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Abstract : In the present work we study the behavior of sequences of smooth global isothermic
immersions of a given closed surface and having a uniformly bounded total curvature. We prove that, if
the conformal class of this sequence is bounded in the Moduli space of the surface, it weakly converges in
W 2,2 away from finitely many points, modulo extraction of a subsequence, to a possibly branched weak
isothermic immersion of this surface. Moreover, if this limit happens to be smooth away from the branched
points, we give an optimal description of the possible loss of strong compactness of such a subsequence
by proving that, beside possibly finitely many atomic concentrations, the defect measure associated to the
L2 norm of the second fundamental form is ”transported” along exceptional directions given by some
holomorphic quadratic forms associated the limiting surface. We give examples where such a loss of
compactness, invariant along such exceptional directions, eventually happen.

Math. Class. 35L51, 35L65, 35R01, 30C70, 53A30, 58E30, 49Q10, 35J35, 35J48, 35J50.

I Introduction to Global Isothermic Immersions.

I.1 The origin of isothermic in the XIXth century’s surface geometry in R3

and its generalization to arbitrary codimensions.

The notion of isothermic surfaces has been introduced in the second half of the XIX century and was in
particular studied by E. Bour, E.B. Christoffel and G. Darboux in the context of conjugated famillies of
surfaces. The issue was to find pairs of distinct, non homothetic, immersions into R3, ~Φ and ~L of the 2
dimensional disc D2 ”dual” to each other in the following sense1 :

∂xi
~Φ is parallel to ∂xi

~L for i = 1, 2 (I.1)

and the two induced metric on D2 are conformal to each other :

~L∗gR3 = e2u ~Φ∗gR3 (I.2)

where gR3 is the standard metric on R3 and u is an arbitrary function on D2.

E. Bour and E.B. Christoffel proved respectively in [Bou] and [Chr] that the non trivial solutions to
this question are immersions which posses around every point conformal (or isothermic) coordinates such
that the coordinate directions are principal (or curvature lines). In other words if ~n~Φ denotes the Gauss
Map of such an immersion

~n~Φ :=
∂x1

~Φ× ∂x2

~Φ

|∂x1

~Φ× ∂x2

~Φ|

∗Department of Mathematics, ETH Zentrum, CH-8093 Zürich, Switzerland.
1Darboux formulated the problem this way (see [Da2]) : Proposons nous de rechercher tous les cas dans lesquels la

correspondance par plan tangents parallèles établie entre deux surfaces peut donner une représentation conforme ou un

tracé géographique de l’une des surfaces sur l’autre.
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around each point there exists (x1, x2) coordinates such that the induced metric is conformal

~Φ∗gR3 = e2λ
[

dx21 + dx22
]

(I.3)

and
< ∂x1

~n~Φ, ∂x2

~Φ >=< ∂x2
~n~Φ, ∂x1

~Φ >= 0 (I.4)

where < ·, · > denotes the scalar product in R3, which also means that the second fundamental form is
diagonal in these conformal coordinates :

~I = −e−2λ
[

< ∂x1
~n~Φ, ∂x1

~Φ > dx21+ < ∂x2
~n~Φ, ∂x2

~Φ > dx22

]

~n~Φ .

where eλ = |∂x1

~Φ| = |∂x2

~Φ|. If (I.3) and (I.4) hold one says that the curvature lines are isothermic and,
following Darboux, such a surface is called isothermic surface. Since that time example of isothermic
surfaces were known such as axially symmetric surfaces or constant mean curvature surfaces including of
course minimal surfaces.

In order to extend the notion of isothermic surfaces to immersions into Rn for an arbitrary n > 2 we
need to reformulate the pair of constraints (I.1) and (I.2) or equivalently the pair of constraints (I.3) and
(I.4) but also to relax slightly this assumption.

We recall the definition of the Weingarten form ~h0 of an immersion ~Φ into R3, in an arbitrary choice
of complex coordinates,

~h0 := −e−2λ < ∂z~nΦ, ∂z~Φ > dz ⊗ dz

= −
e−2λ

4

[

< ∂x1
~n~Φ, ∂x1

~Φ > − < ∂x2
~n~Φ, ∂x2

~Φ > −2 i < ∂x1
~n~Φ, ∂x2

~Φ >
]

~n~Φ dz ⊗ dz

where z = x1 + ix2 and ∂z := 2−1 [∂x1
− i∂x2

].

As observed in [Ri3] we have the following result.

Proposition I.1 A conformal immersion ~Φ of the disc D2 into R3 satisfies, around each point, except
possibly a discrete subset of D2, (I.4) in some other local conformal chart (y1, y2) if and only if there
exists a non zero holomorphic function f(z) on D2 such that

ℑ
(

f(z) ~H0

)

= 0 , (I.5)

where ~H0 := −4−1 e−2λ
[

< ∂x1
~n~Φ, ∂x1

~Φ > − < ∂x2
~n~Φ, ∂x2

~Φ > −2 i < ∂x1
~n~Φ, ∂x2

~Φ >
]

~n~Φ is the expres-

sion of ~h0 in the given conformal parametrization ~Φ on the disc D2. �

Indeed, while changing conformal coordinates and taking w(z) := y1(z) + iy2(z) the expression of ~h0 in
these new coordinates becomes

~H ′
0 ◦ w = |∂zw|

2 (∂zw)
−2 ~H0 . (I.6)

Away from the zeros of f , taking w(z) :=
√

f(z), (I.5) becomes

ℑ( ~H ′
0) = 0 ,

which is exactly (I.4).
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We introduce on the space ∧1−0D2 ⊗ ∧1−0D2 of 1 − 0 ⊗ 1 − 0 form on D2 the following hermitian
product2 depending on the conformal immersion ~Φ

(ψ1 dz ⊗ dz, ψ2 dz ⊗ dz)WP := e−4λ ψ1(z) ψ2(z)

where eλ := |∂x1

~Φ| = |∂x2

~Φ|. We observe that for a conformal change of coordinate w(z) (i.e. w is
holomorphic in z) and for ψ′

i satisfying

ψ′
i ◦ w dw ⊗ dw = ψi dz ⊗ dz

one has, using the conformal immersion ~Φ ◦ w in the l.h.s.

(ψ′
1 dw ⊗ dw, ψ′

2 dw ⊗ dw)WP = (ψ1 dz ⊗ dz, ψ2 dz ⊗ dz)WP

Using this change of coordinate rule, (I.5) is equivalent to the following intrinsic characterization : there
exists an holomorphic section3 q of the bundle ∧1−0D2 ⊗ ∧1−0D2 such that

ℑ(q,~h0)WP = 0 . (I.7)

In codimension larger than 1 principal directions are not defined anymore and the XIXth century
definition of isothermic immersions into R3 cannot be extended in a straightforward way for immersions
into Rm (m > 3). However, considering a smooth immersions ~Φ of an arbitrary 2-dimensional manifold
Σ into Rm one can still produce the global Weingarten form using local conformal charts as being the
following global section of Rm ⊗ ∧1−0Σ⊗ ∧1−0Σ :

~h0 := 2 e−2λ π~n(∂
2
z2
~Φ) dz ⊗ dz

=
e−2λ

2
π~n

(

∂2x2

1

~Φ− ∂2x2

2

~Φ− 2 i ∂2x1x2

~Φ
)

dz ⊗ dz

(I.8)

where π~n is the orthogonal projection onto the plane orthogonal to ~Φ∗TΣ. We can now introduce the
natural generalization of global smooth isothermic surfaces into arbitrary euclidian space Rm.

Definition I.1 Let ~Φ be a smooth immersion of a two dimensional manifold Σ2 into Rm. One says that
~Φ is global isothermic if there exists an holomorphic quadratic form q of the riemann surface issued
from Σ2 equipped with the pull back metric g := ~Φ∗gRm of the standard metric gRm of Rm such that

ℑ(q,~h0)WP = 0 . (I.9)

where ~h0 is the Weingarten form of the immersion ~Φ given by (I.8). �

I.2 The role of Isothermic surfaces in the calculs of variations of the Willmore

Lagrangian.

In this work we are interested with analysis properties of Smooth global isothermic immersions. One of
the main reasons why looking at the analysis of global isothemic immersions comes from the fact that
they may arise as degenerate critical point to the conformal constrained Willmore problem, as it has
been shown in [Ri3]. In his 3 volumes book on differential geometry published by Springer around 1929
Wilhelm Blaschke, (see in particular the third volume [Bla]) proposed a theory merging minimal surface
theory and conformal invariance. This theory consists in studying the variations of the now so called

2This hermitian product integrated on D2 is the Weil Peterson product.
3In complex coordinates q = f(z) dz ⊗ dz where f is holomorphic and q is called an holomorphic quadratic form.
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Willmore Lagrangian for surfaces. This lagrangian, W , is given by the L2 norm of the mean curvature
vector ~H of an arbitrary immersion ~Φ into the euclidian space Rm (m ≥ 3) of a given 2-dimensional
abstract manifold Σ and integrated with respect to the induced metric4 g

W (~Φ) :=

∫

Σ

| ~H|2 dvolg . (I.10)

Immersions satisfying W (~Φ) < +∞ are called immersions of finite total curvature.

Minimal immersions, satisfying ~H ≡ 0, are clearly critical points to W . Blaschke observed5 moreover
the following conformal invariance of the lagrangianW : for any conformal diifeomorphism Ψ of Rm∪{∞}
into itself which does not send any point of Φ(Σ) to infinity one has

W (Ψ ◦ ~Φ) =W (~Φ) . (I.11)

Hence, as a consequence, any composition of a minimal surface with a conformal diffeomorphism is still
a critical point of W without being necessarily minimal anymore. Though the space of critical points
of W happens to be much broader than such compositions, Blaschke decided nevertheless to call such
an immersion a conformal minimal immersion6. Conformal minimal immersions are nowadays known
under the denomination Willmore surfaces. Example of such surfaces are given for instance by minimal
surfaces in Rm or stereographic projections into Rm of minimal surfaces in Sm, constant mean curvature
surfaces in R3 and the compositions of all these surfaces with conformal transformations . It has been
proven in [Ri2] that an immersion ~Φ is a critical point to W if and only if it satisfies

d∗g

[

d ~H − 3D ~H + ⋆(∗gd~n~Φ ∧ ~H)
]

= 0 (I.12)

where ∗g is the Hodge operator on Σ associated to the induced metric g := ~Φ∗gRm , D ~H is the covariant

differentiation of the section ~H of the normal bundle (~Φ∗TΣ)
⊥), it is also given by

D ~H := π~n(d ~H)

where π~n denotes the orthogonal projection onto the fibers of (~Φ∗TΣ)
⊥. Finally ⋆ denotes the Hodge

operator from ∧pRm into ∧m−pRm for the canonical metric of Rm satisfying

∀αβ ∈ ∧p
R

m α ∧ ⋆β = (α, β) ε1 ∧ · · · ∧ εm

where εi is the canonical basis of R
m and (·, ·) denotes the canonical scalar product on ∧pRm. In conformal

coordinates for the induced metric g equation (I.12) becomes.

div
(

∇ ~H − 3 π~n(∇ ~H) + ⋆(∇⊥~n~Φ ∧ ~H)
)

= 0 . (I.13)

While exploring the existence and properties of critical points to the Willmore energy (I.11) , or in
other words while proceeding to the calculus of variation of the Lagrangian W , it is natural to raise the
question of the conformal class such an immersion defines on the abstract 2-manifold Σ. As a channel of
consequences it is then natural to explore minimizers or critical points to W when the conformal class
induced by ~Φ∗gRm is fixed. Assuming such a critical point is a non degenerate point for the conformal
class constraint, it has been proved in [Ri3] that ~Φ satisfies this time

d∗g

[

d ~H − 3D ~H + ⋆(∗gd~n~Φ ∧ ~H)
]

= ℑ(q,~h0)WP (I.14)

4g := ~Φ∗gRm where gRm is the canonical flat metric of Rm.
5This invariance was proved by Wilhelm Blaschke for m = 3 and later on generalized by Bang-Yen Chen to arbitrary m
6Probably in order to insist on the merging of the two requirements for this theory to include minimal surfaces and

conformal invariance
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for some holomorphic quadratic differential q associated to the fixed conformal class. q plays here the
role of a Lagrange multiplyer. Equation (I.14) has been called Constrained Willmore equation (see [BPP]
for instance) but in order to avoid any ambiguity with the other constrained problems for the Willmore
lagarngian (such as the Isoperimetric ratio for instance - see [Sy]) we prefer to call equation (I.14) the
Constrained-conformal Willmore equation.

Examples of solutions to (I.14), which are not necessarily solutions7 to (I.12) are given for instance by
parallel mean curvature surfaces : surfaces that generalize to arbitrary codimensions the constant
mean curvature equation and that are characterized by the following condition

D ~H = π~n(d ~H) ≡ 0 . (I.15)

Indeed, the Codazzi-Mainardi identity for a general conformal immersion ~Φ of the disc D2 reads (see
[Ri1])

e−2λ∂z

(

e2λ ~H0 · ~H
)

= ~H · ∂z ~H + ~H0 · ∂z ~H , (I.16)

where z = x1 + ix2 and ∂z := 2−1(∂x1
− i∂x2

). Since we are assuming (I.15) we have then

f(z) := e2λ ~H0 · ~H is holomorphic. (I.17)

In [Ri1] it is proven that, for a general conformal immersion ~Φ of the disc D2 , one has

div
(

∇ ~H − 3 π~n(∇ ~H) + ⋆(∇⊥~n~Φ ∧ ~H)
)

= −8 ℜ
(

∂z

[

π~n(∂z ~H) + e2λ ~H0 · ~H e−2λ∂z~Φ
])

(I.18)

Assuming (I.15), (I.18) becomes

div
(

∇ ~H − 3 π~n(∇ ~H) + ⋆(∇⊥~n~Φ ∧ ~H)
)

= −8 ℜ
(

f(z) ∂z

[

e−2λ ∂z~Φ
])

. (I.19)

For a general conformal immersion ~Φ of the disc D2 , one has (see [Ri1])

~H0 = 2 ∂z

[

e−2λ ∂z~Φ
]

. (I.20)

Hence (I.19) becomes

div
(

∇ ~H − 3 π~n(∇ ~H) + ⋆(∇⊥~n~Φ ∧ ~H)
)

= ℑ
(

4 i f(z) ~H0

)

, (I.21)

which is exactly the constrained-conformal Willmore equation (I.14) written in complex coordinates.

If instead the critical point is a degenerate point of the conformal constraint, it is proved in [Ri3] that
there exists a non trivial holomorphic quadratic differential q such that

ℑ(q,~h0)WP ≡ 0 (I.22)

in other words, ~Φ is isothermic.
We have proven in [Ri3] (see propositions I.2 and I.3) that, if ~Φ is isothermic , away from the zeros of

q, there exists locally complex coordinates z = x1 + ix2 in which the condition (I.7) reads

∂

∂x1

[

e−2λ ∂
~Φ

∂x2

]

+
∂

∂x2

[

e−2λ ∂
~Φ

∂x1

]

= 0 . (I.23)

7Surfaces of non-zero constant mean curvature in R3 which are Willmore have to be umbilic and then coincide with a
plane or a round sphere.
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where eλ = |∂x1

~Φ| = |∂x2

~Φ| is the conformal factor.
Making a similar choice of conformal coordinates for the induced metric g equation (I.14) becomes.

div
(

∇ ~H − 3 π~n(∇ ~H) + ⋆(∇⊥~n~Φ ∧ ~H)
)

= Q

(

∂

∂x1

[

e−2λ ∂
~Φ

∂x2

]

+
∂

∂x2

[

e−2λ ∂
~Φ

∂x1

])

. (I.24)

where8 Q := |q|WP ∈ R+ (The WP -norm is taken with respect to the constant scalar curvature metric
of volume 1 on Σ).

The Isothermic equation (I.23) is an hyperbolic equation whereas the Constrained-conformal
Willmore equation (I.24) is an elliptic one. One passes from (I.24) to (I.23) in particular when the
norm of the Lagrange-multiplier goes to infinity Q = ε−2 → +∞. Precisely in [Ri3] section IV we have
proven the following result

Theorem I.1 [Ri3] Let ~Φk be a sequence of conformal immersion from D2 into Rm satisfying asymp-
totically the constrained-conformal equation :

div
(

∇ ~Hk − 3 π~nk
(∇ ~Hk) + ⋆(∇⊥~n~Φk

∧ ~Hk)
)

−Qk

(

∂

∂x1

[

e−2λk
∂~Φk

∂x2

]

+
∂

∂x2

[

e−2λk
∂~Φk

∂x1

])

−→ 0 strongly in (W 2,2 ∩W 1,∞)∗

(I.25)

for some sequence Qk ∈ R+. Assume

‖λk‖L∞(D2) + ‖∇~n~Φk
‖L2(D2) ≤ C < +∞ . (I.26)

If
lim sup
k→+∞

Qk < +∞

then, modulo extraction of a subsequence, ~Φk converges weakly9 in W 2,2
loc to a C∞ constrained conformal

immersion (i.e. satisfying (I.24) for some Q ∈ R+).
Alternatively, if instead,

lim sup
k→+∞

Qk = +∞

there exists a subsequence of ~Φk converging weakly in W 2,2
loc to a conformal lipschitz W 2,2

loc isothermic
immersion (i.e. satisfying (I.23)) �

In this sense the isothermic surface equation should be seen as an hyperbolic degeneracy of the
constrained conformal equation which represents some viscous approximation of the first one.

Remark I.1 An interesting issue is to understand if the solution to (I.23) that are obtained as weak limits
of the viscous approximation (I.24) enjoy some additional regularity properties which are not shared with
the arbitrary W 2,2 conformal solutions to (I.23) . �

8By dilating these conformal coordinates one can always make Q = 1 in (I.24) - except when q = 0 of course - but
we prefer to normalize the conformal coordinates for them not to degenerate as the Weil-Petersson norm of the Lagrange
multiplier |q|WP would go either to 0 or +∞

9in this case the weak W
2,2

loc
convergence should even be strong.
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I.3 Weak Global Isothermic Immersions.

The previous result, theorem I.1, shows the importance of enlarging the class of smooth global isothermic
immersions to a wider class of weak global isothermic immersions. For analysis reasons it is also needed
to enlarge the class of C1 immersions while studying critical points to the Willmore functional (I.10). In
[Ri3] the author introduced the framework of weak immersion with finite total curvature (or simply weak
immersions).

Let g0 be a reference smooth metric on Σ. One defines the Sobolev spacesW k,p(Σ,Rm) of measurable
maps from Σ into Rm in the following way

W k,p(Σ,Rm) =

{

f meas. Σ → R
m s.t.

k
∑

l=0

∫

Σ

|∇lf |pg0 dvolg0 < +∞

}

Since Σ is assumed to be compact it is not difficult to see that this space is independent of the choice we
have made of g0.

First we need to have a weak first fundamental form that is we need ~Φ∗gRm to define an L∞ metric
with a bounded inverse. The last requirement is satisfied if we assume that ~Φ is in W 1,∞(Σ) and if d~Φ

has maximal rank 2 at every point with some uniform quantitative control of ”how far” d~Φ is from being
degenerate : there exists c0 > 0 s.t.

|d~Φ ∧ d~Φ|g0 ≥ c0 > 0 . (I.27)

where d~Φ ∧ d~Φ is a 2-form on Σ taking values into 2-vectors from Rm and given in local coordinates by
2 ∂x~Φ ∧ ∂y~Φ dx ∧ dy. The condition (I.1) is again independent of the choice of the metric g0 . For a
Lipschitz immersion satisfying (I.1) we can define the Gauss map as being the following measurable map
in L∞(Σ) taking values in the Grassmanian of oriented m− 2-planes in Rm.

~n~Φ := ⋆
∂x~Φ ∧ ∂y~Φ

|∂x~Φ ∧ ∂y~Φ|
.

We then introduce the space EΣ of weak immersions of Σ with total finite curvature as being the following
space :

EΣ :=















~Φ ∈ W 1,∞(Σ,Rm) s.t. ~Φ satisfies (I.27) for some c0

and

∫

Σ

|d~n|2g dvolg < +∞















.

Where g := ~Φ∗gRm is the pull back by ~Φ of the flat canonical metric gRm of Rm and dvolg is the volume
form associated to g.

The analysis of EΣ shows that for completeness purposes (see [Ri3]) one has to relax the fact that ~Φ

is globally an immersion by requiring only that ~Φ is an immersion away from finitely many points. We
then define the space of branched weak immersions with finite total curvature in the following way

FΣ :=



































~Φ ∈ W 1,∞(Σ,Rm) s.t. ∃ a1 · · ·aN ∈ Σ s.t.

∀ K compact in Σ \ {a1 · aN} ~Φ satisfies (I.27) on K for some c0(K) > 0

and

∫

Σ

|d~n|2g dvolg < +∞



































.
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It is proved in [Ri3] (see also [Ri1]) that any weak immersion ~Φ in EΣ defines a smooth conformal
structure on Σ : more precisely, following Toro, Müller-Sverak, Hélein’s works on immersions with finite
total curvature one proves (see [Ri1]) that for any ~Φ ∈ EΣ and for any p ∈ Σ there exists a neighborhood

U containing p and a bilipshitz homeomorphism Ψ from D2 into U such that ~Φ ◦ Ψ satisfies the weak
conformal condition











∂x1
(~Φ ◦Ψ) · ∂x2

(~Φ ◦Ψ) = 0 a. e. in D2

|∂x1
(~Φ ◦Ψ)| = |∂x2

(~Φ ◦Ψ)| a. e. in D2

moreover ~Φ ◦ Ψ is W 2,2 on D2. Hence Σ is equipped with a system of charts such that the transition
functions satisfy the Cauchy-Riemann conditions almost everywhere and thus are holomorphic. This
defines the conformal structure induced by ~Φ. The same can be done for any element of FΣ using also
Huber theorem about the conformal structure of a metric of finite total curvature on a closed surface
minus finitely many points.

We can now give the definition of a weak global isothermic immersion as the natural extension of
definition I.1.

Definition I.2 Let Σ2 be a closed two dimensional manifold. One says that a weak immersion ~Φ in EΣ
(resp. a weak branched immersion in FΣ) is weakly global isothermic if there exists an holomorphic
quadratic form q of the riemann surface issued from Σ2 equipped with the conformal structure defined by
~Φ such that

ℑ(q,~h0)WP = 0 . (I.28)

where ~h0 is the Weingarten form of the immersion ~Φ given by (I.8). �

Remark I.2 Observe that for any ~Φ in EΣ the Weingarten 1 − 0 ⊗ 1 − 0 form h0 is a well defined L2

section of ∧(1,0)Σ⊗ ∧(1,0)Σ and therefore the function ℑ(q,~h0)WP is a well efined L2 function on Σ for
any holomorphic quadratic form q.

The following characterization of weak global isothermic immersion has been given in [Ri3] (proposition
I.3).

Proposition I.2 A weak immersion ~Φ is global isothermic if and only if around every point there exists
a L2 Rm valued map ~L such that the following two conditions are satisfied











d~Φ · d~L := [∂x1

~Φ · ∂x2

~L− ∂x2

~Φ · ∂x1

~L] dx1 ∧ dx2 = 0

d~Φ ∧ d~L := [∂x1

~Φ ∧ ∂x2

~L− ∂x2

~Φ ∧ ∂x1

~L] dx1 ∧ dx2 = 0

(I.29)

~L is called a Darboux transform of ~Φ. �

An elementary observation shows that property (I.29) is invariant under the action of transformations
that preserves angles infinitesimally in Rm. From this observation we deduce the following fundamental
property.

Proposition I.3 Let ~Φ be a weak isothermic immersion of EΣ (resp. weak branched isothermic immer-

sion of FΣ). Let Ξ be a conformal transformation of Rm ∪ {∞}. Then ~Ξ ◦ ~Φ is still a weak isothermic
immersion of EΣ (resp. weak branched isothermic immersion of FΣ). �

In [BR] the following proposition is proved
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Proposition I.4 A weak immersion ~Φ ∈ EΣ is constrained-conformal Willmore if and only if, around
every point, there exists an L2 Rm-valued map ~L such that the following two conditions are satisfied











d~Φ · d~L := [∂x1

~Φ · ∂x2

~L− ∂x2

~Φ · ∂x1

~L] dx1 ∧ dx2 = 0

d~Φ ∧ d~L := [∂x1

~Φ ∧ ∂x2

~L− ∂x2

~Φ ∧ ∂x1

~L] dx1 ∧ dx2 = 2 (−1)m d(⋆(~n ~H)) ∧ d~Φ ,

(I.30)

where is the standard contraction operator between a p−vectors and a q−vectors (p ≥ q) given by

∀~a ∈ ∧p
R

m , ∀~b ∈ ∧q
R

m , ∀~c ∈ ∧p−q
R

m < ~a ~b,~c >=< ~a,~b ∧ ~c > .

and
d(⋆(~n ~H)) ∧ d~Φ := [∂x1

(⋆(~n ~H)) ∂x2

~Φ− ∂x2
(⋆(~n ~H)) ∂x1

~Φ] dx1 ∧ dx2 .

�

In [Ri2] it is proven that weak immersion ~Φ ∈ EΣ which are constrained-conformal Willmore are in fact
C∞.

Minimal surfaces in Rm -satisfying ~H = 0 - clearly solve (I.13). This means that they are Willmore
and, a fortiori, they are special cases of constrained-conformal Willmore. Therefore, from proposition I.4,
they satisfy (I.30). But since ~H = 0 the right hand side of (I.30) is zero. Thus minimal surfaces are also
satisfying (I.29) and are then isothermic.

More generally parallel mean curvature surfaces, surfaces satisfying (I.15), are also constrained-
conformal Willmore and not necessarily Willmore, as we proved in the previous subsection, and they
are also isothermic. Indeed, it is proven in [BR] (equation (II.6) )that, in conformal coordinates,

∂x1
(⋆(~n ~H)) ∂x2

~Φ− ∂x2
(⋆(~n ~H)) ∂x1

~Φ = (−1)m−1 ∇~Φ ∧ ∇ ~H (I.31)

For parallel mean curvature surfaces, which satisfy (I.15), we have

∇~Φ ∧ ∇ ~H = ∇~Φ ∧ πT (∇ ~H) = ∇⊥ ~H · ∇~Φ ~e1 ∧ ~e2 = −2 div( ~H · ∇⊥~Φ) ~e1 ∧ ~e2 = 0 . (I.32)

Other examples of weak isothermic immersions which are not smooth and then not necessarily
constrained-conformal Willmore are easy to produce : take a non necessarily smooth simple closed lipshitz
curve γ : S1 → R2 such that

∫

S1

κ2 dl < +∞

where κ is the curvature distribution of that curve and dl the length 1-form on S1 induced by the
immersion γ. Identify the plane R2 with the vertical plane in R3 given by {x2 = 0} and rotate that curve
around the x3 vertical axis. One proves that this generates a weak global isothermic immersion : axially
symmetric surfaces are isothermic. We saw in proposition I.3 that being isothermic is a conformally
invariant property and therefore any composition of the obtained axially surface with a diffeomorphism
of R3 generates another isothermic surface.

It is proven in [Ri3] (see the proof of lemma III.1) that the space of weak immersion EΣ of controlled
conformal class has a nice weak closure property modulo renormalization and branched points. Precisely
one has the following weak closure lemma.

Lemma I.1 [Ri3] Let Σ be a closed two-dimensional manifold. Let ~Φk be a sequence of elements in EΣ
such that W (Φk) is uniformly bounded. Assume that the conformal class of the conformal structure ck
(i.e. complex structure of Σ) defined by ~Φk remains in a compact subspace of the Moduli space of Σ. Then,
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modulo extraction of a subsequence, the sequence ck converges to a smooth limiting complex structure c∞
; and there exist a sequence of Lipschitz diffeomorphisms fk of Σ such that ~Φk ◦ fk is conformal from
(Σ, ck) into Rm. Moreover, there exists a sequence Ξk of conformal diffeomorphisms of Rm ∪ {∞} and
at most finitely many points {a1, . . . , aN} such that

lim sup
k→+∞

H(Ξk ◦ ~Φk ◦ fk(Σ)) < +∞ , Ξk ◦ ~Φk ◦ fk(Σ) ⊂ BR(0) (I.33)

for some R > 0 independent of k, and

~ξk := Ξk ◦ ~Φk ◦ fk ⇀ ~ξ∞ weakly in (W 2,2
loc ∩W 1,∞

loc )∗(Σ \ {a1, . . . , aN}) . (I.34)

The convergences are understood with respect to hk, which is the constant scalar curvature metric of unit
volume attached to the conformal structure ck.
Furthermore, there holds

∀K compact subset of Σ \ {a1, . . . , aN} lim sup
k→+∞

‖ log |d~ξk|hk
‖L∞(K) < +∞ . (I.35)

Finally, ~ξ∞ is an element of FΣ, a weak immersion of Σ\ {a1, . . . , aN}, and conformal from (Σ, c∞) into
Rm. �

Following the arguments of [Ri3] proof of lemma IV.1 one establishes the following weak closure result
for weak isothermic immersions.

Theorem I.2 [Ri3] Let Σ be a closed two-dimensional manifold. Let ~Φk be a sequence of weak global
isothermic immersions such that W (Φk) is uniformly bounded. Assume that the conformal classes ck
defined by ~Φk converge to a limiting structure c∞ in the Moduli space of Σ. Then, modulo extraction of a
subsequence, there exists a sequence of Lipschitz diffeomorphisms fk of Σ and a sequence Ξk of conformal
diffeomorphisms of Rm ∪ {∞} such that ~ξk := Ξk ◦ ~Φk ◦ fk is a weak conformal isothermic immersion

converging weakly in W 2,2
loc on Σ minus finitely many points to ~ξ∞ a , possibly branched at these points,

conformal weak global isothermic immersion for the limiting conformal structure c∞ on Σ. �

I.4 Weakly converging smooth global isothermic immersions - Main result.

The goal of the present paper is to present a result regarding the lack of strong compactness and the
geometric structure of the defect measure for sequences of smooth global isothermic immersions weakly
converging to another smooth global isothermic immersion. Our main result is the following

Theorem I.3 Let Σ be a closed two-dimensional manifold. Let ~Φk be a sequence of smooth global
isothermic immersions such that W (Φk) is uniformly bounded. Assume that the conformal classes ck
defined by ~Φk converge to a limiting structure c∞ in the Moduli space of Σ. Then, modulo extraction of a
subsequence, there exists a sequence of Lipschitz diffeomorphisms fk of Σ and a sequence Ξk of conformal
diffeomorphisms of Rm ∪ {∞} and finitely many points {a1 · · · an} such that ~ξk := Ξk ◦ ~Φk ◦ fk is a
conformal global isothermic immersion satisfying

~ξk ⇀ ~ξ∞ weakly in W 2,2
loc (Σ \ {a1 · · · an}) (I.36)

where ~ξ∞ a weak, possibly branched at the ai, conformal weak global isothermic immersion for the
limiting conformal structure c∞ on Σ. If moreover ~ξ∞ is smooth away from the points ai then the
following convergence holds

|d~n~ξk
|2gk dvolgk ⇀ |d~n~ξ∞

|2g∞ dvolg∞ + ν +
n
∑

i=1

αi δai dvolg∞ weakly in M(Σ) (I.37)
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where M(Σ) is the space of Radon measures on Σ and ν, the non atomic part of the defect measure, satis-
fies the following condition : around every point different from the ai there exists a conformal coordinate
chart z = x1 + ix2 such that, simultaneously the following holds

0 = ℑ( ~H0) = −
1

2
π~n

(

∂

∂x1

[

e−2λ ∂
~ξ∞
∂x2

]

+
∂

∂x2

[

e−2λ ∂
~ξ∞
∂x1

])

(I.38)

where ~H0 is the expression in the z coordinates of the Weingarten form ~h0 = ~H0 dz ⊗ dz, and

ν = ν1(x1) ∧ dx2 + dx1 ∧ ν2(x2) (I.39)

where νi(xi) are Radon measures on the xi axis and νi(xi) ∧ dxi+1 is the product of this Radon measure
with the Lebesgue measure on the xi+1 axis. �

Remark I.3 In codimension 1 the coordinates directions in which (I.38) happens are principal direc-
tions. The theorem says that the defect measure associated to the lack of strong compactness of the
sequence of isothermic immersions ”propagates” uniformly along principal directions, modulo
possible concentration points. �

Remark I.4 The result is optimal in the sense that it is not difficult to produce examples where (I.39)
indeed happens. Consider a family of simple closed curves in the plane of fixed length, such that, the
normal parametrization, γk(s), weakly converges in W 2,2(S1) with a non zero defect measure µ(s)

|γ̈k|
2(s) ds ⇀ |γ̈∞|2(s) ds+ µ(s)

By identifying the 2-plane with the vertical plane in R3 given by {x2 = 0} and by rotating the sequence
of curves around the x3 axis we obtain a weakly converging family of isothermic surfaces with a non zero
defect measure satisfying (I.39). �

II Entropies for Isothermic Surfaces.

One of the main tool for proving theorem I.3 is the computation of entropies for isothermic surfaces.
Precisely the goal of the present section is to establish the following proposition.

Proposition II.1 Let ~Φ be a smooth conformal immersion of D2 into Rm satisfying

∂

∂x1

[

e−2λ ∂
~Φ

∂x2

]

+
∂

∂x2

[

e−2λ ∂
~Φ

∂x1

]

= 0 . (II.1)

where eλ = |∂x1

~Φ| = |∂x2

~Φ| is the conformal factor. Then the following conservation laws hold


























∂

∂x1

[

(

∂~nΦ

∂x2
~e2

)2

+

∣

∣

∣

∣

∂λ

∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ

∂x2

∣

∣

∣

∣

2
]

+
∂

∂x2

[

2
∂λ

∂x1

∂λ

∂x2

]

= 0

∂

∂x2

[

(

∂~nΦ

∂x1
~e1

)2

+

∣

∣

∣

∣

∂λ

∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ

∂x1

∣

∣

∣

∣

2
]

+
∂

∂x1

[

2
∂λ

∂x1

∂λ

∂x2

]

= 0

(II.2)

where ~ei is the unit orthonormal Coulomb frame of ~Φ∗TD
2 given by ~ei := e−λ ∂xi

~Φ and is the following
standard contraction operator between a p−vector and a q−vector (p ≥ q) giving a p− q−vector

∀~a ∈ ∧p
R

m , ∀~b ∈ ∧q
R

m , ∀~c ∈ ∧p−q
R

m < ~a ~b,~c >=< ~a,~b ∧ ~c > .

�
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Remark II.1 The proof of proposition II.1 we give below is using the smoothness of the isothermic
immersion and, a-priori (II.2) does not necessarily hold for general isothermic weak immersion in EΣ.�

Proof of proposition II.1.
A classical computation (see [BR]) gives

~H0 = 2 ∂z
[

e−λ ~ez
]

(II.3)

where ∂z := 2−1(∂x1
− i∂x2

) and ~ez := 2−1(~e1 − i~e2). Observe that this identity implies

ℑ( ~H0) = 2−1 ∂

∂x1

[

e−2λ ∂
~Φ

∂x2

]

+ 2−1 ∂

∂x2

[

e−2λ ∂
~Φ

∂x1

]

. (II.4)

Our assumption is then equivalent to
ℑ( ~H0) = 0 . (II.5)

Since π~n( ~H0) = ~H0, where π~n denotes the orthogonal projection onto the m − 2 plane perpendicular to
~e1 and ~e2, we deduce from (II.4) and (II.5) that

0 = π~n

(

∂

∂x1

[

e−2λ ∂
~Φ

∂x2

]

+
∂

∂x2

[

e−2λ ∂
~Φ

∂x1

])

, (II.6)

which itself implies

π~n

(

∂2~Φ

∂x1∂x2

)

= 0 . (II.7)

Observe that we have

∂x2
~n ∂x1

~Φ = ∂x2
(~n ∂x1

~Φ)− ~n ∂2x1x2

~Φ = −~n ∂2x1x2

~Φ = ∂x1
(~n ∂x2

~Φ)− ~n ∂2x1x2

~Φ = ∂x1
~n ∂x2

~Φ .

where we have used that ~n ∂x1

~Φ = 0 and ~n ∂x2

~Φ. Inserting (II.7) in this identity gives

∂~n

∂x2

∂~Φ

∂x1
=

∂~n

∂x1

∂~Φ

∂x2
= 0 . (II.8)

We have
∂x1

(∂x2
~n ~e2) = ∂x1

(e−λ ∂x2
~n ∂x2

~Φ)

= −∂x1
λ ∂x2

~n ~e2 + e−λ ∂2x1x2
~n ∂x2

~Φ + e−λ ∂x2
~n ∂2x1x2

~Φ

= −∂x1
λ ∂x2

~n ~e2 − e−λ ∂x1
~n ∂2x2

2

~Φ + e−λ ∂x2
~n πT (∂

2
x1x2

~Φ)

(II.9)

where we have used (II.7) and (II.8). In one hand we have

πT (∂
2
x1x2

~Φ) = 2−1 e−λ
[

∂x2
(|∂x1

~Φ|2) ~e1 + ∂x1
|∂x2

~Φ|2 ~e2

]

= ∂x2
λ ∂x1

~Φ + ∂x1
λ ∂x2

~Φ

(II.10)

Thus using (II.8) we have

e−λ ∂x2
~n πT (∂

2
x1x2

~Φ) = ∂x1
λ e−λ ∂x2

~n ∂x2

~Φ = ∂x1
λ ∂x2

~n ~e2 , (II.11)
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and (II.9) becomes

∂x1
(∂x2

~n ~e2) = −e−λ ∂x1
~n ∂2x2

2

~Φ (II.12)

In the other hand

< ∂x1
~n π~n(∂

2
x2

2

~Φ), ∂x2
~n ~e2 >=< ∂x1

~n, π~n(∂
2
x2

2

~Φ) ∧ (∂x2
~n ~e2) >= 0 (II.13)

Indeed, if m = 3 ∂x1
~n is perpendicular to the vector ~n to which π~n(∂

2
x2

2

~Φ) is parallel and, in the case

when m > 3, one easily verifies that

(∂x2
~n ~e2) ~ei = 0 for i = 1, 2 ,

thus π~n(∂
2
x2

2

~Φ) ∧ (∂x2
~n ~e2) is paralel to ~n which proves (II.13).

Combining now (II.12) and (II.13) we obtain

< ∂x1
(∂x2

~n ~e2), ∂x2
~n ~e2 >= −e−λ < ∂x1

~n πT (∂
2
x2

2

~Φ), ∂x2
~n ~e2 > .

Using two more times (II.8) this gives

< ∂x1
(∂x2

~n ~e2), ∂x2
~n ~e2 >= −e−λ < ∂x1

~n ~e1, ∂x2
~n ~e2 > < ~e1, ∂

2
x2

2

~Φ >

=
[

< ∂x1
~n ~e1, ∂x2

~n ~e2 > −|∂x1
~n ~e2|

2
]

∂x1
λ

= e2λ K ∂x1
λ = −∆λ ∂x1

λ = −∂x1
(|∂x1

λ|2/2)− ∂x2
(∂x1

λ∂x2
λ) + ∂x1

(|∂x2
λ|2/2)

(II.14)

where K is the Gauss curvature and where we have used the Liouville equation. (II.14) gives the first
equation of (II.2). The second equation is established in a similar way. The proof of proposition II.1 is
complete. �

III A lemma in Compensation Compactness Theory

In order to prove the main theorem I.3 we shall need a compactness result related to some quantites
present in the expressions (II.2) of the entropies. This result is based on a compensation phenomenon
observed first in [De] (see also [Ge] and [EM]) in the framework of the analysis of 2-dimensional perfect
incompressible fluids.

Lemma III.1 Let αk and βk be two sequences of functions in W 1,2(D2,R)

lim sup
k→+∞

‖∇αk‖L2(D2) + ‖∇βk‖L2(D2) < +∞ (III.1)

Let ϕk be the sequence of solutions in W 1,2(D2,R) of







∆ϕk = ∂x1
αk ∂x2

βk − ∂x2
αk ∂x1

βk in D2

ϕk = 0 on ∂D2

(III.2)

Then there exists a subsequence ϕk′ and two Radon measures µ and ν such that







|∂x1
ϕk′ |2 − |∂x2

ϕk′ |2 ⇀ |∂x1
ϕ∞|2 − |∂x2

ϕ∞|2 + µ in D′(D2)

∂x1
ϕk′ ∂x2

ϕk′ ⇀ ∂x1
ϕ∞ ∂x2

ϕ∞ + ν in D′(D2)

(III.3)
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where






∆ϕ∞ = ∂x1
α∞ ∂x2

β∞ − ∂x2
α∞ ∂x1

β∞ in D2

ϕ∞ = 0 on ∂D2

(III.4)

and α∞ (resp. β∞) is the weak limit in W 1,2 of αk′ (resp. βk′). Moreover both µ and ν are atomic inside
D2 : there exists pi ∈ D2 for i ∈ N, and qj ∈ D2 for j ∈ N such that

µ =
∑

i∈N

ci δpi
and ν =

∑

j∈N

dj δqj in D′(D2) , (III.5)

where
∑

i∈N

|ci| = |µ|(D2) < +∞ and
∑

j∈N

|dj | = |ν|(D2) < +∞ . (III.6)

�

Proof of lemma III.1.
Let α̃k and β̃k be two Whitney type extension on the whole plane R2 of respectively αk and βk

satisfying
‖∇α̃k‖L2(R2) ≤ C ‖∇αk‖L2(D2) and ‖∇β̃k‖L2(R2) ≤ C ‖∇βk‖L2(D2) (III.7)

where C is independent of the two sequences αk and βk (take for instance in R2 \ D2 respectively
α̃k(x) := α(x/|x|2) and β̃k(x) := βk(x/|x|

2). Introduce

ϕ̃k :=
1

2π
log |x| ∗

[

∂x1
α̃k ∂x2

β̃k − ∂x2
α̃k ∂x1

β̃k

]

. (III.8)

From Wente theorem (see [We] and the exposition in [He]) we know that both ϕk and ϕ̃k are uniformly
bounded in W 1,2 ∩ L∞ and we have in particular

‖ϕk‖L∞(R2) + ‖ϕ̃k‖L∞(R2) + ‖∇ϕk‖L2(R2) + ‖∇ϕ̃k‖L2(R2) ≤ C ‖∇αk‖L2(D2) ‖∇βk‖L2(D2) (III.9)

Hence the difference vk = ϕ̃k − ϕk, which is harmonic in D2, is strongly precompact in every Cl
loc(D

2)
for l ∈ N and since we don’t care about concentration of the measures at the boundary ∂D2, it suffices
to prove the results of the lemma (identities (III.3...III.6) for ϕ̃k in D2, this will imply the corresponding
identities for ϕk in D2

We present the proof of the lemma for the quantity ∂x1
ϕ̃k ∂x2

ϕ̃k (the proof for the other quantity
|∂x1

ϕ̃k|
2 − |∂x2

ϕ̃k|
2 being identical).

To shorten a bit the notation we write

ωk := ∂x1
α̃k ∂x2

β̃k − ∂x2
α̃k ∂x1

β̃k = ∆ϕ̃k .

Because of the uniform bounds given by (III.9) combined with the assumption (III.1), we can extract a
subsequence still denoted ϕ̃k such that

ϕ̃k ⇀ ϕ̃∞ weakly in W 1,2(R2)

and, due to the jacobian structure, we can pass to the limit in (III.8) :

ϕ̃∞ :=
1

2π
log |x| ∗

[

∂x1
α̃∞ ∂x2

β̃∞ − ∂x2
α̃∞ ∂x1

β̃∞

]
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where α̃∞ and β̃∞ are weak W 1,2-limits of respectively α̃k and β̃k. Moreover we can also ensure that

∂x1
ϕ̃k ∂x2

ϕ̃k ⇀ γ weakly in M(D2)

where M(D2) denotes the space of Radon measures. It remains now to identify the Radon measure γ.

Let ψ be an arbitrary function in C∞
0 (D2), denoting by ∆−1 the convolution with (2π)−1 log |x| we

have
∫

D2

ψ(x) ∂x1
ϕ̃k ∂x2

ϕ̃k dx =

∫

R2

ψ(x) ∂x1
∆−1ωk ∂x2

∆−1ωk dx

= −

∫

R2

∂x1
ψ(x) ϕ̃k ∂x2

ϕ̃k dx−

∫

R2

ψ(x) ∆−1ωk ∂
2
x1x2

∆−1ωk dx

= −

∫

R2

∂x1
ψ(x) ϕ̃k ∂x2

ϕ̃k dx+

∫

R2

[

∆−1(ψ ωk)− ψ(x) ∆−1ωk

]

∂2x1x2
ϕ̃k dx

+

∫

R2

ψ(x) ωk(x) ∂
2
x1x2

∆−2ωk(x) dx

(III.10)

We shall now pass to the limit in the three terms in the r.h.s. of (III.10).

The first term of the r.h.s. of (III.10). Since ϕ̃k ⇀ ϕ̃∞ weakly in W 1,2(D2), from Rellich
Kondrachoff theorem ϕ̃k converges strongly to ϕ̃∞ in L2(D2) therefore

lim
k→+∞

∫

R2

∂x1
ψ(x) ϕ̃k ∂x2

ϕ̃k dx =

∫

R2

∂x1
ψ(x) ϕ̃∞ ∂x2

ϕ̃∞ dx . (III.11)

The second term of the r.h.s. of (III.10). Observe first that

∆
[

∆−1(ψ ωk)− ψ(x) ∆−1ωk

]

= −∆ψ ϕ̃k − 2∇ψ∇ϕ̃k . (III.12)

Since ϕ̃k ⇀ ϕ̃∞ weakly in W 1,2(R2), we have that

∆
[

∆−1(ψ ωk)− ψ(x) ∆−1ωk

]

⇀ ∆
[

∆−1(ψ ω∞)− ψ(x) ∆−1ω∞

]

weakly in L2(R2) (III.13)

Hence, using again Rellich-Kondrachoff we deduce that

[

∆−1(ψ ωk)− ψ(x) ∆−1ωk

]

−→
[

∆−1(ψ ω∞)− ψ(x) ∆−1ω∞

]

strongly in W 1,2(R2) (III.14)

Since
∂2x1x2

ϕ̃k ⇀ ∂2x1x2
ϕ̃∞ weakly in H−1(R2) (III.15)

Combining (III.14) and (III.15) gives

lim
k→+∞

∫

R2

[

∆−1(ψ ωk)− ψ(x) ∆−1ωk

]

∂2x1x2
ϕ̃k dx =

∫

R2

[

∆−1(ψ ω∞)− ψ(x) ∆−1ω∞

]

∂2x1x2
ϕ̃∞ dx .

(III.16)

The third term of the r.h.s. of (III.10). This is of course the most delicate term in which the
specificity of the bilinearity ∂x1

ϕ̃k ∂x2
ϕ̃k we are considering plays a role.

From [Ste] we have that the Kernel associated to the operator ∂2x1x2
∆−2 is bounded in L∞. Indeed

one has that the Fourier multiplier associated to the operator ∂2x1x2
∆−2 is given by

̂∂2x1x2
∆−2 = −

ξ1 ξ2
|ξ|4

(III.17)
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which as to be understood either as in a singular integral sense or in distributional sense as being the
following tempered distribution in S ′(R2)

∀ φ(ξ) ∈ S(R2)

〈

pv

(

−
ξ1 ξ2
|ξ|4

)

;φ(ξ)

〉

= − lim
ε→0

∫

R2\Bε(0)

ξ1 ξ2
|ξ|4

φ(ξ) dξ

=

∫

R2

ξ1 ξ2
|ξ|4

(φ(0)− φ(ξ)) dξ

Since the homogeneous polynomial ξ1 ξ2 is harmonic we can apply theorem 5 in 3.3 of [Ste] and deduce
the existence of a universal constant c0 such that the inverse of the Fourier transform of ξ1 ξ2/|ξ|

4 is
given by

−
ξ̂1 ξ2
|ξ|4

−1

= c0
x1 x2
|x|2

.

Hence
∫

R2

ψ(x) ωk(x) ∂
2
x1x2

∆−2ωk(x) dx = c0

∫

R2

ψ(x) ωk(x) ωk(y)
(x1 − y1) (x2 − y2)

|x− y|2
dx dy (III.18)

If the kernel (x1 − y1) (x2 − y2)/|x− y|2 would have been continuous up to the diagonal x = y (or even
VMO on R4 ) we could have easily pass to the limit in this integral, since ωk(x) ωk(y) is uniformly bounded
in the local Hardy space H1

loc(R
4), it converges weakly in particular in Radon measure to ω∞(x) ω∞(y).

We shall however make use of the fact that (x1 − y1) (x2 − y2)/|x− y|2 is bounded in L∞ in order to
pass to the limit in (III.18) modulo possible concentration points.

Let χ be a cut-off function in C∞
0 (R+,R+) such that χ is equal to 1 on [0, 1] and equal to zero on

[2,+∞) and 0 ≤ χ ≤ 1. For ε > 0 we denote χε(t) := χ(t/ε).

We write
∫

R4

ψ(x) ωk(x) ωk(y)
(x1 − y1) (x2 − y2)

|x− y|2
dx dy

=

∫

R4

ψ(x) ωk(x) ωk(y) χε(|x − y|)
(x1 − y1) (x2 − y2)

|x− y|2
dx dy

+

∫

R4

ψ(x) ωk(x) ωk(y) [1− χε(|x− y|)]
(x1 − y1) (x2 − y2)

|x− y|2
dx dy .

(III.19)

Since [1− χε(|x− y|)] (x1 − y1)/(x2 − y2)/|x− y|2 is continuous on R4 we have

lim
k→+∞

∫

R4

ψ(x) ωk(x) ωk(y) [1− χε(|x − y|)]
(x1 − y1) (x2 − y2)

|x− y|2
dx dy

=

∫

R4

ψ(x) ω∞(x) ω∞(y) [1− χε(|x− y|)]
(x1 − y1) (x2 − y2)

|x− y|2
dx dy

(III.20)

And then

lim
ε→0

lim
k→+∞

∫

R4

ψ(x) ωk(x) ωk(y) [1− χε(|x− y|)]
(x1 − y1) (x2 − y2)

|x− y|2
dx dy

=

∫

R4

ψ(x) ω∞(x) ω∞(y)
(x1 − y1) (x2 − y2)

|x− y|2
dx dy

(III.21)
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Combining (III.11), (III.16) and (III.21) we obtain that

|〈γ − ∂x1
ϕ̃∞ ∂x2

ϕ̃∞ ; ψ〉| ≤ lim inf
ε→0

lim inf
k→+∞

∫

R4

|ψ(x)| |ωk(x)| |ωk(y)| χε(|x− y|) dx dy (III.22)

Modulo extraction of a subsequence we can assume that the sequence of measures |ωk(x)| dx converges
weakly to a non negative Radon measure ζ(x) and we have

|〈γ − ∂x1
ϕ̃∞ ∂x2

ϕ̃∞ ; ψ〉| ≤ lim inf
ε→0

< |ψ(x)| χε(|x − y|) ; ζ(x) ζ(y) > (III.23)

Denote by Aζ :=
∑

j∈N
ζj δqj the atomic part of ζ :

< ζ(y)−Aζ(y) ; χε(|x− y|) >→ 0 ζ a. e. x .

Thus

lim
ε→0

< |ψ(x)| χε(|x− y|) ; ζ(x) ζ(y) >= lim
ε→0

∑

j∈N

ζj < |ψ(x)| χε(|x− qj |) ; ζ(x) >=
∑

j∈N

ζ2j |ψ(qj)|

Hence (III.23) implies

|〈γ − ∂x1
ϕ̃∞ ∂x2

ϕ̃∞ ; ψ〉| ≤
∑

j∈N

ζ2j |ψ(qj)| (III.24)

which shows that γ − ∂x1
ϕ̃∞ ∂x2

ϕ̃∞ is atomic. This implies the lemma for the bilinearity ∂x1
ϕ∞ ∂x2

ϕ∞.
The same applies to the bilinearity |∂x1

ϕ∞|2 − |∂x2
ϕ∞|2 since in the estimation of the third term in

the r.h.s of the identity corresponding to (III.10) one uses that ξ21 − ξ22 is harmonic and thus the kernel
associated to (∂2

x2

1

− ∂2
x2

2

)∆−2 is also bounded in L∞ due to theorem 5 in section 3.3 of [Ste]. �

IV Proof of the main theorem I.3.

Let ~Φk be a sequence of global weak isothermic immersions of an abstract closed surface Σ into Rm such
that the conformal class to which the induced metric gk := ~Φ∗

kgRm does not degenerate. This means that
there exists a sequence of constant scalar curvature metric hk of volume 1, precompact for any Cl norm
of Σ (equipped with some fixed arbitrary reference metric g0) and a diffeomorphism fk of Σ such that

~Φk ◦ fk : (Σ, hk) −→ R
m is conformal . (IV.1)

Modulo extraction of a subsequence we can assume that

hk → h∞ in Cl(Σ) ∀l ∈ N , (IV.2)

where h∞ is a constant scalar curvature of volume 1 on Σ.
We assume moreover that

lim sup
k→+∞

W (~Φk) = lim sup
k→+∞

∫

Σ

| ~H~Φk
|2 dvolgk < +∞

Following the normalization lemma A.4 and lemma III.1 of [Ri3], we deduce the existence of a sequence
of Möbius transformation Ξk of Rm ∪ {∞} (i.e. Ξk are conformal diffeomorphism of Rm ∪ {∞}) such

that ~ξk := Ξk ◦ ~Φk ◦ fk satisfies the following conditions (up to subsequence)

i)

∃R > 0 , ∀ k ~ξk(Σ) ⊂ BR(0) .
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ii)

∃ a1 · · ·aN s.t. ~ξk ⇀ ~ξ∞ in W 2,2
loc (Σ \ {a1 · · ·aN})

iii)

∀K compact of Σ \ {a1 · · · aN} lim sup
k→+∞

‖ log |d~ξk|hk
‖L∞(K) < +∞

These 3 conditions ensure that the weak limiting map ~ξ∞ is a weak possibly branched conformal
immersion in the space FΣ.

Assuming now that ~Φk are weak global isothermic immersions in EΣ then, due to the conformal
invariance proved in proposition I.3, ~ξk are also weak global isothermic immersions. Thus there exists a
sequence of non zero holomorphic quadratic differentials qk for the sequence of riemann surfaces (Σ, hk)
satisfying

ℑ(qk,~h0,k)WP = 0 (IV.3)

where the Weil-Peterson norm is taken with respect to hk. Because of the linearity of equation (IV.3)
with respect to qk we can normalize qk in such a way that

∀k ∈ N

∫

Σ

(qk, qk)WP dvolhk
= 1 (IV.4)

The space Pk of holomorphic quadratic forms of (Σ, hk) is a finite dimensional space of fixed dimension
(depending on Σ only) of the space Γ(T ∗Σ⊗ T ∗Σ) of smooth sections of T ∗Σ⊗T ∗Σ. Since hk converges
to h∞ we can extract a subsequence such that Pk converges to P∞ and we can extract a subsequence
such that qk converges in any Cl norm towards q∞ for any l ∈ N.

The holomorphic quadratic form q∞ satisfy also (IV.4), moreover, due to the weak convergence of
~h0,k towards ~h0,∞ in L2

loc(Σ \ {a1 · · · aN}),

ℑ(q∞,~h0,∞)WP = 0 in Σ \ {a1 · · · aN} . (IV.5)

This implies that ~ξ∞ is a weak, possibly branched, conformal isothermic immersion of (Σ, h∞) into Rm.

In an arbitrary strongly converging conformal chart φk : D2 \ (Σ, hk) the equation satisfied by ~ξk ◦φk
reads (omitting to write explicitly the composition with φk)

ℑ(fk(z) ~H0,k) = 2ℑ
(

fk(z) ∂z

[

e−2λk ∂z~ξk

])

where fk is the expression of qk in this chart fk(z) dz ⊗ dz = qk.

Denote by b1 · · · bQ the isolated zeros of q∞ in Σ. Let U be a disc included in Σ\ {a1 · · ·aN , b1 · · · bQ}.
Considering a converging sequence of conformal charts φk realizing a diffeomorphism from D2 into U ,
since f∞ the expression of ~h0,∞ in this chart does not vanish on D2 and since fk converge strongly on

D2 towards f∞, we can introduce the new converging chart w :=
√

fk ◦ φ
−1
k . In this new chart the

isothermic equation reads

ℑ( ~H0,k) =
∂

∂x1

[

e−2λk
∂~ξk
∂x2

]

+
∂

∂x2

[

e−2λk
∂~ξk
∂x1

]

= 0 . (IV.6)
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where w = x1 + ix2 and eλk = |∂x1

~ξk| = |∂x2

~ξk|. since the chart is strongly converging the expression of
~ξk in this chart satisfy

~ξk(w)⇀ ~ξ∞(w) in W 2,2(D2) and lim sup
k→+∞

‖λk(w)‖L∞(D2) < +∞ . (IV.7)

We also choose U small enough and the subsequence in such a way that

∀ k ∈ N

∫

D2

|∇~n~ξk
|2 dx1 dx2 <

8π

3
. (IV.8)

We can then use a result by F. Hélein (see [He] chapter 5) that gives the existence of (~e1,k, ~e2,k) ∈
(W 1,2(D2, Sm−1))2 such that

~e1,k ∧ ~e2,k = ⋆ ~n~ξk

∫

D2

2
∑

i=1

|∇~ei,k|
2 < C

∫

D2

|∇~n~ξk
|2 (IV.9)

where C is independent of k. We can use this moving frame to express the laplacian of λk (see [Ri1]) and
we have precisely

−∆λk = ∂x1
~e1,k · ∂x2

~e2,k − ∂x2
~e1,k · ∂x1

~e2,k in D2 . (IV.10)

Let sk be the solution of






−∆sk = ∂x1
~e1,k · ∂x2

~e2,k − ∂x2
~e1,k · ∂x1

~e2,k in D2

sk = 0 on ∂D2

(IV.11)

From Wente theorem (see [We] and [He]) we have

‖sk‖L∞(D2) ≤ C ‖∇~e1,k‖L2(D2) ‖∇~e2,k‖L2(D2) ≤ C

∫

D2

|∇~n~ξk
|2 . (IV.12)

Using (IV.8) we deduce that sk is uniformly bounded in L∞(D2). Combining this fact with (IV.7) we
obtain that the harmonic function vk := λk − sk is uniformly bounded in L∞(D2). Thus we have that

vk → v∞ in Cl
loc(D

2) ∀l ∈ N . (IV.13)

Lemma III.1 implies that there exists a subsequence and two atomic measures µ and ν such that there
exists pi ∈ D2 for i ∈ N, and qj ∈ D2 for j ∈ N satisfying

µ =
∑

i∈N

ci δpi
and ν =

∑

j∈N

dj δqj in D′(D2) , (IV.14)

where
∑

i∈N

|ci| = |µ|(D2) < +∞ and
∑

j∈N

|dj | = |ν|(D2) < +∞ . (IV.15)

and






|∂x1
sk′ |2 − |∂x2

sk′ |2 ⇀ |∂x1
s∞|2 − |∂x2

s∞|2 + µ in D′(D2)

∂x1
sk′ ∂x2

sk′ ⇀ ∂x1
s∞ ∂x2

s∞ + ν in D′(D2) .

(IV.16)

Using (IV.13) we deduce






|∂x1
λk′ |2 − |∂x2

λk′ |2 ⇀ |∂x1
λ∞|2 − |∂x2

λ∞|2 + µ in D′(D2)

∂x1
λk′ ∂x2

λk′ ⇀ ∂x1
λ∞ ∂x2

λ∞ + ν in D′(D2) .

(IV.17)
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Assuming the ~ξk′ and ~ξ∞ are smooth, since these immersions are smooth, we can apply proposition II.1
and deduce that in one hand































∂

∂x1





(

∂~n~ξk′

∂x2
~e2,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2


+
∂

∂x2

[

2
∂λk′

∂x1

∂λk′

∂x2

]

= 0

∂

∂x2





(

∂~n~ξk′

∂x1
~e1,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2


+
∂

∂x1

[

2
∂λk′

∂x1

∂λk′

∂x2

]

= 0

(IV.18)

and in the other hand






























∂

∂x1





(

∂~n~ξ∞

∂x2
~e2,∞

)2

+

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2


+
∂

∂x2

[

2
∂λ∞
∂x1

∂λ∞
∂x2

]

= 0

∂

∂x2





(

∂~n~ξ∞

∂x1
~e1,∞

)2

+

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2


+
∂

∂x1

[

2
∂λ∞
∂x1

∂λ∞
∂x2

]

= 0

(IV.19)

Applying Poincaré Lemma, we deduce the existence of Ak′ and Bk′ in W 1,1 such that























∂x2
Ak′ =

(

∂~n~ξk′

∂x2
~e2,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

∂x1
Ak′ = −2

∂λk′

∂x1

∂λk′

∂x2

such that






















∂x1
Bk′ =

(

∂~n~ξk′

∂x1
~e1,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

∂x2
Bk′ = −2

∂λk′

∂x1

∂λk′

∂x2

Moreover for the same reason there exist A∞ and B∞ in W 1,1 such that






















∂x2
A∞ =

(

∂~n~ξ∞

∂x2
~e2,∞

)2

+

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

∂x1
A∞ = −2

∂λ∞
∂x1

∂λ∞
∂x2

such that






















∂x1
B∞ =

(

∂~n~ξ∞

∂x1
~e1,∞

)2

+

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

∂x2
B∞ = −2

∂λ∞
∂x1

∂λ∞
∂x2

We observe that we have

∂x1
Ak′ = ∂x2

Bk′ and ∂x1
A∞ = ∂x2

B∞
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Applying again Poincaré Lemma, we have the existence of αk′ and α∞ in W 2,1 such that

∇αk′ = (Bk′ , Ak′ ) and ∇α∞ = (B∞, A∞)

Thus we have














































∂2αk′

∂x2∂x2
=

(

∂~n~ξk′

∂x2
~e2,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

∂2αk′

∂x1∂x1
=

(

∂~n~ξk′

∂x1
~e1,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

∂2αk′

∂x1∂x2
= −2

∂λk′

∂x1

∂λk′

∂x2

(IV.20)

and














































∂2α∞

∂x2∂x2
=

(

∂~n~ξ∞

∂x2
~e2,∞

)2

+

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

∂2α∞

∂x1∂x1
=

(

∂~n~ξ∞

∂x1
~e1,∞

)2

+

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

∂2α∞

∂x1∂x2
= −2

∂λ∞
∂x1

∂λ∞
∂x2

(IV.21)

Since ∇Ak′ and ∇Bk′ are uniformly bounded in L1 we can normalize Ak′ and Bk′ in such a way that
Ak′ and Bk′ are uniformly bounded in L2(D2). In a similar way, since now ∇αk′ is uniformly bounded
in L2(D2) we can normalize αk′ in such a way that αk′ is uniformly bounded in W 1,2(D2). Thus

lim sup
k′→+∞

∥

∥

∥

∥

∥

∥

(

∂~n~ξk′

∂x2
~e2,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∥

H−1(D2)

< +∞ , (IV.22)

moreover

lim sup
k′→+∞

∥

∥

∥

∥

∥

∥

(

∂~n~ξk′

∂x1
~e1,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

∥

H−1(D2)

< +∞ , (IV.23)

and finally

lim sup
k′→+∞

∥

∥

∥

∥

∂λk′

∂x1

∂λk′

∂x2

∥

∥

∥

∥

H−1(D2)

< +∞ . (IV.24)

Taking this last quantity, we can always extract a subsequence, that we will still denote k′, such that

∂λk′

∂x1

∂λk′

∂x2
⇀ f weakly in H−1(D2) (IV.25)

Comparing this convergence with the second line of (III.9) gives

f = ∂x1
λ∞ ∂x2

λ∞ +
∑

j∈N

dj δqj ∈ H−1(D2) . (IV.26)

But, argueing as for αk′ , we have that α∞ ∈W 1,1(D2) and hence, using the last line of (IV.21), we have
that

ν =
∑

j∈N

dj δqj ∈ H−1(D2)
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This implies that this atomic measure is zero,

ν ≡ 0 (IV.27)

which is the unique atomic measure included in H−1.

Similarly, from (IV.22) we can extract a subsequence, still denoted k′, such that

(

∂~n~ξk′

∂x2
~e2,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

⇀ g1 weakly in H−1(D2) (IV.28)

and
(

∂~n~ξk′

∂x1
~e1,k′

)2

+

∣

∣

∣

∣

∂λk′

∂x2

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λk′

∂x1

∣

∣

∣

∣

2

⇀ g1 weakly in H−1(D2) (IV.29)

Comparing these convergences with the first line of (IV.17) gives in one hand

h− :=

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

+
∑

i∈N

ci δpi
− g1 ≤ 0 (IV.30)

and in the other hand

h+ :=

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

+
∑

i∈N

ci δpi
+ g2 ≥ 0 (IV.31)

Using the two first lines of (IV.21), we have that

[

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

− g1

]

∈ H−1(D2) and

[

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

+ g2

]

∈ H−1(D2)

Let χ be a cut off function in C∞(R+,R+) identically equal to 1 on [0, 1], equal to 0 on (2,+∞) and
0 ≤ χ ≤ 1 on R+. For any ε > 0 we denote χε(t) := χ(t/ε). For any i0 ∈ N, the map χε(|x− pi0 |) weakly
converge to zero in W 1,2

0 (D2) thus

0 ≥ lim
ε→0

〈h−, χε(|x− pi0 |)〉 = lim
ε→0

〈

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

+
∑

i∈N

ci δpi
− g1, χε(|x− pi0 |)

〉

= ci0 (IV.32)

In a similar way we have

0 ≤ lim
ε→0

< h+, χε(|x− pi0 |) >= lim
ε→0

〈

∣

∣

∣

∣

∂λ∞
∂x1

∣

∣

∣

∣

2

−

∣

∣

∣

∣

∂λ∞
∂x2

∣

∣

∣

∣

2

+
∑

i∈N

ci δpi
+ g2, χε(|x− pi0 |)

〉

= ci0 (IV.33)

Comparing (IV.32) and (IV.33) gives for any i0 ci0 = 0 and then we have proved that

µ ≡ 0 (IV.34)

Combining (IV.17), (IV.27) and (IV.33) implies then







|∂x1
λk′ |2 − |∂x2

λk′ |2 ⇀ |∂x1
λ∞|2 − |∂x2

λ∞|2 in D′(D2)

∂x1
λk′ ∂x2

λk′ ⇀ ∂x1
λ∞ ∂x2

λ∞ in D′(D2) .

(IV.35)
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Translating this information in terms of αk′ and α∞ gives















































−
∂2αk′

∂x2∂x2
+

(

∂~n~ξk′

∂x2
~e2,k′

)2

⇀ −
∂2α∞

∂x2∂x2
+

(

∂~n~ξ∞

∂x2
~e2,∞

)2

weakly in H−1(D2)

−
∂2αk′

∂x1∂x1
+

(

∂~n~ξk′

∂x1
~e1,k′

)2

⇀ −
∂2α∞

∂x1∂x1
+

(

∂~n~ξ∞

∂x1
~e1,∞

)2

weakly in H−1(D2)

∂2αk′

∂x1∂x2
⇀

∂2α∞

∂x1∂x2
weakly in H−1(D2)

(IV.36)

Denote by α̂∞ the weak limit (modulo extraction of a subsequence) of αk′ inW 1,2 and let β∞ := α̂∞−α∞.
We have






















(

∂~n~ξk′

∂x1
~e1,k′

)2

+

(

∂~n~ξk′

∂x2
~e2,k′

)2

⇀ ∆β∞ +

(

∂~n~ξ∞

∂x1
~e1,∞

)2

+

(

∂~n~ξ∞

∂x2
~e2,∞

)2

∂2β∞
∂x1∂x2

= 0 in D′(D2).

(IV.37)

Or in other words, since (II.8) holds,















|∇~n~ξk′

|2 dx1 dx2 ⇀ |∇~n~ξ∞
|2 dx1 dx2 +∆β∞ dx1 dx2

∂2β∞
∂x1∂x2

= 0 in D′(D2).

(IV.38)

The defect measure is then given by the laplacian of an W 1,2(D2) function β∞ whose distributional cross
derivative ∂2β∞/∂x1∂x2 is zero. This implies (I.39) and theorem I.3 is proved. �
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