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Abstract

In this paper we prove a uniform estimate for the gradient of the Green function on a closed
Riemann surface, independent of its conformal class, and we derive compactness results for immersions
with L2-bounded second fundamental form and for riemannian surfaces of uniformly bounded gaussian
curvature entropy.
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Introduction

Let ¥ a closed smooth surface of genus g. We can endow X with a metric h, then thanks to the uni-
formization theorem, see [13] or [20], there exists in the conformal class of h, i.e. the set of metric on
¥ which can be written e?*h where u is a smooth function, a metric of constant curvature, equal to 1
if g=0, 0if g =1 and —1 otherwise. The sphere case is very particular, since the conformal group is
not compact but this case is not of great interest here since there is only one conformal class. In the
hyperbolic case the metric is unique and in the torus it is also true up to normalized the area. In the
following, we assume this normalization and we still denote by h the metric of constant curvature (when
g > 1) and we associate to h its Laplace-Beltrami operator Aj,. Then there exists, up to normalization,
a unique nonnegative Green function G}, associated to Ay,.

The main goal of this paper is to give estimates on G}, independently of the conformal class defined by
the metric h. This is a very classical subject in the theory of Riemann surfaces strongly related with the
behavior of the spectrum of the Laplace operator, see [3]. Let (3, hy) a sequence of hyperbolic surface
whose conformal class degenerate, that is to say that some geodesics are pinching. Let us assume that
there is only one degenerating geodesic i, let denote ¥, its nodal limit, see section 1 for precise defi-
nition, then Ji, see [12], proved that If v, does not separate Xj then Gy is uniformly bounded on every
compact of Y X X, else kET@o |Gi| = +00 on oo X L.

Here we see that we have a very different behavior with respect to the manner the conformal class
degenerates. Is a similar behavior is possible for derivatives? Indeed, formally we can write

Guleny) = 3 EEDAW).

i>1 Ai

where )\f and npi? are respectively the ¢th (non vanishing) eigenvalue and the ith (non constant) eigenfunc-
tion of Ay, , repeating indices according to multiplicity. Of course if the the nodal limit is disconnected
then the first eigenvalue goes to zero while the first eigenfunction goes to a positive locally constant
function depending on the genus of each connected component. Looking at derivatives instead, one can



expect a better behavior of the Green function, even in the collar region. However, the gradient of the
Green function gets a simple pole on the diagonal, hence it is not in L?. The main result of this paper
establishes that it is however true in a slightly weaker norm.

Theorem 0.1. Let X be a closed surface then there exits C a positive constant and an integer N depending
only on the genus of ¥ such that for any metric h on ¥ with constant curvature equal to 1, 0 or —1 and
with normalized volume', and any Green function associated to h, there exists a finite atlas of N conformal
charts (Us, 1), such that for any y € ¥ we get

supt® |{z € V; | |d. G}, (z,y)| > t}| < C, (1)
>0

where Vi = 4;(U;) and G (., y) = (4:)+(Gn(-,y))-

We can remark that on a fix Riemann surface (X, k), the Green function is always bounded for this
weak L2-norm. We can deduce it from the standard pointwise estimate, see [1],

Ch

|d. (G}, (z,9))] < m,

but of course this estimate depends on the metric we take on X.

At the knowledge of authors, this result is the first control of the Green function independent of the
conformal class. Moreover it looks quite optimal since the result is clearly false in L2. In fact the atlas
is very explicit, since, for intense considering the hyperbolic case, the surface divides in thick and thin
part, on the thick part we can consider any disc with radius smaller than the injectivity radius. And in
the thin part, using collar lemma, chart are given by degenerating annuli.

This result is optimal in the sense that we also prove that the weak L2-norm of the Green function
computed with respect to the intrinsic metric is not bounded when the singularity hold to a collapsing
region, which is make clear in the torus case by the proposition 2.1.

Regarding the proof of the theorem, once we have rule out the trivial case of the sphere then we treat
the case of a degenerating torus and of an hyperbolic surface quite differently. For the torus, our proof
relies on an estimate of the coefficient of the Fourier decomposition on a long thin cylinder using the
periodicity condition, and in the hyperbolic case, it relies on the coarea formula and the decomposition
of the surface in thin and thick part.

In the last sections, we give some applications of theorem 0.1 in differential geometry both from extrin-
sic and intrinsic point of view. First, we prove that the gradient of the conformal factor of an immersion
with L2-bounded second fundamental form is uniformly bounded in L?°°, up to chose a convent atlas
given by theorem 0.1. Then we deduce a theorem of weak compactness for sequences of immersions with
L?-bounded second fundamental. This last result was partially already proved by Kuwert and Li and
the second author, see [14] and [17]. Finally, in the last section we prove that considering a sequence of
Riemann surface with bounded total curvature and entropy(see below for precise definition) then we can
find a finite conformal atlas in which the conformal factor is uniformly bounded.
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1 Preliminaries

1.1 Lorentz spaces

Here we recall some classical facts about Lorentz spaces, [7] for details.

Definition 1.1. Let D be a domain of R¥, p € (1,+00) and q € [1,+00]. The Lorentz space LP9(D) is
the set of measurable functions f : D — R such that

+oo adt\ e
o= ([ (#r@)' ) < 0 <40
0
or .
| flp,00 = sup (ﬁf*(t)) if ¢ =+oo
where f* the decreasing rearrangement of f.

| |p,q happens to be a quasi norm equivalent to a norm for which LP is a Banach space. Each LP-?
may be seen as a deformation of LP. For instance, we have the strict inclusions

1 ’ 7
Lpa C Lpaq C Lpaq C vaoo,

if 1 < ¢ < ¢"”. Moreover,
PP — [P

Furthermore, if | D| is finite, we have that for all ¢ and ¢/,
p>p = LPIC L

Using the fact that f*(¢) = inf{s > 0 s.t. d¢(s) < t} where dy is the distribution function of f, we
see that the L2 norm of f is finite if and only if supt* |{z € D | |f(x, .)| > t}] is finite.
>0

Finally, for p € (1,400) and ¢ € [1,400], L7 17T is the dual of LP4.

1.2 Degenerating Riemann surfaces

Here we remind the Deligne-Mumford’s description of the loss of compactness of the conformal class for
a sequence of Riemann surfaces with fixed topology, see [11] for details.

Let (X, cx) a sequence of closed Riemann surface of fixed genus g. If g = 0 then the conformal class
is fixed since there is only one conformal class on the sphere. If ¢ = 1 then, we know that, (X, c)

is conformally equivalent to R?

/ L 7 x ——7| where v lies in the fundamental domain
V() VS(w)

{z € Cst. |R(z)| < 1and |z| > 1} of H/PSLy(Z), and we say that ¢ degenerates if |vgx| — 400, If

g > 1, let hy the hyperbolic metric associated with ¢, then (X, ) degenerates if there exits a closed

geodesic whose length goes to zero. In that case, up to a subsequence, there exists

1. an integer N € {1,...,3g9 — 3},

2. a sequence L = {T'i;i = 1...N} of finitely many pairwise disjoint simple closed geodesics of
(3, hy) with length converging to zero,

3. a closed Riemann surfaces (¥, ),



4. a complete hyperbolic surface (3,h) with 2N cups {(¢i,¢4); i = 1...N} such that % has been
obtain topologically after removing the geodesic of Ly to X and after closing each component of the
boundary of £\ L, by adding a puncture g} at each of these component. Moreover X is topologically

equal to g]_and the complex structure defined by honX \ {qf} extends uniquely to ¢. We can also
equipped X with a metric & with constant curvature, but not necessarily hyperbolic since the genus
of 3 can be lower than the one of X.

(i,f;) is called the nodal surface of the covering sequence and (3, ) is its renormalization. These objects
are related, in the sense that, there exists a diffeomorphism %, : ¥\ {g/} — ¥\ Ly such that hj, = ¢} hy,

converge in C}Y, topology to h.

2 Proof of theorem 0.1

Before starting the proof, we present a ”baby case” illustrating the difficulty for getting some L?°°-
estimate for functions whose laplacian is in L' on a long thin cylinder. On a fix domain, such an estimate

is a classical result, see theorem 3.3.6 of [9]. Let us now consider the cylinder C; = \/%71 (51 X [—%, %})
which is identified with S* x [—4, ] endowed with the conformal metric g = 745 (d6? + dt?). We set
u(t,0) = 4’5—; which solves Aju; = 1. Then |duy|, = \/%ﬂ and we easily check that ||dul||L§,oo ~ . While,

considering the conformal chart ¢; : 4; — C; with A, =D\ B (0, e’l) and

Di(0,7) = <cos(9),sm(9), In(r) + é) .

nr B 2
Then, u; = u; o = (1(4%2) is uniformly bounded in L% with respect to the euclidean metric.
Indeed,
In(r) + L 1
V| = n(r) + 3 <2
27lr r

This fact also illustrate that despite its closeness to the L2-norm, the L*>-one is not conformally
invariant?. This is one of the reason why we need to construct a specific conformal atlas.

All along the proof, for any given chart,unless otherwise stated, all the norms are com-
puted with respect to the euclidean metric.

Proof of theorem 0.1 :

The sphere case :
Any sphere with constant curvature is conformal to the standard one, then the chart are given by south
and north stereographic projection composed by the conformal diffeomorphism. The Green function (up
to a constant) is the one of the standard sphere, its gradient is clearly bounded in L*°°, hence there is
nothing to prove for theorem 0.1.

The torus Case :

Let (X, 91) be a sequence of flat tori of volume 1. Thanks to uniformization theorem, see [13], we

L 72« % g
w%(vl) w%(vl)

know that, (¥, ¢;) is isometric to R?/ ( ) where v; lies in a fundamental domain

2 Although, it is invariant by dilation.



of H/PSLy(Z). Of course in the following we assume that the sequence degenerate, i.e. |v;| — 400, else
the metric strongly converge and also the Green function.

We are going to treat first the rectangular torus (the case of v; € iR) and we will explain how to
deduce from it the general case. Up to some normalizations, our torus is isometric to long and thin
cylinder : C; = \/% (S b x [—%, %D with the standard identification of its boundary components. Then

this cylinder is conformal to the annular 4; =D\ B (0, e_l) through the following diffeomorphism

] n(r L
bi(0,7) = (cos(@) sin() In(r) + 2>.

Vorl ' Vorl ' V2nl

Let G; be the pull back of a Green function on A;. It satisfies®

1
ALGy( ., w) = 6 — —— on A
LG w) =6y 5772 on A,

and
Gy ((0,e7"),w) =Gy ((0,1),w) and e '0,G; ((0,e™"),w) = 0,G; ((6,1),w) for all 6.

Then we split G in three parts: a singular part s;, a diffusion part w; and an harmonic part g;, as
follows G; = s; + u; + g; where

%ln ’rei‘g - w’ + %ln ’rei‘g - elw’ if |w| < %

si((0,r),w) =

%ln ’rei‘g — w’ + %ln ’rei‘g — e_lw’ if |w| > %

and

w (0,7),w) = —ﬁ (In(r))?.

We easily check that, on the one hand As; = d,, on 4; and ||Vs;]|2,0c0 = O(1), independently of I and

w, and on the other hand Au; = —3— on A; and ||V |l2,06 = O(1), in fact we get even the more precise
estimate |Vu| = O (%) Finally we estimate g;, in that aim we assume that w < %, the other case can
be done in a similar way. Then g; satisfies
Ag =0,
((9 1) ) ((9 7l> ) 3l . 1 e~ letf — el 3 +F(9> (2>
w) — e w)=———+—h|——|=——
AW s g ’ dr = 27 e —w dr TR
and
3 3 1 <ei0 eie _ ’LU) <eilew efleie _ el,w>
vy ((0,1),w) — e '8rg; ((0,¢7 ), w) = — | ——— L 1
g ((0,1),w) — e™'0rgi (0,71, w) o ( et — w2 + le—lei? — ely|?2 T (3)
= H,(0).

Using Fourier analysis, we can decompose g; as follows
1 )
gi((0,7),w) =co+agln(r) + — Z(anrn + b ™)e™,
™ nez

Thanks to (2) we easily check that,
apg = 0(1)

3This equation must be understood in a weak sense and be tested against smooth function of A; whose composition with
w;l extends to a smooth function on ;.



On the one hand, thanks to (2) and (3), we get

an(1—e ™) + b, (1 —e™) = \/LQ_W /0 i Fi(0)e~™ do (4)

and
1 27

an(1—e™™) — b, (1 —e™) = Hy(0)e™™ db. (5)

nv2m Jo
On the other hand,

€

HV@—%wmﬁzo(

1 1
Z nQai / = ldr 4+ nQbi / 2l dt)
el i

n€E”Z B

=0 (Z naz (1 — 672"1) +nb? (1 - ein)>

ISYA

But thanks to (4) and (5) and the fact that F; and H; converge in C?(S'), as [ goes to infinity, we have

il =0 (=) ol =0 ()

uniformly with respect to [. Hence

Z na? (1 - 6_2"1) + nb? (1 - 62"1) =0(1)
nez

uniformly with respect to I. Which prove that

IV (g1 — a0 In(r)[|5 = O(1)

Finally we conclude that

[VGill2,c0 = O(1),

This achieves the proof of theorem 0.1 in the case v; € i{R. In the general case, the torus is isometric
to (Ai,, gx) where I = 273 (vx) and g = W (r2d92 + Cog(r;)) with ap, = § — arg(vg) — 0. Hence
G, split as follows Gj, = si + ur + gr where

1 i0 1 0 _ I : 1
27 cos(auk ) In |rel - w‘gk + 27 cos(a ) In |7‘€Z —¢€ w|hk if |’LU| < 2

sk ((0,7),w) =

1 10 1 17 —1 : 1
27 cos(a ) In }7’61 B w}gk + 27 cos(ovg) In |7’€Z —€ w}gk if |w| >3

and

1
4l cos(ou,)

uk ((0,7), w) = In(r))*,
and then the analysis of g is the same.

The fact that we cannot bound the weak-L? norm with respect to the intrinsic metric of the torus is
illustrated by the following proposition.



Proposition 2.1. There exists a sequence of metric hi, on T? with constant curvature and volume equal
to 1 which is unbounded in the moduli space and such that, for any y € 3, we get

supt? |[{x € X | [dG}, (z,y)| > t}]| — +oo0. (6)
>0
Proof of proposition 2.1:

In order to prove this proposition ,we go back to the case of degenerating rectangular tori viewed as
a long thin cylinder: C; = ﬁ (S I x [—%, %]) with the two ends being identified in an obvious way. Let
gs(0,t) = G((6,1),(4,0)), then if this function is uniformly bounded in L% it would be the case for

g(0,t) = i 027r 9 (8,t) do, thanks to the invariant by rotation. Then we easily check that ¢(6,t) = %,
hence |dg| = —Vfﬂ’_rl, here the norm is computed with respect to the metric h = ﬁ(d@2 + dt?). Finally we
easily check that ||dg]| g2 ~ I, which is a contradiction and prove proposition 2.1. O

The case of genus > 2 :

Let (X, cx) be a sequence of Riemann surfaces of fixed genus g > 2. Thanks to the uniformization
theorem, see [13], we know that, we can endow X with a conformal metric hy such that (3, hy,) is isometric
to H/T';, where T’y is a discrete group of PSLy(R). Then, the Green functions associated to hy satisfy

(B0 )Gl 9) =5y~ -

Vg

where vy, is the volume of (3, hy) which depends only on the genus thanks to Gauss-Bonnet theorem. In
order to study the behavior of the Green’s function and following the classic description of hyperbolic
surfaces, see [11] or [10], we set § < arcsinh(l) and then we split (3, hy) in two parts: a thick part
E? = {s € ¥ |injrad((3, hx), s) > 6} and a thin part F{ = {s € X |injrad((2, hx), s) < §}. Thanks to the
decomposition theorem of Deligne-Mumford, we know that the sequence of metrics converges strongly on
the thick part and develops collar in the thin part. We are going to split our proof depending on the case
whether y lies in the thick or int thin part. But before we prove a general estimate for Green functions
on a closed surfaces.

Step 1: Coarea formula for Green’s functions.

In this step, G is any Green function associated to hy, there is no normalization. Volumes and
lengths are taken with respect to hj here.

Let t > 0, integrating by part on a level set, we get

vol ({Gr(z,y) > t})

Uk

oG (x,
[ B [ ()Gl da) = 1-
Gr(z,y)=t Vi Gr(z,y)>t

where v, is the exterior normal of the open set {x € ¥ | G(x,y) > t}. Then, we get

/c (@) t'de(%y)lik dok(x) < 2.
(T, y)=

Let 1 < p < 2 and a > 0, then thanks to coarea-formula, see [22] or [4], we get that

. +00 1AG (2, 1) oo
4Gl o) = [ [ I g ar <2 [ <G
/Gk(m,y)za F i a G (z,y)=t Gg(‘ray) a P b



where Cp 4 is a positive constant depending only on p and a. Moreover, we can also prove, considering

negative level set, that
/ 4Gy
Gr(z,y)<-a

where (), is a positive constant depending only on p and a. Finally we get,

[ ey
|G (,y)|=a

where (), is a positive constant depending only on p and a.

P
2

(@ 9k, dvi(2) < Cpa,

(NS

(m,y)|ik dvg(r) < Cp,a; (7)

Step 2: Estimate in the thick part.

In order to obtain the estimate on the whole thick part, we will cover it by a finite number of balls with
radius %, where have been chosen such that 0 < § < acrsinh(1). Since we consider a general sequence
of Green functions Gi( ., yr), we have to pay attention to the location of these balls with respect to the
singularity yi. In fact if yx is in the thick part then we will center one of the ball of the covering at yy

and then the others won’t have to deal with this singularity.

Let xy, € E,‘g and we first assume that yi, & By, (mk, g) Then By, (:I:k, %) is isometric to B (0, tanh (%))
in the Poincaré disc. In the following, we make all computations in the conformal chart B(0,3r) with
s
r= % and the metric h, = %. But the hyperbolic metric is equivalent to the euclidean one
on this ball.

On B(0,3r) we decompose Gy, as follows

Gr(-,yx) = ur + g,

Gr(-,yr) = ur + gr,

where uy(r) = L In (1_‘1z‘2) and g be a smooth harmonic function. Hence we can apply (7), with p = %

and a = % In ( 13T)2) to ék = Gk — gx(0), which gives that

—
|
—~

1
I 4G (o), don, (o) < C.
{IGx(@,yx)|2a}NB(0,37)

where C' is a positive constant depending only on the genus and §. Then, by the mean value property,
there exists p € [2r, 3r] such that

/ ) (4G (2, yi)ln, don, (z) < C,
{|Gk(zk,y)|>a}nNdB(0,p)

where C' is positive constant depending only on the genus and 4. Then, using the fact harmonic functions
satisfy the mean value property, we get that the mean value of g — gr(0) is 0 on 9B(0, p) and we easily
deduce that

|Gr(z,y1) — g1(0)] < C, for all x € OB(0, p),

where C' is positive constant depending only on the genus and §. Then using classical elliptic estimate,
we have

[dG (. 7yk)|\L;cp(B(o,r)) <C, (8)



where C' is positive constant depending only on the genus and §. Then, in the case x = yi, equivalently
the ball we consider is centered at the singularity of G(z, .), we obtain the same estimate decomposing
Gy as follows

Gi(-,yk) = sk + uk + gr,
where s;(z) = 5= In(|z|). But, of course, in that case, due to the presence of sy, the estimate is in L*°.
Finally covering the thick part with a uniformly bounded number of balls we get the desired estimate on
G(.,yr) on the thick part. Indeed, either yx is not in the thick part and the result will follows directly

from (8), or we start by taking a ball centered at yj and then we cover the rest of the thick part by balls
which does not contain yy.

Step 3: Estimate in the thin part.

Let z, € F; ,f and y, € ¥ two converging sequences in Y. First, thanks to the collar lemma, see [10],
we know that each connected component of the thin part (i.e. at most 3g-3), contains a simple closed
geodesic i, of length e, = I(v) < 2arcsinh(1), and is isometric to

B = {z =reYecH:1<r< ek, arctan (smh (%k)) < @ < m—arctan (sinh (%))} ,

where the geodesic corresponds to {re’? € H:1<r < e} and the line {r = 1} and {r = e} are
identified via z + e®z. It is often easier to consider the following cylindrical parametrization. Let
K = arctan (sinh (%“)) and we set

2 2
Cr = {(cos(@),sin(@),t) |0 <6 <2, 5_7T<'0k <t< E—ﬂ (m — @k)}
k k

equipped with the metric

™

2
€k 2 2
he = | —————~ dO” + dt*),
<27Tsz'n (—&—E‘t)> ( +dt’)

where the geodesic correspond to {t = 7;—2 }
k

We are going to make the proof assuming that yi lies in the thin part. When this is not the case
the proof carries over after the simply operation consisting of withdrawing the singular part s;. We can

also assume that y. & ([ﬁ—:wk, i_:@k + 1%} U [i—: (T —r) — 1%, i—: (m— @k)}) x S1, replacing § by % if
necessary.

Then, as for the torus case, we choose an annulus as conformal chart. Precisely, let A;, = D\ B(0, e~ ')
and ¢y, : A — Cy defined as follows

Yr(0,7) = (cos(@), sin(0),In(r) + i—: (m— gok)) ,

where [}, = i—: (m — 2pg). Then, the pull back of a Green function on Ay, that we keep denoting Gy,
satisfies

727 sin (;—; (ln(r) + ﬁ—: (m — @k)))

AZGk(.,wk):(ka - on Ak,



where ¥y, (wy,) = yi with wy, € B(0,e710)\ B(0,e~F10) .
First of all, thanks to our previous step, see (8), we remark that
IVGi(.,wp)| < % on B(0,e~F15)\ B(0,e~!), 9)
and

[VGr(.wi)| < C on B(0,1)\ B(0,e™ ™), (10)
where C' is a positive constant depending only on the genus and §. Then we split Gy, as follows
Gr((0,7r),wr) = sk(0,7) +ur(6,r) + gr(0,71),

where

oy (3 (0 2))

Vg

)

and 1
sp(0,7) = o In (|T€w — wg|).

We easily check that

2 1 !
v =
IVl =5 |

2 cos | £&
:% —E—kln(r)—agC (W( <C,
vi | 2w sin (;—’“ (ln(r) + 3—: (m— @k))) .
Ask = 5w;€7
and
[Vskll2,00 < C, (12)

where C is a positive function depending only on the genus and J.

Then gg, which has been obtained from Gy, after subtracting si and ug, is a smooth harmonic function.
Let G5, (r) be the mean value of g on the circle of radius r centered at 0. It is also harmonic and radial,
hence g, (t) = ay In(r) 4 bi. Moreover, thanks to (9) and (10), we get that

Vel < < on B0, e )\ B0,e7"), (1)

and

10



IVgi| < C on B(0,1)\ B(0,e" ). (14)

In particular, ay is uniformly bounded and we get,

IVGll 2.0 (B0 B0, 1)) < C (15)

Then using the fact the mean value of g, — g}, is zero and the previous estimate, we get that

lgx = ngLoc((B(O,e*lw%)\B(o,e*lk))u(B(0,1)\B(0,e*z%)>> =G, (16)

where C' is positive constant depending only on the genus and §. Then, since gx — g;, is harmonic and
with radial mean value equal to zero,

IV (gr = G)l <G, (17)

L <B<07e*%>\3<o,e*lk*%>> a

where C' is positive constant depending only on the genus and d. The last inequality can be proved using
the furrier decomposition and remarking that g, — g, has no logarithmic part. Finally, thanks to (11),
(12), (15) and (17), we get the desired estimate, which concludes the proof of the theorem 0.1. |

3 Weak compactness result for immersions with second funda-
mental form bounded in L?

The first application of theorem 0.1 regards the control of the conformal factor for immersions with L?2-
bounded second fundamental form. Before to state the main result, we shall first remind the notion of
weak immersions introduced by the second author in [17] .

Let ¥ a smooth compact surface equipped with a reference smooth metric go. One define the Sobolev
spaces WFP(X, R™) of measurable maps from ¥ into R™ into the following way

k
WhP(S,R™) = {f DI Rmmeasurables.t.Z/ |Vlf|§U dvg, < +oo} .
1=0 ">

Since Y is compact it is not difficult to see that this space is independent of the choice we have made of gg.
Let f € W1oo(2,R™), we define g5 to be the following symmetric bilinear form
95(X,Y) = (df (X), df (Y)),
and we shall assume that there exists C't > 1 such that
Crlgo(X, X) < g(X, X) < Crgo(X, X). (18)

For such a map, we can define the Gauss map as being the following measurable map in L>°(3) taking
values int the Grassmannian of oriented m — 2-planes of R™,

af A Of
ﬁf:*iﬁ/\%

af . 9f
2 N ox

11



We then introduce the space & of weak immersions of ¥ with bounded second fundamental form as
follow:

® € W°(X) which satisfies (18) for some Cgp > 0
& =
and [, |diie|? dv, < 400

where g = ®*¢.
It is proved in [19] that any weak immersion defines a smooth conformal structure on X. Let ® € &y,

we denote by mj, the orthonormal projection of vector in R™ onto the m — 2-plane given by 7ig. With
these notations the second fundamental form of the immersion at p is given by

VXY € T,Y T,(X,Y) = mz, d?®(X,Y),

and the mean curvature vector of the immersion at p is given by

L1 .
Hiitrg(ﬂ)

A natural quantity while considering such immersions is the Lagrangian given by the L?-norm of the
second fundamental form :

E(¢) = / 112 dv,.

An elementary computation, using Gauss-Bonnet formula, gives

E(¢) = / 12 dvy = / (dit 2 dv, = AT () — 4mx(5),

where x(X) is the Euler characteristic and

W)= [ | dv,
b
is the so called Willmore energy.

Theorem 3.1. Let (X, ci) be a sequence of closed Riemann surface of fized genus greater than one. Let
denote hy the metric with constant curvature (and volume equal to one in the torus case) in ¢, and Dy
a sequence of weak conformal immersion of ¥ into R™, i.e.

P& = ek hy,

where up, € L°(X). Then there exists a finite conformal atlas (U;, ;) independent of k and a positive
constant C' depending only on the genus of %, such that

l[dv || 2. v,y < CW (Dp),

o®Foy !

where vl is the conformal factor of ® o 1/);1 in Vi = (U;), ice. vl =3 ln’ 5a

2

8P* oyt
= 11|22 0% |
2 oy

Proof of theorem 3.1:

Let Ky = 0 or—1 if the genus g of ¥ is 1 or greater than 1 and be K¢ the Gauss curvature associated
to ®@;&. It is classical that uy satisfies the following Liouville equation

7Ahk’u,k = K¢Z£€2uk - Kg. (19)
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Let Gy be the nonnegative Green function of (X, hy), then using the representation formula, we get that
u = G+ (Kgree®™* — Kg) . (20)

We have the following straightforward estimate,

/|K¢Z£€2uk|d’uhk :/ |K¢Z£
P z

this proves that the right hand side of (19) is uniformly bounded in L'-norm by W (®) with respect to
the metric hy. Then let (U;, ;) the conformal atlas given by theorem 0.1 and let ¢ = (I)kO’L/};l Vi, - R™

and vl : V; — R such that (¢%)*(€) = e2%dz2. First we observe that v} = uo0th, ' +wi where wi : V; — R

1 5
dvgre < B /2 |H<I>;£|dv<1>;(g) < W(Py), (21)

such that (¢;)*(hi) = e2“kdz2. Moreover, we can easily check that Vw{ is uniformly bounded in L%
since in the torus case a chart is given by an annulus and wj, = —In(r) 4+ ¢ and in the hyperbolic
case the chart is either a disc with radius strictly less than 1 and w} = —In(1 — 7?) + ¢} or an annulus

Ap =D\ B(0,e ) where I = i—: (7 — 2¢y) with wi = —1In (TSiIl (g—; (ln(r) + 3—: (m— @k)))) +ct.

Then it suffices to check that V(uy o wi_l) is uniformly bounded in L?°°(V;) in order to prove the
theorem. Thanks to (20), we have

uk(y):/EGk(:c,y)Fk(:c)dvhk +m/zuk dvp,, (22)

where Fj, = Kg:¢e®* — K,. Hence,

Vyun o (y) = / Y, G, 6 () Fi (@) don, (23)

then using the fact sup,cy, |VyGi(z,%; ' (y))||2.~ is uniformly bounded, thanks to theorem 0.1,
thanks to (21) and standard inequality on convolution we get that ||V (uy o ¥; )| p2.(v;) is uniformly
bounded which concludes the proof of theorem 3.1. [ |

Then our second application concerns the weak compactness of the conformal immersion with L2-
bounded second fundamental form. The following result was proved first in [17] when the conformal
classes of the surfaces do not degenerate and has been extended to the general case of degenerating
riemmann surfaces in [14]. We shall present a different approach for proving this result as being a
consequence of our main theorem 0.1

Theorem 3.2. Let X a closed surface of genus strictly greater than 1 and @ € Es a sequence of weak
immersion into R™ with £2—b0unded second fundamental form. Then, up to a subsequence, for any
connected component o of 3, the nodal surface of the converging sequence (X, ®;§), there exists a Mdbius
transformation = of R™ such that
Er o ®r(X) € B(0,R)
where R depends only on m and there exists at most finitely many point {a1,...,ar} of o such that if we
denote Wy = 2 o §y, o ¢y, then
U, — U weakly in V[/foc2 (0‘ \{a1,...,aL,q1,...qi }, ﬁ) ,

where ¥ is a weak conformal(possibly branched) immersion of (o, 71) into R™ and the q; are the punctures

of (0,h) and ¢x : X — % such ¢%(hy) — h in C’l%oc(i) .
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Moreover, for any compact K C o \ {a1,...,a5,q1,...qK} there exists Cx > 0 such that

sup || Log|dV |z n, || L (k) < Ck,
keN

where Cg depends only on m, K and the L?-bound on the second fundamental form of ®y.

Here we consider the hyperbolic case, since in the sphere case the existence of a non compact con-
formal group is the additional difficulty already treated in [16] and in the torus when it degenerate, the
injectivity radius uniformly blow down.

Proof of theorem 38.2:

By assumption there exists A, a positive constant , such that

sup W (®;) < A. (24)
keN

We denote by uy the conformal factor of this weak immersion with respect to the hyperbolic metric
hi, in the conformal class of ®;£. That is to say

Pré = e*" hy,
where K, = —1.

Now let (3, 1) be the nodal surface of the converging sequence (X, hy,), {q:} the set of punctures, (3, i)
its renormalisation and ¢y : 3 — ¥ the continuous map given by to Deligne-Mumford compactification
recalled in section 1. Let ¢ be any connected component of 3.

Then &)k = @y, o ¢y, is a conformal weak immersion of (o, fzk) where hy, = ¢rhi. Hence, we get
(B 0 Pp) "€ = €2 hy,.
Let 0 > 0 and K5 = {x € 0 s.t. dj(x,q;) > ¢ for all i}, thanks to the local convergence of ¢y, then
||Vuk”L§;°°<z> is uniformly bounded on Kj. (25)

Here we use the fact that on the thick part the euclidean metric and the hyperbolic one are equivalent
then theorem 3.1 can be consider intrinsically on the thick part.

Then, in order to find the correct M6bius transformation, we follow the procedure introduced by the
second author in [17]. For each z € K there exists p& > 0 such that

8w
|diiz |? dv; = min <—,/ |diiz |2 dv; >
/Bizk (,08) @i lhy " hi 3 Ks @ lhy, " hi

where Bj (z,p%) is the geodesic ball in (o, h) of center x and radius p¥. Then, using the Besicovitch
79

. . . Pzt L
covering lemma, we can extract a finite covering of K5 C Uier, By, <:ck %), such that each point is

covered at most N time, where N is independent of k. Then, thanks to (24), we can extract a finite
covering, I C UyI}, which is independent of k where ¥ converges to x3° and p,» converges to pzoe. Then
we set lo = {i € [ s.t. pyoe =0} and Iy =1\ Io.
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Claim :For each i € I \ I; there exist 7, € R such that

i
llox — UkHLw (Ba (zkﬁf’xg )) <C,

i 2

where C is a constant which depends only on A.
Proof of the Claim :
Let fix ¢ € T\ Iy and identify, up to uniformly bounded conformal diffeomorphism, By, (z, p¥) with D.
Then, thanks to lemma 5.1.4 of [9] there exists a moving frame (eF,F) € W12(D, S™~!) such that
>k |2 >k|2 S 2 8m
(|Ver|* + V&%) dz < [ |diig |“dz < —,
D D k 3
and moreover
*Mg, = el A el and Auy = (VJ‘é'lk, 6'2’“) .
Let v be the solution of
Avy = (V+4ef,ef) on D
v = 0 on 0D

Then, thanks to Wente inequality, see section 3 of [9], we get

1
oxlloo + IVor ]l < IIVEY][IVES]. (26)

Finally using the fact uy — vg is harmonies with ||V (ur — vg)||2,00 uniformly bounded, we proved that
there exist ¢y € R and C' a positive constant independent of k such that

lur — v — Ck||Loo(B(0é)) <C, (27)
Finally, putting (26) and (27) together concludes the proof of the claim. O

Then using the fact that each point is covered by a universally number of ball, we easily get that
there exists 7y € R such that

ok = Tell e sep\iery By (o72.)) S € 28)

i 02

We also remark that he constant vy, is independent of §. Let xy € o then we set

(/I;k = e Uk (&)k — (i)k(l'o)) .

Then, using Simon monotonicity formula, see [22], as in [17] we proved that there exists yo € B(0,1) C
R™ and t > 0 such that

~ é
(I)k <K5 \ UiGIoBE (1,207 5)) N B(an t) = @ (29)
Finally, we set
Er = Log (675’“ ( .= i’k(xo)))

where I, ; is the inversion of R™ centered at z¢ and with ratio ¢t. Hence = is a Mdbius transformation
such that, if we set Uy, = Z o §y, we get thanks to (28) that

sup || Log|dW [, ||~ x) < Ck,
keN

15



and thanks to (29), that there exist R > 0 such that,

Uy (Kg \ UieIOBﬁ (xi, g)) C B(O,R)

Finally, Using a classical argument of functional analysis , see for instance [19] beginning of section VI.7.1,

we easily deduce that ¥y, converge to ¥ in VVZQOC2 (O’ \{x%°, ..., 2%, q1,- - qK T, iz), moreover ¥ is a weak
immersion away from {z$°,...,25°,¢1,... ¢k } satisfying
W(¥) < 400

Finally Lemma A.5 of [18] permits us to extend ¥ as a conformal, possibly branched, immersion of o.H

4 Weak compactness of Riemannian surfaces with bounded Gaus-
sian curvature entropy

The last application of our main result is a compactness result in the spirit of Cheeger and Gromov
[5], Trojanov [24] and most recently Shioya [21] for Riemannian surfaces. Indeed, we prove a general
compactness result for sequence of metrics on a given closed surface assuming only that the area and the
total curvature are uniformly bounded and that the entropy of the Gaussian curvature is also bounded.
The first assumptions are the weaker we can assume in order to the problem makes sense. And the
second is made necessarily if one consider a long thin cylinder closed by a two spherical cap, see [24] and
reference therein for more examples of degenerating metrics with bounded curvature and area.

The entropy of the Gaussian curvature of a given metric is defined as follows, let 3 be a closed surface
and g a Riemannian metric with Gaussian curvature equal to K, then we set

E(g):/KJln(K;')dvg,
b

where K} = max(0, K4) and we set K In(K}) =0 when K = 0. This was introduce by Hamilton in
the context of Ricci flow on surfaces. He notably proved that it is monotonically increasing along the
Ricci flow on spheres with positive curvature, see [8] and [6]. In order to apply directly our preceding
result, we introduce a slightly stronger notion of entropy. Let ¥ a closed surface with a reference metric
go, then we set

Eolg) = / (e + K gdug o )| K| dy.

Then considering this notion of entropy, we get the following compactness result.

Theorem 4.1. For any closed Riemannian surface (X, go) and any sequence of smooth metric gy such
that

/E 1K, |do, + Eolge) = O(1),

then for each component o of the thick part of (X, hy), then, up to a dilatation of the metric by a factor
e~C%, hy converges weakly in (L2 (0))*.

More precisely, up to a subsequence, one of the following occurs

i) genus(X) = 0, then there exists Cy such that if e~ Crgp = €*"* gy, where go is the metric of the
standard sphere, and uy is uniformly bounded,
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it) genus(X) = 1, then up to a first dilation, (X, gx) is isometric to C/(Z x viZ) where vy, lies in a
fundamental domain of H/PSLy(Z), then there exists Cy, such that if e~ C* gy, = e>**d2? then uy, is
bounded in LS. (C/(Z x viZ)).

loc

ii1) genus(X) > 1, then let o a connected component o of the nodal surface of (X, hy), then there exists
Cy, such that if e~ %k gy, = €2“*hy, and uy, is bounded in LS (o).

loc

Here, for a sake of simplicity we consider the standard sphere and a cylinder of fixed radius as thick
part.

Proof of theorem 4.1:

We choose the atlas given by theorem 0.1, and let gx = e?“*hy where uy is the conformal factor
with respect to a normalized metric of constant curvature. Let K be a compact set of o a connected
component of the thick part and U an open set of o such that U is compact and K C U. Then on U the
conformal factor satisfies

Ahkuk = ng€2uk — th,

and hj converges strongly to a smooth metric. On the one hand, since the total curvature is bounded,
as in theorem 3.1, we get that Vuy is uniformly bounded in L*°°. Then let vy € HE(U) such that

Ap, v = ngeQU’“ — Ky, onU.

On the other hand, thanks to the theory of singular integral, see [23] exercise II 6.2.(b), we get that Vouy
is uniformly bounded in L? and that v, is uniformly bounded in L. Then, since u; — vy, is harmonic
on U whose gradient is bounded in L%, then thanks to Harnack inequality there exists a constant
C) such that up — vy — Cj is uniformly bounded on K. Then, after checking that the constant is in-
dependent of K, we get that on each connected component of the thick part there exists a sequence of
constant Cj, such that e~ gy = e hy, with iy, uniformly bounded in LS (), which prove the theorem.(]

Remark :An interesting problem is to try to replace Ey by E in the preceding theorem. In order to
do this, on need to analyze the way K dv, concentrates as already done, in the particular case where the
Gauss curvature converges uniformly, by [2] see also [15].
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