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Tristan Riviere*

Abstract : In the present work we study the behavior of sequences of smooth global isothermic
immersions of a given closed surface and having a uniformly bounded total curvature. We prove that, if
the conformal class of this sequence is bounded in the Moduli space of the surface, it weakly converges in
W22 qway from finitely many points, modulo extraction of a subsequence, to a possibly branched weak
isothermic immersion of this surface. Moreover, if this limit happens to be smooth away from the branched
points, we give an optimal description of the possible loss of strong compactness of such a subsequence
by proving that, beside possibly finitely many atomic concentrations, the defect measure associated to the
L? norm of the second fundamental form is “transported” along exceptional directions given by some
holomorphic quadratic forms associated the limiting surface. We give examples where such a loss of
compactness, invariant along such exceptional directions, eventually happen.

Math. Class. 35L51, 35165, 35R01, 30C70, 53A30, 58E30, 49Q10, 35J35, 35J48, 35J50.

I Introduction to Global Isothermic Immersions.

I.1 The origin of isothermic in the XIXth century’s surface geometry in R3
and its generalization to arbitrary codimensions.

The notion of isothermic surfaces has been introduced in the second half of the XIX century and was in
particular studied by E. Bour, E.B. Christoffel and G. Darboux in the context of conjugated famillies of
surfaces. The issue was to find pairs of distinct, non homothetic, immersions into R?, ® and L of the 2
dimensional disc D? ”dual” to each other in the following sense’ :

9y, ® s parallel to  9,,L fori=1,2 (L.1)
and the two induced metric on D? are conformal to each other :
L*grs = €2 ®* gga (I.2)

where ggs is the standard metric on R? and u is an arbitrary function on D?.

E. Bour and E.B. Christoffel proved respectively in [Bou] and [Chr] that the non trivial solutions to
this question are immersions which posses around every point conformal (or isothermic) coordinates such
that the coordinate directions are principal (or curvature lines). In other words if 77z denotes the Gauss
Map of such an immersion
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IDarboux formulated the problem this way (see [Da2]) : Proposons nous de rechercher tous les cas dans lesquels la
correspondance par plan tangents paralléles établie entre deux surfaces peut donner une représentation conforme ou un
tracé géographique de l'une des surfaces sur l’autre.



around each point there exists (z1,z2) coordinates such that the induced metric is conformal

-

P* grs = e [dw% + dmﬂ (L.3)

and . .
< Oy Mg, 00, ® >=< Op,Tig, 0, P >=0 (L.4)

where < -,- > denotes the scalar product in R, which also means that the second fundamental form is
diagonal in these conformal coordinates :

T=—e2A [< Oy, 0y ® > dadt < Oy, 00y ® > dal| g

where e* = |9,,®| = |0,,®P|. If (1.3) and (1.4) hold one says that the curvature lines are isothermic and,
following Darboux, such a surface is called isothermic surface. Since that time example of isothermic
surfaces were known such as azially symmetric surfaces or constant mean curvature surfaces including of
course minimal surfaces.

In order to extend the notion of isothermic surfaces to immersions into R™ for an arbitrary n > 2 we
need to reformulate the pair of constraints (I.1) and (1.2) or equivalently the pair of constraints (1.3) and
(I.4) but also to relax slightly this assumption.

We recall the definition of the Weingarten form i_io of an immersion ® into R3, in an arbitrary choice
of complex coordinates,

—

ho = —e 2 < 82775@,@(1; > dz®dz

6—2A

4

[< Ol 00, B > — < Dpyiig, 0ny® > —2i < Oy, ilg, 00,8 >| fig dz @ dz

where z = x1 +ixy and 0, 1= 271 [0, — i0,,].
As observed in [Ri3] we have the following result.
Proposition 1.1 A conformal immersion 3 of the disc D? into R? satisfies, around each point, except

possibly a discrete subset of D%, (I.4) in some other local conformal chart (y1,y2) if and only if there
exists a non zero holomorphic function f(z) on D? such that

3 (7G) Ho) =0 (L5)
where Hy := —4~1e 2 | < 81171’(1;,8961(5 > - < 8127?5,8125 >—2i < (911775,({%25 >| 7ig is the expres-
sion of ﬁo in the given conformal parametrization ® on the disc D?. O

Indeed, while changing conformal coordinates and taking w(z) := y1(z) + iy2(z) the expression of hg in
these new coordinates becomes

Hjow = |0,w|? (0,w)~2 Hy . (1.6)
Away from the zeros of f, taking w(z) := /f(2), (I.5) becomes
S(Hg) =0,

which is exactly (I.4).



We introduce on the space A'79D? @ A'170D2 of 1 — 0® 1 — 0 form on D? the following hermitian
product? depending on the conformal immersion ®

(V1 dz @ dz, 9 dz @ dz)wp = e 4 1(2) Pa(2)

where e* := |0,,®| = |0,,8|. We observe that for a conformal change of coordinate w(z) (i.e. w is
holomorphic in z) and for ¢} satisfying

Piow dw @ dw = 1); dz ® dz
one has, using the conformal immersion ® o w in the Lh.s.
(¥} dw @ dw, vy dw @ dw)wp = (Y1 dz @ dz, vy dz ® dz)wp

Using this change of coordinate rule, (1.5) is equivalent to the following intrinsic characterization : there
exists an holomorphic section® ¢ of the bundle A'=°D? ® A'=9D? such that

S(q, ho)wp =0 . (1.7)

In codimension larger than 1 principal directions are not defined anymore and the XIXth century
definition of isothermic immersions into R? cannot be extended in a straightforward way for immersions
into R™ (m > 3). However, considering a smooth immersions & of an arbitrary 2-dimensional manifold
3 into R™ one can still produce the global Weingarten form using local conformal charts as being the
following global section of R™ @ A1 708 @ A0 .

—

ho :=2e" A (0% ®) dz ® dz

s (18)

2

¢ (agfé’faigé!m aglz;f)) dz ® dz
where 7y is the orthogonal projection onto the plane orthogonal to $,T%. We can now introduce the

natural generalization of global smooth isothermic surfaces into arbitrary euclidian space R™.

Definition I.1 Let & be a smooth immersion of a two dimensional manifold ¥? into R™. One says that
® is global isothermic if there exists an holomorphic quadratic form q of the riemann surface issued
from X2 equipped with the pull back metric g := ®*grm of the standard metric grm of R™ such that

S(q. ho)wp =0 . (1.9)

where HO is the Weingarten form of the immersion 3 given by (1.8). O

1.2 The role of Isothermic surfaces in the calculs of variations of the Willmore
Lagrangian.

In this work we are interested with analysis properties of Smooth global isothermic immersions. One of
the main reasons why looking at the analysis of global isothemic immersions comes from the fact that
they may arise as degenerate critical point to the conformal constrained Willmore problem, as it has
been shown in [Ri3]. In his 3 volumes book on differential geometry published by Springer around 1929
Wilhelm Blaschke, (see in particular the third volume [Bla]) proposed a theory merging minimal surface
theory and conformal invariance. This theory consists in studying the variations of the now so called

2This hermitian product integrated on D? is the Weil Peterson product.
3In complex coordinates ¢ = f(z) dz ® dz where f is holomorphic and g is called an holomorphic quadratic form.



Willmore Lagrangian for surfaces. This lagrangian, W, is given by the L? norm of the mean curvature
vector H of an arbitrary immersion & into the euclidian space R™ (m > 3) of a given 2-dimensional
abstract manifold ¥ and integrated with respect to the induced metric* g

W (®) ;:/E|H|2 dvoly . (1.10)

Immersions satisfying W(ff) < +o00 are called immersions of finite total curvature.

Minimal immersions, satisfying H= 0, are clearly critical points to W. Blaschke observed® moreover
the following conformal invariance of the lagrangian W : for any conformal diifeomorphism ¥ of R™U{oco}
into itself which does not send any point of ®(X) to infinity one has

W(Uod)=W(@d) . (1.11)

Hence, as a consequence, any composition of a minimal surface with a conformal diffeomorphism is still
a critical point of W without being necessarily minimal anymore. Though the space of critical points
of W happens to be much broader than such compositions, Blaschke decided nevertheless to call such
an immersion a conformal minimal immersionS. Conformal minimal immersions are nowadays known
under the denomination Willmore surfaces. Example of such surfaces are given for instance by minimal
surfaces in R™ or stereographic projections into R™ of minimal surfaces in S™, constant mean curvature
surfaces in R® and the compositions of all these surfaces with conformal transformations . It has been

proven in [Ri2] that an immersion ® is a critical point to W if and only if it satisfies
ds [dﬁ — 3DH + *(xydiig A H)| =0 (1.12)

where *, is the Hodge operator on ¥ associated to the induced metric g := o grm, DH is the covariant
differentiation of the section H of the normal bundle (®,7%)4), it is also given by

Dﬁ = Wﬁ(dﬁ)

where 77 denotes the orthogonal projection onto the fibers of (é*TE)L. Finally x denotes the Hodge
operator from APR™ into A"*"PR™ for the canonical metric of R™ satisfying

Ya g e APR™ aA*f=(a,B)er AN Nem

where ¢; is the canonical basis of R™ and (-, -) denotes the canonical scalar product on APR™. In conformal
coordinates for the induced metric g equation (I.12) becomes.

div (vﬁ — 37a(VH) ++(VEiig A ﬁ)) -0 . (1.13)

While exploring the existence and properties of critical points to the Willmore energy (I.11) , or in
other words while proceeding to the calculus of variation of the Lagrangian W, it is natural to raise the
question of the conformal class such an immersion defines on the abstract 2-manifold . As a channel of
consequences it is then natural to explore minimizers or critical points to W when the conformal class
induced by P~ grm is fixed. Assuming such a critical point is a non degenerate point for the conformal
class constraint, it has been proved in [Ri3] that d satisfies this time

d*s |dH — 3 DH + *(x,diig A H)| = (g, ho)wr (1.14)

1g.= 5*ng where ggm is the canonical flat metric of R".

5This invariance was proved by Wilhelm Blaschke for m = 3 and later on generalized by Bang-Yen Chen to arbitrary m

SProbably in order to insist on the merging of the two requirements for this theory to include minimal surfaces and
conformal invariance



for some holomorphic quadratic differential ¢ associated to the fixed conformal class. ¢ plays here the
role of a Lagrange multiplyer. Equation (I.14) has been called Constrained Willmore equation (see [BPP]
for instance) but in order to avoid any ambiguity with the other constrained problems for the Willmore
lagarngian (such as the Isoperimetric ratio for instance - see [Sy]) we prefer to call equation (I.14) the
Constrained-conformal Willmore equation.

Examples of solutions to (I.14), which are not necessarily solutions” to (I.12) are given for instance by
parallel mean curvature surfaces : surfaces that generalize to arbitrary codimensions the constant
mean curvature equation and that are characterized by the following condition

DH =nz(dH)=0 . (1.15)
Indeed, the Codazzi-Mainardi identity for a general conformal immersion & of the disc D? reads (see
[Ril])
e, (e” Hy - ﬁ) =H-0,H+Hy-0:H | (1.16)
where z = x1 + iz and 9, := 271(0,, — i0,,). Since we are assuming (I.15) we have then
f(z)=e* Hy-H is holomorphic. (L.17)
In [Ril] it is proven that, for a general conformal immersion ® of the disc D? , one has
div (vﬁ — 3w (VH) + #(VEig A ﬁ)) -8R (az [wﬁ(azﬁ) v [y e*”agq*)}) (L.18)
Assuming (I.15), (I.18) becomes

div (vﬁ — 3ma(VH) + %(VEiig A ﬁ)) -8R ( £(2) 0= [e—” aquD . (1.19)

For a general conformal immersion ® of the disc D? | one has (see [Ril])

Hy=20. [e—” an?} . (1.20)
Hence (I1.19) becomes
div (vﬁ — 3ma(VH) +(VEitg A ﬁ)) -3 (4¢ £(2) HTO) , (1.21)

which is exactly the constrained-conformal Willmore equation (I.14) written in complex coordinates.
If instead the critical point is a degenerate point of the conformal constraint, it is proved in [Ri3] that
there exists a non trivial holomorphic quadratic differential ¢ such that

S(q, ho)wp =0 (1.22)

in other words, d is isothermic. .
We have proven in [Ri3] (see propositions 1.2 and 1.3) that, if ® is isothermic , away from the zeros of
g, there exists locally complex coordinates z = x1 + iz in which the condition (I.7) reads

0 [ o8], 0 [ no8]_
pr le 8362] + D73 le Py =0 . (I.23)

7Surfaces of non-zero constant mean curvature in R3 which are Willmore have to be umbilic and then coincide with a
plane or a round sphere.



where e* = |0,, ®| = |0,, 9| is the conformal factor.
Making a similar choice of conformal coordinates for the induced metric g equation (1.14) becomes.

) : (1.24)

where® Q := |glwp € RT (The WP -norm is taken with respect to the constant scalar curvature metric
of volume 1 on X).

The Isothermic equation (I1.23) is an hyperbolic equation whereas the Constrained-conformal
Willmore equation (1.24) is an elliptic one. One passes from (I1.24) to (I.23) in particular when the
norm of the Lagrange-multiplier goes to infinity @Q = =2 — +oco. Precisely in [Ri3] section IV we have
proven the following result

div (VH —3mz(VH) +*(Vlﬁq~> A H)) =Q ((’%1 le—”\g_m

0 [0
(9:62 (9:61

Theorem 1.1 [Ri3] Let &y be a sequence of conformal immersion from D? into R™ satisfying asymp-
totically the constrained-conformal equation :
) (1.25)

8—502 81'1

= - - ) od
div (VHk — 375, (VHy) +%(V*ilg, A Hk)) - Qu <a—x1 [e—”ka—xj

0 le—”\k &

—0 strongly in (W2 Whee)*
for some sequence Qi € RT. Assume
||)\kHLoc(D2) + ||Vﬁ&$kHL2(D2) < C<+4+oco . (126)

If
limsup Qf < 400

k——+oo
then, modulo extraction of a subsequence, <I_5k converges weakly® in Wi)f to a C™ constrained conformal
immersion (i.e. satisfying (I.24) for some Q € RT ).
Alternatively, if instead,

lim sup Qr = 400

k—-+oo
there exists a subsequence of o converging weakly in VVlQOC2 to a conformal lipschitz Wﬁof isothermic
immersion (i.e. satisfying (1.23)) O

In this sense the isothermic surface equation should be seen as an hyperbolic degeneracy of the
constrained conformal equation which represents some viscous approximation of the first one.

Remark 1.1 An interesting issue is to understand if the solution to (I1.23) that are obtained as weak limits
of the viscous approzimation (1.24) enjoy some additional regularity properties which are not shared with
the arbitrary W22 conformal solutions to (1.23) . U

8By dilating these conformal coordinates one can always make Q = 1 in (1.24) - except when ¢ = 0 of course - but
we prefer to normalize the conformal coordinates for them not to degenerate as the Weil-Petersson norm of the Lagrange
multiplier |g|yw p would go either to 0 or +oo

9in this case the weak W?OCQ convergence should even be strong.



1.3 Weak Global Isothermic Immersions.

The previous result, theorem 1.1, shows the importance of enlarging the class of smooth global isothermic
immersions to a wider class of weak global isothermic immersions. For analysis reasons it is also needed
to enlarge the class of C'! immersions while studying critical points to the Willmore functional (1.10). In
[Ri3] the author introduced the framework of weak immersion with finite total curvature (or simply weak
Immersions).

Let go be a reference smooth metric on ¥. One defines the Sobolev spaces W*P (3, R™) of measurable
maps from ¥ into R™ in the following way

k
WhP (s, R™) = {f meas. ¥ — R™ s.t. Z/ IV fIP dvolg, < +oo}
1=0 7>

Since ¥ is assumed to be compact it is not difficult to see that this space is independent of the choice we
have made of gg.

First we need to have a weak first fundamental form that is we need §*ng to define an L metric
with a bounded inverse. The last requirement is satisfied if we assume that ® is in Whee(3) and if Ao
has maximal rank 2 at every point with some uniform quantitative control of "how far” d® is from being
degenerate : there exists ¢y > 0 s.t.

d® A dD|, > co>0 . (1.27)

where d® A d® is a 2-form on ¥ taking values into 2-vectors from R™ and given in local coordinates by
20,® A 8y<f) dx A dy. The condition (I.1) is again independent of the choice of the metric go . For a
Lipschitz immersion satisfying (I.1) we can define the Gauss map as being the following measurable map
in L>°(%) taking values in the Grassmanian of oriented m — 2-planes in R™.

0,® N 8,P

— 5 222 -
|0, P A 0, P|

nq;.

We then introduce the space Ex of weak immersions of 3 with total finite curvature as being the following
space :
O c Who(Z,R™)  s.t. @ satisfies (1.27) for some cg
Es =
and / |dii|? dvoly < 400
b

Where ¢ := o grm is the pull back by & of the flat canonical metric grm of R™ and dvoly is the volume
form associated to g.

The analysis of & shows that for completeness purposes (see [Ri3]) one has to relax the fact that @
is globally an immersion by requiring only that ® is an immersion away from finitely many points. We
then define the space of branched weak immersions with finite total curvature in the following way

P c Wl’OO(E,Rm) s.t. Jap---ay € X s.t.

Fy = V K compact in £\ {a1 -an} @ satisfies (1.27) on K for some co(K) > 0

and / |dﬁ|§ dvoly < 400
)



It is proved in [Ri3] (see also [Ril]) that any weak immersion ® in Es defines a smooth conformal
structure on ¥ : more precisely, following Toro, Miiller-Sverak, Hélein’s works on immersions with finite
total curvature one proves (see [Ril]) that for any & € & and for any p € 3 there exists a neighborhood
U containing p and a bilipshitz homeomorphism ¥ from D? into U such that ® o U satisfies the weak
conformal condition

Op (BoW)-9,,(PoW)=0  a. e inD?

|02, (B 0 W)| = |8, (P o W) a. e. in D?

moreover ® o ¥ is W22 on D?. Hence ¥ is equipped with a system of charts such that the transition
functions satisfy the Cauchy-Riemann conditions almost everywhere and thus are holomorphic. This
defines the conformal structure induced by &. The same can be done for any element of Fy using also
Huber theorem about the conformal structure of a metric of finite total curvature on a closed surface
minus finitely many points.

We can now give the definition of a weak global isothermic immersion as the natural extension of
definition I.1.

Definition 1.2 Let X2 be a closed two dimensional manifold. One says that a weak immersion $ in Es
(resp. a weak branched immersion in Fyx,) is weakly global isothermic if there exists an holomorphic

quadratic form q of the riemann surface issued from 22 equipped with the conformal structure defined by
P such that .
%(q, ho)Wp =0 . (128)

where HO is the Weingarten form of the immersion 3 given by (1.8). O

Remark 1.2 Observe that for any ® in &, the Weingarten 1 —0® 1 — 0 form ho is a well defined L?
section of ALY @ ANLOY and therefore the function (g, ho)wp is a well efined L? function on % for
any holomorphic quadratic form q.

The following characterization of weak global isothermic immersion has been given in [Ri3] (proposition
1.3).

Proposition 1.2 A weak immersion d is global isothermic if and only if around every point there exists
a L? R™ valued map L such that the following two conditions are satisfied

d® - dL :=[04,® - Oy, L — 85, ® - O, L] dwy A day =0
(1.29)
d® N dL = [0y, B A Oyy L — 00y ® A 9y, L] dy A dg =0

L is called a Darboux transform of 3. O

An elementary observation shows that property (1.29) is invariant under the action of transformations
that preserves angles infinitesimally in R™. From this observation we deduce the following fundamental

property.

Proposition 1.3 Let ® be a weak isothermic immersion of Es, (resp. weak branched isothermic immer-
sion of Fx). Let E be a conformal transformation of R™ U {oo}. Then Z o ® is still a weak isothermic
immersion of Es. (resp. weak branched isothermic immersion of Fx,). O

In [BR] the following proposition is proved



Proposition 1.4 A weak immersion P € & is constrained-conformal Willmore if and only if, around
every point, there exists an L? R™-valued map L such that the following two conditions are satisfied

-

dd - dL :=[0,,D - 0,

-

L—0y,® 0y, L] doy Adzy =0

2

(1.30)
d® N dL = [0y, B A Oy, L — 00y ® A 0y, L] dy Adag =2 (—1)™ d(x(ALH)) ALdD |

where L is the standard contraction operator between a p—wvectors and a q—vectors (p > q) given by

Vae APR™ | VbeAR™, VY&e APTIR™ <dLbé>=<abA

oL

>

and

d(x(ALH)) ALd® := [0, (x(FL H)) L0y, ® — 8y, (x(AL H)) L 8,, D] dy A dao
O

In [Ri2] it is proven that weak immersion ® € & which are constrained-conformal Willmore are in fact

c™.

Minimal surfaces in R" -satisfying H=0- clearly solve (I.13). This means that they are Willmore
and, a fortiori, they are special cases of constrained-conformal Willmore. Therefore, from proposition 1.4,
they satisfy (1.30). But since H = 0 the right hand side of (1.30) is zero. Thus minimal surfaces are also
satisfying (I.29) and are then isothermic.

More generally parallel mean curvature surfaces, surfaces satisfying (1.15), are also constrained-
conformal Willmore and not necessarily Willmore, as we proved in the previous subsection, and they
are also isothermic. Indeed, it is proven in [BR] (equation (II.6) )that, in conformal coordinates,

O, (K(ALH)) L8y, ® — O, (x(AL H)) L0y, ® = (—1)™ ' VO AVH (1.31)
For parallel mean curvature surfaces, which satisfy (I1.15), we have

VOAVH =VOAmp(VH)=VYH -V & A&y = —2div(H - V-®) & Aéy =0 . (1.32)

Other examples of weak isothermic immersions which are not smooth and then not necessarily
constrained-conformal Willmore are easy to produce : take a non necessarily smooth simple closed lipshitz
curve v : S' — R? such that

/ K2 dl < 400
Sl

where r is the curvature distribution of that curve and dl the length 1-form on S! induced by the
immersion v. Identify the plane R? with the vertical plane in R3 given by {z2 = 0} and rotate that curve
around the x3 vertical axis. One proves that this generates a weak global isothermic immersion : axially
symmetric surfaces are isothermic. We saw in proposition 1.3 that being isothermic is a conformally
invariant property and therefore any composition of the obtained axially surface with a diffeomorphism
of R3 generates another isothermic surface.

It is proven in [Ri3] (see the proof of lemma III.1) that the space of weak immersion s of controlled
conformal class has a nice weak closure property modulo renormalization and branched points. Precisely
one has the following weak closure lemma.

Lemma 1.1 [Ri8] Let ¥ be a closed two-dimensional manifold. Let <f>k be a sequence of elements in Ex
such that W(®y,) is uniformly bounded. Assume that the conformal class of the conformal structure cj
(i.e. complex structure of ¥2) defined by @, remains in a compact subspace of the Moduli space of . Then,



modulo extraction of a subsequence, the sequence ci converges to a smooth limiting complex structure coo
; and there exist a sequence of Lipschitz diffeomorphisms fi of ¥ such that dy 0 fr is conformal from
(3, ci) into R™. Moreover, there exists a sequence Zy, of conformal diffeomorphisms of R™ U {co} and
at most finitely many points {ay,...,an} such that

limsupH (S 0 B0 fr(E)) <+oo  ,  Epo®ro fi(X) C Br(0) (1.33)

k——+oo
for some R > 0 independent of k, and
& =Fpodrofr — & weakly in (VVIQOC2 N Wllof")*(z \{a1,...,an}) . (1.34)

The convergences are understood with respect to hy, which is the constant scalar curvature metric of unit
volume attached to the conformal structure cy,.
Furthermore, there holds

V K compact subset of £\ {a1,...,an} 1imsup|\1og|d§_;€|hk|\Loc(K) < Foo . (1.35)

k—+oo
Finally, EOO is an element of Fx, a weak immersion of ¥\ {a1,...,an}, and conformal from (3, cs) into
R™. O

Following the arguments of [Ri3] proof of lemma IV.1 one establishes the following weak closure result
for weak isothermic immersions.

Theorem 1.2 [Ri3] Let & be a closed two-dimensional manifold. Let <f>k be a sequence of weak global
isothermic immersions such that W (®y,) is uniformly bounded. Assume that the conformal classes cy,
defined by o converge to a limiting structure co, in the Moduli space of . Then, modulo extraction of a
subsequence, there exists a sequence of Lipschitz dsz@omorphzsms fr of ¥ and a sequence Z of conformal
diffeomorphisms of R™ U {oo} such that §k = Z), 0 By 0 fr is a weak conformal isothermic immersion
converging weakly in VVIQOC2 on X minus finitely many points to EOO a , possibly branched at these points,
conformal weak global isothermic immersion for the limiting conformal structure coo 0N 2. (]

1.4 Weakly converging smooth global isothermic immersions - Main result.

The goal of the present paper is to present a result regarding the lack of strong compactness and the
geometric structure of the defect measure for sequences of smooth global isothermic immersions weakly
converging to another smooth global isothermic immersion. Our main result is the following

Theorem 1.3 Let ¥ be a closed two-dimensional manifold. Let Py be a sequence of smooth global
isothermic immersions such that W(®y) is uniformly bounded. Assume that the conformal classes cy,
defined by <f>k converge to a limiting structure cso in the Moduli space of X.. Then, modulo extraction of a
subsequence, there exists a sequence of Lipschitz dzﬁeomorphzsms fr of X and a sequence Ek of conformal
diffeomorphisms of R™ U {oo} and finitely many points {a'---a"™} such that §k = Ep 0o ®r o fr is a
conformal global isothermic immersion satisfying

—

& — oo weakly in VVIQOCQ(E \ {a'---a"}) (1.36)

where 500 a weak, possibly branched at the a’, conformal weak global isothermic i 1mmer310n for the
limiting conformal structure co, on 3. If moreover foo is smooth away from the points a* then the
following convergence holds

dvoly,, + v+ Zai dqi dvoly weakly in ~ M(X) (1.37)

i=1

\ditg |5, dvoly, — |diig |7

10



where M(X) is the space of Radon measures on X and v, the non atomic part of the defect measure, satis-
fies the following condition : around every point different from the a® there exists a conformal coordinate
chart z = x1 + ixo such that, simultaneously the following holds

. 1 0 | _,\ 06 0 | _uy 08
o T v 2)\ Y500 v 2)\ Y500
0=S(Hp) = 27rn (5301 le 5302] + D73 le Doy ]) (1.38)

where ﬁo is the expression in the z coordinates of the Weingarten form HO = ﬁo dz ® dz, and
v=uv1(x1) Adxs + dzy A va(xs) (1.39)

where v;(x;) are Radon measures on the x; axis and v;(x;) A\ dz;y1 is the product of this Radon measure
with the Lebesgue measure on the x;y1 axis. O

Remark 1.3 In codimension 1 the coordinates directions in which (1.38) happens are principal direc-
tions. The theorem says that the defect measure associated to the lack of stromg compactness of the
sequence of isothermic immersions ”propagates” uniformly along principal directions, modulo
possible concentration points. O

Remark 1.4 The result is optimal in the sense that it is not difficult to produce examples where (1.39)
indeed happens. Consider a family of simple closed curves in the plane of fized length, such that, the
normal parametrization, vi(s), weakly converges in W22(S*) with a non zero defect measure ju(s)

k2 (s) ds = [5oo](s) ds + p(s)

By identifying the 2-plane with the vertical plane in R given by {xo = 0} and by rotating the sequence
of curves around the x3 axis we obtain a weakly converging family of isothermic surfaces with a non zero
defect measure satisfying (1.39). O

II Entropies for Isothermic Surfaces.

One of the main tool for proving theorem 1.3 is the computation of entropies for isothermic surfaces.
Precisely the goal of the present section is to establish the following proposition.

Proposition II.1 Let ® be a smooth conformal immersion of D? into R™ satisfying

0 [ o8] o [ 08
— — — | = . II.1
6901 |f3 63@2 6902 le axl 0 ( )
where e* = |0y, | = |04, | is the conformal factor. Then the following conservation laws hold
9 | (0s ZOJoNP JOXP|, 9 [, 9x oA
(L g el R I g ZA A
(9:61 [(&Eg 62) + (9:61 8x2 ‘| + 8x2 [ (9:61 81'2:|
(11.2)
o [(ome VAP [ AF]L 0, 8 ]
(9:62 8961 ! (9:62 8951 8951 (9:61 8x2 B

where €; is the unit orthonormal Coulomb frame of &, TD? given by €; == e~ 8%@3 and L is the following
standard contraction operator between a p—vector and a g—vector (p > q) giving a p — g—vector

Vi e APR™ | VbeAR™, VY&e AP IR™ <dLbé>=<abAé>
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Remark II.1 The proof of proposition II.1 we give below is using the smoothness of the isothermic
immersion and, a-priori (I1.2) does not necessarily hold for general isothermic weak immersion in Ex,.0]

Proof of proposition II.1.
A classical computation (see [BR]) gives

Hy=20, e é.] (IL.3)

where 0, 1= 271(0,, — i0,,) and €, := 271(€; — i€z). Observe that this identity implies

S B} 0P B 0P
S(Hy) =271 — e —| 27— |e P —| . 1.4
\Y( 0) axl |f3 6902 + 63@2 € 6901 ( )
Our assumption is then equivalent to .
S(Hp) =0 . (IL.5)

Since ﬂ'ﬁ(ﬁo) = I;TO, where 77 denotes the orthogonal projection onto the m — 2 plane perpendicular to
&1 and €, we deduce from (II.4) and (IL.5) that

0 | _,y 09 0 | oy 09
- - - II.
0 i <6$1 [6 8902] + 63@2 [6 6901 ’ ( 6)
which itself implies
2P
7 =0 . 1.7
T <a$1 8x2 ) ( )

Observe that we have

O, L0y, @ = O, (L 0y, @) — AL D2, & = —ALI2 B = Oy, (AL 0y, ®) — 7L 02 , & = 9, 7L 0y, ®

172 T1T2 T1T2

where we have used that ﬁl_agh(f) =0 and ﬁL8z2<I_5. Inserting (I1.7) in this identity gives

i, 9%  on, 0d

o' _gn 9%y 1.8
6902 axl axl 6902 ( )
We have .
Oy (0p, T E) = By, (€7 By LDy, ®)
= =0 A Oyl + e 02, ALO,® + e 9,7l B (11.9)
= —0p, \ Og,iil &y — e azlﬁl_aigi + e Oy, il mr(92,,,®)
where we have used (II.7) and (II.8). In one hand we have
m1(02,,,8) =27 e [00,(10., ) @1 + 0,,10,, 8 &
(11.10)
= Oy, A Oy, D + Oy, A 0, D
Thus using (II.8) we have
e Dyl mr(92,,,8) = 0y A €7 0y, AL 05, ® = 9y A Opyil & (I1.11)
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and (I1.9) becomes
O, (Dp, T E5) = —e ™ 8zlﬁl_8§§q_5 (I1.12)

In the other hand

< 0p, L 77(023 D), 0y i & >=< 0,71, 77(073 D) A (D2, 7ILE2) >=0 (11.13)
Indeed, if m = 3 0,,7 is perpendicular to the vector 7 to which wﬁ(a%(f)) is parallel and, in the case
when m > 3, one easily verifies that

(Op,7ilér)é; =0 fori=1,2 |
thus wﬁ(a%(f)) A (0,7 €3) is paralel to 7 which proves (I1.13).
Combining now (II1.12) and (II.13) we obtain
< Oy, (B, L), Byl @ >= —e < 8I1ﬁ|_7rT(85§<f)),812ﬁ|_é’2 >

Using two more times (I1.8) this gives

< O, (03, E2), Oy, L8y >= —e ™ < 8y, AL &1, O,y > < 51,3555 >
= [< 0y, AL &1, 0, AL & > — [0y, AL &]?] 9y A (I1.14)

=N K 0y, A= —AX 0p, A = =04, (|02, M?/2) — 0y (02, XA Oy N) + 0a, (102, 7% /2)

where K is the Gauss curvature and where we have used the Liouville equation. (IT.14) gives the first
equation of (I1.2). The second equation is established in a similar way. The proof of proposition IL.1 is
complete. O

IIT A lemma in Compensation Compactness Theory

In order to prove the main theorem 1.3 we shall need a compactness result related to some quantites
present in the expressions (I1.2) of the entropies. This result is based on a compensation phenomenon
observed first in [De] (see also [Ge] and [EM]) in the framework of the analysis of 2-dimensional perfect
incompressible fluids.

Lemma III.1 Let ay and By be two sequences of functions in W12(D? R)

llicmsup Vol r2(p2) + IV BellL2(p2) < +00 (II1.1)

— o0
Let @y, be the sequence of solutions in W12(D? R) of

A(pk = azlak amﬁk — amak azlﬁk m D2

(I11.2)
wr =0 on OD?
Then there exists a subsequence i and two Radon measures p and v such that
|02y 1 1? = 102,01 1* = 1021 00| = [0y Poo|* + 11 in  D'(D?)
(I11.3)

Oy Pt Oy Phr = Oy Poo Oy Poc +V i D'(D?)
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where
AYoo = Oy Oloo Ory Boo — Oy Qoo Oy Poo in D?

(I11.4)
Yoo =0 on 0D?

and as (Tesp. Boo) is the weak limit in W2 of oy (resp. Brr ). Moreover both p and v are atomic inside
D? : there exists p; € D? for i € N, and q; € D?* for j € N such that

W= Z ¢ Op, and v= Z d; 6q; in D'(D?) (I11.5)
ieN JEN
where
> leil = |ul(D?) < +o0 and > ldj| = wl(D?) < 400 . (I1L.6)
ieN JEN
O

Proof of lemma ITI.1.
Let &, and Bj be two Whitney type extension on the whole plane R? of respectively ajy and Sy
satisfying R
||deHL2(]R2) < C ||VakHL2(D2) and ”vﬂkHLZ(R?) < C ”vﬂkHLZ(DQ) (III?)
where C' is independent of the two sequences aj and Sj (take for instance in R? \ D? respectively
an(x) == a(z/|z|?) and Bi(z) := Bi(z/|z|?). Introduce

1
2

@ = — log|x| % |Dp, ak OpyBr — Onylin O, Br| (I11.8)

From Wente theorem (see [We] and the exposition in [He]) we know that both o) and @y, are uniformly
bounded in W2 N L* and we have in particular

okl Lo 2y + [|PkllLoo ®2) + ([ VorllLz®ey + [[VOklL2®ey < C [Vl r2(p2y [IVBellL2(p2) (I11.9)

Hence the difference vy, = @ — ¢k, which is harmonic in D?, is strongly precompact in every CllOC(DQ)
for | € N and since we don’t care about concentration of the measures at the boundary 0D?, it suffices
to prove the results of the lemma (identities (IIL.3...I11.6) for @y in D?, this will imply the corresponding
identities for ¢, in D?

We present the proof of the lemma for the quantity 9., @ Oz, @k (the proof for the other quantity
|02, Pr|? — |0x,Pr|? being identical).

To shorten a bit the notation we write
Wi 1= Op, Ok Oy B — Ouy Ok O, Br = APy

Because of the uniform bounds given by (II1.9) combined with the assumption (III.1), we can extract a
subsequence still denoted @y such that

Pr — Poo weakly in ~ W1?(R?)

and, due to the jacobian structure, we can pass to the limit in (IIL.8) :

. 1 ~ - R ~
Poo i= 7 log|z| * |0 Qoo OnyBoo — Oy oo Oz Poo
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where Goe and B are weak Wh2-limits of respectively ay, and . Moreover we can also ensure that
O, Pk O, Pl = ¥ weakly in M (D?)

where M (D?) denotes the space of Radon measures. It remains now to identify the Radon measure ~.

Let 1 be an arbitrary function in C§°(D?), denoting by A~! the convolution with (2)~! log |z| we
have

V(x) Opy Pk Oz, Qi dx = Y(x) Op, A wp, Oy A wy, da
DZ RQ

= - / O V(3) Gr Oy Pr dw — | ap(x) A wy 02, A wy, do
N N (IIL.10)

2

- 7/ Oz, V() Pr Oz, Pi: d:CJr/ [Ail(www — () Ailwk] 8311295’“ dx
R2 R

+ () wi(z) ailmA_ka(x) dx
RQ

We shall now pass to the limit in the three terms in the r.h.s. of (III.10).

The first term of the r.h.s. of (IIL.10). Since @r — Poo weakly in WH2(D?), from Rellich
Kondrachoff theorem @3, converges strongly to @o in L?(D?) therefore

lim Op, V() Pk Opy P dx: :/ Op, V() Poo OpyPoo dr . (II1.11)
k—+oco JRr2 R2

The second term of the r.h.s. of (IT1.10). Observe first that
A[AT (Puwr) = (x) A wy] = —Av @ — 2V V@, . (II1.12)
Since @ — Poo weakly in W12(R?), we have that
AAT Wwr) —Y(z) A wr] = A AT (Y we) — ¥(z) A we] weakly in  L*(R?) (II1.13)
Hence, using again Rellich-Kondrachoff we deduce that
[A™ (Ywr) — ¥(z) A wi] — [AT (P wee) — ¥(7) A woo] strongly in ~ W12(R?)  (IIL.14)

Since
2 ~ 92 ~ . 1 2
0zy0a Pk = 03,0, P00  weaklyin  H ™ (R?) (IIL.15)

x

Combining (IT1.14) and (II1.15) gives

lim [Afl(wwk) —(x) Aflwk} 8;1252;6 dx :/ [A71(¢wm) —(x) Aflwoo} 85112@)0 dx
e e R2 (IT1.16)

The third term of the r.h.s. of (II1.10). This is of course the most delicate term in which the
specificity of the bilinearity 0, ¢ 0z, Pr We are considering plays a role.

From [Ste] we have that the Kernel associated to the operator 92 , A~2 is bounded in L*. Indeed

r1x2
one has that the Fourier multiplier associated to the operator 92 , A~ is given by

e &1 &2
3 A2
s €]

(I11.17)
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which as to be understood either as in a singular integral sense or in distributional sense as being the
following tempered distribution in &'(R?)

&1 & . SES
v S(R? — ; =—1 d
oy es®) (g )so0) =mm [ € o ac
= [ B2 00 o) ae

Since the homogeneous polynomial & & is harmonic we can apply theorem 5 in 3.3 of [Ste] and deduce
the existence of a universal constant ¢y such that the inverse of the Fourier transform of & &/|¢|* is
given by

—1
751 52 — ¢ 1 T2
(3% el

Hence

(1 —y1) (2 — y2)
lz -yl

. Y(x) wi(w) 02 ,, A 2wi(z) do = co . P(x) we(x) wi(y) dx dy (I11.18)

If the kernel (x1 — y1) (22 — y2)/|z — y|? would have been continuous up to the diagonal x = y (or even
VMO on R* ) we could have easily pass to the limit in this integral, since wg () wi(y) is uniformly bounded
in the local Hardy space H}, (R?), it converges weakly in particular in Radon measure t0 weo () woo (y).
We shall however make use of the fact that (z1 —y1) (z2 —y2)/|z — y|? is bounded in L* in order to
pass to the limit in (IT1.18) modulo possible concentration points.

Let x be a cut-off function in C§°(R*,R*") such that y is equal to 1 on [0, 1] and equal to zero on
[2,4+00) and 0 < x < 1. For € > 0 we denote x.(t) := x(t/e).

‘We write

U(x) we(z) wily) (1 — yl)_(:cz— o)
W & —y]

dx dy

) (x1 — 1) (22 — y2)

o=y dz dy (II1.19)

= [ () wr(z) wi(y) xe(|lz — Yyl
R4

(1 — 1) (22 —y2)
|z —y|?

+ [ @) wnle) wxlo) (1= xe(l — o) o dy

Since [1 — x:(|z — y|)] (#1 — 1)/ (z2 — y2)/|z — y|? is continuous on R* we have

(1 —y1) (22 — y2)

m » ¥(x) wi(z) we(y) 1= xe(lz —yl)] o — g2 dx dy
(I11.20)
= | () Wool®) Woo(y) [1 — xe(|z — yl)] (@1 = yl)_(zzi o) dx dy
R4 |9U y|
And then
lim lim [ (@) wn@) wnl) [ - xelle - gf) I E20) g,
e—0 k—+ R4 c |1' - y|2
(I11.21)
= [ ) wnel) wnely) L)

R4 |9C —y|2
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Combining (I11.11), (II.16) and (II1.21) we obtain that

[(7 = Oy Poc Oy Poo 3 )| < 1iminfliminf/ [p(@)] |wr(@)] |wr ()] Xxe(lz —yl) dv dy (I1.22)
e—=>0 k—+oco R4

Modulo extraction of a subsequence we can assume that the sequence of measures |wy(z)| dx converges
weakly to a non negative Radon measure ((z) and we have

7 = O B Do 5 )] < Timinf <[] xellz — 9l); C(@) Cy) > (111.23)
Denote by A¢ := ZjeN (j 0g; the atomic part of ¢ :

<(y) —Acw); xe(lz—yl) >=>0  Ca e x

Thus
finy < )] e = )5 ) o) >= g 3= &5 < W) xel = a5 ) >= 3 F o)
Je Jje
Hence (I11.23) implies
(7 = Oy Poo Oa oo 5 V) <Y G [10(g))] (IT1.24)
jeN

which shows that v — 0y, Poo Oz, Poo i atomic. This implies the lemma for the bilinearity 0, Yoo Oy Poo-
The same applies to the bilinearity |0., ¢Yoo|? — |02,900|? since in the estimation of the third term in
the r.h.s of the identity corresponding to (II1.10) one uses that £2 — £2 is harmonic and thus the kernel
associated to (65% — aig)A’Q is also bounded in L*> due to theorem 5 in section 3.3 of [Ste]. O

IV  Proof of the main theorem 1.3.

Let <f>k be a sequence of global weak isothermic immersions of an abstract closed surface X into R™ such
that the conformal class to which the induced metric gi := 52 grm does not degenerate. This means that
there exists a sequence of constant scalar curvature metric hy of volume 1, precompact for any C' norm
of ¥ (equipped with some fixed arbitrary reference metric gg) and a diffeomorphism fj of ¥ such that

dpofp (3, h) — R™ is conformal . (IV.1)
Modulo extraction of a subsequence we can assume that
hi = hoo inCl(¥) VieN |, (IV.2)

where h is a constant scalar curvature of volume 1 on X.
We assume moreover that

lim sup W (®,) = 1imsup/ |ﬁ<f>k|2 dvolg, < +00
b

k—+o00 k—+o00

Following the normalization lemma A.4 and lemma III.1 of [Ri3], we deduce the existence of a sequence
of Mébius transformation Zj of R™ U {oo} (i.e. Zj are conformal diffeomorphism of R™ U {co}) such
that & := Zj o Oy, o fy, satisfies the following conditions (up to subsequence)

i)

—

JR>0 , Vk  &(2) C Bgr(0)
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ii)
Jar---an s.t. {ké{m in Wli’f(z\{a1~~~a]v})

iii)

VK compact of ¥\ {a1---an} lim sup || log |d5€|hk”Loc(K) < 400
k—+oo

These 3 conditions ensure that the weak limiting map 500 is a weak possibly branched conformal
immersion in the space Fyx.

Assuming now that <I_5k are weak global isothermic immersions in & then, due to the conformal
invariance proved in proposition 1.3, Ek are also weak global isothermic immersions. Thus there exists a
sequence of non zero holomorphic quadratic differentials g for the sequence of riemann surfaces (%, hy)
satisfying .

%(qk, hO,k)WP =0 (IV-?))

where the Weil-Peterson norm is taken with respect to hy. Because of the linearity of equation (IV.3)
with respect to gr we can normalize g in such a way that

Vk e N /(Qk,Qk)WP dvolp, =1 (IV.4)
)

The space Py of holomorphic quadratic forms of (3, hy) is a finite dimensional space of fixed dimension
(depending on ¥ only) of the space I'(T*X ® T*X) of smooth sections of T*¥ @ T*X. Since hy, converges
to heo We can extract a subsequence such that Py converges to P, and we can extract a subsequence
such that ¢ converges in any C* norm towards ¢, for any I € N.

The holomorphic quadratic form ¢, satisfy also (IV.4), moreover, due to the weak convergence of
ho k towards ho oo in L7, (X \ {a1---an}),

g(qoo,]_l’opo)wp =0 inE\{al---aN} . (IV5)

This implies that {oo is a weak, possibly branched, conformal isothermic immersion of (3, hoo) into R™.

In an arbitrary strongly converging conformal chart ¢ : D?\ (X, ht) the equation satisfied by &0 b
reads (omitting to write explicitly the composition with ¢y)

S(fu(z) Hox) =29 (ful2) 0z [ 0:6])

where f, is the expression of gy in this chart fi(2) dz ® dz = gx.

Denote by by - - - bg the isolated zeros of g in . Let U be a disc included in ¥\ {a1---an, b1 ---bg}.
Considering a converging sequence of conformal charts ¢y realizing a diffeomorphism from D? into U,
since foo the expression of hg o in this chart does not vanish on D? and since f) converge strongly on

D? towards fso, we can introduce the new converging chart w := {/f o gb,;l. In this new chart the
isothermic equation reads

~ 0 _ 35@ 0 _ 8{k
o _ 2 2 _ AVS
S(Ho) le 83@21 O le 83@11 0 - (IV.6)
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where w = x1 + izy and e = |8,,&| = |84,k since the chart is strongly converging the expression of
&, in this chart satisfy

&p(w) = Eo(w) in W>3(D?) and lim sup [ A (w)]| oo (p2) < +00 (IV.7)
k—+oo
We also choose U small enough and the subsequence in such a way that

S 8
VkeN / \Vitg |* dy day < 5 (IV.8)
D

We can then use a result by F. Hélein (see [He|] chapter 5) that gives the existence of (€ x,€2%) €
(W12(D?,5m~1))% such that

2
Gk A Gy = *ilg /D M IVerl><C /D |Viig |2 (IV.9)
=1

where C is independent of k. We can use this moving frame to express the laplacian of Ay (see [Ril]) and
we have precisely

—AN; = 0p, €1k - Oy €2k — Oy €1k - O, €2 in D? . (IV.lO)
Let s; be the solution of
*Ask = 895151,;6 . 8962627;@ — 8962617;6 . 8961627;@ in D2
(IV.11)
s, =0 on 8D?

From Wente theorem (see [We] and [He]) we have
||SkHLao(D2) < C |\V€1,k||L2(D2) ||V€2,k|‘L2(D2) < C / |Vﬁ5k|2 . (IV.12)
D2

Using (IV.8) we deduce that sj is uniformly bounded in L°°(D?). Combining this fact with (IV.7) we
obtain that the harmonic function v := A\ — si is uniformly bounded in L"O(DQ). Thus we have that

Uk — Voo in C!_(D* VieN . (IV.13)

Lemma III.1 implies that there exists a subsequence and two atomic measures p and v such that there
exists p; € D? for i € N, and ¢; € D? for j € N satisfying

p=> cid, and  v=)» d;jé, inD(D?) |, (IV.14)
i€N JEN
where
> leil = |ul(D?) < +o0 and > ldj| = [v|(D?) < o0 . (IV.15)
i€N JEN
and
|0, 81 — [0y 81 [* = |0, Soo|* = |03 800 + 1 in  D'(D?)
(IV.16)
Oz, Sk OpySky — Oy Sco OngSco +V in D' (D?)
Using (IV.13) we deduce
|0, At |2 = [0 At [2 = [0, Aoo|* — 105 Ao [ + 11 in  D'(D?)
(IV.17)

811)%/ 8932)%/ — 811)\00 8962)\00 —+ v in D/(DQ)
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Assuming the f_;g/ and EOO are smooth, since these immersions are smooth, we can apply proposition II.1
and deduce that in one hand

- ) _
o | [97g, M [P | |? 0 [ O\
. L& i - 2 19 -
axl ( 6.1'2 2.k * ‘ axl ‘ 83@2 * 6.1'2 |: axl 83@2 :| 0
P [ Oiig o P o 2] O [ O\ 0N (1
o K |_ o , ’ B ’ o 2 ’ ’ _
83@2 ( 6.1‘1 Lk ) * ‘ 83@2 ‘ axl * 6.1‘1 |: axl 83@2 :| 0
and in the other hand
_ ) _
o | (90 oo |© [P | 0 [, 0o ONo
—_— = | €5 oo — - |= — |2 — =0
(9:61 ( 81'2 €2, ) + ‘ 8961 ‘ (9:62 + (9:62 [ 8951 8x2 ]
o ) , 2: (IV.19)
i angoo s N 0o 3 0o n i 0o ONo | 0
(9:62 8961 1,00 81'2 (9:61 (9:61 8951 8x2 o

Applying Poincaré Lemma, we deduce the existence of Ay and By in W' such that

oot = (i) o] -f5]
Oy, A = —2 %klf %

such that - | | |
02, B = ( 5 :51 |_€17k/> %2;: - ‘%ﬁ
Opy By = —2 ‘?;k; %);;

Moreover for the same reason there exist Ao and Bs in W1 such that

= (Gras) <[5l -]
e =2 G2

such that . 2 2 2
O, Boo = < = Lam) +’5;7°: _’?TT
b= 2 G2 T

We observe that we have

azlAk/ = GZZB;C/ and azleo = 6352300
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Applying again Poincaré Lemma, we have the existence of ap and o in W2! such that

Vak/ = (Bk/vAk/) and VOZOO - (Boo;Aoo)
Thus we have 5
oy B aﬁgk/ L= N Ogr 2_ O\ 2
(956281'2 B (9:62 2.k (9:61 8x2
N 2
Por (g, N || ||’ (IV.20)
(956181'1 (9:61 Lk (9:62 8951
Pay 0w Dw
(956181'2 o (9:61 (9:62
and 9
8200 dig_ Noo|” |0A0 |?
= Lésoo | +| 7| — |5
(9562(9562 81'2 ’ 8951 8x2
2
2 i 7 2 2
0% oo _ £ Le ) + 0o _ 0o (Iv.21)
(9561(9561 8961 ’ 8x2 8951
Pose __, N Do
(9561(9562 o (9:61 8:102

Since VA and VB) are uniformly bounded in L' we can normalize A and By in such a way that
Ay and By are uniformly bounded in L?(D?). In a similar way, since now Vay is uniformly bounded
in L?(D?) we can normalize ay in such a way that aj is uniformly bounded in W12(D?). Thus

2
ong O 2 O 2
lim sup S Léyw | + il I < +oo (IV.22)
k! —+4o00 a1'2 81'1 (9:02
H-1(D?)
moreover )
diig, M > [0xw |2
. | o K K
1 el — < Iv.23
kl'niiuog <3£E1 61’k> N 0x2 0y e ( )
H-1(D?)
and finally
At ONpr
lim sup ’a K O < 400 . (IV.24)
k! —+o00 61‘1 61'2 H—l(DZ)

Taking this last quantity, we can always extract a subsequence, that we will still denote k', such that

O O ) 1, 9
— kl H (D V.25
oy w1 weaklyin HT(DT) (IV.25)
Comparing this convergence with the second line of (IT1.9) gives
f =02 Mo O hoo + Y _d; 0y, € HY(D?) . (IV.26)
JEN

But, argueing as for ays, we have that a., € WH1(D?) and hence, using the last line of (IV.21), we have

that
v=> d;d, € H (D%
JEN
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This implies that this atomic measure is zero,
vr=0 (IV.27)

which is the unique atomic measure included in H~!.

Similarly, from (IV.22) we can extract a subsequence, still denoted &', such that

2
diig e |2 |0 2
<8:§k,|‘€2”“'> + 8:: - a; —~q weakly in H™!(D?) (IV.28)
2 1 2
and 5
o z M |2 oM |2
(%) o2 2 o v

Comparing these convergences with the first line of (IV.17) gives in one hand

Moo |00 |”
h_ = — i0p. — g1 <0 1V.30
axl a$2 + ZEZNC Pi g1 = ( )
and in the other hand ) )
o\ o\
hy = =2 —|== E i O >0 Iv.31
+ 81'1 81'2 + = Ci Op; + g2 = ( )

Using the two first lines of (IV.21), we have that
0o
81'1

Let x be a cut off function in C°(R*,RT) identically equal to 1 on [0, 1], equal to 0 on (2,+0o0) and

0 <x <1lonRT. For any € > 0 we denote x.(t) := x(t/e). For any ig € N, the map x.(|z — p;,|) weakly
. 1,2 2
converge to zero in Wy *(D?) thus

2
— g1

2

O0Aso
+ 92

8561

2
_ ‘a)\"o c H—I(DQ)

8562

29
81'2

€ HY(D?) and U

2‘8)\00

0o
> Tim (h_, xe (|7 — pi|)) = 1i
0> tim (h-. xc(Jo — pi, ) m<} 2o

e—0 a.’L'l

2
+ Y cidy — g1 xe(le pio|)> =cip  (IV.32)
i€EN

In a similar way we have

2

70
6902

o
< li ~ D =l
0< EhL% < hy, xe(|z = pio|) > ghﬂ% <‘ ory

+ Y ciby g2, x:(l pio|)> =cip (IV.33)
i€EN

Comparing (IV.32) and (IV.33) gives for any iy ¢;, = 0 and then we have proved that
©=0 (IV.34)
Combining (IV.17), (IV.27) and (IV.33) implies then

|aﬂc1)‘k’|2 - |a:m)‘k’|2 - |aw1)‘00|2 - |aﬂcz)‘00|2 in DI(DQ)
(IV.35)
Oy Ak Opg Akr — Oz Aoo Oy Ao in DI(D2)
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Translating this information in terms of ay and a., gives

2 2
201 oniz 2 oni z
0" + ( St Lé}y}y) — 0”0 + ( feo L€27m> weakly in Hﬁl(D2)

022014 Oxo T 919020 D
_ 2 . 9
82ak/ 8n§k 2a ang (IV 36)
- Léw | = —gran =L €100 kly in H~'(D? :
0x10x; + ( Oxy €Lk 01011 + o7, €1, weakly in (D?)
Dy 0%

weakly in H~'(D?)

axlc’)xg - axlc’)xg

Denote by d the weak limit (modulo extraction of a subsequence) of as in W12 and let Boo 1= Qoo — Qoo -
We have

oz, \* [0z, \’ oz 2 oz ?
(’)—xf Levw | + (’)—x; Lérw | — AP + ax:o Lélo | + (’)x: Lésoo
(IV.37)

0 Boo 2
92,025 =0 in D'(D?).

Or in other words, since (II.8) holds,

|Vﬁ{k/ |2 dzl dz2 - |Vﬁ{w |2 dzl sz + Aﬂoo dl'l d:CQ

(IV.38)
0?8
= =0 in D'(D?).
6901 6902 m ( )
The defect measure is then given by the laplacian of an W12(D?) function 3., whose distributional cross
derivative 0?8 /021022 is zero. This implies (1.39) and theorem 1.3 is proved. O
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