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Abstract

In this paper we prove a uniform estimate for the gradient of the Green function on a closed

Riemann surface, independent of its conformal class, and we derive compactness results for immersions

with L
2-bounded second fundamental form and for riemannian surfaces of uniformly bounded gaussian

curvature entropy.
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Introduction

Let Σ a closed smooth surface of genus g. We can endow Σ with a metric h, then thanks to the uni-
formization theorem, see [13] or [20], there exists in the conformal class of h, i.e. the set of metric on
Σ which can be written e2uh where u is a smooth function, a metric of constant curvature, equal to 1
if g = 0, 0 if g = 1 and −1 otherwise. The sphere case is very particular, since the conformal group is
not compact but this case is not of great interest here since there is only one conformal class. In the
hyperbolic case the metric is unique and in the torus it is also true up to normalized the area. In the
following, we assume this normalization and we still denote by h the metric of constant curvature (when
g ≥ 1) and we associate to h its Laplace-Beltrami operator ∆h. Then there exists, up to normalization,
a unique nonnegative Green function Gh associated to ∆h.
The main goal of this paper is to give estimates on Gh independently of the conformal class defined by
the metric h. This is a very classical subject in the theory of Riemann surfaces strongly related with the
behavior of the spectrum of the Laplace operator, see [3]. Let (Σ, hk) a sequence of hyperbolic surface
whose conformal class degenerate, that is to say that some geodesics are pinching. Let us assume that
there is only one degenerating geodesic γk, let denote Σ∞ its nodal limit, see section 1 for precise defi-
nition, then Ji, see [12], proved that If γk does not separate Σk then Gk is uniformly bounded on every
compact of Σ∞ × Σ∞, else lim

k→+∞
|Gk| = +∞ on Σ∞ × Σ∞.

Here we see that we have a very different behavior with respect to the manner the conformal class
degenerates. Is a similar behavior is possible for derivatives? Indeed, formally we can write

Gk(x, y) =
∑

i≥1

ϕki (x)ϕ
k
i (y)

λki
,

where λki and ϕki are respectively the ith (non vanishing) eigenvalue and the ith (non constant) eigenfunc-
tion of ∆hk

, repeating indices according to multiplicity. Of course if the the nodal limit is disconnected
then the first eigenvalue goes to zero while the first eigenfunction goes to a positive locally constant
function depending on the genus of each connected component. Looking at derivatives instead, one can
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expect a better behavior of the Green function, even in the collar region. However, the gradient of the
Green function gets a simple pole on the diagonal, hence it is not in L2. The main result of this paper
establishes that it is however true in a slightly weaker norm.

Theorem 0.1. Let Σ be a closed surface then there exits C a positive constant and an integer N depending
only on the genus of Σ such that for any metric h on Σ with constant curvature equal to 1, 0 or −1 and
with normalized volume1, and any Green function associated to h, there exists a finite atlas of N conformal
charts (Ui, ψi), such that for any y ∈ Σ we get

sup
t>0

t2
∣∣{x ∈ Vi | |dxGih(x, y)| ≥ t

}∣∣ ≤ C, (1)

where Vi = ψi(Ui) and G
i
h( . , y) = (ψi)∗(Gh( . , y)).

We can remark that on a fix Riemann surface (Σ, h), the Green function is always bounded for this
weak L2-norm. We can deduce it from the standard pointwise estimate, see [1],

|dx(Gih(x, y))| ≤
Ch

dh(x, y)
,

but of course this estimate depends on the metric we take on Σ.

At the knowledge of authors, this result is the first control of the Green function independent of the
conformal class. Moreover it looks quite optimal since the result is clearly false in L2. In fact the atlas
is very explicit, since, for intense considering the hyperbolic case, the surface divides in thick and thin
part, on the thick part we can consider any disc with radius smaller than the injectivity radius. And in
the thin part, using collar lemma, chart are given by degenerating annuli.

This result is optimal in the sense that we also prove that the weak L2-norm of the Green function
computed with respect to the intrinsic metric is not bounded when the singularity hold to a collapsing
region, which is make clear in the torus case by the proposition 2.1.

Regarding the proof of the theorem, once we have rule out the trivial case of the sphere then we treat
the case of a degenerating torus and of an hyperbolic surface quite differently. For the torus, our proof
relies on an estimate of the coefficient of the Fourier decomposition on a long thin cylinder using the
periodicity condition, and in the hyperbolic case, it relies on the coarea formula and the decomposition
of the surface in thin and thick part.

In the last sections, we give some applications of theorem 0.1 in differential geometry both from extrin-
sic and intrinsic point of view. First, we prove that the gradient of the conformal factor of an immersion
with L2-bounded second fundamental form is uniformly bounded in L2,∞, up to chose a convent atlas
given by theorem 0.1. Then we deduce a theorem of weak compactness for sequences of immersions with
L2-bounded second fundamental. This last result was partially already proved by Kuwert and Li and
the second author, see [14] and [17]. Finally, in the last section we prove that considering a sequence of
Riemann surface with bounded total curvature and entropy(see below for precise definition) then we can
find a finite conformal atlas in which the conformal factor is uniformly bounded.

Acknowledgements : The first author was visiting the Forschungsinstituts für Mathematik at E.T.H.
(Zurich) when this work started, he would like to thank it for its hospitality and the excellent working
conditions.

14π in the sphere case and 1 in the torus case
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1 Preliminaries

1.1 Lorentz spaces

Here we recall some classical facts about Lorentz spaces, [7] for details.

Definition 1.1. Let D be a domain of Rk, p ∈ (1,+∞) and q ∈ [1,+∞]. The Lorentz space Lp,q(D) is
the set of measurable functions f : D → R such that

|f |p,q =
(∫ +∞

0

(
t
1
p f∗(t)

)q dt
t

) 1
q

< +∞ if q < +∞

or
|f |p,∞ = sup

(
t
1
p f∗(t)

)
if q = +∞

where f∗ the decreasing rearrangement of f .

| |p,q happens to be a quasi norm equivalent to a norm for which Lp,q is a Banach space. Each Lp,q

may be seen as a deformation of Lp. For instance, we have the strict inclusions

Lp,1 ⊂ Lp,q
′ ⊂ Lp,q

′′ ⊂ Lp,∞,

if 1 < q′ < q′′. Moreover,
Lp,p = Lp.

Furthermore, if |D| is finite, we have that for all q and q′,

p > p′ ⇒ Lp,q ⊂ Lp
′,q′ .

Using the fact that f∗(t) = inf{s > 0 s.t. df (s) ≤ t} where df is the distribution function of f , we
see that the L2,∞ norm of f is finite if and only if sup

t>0
t2 |{x ∈ D | |f(x, . )| ≥ t}| is finite.

Finally, for p ∈ (1,+∞) and q ∈ [1,+∞], L
p

p−1
, q
q−1 is the dual of Lp,q.

1.2 Degenerating Riemann surfaces

Here we remind the Deligne-Mumford’s description of the loss of compactness of the conformal class for
a sequence of Riemann surfaces with fixed topology, see [11] for details.

Let (Σ, ck) a sequence of closed Riemann surface of fixed genus g. If g = 0 then the conformal class
is fixed since there is only one conformal class on the sphere. If g = 1 then, we know that, (Σ, ck)

is conformally equivalent to R
2/

(
1√
ℑ(vk)

Z× vl√
ℑ(vk)

Z

)
where vk lies in the fundamental domain

{z ∈ C s.t. |ℜ(z)| ≤ 1 and |z| ≥ 1} of H/PSL2(Z), and we say that ck degenerates if |vk| → +∞. If
g ≥ 1, let hk the hyperbolic metric associated with ck, then (Σ, ck) degenerates if there exits a closed
geodesic whose length goes to zero. In that case, up to a subsequence, there exists

1. an integer N ∈ {1, . . . , 3g − 3},

2. a sequence Lk = {Γik ; i = 1 . . .N} of finitely many pairwise disjoint simple closed geodesics of
(Σ, hk) with length converging to zero,

3. a closed Riemann surfaces (Σ, c),
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4. a complete hyperbolic surface (Σ̃, h̃) with 2N cups {(qi1, qi2) ; i = 1 . . .N} such that Σ̃ has been
obtain topologically after removing the geodesic of Lk to Σ and after closing each component of the
boundary of Σ\Lk by adding a puncture qil at each of these component. Moreover Σ is topologically

equal to Σ̃ and the complex structure defined by h̃ on Σ̃ \ {qil} extends uniquely to c. We can also
equipped Σ with a metric h with constant curvature, but not necessarily hyperbolic since the genus
of Σ can be lower than the one of Σ.

(Σ̃, h̃) is called the nodal surface of the covering sequence and (Σ, c) is its renormalization. These objects

are related, in the sense that, there exists a diffeomorphism ψk : Σ̃ \ {qil} → Σ \ Lk such that h̃k = ψ∗
khk

converge in C∞
loc topology to h̃.

2 Proof of theorem 0.1

Before starting the proof, we present a ”baby case” illustrating the difficulty for getting some L2,∞-
estimate for functions whose laplacian is in L1 on a long thin cylinder. On a fix domain, such an estimate
is a classical result, see theorem 3.3.6 of [9]. Let us now consider the cylinder Cl =

1√
2πl

(
S1 ×

[
− l

2 ,
l
2

])

which is identified with S1 ×
[
− l

2 ,
l
2

]
endowed with the conformal metric g = 1

2πl (dθ
2 + dt2). We set

ul(t, θ) =
t2

4πl which solves ∆gul = 1 . Then |dul|g = t√
2πl

and we easily check that ‖dul‖L2,∞
g

∼ l. While,

considering the conformal chart ψl : Al → Cl with Al = D \B
(
0, e−l

)
and

ψl(θ, r) =

(
cos(θ), sin(θ), ln(r) +

l

2

)
.

Then, ul = ul ◦ ψl = (ln(r)+ l
2 )

2

4πl is uniformly bounded in L2,∞ with respect to the euclidean metric.
Indeed,

|∇ul| =
∣∣∣∣∣
ln(r) + l

2

2πlr

∣∣∣∣∣ ≤
1

r
.

This fact also illustrate that despite its closeness to the L2-norm, the L2,∞-one is not conformally
invariant2. This is one of the reason why we need to construct a specific conformal atlas.

All along the proof, for any given chart,unless otherwise stated, all the norms are com-

puted with respect to the euclidean metric.

Proof of theorem 0.1 :

The sphere case :

Any sphere with constant curvature is conformal to the standard one, then the chart are given by south
and north stereographic projection composed by the conformal diffeomorphism. The Green function (up
to a constant) is the one of the standard sphere, its gradient is clearly bounded in L2,∞, hence there is
nothing to prove for theorem 0.1.

The torus Case :

Let (Σl, gl) be a sequence of flat tori of volume 1. Thanks to uniformization theorem, see [13], we

know that, (Σl, gl) is isometric to R
2/

(
1√
ℑ(vl)

Z× vl√
ℑ(vl)

Z

)
where vl lies in a fundamental domain

2Although, it is invariant by dilation.
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of H/PSL2(Z). Of course in the following we assume that the sequence degenerate, i.e. |vl| → +∞, else
the metric strongly converge and also the Green function.

We are going to treat first the rectangular torus (the case of vl ∈ iR) and we will explain how to
deduce from it the general case. Up to some normalizations, our torus is isometric to long and thin
cylinder : Cl =

1√
2πl

(
S1 ×

[
− l

2 ,
l
2

])
with the standard identification of its boundary components. Then

this cylinder is conformal to the annular Al = D \B
(
0, e−l

)
through the following diffeomorphism

ψl(θ, r) =

(
cos(θ)√

2πl
,
sin(θ)√

2πl
,
ln(r) + l

2√
2πl

)
.

Let Gl be the pull back of a Green function on Al. It satisfies
3

∆zGl( . , w) = δw − 1

2πlr2
on Al,

and
Gl
(
(θ, e−l), w

)
= Gl ((θ, 1), w) and e−l∂rGl

(
(θ, e−l), w

)
= ∂rGl ((θ, 1), w) for all θ.

Then we split Gl in three parts: a singular part sl, a diffusion part ul and an harmonic part gl, as
follows Gl = sl + ul + gl where

sl ((θ, r), w) =





1
2π ln

∣∣reiθ − w
∣∣+ 1

2π ln
∣∣reiθ − elw

∣∣ if |w| ≤ 1
2

1
2π ln

∣∣reiθ − w
∣∣ + 1

2π ln
∣∣reiθ − e−lw

∣∣ if |w| > 1
2

and

ul ((θ, r), w) = − 1

4πl
(ln(r))2 .

We easily check that, on the one hand ∆sl = δw on Al and ‖∇sl‖2,∞ = O(1), independently of l and
w, and on the other hand ∆ul = − 1

2πlr2 on Al and ‖∇ul‖2,∞ = O(1), in fact we get even the more precise
estimate |∇ul| = O

(
1
r

)
. Finally we estimate gl, in that aim we assume that w ≤ 1

2 , the other case can
be done in a similar way. Then gl satisfies

∆gl = 0,

gl ((θ, 1), w)− gl
(
(θ, e−l), w

)
= − 3l

4π
+

1

2π
ln

∣∣∣∣
e−leiθ − elw

eiθ − w

∣∣∣∣ = − 3l

4π
+ Fl(θ), (2)

and

∂rgl ((θ, 1), w)− e−l∂rgl
(
(θ, e−l), w

)
=

1

2π

(
−〈eiθ, eiθ − w〉

|eiθ − w|2 +
〈e−leiθ, e−leiθ − elw〉

|e−leiθ − elw|2 + 1

)

= Hl(θ).

(3)

Using Fourier analysis, we can decompose gl as follows

gl((θ, r), w) = c0 + a0 ln(r) +
1√
2π

∑

n∈Z

(anr
n + bnr

−n)einθ.

Thanks to (2) we easily check that,
a0 = O(1).

3This equation must be understood in a weak sense and be tested against smooth function of Al whose composition with

ψ−1

l
extends to a smooth function on Σl.
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On the one hand, thanks to (2) and (3), we get

an(1− e−nl) + bn(1− enl) =
1√
2π

∫ 2π

0

Fl(θ)e
−inθ dθ (4)

and

an(1− e−nl)− bn(1− enl) =
1

n
√
2π

∫ 2π

0

Hl(θ)e
−inθ dθ. (5)

On the other hand,

‖∇ (gl − a0 ln(r))‖22 = O

(
∑

n∈Z

n2a2n

∫ 1

e−l

r2n−1 dr + n2b2n

∫ 1

e−l

r−2n−1 dt

)

= O

(
∑

n∈Z

na2n
(
1− e−2nl

)
+ nb2n

(
1− e2nl

)
)

But thanks to (4) and (5) and the fact that Fl and Hl converge in C
2(S1), as l goes to infinity, we have

|an| = O

(
1

n2(1− e−nl)

)
and |bn| = O

(
1

n2(1− enl)

)

uniformly with respect to l. Hence

∑

n∈Z

na2n
(
1− e−2nl

)
+ nb2n

(
1− e2nl

)
= O(1)

uniformly with respect to l. Which prove that

‖∇ (gl − a0 ln(r))‖22 = O(1)

Finally we conclude that
‖∇Gl‖2,∞ = O(1),

This achieves the proof of theorem 0.1 in the case vl ∈ iR. In the general case, the torus is isometric

to (Alk , gk) where lk = 2πℑ(vk) and gk = 1
2πlkr2

(
r2dθ2 + dr2

cos(αk)

)
with αk = π

2 − arg(vk) → 0. Hence

Glk split as follows Glk = sk + uk + gk where

sk ((θ, r), w) =





1
2π cos(αk)

ln
∣∣reiθ − w

∣∣
gk

+ 1
2π cos(αk)

ln
∣∣reiθ − elw

∣∣
hk

if |w| ≤ 1
2

1
2π cos(αk)

ln
∣∣reiθ − w

∣∣
gk

+ 1
2π cos(αk)

ln
∣∣reiθ − e−lw

∣∣
gk

if |w| > 1
2

and

uk ((θ, r), w) = − 1

4πlk cos(αk)
(ln(r))

2
,

and then the analysis of gk is the same.

The fact that we cannot bound the weak-L2 norm with respect to the intrinsic metric of the torus is
illustrated by the following proposition.
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Proposition 2.1. There exists a sequence of metric hk on T2 with constant curvature and volume equal
to 1 which is unbounded in the moduli space and such that, for any y ∈ Σ, we get

sup
t>0

t2 |{x ∈ Σ | |dGhk
(x, y)| ≥ t}| → +∞. (6)

Proof of proposition 2.1:

In order to prove this proposition ,we go back to the case of degenerating rectangular tori viewed as
a long thin cylinder: Cl =

1√
2πl

(
S1 ×

[
− l

2 ,
l
2

])
with the two ends being identified in an obvious way. Let

gφ(θ, t) = G((θ, t), (φ, 0)), then if this function is uniformly bounded in L2,∞ it would be the case for

g(θ, t) = 1
2π

∫ 2π

0 gφ(θ, t) dφ, thanks to the invariant by rotation. Then we easily check that g(θ, t) = |t|
4π ,

hence |dg| =
√
2πl
4π , here the norm is computed with respect to the metric h = 1

2πl (dθ
2 + dt2). Finally we

easily check that ‖dg‖L2,∞

h
∼ l, which is a contradiction and prove proposition 2.1. �

The case of genus ≥ 2 :

Let (Σ, ck) be a sequence of Riemann surfaces of fixed genus g ≥ 2. Thanks to the uniformization
theorem, see [13], we know that, we can endow Σ with a conformal metric hk such that (Σ, hk) is isometric
to H/Γk where Γk is a discrete group of PSL2(R). Then, the Green functions associated to hk satisfy

(∆hk
)xGk( . , y) = δy −

1

vk
,

where vk is the volume of (Σ, hk) which depends only on the genus thanks to Gauss-Bonnet theorem. In
order to study the behavior of the Green’s function and following the classic description of hyperbolic
surfaces, see [11] or [10], we set δ < arcsinh(1) and then we split (Σ, hk) in two parts: a thick part
Eδk = {s ∈ Σ | injrad((Σ, hk), s) ≥ δ} and a thin part F δk = {s ∈ Σ | injrad((Σ, hk), s) < δ}. Thanks to the
decomposition theorem of Deligne-Mumford, we know that the sequence of metrics converges strongly on
the thick part and develops collar in the thin part. We are going to split our proof depending on the case
whether y lies in the thick or int thin part. But before we prove a general estimate for Green functions
on a closed surfaces.

Step 1: Coarea formula for Green’s functions.

In this step, Gk is any Green function associated to hk, there is no normalization. Volumes and
lengths are taken with respect to hk here.

Let t > 0, integrating by part on a level set, we get

∫

Gk(x,y)=t

∂Gk(x, y)

∂νk
dσk(x) =

∫

Gk(x,y)≥t
(∆hk

)xGk(x, y) dvk(x) = 1− vol({Gk(x, y) ≥ t})
vk

,

where νk is the exterior normal of the open set {x ∈ Σ | Gk(x, y) > t}. Then, we get
∫

Gk(x,y)=t

|dGk(x, y)|2hk
dσk(x) ≤ 2.

Let 1 < p < 2 and a > 0, then thanks to coarea-formula, see [22] or [4], we get that

∫

Gk(x,y)≥a
|dG1−p/2

k (x, y)|2hk
dvk(x) =

∫ +∞

a

(∫

Gk(x,y)=t

|dGk(x, y)|hk

Gpk(x, y)
dσk(x)

)
dt ≤ 2

∫ +∞

a

1

tp
dt ≤ Cp,a,
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where Cp,a is a positive constant depending only on p and a. Moreover, we can also prove, considering
negative level set, that ∫

Gk(x,y)≤−a
|dG1− p

2

k (x, y)|2hk
dvk(x) ≤ Cp,a,

where Cp,a is a positive constant depending only on p and a. Finally we get,

∫

|Gk(x,y)|≥a
|dG1− p

2

k (x, y)|2hk
dvk(x) ≤ Cp,a, (7)

where Cp,a is a positive constant depending only on p and a.

Step 2: Estimate in the thick part.

In order to obtain the estimate on the whole thick part, we will cover it by a finite number of balls with
radius δ

2 , where have been chosen such that 0 < δ < acrsinh(1). Since we consider a general sequence
of Green functions Gk( . , yk), we have to pay attention to the location of these balls with respect to the
singularity yk. In fact if yk is in the thick part then we will center one of the ball of the covering at yk
and then the others won’t have to deal with this singularity.

Let xk ∈ Eδk and we first assume that yk 6∈ Bhk

(
xk,

δ
2

)
. Then Bhk

(
xk,

δ
2

)
is isometric toB

(
0, tanh

(
δ
4

))

in the Poincaré disc. In the following, we make all computations in the conformal chart B(0, 3r) with

r =
tanh( δ

4 )
3 and the metric hp = 4dx2

(1−|x|2)2 . But the hyperbolic metric is equivalent to the euclidean one

on this ball.

On B(0, 3r) we decompose Gk as follows

Gk( . , yk) = uk + gk,

Gk( . , yk) = uk + gk,

where uk(x) =
1
vk

ln
(

1
1−|z|2

)
and gk be a smooth harmonic function. Hence we can apply (7), with p = 3

2

and a = 2
vk

ln
(

1
1−(3r)2

)
to G̃k = Gk − gk(0), which gives that

∫

{|G̃k(x,yk)|≥a}∩B(0,3r)

|dG̃
1
4

k (x, yk)|2hp
dvhp

(x) ≤ C,

where C is a positive constant depending only on the genus and δ. Then, by the mean value property,
there exists ρ ∈ [2r, 3r] such that

∫

{|G̃k(xk,y)|≥a}∩∂B(0,ρ)

|dG̃
1
4

k (x, yk)|hp
dσhp

(x) ≤ C,

where C is positive constant depending only on the genus and δ. Then, using the fact harmonic functions
satisfy the mean value property, we get that the mean value of gk − gk(0) is 0 on ∂B(0, ρ) and we easily
deduce that

|Gk(x, yk)− gk(0)| ≤ C, for all x ∈ ∂B(0, ρ),

where C is positive constant depending only on the genus and δ. Then using classical elliptic estimate,
we have

‖dGk( . , yk)‖L∞

hp
(B(0,r)) ≤ C, (8)
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where C is positive constant depending only on the genus and δ. Then, in the case xk = yk, equivalently
the ball we consider is centered at the singularity of G(x, . ), we obtain the same estimate decomposing
Gk as follows

Gk( . , yk) = sk + uk + gk,

where sk(x) =
1
2π ln(|x|). But, of course, in that case, due to the presence of sk, the estimate is in L2,∞.

Finally covering the thick part with a uniformly bounded number of balls we get the desired estimate on
G( . , yk) on the thick part. Indeed, either yk is not in the thick part and the result will follows directly
from (8), or we start by taking a ball centered at yk and then we cover the rest of the thick part by balls
which does not contain yk.

Step 3: Estimate in the thin part.

Let xk ∈ F δk and yk ∈ Σ two converging sequences in Σ. First, thanks to the collar lemma, see [10],
we know that each connected component of the thin part (i.e. at most 3g-3), contains a simple closed
geodesic γk of length εk = l(γk) < 2arcsinh(1), and is isometric to

Bk =
{
z = reiϕ ∈ H : 1 ≤ r ≤ eεk , arctan

(
sinh

(εk
2

))
< ϕ < π − arctan

(
sinh

(εk
2

))}
,

where the geodesic corresponds to
{
rei

π
2 ∈ H : 1 ≤ r ≤ eεk

}
and the line {r = 1} and {r = eεk} are

identified via z 7→ eεkz. It is often easier to consider the following cylindrical parametrization. Let
ϕk = arctan

(
sinh

(
εk
2

))
and we set

Ck =

{
(cos(θ), sin(θ), t) | 0 ≤ θ < 2π,

2π

εk
ϕk < t <

2π

εk
(π − ϕk)

}

equipped with the metric

hc =

(
εk

2πsin
(
εkt
2π

)
)2

(dθ2 + dt2),

where the geodesic correspond to
{
t = π2

εk

}
.

We are going to make the proof assuming that yk lies in the thin part. When this is not the case
the proof carries over after the simply operation consisting of withdrawing the singular part sk. We can

also assume that yk 6∈
([

2π
εk
ϕk,

2π
εk
ϕk +

δ
10

]
∪
[
2π
εk

(π − ϕk)− δ
10 ,

2π
εk

(π − ϕk)
])

× S1, replacing δ by δ
2 if

necessary.

Then, as for the torus case, we choose an annulus as conformal chart. Precisely, let Ak = D\B(0, e−lk)
and ψk : Ak → Ck defined as follows

ψk(θ, r) =

(
cos(θ), sin(θ), ln(r) +

2π

εk
(π − ϕk)

)
,

where lk = 2π
εk

(π − 2ϕk). Then, the pull back of a Green function on Ak, that we keep denoting Gk,
satisfies

∆zGk( . , wk) = δwk
−


 εk

r2π sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))




2

on Ak,

9



where ψk(wk) = yk with wk ∈ B(0, e−
δ
10 ) \B(0, e−lk+

δ
10 ) .

First of all, thanks to our previous step, see (8), we remark that

|∇Gk( . , wk)| ≤
C

r
on B(0, e−lk+

δ
10 ) \B(0, e−lk), (9)

and

|∇Gk( . , wk)| ≤ C on B(0, 1) \B(0, e−
δ
10 ), (10)

where C is a positive constant depending only on the genus and δ. Then we split Gk as follows

Gk((θ, r), wk) = sk(θ, r) + uk(θ, r) + gk(θ, r),

where

uk(θ, r) =
ln
(
sin
(
εk
2π

(
ln(r) + 2π

εk

)))

vk
,

and

sk(θ, r) =
1

2π
ln
(∣∣reiθ − wk

∣∣) .

We easily check that

∆uk = −


 εk

r2π sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))




2

‖∇uk‖22 =
1

2πv2k

∫ 1

e−lk



cos
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))

sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))




2

ε2k
r
dr

=
1

2πv2k

∫ 1

e−lk



−ε2k
r

+
1

(
sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

)))2
ε2k
r


 dr

=
1

v2k


− ε2k

2π
ln(r) − εk

cos
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))

sin
(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

))



1

e−lk

≤ C,

(11)

∆sk = δwk
,

and
‖∇sk‖2,∞ ≤ C, (12)

where C is a positive function depending only on the genus and δ.
Then gk, which has been obtained from Gk after subtracting sk and uk, is a smooth harmonic function.

Let gk(r) be the mean value of gk on the circle of radius r centered at 0. It is also harmonic and radial,
hence gk(t) = ak ln(r) + bk. Moreover, thanks to (9) and (10), we get that

|∇gk| ≤
C

r
on B(0, e−lk+

δ
20 ) \B(0, e−lk), (13)

and

10



|∇gk| ≤ C on B(0, 1) \B(0, e−
δ
20 ). (14)

In particular, ak is uniformly bounded and we get,

‖∇gk‖L2,∞(B(0,1)\B(0,e−lk )) ≤ C, (15)

Then using the fact the mean value of gk − gk is zero and the previous estimate, we get that

‖gk − gk‖
L∞

((
B(0,e−lk+ δ

20 )\B(0,e−lk )

)
∪
(
B(0,1)\B(0,e−

δ
20 )

)) ≤ C, (16)

where C is positive constant depending only on the genus and δ. Then, since gk − gk is harmonic and
with radial mean value equal to zero,

‖∇(gk − gk)‖
L2

(
B(0,e−

δ
10 )\B(0,e−lk+ δ

10 )

) ≤ C, (17)

where C is positive constant depending only on the genus and δ. The last inequality can be proved using
the furrier decomposition and remarking that gk − gk has no logarithmic part. Finally, thanks to (11),
(12), (15) and (17), we get the desired estimate, which concludes the proof of the theorem 0.1. �

3 Weak compactness result for immersions with second funda-

mental form bounded in L
2

The first application of theorem 0.1 regards the control of the conformal factor for immersions with L2-
bounded second fundamental form. Before to state the main result, we shall first remind the notion of
weak immersions introduced by the second author in [17] .

Let Σ a smooth compact surface equipped with a reference smooth metric g0. One define the Sobolev
spaces W k,p(Σ,Rm) of measurable maps from Σ into Rm into the following way

W k,p(Σ,Rm) =

{
f : Σ → R

mmeasurables.t.
k∑

l=0

∫

Σ

|∇lf |pg0 dvg0 < +∞
}
.

Since Σ is compact it is not difficult to see that this space is independent of the choice we have made of g0.

Let f ∈ W 1,∞(Σ,Rm), we define gf to be the following symmetric bilinear form

gf (X,Y ) = 〈df(X), df(Y )〉,

and we shall assume that there exists Cf > 1 such that

C−1
f g0(X,X) ≤ g(X,X) ≤ Cfg0(X,X). (18)

For such a map, we can define the Gauss map as being the following measurable map in L∞(Σ) taking
values int the Grassmannian of oriented m− 2-planes of Rm,

~nf = ⋆
∂f
∂x ∧ ∂f

∂x∣∣∣∂f∂x ∧ ∂f
∂x

∣∣∣
.

11



We then introduce the space EΣ of weak immersions of Σ with bounded second fundamental form as
follow:

EΣ =





Φ ∈ W 1,∞(Σ) which satisfies (18) for some CΦ > 0

and
∫
Σ
|d~nΦ|2g dvg < +∞



 ,

where g = Φ∗ξ.

It is proved in [19] that any weak immersion defines a smooth conformal structure on Σ. Let Φ ∈ EΣ,
we denote by π~nΦ

the orthonormal projection of vector in R
m onto the m− 2-plane given by ~nΦ. With

these notations the second fundamental form of the immersion at p is given by

∀X,Y ∈ TpΣ ~Ip(X,Y ) = π~nΦ
d2Φ(X,Y ),

and the mean curvature vector of the immersion at p is given by

~H =
1

2
trg(~I).

A natural quantity while considering such immersions is the Lagrangian given by the L2-norm of the
second fundamental form :

E(φ) =

∫

Σ

|~I|2g dvg.

An elementary computation, using Gauss-Bonnet formula, gives

E(φ) =

∫

Σ

|~I|2g dvg =
∫

Σ

|d~nΦ|2g dvg = 4W (φ)− 4πχ(Σ),

where χ(Σ) is the Euler characteristic and

W (Φ) =

∫

Σ

| ~H |2g dvg,

is the so called Willmore energy.

Theorem 3.1. Let (Σ, ck) be a sequence of closed Riemann surface of fixed genus greater than one. Let
denote hk the metric with constant curvature (and volume equal to one in the torus case) in ck and Φk
a sequence of weak conformal immersion of Σ into Rm, i.e.

Φ∗
kξ = e2ukhk,

where uk ∈ L∞(Σ). Then there exists a finite conformal atlas (Ui, ψi) independent of k and a positive
constant C depending only on the genus of Σ, such that

‖dvik‖L2,∞(Vi) ≤ CW (Φk),

where vik is the conformal factor of Φk ◦ ψ−1
i in Vi = ψi(Ui), i.e. v

i
k = 1

2 ln
∣∣∣∂Φ

k◦ψ−1

i

∂x

∣∣∣ = 1
2 ln

∣∣∣∂Φ
k◦ψ−1

i

∂y

∣∣∣.

Proof of theorem 3.1:

Let Kg = 0 or−1 if the genus g of Σ is 1 or greater than 1 and be KΦ∗

k
ξ the Gauss curvature associated

to Φ∗
kξ. It is classical that uk satisfies the following Liouville equation

−∆hk
uk = KΦ∗

k
ξe

2uk −Kg. (19)
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Let Gk be the nonnegative Green function of (Σ, hk), then using the representation formula, we get that

uk = Gk ⋆
(
KΦ∗

k
ξe

2uk −Kg

)
. (20)

We have the following straightforward estimate,
∫

Σ

|KΦ∗

k
ξe

2uk | dvhk
=

∫

Σ

|KΦ∗

k
ξ| dvΦ∗

k
ξ ≤

1

2

∫

Σ

|~IΦ∗

k
ξ| dvΦ∗

k
(ξ) ≤W (Φk), (21)

this proves that the right hand side of (19) is uniformly bounded in L1-norm by W (Φk) with respect to
the metric hk. Then let (Ui, ψi) the conformal atlas given by theorem 0.1 and let φik = Φk◦ψ−1

i : Vi → Rm

and vik : Vi → R such that (φik)
∗(ξ) = e2v

i
kdz2. First we observe that vik = uk◦ψ−1

i +wik where w
i
k : Vi → R

such that (ψi)
∗(hk) = e2w

i
kdz2. Moreover, we can easily check that ∇wik is uniformly bounded in L2,∞

since in the torus case a chart is given by an annulus and wik = − ln(r) + ck and in the hyperbolic
case the chart is either a disc with radius strictly less than 1 and wik = − ln(1 − r2) + cik or an annulus

Ak = D \B(0, e−lk) where lk = 2π
εk

(π − 2ϕk) with w
i
k = − ln

(
r sin

(
εk
2π

(
ln(r) + 2π

εk
(π − ϕk)

)))
+ cik.

Then it suffices to check that ∇(uk ◦ ψ−1
i ) is uniformly bounded in L2,∞(Vi) in order to prove the

theorem. Thanks to (20), we have

uk(y) =

∫

Σ

Gk(x, y)Fk(x) dvhk
+

1

vol(Σ, hk)

∫

Σ

uk dvhk
, (22)

where Fk = KΦ∗

k
ξe

2uk −Kg. Hence,

∇yuk ◦ ψ−1
i (y) =

∫

Σ

∇yGk(x, ψ
−1
i (y))Fk(x) dvhk

, (23)

then using the fact supx∈Σ ‖∇yGk(x, ψ
−1
i (y))‖L2,∞ is uniformly bounded, thanks to theorem 0.1,

thanks to (21) and standard inequality on convolution we get that ‖∇(uk ◦ ψ−1
i )‖L2,∞(Vi) is uniformly

bounded which concludes the proof of theorem 3.1. �

Then our second application concerns the weak compactness of the conformal immersion with L2-
bounded second fundamental form. The following result was proved first in [17] when the conformal
classes of the surfaces do not degenerate and has been extended to the general case of degenerating
riemmann surfaces in [14]. We shall present a different approach for proving this result as being a
consequence of our main theorem 0.1

Theorem 3.2. Let Σ a closed surface of genus strictly greater than 1 and Φk ∈ EΣ a sequence of weak
immersion into R

m with L2-bounded second fundamental form. Then, up to a subsequence, for any
connected component σ of Σ̃, the nodal surface of the converging sequence (Σ,Φ∗

kξ), there exists a Möbius
transformation Ξk of Rm such that

Ξk ◦ Φk(Σ) ⊂ B(0, R)

where R depends only on m and there exists at most finitely many point {a1, . . . , aL} of σ such that if we
denote Ψk = Ξk ◦ Φk ◦ φk, then

Ψk ⇀ Ψ weakly in W 2,2
loc

(
σ \ {a1, . . . , aL, q1, . . . qK}, h̃

)
,

where Ψ is a weak conformal(possibly branched) immersion of (σ, h̃) into Rm and the qi are the punctures

of (σ, h̃) and φk : Σ̃ → Σ such φ∗k(hk) → h̃ in C∞
loc(Σ̃) .
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Moreover, for any compact K ⊂ σ \ {a1, . . . , aL, q1, . . . qK} there exists CK > 0 such that

sup
k∈N

‖Log|dΨk|φ∗

k
hk
‖L∞(K) ≤ CK ,

where CK depends only on m, K and the L2-bound on the second fundamental form of Φk.

Here we consider the hyperbolic case, since in the sphere case the existence of a non compact con-
formal group is the additional difficulty already treated in [16] and in the torus when it degenerate, the
injectivity radius uniformly blow down.

Proof of theorem 3.2:

By assumption there exists Λ, a positive constant , such that

sup
k∈N

W (Φk) ≤ Λ. (24)

We denote by uk the conformal factor of this weak immersion with respect to the hyperbolic metric
hk in the conformal class of Φ∗

kξ. That is to say

Φ∗
kξ = e2ukhk,

where Khk
≡ −1.

Now let (Σ̃, h̃) be the nodal surface of the converging sequence (Σ, hk), {qi} the set of punctures, (Σ, h)

its renormalisation and φk : Σ̃ → Σ the continuous map given by to Deligne-Mumford compactification
recalled in section 1. Let σ be any connected component of Σ̃.

Then Φ̃k = Φk ◦ φk is a conformal weak immersion of (σ, h̃k) where h̃k = φ∗khk. Hence, we get

(Φk ◦ φk)∗ξ = e2uk h̃k.

Let δ > 0 and Kδ = {x ∈ σ s.t. dh(x, qi) ≥ δ for all i}, thanks to the local convergence of φk, then

‖∇uk‖L2,∞

h̃
(Σ) is uniformly bounded on Kδ. (25)

Here we use the fact that on the thick part the euclidean metric and the hyperbolic one are equivalent
then theorem 3.1 can be consider intrinsically on the thick part.

Then, in order to find the correct Möbius transformation, we follow the procedure introduced by the
second author in [17]. For each x ∈ Kδ there exists ρkx > 0 such that

∫

Bh̃k
(x,ρkx)

|d~nΦ̃k
|2
h̃k
dvh̃k

= min

(
8π

3
,

∫

Kδ

|d~nΦ̃k
|2
h̃k
dvh̃k

)

where Bh̃(x, ρ
k
x) is the geodesic ball in (σ, h̃) of center x and radius ρkx. Then, using the Besicovitch

covering lemma, we can extract a finite covering of Kδ ⊂ ∪i∈IkBh̃
(
xki ,

ρxk
i

2

)
, such that each point is

covered at most N time, where N is independent of k. Then, thanks to (24), we can extract a finite
covering, I ⊂ ∪kIk, which is independent of k where xki converges to x∞i and ρxk

i
converges to ρx∞

i
. Then

we set I0 = {i ∈ I s.t. ρx∞

i
= 0} and I1 = I \ I0.
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Claim :For each i ∈ I \ I0 there exist vik ∈ R such that

‖vk − vik‖
L∞

(
Bh̃

(
xk
i ,

ρ
xk
i

2

)) ≤ C,

where C is a constant which depends only on Λ.

Proof of the Claim :

Let fix i ∈ I \ I0 and identify, up to uniformly bounded conformal diffeomorphism, Bh̃k
(x, ρkx) with D.

Then, thanks to lemma 5.1.4 of [9] there exists a moving frame (~e k1 , ~e
k
2 ) ∈W 1,2(D, Sm−1) such that

∫

D

(|∇~e k1 |2 + |∇~e k2 |2) dz ≤
∫

D

|d~nΦ̃k
|2dz ≤ 8π

3
,

and moreover
⋆~nΦ̃k

= ~e k1 ∧ ~e k2 and ∆uk =
(
∇⊥~e k1 , ~e

k
2

)
.

Let vk be the solution of {
∆vk =

(
∇⊥~e k1 , ~e

k
2

)
on D

vk = 0 on ∂D
.

Then, thanks to Wente inequality, see section 3 of [9], we get

‖vk‖∞ + ‖∇vk‖2 ≤ 1

2π
‖∇~ek1‖‖∇~ek2‖. (26)

Finally using the fact uk− vk is harmonies with ‖∇(uk − vk)‖2,∞ uniformly bounded, we proved that
there exist ck ∈ R and C a positive constant independent of k such that

‖uk − vk − ck‖L∞(B(0, 12 ))
≤ C, (27)

Finally, putting (26) and (27) together concludes the proof of the claim. �

Then using the fact that each point is covered by a universally number of ball, we easily get that
there exists vk ∈ R such that

‖vk − vk‖L∞(Kδ\∪i∈I0
Bh̃(x∞

i ,
δ
2 ))

≤ C. (28)

We also remark that he constant vk is independent of δ. Let x0 ∈ σ then we set

Φ̂k = e−vk
(
Φ̃k − Φ̃k(x0)

)
.

Then, using Simon monotonicity formula, see [22], as in [17] we proved that there exists y0 ∈ B(0, 1) ⊂
Rm and t > 0 such that

Φ̂k

(
Kδ \ ∪i∈I0Bh

(
x∞i ,

δ

2

))
∩B(x0, t) = ∅. (29)

Finally, we set

Ξk = Ix0,t

(
e−vk

(
. − Φ̃k(x0)

))

where Ix0,t is the inversion of Rm centered at x0 and with ratio t. Hence Ξk is a Möbius transformation
such that, if we set Ψk = Ξk ◦ Φk, we get thanks to (28) that

sup
k∈N

‖Log|dΨk|h̃k
‖L∞(K) ≤ CK ,
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and thanks to (29), that there exist R > 0 such that,

Ψk

(
Kδ \ ∪i∈I0Bh

(
xi,

δ

2

))
⊂ B(0, R).

Finally, Using a classical argument of functional analysis , see for instance [19] beginning of section VI.7.1,

we easily deduce that Ψk converge to Ψ in W 2,2
loc

(
σ \ {x∞1 , . . . , x∞L , q1, . . . qK}, h̃

)
, moreover Ψ is a weak

immersion away from {x∞1 , . . . , x∞L , q1, . . . qK} satisfying

W (Ψ) < +∞

Finally Lemma A.5 of [18] permits us to extend Ψ as a conformal, possibly branched, immersion of σ.�

4 Weak compactness of Riemannian surfaces with bounded Gaus-

sian curvature entropy

The last application of our main result is a compactness result in the spirit of Cheeger and Gromov
[5], Trojanov [24] and most recently Shioya [21] for Riemannian surfaces. Indeed, we prove a general
compactness result for sequence of metrics on a given closed surface assuming only that the area and the
total curvature are uniformly bounded and that the entropy of the Gaussian curvature is also bounded.
The first assumptions are the weaker we can assume in order to the problem makes sense. And the
second is made necessarily if one consider a long thin cylinder closed by a two spherical cap, see [24] and
reference therein for more examples of degenerating metrics with bounded curvature and area.

The entropy of the Gaussian curvature of a given metric is defined as follows, let Σ be a closed surface
and g a Riemannian metric with Gaussian curvature equal to Kg, then we set

E(g) =

∫

Σ

K+
g ln(K+

g ) dvg,

where K+
g = max(0,Kg) and we set K+

g ln(K+
g ) = 0 when K+

g = 0. This was introduce by Hamilton in
the context of Ricci flow on surfaces. He notably proved that it is monotonically increasing along the
Ricci flow on spheres with positive curvature, see [8] and [6]. In order to apply directly our preceding
result, we introduce a slightly stronger notion of entropy. Let Σ a closed surface with a reference metric
g0, then we set

Ẽ0(g) =

∫

Σ

ln(e + |Kgdvg|g0)|Kg| dvg.

Then considering this notion of entropy, we get the following compactness result.

Theorem 4.1. For any closed Riemannian surface (Σ, g0) and any sequence of smooth metric gk such
that ∫

Σ

|Kg| dvg + Ẽ0(gk) = O(1),

then for each component σ of the thick part of (Σ, hk), then, up to a dilatation of the metric by a factor
e−Ck , hk converges weakly in (L∞

loc(σ))
∗.

More precisely, up to a subsequence, one of the following occurs

i) genus(Σ) = 0, then there exists Ck such that if e−Ckgk = e2ukg0, where g0 is the metric of the
standard sphere, and uk is uniformly bounded,
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ii) genus(Σ) = 1, then up to a first dilation, (Σ, gk) is isometric to C/ (Z× vkZ) where vk lies in a
fundamental domain of H/PSL2(Z), then there exists Ck such that if e−Ckgk = e2ukdz2 then uk is
bounded in L∞

loc (C/ (Z× vkZ)).

iii) genus(Σ) ≥ 1, then let σ a connected component σ of the nodal surface of (Σ, hk), then there exists
Ck such that if e−Ckgk = e2ukhk and uk is bounded in L∞

loc(σ).

Here, for a sake of simplicity we consider the standard sphere and a cylinder of fixed radius as thick
part.

Proof of theorem 4.1:

We choose the atlas given by theorem 0.1, and let gk = e2ukhk where uk is the conformal factor
with respect to a normalized metric of constant curvature. Let K be a compact set of σ a connected
component of the thick part and U an open set of σ such that U is compact and K ⊂ U . Then on U the
conformal factor satisfies

∆hk
uk = Kgke

2uk −Khk
,

and hk converges strongly to a smooth metric. On the one hand, since the total curvature is bounded,
as in theorem 3.1, we get that ∇uk is uniformly bounded in L2,∞. Then let vk ∈ H1

0 (U) such that

∆hk
vk = Kgke

2uk −Khk
on U.

On the other hand, thanks to the theory of singular integral, see [23] exercise II 6.2.(b), we get that ∇vk
is uniformly bounded in L2 and that vk is uniformly bounded in L∞. Then, since uk − vk is harmonic
on U whose gradient is bounded in L2,∞, then thanks to Harnack inequality there exists a constant
Ck such that uk − vk − Ck is uniformly bounded on K. Then, after checking that the constant is in-
dependent of K, we get that on each connected component of the thick part there exists a sequence of
constant Ck such that e−Ckgk = eũkhk with ũk uniformly bounded in L∞

loc(σ), which prove the theorem.�

Remark :An interesting problem is to try to replace Ẽ0 by E in the preceding theorem. In order to
do this, on need to analyze the way Kgdvg concentrates as already done, in the particular case where the
Gauss curvature converges uniformly, by [2] see also [15].

References

[1] Aubin, Thierry Some nonlinear problems in Riemannian geometry. Springer Monographs in Mathe-
matics. Springer-Verlag, Berlin, 1998.
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