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∗

I Wente’s inequalities and integrability by com-

pensation.

The Integrability by Compensation is an improvement in the a-priori rate of in-
tegrability of a function due to special cancellation, compensation, phenomena.
It was probably first discovered by Henry C. Wente in [Wen] in his work on
constant mean curvature surfaces.

Given two functions a and b in the Sobolev Space W 1,2(ω,R) of L2 functions
on a domain ω of R2 whose distributional derivatives are also in L2, the jacobian
function

∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
(I.1)

is a-priori only in L1(ω). The observation made by H.C. Wente was that the
convolution of this function together with the Green Kernel log |x| of the Lapla-
cian is in the Sobolev Space W 1,2

loc (D2) and also in L∞
loc(D

2). This realizes an
improvement of the a-priori integrability properties given by classical singular
integral theory. Indeed the convolution of an L1 function together with the
Green Kernel log |x| is a-priori only in the space of Bounded Mean Oscillations
BMO and that the derivatives of such a convolution are a-priori only in the
weak L2 space - or Marcinkiewicz space - L2,∞ (see [Ste]). Recall the definition
of the L2,∞ norm of measurable function on a domain Ω :

‖f‖L2,∞(ω) = sup
λ>0

λ |{x ∈ ω ; |f(x)| ≥ λ}|
1

2 .

This improvement of intergrability, or regularity, is due to the special algebraic
structure of the quadratic nonlinearity (I.1) which is of jacobian type.

Later on, in [Ta1], Luc Tartar wrote a new proof of Wente’s result using
an argument which permitted to improve the gain of integrability obtained by
Wente. Tartar indeed established that the Fourier transform of the convolution
between the jacobian (I.1) and the Green function log |x| was in a strictly smaller
space than L2 : the Lorentz Space L2,1 dual to the weak L2 space L2,∞. We
recall now a characterization of the L2,1 space : a measurable function f on Ω
is in the Lorentz space L2,1 if and only if

∫ +∞

0

|{x ∈ Ω ; |f(x)| ≥ λ}|
1

2 dλ < +∞
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A systematic presentation of Lorentz spaces can be found in [Ta3]. In [Hel]
section 3.4, Frédéric Hélein presents another argument by Luc Tartar, based on
the use of an interpolation result of Jacques-Louis Lions for bilinear operators,
which shows that derivatives of the convolution between the Green Kernel log |x|
and the jacobian (I.1) are themselves in the Lorentz space L2,1. This permits in
particular to recover the full result of Wente since functions on a 2-dimensional
domain whose gradients are locally in L2,1 are continuous.

In [Mu], Stefan Müller proved, under the additional assumption that the
jacobian (I.1) has a sign, that, still assuming that a and b are in W 1,2, this
jacobian is in a smaller space than L1 : the Orlicz space L1 logL1. As a con-
sequence, using the classical theory of Calderon Zygmund operators, see [Ste],
one then obtain that the convolution between the Green Kernel log |x| and the
jacobian (I.1) is locally in the Sobolev Space W 2,1 which permits in particu-
lar, using Lorentz-Sobolev embeddings- see [Ta2] and [Ta3], to recover Wente’s
and Tartar’s results under this sign assumption. Later on, Ronald Coifman,
Pierre-Louis Lions, Yves Meyer and Stephen Semmes were able to drop the sign
assumption made by Müller and proved that, under the assumption that ∇a
and ∇b are in L2 only, the jacobian (I.1) is in the local Hardy space H1

loc. Re-
call that, for positive functions, the local Hardy space H1

loc coincides with the
Orlicz space L1 logL1 . Using the Fefferman-Stein characterization of Hardy,
under the only assumption that ∇a and ∇b are in L2, one deduces that the
convolution between the Green Kernel log |x| and the jacobian (I.1) is in the
Sobolev space W 2,1.

These improvements in integrability or regularity were originally obtained
together with estimates. We sumarize then the previous discussion and give the
corresponding estimates in the following theorem

Theorem I.1 [Wente 1969, Tartar 1983, Müller 1989, Coiffman-Lions-Meyer-
Semmes 1990] Let ω be a bounded regular domain of R2. Let a and b be two
measurable functions on ω whose gradients are in L2(ω). Then there exists a
unique solution ϕ in W 1,2(ω) to











−∆ϕ =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
in ω

ϕ = 0 on ∂ω

(I.2)

Moreover there exists a constant C(ω) such that

‖ϕ‖L∞(ω) + ‖∇ϕ‖L2,1(ω) + ‖∇2ϕ‖L1(ω) ≤ C(ω) ‖∇a‖L2 ‖∇b‖L2 . (I.3)

In particular ϕ is continuous in ω. �

A consequence of the previous theorem was obtained by Fabrice Bethuel in
[Be] using a duality argument and is another remarquable result in the theory
of integrablity by compensation (see also a presentation of this result in [Hel]) .

Theorem I.2 [Bethuel 1992] Let ω be a bounded regular domain of R2. Let a
and b be two measurable functions on ω. Assume that the distributional deriva-
tives ∇a and ∇b are respectively in L2(ω) and L2,∞(ω). Then there exists a
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unique solution ϕ in W 1,2(ω) to











−∆ϕ =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
in ω

ϕ = 0 on ∂ω

(I.4)

Moreover there exists a constant C(ω) such that

‖∇ϕ‖L2(ω) ≤ C(ω) ‖∇a‖L2(ω) ‖∇b‖L2,∞(ω) . (I.5)

�

II Hildebrandt’s conjecture on critical points to

conformally invariant Lagrangians.

II.1 Conformally invariant quadratic coercive lagrangians

in 2 dimensions.

Due to the important role they play in physics and geometry, the analysis of
critical points to conformally invariant lagrangians has raised a special interrest
in the mathematical community since at least the early 50’s and in particu-
lar under the impulsion of Charles B. Morrey. Because of the richness of it’s
conformal group, the dimension 2 should maybe be first looked at in priority.

Let first consider the Dirichlet Energy for functions u from a 2-dimensional
domain ω into R

L(u) :=

∫

ω

|∇u|2(x, y) dx ∧ dy .

This is maybe the most simple example of a 2-dimensional conformally invariant
Lagrangian. Indeed, let φ be a conformal transformation on C, it satisfies































∣

∣

∣

∣

∂φ

∂x

∣

∣

∣

∣

=

∣

∣

∣

∣

∂φ

∂y

∣

∣

∣

∣

,

∂φ

∂x
· ∂φ
∂y

= 0 ,

det∇φ ≥ 0 and ∇φ 6= 0 .

(II.1)

(In other words φ is an holomorphic function). Then, for any u in W 1,2(ω,R)
the following holds

L(u) = L(u ◦ φ) =

∫

φ−1(ω)

|∇(u ◦ φ)|2(x, y) dx ∧ dy . (II.2)

Critical points to L for any perturbation of the form u+ tχ, where χ is an ar-
bitrary smooth compactly supported function on ω, are the harmonic functions
satisfying

∆u = 0 dans ω . (II.3)

Among the analysis questions related to that functional come first the regularity
issues, uniqueness questions for fixed given boundary data, questions regarding
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the shape of the solution - possible symmetries - ...etc. In that elementary situa-
tion one can observe that most of these priority questions regarding the analysis
of solution to (II.3) can be solved by the mean of the maximum principle.

The previous problem can be generalized in the following ways. We can first
extend L to maps taking values into an arbitrary Euclidian space Rn as follows

L(u) :=

∫

ω

|∇u|2(x, y) dx ∧ dy =

∫

ω

∑

i

|∇ui|2 dx ∧ dy .

where ui are the coordinates of u. This is again an example of conformally
invariant Lagrangian (satisfying (II.2) ) and it’s critical points are again solving
equation (II.3) coordinate by coordinate.

Consider now a metric g(X) = (gij(X))1≤i,j≤n on R
n whose C1−norm is

assumed to be bounded (‖g‖C1(Rn) < +∞ ). The Dirichlet Lagrangian corre-
sponding to that metric for maps from ω into (Rn, g) reads

Lg(u) :=

∫

ω

|∇u|2g(x, y) dx∧dy =

∫

ω

∑

i,j

gij(u(x, y))∇ui(x, y)·∇uj(x, y) dx∧dy .

It is not difficult to check that this Lagrangian is again conformally invariant.
Critical points to this lagrangian for perturbation of the form u+ tψ, where ψ
is an arbitrary map in C∞

0 (ω,Rn) satisfy the following Euler Lagrange equation

∆ui + Γi
kj(u)∇uk · ∇uj = 0 , (II.4)

where Γi
jk(X) are the Christoffel symbols of the metric g at the point X =

(x1 · · ·xn) ∈ Rn : Γi
jk(X) = 1/2 gil(∂xkgjl + ∂xjgkl − ∂xlgjk) where (gij) is

the inverse matrix to (gij). This equation can then be understood as being the
natural generalization of (II.3) when we consider a non necessarily trivial metric
g on Rn. This equation is called the harmonic map equation from ω into (Rn, g).

The harmonic map equation is related to the following geometrical problem
: if we assume that u is a solution to (II.4) and if we additionally assume that u
is a conformal immersion then one shows that u is a minimal immersion from
ω into the riemannian manifold (Rn, g) (the mean curvature of u(ω) in (Rn, g)
is zero).

Again, for solutions to this harmonic map equations the priority analysis
questions remain the same : regularity, uniqueness, symmetry...etc as for the
solutions to (II.2) or (II.3). However, due to the non-linearity in equation (II.4),
one cannot work with each coordinate independently from the others and the
maximum principle cannot be applied a-priori. Equation (II.4) belongs to the
familly of elliptic systems with quadratic growth, also called elliptic systems
ofnatural growth, of the form

∆u = f(u,∇u) , (II.5)

where f(X, p) is an arbitrary continuous function for which there exist c0 > 0
et c1 > 0 satisfying

∀X ∈ R
n ∀p ∈ R

n ⊗ R
2 f(X, p) ≤ c1|p|2 + c0 . (II.6)

This equation is critical in 2 dimension for the W 1,2−norm : indeed this assump-
tion implies that the non-linearity f(u,∇u) is in L1(ω). Injecting this informa-
tion into (II.5) gives back that u is in W 1,p

loc for any p < 2. We are then almost
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”back on our feet” by getting as an outcome of this previous bootstrapping oper-
ation almost the assumption we started from which was u in W 1,2. This justifies
then the qualification for this equation of being critical in 2-dimension relative
to the W 1,2 norm (If we would instead have gained information in this boot-
strapping operation, the equation would have been called subcritical, whereas a
substancial loss of information would have made the equation supercritical).

Another exemple of conformally invariant Lagrangian in 2-dimension is the
following : Let Λ = Λij(X) dxi ∧ dxj be a 2-form on Rn that we assume to
be bounded in C1 (‖Λ‖C1(Rn) < +∞). For any map u in W 1,2(ω,Rn) from a
2-dimensional domain ω into Rn we introduce the following lagrangian

LΛ(u) :=

∫

ω

|∇u|2(x, y) dx ∧ dy + u∗Λ , (II.7)

where u∗Λ denotes the pull-back of Λ by u :

u∗Λ =
∑

ij

Λij(u) (∂xu
i∂yu

j − ∂yu
i∂xu

j) dx ∧ dy .

Critical points of LΛ for the above mentioned perturbations satisfy the following
Euler-Lagrange equation

∀i = 1 · · ·n ∆ui = 2Hi(u)(∂xu, ∂yu) , (II.8)

where Hi are the 2-forms on R
n given by

∀X ∈ R
n ∀ U, V,W ∈ R

n dΛ(X)(U, V,W ) = 4

n
∑

i=1

U iHi(X)(V,W ) .

(II.9)
As an illustration, in the particular case of n = 3, there exists a continuous
function H such that dΛ(X) = 4H(X) dx1 ∧ dx2 ∧ dx3. The equation (II.8)
becomes then

∆u = 2H(u) ∂xu ∧ ∂yu . (II.10)

Again if u is a conformal immersion the equation (II.10) admits the following
interpretation : u(ω) is a surface whose mean-curvature at u(x, y) is H(u(x, y)).
This equation is then naturally called prescribed mean curvature equation. We
observe that under the assumption that the C1 norm of Λ is finite, the prescribed
mean curvature equation is again in the form (II.5)-(II.6) which is the quadratic
growth form.

Finally, combining Lg and LΛ, for an arbitrary choice of metric g on Rn and
an arbitrary choice of a 2-form Λ on Rn, both bounded in C1(Rn), we obtain
a conformally invariant problem which is a generalization of all the previous
cases. Preciselly, for any function u from an open set ω of R

2 into (Rn, g), we
introduce the quantity

LΛ
g (u) :=

∫

ω

gij∇ui · ∇uj dx ∧ dy + u∗Λ . (II.11)

The critical points of LΛ
g satisfy the following Euler-Lagrange equation

∀i = 1 · · ·n ∆ui + Γi
jk∇uj · ∇uk = 2Hi(u)(∂xu, ∂yu) . (II.12)
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This equation is called the prescribed mean curvature equation in (Rn, g), where
Hi are the 2-forms on Rn satisfying

∀X ∈ R
n ∀ U, V,W ∈ R

n dΛ(X)(U, V,W ) = 4

n
∑

i,j=1

gijU
iHj(X)(V,W ) .

(II.13)
It has been proved by M.Grüter (see also [Kp]), that the Familly of Lagrangians
LΛ

g covers all possible coercive conformally invariant Lagrangian having a quadratic
growth. Precisely, we have the following result.

Theorem II.1 [Gr1] Let l(X, p) be a function from R
n ×R

2n into R. Assume
that l is C1 with respect to the first variable and C2 with respect to the second
one. Assume moreover that l satisfies the following coercivity-quadratic growth
assumption :

∃C > 0 s.t. ∀X ∈ R
n ∀p ∈ R

2n C−1|p|2 ≤ l(X, p) ≤ C|p|2 . (II.14)

Let L be the lagrangian of density l defined for the maps u in W 1,2 from a
domain ω of R2 into Rn and given by :

L(u) =

∫

ω

l(u,∇u)(x, y) dx ∧ dy . (II.15)

Assume finally that L is conformally invariant : for every positive conformal
map φ from C into C (that is φ satisfy (II.1))

L(u ◦ φ) =

∫

φ−1(ω)

l(u ◦ φ,∇(u ◦ φ))(x, y) dx ∧ dy = L(u) . (II.16)

Then there exists a metric g which is C1 on Rn and a 2-form Λ which is also
C1 on Rn such that

L = LΛ
g . (II.17)

�

Untill now we were restricting ourselves to maps from a domain of C into a
1-chart manifold : (Rn, g). More generally we can introduce the Sobolev space
W 1,2(ω,Nn) of maps from a domain ω into an arbitrary riemannian manifold
(Nn, g). Assuming this manifold is compact without boundary (which is the
assumption we shall make from now on) the definition goes as follows :

Using Nash’s theorem, the manifold can be isometrically embedded in an
euclidian space RK . The Sobolev space W 1,2(ω,Nn) is then the subspace of
maps u in W 1,2(ω,RK) taking values almost everywhere into Nn. Let Λ be a
C1 2-form on Nn, for any u in W 1,2(ω,Nn)

LΛ(u) =

∫

ω

|∇u|2(x, y) dx ∧ dy + u∗Λ . (II.18)

The critical points of LΛ in W 1,2(ω,Nn) are defined in the following way :
Denote by πN be the orthogonal projection on Nn which, to every point in a
sufficiently small neighborhood of Nn, assignes the nearest point on Nn. For
a sufficiently small neighborhood of Nn πN is a smooth map. A map u in
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W 1,2(ω,Nn) is said to be a critical point of Lλ if for any ψ in C∞
0 (ω,RK) we

have
d

dt
LΛ(πN (u+ tψ))t=0 = 0 . (II.19)

This condition (II.19) is satisfied for every ψ in C∞
0 (ω,RK) if and only if u is a

solution to the following Euler-Lagrange Equation

∆u+A(u)(∇u,∇u) = H(u)(∇⊥u,∇u) (II.20)

where we are using the following notation : A(X) is the second fundamental form
at the point X in Nn issued from the embedding of Nn into RK which, to a pair
of vectors in TXN

n assignes a vector perpendicular to TXN
n. A(u)(∇u,∇u) at

the point (x, y) of ω is precisely the vector of RK given by

A(u)(∇u,∇u)(x, y) := A(u(x, y))(∂xu, ∂xu) +A(u(x, y))(∂yu, ∂yu) .

We used moreover the notation ∇⊥u for the π/2−rotation of the gradient of
u : ∇⊥u = (−∂yu, ∂xu). H(u)(∇⊥u,∇u) at the point (x, y) of ω is then the
following vector of RK :

H(u)(∇⊥u,∇u)(x, y) := H(u(x, y))(∂xu, ∂yu) −H(u(x, y))(∂yu, ∂xu)

= 2H(u(x, y))(∂xu, ∂yu) ,

where H(X) is the skew-symmetric 2-form of TXN
n taking values into TXN

n

and given by

∀ U, V,W ∈ TXN
n dΛ(U, V,W ) := 〈U,H(X)(V,W )〉 .

( < , > is the scalar product in RK).
In the particular case where Λ = 0 the equation is reduced to

∆u+A(u)(∇u,∇u) = 0 , (II.21)

which is the harmonic map equation into Nn.
W 1,2-solutions (in the distributional sense) to (II.21) are called weakly har-

monic maps.
We observe that the Euler Lagrange equations of the form (II.20) belong

again to the elliptic systems of quadratic growth given by (II.5)-(II.6).

II.2 Regularity issues for critical points to conformally in-

variant lagrangians.

We have seen in the previous subsection that Euler-Lagrange equations of con-
formally coercive lagrangians with quadratic growth are elliptic systems of the
form (II.5)-(II.6).

First one can observe that the W 1,2 solutions to these systems are not nec-
essarily regular in dimension strictly larger than one.

Take for instance the following function

u(x, y) = log log
1

|(x, y)| ∈ W 1,2(ω,R) , (II.22)
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where ω is the disk of center 0 and radius 1/2. One can easily check that it is a
W 1,2 solution to the following elliptic equation with quadratic growth (for the
most elementary non-trivial non linearity f(X, p) satisfying (II.6))

−∆u = |∇u|2 . (II.23)

It has moreover been proved by Frehse, [Fre], that this equation is variational
and is the Euler-Lagrange equation of the following (non conformally invariant)
lagrangian

L(u) =

∫

ω

(

1 +
1

1 + e12 u (log 1/|(x, y)|)−12

)

|∇u|2(x, y) dx ∧ dy . (II.24)

Hence even the variational nature of equation (II.23) does not prevent the exis-
tence of non-smooth solution to it.

Restricting ourselves to scalar equations of the form (II.5) for arbitrary
smooth non-linearities f satisfying (II.6), then there is a classical result by
Ladyzenskaya and Uraltseva which asserts that bounded W 1,2 solutions to such
scalar equations are Hölder continuous.

This last result does not extend to systems of the form (II.5)-(II.6) as the
following exemple of Frehse shows :

u(x, y) =

(

sin log log
1

|(x, y)| , cos log log
1

|(x, y)|

)

∈ W 1,2(ω,R2) ∩ L∞ ,

(II.25)
is a non continuous solution to the following elliptic system of quadratic growth
:







−∆u1 = (u1 + u2) |∇u|2

−∆u2 = (u2 − u1) |∇u|2 .

(II.26)

When a system of the form (II.5)-(II.6) however is conformally invariant,
S.Hildebrandt has formulated the following conjecture (which also appears in
the works of E.Heinz in the particular case of the prescribed mean curvature
equation see [Hei1], [Hei2] and [Hei3])

Conjecture 1 [Hil1] [Hil2] The maps from R2 into Rn which are critical points
to continuously differentiable, coercive, conformally invariant functionals are
continuous.

Remark II.1 From classical results of Hildebrandt-Widman, [HiW], and Jost-
Karcher, [JoK], the continuous critical points to continuously differentiable, co-
ercive, conformally invariant functionals are in fact Hölder continuous C0,α

for some α > 0. Once this Hölder continuity is known, using classical boot-
strap arguments, stronger assumptions on the regularity of the functional can be
transfered to the solution.

In other words, according to conjecture 1, W 1,2-maps which are critical
points of LΛ

g , for some arbitrary choice of a C1−bounded metric g and a
C1−bounded 2-form Λ , are continuous and hence Hölder continuous. We prove

8



this conjecture in [Ri1] and we extend the result to the critical points to contin-
uously differentiable, coercive, conformally invariant functionals of maps from
a domain in R

2 into an arbitrary closed C2 submanifold of an euclidian space.
We deduce in fact this result from an even more general regularity result re-
garding solutions to Schrödinger type systems with antisymmetric potentials as
it is described in the following section.

III Conservation laws for solutions to Schrödinger

systems with antisymmetric potentials and

the resolution of Hildebrandt’s conjecture

As explained above, considering a solution u to an elliptic system of the form
(II.12), the maximum principle cannot be applied to each component ui one
by one, independently of the others due to the vectorial nature of the problem.
Progresses for proving conjecture 1 came slowly until the resolution provided
in [Ri1]. This resolution is based on the discovery of conservation laws which
permit to write systems of the type (II.12) in divergence form.

Let us now describe these progresses.

The first result chronologically which comes to reinforce this conjecture is a
result by C.B. Morrey in [Mo] which states that minimums to functionals of the
form LΛ

g are Hölder continuous. Then in the early 80’s, M. Grüter proves that
solutions to (II.10) which are also conformal (i.e. for which the Hopf differential
is identically 0 : Φ(u) = |∂xu|2 − |pyu|2 − 2i∂xu · ∂yu ≡ 0) are continuous and
hence Hölder continuous. In [Sc1], R.Schoen proved that maps from a domain
of R2 into N , a C2 submanifold of Rn, which are critical points of LΛ, for an
arbitrary choice of a 2-form Λ in C1(∧2N), and which are also stationary (i.e. the
Hopf differential Φ is holomorphic) are Hölder continuous. In 1990, F.Hélein,
[Hel], used conservation laws, for proving that weakly harmonic maps from a
domain of R2 into the unit sphere of Rn are analytic. In the following years,
using the ideas developped by F.Hélein, F.Bethuel and J.M. Ghidaglia proved
in [Be], [BeG1] and [BeG2] that W 1,2-critical points to LΛ from a domain of R2

into R3 are Hölder continuous under various strong additional assumptions on
Λ (i.e. the Lipschitz norm of dΛ is uniformly bounded, dΛ only depends on 2
variables...etc).

By the mean of a technic he introduced, the Moving Frame Technic, F. Hélein
succeeded in 1991 to prove the continuity, and hence the Hölder continuity, of
weakly harmonic maps between a 2-dimensional domain and an arbitrary C2

closed submanifold of RK . This technic, to which an important part of the book
[Hel] is devoted, consists in assigning to any weakly harmonic map u into Nn a
well chosed ”lifting” into the frame bundle of Nn which is nothing but a section
of the frame bundle associated to the weak vector bundle u−1TN . A refined
analysis of the formulation of the harmonic map equation written relative to
this frame permits to establish the regularity of weakly harmonic maps.

Finally, by adapting F.Hélein’s method, P.Choné proved the continuity, and
hence the Hölder continuity, of W 1,2 solutions to (II.20) under the assumption
that N is C3 and that Λ is W 2,∞. The attempt to extend the Bethuel-Hélein-
Choné approach, which requires the assumptions that N is C3 and that Λ is
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W 2,∞, to the Hildebrant’s conjecture setting, which corresponds to the assump-
tions N is C2 and Λ is W 1,∞, meets the following fundamental difficulty : the
assumptions N is C3 and Λ is W 2,∞ imply immediately that the map H ◦ u is
in W 1,2∩L∞ exactly like u itself. From the weaker set of assumptions however,
N is C2 and Λ is W 1,∞, one can only deduce a-priori that H ◦u is a measurable
bounded map when u is in W 1,2 ; u cannot transmit anymore it’s regularity at
the differential level (∇u ∈ L2) to H ◦ u. Hence the progresses were stuck at
this point untill the work of the author,[Ri1], that we shall describe now.

Let us first recall the approach introduced by F.Hélein in order to prove
the regularity of harmonic maps from a domain ω of R2 into the unit sphere
of R

n+1. In this particular case the Euler-Lagrange Equation associated to the
energy L writes

∆u+ u|∇u|2 = 0 (III.1)

(when u is smooth this equation is equivalent to the fact that ∆u is parallel to
u assuming |u| ≡ 1 of course). It has been observed by J. Shatah that, if u is a
W 1,2 solution of (III.1) then, for every pair 1 ≤ i, j ≤ n+ 1 we have

div
(

ui∇uj − uj∇ui
)

= 0 . (III.2)

From Poincaré lemma, we get the existence of a function Bi
j ∈ W 1,2(ω) such

that
∇⊥Bi

j = ui∇uj − uj∇ui (III.3)

Going back to (III.1) and observing that
∑

j uj ∇uj = 0 we can make then

appear Bi
j in that equation as follows : for any 1 ≤ i ≤ n

−∆ui =

n+1
∑

j=1

ui∇uj · ∇uj

=
n+1
∑

j=1

[

ui∇uj − uj∇ui
]

· ∇uj

=

n+1
∑

j=1

∇⊥Bi
j · ∇uj

(III.4)

Introducing the notation ∇⊥B for the vector field taking values into matrices
given by ∇⊥B := (∇⊥Bi

j), (III.1) becomes finally equivalent to

−∆u = ∇⊥B · ∇u . (III.5)

We then observe that the non-linearity in the R.H.S. of (III.5) has a particular
structure : for every i it is a sum of the jacobians

∇⊥Bi
j · ∇uj = ∂xu

j∂yB
i
j − ∂yu

j∂xB
i
j .

when j varies between 1 and n+1. We can now use the theory of integrability by
compensation presented in section 1 of the present paper. Precisely we apply
theorem I.1 to (III.5) and we deduce that u is continuous and hence, from
remark II.1, Hölder continuous and in W 1,p for some p > 2. A classical boot-
strapping argument permits to deduce that u is C∞. Finally, classical results
on non-linear PDE (see [Mo]) imply that u is real analytic.
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As soon as one deforms the target Nn, originally Sn, into a “non perfectly
round sphere”, even slightly, the attempt to prove the continuity of the solu-
tions to (II.21) using the previous direct approach a-priori fails in this general
situation.

In order to overcome this difficulty, F.Hélein introduced the moving frame
technic we mentionned above. Beside the fact that it is relatively indirect and
requires sophisticated result on the isometric embedding of submanifold into
parallelisable ones, one of the disadvantage of this technic for proving the regu-
larity of weakly harmonic maps is that it does not provide expectable estimates
such as W 2,1 estimates of the solution. It is explained in [LiR] how such kind
of estimates are useful in the analysis of the loss of compactness of sequences of
solutions. W 2,1−estimates are easily obtained in the case where N is a round
sphere, it would be unnatural that such an estimate suddently disappears as
soon as on deforms slightly the round sphere. Hence the moving frame technic
could be not the ”canonical” one and one should look for some alternative ap-
proach to F.Hélein’s result. Bearing this goal in mind, a legitimate question to
address is :

”what really remains special in the non-linearity of (II.21) when
the target is not a round sphere anymore ? ” .

Let us first consider the case when Nn is an oriented closed hypersurface of
RK (i.e. K = n+ 1). The harmonic map equation in that case writes

∆u+ ν ∇ν · ∇u = 0 , (III.6)

where ν denotes the composition of u with the unit normal vector field to Nn.
Using coordinates in RK (III.6) means

∀i = 1 · · ·n+ 1 ∆ui +

n+1
∑

j=1

νi ∇νj · ∇νj = 0 . (III.7)

Inspired by the approach we had above for the round sphere, it is tempting
to substract to νi ∇νj the quantity νj∇νi. This is in fact possible since the
sums

∑

j=1 νj∂xuj and
∑

j=1 νj∂yuj are both zero : in one hand the vector ν
is normal to the tangent space to Nn in the other hand ∂xu and ∂yu are both
tangent to Nn. Hence we obtain an equation which is very reminicent to the
form obtained for equation (III.4) :

∀i = 1 · · ·n+ 1 − ∆ui =

n+1
∑

j=1

[

νi ∇νj − νj ∇νi
]

· ∇νj . (III.8)

There is no reason however for the divergence of the vector-field νi ∇νj −νj∇νi

to be zero and to exhibit a grad-curl situation which would permit to write the
right-hand-side of (III.8) as a linear combination of jacobians.

The main contribution in [Ri1] was to observe that the issue of getting the
regularity of u solving (II.21) is not related exclusively to the fact that the
divergence of ui∇uj − uj ∇ui) is zero but the continuity of the solution is also
independentely a consequence of the antisymmetry of the matrix (ui ∇uj −
uj ∇ui)ij which is still present for general targets. This antisymmetry in the
non-linearity of the equation is much more robust than the grad-curl structure
which disappears as soon as the target is not a round sphere anymore. Precisely,
one of the main results in [Ri1] is the following :
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Theorem III.1 [Ri1] Let ω be a domain in R2, let u be a map in W 1,2(ω,RK)
and Ω = (Ωi

j)1≤i,j≤K a vector-field in L2(ω) taking values into antisymmetric

matrices (c.a.d. Ω ∈ L2(ω, so(K) ⊗ ∧1R2)). Assuming that u satisfies the
following elliptic system

−∆u = Ω · ∇u dans D′(ω) , (III.9)

which means using coordinates −∆ui =
∑K

j=1 Ωi
j · ∇uj, then u is Hölder con-

tinuous, C0,α, in ω for some α > 0. �

First we observe that this result can be applied to (III.8) by taking Ωi
j =

νi ∇νj − νj ∇νi. This observation goes even further as we are explaining now.
We proved in [Ri1] that theorem III.1 can be applied to any Euler-Lagrange

equation of conformally invariant Lagrangians which are coercive with a quadratic
dependance in ∇u. Precisely we have

Theorem III.2 Let ω be an open set of R2, let Nn be a C2 orientable closed
submanifold of RK , let Λ be a C1 2-form on Nn and let u be a map in W 1,2(ω,Nn)
which is a critical point to LΛ (satisfying equation (II.20)), then there exists an
L2 vector-field Ω on ω taking values into the space of K × K antisymmetric
matrices (i.e. Ω ∈ L2(ω, so(K)⊗∧1R2) ) such that u satisfies (III.9). u is then
an Hölder continuous map on ω. �

This proves Hildebrandt’s conjecture.

For instance a uniformly bounded function H on R3 being given, we consider
u a W 1,2 solution to (II.10) and we introduce the following vector-field in L2(ω)
taking value into so(3) :

Ω := H(u)











0 ∇⊥u3 −∇⊥u2

−∇u3 0 ∇⊥u1

∇⊥u2 −∇⊥u1 0











(III.10)

it is then easy to check that u satisfies (III.9) and hence from theorem III.1 that
u is Hölder continuous.

Some ideas behind the proof of theorem III.1 :

The proof is based on 3 main ingredients

i) The use of non-linear Hodge decomposition.

ii) The existence of conservation laws.

iii) The use of integrability by compensation theory.

A naive approach in order to try to prove theorem III.1 would be to proceed
first to the L2−Hodge decomposition of Ω and to obtain the existence of maps
P and ξ, both in W 1,2

loc (ω,MK(R)) and satisfying

Ω = ∇P + ∇⊥ξ in ω . (III.11)
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(III.9) becomes then −∆u = ∇P · ∇u + ∇⊥ξ · ∇u. The quantity ∇⊥ξ · ∇u
is a linear combination of jacobians of maps in W 1,2. Such a quantity is then
favorable in view of applying Wente’s result in section 1for getting the continuity
of u. The other term ∇P ·∇u however is a scalar product of gradients and does
not possess the same features as jacobian like quantities. This prevent the direct
application of Wente’s result in this approach.

The main idea in [Ri1] was then to replace the previous linear Hodge
decomposition of Ω by the following non-linear Hodge decomposition
issued from non-abelian Gauge theory : we look for P in W 1,2

loc (ω, SO(K)) and

ξ in W 1,2
loc (ω, so(K)) satisfying

Ω = P−1∇P + P−1∇⊥ξP dans ω (III.12)

Ω is then interpreted as being the expression of an L2 connection of an SO(K)
bundle over ω with respect to some trivialization. ∇⊥ξ is then the expression
of the same connection after the change of trivialization corresponding to the
multiplication by the rotation P . This particular form, ∇⊥ξ, of this new ex-
pression of the connection is divergence free and is called Coulomb Gauge of
the connection given by Ω. The substantial advantage of (III.12) compare to
(III.11), despite the non-linear nature of the decomposition, relies on the fact
that the antisymmetric structure of Ω is exploided by beeing ”integrated” and
this integration operation, modulo the curl part ∇⊥ξ, generates a rotation val-
ued map : P (roughly speaking the primitive of an antisymmetric matrix valued
map is a SO(K)−valued map).

The algebraic fact that the matrix valued map P in (III.12) takes values
into SO(K) gives ”for free” an L∞ estimate on P which a-priori could not be
deduced simply from the fact that P is in W 1,2 (this last information providing
only a BMO estimate on P ). This ”little gain” is one of the ”pivot” on which
the proof of theorem III.1 is based. The existence of P and ξ satisfying the non-
linear Hodge decomposition (III.12) respectively in the spaces W 1,2

loc (ω, SO(K))

and W 1,2
loc (ω, so(K)) is given, under the assumption that the L2 norm of Ω is

small enough, by adapting to our situation a classical work of K.Uhlenbeck
[Uhl].

The second main ingredient in the proof of theorem III.1 is the discovery
of conservation laws associated to the equation (III.9). This conservation laws
permit to write the equation in divergence form. Precisely a second main result
of [Ri1] is the following theorem whose proof is based on a direct computation.

Theorem III.3 Let ω be a domain of R
2, let Ω = (Ωi

j)1≤i,j≤K be a vector-field

in L2(ω) taking values into antisymmetric matrices (i.e. Ω ∈ L2(ω, so(K) ⊗
∧1R2)) and let A and B respectively in W 1,2(ω,GlK(R)) and W 1,2(ω,MK(R)
(Gl(K) denotes the group of real invertible K ×K-matrices). We assume that
A, B and Ω verify the equation

∇A−AΩ = ∇⊥B (III.13)

where AΩ is the matrix multiplication of A and Ω. Then u in W 1,2(ω,RK)
solves (III.9) if and only if

div(A∇u +B∇⊥u) = 0 . (III.14)

�

13



In the particular case of weakly harmonic maps into the sphere SK−1 for
instance, (III.5) is equivalent to (III.14) by taking







A = idK = (δi
j)1≤i,j≤K

∇⊥Bi
j = ui∇uj − uj∇ui

(III.15)

In the general case, the local existence ofA andB respectively inW 1,2(ω,GlK(R))∩
L∞ and W 1,2(ω,MK(R)) is established in [Ri1] by the mean of the non-linear
Hodge decomposition of Ω given by (III.12), assuming then that the L2 norm
of Ω is small enough (this last fact is always possible simply by localizing in
space). We additionally obtain from our approach that A−1 is in W 1,2 ∩ L∞.
The continuity of u is then a consequence of the following argumentation : we
have







div(A∇u) = ∇⊥B · ∇u

rot(A∇u) = ∇⊥A · ∇u
(III.16)

Now comes the 3rd ingredient in the proof of theorem III.1 : The use of Inte-
grability by Compensation Theory .

Precisely, we observe that the 2 right-hand-sides of the two equations of
(III.16) are made of sums of jacobians of functions in W 1,2. Applying then
Wente’s estimates of section 1 we deduce that A∇u is in W 1,1. Since A−1 is in
W 1,2 ∩ L∞ we deduce that ∇u is in W 1,1 and hence that u is in W 2,1. By a
classical Sobolev continuous injection result we then obtain that u is continuous.

A direct proof of the Hölder continuity of the solution u to (III.9)

For getting the Hölder continuity of u we can proceed as follows. First,
for an arbitrary choice of point x0 ∈ ω and 0 < r < dist(x0, ∂ω) such that
∫

Br(x0)
|∇B|2 + |∇A|2 < ε, where ε will be chosed small enough later, we take

C in W 1,2(Br(x0)) satisfying







∆C = div(A∇u) in Br(x0)

C = 0 on ∂Br(x0)

(III.17)

From Poincaré lemma there exists D in W 1,2(Br(x0)) satisfying

A∇u = ∇C + ∇⊥D . (III.18)

We can choose D to have average 0 on Br(x0). Classical elliptic estimates imply
∫

Br(x0)

|∇C|2 + |∇D|2 ≤ c0

∫

Br(x0)

|∇u|2 (III.19)

for some universal constant c0. Let χ be a smooth cut-off function equal to 1
on B1/2(0) and supported in B1(0). Denote χr := χ(r−1(· − x0)). Using the
embedding theorem of W 1,2(Br) into BMO It is not difficult to check that there
exists a universal constant c1 such that

‖χrC‖BMO(Br(x0)) ≤ c1 ‖∇C‖L2(Br(x0))

‖χrD‖BMO(Br(x0)) ≤ c1 ‖∇D‖L2(Br(x0))

(III.20)
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Then we multiply the first equation of (III.16) by χrC −Cr and the second by
χrD −Dr where Cr and Dr are respectively the averages of χrC and χrD on
the annulus Br(x0) \ Br/2(x0). We integrate by part in the left hand sides of
both equalities. Then, after applying the integrability by compensation theory
of section 1 which gives the fact that the jacobians in the right-hand of (III.16)
are in Hardy, the duality between Hardy and BMO and Cauchy-Schwartz and
Poincaré inequalities we finally obtain an inequality of the form

∫

Br/2(x0)

|∇C|2 + |∇D|2

≤ c2 ε

[

∫

Br(x0)

|∇u|2
]

1

2

[

‖χrC‖BMO(Br(x0)) + ‖χrD‖BMO(Br(x0))

]

+c2

∫

Br(x0)\Br/2(x0)

|∇C|2 + |∇D|2

(III.21)
Combining this last inequality together with (III.20) we obtain, for ε chosen
small enough, the existence of a constant c3 independent of r and x0 such that

∫

Br/2(x0)

|∇u|2 ≤ c3

∫

Br(x0)\Br/2(x0)

|∇u|2 . (III.22)

This last inequality implies a Morrey type decrease for the Dirichlet energy of
u of the form

∫

Br(x0)
|∇u|2 ≤ c rγ . This last inequality valid uniformly for x0

in any compact subset of ω implies the Hölder continuity of u (see for instance
[Gi]).

Remarks on existing and possible generalizations

Theorem III.1 can be extended to solution to equation (III.9) in higher di-
mension see [RiSt].

In [LaR], using a similar approach as the one presented above but in a
slightly more complex setting, T.Lamm and the author have proved the Hölder
continuity of any 4 dimensional W 2,2 solutions to the following type of 4-th
order systems

∆2u+ ∆(V · ∇u) + div(v ∇u) + Ω · ∇u = 0

where V , v and Ω are arbitrary potentials respectively in W 1,2, L2 and W−1,2

and where Ω is assumed to be antisymmetric. This type of equation includes
for instance the intrinsic and extrinsic bi-harmonic map equations.

It is natural to believe that a general result exists for m−th order linear
systems in m dimension whose 1st order potential is antisymmetric.

It would be interresting to study in which way theorem III.1 extends to
degenerate elliptic operators. For instance Let u be a W 1,m map from a domain
in Rm into RK satisfying a system of the form

−div(|∇u|m−2∇u) = Ω · |∇u|m−2∇u . (III.23)

Assuming Ω ∈ Lm is antisymmetric, is it true that u is continuous ?
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IV The role of Integrability by compensation in

the analysis of Willmore surfaces.

IV.1 Analysis questions related to Willmore surfaces.

For a given oriented surface Σ and a smooth positive immersion ~Φ of Σ into the
Euclidian space Rm, for some m ≥ 3, we introduce first the Gauss map ~n from
Σ into Grm−2(R

m), the grassmanian of oriented m− 2−planes of Rm, which to
every point x in Σ assigns the unit m− 2-unit vector defining the m− 2−plane
N~Φ(x)

~Φ(Σ) orthogonal to the oriented tangent space T~Φ(x)
~Φ(Σ). This map ~n

from Σ into Grm−2(R
m) defines a projection map π~n : for every vector ξ in

T~Φ(x)(R
m) π~n(ξ) is the orthogonal projection of ξ onto N~Φ(x)

~Φ(Σ). Let then ~Bx

be the second fundamental form of the immersion ~Φ of Σ. ~Bx is a symmetric
bilinear form on TxΣ with values into N~Φ(x)

~Φ(Σ). ~Bx is given by ~Bx = π~n◦d2~Φ.

By the mean of the ambiant scalar product in R
m, which induces a metric g

on Σ, we define the trace of ~Bx, tr( ~Bx), which is a vector in N~Φ(x)
~Φ(Σ) given

by tr( ~Bx) = ~Bx(e1, e1) + ~Bx(e2, e2) where (e1, e2) is an arbitrary orthonormal

basis of TxΣ. The mean curvature vector ~H(x) at x of the immersion by ~Φ of

Σ is with theses notations the vector in N~Φ(x)
~Φ(Σ) given by

~H(x) =
1

2
tr( ~Bx) .

In the case wherem = 3, ~H(x) is the product of the mean valueH = 1/2(κ1+κ2)

of the principal curvatures κ1, κ2 of the surface at ~Φ(x) by ~n, the unit normal
vector.

The so called Willmore Functional is then the following Lagrangian

W (~Φ(Σ)) =

∫

Σ

| ~H |2 d volg . (IV.1)

where d volg is the area form of the metric g induced on ~Φ(Σ) by the canonical
metric on Rm.

This lagrangian has been apparently first considered in the early 20th century
in various works by Thomsen [Tho], Schadow and a bit later by Blaschke [Bla].
It has been reintroduced and more systematically studied in the framework
of the conformal geometry of surfaces in space by Willmore in 1965 [Wil1].
Beyond conformal geometry this lagrangian plays an important role in various
areas in science such as molecular biology, where it has been considered as a
surface energy for lipid bilayers known as Helfrich Model [Hef], such as non-
linear elasticity in solid mechanics where it arises as limiting energy in thin
plate theory (see [FJM] for instance) or even in general relativity where the
lagrangian (IV.1) is the main term in the so called Hawking quasi local mass
(see [Haw], [HI])...etc.

One of the reason for the genericity of this lagrangian is maybe the property
discovered by White [Whi] for m = 3 and proved by B.Y. Chen [Che] for arbi-
trary m which says that the functional remains unchanged under the action of a
conformal diffeomorphism of Rm (and even under conformal changes of metric
of the ambiant space). Precisely the following theorem holds
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Theorem IV.1 [Conformal invariance of Willmore Functional] [Whi],

[Che]. Let ~Φ be a smooth immersion of an oriented closed surface Σ in Rm. Let
Ψ be a conformal diffeomorphism of Rm ∪ {+∞}. Then the following holds

W (Ψ ◦ ~Φ) = W (~Φ) .

We are interrested in this section in the critical points of (IV.1) for perturba-

tions of the form ~Φ + t~ξ where ~ξ is an arbitrary smooth map from Σ into Rm.
These critical points are the so called Willmore surfaces. Because of the invari-
ance of the lagrangian under the action of conformal transformations of R

m,
images of Willmore surfaces by such conformal transformations are still Will-
more. Examples of Willmore surfaces are minimal surfaces for which ~H ≡ 0
and which realize then absolut minimum of W . Willmore surfaces satisfy an
Euler-Lagrange equation discovered by Willmore for m = 3 (though it was
apparently known by it’s predecessors on the subject Thomsen, Schadow and
Blaschke in the twenties) and was established in it’s full generality, for arbitrary
m, by Weiner in [Wei]. Before presenting the equation we need the following

notations : Consider for every vector ~w in N~Φ(x)
~Φ(Σ) the symmetric endo-

morphism A~w
x of TxΣ satisfying for every pair of vectors ~X and ~Y in TxΣ the

identity g(A~w
x ( ~X), ~Y ) = Bx( ~X, ~Y ) · ~w, where · denotes the standard scalar prod-

uct in Rm. The map which to ~w assigns the symmetric endomorphism A~w
x of

TxΣ for the scalar product g is an homomorphism that we denote Ax from
N~Φ(x)

~Φ(Σ) into SgΣx, the linear space of symmetric endomorphisms from TxΣ

with respect to g. Denote Ãx the endomorphism of N~Φ(x)
~Φ(Σ) obtained by

composing the transpose tAx of Ax with Ax : Ãx = tAx ◦ Ax. Let (~e1, ~e2) be

an orthonormal basis of TxΣ and let ~L be a vector in N~Φ(x)
~Φ(Σ), we have that

Ã(~L) =
∑

i,j
~B(~ei, ~ej) ~B(~ei, ~ej) · ~L

With these notations, ~Φ is a smooth Willmore immersion if and only if it
solves the following Euler-Lagrange equation

∆⊥
~H − 2| ~H|2 ~H + Ã( ~H) = 0 , (IV.2)

where ∆⊥ is the negative covariant laplacian for the connection D in the normal
bundle N~Φ(Σ) to ~Φ(Σ) issued from the ambiant scalar product in Rm : for

every section σ of N~Φ(Σ) one has D ~Xσ := π~n(σ∗ ~X). In the particular case

when m = 3, the mean curvature vector ~H is oriented along the unit normal to
~Φ(Σ), ~H = H ~n, and (IV.2) is equivalent to the following equation satisfied by
the mean curvature function H :

∆gH + 2H (|H |2 −K) = 0 , (IV.3)

where ∆g is the negative laplace operator for the induced metric g on ~Φ(Σ) and
K is the scalar curvature of (Σ, g).

The Geometric-Analysis questions and problems one can adress regarding
Willmore immersions and equations (IV.2) can be listed as follows

i) Try to give an explicit description of the space of Willmore immersions
for a given surface Σ (in the spirit of Weierstras type representation of
minimal surfaces for instance).
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ii) Analyse the compactness or the lack of compactness (weak or strong ?)
of the space of Willmore immersions below a certain level of energy for a
given Σ.

iii) Study the existence of a minimizer (and try to identify it) of W among
all smooth immersions of a given surface Σ.

iv) Does there exists a notion of weak Willmore immersions ? if so, are
they necessarily regular or can these Weak Willmore Surfaces be singular
somewhere ?

These 4 problems are strongly related one with another. The first commen-
tarii one can make at this stage about this list are the following. Problem 1
was maybe one of the first studied chronologically and succesfully solved by
R.Bryant when Σ is the sphere S2 and for m = 3. In [Bry] a description of the
Moduli Space of Willmore immersions of S2 using algebraic-geometry tools is
given. Later on similar descriptions were obtain in this direction for instance
in [Mon] by S. Montiel for m = 4 and still for Σ = S2. A Weierstrass-type
representation of Willmore torii using loop groups and infinite dimensional Lie
Algebras in [Hel1], [Hel2]...etc This list of results in the direction of attacking
problem i) is absolutely not exhaustiv but was just intended to illustrate it.

Because of the difficulty of reaching explicit descriptions of the Moduli Spaces
of Willmore immersions for various Σ and m, one can look instead at more
qualitative properties of Willmore immersions and try to solve questions related
to problem ii). The first remark one can make regarding ii) is that, given the
lack of compactness of the Möbius group of conformal transformations of Rm, it
is clear that the space of Willmore immersions of a given surface below a certain
level of energy is not compact. One example for this lack of compactness is the
following : take the Willmore torus in R3 which is given by the rotation about
the z−axis of the vertical circle contained in the Oxz-plane, of radius 1 and
center the point of coordinates (

√
2, 0, 0). This torus is one of the simplest

example of Willmore surface in R3, after the round sphere S2. Apply to R3

a transformation given by the composition of an inversion of center a point A
that one takes outside the torus ( M → MA/|MA|2 ) and a dilation adjusted
in order to keep the area of the torus fixed. Because of the conformality of
this transformation, the resulting surface is still Willmore and it has the same
energy as the Willmore torus. By taking a familly of centers A closer and closer
to the Willmore torus one ”observes” that the sequence of resulting surfaces,
after applying these transformations, is made of torii whose ”holes” are getting
smaller and smaller and ”tend” to disappear moreover this sequence of surfaces
”looks” more and more like ”converging” to a round sphere. This example
indicates clearly that the moduli space of Willmore torii, below a certain level
of energy, cannot be strongly compact and one has to take the quotient modulo
the action of the Moebius group before to hope any kind of strong compactness.

Problem iii) is easy when Σ is the round sphere S2. A classical elementary
result in differential geometry (see [Wil2]) asserts that, for any closed oriented
surface S in R

m, the following inequality holds
∫

S

|H |2 dvolg ≥ 4π ,

with equality if and only if S is a round sphere. When Σ is a 2-dimensional torus
the question iii) was partly solved in [Si2] by L.Simon, where it is proved, using
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quite involved arguments, that there exists indeed a minimizer of the Willmore
energy among all possible smooth immersions of the 2-torus T 2 in Rm. Based
on results established in [Si2], M.Bauer and E. Kuwert in [BaK] were able to
establish the existence of a minimizer of the Willmore energy among all possible
immersions of a given arbitrary oriented closed surface Σ. Hence comes then the
problem of identifying the minimizer(s). In the case where Σ is the 2-torus T 2

this question is related to the so called Willmore Conjecture. This conjecture
claims that the Willmore torus described above is the only minimizer, modulo
the Möbius group action, of the Willmore energy among all possible immersions
of T 2. Until now, no proof of Willmore conjecture has been recognised and
published.

Finally one could adress problem iv). The interrest of such a question should
be clear to an analyst in calculus of variations. The existence of a weak notion
to Willmore surfaces would give enough flexibility for instance in order to attack
questions related to the compactness like ii) or to provide a new simpler proof
to the question iii). This assertion is nothing less than saying that, for instance,
the concept of Distributional type solutions to PDEs in such or such Sobolev
space is offering a flexible setting for the understanding the PDE (and it’s strong
solutions too !).

IV.2 An Elliptic-Divergence Form Formulation of Will-

more Equation.

Despite their elegant aspects equations (IV.2) and (IV.3) offer challenging math-
ematical difficulties. First of all one has to observe that the highest order term
∆⊥

~H for (IV.2) or ∆g H for (IV.3) is non-linear since the metric g defining

the Laplace operator depends on the variable immersion ~Φ. Another difficulty
comes from the fact that the Euler-Lagrange equations (IV.2), (IV.3) are a-priori
non compatible with the Lagrangian (IV.1) in the following sense. Making the
minimal regularity assumption which ensures that the Lagrangian (I.1) is finite

- the second fundamental form ~B is L2 on ~Φ(Σ) - is not enough in order for the
non-linearities in the equations (I.2) or (I.3) to have a distributional meaning :

the expression | ~H |2 ~H requires at least that ~H is in L3 and not only in L2...etc.
In section 3 of the present paper we showed that any Euler Lagrange equation

of any 2-dimensional conformally invariant lagrangian with quadratic growth
(such as the harmonic map equations into riemannian submanifolds or such as
the precribed mean curvature equation) can be written in divergence-elliptic
form, see (III.14). This divergence elliptic form has numerous consequences for
the analysis of this equation. We saw how the regularity of W 1,2 solutions could
be deduced from it. It permits also , in particular, to extend the set of solutions
to subspaces of distribution with very low regularity requirement (lower than
W 1,2). Going back now to the Willmore problem, it seems that the analysis de-
velopped in [Ri1] can be extended to other conformally invariant equations such
as the harmonic map equations into Lorentzian manifolds. Granting this obser-
vation together with the correspondance established by Bryant [Bry] between
Willmore surfaces in R3 and harmonic maps into the Minkowski sphere S3,1 in
R4,1, the author found not really the technic but at least a strong encourage-
ment for looking for an elliptic-divergence form to the Willmore Euler-Lagrange
equation (IV.1).
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Before to go to this elliptic-divergence form we have to make a distinction
between a divergence form of an elliptic PDE and an elliptic-divergence form of
such a PDE. Take for instance the harmonic map equation into the sphere Sn

which is, as we saw it in the previous sections,

−∆u = u|∇u|2 .

As we mentioned it above it has been proved in [Sha] that, for W 1,2 maps into
Sn, the above harmonic map equation is equivalent to

∀i, j = 1 · · ·n+ 1 div(ui∇uj − uj∇ui) = 0 . (IV.4)

This form is clearly a divergence form but it is not of an elliptic-divergence form
and properties such as the regularity of the solution were not a-priori accessible
from (IV.4) until F. Hélein, some years later, discovered the following elliptic-
divergence form of the same equation discussed in the previous section

−∆u = ∇⊥B · ∇u .

Hence the divergence form does not provides what we are looking for as long
as it is not an elliptic-divergence form. Looking now at Willmore equation,
assuming our surface realizes a graph f over a 2 dimensional domain D , the
Willmore equation is obtained by looking at the condition for f to be critical of
W , which is of the form

∫

D

F (∇f,∇2f) dx

It is then clear that the equation could be written in divergence form. The
difficulty however is more to identify each term in this equation, to check it’s
ellipticity, the nature of the non-linear part...etc.

The author established then the following result :

Theorem IV.2 [Ri2] Willmore Euler-Lagrange Equation (I.2) is equivalent to

d
(

∗g d ~H − 3 ∗g π~n(d ~H)
)

− d ⋆
(

d~n ∧ ~H
)

= 0 (IV.5)

where ∗g is the Hodge operator on Σ associated to the induced metric g and
where ⋆ is the Hodge operator on p−vectors in Rm : ⋆1 is the unit positively
oriented m−vector in Rm and in general for every pair (α, β) of p−vectors in
Rm one has

α ∧ ⋆β =< α, β > ⋆1

where < α, β > is the scalar product between α and β for the canonical metric
in Rm (with these notations ⋆( ~H ∧ d~n) is then a 1-form on Σ with values into
Rm).

Assuming the immersion ~Φ is conformal from the flat disc D2 = Σ into Rm

then ~Φ is Willmore if and only if

∆ ~H − 3 div(π~n(∇ ~H)) + div ⋆
(

∇⊥~n ∧ ~H
)

= 0 (IV.6)

where the operators ∆, div and ∇ are taken with respect to the flat metric on
D2 (∆ = ∂2

x1
+ ∂2

x2
, divX = tr ◦ ∇ and ∇ = (∂x1

, ∂x2
)). The operator ∇⊥

denotes the rotation by π/2 of ∇ : ∇⊥ := (−∂x2
, ∂x1

). �
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The proof of the equivalence between Willmore equation (IV.2) and the new
equation (IV.6) in conformal coordinates is quite short and we present it now
in 3 dimensions.

The following equation is a general result in differential geometry of surfaces
and holds for any smooth conformal parametrization ~Φ.

−2H ∇~Φ = ∇~n+ ~n ∧∇⊥~n . (IV.7)

Taking the divergence of this equation yields

−2H ∆~Φ − 2∇H · ∇~Φ = div
(

∇~n+ ~n ∧∇⊥~n
)

. (IV.8)

Multiplying the later equation by H , using (IV.7) and the fact that in conformal

parametrization the mean curvature vector ~H is given by ~H = e−2λ ∆~Φ, where
eλ = |∂x1

~Φ| = |∂x2

~Φ| is the conformal factor, gives

−4 H2 e2λ ~H + ∇H ·
(

∇~n+ ~n ∧∇⊥~n
)

= H div
(

∇~n+ ~n ∧∇⊥~n
)

. (IV.9)

The Willmore equation in it’s original form (IV.3) in conformal coordinates
writes

∆H ~n = −2e2λ H (H2 −K) ~n , (IV.10)

and the definition of the Gauss curvature K is

K ~n =
e−2λ

2
∇~n ∧∇⊥~n . (IV.11)

Combining the three last equations we obtain

div
(

H ∇~n− 2∇H ~n−H ~n ∧∇⊥~n
)

= 0 (IV.12)

which is (IV.6) in 3 dimension (in this dimension one has ~H = H ~n and therefore

∇ ~H = ∇H ~n+H ∇~n and π~n(∇ ~H) = ∇H ~n).

We can now make the following important information about (IV.6)

π~n(~v) := ~n (~n ~v)

where is the interior multiplication between q− and p−vectors q ≥ p producing
q − p−vectors in Rm obtained from the usual interior multiplication between
q−vectors and p−forms (see [Fe] 1.5.1 combined with 1.7.5) and the duality
issued from the canonical scalar product in Rm (denoted by γp in [Fe]) : for
every choice of q−, p− andm−q+p−forms, respectively α, β and γ the following
holds

〈α β, γ〉 = 〈α, β ∧ γ〉 .

With this notations one has then

div(π~n(∇~w)) = ∆ [~n (~n ~w(x))] − ~n (∇~n ~w(x)) −∇~n (~n ~w)(x) (IV.13)

Thus, assuming now that the unit m− 2−vector ~n is in W 1,2, the distribution

L~n ~w := ∆~w − 3 div(π~n(∇~w)) + div ⋆ (∇⊥~n ∧ ~w) . (IV.14)

is well defined for an arbitrary choice of ~w in L2(D2). This shows that the
Euler-Lagrange equation in the form (IV.5) or (IV.6) is compatible with the
Lagrangian (IV.1). Indeed the equation has a distributional sense under the

least possible regularity requirement for the immersion ~Φ(Σ) : This minimal
requirement is for the Gauss map to be in W 1,2 on Σ with respect to the
induced metric. This leads to the definition of Weak Willmore Immersions.
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IV.3 Weak Willmore Immersions.

Before to give a weak formulation to Willmore immersions we define first the
notion of Weak immersion with L2−bounded second fundamental form.

Definition IV.1 [Weak immersions with L2−bounded second funda-

mental form] Let ~Φ be a W 1,2 map from a 2-dimensional manifold Σ into R
m.

~Φ is called a weak immersion with locally L2−bounded second fundamental form
if the following holds : For every x ∈ Σ there exists an open disk D in Σ, a
constant C > 0 and a sequence of smooth embeddings ~Φk from D into Rm such
that

i)

H2(~Φ(D)) 6= 0

ii)

H2(~Φk(D)) ≤ C < +∞

iii)

∫

D

|Bk|2 dvolgk ≤ 8π

3

iv)

~Φk ⇀ ~Φ weakly in W 1,2

where H2 denotes the 2-dimensional Hausdorff measure, Bk is the second funda-
mental form associated to the embedding ~Φk and gk denotes the metric obtained
by the pull-back by ~Φk of the induced metric on ~Φk(Σ). �

For example W 2,2 graphs in R
3 of maps from R

2 into R are weak immersions
with L2−bounded second fundamental form.

The following result was established by F. Hélein (théorème 5.1.1 of [Hel])
as a generalization of results due to T. Toro [To1], [To2] and S. Müller and V.
Sverak [MS].

Theorem IV.3 [Hel] [Existence of local conformal coordinates for weak

immersions] Let ~Φ be a weak immersion from a 2-dimensional manifold Σ into
R

m with L2−bounded second fundamental form. Then for every x in Σ there
exists an open disk D in Σ containing x and an homeomorphism Ψ of D such
that ~Φ ◦ Ψ is a conformal bilipschitz immersion and the induced metric g on D
from the standard metric of Rm is continuous in this parametrization. Moreover
the Gauss map ~n of this immersion is in W 1,2(D,Grm−2(R

m) for the induced
metric g. �

We can now give the definition of a Weak Willmore immersions with L2−bounded
second fundamental form.
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Definition IV.2 [Weak Willmore immersions with L2−bounded sec-

ond fundamental form]. A weak immersion ~Φ from a 2-dimensional mani-
fold Σ into Rm with L2− bounded second fundamental form is Willmore when,
about every point x in Σ, in a conformal parametrization given by theorem IV.3
from the 2 dimensional disk D2 the following equation holds

∆ ~H − 3 div(π~n(∇ ~H)) + div ⋆
(

∇⊥~n ∧ ~H
)

= 0 in D′(D2). (IV.15)

where ∆, ∇, ∇⊥
�

This definition makes sense since, as observed above, the expression

∇ ~H − 3π~n(∇ ~H) + ⋆(∇⊥~n ∧ ~H)

has a distributional meaning as soon as the Gauss map ~n is in W 1,2.

For example, in 3 dimension, the graph of a W 2,2 function f over the disc D2

defines a weak immersions in R3 with L2−bounded second fundamental form.
According to [To1], [MS] it admits locally a bilipschitz conformal parametriza-
tion and hence definition IV.2 applies to that situation.

We have hence defined the notion of W 2,2 Willmore graph in R3 and W 2,2 is
clearly the minimal requirement for having an L2 bounded second fundamental
form. In this sense our weak notion of Willmore immersion is clearly optimal.

IV.4 Integrability by compensation and the regularity of

Weak Willmore immersions with L
2−bounded sec-

ond fundamental form.

It is not difficult to see that for any ~n ∈ W 1,2(D2, Grm−2(R
m) the Willmore

operator L~n defined by (IV.14) is elliptic and continuous from Lp into W−2,p

for any p > 2. One checks also that L~n is formally selfadjoint. Moreover the
following invertibility property holds again for any p > 2.

• ∃ ǫ0 > 0 s.t. if
∫

D2 |∇~n|2 < ǫ0 then

∀~ξ ∈ C∞
0 (D2,R3) ‖~ξ‖Lp ≤ C‖L~n

~ξ‖W−2,p . (IV.16)

These last 2 facts, continuity and local invertibility of L~n, do not work
anymore for p = 2 !

This makes the relevant case for Willmore, the case p = 2, critical in the
usual non-linear PDE sense and some “ε−gain” of integrability has to be found
in the non-linear terms in the equation L~n

~H = 0 in order to establish some
regularity of ~H . This ε−gain of regularity will come from the application of
the Integrability by compensation theory to the following conservation laws for
Weak Willmore Immersions.

Theorem IV.4 [Conservation laws for weak Willmore immersions] [Ri2]

Let ~Φ be a weak Willmore immersion from a disk D2 into Rm with L2−bounded
second fundamental form. Assume ~Φ is conformal and denote ~L the map from
D2 into Rm satisfying

∇⊥~L := ∇ ~H − 3π~n(∇ ~H) + ⋆(∇⊥~n ∧ ~H) , (IV.17)
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then the following identities hold

∇~Φ · ∇⊥~L = 0 , (IV.18)

and
∇~Φ ∧∇⊥~L = 2 (−1)m ∇

[

⋆(~n ~H)
]

∇⊥~Φ (IV.19)

Moreover, denote respectively S and ~R the scalar and 2−vector valued functions

on D2 given by ∇S := ~L · ∇~Φ and ∇~R := ∇~Φ ∧ ~L+ 2 (−1)m
[

⋆(~n ~H)
]

∇~Φ,

then the following identity holds

∇⊥ ~R = (−1)m−1 ⋆
(

~n • ∇~R
)

+ ⋆~n ∇S (IV.20)

Where • is the first order contraction between multivectors given by α•β = α β
when β is a 1−vector and α•(β∧γ) = (α•β)∧γ+(−1)pq(α•γ)∧β where β and
γ are arbitrary p− and q−vectors. The equation (IV.20) implies in particular
that on D2 the following equation holds

∆~R = (−1)m−1 ⋆∇⊥~n • ∇~R+ ∇⊥(⋆~n) · ∇S (IV.21)

�

Observe that the operators ⋆, and • commute with derivatives in D2.
Therefore the identities (IV.18) and (IV.19) express the vanishing of linear com-
binations of certain jacobians (i.e. are divergence free quantities in particular)
and because of this very special structures they pass to the limit under weak
convergence of Willmore surfaces having uniformly bounded Willmore energies.
This observations justify then the name conservation laws for the identities
(IV.18) and (IV.19). The last equation (IV.21) tells us that the laplacian of ~R
is given by a linear combination of jacobians. In order to prove the regularity of
Weak Willmore Immersions, this last fact will be interpreted by the mean of the
Wente’s estimates described in section 1 of the present paper in the following
way.

The proof of the continuous differentiability of Weak Willmore Im-
mersions using the integrability by compensation theory.

Let ~Φ be a Weak Willmore Immersion in conformal parametrization given
by theorem IV.3. Then, from (IV.17), the gradient of ~L is in the spaceH−1+L1.

Therefore ~L is in the Lorentz space L2,∞, this implies that both ∇S and ∇~R
are in L2,∞. Since ∇~n is in L2 we are in the position to apply theorem I.2 to
equation (IV.21) and to deduce that in fact ∇~R is in L2. Taking the scalar

product between ~n and equation (IV.20) we obtain from the fact that ∇~R is in
L2 the fact that ∇S is also in L2. Going back now to equation (IV.21), these

latest informations permit to deduce that ~R is in fact in W 2,1 by invoquing the
integrability by compensation result theorem I.1. By taking the scalar product
again between ~n and (IV.20) we obtain also that S is in W 2,1. Denote by (~e1, ~e2)

the orthonormal basis (~e1, ~e2) = e−λ(∂x
~Φ, ∂y

~Φ) (where we recall that eλ is the

conformal factor eλ = |∂x
~Φ| = |∂y

~Φ|). An elementary computation gives

−2eλ ~H =
∂ ~R

∂x
~e2 + (~L · ~e2)

∂~Φ

∂x
=
∂ ~R

∂x
~e2 +

∂S

∂y
~e1 . (IV.22)
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Since, from theorem IV.3, ~Φ ∈W 2,2 and since λ ∈ L∞ ∩W 1,2, we deduce from
~R, S ∈ W 2,1 that ~H ∈ W 1,1. This implies that ~H is in the Lorentz space
L2,1 . Hence, using the equation giving the mean curvature vector in conformal
parametrization

∆~Φ = 2 e2λ ~H . (IV.23)

we obtain that ∇2~Φ is in L2,1 also and, by Lorentz-Sobolev embedding that
∇~Φ and ~n are continuous. Then, locally, the immersion realizes a C1 Willmore
graph everywhere. �

It is explained in [Ri2] section III.2 how to pass from the fact that the
mean curvature vector is in W 1,1 to the full regularity of the Weak Willmore
Immersions. Precisely we have.

Theorem IV.5 [Regularity for weak Willmore immersions] Let ~Φ be a
weak Willmore immersion from a 2-dimensional manifold Σ into Rm with L2−
bounded second fundamental form, then ~Φ(Σ) is the image of a real analytic
immersion. �

The deduction of the smoothness of weak Willmore immersions from the fact
that the mean curvature vector is in W 1,1, that we previously established above,
comes from the following ǫ−regularity result. Integrability by compensation the-
ory is used again for proving that result see [Ri2] section III.2. The ǫ−regularity
result says the following.

Theorem IV.6 [ǫ−regularity for weak Willmore Immersions] Let ~Φ be
a weak Willmore immersion from the unit 2 dimensional disk D2 into Rm with
L2−bounded second fundamental form. There exists ε > 0, independent of ~Φ
such that the following holds. Let ~n be the Gauss map associated to the weak im-
mersion ~Φ, assuming ~Φ is the bilipschitz parametrization given by theorem IV.3,
if

∫

D2

|∇~n|2 dvolg ≤ ε , (IV.24)

then for every k ∈ N there is a positive constant Ck depending only on k such
that

‖∇k~n‖2
L∞(D2

1/2
) ≤ Ck

∫

D2

|∇~n|2 dvolg (IV.25)

where D2
1/2 is the disk of radius 1/2 for the flat metric on D2. �

This ǫ−regularity result was already established using a different approch in
[KS1] under the assumption that the Willmore surface is smooth. Hence this
original ǫ−regularity result, with the regularity assumption, could not be applied
in our situation. Our goal was instead to prove that these regularity assumptions
are correct.

IV.5 Integrability by compensation and compactness ques-

tions related to Willmore surfaces.

In this part we adress problem ii) above namely “Analyse the compactness or
the lack of compactness (weak or strong ?) of the space of Willmore immersions
below a certain level of energy for a given Σ”. And we explain how the existing
answers provided to such kind of questions are related to our resolution of
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problem iv) in the previous subsection and are then related to Integrability
by Compensation phenomena.

IV.5.1 The small energy case.

From the ǫ−regularity result it is clear that a sequence of Willmore immersions
of a disk having small enough energy, converges in any norm, to a limiting
Willmore Immersion on any strictly included subset of the Disk. An interrest-
ing question regarding compactness and Willmore energy under small energy
assumption is the following.

Problem 1 : Given a sequence of conformal immersions ~Φk of the 2-Disk
D2 into R

m satisfying
∫

D2 |∇~nk|2 ≤ ε for some ǫ > 0 and assuming that

L~nk
~Hk −→ 0 strongly in H−2 , (IV.26)

is it true that, modulo extraction of a subsequence, ~Φk converges to a Willmore
Immersion ~Φ?

In other word the question we are raising here is to know whether Palais
Smale sequences of Willmore Functional, under the small energy assumption,
converge necessarily to Willmore immersions. This question is presently still
open. The resolution of that question would lead for instance to a new proof
of L.Simon’s result (problem iii)) of the existence of a minimizer to Willmore
energy among all possible immersions of torii.

Inspired by the results presented in the previous subsection one can observe
that the conservation laws (IV.18), (IV.19) will be automatically satisfied. No
comes the following question :

Problem 2 : Let ~Φ be a bilipschitz W 2,2 conformal immersion of the 2-
dimensional diskD2 into Rm. Assuming that there exists a map ~L in L2,∞(D2,Rm)
satisfying

∇~Φ · ∇⊥~L = 0 , (IV.27)

and
∇~Φ ∧∇⊥~L = 2 (−1)m ∇

[

⋆(~n ~H)
]

∇⊥~Φ (IV.28)

where ~n is the unit normal (~n = e−2λ∂x
~Φ ∧ ∂y

~Φ) and where ~H is the mean

curvature vector given by equation (IV.23). Does it imply that ~Φ is Willmore ?

If the answer to the previous question would be positive then the above
problem 1 about Palais-Smale sequences for Willmore under the small energy
assumption would be solved.

IV.5.2 The medium energy case. The Li-Yau 8π condition.

The following Energy condition is one of the beautiful achievement of the paper
by P.Li and S.T.Yau [LY].

Theorem IV.7 [LY] Let Σ be a closed 2-manifold. Let ~Φ : Σ −→ Rm be an
immersion. Assume there exists p ∈ Rm such that

~Φ−1({p}) = {x1, · · · , xn} ,
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xi distinct. Then
∫

Σ

| ~H |2 dvolg ≥ 4π n .

As consequence we have that, if an immersion satisfies

∫

Σ

| ~H |2 < 8π , (IV.29)

then it is an embedding. We will call the condition given by (IV.29), the Li-Yau
8π condition.

The aim now is to prove that weak limits of Willmore surfaces under the
Li-Yau condition are still Willmore.

Consider a familly of Willmore immersions Sn with fixed topology and
bounded Willmore energy. Modulo the action of the Moebius group of confor-
mal transformations of Rm, which preseves Willmore Lagrangian, and therefore
Willmore equation (IV.5), we can always fix the area of each Sn to be equal to 1.
Now using Federer Fleming argument we can extract a subsequence to that se-
quence such that the current of integration on Sn converges for the Flat topology
to some limiting integral current of integration S (see [Fe] for the terminology
of integral currents). Since Sn has a uniformly bounded Willmore energy and a
fixed topology, the L2 norm for the induced metric of it’s second fundamental
form, and hence the W 1,2−norm on the surface of the Gauss map, are bounded.
Applying then theorem IV.6 and a classical argument of concentration compact-
ness we then deduce that Sn converges, in a suitable parametrization, in the
Ck topology to S outside finitely many points {p1, · · · , pk}. This strong conver-
gence implies that S is a smooth Willmore surface a-priori outside these points.
The question to know whether these singular points are so called ”removable”
or not is then fundamental. In the case where pk is a point of density less than
2 the regularity of S is given by following result which extends to arbitrary
codimensions the main result of [KS3].

Theorem IV.8 [Point removability for Willmore immersions.] Let ~Φ be

a continuous map from D2 into Rm with ~Φ(0) = x0. Assume that ~Φ realizes a
finite area Willmore immersion over D2 \ {0} and that the W 1,2 energy of the
Gauss map on D2 \ {0} is bounded. Let µ be the measure given by the product

of the restriction to ~Φ(D2) of the 2-dimensional Hausdorff measure H2 in Rm

with the multiplicity function from ~Φ(D2) into N which to each point in ~Φ(D2)

assigns it’s number of preimage by ~Φ. Assume further that

lim inf
r→0

µ(Bm
r (x0))

πr2
< 2 (IV.30)

Then ~Φ(D2) is a C1,α submanifold of Rm for every α < 1. Moreover, if ~H
denotes the mean curvature vector of this submanifold, there exists a constant
vector ~H0 such that ~H(x) − ~H0 log |x − x0| is a C0,α function on ~Φ(D2) where

|x − x0| denotes the distance in ~Φ(D2) between x and x0. If ~H0 = 0 then ~Φ is
an analytic Willmore immersion on the whole D2. �
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Since the work of Robert Bryant [Bry] counter-examples to the above point
removability results are known when instead of (IV.30) one has

lim inf
r→0

µ(Bm
r (x0))

πr2
= 2 . (IV.31)

It goes as follows. Consider the cathenoid in R3 with center 0, axis the z
axis and containing the horizontal unit circle in the Oxy−plane. It is known
that this cathenoid is a minimal surface and hence Willmore. Apply to this
surface the inversion (conformal) x→ x/|x|2. We obtain a surface that we can
compactify by adding the origin. Let S be this compact surface . It is of course
Willmore outside the origin and condition (IV.31) is satisfied for x0 = 0. this
surface is self-tangent at the origin : it intersects itself at a point where the
2-tangent planes coincide and hence it is not an immersed Willmore surface and
the conclusions of theorem IV.8 does not apply in that case.

The proof of theorem IV.8 for m = 3 given by Kuwert and Schätzle is using
the original form (IV.3) of Willmore equation outside the point to be removed.
It is quite involved and it goes through a technical and deep lemma, the ”power
decay lemma”, which shows roughly that solutions to scalar equations of the
form (IV.3) on the unit disk minus it’s origin, under some decay assumption on
|H | near the origin, behave ”nicely” (in the spirit of a Liouville-type theorem).
This approach could have been very painful to extend in higher dimension since
one has to extend the ”power decay lemma” to systems. Our approach instead
is based on the new formulation of Willmore equation (IV.6). The strength of
it is that, because of it’s divergence nature, the equation can be written on the
whole disk D2 without to have to remove the origin a-priori. A simple regularity
consideration combined with a classical result on the distributions supported at
one point leads to the following identity

L~n
~H = ~c0 δ0 in D′(D2). (IV.32)

The goal is then to show that the vectorial residue ~c0 is zero. This is done
in [Ri2] again by using an argument based on Integrability by Compensation
Theory.

Granting theorem IV.8 for m = 3 Kuwert and Schätzle were able to establish
the fact that the limit S of Willmore surfaces Sn is again a smooth Willmore
submanifold in R

3 under the assumption that the Willmore energy of the Sn is
less than 8π−δ for any fixed δ > 0. This last fact ensures that S will be a graph
about each pi, i = 1 · · ·k and that the residues ~H0 will be equal to 0 at each
pi. The arguments, in order to prove that, under the strict Li-Yau assumption
W (Sn) < 8π − δ, S is a graph about each pi and that the residues ~H0 at each
pi are equal to 0, can be found page 344 of [KS3] and are not specific to the
codimension 1. Therefore, combining them with our point removability result,
theorem IV.8, with these arguments we can now state our last main result

Theorem IV.9 [Weak compactness of Willmore Surfaces under the
strict Li-Yau 8π−condition] Let m be an arbitrary integer larger than 2.
Let δ > 0. Consider Sn ⊂ Rm to be a sequence of smooth closed Willmore
embeddings with uniformly bounded topology, area equal to one and Willmore
energy W (Sn) bounded by 8π− δ. Assume that Sn converges weakly as varifolds
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to some limit S which realizes a non zero current. Then S is a smooth Willmore
embedding. �

Finally, combining again arguments in [KS3] (pages 350-351) together with
our point removability result and a theorem by Montiel in [Mon], which in
particular implies that any non-umbillic Willmore 2-spheres in R4 has Willmore
energy larger than 8π (this was known in R3 since the work of Bryant [Bry]),
we obtain the following.

Theorem IV.10 [Strong compactness of Willmore torii under the strict
Li-Yau 8π−condition] Let m = 3 or m = 4. Let δ > 0 arbitrary. The space
of Willmore embedded torii in Rm having Willmore energy less that 8π − δ is
compact up to Möbius transformations under smooth convergence of compactly
contained surfaces in Rm. �

This extends to m = 4 theorem 5.3 of [KS3] where the above statement was
proved for m = 3.
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