u(:z;),A(:z;)):: % <|dA|2(;1;) + ‘VAU‘Q(;I;) + 2%(1 — |u(;1;)|2)2>

for the energy density. Then

=1 1
/ ge()dax = / - r/ ge(rw) dw | dr < 10g<—>.
B 2a~B.a ex T aB, €

Thus there is some p. € [¢%,£2], such that

,05/ ge(pew) dw < Oy,
aBPE

where the constant C, depends on «,.J,d but not on . Combining the Pohozaev
inequality (65) on B,, with the previous estimate (66), we obtain

/ %(1—|u|2>2d:1; < / %(1—|u|2>2d:1; < C <5alog<l>—|—p/ gsd0> < C,.
B.a S S S 9B,

BPE

Note that in the case B,, N 9Q # 0, one should integrate over B,, N and make use
of the boundary data. O

Step 8  The n-compactness lemma

This lemma roughly says, that if we don’t have enough energy on a ball, then |u] is
larger than 1/2 on the ball of half of the radius. Now this implies some compacteness
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properties for {u.}.so on this ball. The n-compactness property is also one of the
key ingredients for studying similar asymptotic phenomena for minimizers of the
Ginzburg-Landau Functional in dimension larger than 2, but in higher dimensions
the n-compactness lemma is much more delicate to establish (see [15] and [12] on
this subject).

Lemma 24 There is a constant n > 0, such that, for all minimizers (u., A.) of G.
inV,all g € Q and all p > ¢

/ ge(uey Ac)dae < log<p>
Bp(l’o)ﬂQ

€
U
m Bg(l,o) NnQ.

[N

lu.| >

Consequences of the n-compactness lemma:

Let 0 < a < 1. We call B,(z), for x € 2 a bad ball , if there is some y € B (x), such
that |u|(y) < 3. Here and in the following B, or B, (x) actually stands for B, (x)NQ,
for some x € Q. If B.(z) N INQ # 0 some care is required and the boundary data
should be used.

Choose a covering by balls { B.as2(2%) }icr. of Q and set J. := {i € I.| Bea(2") is bad }.

By the n-compactness lemma we have

Clos(0) > Y [ e A > mlon(T)-0) = (e n (1) os( ).

& ‘ S
J€J:

So tJ. < (C,, i.e. the number of bad balls of radius ¢* for 0 < o < 1 is uniformly
bounded with respect to ¢.
On the other hand, from lemma 21 and lemma 23, we know that

C
VTl < — (69)
and
1 2
: 5—2<1—|u|>d:1;§0a. (70)

This yields a uniform bound on the number of bad balls of radius A e, for a constant
0 < A < 1 independent of ¢. Indeed, by (69), there is a A €]0, 1], such that |u| < 2
on Bi.(y) if Ju(y)] < 3, thus

m2\?

1 2
— (1= |u*) dx > >0,
/Bka(y) 62 < | | ) 16

and so the number of bad balls of radius Ae contained in some bad ball of radius ¢

is bounded independly of ¢ by (70).
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Proof of the n-compactness lemma in dimension 2.
First note that it suffices to prove |u(zo)| > L
Now by lemma 23 , p < & implies

e—0

1
/ |h|?dx < e log— — 0.
By

By assumption we have

r 1 P
S ge(te, Ad)do | dr < nlog=
e T aB, €

and so there is some rqg € [¢, p] such that
1
7“0/ (‘VAU‘ + -0 - lul?)® + |dA|2> dr < n (71)
9B,

Combining (65) and (71), we obtain
—1 (1 — | |2)2 dr < C
= u r < Cn.

Using || V]u|||z= < €, this yields |u(wo)| > 1 for n sufficiently small. O
Step 9: W' estimates for h = dA.

h := dA satisfies

d(Wd*h) +h=0 on Q::Q\UBE(%), (72)
jed
where {B.(z;)}jes is a ﬁnlte cover of the bad set. ( cf. step 8 )
Indeed on Q we have |u| > L 5 and locally we may write u = lule?. Then

< iu, Vau >= Re(iu-Vu) = |ul’ (dp — A)

and

d <1 Diu>= —dA=—h.

|u |2’

Applying now d to (55), we obtain

—dd*h = (|u]* < i Vau>) = Lal<|u|2>(—al*h) — |ul*h,

Jul*’ Jul?

SO 9
|3

IUI2

dh+h =0,

lu

which is equivalent to (72). Now this equation for h is very similar to that obtained
for v and H in the case without magnetic field, considered in the previous chapter.
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But here we did not have to make use of a Hodge decomposition, since i turns out
to be the right variable to work with. Note that the Dirichlet boundary condition
for ¢ is now replaced by a Neuman boundary condition

oh

— = —J on 0.

dv
WP estimates are obtained by similar methods and the other steps too can be
developped mutatis mutandi as in the case without magnetic field.
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