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Abstract :We prove that any smooth harmonic map from S3 into S2 of Morse index less or equal
than 4 has to be an harmonic morphism, that is the successive composition of an isometry of S3, the
Hopf fibration and an holomorphic map from CP 1 into itself.
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I Introduction

Rigidity phenomena under Morse index control is an important problematic of the calculus of variations
with applications in differential geometry. The archetype result illustrating this question is the rigidity
theorem of Francisco Urbano asserting that the closed minimal surfaces of Morse index less or equal than
5 in the canonical 3-sphere S3 are given exclusively by geodesic spheres and Clifford torii.

In the present work we are considering smooth harmonic maps from the canonical 3−sphere S3 of R4

into the canonical 2−sphere S2 of R3 that is C∞ maps, critical point of

E(u) :=
1

2

∫
S3

|du|2 dvolS3

in W 1,2(S3, S2). The second derivative of E at a critical point u is given by

D2Eu(w) :=
1

2

∫
S3

|dw|2 − |w|2 |du|2 dvolS3

for w a section of the bundle u−1TS2. The Morse index of D2E is the dimension of the space spanned
by the eigen-sections with negative eigenvalues in the space of sections of u−1TS2 denoted Γ(u−1TS2) of

Lu(w) := −Pu∆S3w − w |du|2

where Pu is the projection map onto TuS
2. Our main result in the present work is the following.

Theorem I.1. Let u be a smooth harmonic map from S3 into S2. Assume that the Index of the quadratic
form D2Eu on Γ(u−1TS2) is less or equal than 4 then it is equal to 4 and there exists an isometry Φ of
S3 and an holomorphic map from CP 1 into CP 1 such that

u = v ◦ h ◦ Φ ,

where h is the Hopf map given by h(z, w) = (2 z w, |z|2 − |w|2). 2
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Since the work of Ahmed El Soufi it is known that the Morse index of any smooth harmonic map from
S3 into S2 is larger or equal than 4. We conjecture that this result does not extend to weakly harmonic
map and 4 should be replaced by 3 in this more general framework (see some comments in section IV).
It is proved in [6] that the index of the Hopf map is 4.

The theorem I.1 has been elaborated in the course of the development of the following research
program which is exposed in more details in the Master Thesis of Yujie Wu [8]. We introduce the non
empty subfamily of W 1,2(S3, S2) given by

A :=



u ∈ C0(B4,W 1,2(S3, S2)) ; max
a∈∂B4

‖dua‖L2(S3) ≤ δ

and a ∈ ∂B4 →

∫
S3

ua dvolS3∣∣∣∣∫
S3

ua dvolS3

∣∣∣∣ ∈ S
2 is non zero homotopic


where δ > 0 is chosen small enough in such a way that, using Poincaré inequality,

‖dua‖L2(S3) ≤ δ =⇒
∣∣∣∣∫
S3

ua dvolS3

∣∣∣∣ > 1/2

It is proved in [8] that for δ > 0 again chosen small enough

WA := inf
u∈A

max
a∈B4

E(ua) > δ . (I.1)

We conjecture that the minmax is realized by harmonic morphisms and precisely

WA =
1

2

∫
S3

|dh|2 dvolS3 .

If this is true then a proof of the following easily follows.

Conjecture I.1. [4] The minimizers of the 3-energy among homotopically non zero maps from S3 into
S2 are exactly given by the composition of the Hopf maps h with conformal transformations and isometries
of S3 .

The overall framework of this program shares a lot of similarities with the structure of the proof of
the Willmore Conjecture by Fernando Codá Marques and André Neves [3]. The counterparts of the area,
the Willmore energy, the canonical family and Urbano’s result are respectively given in our program by
the 2-energy, the 3-energy, the family u ◦ φa (see II.30) and the theorem I.1.

The framework of harmonic maps offers interesting new phenomena which are not present in the
corresponding questions for minimal surfaces. This is related to the fact that not every harmonic map
from S3 into S2 is strongly approximable by smooth maps. This is mentioned in section IV.

II Preliminaries.

II.1 Global Frame on S3.

We consider the following positive orthonormal frame of S3 which extends as a free orthogonal family in
the whole R4 : 

e1 := x1 ∂x2 − x2 ∂x1 + x3 ∂x4 − x4 ∂x3

e2 := x2 ∂x3
− x3 ∂x2

+ x1 ∂x4
− x4 ∂x1

e3 := x3 ∂x1 − x1 ∂x3 + x2 ∂x4 − x4 ∂x2
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In other words using cyclic indexation in Z3 we have

ei := xi ∂xi+1 − xi+1 ∂xi + xi−1 ∂x4 − x4 ∂xi−1 (II.1)

This gives in particular

dxi = −xi+1 e
∗
i − x4 e∗i+1 + xi−1 e

∗
i−1 and dx4 =

4∑
i=1

xi−1 e
∗
i (II.2)

We have respectively

[ei, ei+1] :=

4∑
k,l=1

(
eki ∂xk

eli+1 − eki+1 ∂xk
eli
)
∂xl

= −2 ei−1 (II.3)

We denote
e∗i := ι∗∂B4 (xi dxi+1 − xi+1 dxi + xi−1 dx4 − x4 dxi−1)

We have

< e∗i , ej >=< xi dxi+1 − xi+1 dxi + xi−1 dx4 − x4 dxi−1, (ι∂B4)∗ej >

=
〈
xi dxi+1 − xi+1 dxi + xi−1 dx4 − x4 dxi−1, xj ∂xj+1 − xj+1 ∂xj + xj−1 ∂x4 − x4 ∂xj−1

〉
= δij

(II.4)
Hence (e∗i )i=1,2,3 realizes a dual frame to (ei)i=1,2,3. We have in one hand

de∗i = 2 ι∗∂B4 (dxi ∧ dxi+1 + dxi−1 ∧ dx4) (II.5)

and in the other hand, explicit computations (see [4]) give

e∗i+1 ∧ e∗i−1 = ι∗∂B4 (dxi ∧ dxi+1 + dxi−1 ∧ dx4) (II.6)

Hence we deduce
de∗i = 2 e∗i+1 ∧ e∗i−1 (II.7)

Denote by ∇ the Levi Civita covariant derivative on S3. Since ∇ is torsion free we have

∇eiei+1 = ∇ei+1
ei + [ei, ei+1] = ∇ei+1

ei − 2 ei−1 .

We have also
(∇eiei+1, ei+1) ≡ 0 and (∇ei+1

ei, ei) ≡ 0 .

Hence
∇eiei+1 = λi ei−1 and ∇ei+1

ei = (λi + 2) ei−1 .

Since
(∇eiei+1, ei−1) + (∇eiei−1, ei+1) = 0 .

We deduce that
λi + λi−1 + 2 = 0 ∀i ∈ Z3 .

This implies that λi = −1 and we deduce finally

∇eiei+1 = − ei−1 and ∇ei+1
ei = ei−1 . (II.8)

Since
(∇eiei, ei+1) + (ei,∇eiei+1) = 0 and (∇eiei, ei−1) + (ei,∇eiei−1) = 0 ,
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we deduce from the previous that
∇eiei ≡ 0 . (II.9)

Let α be a one form, we have for any pair of vector field X and Y

〈∇Xα, Y 〉 = −〈α,∇XY 〉+ dX (< α, Y >) (II.10)

From this identity we deduce respectively

∇eie∗i = 0 , ∇ei+1
e∗i = e∗i−1 and ∇ei−1

e∗i = −e∗i+1 (II.11)

II.2 Conformal Killing Fields

We denote for i = 1 · · · 4 by Xj the following conformal killing vector field on S3

Xj(x) := εj − xj x , (II.12)

where (εj)j=1···4 is the canonical basis of R4. We consider in particular X1 that we express in the e-frame.
Since ei(x) is orthogonal to x we have

X1 =

3∑
i=1

< ε1, ei > ei = −x2 e1 − x4 e2 + x3 e3 .

Observe that
X1 = (dx1)∗ .

Similarly we could have considered Xi := (dxi)
∗. Hence, using (II.8) we obtain successively

∇e1X1 = − < dx2, e1 > e1− < dx4, e1 > e2+ < dx3, e1 > e3 − x4 ∇e1e2 + x3∇e1e3

= −x1 e1 − x3 e2 − x4 e3 + x4 e3 + x3 e2 = −x1 e1 ,

(II.13)

then

∇e2X1 = − < dx2, e2 > e1− < dx4, e2 > e2+ < dx3, e2 > e3 − x2 ∇e2e1 + x3∇e2e3

= x3 e1 − x1 e2 + x2 e3 − x2 e3 − x3 e1 = −x1 e2 ,

(II.14)

and

∇e3X1 = − < dx2, e3 > e1− < dx4, e3 > e2+ < dx3, e3 > e3 − x2 ∇e3e1 − x4 ∇e3e2

= x4 e1 − x2 e2 − x1 e3 + x2 e2 − x4 e1 = −x1 e3 .

(II.15)

Combining these facts one obtains in particular

∇eiX1 = −x1 ei and

3∑
i=1

∇ei∇eiX1 = −
3∑
i=1

< dx1, ei > ei = x2 e1 + x4 e2− x3 e3 = −X1 (II.16)
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II.3 Weitzenböck Formula

Under the notations above one has the following expression of the exterior differential of a p−form α on
S3

dα =

3∑
i=1

e∗i ∧∇eiα . (II.17)

We recall the definition of the interior product of a vector field X with a p−form α

(X α)(Y1 · · ·Yp−1) := α(X,Y1 · · ·Yp−1) .

Finally we recall the definition of the Ricci tensor acting on multi-vectors or differential forms

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

We have in particular

R(ei, ei+1) ei = −ei+1 , R(ei, ei+1) ei+1 = ei and R(ei, ei+1) ei−1 = 0 . (II.18)

and
R(ei, ei+1) e∗i = −e∗i+1 , R(ei, ei+1) e∗i+1 = e∗i and R(ei, ei+1) e∗i−1 = 0 . (II.19)

The Weitzenböck formula reads as follows. Let α be a p−form, we have

(dd∗ + d∗d)α = −
3∑
i=1

∇ei∇eiα−
3∑

ij=1

e∗i ∧ (ej (R(ei, ej)α)) (II.20)

II.4 The second Derivative of the Dirichlet Energy

Let u be a smooth map from S3 into S2 and let w be a smooth map from S3 into R3 whose L∞ norm is
less than 1/4 with also small C1 norm. We compute

E

(
u+ w

|u+ w|

)
=

1

2

∫
S3

∣∣∣∣d u+ w

|u+ w|

∣∣∣∣2 dvolS3

= E(u) +

∫
S3

du · dw − u · w |du|2 dvolS3 +
1

2

∫
S3

|dw|2 − |w|2 |du|2 dvolS3

+
1

2

∫
S3

[
3 (u · w)2 |du|2 − 4 du · dw (u · w)− 2 |d(u · w)|2

]
dvolS3 +O((|w|+ |dw|)3)

Assuming u is harmonic and w is a section of u−1TS2 that is to say u · w ≡ 0 we then have

E

(
u+ w

|u+ w|

)
= E(u) +

1

2

∫
S3

|dw|2 − |w|2 |du|2 dvolS3 +O((|w|+ |dw|)3) . (II.21)

Let Pu be the map from S3 into 3 by 3 matrices giving at each x the orthogonal projection onto Tu(x)S
2,

we are interested in the operator L defined from Γ(u−1TS2) into itself and given by

Lu(w) := −Pu∆S3w − w |du|2 ,

where ∆S3 is the negative Laplace Beltrami operator on S3. On Γ(u−1TS2) the second derivative of E
is then given by

D2Eu(w) =
1

2

∫
S3

w · Lu(w) dvolS3 .
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II.5 The infinitesimal variation of E along the action of conformal transfor-
mations of S3

Let u be a smooth harmonic map from S3 into S2 and Xi denote the conformal Killing fields given by
(II.12). We are interested in computing Lu(< du,Xi >). We have using respectively (II.7) and (II.16)

∗d ∗ d < du,X1 >= ∗d∗ < ∇du,X1 > + ∗ d∗ < du,∇X1 >

= ∗
3∑
i=1

d
(
e∗i+1 ∧ e∗i−1 < ∇eidu,X1 >

)
+ ∗

3∑
i=1

d
(
e∗i+1 ∧ e∗i−1 < du,∇eiX1 >

)
=

3∑
i=1

< ∇ei∇eidu,X1 > +2 < ∇eidu,∇eiX1 > + < du,∇ei∇eiX1 >

= − < du,X1 > +

3∑
i=1

< ∇ei∇eidu,X1 > − 2x1 < ∇eidu, ei >

(II.22)

The Weitzenböck Formula and the harmonicity of u give

3∑
i=1

∇ei∇eidu = −dd∗du−
3∑

ij=1

e∗i ∧ (ej (R(ei, ej) du))

= −du |du|2 − u d|du|2 −
3∑

ij=1

e∗i ∧ (ej (R(ei, ej) du))

(II.23)

Using (II.19) we compute
e∗i ∧ (ei+1 (R(ei, ei+1) du)) = − e∗i < du, ei >

e∗i ∧ (ei−1 (R(ei, ei−1) du)) = − e∗i < du, ei > .

(II.24)

Hence combining (II.23) and (II.24) we obtain

3∑
i=1

∇ei∇eidu = −du |du|2 − u d|du|2 + 2 du . (II.25)

We have also

3∑
i=1

< ∇eidu, ei >=

3∑
i=1

〈
∇ei

(
∇ei−1

u e∗i−1 +∇eiu e∗i +∇ei+1
u e∗i+1

)
, ei
〉

=

3∑
i=1

∇ei∇eiu = ∆S3u = −u |du|2
(II.26)

Combining (II.22), (II.25) and (II.26) we obtain for any k = 1 · · · 4

∆S3 < du,Xk >= ∗d ∗ d < du,Xk >= (−|du|2 + 1) < du,Xk > +2xk u |du|2 (II.27)

This gives
L(< du,X1 >) = − < du,X1 > (II.28)

6



In particular we obtain for any i = 1 · · · 4

D2Eu(< du,Xi >) = −1

2

∫
S3

| < du,Xi > |2 dvolS3 . (II.29)

Assume the < du,Xi > are not linearly independent then there exist X ∈ Span{X1 · · ·X4} \ {0} such
that < du,X >≡ 0. Modulo the action of rotations we can assume < du,X1 >≡ 0. This implies that
the maps u ◦ φtε1 are all constants where

φa(z) := (1− |a|2)
z − a
|z − a|2

− a (II.30)

As t goes to 1 the map u ◦ φtε1 is converging in W 1,2 towards a constant map1. Hence u has to be
constant. We have then given a proof of a result by Ahmed El Soufi2.

Theorem II.1. [2] Let u be a smooth non constant harmonic map from S3 into S2 then the index of u
for the Dirichlet energy is at least 4. 2

II.6 Infinitesimal perturbations along the orthogonal of the push-forwards of
Conformal Killing Fields.

Recall the notation (X l)∗ := dxl in S3. Let α and β two 1-forms on S3 we claim that

α · β =

4∑
l=1

< α,X l >< β,X l > (II.31)

Indeed, denote π(x) := x/|x|. We have in particular X l = π∗∂xl
. We have

α · β = π∗α · π∗β =

4∑
l=1

< π∗α, ∂xl
>< π∗β, ∂xl

>=

4∑
l=1

< α, π∗∂xl
>< β, π∗∂xl

>

which gives (II.31).

We consider w := u× < du,X l > for l = 1 · · · 4. We have using the harmonic map equation as well
as (II.27) and (II.31)

−Pu∆S3(u× < du,X l >) = −Pu(∆S3u× < du,X l >)− u×∆S3 < du,X l > −2Pu(du×̇d < du,X l >)

= u× < du,X l > |du|2 + (|du|2 − 1)u× < du,X l > +2 (du× u) · (du,< du,X l >)

= (2 |du|2 − 1)u× < du,X l > −2

4∑
k=1

u× < du,Xk >< du,Xk > · < du,X l >

1Here we are using that the map u is smooth, the singular harmonic morphism u constructed in section IV does not
satisfies this property.

2The result of El Soufi is a way more general and extends to general targets and arbitrary spheres of dimensions strictly
larger than 2.
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Taking the scalar product with u× < du,X l >, summing over l and integrating over S3 gives∫
S3

4∑
l=1

|d(u× < du,X l >)|2 dvolS3 −
∫
S3

4∑
l=1

|u× < du,X l > |2 [|du|2 − 1] dvolS3

=

∫
S3

4∑
l=1

|u× < du,X l > |2 |du|2 dvolS3

−2

∫
S3

4∑
k,l=1

(u× < du,Xk >) · (u× < du,X l >) < du,Xk > · < du,X l > dvolS3

=

∫
S3

4∑
k,l=1

| < du,Xk > |2 | < du,X l > |2 − 2(< du,Xk > · < du,X l >)2 dvolS3

=

∫
S3

−
4∑
k=1

| < du,Xk > |4 + 2
∑
k<l

| < du,Xk > |2 | < du,X l > |2 dvolS3

−4

∫
S3

∑
k<l

(< du,Xk > · < du,X l >)2 dvolS3

=

∫
S3

|du|4 − 2 |du ⊗̇ du|2 dvolS3

(II.32)

where in the 3 last identity we used (II.31).

III Proof of Theorem I.1

We are assuming that for any w ∈ Γ(u−1TS2)∫
S3

|dw|2 − [|du|2 − 1] |w|2 dvolS3 ≥ 0 .

Combining this assumption with (II.32) gives in particular∫
S3

|du|4 − 2 |du⊗̇du|2 dvolS3 ≥ 0 . (III.33)

At every point du has at most rank 2. Assuming Rank dux = 1 we obviously get a contradiction. Let
then x be such that Rank dux = 2 and let (f1, f2) be an orthonormal basis of the orthogonal 2-plane to
Ker dux. We have at x

|du|4 − 2 |du⊗̇du|2 = (|∂f1u|2 + |∂f2u|2)2 − 2 |∂f1u|4 − 2 |∂f2u|4 − 4 |∂f1u · ∂f2u|2

= −|∂f1u|4 − |∂f2u|4 + 2 |∂f1u|2 |∂f2u|2 − 4 |∂f1u · ∂f2u|2

= −(|∂f1u|2 − |∂f2u|2)2 − 4 |∂f1u · ∂f2u|2 ≤ 0

Hence we have proved that |du|4 − 2 |du⊗̇du|2 ≤ 0 at every point. The inequality (II.32) implies then
|du|4 − 2 |du⊗̇du|2 ≡ 0. Hence at any point we have that, either dux = 0 or dux is transversally
conformal. We conclude that u defines an harmonic horizontally weakly conformal map between S3 and
S2 (see definition 2.4.2 in [1]). This gives that u is an harmonic morphism between S3 and S2 (see
lemma 4.2.1 from [1]) and using theorem 6.7.7 of [1] we deduce that u is the successive composition of
an isometry of S3, the Hopf fibration and an holomorphic map from CP 1 into itself. This concludes the
proof of theorem I.1.
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IV Non Smooth Harmonic Maps

In this last section we would like to stress the importance between smooth and non smooth harmonic
maps with respect to the above computations.

IV.1 A non-balancing condition

We will start by recalling a discrepancy regarding a balancing condition discovered in [5].

Taking the dot product of (II.27) with u and integrating over S3 gives for k = 1 · · · 4

2

∫
S3

xk |du|2 dvolS3 =

∫
S3

u ·∆S3 < du,Xk > dvolS3

=

∫
S3

∆S3u· < du,Xk > dvolS3 = −
∫
S3

u· < du,Xk > |du|2 dvolS3 = 0

We deduce then the following balancing condition first proved in [5]

Proposition IV.1. Let u be a smooth harmonic map from S3 into S2 then

∀ k = 1 · · · 4
∫
S3

xk |du|2S3 dvolS3 = 0 . (IV.1)

2

Let v be an harmonic map from S2 into S2. We extend radially v into the map ṽ from R3 into
S2. Recall the formula of the laplacian in polar coordinates where ∆S2 is the negative Laplace Beltrami
operator on the 2−sphere

∆R3 = ∂2r2 + 2 r−1 ∂r + r−2∆S2 .

Since by definition ∂rṽ = 0 we have that ∆R3 ṽ = r−2∆S2v and since v is harmonic we have

v ∧∆S2v = 0 ⇒ ṽ ∧∆R3 ṽ = 0

Hence ṽ realizes an harmonic map from R3 into S2 and satisfies the equation3

−∆R3 ṽ = ṽ |∇R3 ṽ|2

Denote ũ(x1, x2, x3, x4) := ṽ(x1, x2, x3) = v(|x′|−1x′) where x′ = (x1, x2, x3). We have for ρ2 = x21 +x22 +
x23 + x24

∂ρũ = 0 in R4 \ {x′ = 0} .

Hence, away from the x4 axis {x′ = 0} we have

ũ(x) ∧ ρ−2∆S3 ũ(x) = ũ(x) ∧∆R4 ũ(x) = ṽ(x′) ∧∆R3 ṽ(x′) = 0

We deduce that the restriction u of ũ to the 3−sphere away from the north and the south pole x4 = ±1
is a smooth harmonic map. We have obviously

|x′| |∇S3u|(x) = O(1)

3Observe that the equation is also satisfied throughout the origin. Indeed, by classical theory v is smooth then the
following bound holds : |x| |∇ṽ| = O(1) near the origin and then ∇ṽ ∈ L3,∞(B1(0)). The following equation holds
obviously

div(ṽ ∧∇ṽ) = 0 in D′(B3
1(0) \ {0}) (IV.2)

Since ṽ ∧∇ṽ ∈ Lp(B3
1(0)) for some p > 3/2, a classical capacity argument gives that (IV.2) extends throughout the origin.
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Moreover we have respectively distS3(x,North) = arcsin |x′| for x4 > 0 and distS3(x, South) = arcsin |x′|
for x4 < 0 hence ∇S3u ∈ L3,∞(S3). The capacity argument mentioned in the previous note gives that u
is weakly harmonic on S3.

Take now va(x′) := φa(x′) where a ∈ B3
1(0) and φa is given by (II.30). It is a well known fact that

this map realizes a conformal harmonic diffeomorphism of S2 we have moreover

lim
a→(1,0,0)

φa = −1 in C1
loc(S

2 \ {(−1, 0, 0)})

and
|∇S2φa|2 dvolS2 ⇀ 8π δ(−1,0,0) in Radon measure as a→ (1, 0, 0) (IV.3)

Take ua(x) := va(x′). The map ua realizes a singular harmonic morphism with the north and the south
poles as singularities. We deduce from (IV.3) that

lim
a→(1,0,0)

∫
S3

x1 |dua|2S3 dvolS3 < 0 (IV.4)

This implies the following proposition.

Proposition IV.2. There exists a weak harmonic map from S3 into S2 such that∫
S3

x1 |du|2S3 dvolS3 6= 0 . (IV.5)

2

To conclude this paper we would like to give some hint why the main theorem I.1 should not hold for
non smooth harmonic maps. Let

B :=



u ∈ C0(B3,W 1,2(S3, S2)) ; max
b∈∂B3

‖dub‖L2(S3) ≤ δ

and b ∈ ∂B3 →

∫
S3

ub dvolS3∣∣∣∣∫
S3

ub dvolS3

∣∣∣∣ ∈ S
2 is non zero homotopic


where δ > 0 is chosen small enough in such a way that, using Poincaré inequality,

‖dub‖L2(S3) ≤ δ =⇒
∣∣∣∣∫
S3

ub dvolS3

∣∣∣∣ > 1/2

We claim that B is not empty. We take the harmonic map u we just constructed in the first part of this
section and consider the family

b ∈ B3 = B4 ∩ {x ∈ B4 ; x4 = 0} −→ u ◦ φ(1−ε) b
For any δ > 0 there exists ε > 0 small enough such that maxb∈∂B3 ‖d(u◦φ(1−ε) b)‖L2(S3) ≤ δ it is moreover
not difficult to check that

b ∈ ∂B3 −→

∫
S3

u ◦ φ(1−ε) b dvolS3∣∣∣∣∫
S3

u ◦ φ(1−ε) b dvolS3

∣∣∣∣ ∈ S
2 is non zero homotopic .

Introducing
WB := inf

u∈B
max
b∈B3

E(ub) (IV.6)

one easily show that WB > δ. It is expected that this minmax is achieved by an harmonic map of index
3. The singular harmonic morphism u is a natural candidate for realizing this minmax.
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