
Embedded surfaces of arbitrary genus minimizing

the Willmore energy under isoperimetric

constraint

Laura Gioia Andrea Keller ∗, Andrea Mondino †, Tristan Rivière ‡

May 23, 2013

Abstract

The isoperimetric ratio of an embedded surface in R
3 is defined as the ratio

of the area of the surface to power three over the squared enclosed volume. The
aim of the present work is to study the minimization of the Willmore energy
under fixed isoperimetric ratio when the underlying abstract surface has fixed
genus g ≥ 0. The corresponding problem in the case of spherical surfaces, i.e.
g = 0, was recently solved by Schygulla [57] with different methods.

1 Introduction and motivation

The Willmore functional of an immersion ~Φ of an abstract oriented surface Σ2

is given by

W (~Φ) =

∫

Σ2

| ~H|2 dvolg

where ~H is the mean curvature of the immersion ~Φ and dvolg the induced volume
form. A surface which is a critical point of this functional is called Willmore sur-
face. Such a class of surfaces has been introduced in the beginning of the XX’s
century in the framework of “conformal geometry” by Wilhelm Blaschke who
called them at the time “conformal minimal surfaces” (see [8]). He observed that
the Willmore energy has the property to be invariant under conformal transfor-
mations of the ambient spaces, the transformations which infinitesimally pre-
serve angles. He introduced then the theory of Willmore surfaces as being the
“natural” merging between minimal surface theory and conformal invariance.

Probably because of the richness of the symmetries preserving the class of Will-
more surfaces and because of the simplicity and the universality of its definition,
the Willmore functional shows up in various fields of sciences and technology. It
appears for instance in biology in the study of lipid bilayer cell membranes under
the name “Helfrich energy” (as we will see in more detail later in the introduc-
tion), in general relativity as being the main term in the so called “Hawking
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Mass”, in string theory in high energy physics it appears in the definition of the
Polyakov extrinsic action, in elasticity theory as free energy of the non-linear
plate Birkhoff theory, in optics and lens design, . . . etc.
The theory of Willmore surfaces, named after the person who revisited the the-
ory in an important work of the mid-sixties [70]-[71], has flourished in the last
decades.

Over the last twenty years, existence of minimizers of the Willmore energy un-
der various constraints has been obtained: in the class of smooth immersions
for a given abstract surface Σ2 (see [60] and [3]), within a fixed conformal class
(see [21] and [28]) or more recently in the class of smooth embeddings of the
sphere under fixed isoperimetric ratio (see [57])

iso(~Φ) =
(Area(~Φ))3
(

V ol
(

~Φ
))2 (1)

where V ol
(

~Φ
)

denotes the volume enclosed by ~Φ(Σ2), i.e. the volume of the

bounded connected component of R3\~Φ(Σ2).

The aim of the present work is to study the minimization of the Willmore energy
under fixed isoperimetric ratio when the underlying abstract surface has fixed
genus g ≥ 0.

Beside the obvious geometric intrinsic interest such a minimization under isoperi-
metric and genus constraint could have, a motivation to study this problem
comes from the modelization of the free energy of elastic lipid bilayer mem-
branes in cell biology. Indeed the Willmore functional is closely related to the
Helfrich functional which describes the free energy of a closed lipid bilayer

FHelfrich =

∫

lipid bilayer

(kc
2
(2H + c0)

2 + k̄K + λ
)

+ p · V

where kc and k̄ denote bending rigidities, c0 stands for the spontaneous curva-
ture, λ is the surface tension, K and H denote as usual the Gauss curvature and
the mean curvature, respectively, p denotes the osmotic pressure and V denotes
the enclosed volume.
The shapes of such membranes at equilibrium are then given by the corre-
sponding Euler-Lagrange equation. If c0 = 0, λ = 0 and p = 0 the Willmore
functional captures the leading terms in Helfrich’s functional (up to a topologi-
cal constant). Whereas if these physical constants do not vanish, λ and p can be
seen as Lagrange multipliers for area and volume constraints. Thus, thanks to
the invariance under rescaling of both the Willmore functional and the isoperi-
metric ratio, we exactly face the problem of minimizing the Willmore functional
under an isoperimetric constraint.
In the context of vesicles, imposing a fixed area and a fixed volume has perfect
biological meaning: on one hand, it is observed that at experimental time scales
the lipid bilayers exchange only few molecules with the ambient and the possible
contribution to the elastic energy due to displacements within the membrane is
negligible. Thus, the area of the vesicle can be treated as a fixed one. On the
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other hand, a change in volume would be the result of a transfer of liquid into
or out of the vesicle. But this would significantly change the osmotic pressure
and thus would lead to an energy change of much bigger scale than the scale of
bending energy.
At first glimpse one may think that biologically relevant vesicles should always
be of spherical shape. But in fact also vesicles of higher genus, and in particular
of toroidal shape are observed (see [41] and [58]). Further details about this can
be found e.g. in [34].
In addition, often in biology the ratio of area (the place where a molecule is
produced) to volume (how much of the produced molecule can be stored) is
crucial.
Moreover, the Helfrich functional as well as the Willmore functional are widely
used for modeling biological phenomena, e.g. red blood cells (see e.g. [36]), folds
of the endoplasmic reticulum (see e.g. [59]) and morphologies (Cristae junction)
of mitochondria (see e.g. [43]).
Thus, also from an applied, biological point of view, it is perfectly reasonable
to look at the problem we propose to study in this article.

In order to describe the results of this paper, let us introduce the framework
where we are going to work.

In the aforementioned article of Schygulla [57], the main analytical strategy was

to study immersions from the point of view of the image ~Φ(Σ2). This strat-
egy, which has been extensively used also in a series of works by Kuwert and
Schätzle [22]-[23]-[24]-[25]-[27]-[28]-[29], was introduced by Simon [60] and it is
also known under the denomination of Simon’s ambient approach.

In a series of papers (see [45], [48], [47]), the third author established a new
framework for the study of variational problems related to the Willmore func-
tional in which he was favoring the study of the immersion ~Φ itself instead of
its image. This approach could be called the parametric approach. It provides a
general framework in which not only the above mentioned existence results (free
minimization and minimization in a fixed conformal class) could be extended to
the class of Lipschitz immersions with L2-bounded second fundamental form,
also called weak immersions, but it is also suitable for applying fundamental
principles of the calculus of variations (such as the mountain pass lemma for
instance, in order to produce saddle type critical points).

In the present paper we will adopt this parametric approach. For the reader’s
convenience, all the important concepts as e.g. this space of Lipschitz immer-
sions that we will denote EΣ, are introduced and explained in Section 2.

From now on, the underlying abstract surface is closed of genus g ≥ 0 and our
goal is to look for minimizers of the Willmore energy in the class of Lipschitz
immersions with second fundamental form in L2 under the additional constraint
that the isoperimetric ratio, defined in (1), is fixed (by definition, if ~Φ ∈ EΣ2 is

not an embedding, i.e. it has self intersections, we set iso(~Φ) := 0).
Our first result is an alternative proof, using the parametric approach, of the
aforementioned theorem of Schygulla [57], i.e. existence of smooth embedded

3



spheres minimizing W under isoperimetric constraint; actually we manage to
prove a stronger result, namely our minimization is performed on the larger
class of weak immersions ES2 rather then among smooth embeddings. Before
stating it, recall that by the isoperimetric inequality in R3, for every embedded
surface ~Φ one has iso(~Φ) ≤ iso(S2) = 36π and equality occurs if and only if ~Φ
is actually a round sphere.

Theorem 1.1 (The genus 0 case) For every R ∈ (0, 36π] there exists a smooth
embedded spherical surface, called later on Schygulla sphere and denoted with
SS,R, which minimizes the Willmore functional W among weak immersions ES2
having constrained isoperimetric ratio equal to R.

Since, in virtue of the theorem above, the genus 0 case is well understood, from
now on we will assume that Σ2 is a surface of genus g ≥ 1. Before stating
our main theorems let us introduce some notation: let β3

g denote the infimum
(actually it is a minimum thanks to [60]-[3]-[48]) of the Willmore energy among
surfaces of genus g ≥ 1 immersed in R3

β3
g := inf

{

W (~Φ) | ~Φ is an immersion of the genus g closed surface
}

, (2)

let ~Φg be a smooth minimizer attaining the infimum β3
g (notice that all the

compositions of ~Φg with conformal maps of R3 are still minimizers thanks to
the conformal invariance of W ), and let ω3

g be defined by

ω3
g := min

{

4π +

p
∑

i=1

(β3
gi − 4π) | g = g1 + · · ·+ gp , 1 ≤ gi < g

}

. (3)

Now we can state the main results of the paper; the first one guarantees the
existence of minimizers of our problem under certain hypothesis and the second
one discusses when such assumptions are satisfied.

Theorem 1.2 (Isoperimetric-constrained minimizers of W of every genus)
Let Σ2

g be the abstract genus g ≥ 1 closed (i.e. compact without boundary) ori-
entable surface and consider the set

Ig :=



















R ∈ R

∣

∣

∣
inf

~Φ∈E
Σ2
g

iso(~Φ)=R

W (~Φ) < min
{

8π, ω3
g , β

3
g +W (SS,R)− 4π

}



















. (4)

Then for given R ∈ Ig there exists an embedding ~Φ of Σ2
g into R3, with iso(~Φ) =

R, which minimizes the Willmore energy among all Lipschitz immersions of
Σ2
g with second fundamental form bounded in L2 (i.e. among EΣ2

g
) and fixed

isoperimetric ratio equal to R.

We even know that the minimizer from Theorem 1.2 is a smooth embedding.

Corollary 1.3 (Smoothness of the minimizer) The minimizing ~Φ from The-
orem 1.2 is a smooth embedded genus g ≥ 1 surface which minimizes the Will-
more energy among smooth genus g embeddings with given isoperimetric ratio
R.
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As announced above, we will characterize further the set Ig for which there
exist minimizers of the Willmore energy under the additional constraint of given
isoperimetric ratio.

Theorem 1.4 (Ig 6= ∅ is open) Ig ⊂ R is a non empty open set containing

iso(~Φg), the isoperimetric ratio of any free minimizer of W among smooth
genus g immersed closed surfaces.

Remark 1.5 (Ig ⊃ [Rg − δ, 36π)) Notice that from Theorem 1.4, Ig contains

the whole interval [iso(~Φg), 36π), where 36π = iso(S2). Indeed, since for every

minimizer ~Φg of the free minimization problem one has iso(~Φg) ∈ Ig and since

the embeddings ~Ξ ◦ ~Φg are still minimizers of W , where ~Ξ is any conformal

transformation (i.e. a Moebius map) of R3, it follows that iso(~Ξ ◦ ~Φg) ∈ Ig for

every ~Ξ .
Let us now consider a special smooth one parameter family {~Ξr}r∈(0,+∞) of
Moebius maps given by the inversion with respect to a sphere of unit radius
and center p(r), where p : (0,∞) → R

3 is a smooth curve such that, for every
r > 0, p(r) is at distance 1

r from the fixed minimizer Φg(Σ
2
g).

From this construction, it is not difficult to check that iso(~Ξr ◦ ~Φg) varies
smoothly on r and that

lim
r→0+

iso(~Ξr ◦ ~Φg) = iso(~Φg) & lim
r→+∞

iso(~Ξr ◦ ~Φg) = iso(S2) = 36π.

A continuity argument then shows that Ig ⊃ [iso(~Φg), 36π).

On the other hand, observe that for R ∈ [iso(~Φg), 36π), the isoperimetric-
constrained minimizer produced by Theorem 1.2 is exactly the free minimizer
Ξr(R) ◦ ~Φg, for a suitable r = r(R). Nevertheless, called

Rg := min
~Ξ∈Moeb(R3)

iso(~Ξ ◦ ~Φg)

(notice that the minimum is attained since, as explained above, when the the
Moebius map diverges the isoperimetric ratio converges to the maximum value,
given by 36π = iso(S2)), the point of Theorem 1.4 is that Ig is open, so it
contains an interval of the type (Rg− δ, 36π) for some δ > 0; and in the interval
(Rg − δ, Rg) the constrained minimizer is a new surface (i.e. not free Willmore)
which is interesting to investigate. Let us also stress that we expect that the
conditions used to define Ig are satisfied by a larger class of isoperimetric ratios,
for more details see Remark 1.7. ✷

Since the genus one case, i.e. Σ2 = T2 is the 2-d torus, is particularly important
for the applications, let us discuss it in more detail. Thanks to the recent proof
of the Willmore conjecture by Marques and Neves [35], we know that β3

1 = 2π2,
the set of minimizers is made by the Clifford torus T2

Clifford (i.e. the torus of

revolution with radii ratio 1 :
√
2) and its images under conformal mappings of

R3; moreover, by definition, ω3
1 = +∞. We summarize Theorem 1.2, Corollary

1.3 and Theorem 1.4 for the genus one case in the following theorem.
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Theorem 1.6 (Isoperimetric-constrained minimizers of W among tori)
Let T2 be the abstract 2-dimensional torus and consider the set

I1 :=















R ∈ R

∣

∣

∣
inf
~Φ∈E

T2

iso(~Φ)=R

W (~Φ) < min
{

8π, 2π2 +W (SS,R)− 4π
}















. (5)

Then

i) I1 ⊂ R is a non empty open set satisfying

I1 ⊃
[

16π
√
2, 36π

)

,

where the numbers above come from the fact that iso(S2) = 36π and iso(T2
Clifford) =

16π
√
2.

ii) For given R ∈ I1 there exists an embedding ~Φ of T2 into R3, with iso(~Φ) = R,
which minimizes the Willmore energy among all Lipschitz immersions of T2

with second fundamental form bounded in L2 (i.e. among ET2) and fixed
isoperimetric ratio equal to R.

iii) The minimizing ~Φ given in ii) is a smooth embedded torus which minimizes
the Willmore energy among smooth embedded tori with isoperimetric ratio R.

Remark 1.7 (About the assumptions of Theorem 1.2) i) The 8π bound:
the natural framework for studying the isoperimetric constraint is given by
embedded surfaces (i.e. surfaces without self intersection) since for this class
it is clear what the enclosed volume is. A celebrated inequality of Li and Yau
(see Theorem 2.4) states that if ~Φ has self intersections then W (~Φ) ≥ 8π;
therefore, since we want to handle embedded surfaces, it is natural to work
assuming an 8π bound on the Willmore energy.

ii) The ω3
g bound: this assumption is technical and it is used, together with the

8π bound, to ensure that the conformal structures of the minimizing sequence
do not degenerate in the moduli space, see Theorem 5.2 in the Appendix.
Notice that in the genus one case this condition is not needed. An interesting
open problem is to rule out this condition from Theorem 1.2 and study also
the possible degeneration.

iii) The β3
g +W (SS,R)− 4π bound: notice that the condition

inf
~Φ∈E

Σ2
g

iso(~Φ)=R

W (~Φ) < β3
g +W (SS,R)− 4π (6)

is that the strict inequality holds. In fact, for every given isoperimetric ratio
different from the one of the round sphere the weak inequality

inf
~Φ∈E

Σ2
g

iso(~Φ)=R

W (~Φ) ≤ β3
g +W (SS,R)− 4π
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holds. This can be seen as follows.
Let r and ε > 0 be given. Then by gluing a Schygulla sphere corresponding to
an isoperimetric ratio r̃ = r+ δ, for some small δ, and an inverted minimizer
~Φg, i.e. the image of ~Φg ( recall that ~Φg is a minimizer of the Willmore

energy among genus g immersed surfaces in R
3, i.e. W (~Φg) = β3

g) under a

sphere inversion based at a point of ~Φg(Σ
2
g) , one obtains a surface whose

isoperimetric ratio equals the given r. This can be achieved by appropriately
choosing δ and the way how the two parts are glued together. Moreover,
the Willmore energy of this new surface can be bounded from above by
β3
g +W (SS,r)− 4π+ ε. It is an interesting open problem whether or not the

strict inequality (6) is actually always satisfied.
✷

Now we briefly outline the strategy to prove Theorem 1.2. As mentioned above,
following the approach of [48], we will directly work with the immersions ~Φk
and not with the immersed surfaces, i.e. the images ~Φk(Σ

2) ⊂ Rm.
At first glimpse, it may appear a drawback to work with the immersions itself
due to the invariance of the problem under the action of the noncompact group
of diffeomorphisms of Σ2 but, as we will see, this difficulty can be handled
by choosing an appropriate gauge, namely the Coulomb gauge. Once such a
Coulomb gauge is at hand, one can construct conformal coordinates. Together
with suitable estimates for the conformal factors this leads to a setting in which
we have very powerful analytical tools at hand in order to solve our problem.
For example, we can use the fact that the equation for the Willmore surfaces can
be reformulated as a conservation law, which enables us to convert the initial
supercritical problem into a critical one.

More precisely, fixed g ≥ 1, we consider a minimizing sequence
{

~Φk

}

in EΣ2
g
for

the Willmore energy under the constraint that the isoperimetric ratio iso(~Φk) is
fixed and equals R, for some R ∈ Ig where Ig is defined in (5). Notice that, since
our abstract surface is a surface of genus g ≥ 1, the reference metric of constant
scalar curvature is flat or hyperbolic, moreover up to a change of coordinates
we can assume that the ~Φks are conformal immersions (see Theorem 2.7) and,

since by assumption W (~Φk) ≤ min{8π, ω3
g} − δ (k big enough, for some δ > 0),

the conformal classes do not degenerate (see Theorem 5.2 in the Appendix).

The proof then splits into two cases: either the conformal factors of the immer-
sions ~Φk remain bounded or they diverge to −∞.
In the first case, we proceed as follows: in a first step, we show that ~Φk converges
weakly in W 2,2 possibly away from finitely many points of energy concentra-
tion. Then, in a second step, we show a point removability result for these
possible points of energy concentration. Once we have this, together with the
exclusion of possible bubbling, we can conclude convergence in EΣ2

g
and finally

show smoothness of the minimizer.
In the second case, our analysis reveals that the assumption of diverging con-
formal factors yields a dichotomy between one part of the surface carrying the
topological information and another part carrying the isoperimetric ratio; at
this point we will perform a “cut-and-replace” argument (which recently ap-
peared in a paper of the second and third authors [38]) which will bring to a
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contradiction of the hypothesis (5) on Ig. Thus the case of diverging conformal
factors is excluded and the proof is complete.

Acknowledgment Part of this work was done when the first two authors were
visiting ETH Zürich. They would like to thank the FIM (Forschungsinstitut
für Mathematik) and ETH Zürich for the hospitality and the excellent working
atmosphere.

2 Setup and preliminaries

In this section we will recall the necessary definitions and we will collect and
present the most important result which will play a crucial role in our analysis.

2.1 Definition of the Willmore functional, its fundamental

properties and the Willmore surface equation

First of all, let us recall the definition of the Willmore functional, also called
Willmore energy:
Let Σ2

g be an abstract oriented closed surface of genus g ≥ 0 (sometimes we will

simply write Σ2 in place of Σ2
g), and let ~Φ be a C2-immersion of the surface Σ2

into Rm, m ≥ 3 (we will mainly work immersions into R3). We denote with

g = ~Φ∗gRm the pullback of the canonical metric on Rm on TΣ2 via the immersion
~Φ, g is also called first fundamental form. There is also a second fundamental
form associated to the immersion ~Φ and it is given by the following map

~Ip : TpΣ
2 × TpΣ

2 → (~Φ∗TpΣ
2)⊥

(X,Y ) 7→ ~Ip(X,Y ) := π~n(d
2~Φ(X,Y )) = ∇̄~Y

~X −∇YX

where ~Z = d~Φ ·Z, V ⊥ is the orthogonal complement of the subspace V of Rm, ∇̄
is the Levi-Civita connection in Rm for gRm and ∇ is the Levi-Civita connection
on TΣ2 induced by g.

Recall that ~Φ is said conformal immersion if |~Φx| ≡ |~Φy| and gRm(~Φx, ~Φy) ≡ 0;

in this case eλ = |~Φx| = |~Φy| is called the conformal factor of ~Φ.

Now, we can define the Willmore functional

Definition 2.1 (Willmore Functional) Let Σ2, ~Φ and g be as above. Then

the Willmore functional of the immersion ~Φ is given by the following expression

W (~Φ) =

∫

Σ2

| ~H|2 dvolg ,

where ~H := 1
2 tr(g

−1~I) = 1
2

∑2
i,j=1 g

ij~I(∂xi , ∂xj) is the mean curvature, and
dvolg is the volume form associated to g.

Note that in dimension three, we have ~H = H~n, where ~n is a unit vector or-
thogonal to ~Φ∗(TΣ

2) in R3.
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Recall that the above Willmore functional is conformally invariant (see [11] and
[50]), i.e. it is invariant under isometries, dilations and sphere inversions of the
ambient space R

n. Moreover, thanks to the Gauss-Bonnet theorem, we have

W (~Φ) =
1

4

∫

Σ2

|∆g
~Φ|2dvolg =

1

4

∫

Σ2

|d~n|2gdvolg + πχ(Σ2) (7)

=
1

4

∫

Σ2

|~I|2dvolg + πχ(Σ2) =
1

4

∫

Σ2

(κ1 − κ2)
2dvolg + 2πχ(Σ2) ,

where χ(Σ2) = 2g− 2 denotes the Euler Characteristic of the surface Σ2, κi are
the principal curvatures, and ∆g denotes the intrinsic negative Laplace-Beltrami
operator.

Next, recall the notion of Willmore immersion (or Willmore surface).

Definition 2.2 (Willmore immersion) Let Σ2 be a closed oriented surface

and let ~Φ be a smooth immersion of Σ2 into Rm. Then ~Φ is called Willmore
immersion if it is critical point of the Willmore functional W , i.e. if

∀~ξ ∈ C∞
0 (Σ2,Rm)

d

dt
W (~Φ+ t~ξ)t=0 = 0.

The corresponding Euler-Lagrange equation is due to Weiner [68] and, for a
smooth immersion into R3, takes the form

∆gH + 2H(H2 −K) = 0 (8)

where K is the Gauss curvature.
Unfortunately, there is a huge drawback in this equation: it is supercritical; i.e.
while the functional can be defined for a weak immersion (see later for more
details) with L2-bounded second fundamental form, the corresponding Euler-
Lagrange equation written as in (8) needs that H is in L3 to make sense, even
in a distributional way. But thanks to the significant break through in [45],
the equation can be reformulated as a conservation law that makes sense for
weak immersions with L2-bounded second fundamental form, i.e. the problem
becomes critical. Namely it holds (see [45]; again we limit ourselves to the case
of an immersion into R3)

Corollary 2.3 A conformal immersion ~Φ is Willmore if and only if

div(2∇ ~H − 3H∇~n−∇⊥~n× ~H) = 0 (9)

where ∇⊥f = (−∂x2
f, ∂x1

f) denotes the rotated gradient.

The fact that in the above corollary we assume the immersion to be conformal
is not restrictive as we will see later on.

Before passing to the description of the variational framework in which we will
work, let us recall the following lower bound on the Willmore energy due to Li
and Yau [33].

Theorem 2.4 Let Σ2 be a closed surface and let ~Φ be a smooth immersion of
Σ2 into Rm. Assume that there exists a point p ∈ Rm with at least k pre-images
under ~Φ. Then the following estimate holds

W (~Φ) ≥ 4πk.
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This estimate has a generalization to the context of varifolds which reads as
follows (see e.g. Appendix of the article of Kuwert and Schätzle [24])

inf
Σ2 smooth

W (Σ2) = 4π = inf
µ6=0

W (µ). (10)

The above Theorem 2.4 has the following useful corollary.

Corollary 2.5 Let Σ2 be a closed surface and let ~Φ be a smooth immersion of
Σ2 into Rm. If

W (~Φ) < 8π

then ~Φ is an embedding.

2.2 The variational framework

The variational framework in which we will study the minimization problem
is the one of Lipschitz immersions with L2-bounded second fundamental form
that we are now going to discuss.

We start by briefly recalling the definition of the Sobolev spaces W k,p(Σ2,Rm).
Let Σ2 be a smooth closed oriented 2-dimensional manifold and let g0 be a
smooth reference metric on it.
Then the Sobolev spaces W k,p(Σ2,Rm) are defined as

W k,p(Σ2,Rm) :=
{

f : Σ2 → R
m

∣

∣

∣

k
∑

j=1

∫

Σ2

|∇jf |pg0 dvolg0 <∞
}

.

Note that due to the fact that Σ2 is assumed to be compact, the above spaces
are independent of the metric g0.
One particular case is of great interest for us: the Lipschitz immersions ~Φ ∈
W 1,∞(Σ2,Rm) such that

∃ C > 0 such that |d~Φ ∧ d~Φ|g0 ≥ C > 0. (11)

Notice that by the compactness of Σ, g := ~Φ∗gRm defines a bounded metric
comparable to g0; i.e there exists C > 0 such that for all X ∈ TΣ2 one has

C−1g0(X,X) ≤ ~Φ∗gRm(X,X) ≤ Cg0(X,X).

Next, observe that for a Lipschitz immersion satisfying (11), we have the fol-
lowing expression for the normal vector (called also Gauss map)

~n~Φ := ∗ ∂xi
~Φ ∧ ∂xj ~Φ

|∂xi~Φ ∧ ∂xj ~Φ|

for an arbitrary choice of local positive coordinates (x1, x2), where ∗ denotes
the Hodge duality in Rm. Notice that, from the definition, ~n is an L∞-map on
Σ2 with values in Rm.
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The space in which we will study our minimization problem is given by the
Lipschitz immersions of Σ2 with Gauss map in W 1,2 (or, equivalently, with
L2-bounded second fundamental form) defined as

EΣ2 :=











~Φ ∈W 1,∞(Σ2,Rm) such that

(11) holds for some C > 0 and

∫

Σ2

|d~n|2gdvolg <∞











.

In particular, we will consider immersions in R
3.

Observe that the Willmore functional is well defined on the space EΣ2 , see (7).
Moreover, thanks to the (local) existence of a smooth conformal structure (see
Theorem 2.7 below), we can extend the notion of Willmore immersion to the
larger class EΣ2 as follows (in the case of immersions into R3).

Definition 2.6 (Weak Willmore immersion) Let ~Φ belong to EΣ2 .
~Φ is called a weak Willmore immersion if in any Lipschitz conformal chart Ψ
from the two-dimensional disk D2 into (Σ2, ~Φ∗gR3) the following holds

div(2∇ ~H − 3H∇~n−∇⊥~n× ~H) = 0 in D′(D2).

2.3 The isoperimetric constraint

As already mentioned in the introduction we want to study sequences of immer-
sions of a closed surface Σ2 of any genus minimizing the Willmore energy under
the constraint that the isoperimetric ratio is fixed. More precisely, we minimize
the Willmore energy among the weak immersions ~Φ ∈ EΣ2 satisfying

iso(~Φ) :=
(Area(~Φ))3
(

V ol
(

~Φ
))2 = R ,

where R is a given constant and V ol
(

~Φ
)

denotes the volume enclosed by ~Φ,

i.e. the volume of the bounded connected component of R3\~Φ(Σ2).
Since by definition of Ig as in (5) we work below the energy threshold of 8π,
thanks to Corollary 2.5 (or more precisely to its generalization to integer vari-
folds by Kuwert-Schätzle in [24, Appendix]), the weak immersions we will handle
do not have any self intersections. Thus there are no difficulties in defining the
isoperimetric ratio.

Observe that due to the scaling invariance of the Willmore functional, fixing the
isoperimetric ratio is equivalent to fix both area and enclosed volume.
At this point, it may be of interest to ask which equation is satisfied by a
critical point of the Willmore functional under the isoperimetric constraint.
By scaling, we can assume that the enclosed volume equals to one, so fixing
the isoperimetric ratio is equivalent to fix the area; therefore we are looking
for critical points of the Willmore functional under area constraint. Applying
the Lagrange multiplier principle, we find the following characterization - for
conformal immersions which are area-constraint Willmore-

∆gH~n+ 2H(H2 −K)~n = µH~n = µ ~H =
µ

2
∆g

~Φ =
µ

2
e−2λ∆~Φ ,
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where we used ~H = 1
2∆g

~Φ = 1
2e

−2λ∆~Φ. Equivalently, we have

div(2∇ ~H − 3H∇~n−∇⊥~n× ~H − µ∇~Φ) = 0 (12)

where we used the description of Willmore surfaces given by equation (9).
More details about this equation will be given later when studying the regularity
of the minimizer.

2.4 Coulomb frames, conformal coordinates and estimates

for the conformal factor

As mentioned above, in addition to the formulation of the Willmore surface
equation as a conservation law, we have to break the symmetry group, i.e. the
invariance under diffeomorphisms of the surface Σ2.
In fact, not only the right choice of coordinates, or gauge, is crucial, but in
addition we need an appropriate control of the conformal factor.
A detailed presentation of the relation between conformal coordinates, Coulomb
gauges and the Chern moving frame method is obviously beyond the scope of
this article. Nevertheless, let us shortly summarize the most important results.
First of all, the existence of conformal coordinates and a smooth conformal
structure is asserted by the following theorem (see [47], [17])

Theorem 2.7 Let Σ2 be a closed smooth 2-dimensional manifold. Let ~Φ be
an element of EΣ2 . Then there exists a finite covering of Σ2by discs (Ui)i∈I
and Lipschitz diffeomorphisms Ψi from the 2-dimensional unit disc D2 into
Ui such that ~Φ ◦ Ψi realizes a Lipschitz conformal immersion of D2. Since
Ψ−1
j ◦ Ψi is conformal and positive (i.e. holomorphic) on Ψ−1

i (Ui ∩ Uj) the

system of charts (Ui,Ψi) defines a smooth conformal structure c on Σ2 and
in particular there exists a constant scalar curvature metric gc on Σ2 and a
Lipschitz diffeomorphism Ψ of Σ2 such that ~Φ◦Ψ realizes a conformal immersion
of the Riemann surface (Σ2, gc).

Once we know about the existence of a conformal immersion, we want to ad-
dress the question whether the conformal factor can be estimated appropriately.
Concerning this latter question, we have the following answer (see [50] and [48]).

Theorem 2.8 Let ~Φ be a Lipschitz conformal immersion from the disc D2 into
Rm. Assume

∫

D2

|∇~n~Φ|2 < 8π/3. (13)

Then for any 0 < ρ < 1 there exists a constant Cρ independent of ~Φ such that
for the conformal factor eλ the following estimate holds

sup
p∈B2

ρ(0)

eλ(p) ≤ Cρ

[

Area(~Φ(D2))
]1/2

exp
(

C

∫

D2

|∇~n~Φ|2
)

.

Moreover, for two given distinct points p1 and p2 in the interior of D2 and again
for 0 < ρ < 1 there exists a constant Cρ > 0 independent of ~Φ such that

||λ||L∞(B2
ρ(0))

≤ Cρ

∫

D2

|∇~n~Φ|2

+ Cρ

∣

∣

∣
log

|~Φ(p1)− ~Φ(p2)|
|p2 − p1|

∣

∣

∣
+ Cρ log+

[

CρArea(~Φ(D
2))

]

12



where log+ denotes the positive part of the logarithm.

In our particular case, we will have a variant of such an estimate of the confor-
mal factor.
For a precise statement of this modified estimate, we refer to Lemma 4.1 below.

Note that the (Willmore) energy assumption (13) is also crucial in Hélein’s lifting
theorem which asserts the existence of a moving frame with energy estimates
provided that one starts with a map whose second fundamental form, measured
in L2, is below the critical threshold.

Theorem 2.9 Let ~n be a W 1,2-map from the 2-dimensional disc D2 into the
Grassmannian manifold Grm−2(R

m) of oriented m − 2-planes in Rm. Then
there exists a constant C > 0 such that there exist ~e1 and ~e2 in W 1,2(D2, Sm−1)
such that

~n = ∗(~e1 ∧ ~e2)
with

∫

D2

2
∑

i=1

|∇~ei|2 < C

∫

D2

|∇~n|2

provided that
∫

D2

|∇~n|2 < 8π

3
.

A proof of this theorem can be found in [17].

3 Proof of Theorem 1.1

First of all, let us state the following useful result proved by Schygulla [57].

Proposition 3.1 For every R ∈ (0, 36π] there exists a smooth embedded spher-
ical surface with isoperimetric ratio equal to R and having Willmore energy
strictly less than 8π.

Let us recall the main lines of the nice proof: inverting a Cathenoid in the
origin and desingularizing it in 0, one obtains a spherical surface with energy
strictly less than 8π and arbitrarily small isoperimetric ratio; then, make this
surface evolve under Willmore flow. Thanks to the results of Kuwert-Schätzle
[22]-[23]-[24], the flow will converge smoothly (as t ↑ +∞) to a round sphere
(whose isoperimetric ratio is 36π); therefore, since the flow is smooth and does
not increase the Willmore energy, and since the isoperimetric ratio depend con-
tinuously on the parameter of the flow, for every R ∈ (0, 36π] one has produced
a spherical surface with isoperimetric ratio equal to R and Willmore energy
strictly less than 8π as desired.

The second ingredient for the proof of Theorem 1.1 is a compactness result
for weak immersions of spheres proved by the second and third authors [38,
Theorem I.2]. Since by Proposition 3.1 we can work under an 8π−δ assumption,
let us state the compactness result under this simplifying hypothesis (which
prevents the bubbling phenomenon and the presence of branch points, thanks
to Theorem 2.4).
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Proposition 3.2 Let {~Φk} ⊂ ES2 be a sequence of weak conformal immersions
of the 2-sphere S2 into R3 such that

sup
k
Area(~Φk) <∞, inf

k
diam(~Φk(S

2)) > 0 and W (~Φk) < 8π − δ , (14)

where diam(E) is the diameter of the subset E ⊂ R3 and δ > 0 is some positive
constant.

Then there exist a subsequence that we still denote {~Φk}, a sequence {fk} of
elements in M+(S2) (the positive Moebius group of S2) and finitely many points
{a1, . . . , an} such that

~Φk ◦ fk ⇀ ~Φ∞ weakly in W 2,2
loc (S

2 \ {a1 · · · an}) , (15)

where ~Φ∞ ∈ ES2 is conformal. In addition, by lower semicontinuity of W under
weak W 2,2 convergence, we have

W (~Φ∞) ≤ lim inf
k

W (~Φk) < 8π ,

so Φ∞ is a (weak) embedding, and moreover

Area(~Φk) → Area(~Φ∞) and V ol
(

~Φk

)

→ V ol
(

~Φ∞

)

. (16)

The proof Theorem 1.1 now follows quite easily by the two propositions above:
thanks to Proposition 3.1, for any R ∈ (0, 36π], the infimum of W among weak
immersions in ES2 under the constraint of fixed isoperimetric ration equal to R
is strictly less than then 8π; therefore, for any minimizing sequence {~Φk} ⊂ ES2
of the constrained problem we have

W (~Φk) ≤ 8π − δ ,

for some δ > 0. Therefore ~Φk are (weak) embeddings and, as already observed

by the scale invariance of W , we can assume that the enclosed volume of ~Φk
is constantly equal to 1 and the area of ~Φk is constantly equal to R1/3. From
Simon’s Lemma 5.5 recalled in the Appendix, we also have a strictly positive
lower bound on the diameters of ~Φk(S

2) as subsets of R3. Collecting the above

informations, we conclude that ~Φk satisfies the assumptions of Proposition 3.2;
it follows that there exists a weak embedding ~Φ∞ ∈ ES2 , with iso(~Φ∞) = R,
which realizes the infimum of W under the isoperimetric constraint, as desired.
For the proof of the regularity see Subsection 4.2.6. ✷

In the next section we will analyze the more delicate case of genus g ≥ 1.

4 Proof of Theorem 1.2

Let Σ2 be a 2-dimensional surface of genus g ≥ 1, and
{

~Φk

}

⊂ EΣ2 be a mini-

mizing sequence for the minimization problem of Theorem 1.2, i.e. minimization
of the Willmore energy among weak immersions of Σ2 under the constraint that

the isoperimetric ratio (Area(~Φn))
3

(

V ol

(

~Φn

))

2 is fixed and equals R, for some R ∈ Ig
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where Ig is defined in (5). Our goal is to show that the minimizing sequence is
compact, the limit belongs to EΣ2 and satisfies the required geometrical proper-
ties. The procedure we apply here is inspired by the one used in [48] (see also
[6], Lemma II.1).

4.1 Normalization of the minimizing sequence

4.1.1 Conformality of ~Φk ∈ EΣ2 in EΣ2

Note that a priori, the elements of our sequence are not necessarily conformal.
But thanks to theorem 2.7 we may replace the original ~Φks by ~Φk ◦ Ψk which
are weakly conformal immersions.
In a few words, the idea behind the quoted theorem is that one starts with a
frame with controlled energy, improves it into a Coulomb frame on each coordi-
nate patch, applies the improvement of the will known Wente estimate due to
Chanillo and Li (see [10]) and finally concludes by using the Riemann mapping
theorem.
This new sequence will still be denoted - by abuse of the notation -

{

~Φk

}

. Note

that this new sequence consists of conformal immersions of Σ2. Rephrased, we
have exploited the invariance in the domain.
Note that this procedure does not affect the isoperimetric ratio since of course
this latter quantity is intrinsic, i.e. it does not depend on the choice of coordi-
nates.

Remark At this stage, we would briefly comment on the difference between the
present procedure and the one used in the unconstrained case presented in [48].
In this latter case the invariance in the target under Möbis transformations is
used as well (see [48], Lemma A.4). In particular, inversions play a crucial role.
Since such inversions do not preserve the isoperimetric ratio we will not exploit
this invariance.

4.1.2 Points of energy concentration

Roughly speaking we will have only finitely many points {ai} where energy can
accumulate with a critical energy threshold equal to 8π

3 . This is done as follows.

First of all, recall that gk := ~Φ∗
kgR3 is the pull back metric, and hk denotes the

metric of constant scalar curvature associated to the conformal class ck of the
metric gk.
Next, the hypothesis that the Willmore energy of our immersions stays below
min{8π, ω3

g} (for sufficiently large k) implies that the conformal structures are
contained in a compact subset of the moduli space of Σ2 (see Theorem 5.2 in
the Appendix). Thus the metrics hk converge to h∞, the metric of constant
scalar curvature associated to the limiting conformal structure c∞ (about the
existence of such a metric we refer to [19]). This convergence holds in Cs(Σ2)
for all s.
Now, to each point x in Σ2 we assign a critical radius which “cuts out 8π

3
Willmore energy”, more precisely, this radius ρkx is defined as follows

ρxk := inf
{

ρ
∣

∣

∣

∫

Bρk (x)

|∇n~Φk |
2
gk
dvolgk =

∫

Bρk (x)

|∇n~Φk |
2
hk
dvolhk =

8π

3

}
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where Bρk(x) denotes the geodesic ball in (Σ2, gk) centered at x with radius ρk.
Obviously, {Bρxk/2(x)}x∈Σ2 is a covering of Σ2.

Next we extract a finite Besicovitch covering: each point x ∈ Σ2 is covered
by at most N = N(Σ2, g∞) ∈ N such balls. This extracted covering is de-
noted {Bρik/2(x

i
k)}i∈I . Then we pass to a subsequence such that the following

properties are satisfied

i)
I is independent on k

ii)
xik → xi∞

iii)
ρik → ρi∞.

And we set

I0 :=
{

i ∈ I such that ρi∞ = 0
}

and I1 := I\I0.

Obviously,
⋃

i∈I1

B̄ρi
∞
/2(x

i
∞) covers Σ2

(where the balls are measured in the metric g∞) and thanks to the strict con-
vexity of our balls - with respect to the flat or hyperbolic metric - there are only
isolated, finitely many point in Σ2 which are not covered by the union of the
open balls. Thus we denote these exceptional point by {ai, . . . , an}, or more
precisely

{a1, . . . , an} := Σ2\
⋃

i∈I1

Bρi
∞
/2(x

i
∞).

Rephrased, we have identified the points of energy concentration.

Note that the final covering of Σ2\{a1, . . . , an},

Σ2\{a1, . . . , an} ⊂
⋃

i∈I1

Bρi
∞
/2(x

i
∞) (17)

satisfies
∫

Bρi
∞

(xi
∞

)

|∇~n~Φk |
2 ≤ 8π

3

for all k and all i ∈ I1.

4.1.3 Analysis away from the energy-concentration-points: Control
of the conformal factor

In this subsection we will perform the analysis of our sequence {~Φk} away from
the energy-concentration points {a1, . . . , an}. Let us start with an estimate for

the conformal factors; as above, denote the conformal factor of ~Φk by λk.
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Lemma 4.1 Let ε > 0. Then there exist constants Ck and a constant Cε such
that - up to passing to a subsequence - we have

||λk − Ck||L∞(Σ2\∪ni=1
Bε(ai)) ≤ Cε.

Note that Cε does not depend on k, but only on ε. Whereas the Ck may depend
on k.
A result of the same spirit is used in [48]. Although the proof is quite similar to
the one in [48], let us recall the main arguments for the reader’s convenience.

Proof of lemma 4.1:
First of all, since Σ2 is a surface of genus at least one, the reference metric
g0 of constant scalar curvature is flat or hyperbolic. Therefore, recalling that
the immersions ~Φk are conformal so that gk := ~Φ∗

kgR3 = e2λkg0, the conformal
factors λk satisfy the Gauss-Liouville equation

−∆g0λk = Kgke
2λk +Kg0 .

Now, since the second fundamental form is in L2, observe that Kgke
2λk belongs

to L1 - with respect to g0. This fact implies by standard elliptic estimates that
for a constant depending only on the surface Σ2 and the metric g0 we have

||dλk||L2,∞(Σ2,g0) ≤ C||∆g0λk||L1(Σ2,g0) ≤ C

[
∫

Σ2

|Kgk |e2λkdvolg0 + |Kg0 |Areag0 (Σ2)

]

≤ C′

[
∫

Σ2

|Kgk |dvolgk + 1

]

≤ C′

[
∫

Σ2

|d~n~Φk |
2
gk
dvolgk + 1

]

≤ C′′
[

W (~Φk) + 1
]

< C′′′.

Now, let ε be given. Starting from the covering
⋃

i∈I1
Bρi

∞
/2(x

i
∞) (cf. (17)) we

obtain a covering of Σ2\ ∪ni=1 Bε(ai) of the following form

Σ2\ ∪ni=1 Bε(ai) ⊂
⋃

i∈I1

Bri/2(x
i
∞)

where ri < ρi∞ (the balls here and in the following steps are measured in the
metric g∞).
Note that the connectedness of Σ allows us, up to a relabeling of our balls,
to assume that two consecutive balls have non-empty intersection. Recall now
that by the properties of the covering (17) and the conformal invariance of the
integrand, we have

∫

Bri (x
i
∞

)

|∇~n~Φk |
2 <

8π

3
.

Next we use Héleins moving frame method [17]:
Thanks to our construction, on the balls Bri(x

i
∞) ⊂ Bρi

∞

(xi∞) we have strictly

less than the critical energy 8π
3 . Using Theorem 2.9 (for more details see [17] or

[50]), upon identifying Bri(x
i
∞) with the 2-dimensional Euclidean unit disk D2,

for each k there exists a moving frame with controlled energy, i.e. (~e1k, ~e
2
k) ∈

S2 × S2 with the following properties

i)
~e1k · ~e2k = 0 and ~n~Φk = ~e1k ∧ ~e2k
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ii)
∫

D2

(|∇~e1k|2 + |∇~e2k|2) ≤ 2

∫

D2

|∇~n~Φk |
2 ≤ 16π

3

iii)
{

div(~e1k,∇~e2k) = 0 in D2
(

~e1k,
∂~e2k
∂ν

)

= 0 on ∂D2.

In these frames we can express the conformal factors λk as follows

−∆λk = (∇⊥~e1k,∇~e2k).
Now, consider the solution µk of the following problem

{

−∆µk = (∇⊥~e1k,∇~e2k) in D2

µk = 0 on ∂D2.

For this solution, Wente’s theorem (see theorem 5.3 in the Appendix) gives the
estimate

||µk||L∞(Bri (x
i
∞

)) + ||∇µk||L2,1(Bri (x
i
∞

)) + ||∇2µk||L1(Bri (x
i
∞

))

≤ C

∫

Bri (x
i
∞

)

(|∇~e1k|2 + |∇~e2k|2) ≤ 2

∫

Bri (x
i
∞

)

|~n~Φk |
2 ≤ C

16π

3
.

Next, we look at vk := λk − µk. Since vk is harmonic, then we have (see e.g.
[16])

||vk − v̄k||L∞(Bri/2(x
i
∞

)) ≤ C

where v̄k is the average of vk over the ball Bri(x
i
∞). Putting together all the

information we have so far, we conclude that there exist constants C̄k

||λk − C̄k||L∞(Bri/2(x
i
∞

)) ≤ C.

In a last step, we combine the fact that the above arguments apply for all balls
in our finite covering with the fact that two consecutive balls have non-empty
intersection in order to conclude that the constant C̄k depends only on k but
not on the ball we look at. This completes the proof of the lemma. ✷

Now, a priori there are three possibilities: either Ck remain bounded, or they
tend to −∞ or diverge to +∞.
Observe that The latter case is excluded, since our hypothesis imply that the
area of ~Φk remain bounded. Indeed, since the Willmore functional is scaling in-
variant, the isoperimetric constraint is equivalent to fix both area and enclosed
volume. Thus, recalling that the area form is exactly e2λk , the assumption that
Ck → +∞ would imply that the area of ~Φk(Σ

2), which is of course at least the
area of Σ2\ ∪ni=1 Bε(ai)), would become arbitrarily large. But this contradicts
the assumption that the areas are fixed.
On the other hand, the fact that if Ck tend to −∞ the area of Σ2\∪ni=1Bε(ai))
tends to zero does not a priori lead to a contradiction to the boundedness of the
areas. In fact, due to a bubbling phenomenon, it could happen that we have
large area on the exceptional ball Bε(ai)). So, a priori we can exclude only the
possibility that Ck → +∞.
Below we will examine the remaining two possibilities.
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4.2 The case of bounded conformal factors

In the present subsection, we assume that the Ck remain bounded. The case of
diverging conformal factors will be discussed (and excluded) in Subsection 4.3.

4.2.1 Weak convergence in W 2,2

The assumption that the Ck remain bounded, i.e. supk∈N |Ck| < ∞, together
with Lemma 4.1 immediately implies that

lim sup
k→∞

||λk||L∞(Σ2\∪i=ni=1
Bε(ai)) <∞.

Therefore, recalling that ∆~Φk = 2e2λk ~Hk, we infer that the following estimates
hold

{

||∆~Φk||L2(Σ2\∪i=ni=1
Bε(ai)) < C(ε)

|| log |∇~Φk| ||L∞(Σ2\∪i=ni=1
Bε(ai)) < C(ε)

From that, we deduce that there exists a subsequence which converges weakly
to a limit ~Φ∞ in W 2,2(Σ2\ ∪ni=1 Bε(ai)); in particular, by Rellich Theorem, we
have that

∇~Φk → ∇~Φ∞ strongly in Lp(Σ2\ ∪ni=1 Bε(ai)) ∀ p <∞

and hence upon passing to a subsequence, the gradients converge even almost
everywhere pointwise.

Remark 4.2 Note that the above strong convergence of the gradients implies
the convergence of the areas - away from the points ai.
Moreover, by Sobolev embeddings we know that the sequence ~Φk converges
in C0,α for α < 1 and thus, roughly said, the enclosed volume converges as
well away the points ai and hence “the isoperimetric ratio is preserved in the
limit away the points ai”. We will make this statement more precise later in
Subsubsection 4.2.5. ✷

4.2.2 Conformality of the limit

Recall that the sequence we have after all the preceding steps consists of con-
formal embeddings, i.e. we have for all k

{

∂x1
~Φk · ∂x2

~Φk = 0

|∂x1
~Φk|2 − |∂x2

~Φk|2 = 0.

Due to the a.e. pointwise convergence of the gradients ∇~Φk (see above) we
immediately can conclude that the conformality condition passes to the limit,
i.e.

{

∂x1
~Φ∞ · ∂x2

~Φ∞ = 0

|∂x1
~Φ∞|2 − |∂x2

~Φ∞|2 = 0.

Together with the L∞-control of the conformal factors, this implies that

~Φ∞ ∈ EΣ2\∪ni=1
Bε(ai).
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4.2.3 Control of ~Φ∞ over the whole Σ2

Thanks to the results of the analysis performed so far, we can apply the following
lemma due to Rivière (see [48], see also the article of Kuwert and Li [21]).

Lemma 4.3 Let ~ξ be a conformal immersion of D2\{0} into R
m in

W 2,2(D2\{0},Rm) and such that log |∇~ξ| ∈ L∞
loc(D

2\{0}). Assume ~ξ extends
to a map in W 1,2(D2) and that the corresponding Gauss map ~n~ξ also extends

to a map in W 1,2(D2, Grm−2(R
m)). Then ~ξ realizes a Lipschitz conformal im-

mersion of the whole disc D2 and there exits a positive integer n and a constant
C such that

(C − o(1))|z|n−1 ≤
∣

∣

∣

∂~ξ

∂z

∣

∣

∣
≤ (C + o(1))|z|n−1.

More precisely, we apply this lemma to ~Φ∞ around each exceptional point ai,
i = 1, . . . , n.

Claim: In our situation, the assertion of the above lemma holds with n = 1, i.e.

(C − o(1))|z| ≤
∣

∣

∣

∂~ξ

∂z

∣

∣

∣
≤ (C + o(1))|z|.

In other words, there is no branching.

Proof of the claim:
First of all, observe that the above chain of inequalities implies that for any
δ > 0 there exists a radius rδ > 0 such that for all r < rδ we have

~Φ∞(Br(ai)) ⊂ Bρ(~Φ∞(ai)) and |∂z~Φ∞| = eλ∞ ≥ C
1− δ√

2
|z|n−1.

where ρ = C2−1/2n−1(1 + δ)rn.

Using these facts, we then can estimate the mass of ~Φ∞(Σ2) inside the ball

Bρ(~Φ∞(ai)) as follows (note that here ~Φ∞ is seen as a varifold)

µ(~Φ∞ ∩Bρ(~Φ∞(ai)) ≥ C2 (1 − δ)2

2

∫

Br(ai)

|z|2n−2

≥ πC2(1− δ)2

2n
r2n

≥ nπ
(1− δ

1 + δ

)2

ρ2.

From this estimate we deduce that the 2-dimensional lower density of ~Φ∞(Σ2)

at the point ~Φ∞(ai), θ
2
∗(
~Φ∞(Σ2), ~Φ∞(ai)) is bigger or equal to n.

On the other hand, the Li-Yau inequality (see [33]) - and in particular the
extension of this inequality to the setting of varifolds with mean curvature in
L2 (see [24] (Appendix))-

θ2∗(µ, x∗) ≤
1

4π
W (µ)
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implies that

n ≤ θ2∗(
~Φ∞(Σ2), ~Φ∞(ai)) ≤

W (~Φ∞(Σ2))

4π
<

8π − δ

4π
< 2

where we used also the lower semicontinuity of the Willmore functional W and
the assumption that W (~Φk) < 8π − δ for some δ > 0.
Finally, this leads to the conclusion that n = 1. ✷

In other words, we have a point removability phenomenon (cf. also proof of the
above cited lemma).
Note that this together with the fact that away from the points ai we have
convergence in C0,α implies that ~Φk(Σ

2) remain bounded.

4.2.4 Limit of
{

~Φk

}

in EΣ2

The results from the previous section immediately lead to the conclusion that
~Φ∞ is a Lipschitz immersion, and thus together with the W 2,2 convergence
established earlier we find that ~Φ∞ ∈ EΣ2 .

4.2.5 The isoperimetric constraint in the limit

It remains to show that the limit ~Φ∞ satisfies the isoperimetric constraint.
First of all, observe that in all the modifications of our initial minimizing se-
quence, we did nothing that could affect the isoperimetric constraint. So, we
always have a sequence of immersions respecting the isoperimetric constraint.
Recall that the requirement of fixed isoperimetric ratio can be rephrased as fix-
ing the area as well as the enclosed volume.
At first glimpse, one might have the idea that the information we have at hand
- more precisely that our sequence {~Φk} converges in W 2,2 - away from points

of energy concentration - might be enough in order to show that the limit ~Φ∞

satisfies the required isoperimetric constraint. But this is not the case. We will
explain this by looking at the area.
Convergence of the area would be a consequence of

eλk → eλ∞ .

But this convergence does not need to hold, since we have only the local control
of the conformal factors

||λk − Ck||L∞(Σ2\∪i=ni=1
Bε(ai)) ≤ Cε

from Lemma 4.1. Thus, the closer we get to the points ai the bigger the L∞-
norms of the conformal factors may become.

Our strategy in order to show that the limit ~Φ∞ satisfies the isoperimetric
constraint is to exclude a bubbling phenomenon.
Roughly speaking, we will detect regions of positive area which carry an energy
contribution of at least 4π. This will lead to a contradiction to our initial
hypothesis that W (~Φk) < 8π−δ. More precisely, we prove the following lemma.
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Lemma 4.4 Let {~Φk} be as above and denote by ai, i = 1, . . . n, the points of
energy concentration. Then we have

i) Assume that there exists an index i such that

lim inf
ε→0

lim inf
k→∞

d(~Φk(Bε(ai)), ~Φk(∂Bε(ai)) > 0 ,

where d denotes the usual distance between two sets
d(A,B) := supp∈B infq∈A |p− q|, then

lim inf
ε→0

lim inf
k→∞

W (~Φk(Bε(ai))) ≥ 4π.

ii) Assume that there exists an i such that

lim inf
ε→0

lim inf
k→∞

Area(~Φk(Bε(ai)) > 0

then
lim inf
ε→0

lim inf
k→∞

W (~Φk(Bε(ai))) ≥ 4π.

Proof of Lemma 4.4:
Before passing to the proof of i) let us start with a general observation (which
holds independently of i) or ii) above): we claim that, up to passing to a
subsequence in k, we have

lim
ε→0

lim
k→∞

H1(~Φk(∂Bε(ai))) → 0. (18)

Indeed, recall that we have

~Φk → ~Φ∞ weakly inW 2,2(Σ2\ ∪i Bε(ai)) .

Then from the classical trace theorem (see for instance [54]), we know that

∇~Φk(∂Bε(ai)) converges weakly in F
1
2

2,2(∂Bε(ai)) = H
1
2 (∂Bε(ai)). Here, F sp,q

denotes the standard Triebel-Lizorkin space. Therefore, from the standard com-
pactness part of the Sobolev embedding theorem, we find that ∇~Φk(∂Bε(ai))
converges even strongly in L2(∂Bε(ai)) and in particular in L1(∂Bε(ai)) .
Thus we have

H1(~Φk(∂Bε(ai))) =

∫

∂Bε(ai)

|~̇Φk| dl → H1(~Φ∞(∂Bε(ai))) =

∫

∂Bε(ai)

|~̇Φ∞| dl.

Finally, we recall that the limit immersion ~Φ∞ is Lipschitz, so

lim
ε→0

∫

∂Bε(ai)

|~̇Φ∞| dl → 0 ,

since |∂Bε(ai)| → 0 as ε→ 0.

Proof of part i):
In order to prove statement i), we will use a result of Rivière (see [47]) giving
an estimate on the Willmore energy of a compact surface with boundary; for
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the precise statement see Lemma 5.4 in the Appendix. Applying the mentioned
estimate to the immersions ~Φk restricted to Bε(ai), we find

4π ≤ lim inf
ε→0

lim inf
k→∞

(

W (~Φk(Bε(ai))) + 2
H1(~Φk(∂Bε(ai)))

d(~Φk(∂Bε(ai)), ~Φk(Bε(ai)))

)

= lim inf
ε→0

lim inf
k→∞

W (~Φk(Bε(ai))) , (19)

where in the last equality we used (18) together the assumption of i). Thus,
assertion i) is proved.

Proof of part ii): Without loss of generality we might assume that the hypoth-
esis holds for the point a1. In the sequel it is enough to study the situation
around this particular point.

First of all let us recall the following assertion which can be seen as a version of
Green’s theorem for immersed surfaces:
Let Σ2 be a smooth compact surface with boundary, let ~Φ ∈ EΣ2 be an immersion
of Σ2 into Rn and let ~X be a smooth vector field in Rm. Then it holds
∫

~Φ(Σ2)

div~Φ(Σ2)
~X dvolg~Φ =

∫

~Φ(∂Σ2)

〈 ~X,~ν〉 dl~Φ(∂Σ2)−2

∫

~Φ(Σ2)

〈 ~X, ~H〉 dvolg~Φ (20)

where

div~Φ(Σ2)
~X :=

2
∑

k=1

〈d ~X · ~ek, ~ek〉

for any local orthonormal frame (~e1, ~e2) on ~Φ(Σ2) and ~ν := e−λ∂r~Φ (where as

usual λ denotes the conformal factor of the immersion ~Φ.
A proof of this classical formula can be found for instance in [47].

Now, we continue the proof of part ii) of the Lemma 4.4.

In a first step, we will apply formula (20) to ~Φk, restricted to the ball Bε(a1),

and to the vector field ~X(x) = x− ~Φk(a1); observing that divX ≡ 2, we get

2Area(~Φk(Bε(a1))) =

∫

~Φ(Bε(a1))

div ~X dvolgk

=

∫

~Φ(∂Bε(a1))

〈 ~X,~ν〉 dl − 2

∫

~Φ(bε(a1)

〈 ~X, ~H〉 dvolgk

≤ diam(~Φk(Bε(a1))) H1(∂~Φk(Bε(a1)))− 2

∫

~Φ(bε(a1)

〈 ~X, ~H〉 dvolgk

≤ diam(~Φk(Bε(a1))) H1(∂~Φk(Bε(a1)))

+ 2diam(~Φk(Bε(a1))) W (~Φk(Bε(a1)))
1
2 Area(~Φk(Bε(a1)))

1
2 .

Rearranging terms, we find

Area(~Φk(Bε(a1)))
1
2 − diam(~Φk(Bε(a1)))H1(∂~Φk(Bε(a1)))

2Area(~Φk(Bε(a1)))
1
2

≤ diam(~Φk(Bε(a1)))W (~Φk(Bε(a1)))
1
2 .
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Next, we recall that the diameters of the whole surfaces ~Φk(Σ
2) as well as the

diameter of the limit ~Φ∞(Σ2) are uniformly bounded thanks to Lemma 5.5; thus
we estimate

8π diam(~Φk(Bε(a1))) > W (~Φk) diam(~Φk(Bε(a1)))

≥W (~Φk(Bε(a1)) diam(~Φk(Bε(a1)))

≥ Area(~Φk(Bε(a1)))
1
2

− diam(~Φk(Bε(a1))) H1(∂~Φk(Bε(a1)))

2Area(~Φk(Bε(a1)))
1
2

≥ δ
1
2 − diam(~Φk(Bε(a1))) H1(∂~Φk(Bε(a1)))

2Area(~Φk(Bε(a1)))
1
2

≥ δ
1
2 − CH1(∂~Φk(Bε(a1)))

2Area(~Φk(Bε(a1)))
1
2

, for some C > 0

> δ1 > 0, since H1(∂~Φk(Bε(a1))) → 0

Therefore we found that diam(~Φk(Bε(a1))) ≥ δ2 > 0 for some δ2. But this

together with the fact that H1(∂~Φk(Bε(a1))) → 0 implies that

d(~Φk(∂Bε(a1)), ~Φ(Bε(a1))) > δ∗

for some positive δ∗. We can now conclude the proof of part ii) by applying the
(already proved) part i). ✷

Now, let us explain how Lemma 4.4 implies that the limit satisfies the isoperi-
metric constraint. We claim that, for every concentration point ai,

lim inf
ε→0

lim inf
k→∞

d(~Φk(Bε(ai)), ~Φk(∂Bε(ai)) = 0 (21)

and
lim inf
ε→0

lim inf
k→∞

Area(~Φk(Bε(ai)) = 0. (22)

Indeed, if by contradiction there exists a concentration point, say a1, where one
of the two statements above fail then

lim inf
k→∞

W (~Φk) = lim
ε→0

lim inf
k→∞

[

(

W (~Φk(Σ
2\ ∪i Bε(ai))) +W (~Φk(∪iBε(ai)))

]

≥ W (~Φ∞) + 4π ≥ 8π , (23)

where the first inequality comes from the lower semicontinuity of W under
weak-W 2,2 convergence together with the fact that ~Φ∞ is an element of EΣ2

and Lemma 10 applied to a1; the last inequality follows from W (~Φ∞) ≥ 4π.

But this last estimate is in contradiction with our hypothesis that the Willmore
energy stays strictly below 8π. Thus, our claim (21)-(22) holds.

Now, combining Remark 4.2 and the second claim (22) t we deduce that the
ares converge, i.e.

Area(~Φk) → Area(~Φ∞).
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Moreover, combining (18) and the first claim (21), we infer that also the diam-
eters have to vanish:

diam(~Φk(Bε(ai))) → 0 for all i.

But this last fact together with Remark 4.2 immediately leads to the conclusion
that the enclosed volumes converge as well

V ol
(

~Φk

)

→ V ol
(

~Φ∞

)

.

We conclude that the isoperimetric constraint passes to the limit.

4.2.6 Regularity of the limit, proof of Corollary 1.3

Fist of all, thanks to Corollary 2.5 observe that the uniform energy estimate

W (~Φk) < 8π − δ

together with the lower semicontinuity of the Willmore functional under weak
W 2,2 convergence immediately implies that the limit ~Φ∞ is an embedding, i.e.
~Φ∞ has no self intersection. Moreover, as we have seen in the preceding sub-
section, the limit satisfies the isoperimetric constraint.

Now, we study the regularity question. In a first step we will recall that the
Willmore functionalW is Fréchet differentiable and we will determine dW . Then
we will will establish the equation which is satisfied by the limit ~Φ∞ and finally
show the regularity.

Lemma 4.5 Let ~Φ belong to EΣ2 . Then the Willmore functional W is Fréchet
differentiable with respect to variations ~w ∈W 1,∞∩W 2,2 with compact support.
Moreover, for the differential we have the following formula

d~ΦW [~w] =

∫

∇~w ·
(

2∇ ~H − 3H∇~n−∇⊥~n× ~H
)

.

This lemma is a straightforward adaptation of the corresponding observation
made in [48] (see also the Appendix of [39]). Note that the differential exactly
corresponds to the reformulation of the Willmore equation in the form of a
conservation law as in (9).

Next, we give the equation which is satisfied by our limiting object ~Φ∞.

Lemma 4.6 Let ~Φ∞ be as above. Then it satisfies the following equation

div(2∇ ~H − 3H∇~n−∇⊥~n× ~H − µ∇~Φ) = 0.

Proof: The assertion is an immediate consequence of the lower semicontinuity
the the Willmore functional W and its differentiability, the classical fact that
the area functional A is Fréchet differentiable as well with differential

d~ΦA[~w] = −
∫

2 ~H · ~w

and the principle of Lagrange multipliers. To get the final formula recall also
that ~H = 1

2∆g
~Φ = 1

2e
−2λ∆~Φ. ✷
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Finally we have the following regularity assertion, whose proof is an easy adap-
tation of the regularity of Willmore immersions established in [45] (for the reg-
ularity of area-constrained Willmore immersions see also [39], and for a com-
prehensive explanation see [50]).

Lemma 4.7 ~Φ∞ is smooth.

The proof of Corollary 1.3 is now complete. ✷

4.3 The case of diverging conformal factors

So far, we have studied the case when Ck remain bounded. Now, we will analyze
the case where this is no longer true. As we have seen above, the only remaining
possibility is that - up to extraction of a subsequence - the conformal factors
tend to −∞.

4.3.1 Existence of at most one bubble

As above, the point where Willmore energy concentrates are denoted by ai, and
again we may assume that we have

Area(~Φk) = 1 ∀ k.

Thus, the fact that now the conformal factors diverge, i.e.

λk → −∞ onΣ2\ ∪i Bε(ai)

implies that there is at least one point ai where area concentrates.
More precisely, we have that there exists a point a∗ such that

lim inf
ε→0

lim inf
k→∞

Area(~Φk(Bε(ai))) > 0. (24)

Our next goal is to show that there is exactly one such point; this is the content
of the following lemma, whose proof follows by the 8π−δ bound on the Willmore
energy of ~Φk and the second part of Lemma 4.4.

Lemma 4.8 Assume that the conformal factors tend to −∞, i.e.

λk → −∞ as k → ∞.

Then there exists exactly one point a∗ ∈ Σ2 of concentration of the area, i.e.
where where (24) holds. Of course a∗ is also a point of concentration of the
energy, i.e. a∗ ∈ {ai}.

Directly from the lemma it follows that

lim inf
ε→0

lim inf
k→∞

Area(~Φk(Bε(a
∗))) = 1 and (25)

lim sup
ε→0

lim sup
k→∞

Area(~Φk(Σ
2\Bε(a∗))) = 0 . (26)
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Analogously, again using the 8π − δ bound on the Willmore energy of ~Φk and
the first part of Lemma 4.4, we also have

lim inf
ε→0

lim inf
k→∞

d(~Φk(Bε(a
∗)), ~Φk(∂Bε(ai)) > 0 and (27)

lim inf
ε→0

lim inf
k→∞

d(~Φk(Σ
2 \Bε(a∗)), ~Φk(∂Bε(ai)) = 0. (28)

On the other hand, recalling (18), also the lengths of the boundaries converge
to zero

lim sup
ε→0

lim sup
k→∞

H1(~Φk(∂Bε(a
∗))) → 0,

and combining this last observation with (28) we obtain that also the diameter
of the complementary of the bubble has to vanish in the limit:

lim sup
ε→0

lim sup
k→∞

diam(~Φk(Σ
2 \Bε(a∗))) = 0 . (29)

Observe that (26), respectively (29), implies that the portion of the surface
outside the bubble in a∗ is not contributing in the limit to the area, respectively
to the enclosed volume; therefore it does not contribute to the isoperimetric ratio
in the limit. Nevertheless notice that the bubble forming in a∗ is topologically
(a bigger and bigger portion of) a sphere, therefore the topological information
is carried by the shrinking part made by the complementary of the bubble.
Summarizing, we are facing a dichotomy between a (bigger) portion of the
surface (namely, the bubble) carrying the isoperimetric ratio, and a (smaller)
portion (the complementary of the bubble) carrying the topological information.
In the next subsection we isolate the two parts by performing a “cut and fill”
procedure.

4.3.2 Cut and fill

As described above the geometric situation can be described as follows (for k
sufficiently large): there is a dichotomy between the topological information
and the additional constraint of prescribed isoperimetric ratio. More precisely,
~Φk(Bε(a

∗)) forms a spherical bubble carrying the isoperimetric information and
~Φk(Σ

2\Bε(a∗)) keeps the topological information, i.e. it has the topological
type of Σ2, i.e. a genus g ≥ 1 surface.

The strategy now is to find estimates for the Willmore energy for the two parts
~Φk(Σ

2\Bε(a∗)) and ~Φk(Bε(a
∗)) and bring these estimates to a contradiction

with our additional hypothesis relating the Willmore energy of Schygulla-spheres
to the Willmore energy of our embeddings ~Φk.
In doing so, we will exploit the existence of a genus g ≥ 1 minimizers of the
Willmore energy among all genus g embedded surfaces (free minimization), the
existence of Schygulla-spheres SS,r, i.e. smoothly embedded surfaces of type
S2 minimizing the Willmore energy for the given isoperimetric ratio r, and the
fact that the function which assigns to each given isoperimetric ratio the Will-
more energy of the Schygulla-sphere for this given isoperimetric ratio is strictly
monotone and continuous. These latter fact are proved in [57].

In order to perform the above strategy, we will apply a cut-and-fill-procedure
in order to close each of the parts ~Φk(Σ

2\Bε(a∗)) and ~Φk(Bε(a
∗)), complete
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them separately to new closed surfaces and finally estimate appropriately their
Willmore energy. For this procedure, we will use the following adaptation of a
lemma which can be found (with proof) in [38].

Lemma 4.9 Let ~Φk be a sequence of conformal weak, immersions {~Φk} ⊂ EΣ2

into R3. Assume that

lim sup
k→∞

∫

Σ2

[1 + |D~n~Φk |
2]dvolgk <∞.

Let a ∈ Σ2 and sk, tk → 0 such that

tk
sk

→ 0

and

lim
k→∞

∫

Bsk (a)\Btk (a)

[1 + |I~Φk |
2]dvolgk = 0.

Then there exist conformal immersions ~ξk from Σ2 into R3 and a sequence of
quasi conformal bilipschitz homeomorphisms ψk of Σ2, converging in C0-norm
over Σ2 to the identity map, such that

~ξk ◦ ψk = ~Φk in Σ2\Bsk(a)

and

lim
k→∞

diam(~ξk ◦ ψk(Bsk(a)) = 0, lim
k→∞

Area(~ξk ◦ ψk(Bsk(a)) = 0.

Moreover

lim
k→∞

∫

Bsk (a)

|I0~ξk◦ψk |
2dvolg~ξk◦ψk

= 0

where I0~ξk◦ψk
is the trace free second fundamental form.

Remark 4.10 • Note that due to the assumption of bounded Willmore energy

inf
k
W (~Φk) < 8π

the hypothesis of the above lemma are satisfied, in particular is is possible
to find radii sk and tk such that

lim
k→∞

∫

Bsk (a
∗)\Btk (a

∗)

[1 + |I~Φk |
2]dvolgk = 0.

• At first glimpse, one might have the impression that by the cut-and-fill-
procedure guaranteed by the previous lemma we can close just one of the
two parts of our surface, either ~Φk(Σ

2\Bε(a∗)) or ~Φk(Bε(a∗)). But the proof
of the above cited result actually reveals that the procedure allows to close
both parts. More precisely, depending on the side from which we approach
the curve along which we cut (from “inside” or from “outside”), we have two
possibilities of closing the surface: either we glue almost an entire shrinking
sphere Σ1,sk with Willmore energy W (Σ1,sk) → 4π as sk → 0 or we glue
a shrinking almost flat disk Σ2,sk with Willmore energy W (Σ2,sk) → 0 as
sk → 0.
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• The only remaining risk would be that we create branch point.
From the proof of the original version of the above lemma in [38] we see that
this can be excluded once we can show that in

∆λ̂∞ = c0δ0

it holds c0 = 0.

In the above equation, λ̂∞ is the limit of the conformal factors λ̂k = log |∂x1
~̂Φk| =

log |∂x2
~̂Φk| where

~̂Φk := e−Ck(~Φk − ~Φk(x0))

for a suitable x0, and δ0 denotes the Dirac delta distribution centered at the
origin. We claim that, in the present framework, actually we have c0 = 0.
Indeed, by assumption, recall that there exists δ > 0 such that

W (~Φk) ≤ 8π − δ for all k. (30)

If we had c0 6= 0, ~̂Φ∞ had a branch point of order c0
2π . In other words, we had

that ~̂Φ∞ covers c0
2π +1 times the plane P 2

0 . Due to the fact that for any given

ε > 0, on Σ2\Bε(a∗) we have weak W 2,2-convergence of ~̂Φk to ~̂Φ∞, then for
any choice of 0 < 2α < β < ε

~̂Φk → ~̂Φ∞ in C0,γ(Bβ(a
∗)\B2α(a

∗))

by the classical Sobolev embedding theorem.
In this situation, we select a point p ∈ Bβ(a

∗)\B2α(a
∗) and a radius η small

enough such that
Bη(p) ⊂ Bβ(a

∗)\B2α(a
∗)

and we apply Lemma 5.6 in the Appendix to ~Φk(Σ
2) and a ball Bρ ⊂ R3

such that ~Φk(Bη(p)) ⊂ Bρ in order to conclude that - for η and ρ small
enough -

lim sup
k

W (~Φk) ≥ 8π − δ

2
.

Since this contradicts our hypothesis (30), we must have c0 = 0 and therefore
the immersions we created via Lemma 4.9 are unbranched.

✷

In a first step, applying Lemma 4.9, we get the following equalities for k large
enough

W (~Φk) = W (~Φk(Σ
2\Bsk(a∗))) +W (~Φk(Bsk(a

∗)))

= W (~ξk ◦ ψk(Σ2\Bsk(a∗))) +W (~Φk(Bsk(a
∗)))

Now, in the present dichotomy situation we have the following two possibilities
of filling: either we glue an almost entire sphere Σ1,sk to ~ξk ◦ ψk(Σ2\Bsk(a∗)))
and an almost flat disc Σ2,sk to ~Φk(Bsk(a

∗)) or viceversa.
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In the first case we can estimate

W (~Φk) = W (~ξk ◦ ψk(Σ2\Bsk(a∗))) +W (~Φk(Bsk(a
∗)))

= W (~ξk ◦ ψk(Σ2\Bsk(a∗)) ∪ Σ1,sk)−W (Σ1,sk)

+W (~Φk(Bsk(a
∗)) ∪ Σ2,sk)−W (Σ2,sk)

≥ β3
g −W (Σ1,sk) +W (~Φk(Bsk(a

∗)) ∪ Σ2,sk)−W (Σ2,sk)

since, by construction, ~ξk ◦ ψk(Σ2\Bsk(a∗)) ∪ Σ1,sk is a genus g surface

≥ β3
g − 4π − ε1(sk) +W (~Φk(Bsk(a

∗)) ∪ Σ2,sk)−W (Σ2,sk)

by the energy estimate for Σ1,sk of Remark 4.10

≥ β3
g − 4π − ε1(sk) +W (SS,iso(~Φk(Bsk (a∗))∪Σ2,sk

))−W (Σ2,sk)

since ~Φk(Bsk(a
∗)) ∪Σ2,sk has the topology of a sphere

≥ β3
g − 4π − ε1(sk) +W (SS,iso(~Φk(Bsk (a∗))∪Σ2,sk

))− ε2(sk)

by the energy estimate for Σ2,sk of Remark 4.10 .

Observe that as sk tend to 0, the two terms ε1(sk) and ε2(sk) vanish.
Moreover, exploiting the fact that

t 7→ β(t) :=W (SS,t)

is continuous in t (see [57]) together with the observation that (here we use that
~Φk(Bsk(a

∗)) carries the isoperimetric information of ~Φk, and the isoperimetric
contribution of Σ2,sk is negligible in the limit)

lim
k→∞

iso(~Φk(Bsk(a
∗)) ∪Σ2,sk) = R ,

we conclude that

W (SS,iso(~Φk(Bsk (a∗))∪Σ2,sk
)) →W (SS,R).

In the second case (i.e. the shrinking almost entire sphere Σ1,sk is glued

to the bubble ~Φk(Bsk(a
∗)), and the almost flat disc Σ2,sk is glued to ~ξk ◦

ψk(Σ
2\Bsk(a∗)) ) the analogous estimate bring to the same conclusions.

So in the limit we find

lim infW (~Φk) ≥W (TClifford) +W (SS,R)− 4π,

which contradicts that R ∈ Ig, and Ig is defined as in (5); therefore the case
Ck → −∞ cannot occur. Since the only remaining case is when {Ck} is bounded,
and in Subsection 4.2 we already proved the existence of a minimizer under this
assumption, the proof of Theorem 1.2 is now complete. ✷

5 Proof of Theorem 1.4

First of all, we will show that the set Ig is not empty. To this aim recall that
for every genus g ≥ 1 the infimum β3

g of the Willmore energy among genus g

immersed surfaces in R3 is attained by a smooth embedding ~Φg (for genus one
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see [60], for higher genus see [3]; for a different proof of the general case see

[48]). We claim that iso(~Φg) ∈ Ig, where Ig is defined in (5).
By a direct comparison with the stereographic projections of the Lawson mini-
mal surfaces of genus g in S3 (see e.g. the introduction of [60]), for every g ≥ 1
one has

β3
g < 8π ; (31)

moreover, by the work of Bauer and Kuwert [3] we know that

β3
g < ω3

g ; (32)

Finally, by the isoperimetric inequality in R3, the isoperimetric ratio of any
embedded surface in R

3 different from a round sphere is strictly larger then
iso(S2), then

iso(~Φg) > iso(S2) . (33)

By the fact that for any Schygulla sphere SS,t different from the round sphere
we have W (SS,t) > 4π (see [57]), we then deduce

W (~Φg) = β3
g < β3

g − 4π +W (SS,r=iso(~Φg)) ,

which, combined with (31) and (32) yields

W (~Φg) < min{8π, ω3
g, β

3
g − 4π +W (SS,r=iso(~Φg))} .

It follows that iso(~Φg) ∈ Ig as desired.

Before we continue the proof of Theorem 1.4, let us state and prove an easy
lemma which we will use later on.

Lemma 5.1 Look at the following map

Ψ :
{

Σ2 : Σ2 is a smoothly embedded surface inR3
}

→ R

Σ2 7→ iso(Σ2).

Then Σ2 is a critical point of Ψ if and only if Σ2 is a round sphere.

Proof. Due to the fact that the isoperimetric ratio is invariant under rescaling,
we may - without loss of generality - assume that the volume enclosed by Σ2 is
equal to 1.
Thus, Σ2 is a critical point of Ψ if and only if it is a critical point of the area
functional under the constraint of fixed volume.
But it is well known that this leads to the conclusion that Σ2 has to be surface
of constant mean curvature.
And finally by a famous theorem due to H. Hopf and Alexandrov (see for in-
stance [20], it follows that Σ2 is a round sphere. Thus the proof of Lemma 5.1
is complete. ✷

Now we come back to the proof of Theorem 1.4: given r ∈ Ig, we have to show
that there exists δ > 0 such that (r − δ, r + δ) ⊂ Ig.

By Theorem 1.2 we know that there exists a smooth embedding ~Φr : Σ
2 → R3
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minimizing the Willmore energy and respecting the given isoperimetric con-
straint iso(~Φr) = r.

By Lemma 5.1 we deduce that ~Φr is not a critical point of Ψ, in other words, the
differential of Ψ at the point ~Φr is surjective. Therefore, there exists a smooth

1-parameter family
{

~Φs

}

s∈(r−ε0,r+ε0)
of embeddings - obtained by perturbing

~Φr - such that for every ε ∈ (0, ε0) there exists δ > 0 such that

Ψ
({

~Φs

}

s∈(r−ε,r+ε)

)

⊃ (r − δ, r + δ). (34)

Now, recall that for the embedding ~Φr we started with, we have the following
estimate

W (~Φr) < min
{

8π, ω3
g, β

3
g +W (SS,r)− 4π

}

.

Thus, there exists η > 0 such that

W (~Φr) ≤ min
{

8π, ω3
g, β

3
g +W (SS,r)− 4π

}

− η.

Hence, from the smoothness in s of the family
{

~Φs

}

s∈(r−ε,r+ε)
, for s close

enough to r we have

W (~Φs) ≤ min
{

8π, ω3
g , β

3
g +W (SS,r)− 4π

}

− η

2
. (35)

In a last step, we exploit the continuity of the function which to a given isoperi-
metric ratio assigns the Willmore energy of the corresponding Schygulla sphere,
more precisely the function t 7→ β(t) := W (SS,t) is continuous in t (see [57] for
the proof). We deduce that for s close enough to r we have

|W (SS,Ψ(~Φs)
)−W (SS,r)| ≤

η

4
. (36)

Combining (35) and (36) we get

W (~Φs) ≤ β3
g +W (SS,Ψ(~Φs)

)− 4π − η

4

< β3
g +W (SS,Ψ(~Φs)

)− 4π.

This last inequality together with (35) and (34) conclude the proof of Theorem
1.4. ✷

Appendix

In this section we recall some useful (technical) results used in the main text.

We start with a result which relates the non-compactness of the conformal
classes to an estimate for the Willmore energy from below.
This result can be found in [47] and in [21] (or in [27] for m = 3, 4).
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Theorem 5.2 Let (Σ2, ck) be a sequence of closed Riemannian surfaces of
genus g and conformal classes ck. Assume that [ck] is diverging to the bound-

ary of the Moduli Space of the conformal classes on Σ2. Let {~Φk} ⊂ EΣ2 be a
sequence of weak immersions, conformal with respect to ck; then

lim inf
k→∞

∫

Σ2

| ~H~Φk
|2dvol~Φ∗

kgRm
≥ min{8π, ωmg }

where

ωmg := min

{

4π +

p
∑

i=1

(βmgi − 4π) | g = g1 + · · ·+ gp , 1 ≤ gi < g

}

and

βmg := inf
{

W (~Φ) | ~Φ is an immersion of the genus g closed surface
}

.

We continue with the famous Wente estimate.

Theorem 5.3 Let a and b be two function in W 1,2(D2,R). Moreover, let φ be
the unique solution of

{

−∆ϕ = ∇a · ∇⊥b = ∂xa∂yb− ∂ya∂xb in B2
1(0)

ϕ = 0 on ∂B2
1(0),

Then the following estimates hold

||φ||∞ + ||∇φ||2,1 + ||∇2φ||1 ≤ C||∇a||2||∇b||2

Here, || · ||2,1 denotes the norm of the Lorentz space L2,1.
A proof of this result can be found in [15] (see also [69] and [63]).

The next result - which can be found in [47] - gives an estimate of the Willmore
energy of a compact surface with boundary. It is a consequence of Simon’s
monotonicity formula with boundary.

Lemma 5.4 Let Σ2 be a compact surface with boundary and let ~Φ belong to
EΣ2 . Then the following inequality holds

4π ≤W (~Φ) + 2
H1(~Φ(∂Σ2))

d(~Φ(∂Σ2), ~Φ(Σ2))
(37)

where H1(∂~Φ(Σ2)) denotes the 1-dimensional Hausdorff measure of the bound-

ary of the immersion ~Φ(∂Σ2) and where d(·, ·) denotes the usual distance between
two sets in Rm.

A useful lemma relating area, diameter and Willmore energy of a connected,
compact surface without boundary is given by the following lemma due to Simon
(see [60]).
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Lemma 5.5 Let Σ2 ⊂ Rm be an immersed connected, compact surface without
boundary.
Then it holds

Area(Σ2)

W (Σ2)
≤ diam2(Σ2) ≤ CArea(Σ2)W (Σ2)

for some constant C > 0.

Finally, let us recall the following lemma due to Simon (see [60]) giving an
estimate for the Willmore energy from below.

Lemma 5.6 Assume that Σ2 ⊂ R
m is an immersed compact surface without

boundary, that ∂Bρ intersects Σ
2 transversely and that Σ2∩Bρ contains disjoint

subsets Σ1, Σ2 with Σj ∩ Bθρ 6= ∅, ∂Σj ⊂ ∂Bρ, and |∂Σj | ≤ βρ for j = 1, 2,
θ ∈ (0, 12 ) and β > 0. Then

W (Σ2) ≥ 8π − Cβθ

where C does not depend on Σ, β or θ.
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[17] Frédéric Hélein, Harmonic maps, conservation laws and moving frames,
Cambridge Tracts in Mathematics, 2002

[18] Wolfgang Helfrich, Elastic properties of lipid bilayers - theory and possible
experiments, Zeitschrift Für Naturforschung C - A Journal Of Biosciences.
28. (1973), 693-703

[19] Jürgen Jost, Compact Riemann Surfaces, Springer, 2006

[20] Wilhelm P. A. Klingenberg, Riemannian Geometry, De Gruyter, 1995

[21] Ernst Kuwert, Yuxiang Li,W 2,2-conformal immersions of a closed Riemann
Surface into Rn, Comm. Anal. Geom. 20 (2012), no. 2, 313340

[22] Ernst Kuwert, Reiner Schätzle, The Willmore flow with small initial energy,
J. Differential Geom. 57 (2001), 409-441

[23] Ernst Kuwert, Reiner Schätzle, Gradient Flow for the Willmore Functional,
Communications in Analysis and Geometry, 10 (2002), 307-339

[24] Ernst Kuwert, Reiner Schätzle, Removability of point singularities of Will-
more surfaces, Ann. of Math. 160(2004), 315-357

[25] Ernst Kuwert, Reiner Schätzle, Branch points of Willmore surfaces, Duke
Math. J. 138 (2007), no. 2, 179-201

[26] Ernst Kuwert, Yuxiang Li, Reiner Schätzle, The large genus limit of the
infimum of the Willmore energy. Amer. J. Math. 132 (2010), no. 1, 37-51

[27] Ernst Kuwert, Reiner Schätzle, Closed surfaces with bound on their Will-
more energy, to appear in Annali della Scuola Normale Superiore di Pisa,
2011, arXiv:math.DG/1009.5286.

[28] Ernst Kuwert, Reiner Schätzle, Minimizers of the Willmore functional un-
der fixed conformal class, J. Differential Geom. 93 (2013), no. 3, 471-530

35



[29] Ernst Kuwert, Reiner Schätzle, The Willmore functional, Topics in modern
regularity theory, 1–115, CRM Series, Scuola Normale Superiore Pisa, 2012

[30] Ernst Kuwert, Andrea Mondino, Johannes Schygulla, Existence of im-
mersed spheres minimizing curvature functionals in compact 3-manifolds,
preprint, 2011

[31] Tobias Lamm, Jan Metzger, Felix Schulze, Foliations of asymptotically flat
manifolds by surfaces of Willmore type, Math. Ann. (2011), 350-378

[32] L. D. Landau, E. M. Lifshitz, Theory of elasticity - Course of theoretical
physics, volume 7 - third edition revised and enlarged by E.M. Lifshitz,
A.M. Kosevich and L.P. Pitaevskii, Butterwoth-Heinemann 1986

[33] P. Li, S.-T.Yau, A New Conformal Invariant and its Applications to the
Willmore Conjecture and the First Eigenvalue on Compact Surfaces, In-
ventiones Math. 69 (1982), 269-291

[34] Reinhard Lipowsky, Erich Sackman, Structure and Dynamics of Mem-
branes, Elsevier, 1995
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