HARMONIC MAPS FROM B® INTO 5
HAVING A LINE OF SINGULARITIES

Tristan RIVIERE

I.Introduction

In this paper, we consider maps from a bounded domain £ C R™ taking values in the
unit sphere S, of R™ . If u is a map in H(Q,5™ ') we denote by E(u) the Dirichlet

energy:
E(u)=/ \Vul?dz
Q

Weakly harmonic maps from  into S™! are critical points of E(u) for variations on

range; more precisely u is harmonic from Q into ™1 if:

d _, u+t
EE(Iu-i-tfl

V¢ € Coo (9 R™) )(0) =0

this turns out to be equivalent to the fact that u is a weak solution of the equation
Au+ |Vul>u =0 (1)

Two classes of the weak harmonic maps are particulary studied:

I the minimizing harmonic maps: those are the maps which minimize the energy E(u)
among the maps of H'(Q;IR™) with value into the sphere 5 m—1

II the stationary harmonic maps: those are the weak harmonic maps which are also
critical points of the energy E(u) for the variations in the domain Q: more precisely u is

harmonic and
WeCE@RY)  SBaE+mE)0)=0 ()

There are several results concerning partial regularity of harmonic maps we recall
briefly most of them in the following board. By Sing we denote the singular set of the
considered maps, dim(Sing) the Hausdorff dimension of Sing and H¥(Sing) the value of
the k-th Hausdorff measure of Sing. In italic we precise the name of the authors of the

proofs followed by the references of the proofs.
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Minimizers Stationary maps Weak harmonic maps

n=2 Sing =10 : Sing =0 : Sing =10 :
Morrey [10] Gruter [7] ,Schoen [11] Helein [9]
n>3 dim(Sing)<n—3  H*?(Sing)=0: 777
Schoen-Uhlenbeck [12] Evans [3]

The preceeding results remain valid for maps from a Riemannian Manifold with boundary
into a compact Riemannian Manifold without boundary, except the result of L.C.Evans,
whose proof fundamentaly uses the symmetries of the sphere.

No general result concerning the regularity of weakly harmonic maps from a domain of
IR™ (n > 3) into a sphere has been found. We give here examples of harmonic maps from
B® into S? whose singular set is exactly a segment in B® and thus with Hausdorff measure
H! not equal to zero; this shows that the regularity results, concerning the stationary
maps, do not extend to arbitrary weakly harmonic maps: indeed, stationarity and more
precisely monoticity formulas (see the preceding references) are an essential tool in the
regularity theory for these maps.

We may even conjecture that there exists harmonic maps for n =3 singular everywhere.

Our starting point is a prescribed singularity result of R.Hardt, F.H.Lin and C.Poon [8]
concerning axially symmetric maps from B® into S? : a map u from B? into S? is axially

symmetric if it can be written in cylindrical coordinates in the following way:
u(r; 8; 2) = (cosb sing(r, z); sinf sind(r, z); cosd(r, z))

¢(r, z) is usually called the angle function. Now let g be a map from 8B into S? verifying

the following condition:

g is C*(0B%; 5?)
g is axially symmetric

(C)

g has an angle function in [—7; 4]

X g((07 07 1)) = g((07 07 —1))

The result of Hardt, Lin and Poon asserts that for any set of consecutive points of B3

on the z axis {af,al—, . ] )@ a; } there exists an axially symmetric harmonic map u €
C>(B?/{a},a7,...,a},aj}) having singularities of degree £1 if ¢((0,0,1)) = (0,0,1) or
¥1 if ¢((0,0,1)) = (0,0, 1) at the a; and such that u/sp: = g.
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This theorem is in fact a regularity result for minimizers of the generalised relaxed
energy functional Fy(u) introduced by F.Bethuel, H.Brezis and J.-M.Coron in [1], where
F,(u) is given by

Fo(u) = E(u) +8rL{u,v) with E(uv)= / |Vu|*de,
B3
for a fixed v € H'(B*,5%)

.. 1
L(u,v) is given by L(u,v) = Esup§:B3——+lR,||V§||ooSl{/Ba(D(u) — D(v)).V¢ dz}

and D(u) by D(u) = (u.uy Atz u.uz A tg; Uiy A uy), vector field introduced in 2]

It is easy to verify that L(u,v1) = L(u,v2) if v; and v, have the same singularities .
R.Hardt, F.H.Lin and C.Poon have proved that, for a fixed v having a finite number
of singularities, any minimizer of F,(u) (such a minimizer is weakly harmonic see [1])
among axially symmetric map having an angle function in [~7; +7] and a fixed boundary
condition ¢ verifying (C), has exactly the same singularities as v, with same degrees. (This
implies in particular that L(u,v) = 0). Indeed, when u and v have only a finite number of
singularities L(u,v) can be interpreted as the minimal connexion, see [2], between all the
singularities of u and v after having inversed the sign of the degree of the singularities of v.
Note also that minimizers of F},(u) do not depend only on v but only on its singularities
along the z axis.

The idea of our proof is a construction of a H'-convergent sequence vn of axially
symmetric maps from B® into $? having more and more singularities along the z axis and
we observe the behavior of the minimizers of F, by passing to the limit. Our aim is to
find a special configuration of the added singularities for which there exists a strong H!
convergence of a special sequence of minimizers. This strong H?' convergence will indeed

preserve, at the limit, all the singularities we have added.

I1. Prescribed singularities for axially symmetric maps.
We recall here without proof the result of R.Hardt, F.H.Lin and C.Poon [8] in the
form we will use later.For this we introduce the following notations:
for g : 0B® — S§2 verifying (C) let
Hgl(Bs;SQ) ={ue€ Hl(Bs;Sz);U\aBs =g}
u € HY(B®; $%);u is axially symetric,with angle function in [—m, +7],
s = 4 u has only a finite number of singularities which alternate
with degrees + 1 along the z axis
and A%g = RGs7
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Remark: in [8], the notation R7 s denotes a slightly different and smaller set, more
precisely, they impose at every singular point of any map in R%g a special asymptotic

configuration, nevertheless this set has the same closure in H ;(B%,S 2).

THEOREM 1 [8] . Let g be a map from OB® into S? verifying the condition (C) and v
in H; (B%,S%) N R%¢ then any minimizer of F, among H; (B3,5%) N A% ¢ has the same

singularities with the same degree as v.

III. The construction of maps having a line of singularities

We prove in this part the following result:

THEOREM 2 . Let g be a map from 8B® into S* verifying the condition (C), let a,b
be arbitrary real numbers such that —1 < a < b < 1, there exists an axially symmetric
harmonic map u in A% g N C°°(§3/{(0, 0,2);a < z < b}) N H;(B*,S?) whose singular set

is exactly the segment [a,b] on the z axis.

Remark: we can make a similar construction for an union of disjoint segments on
B3N z axis.

II1.1) Presentation and reduction of the problem

Without loss of generality we may assume that g((0,0,1)) = (0,0,1). we will often
make use of the formalism of the cartesian currents introduced in this context of maps in
H; (B%,5%) by M.Giaquinta, G.Modica and J.Soucek in [5], [6] and adapted to the axially

symmetric case in [8] (lemma 3.1):

LEMMA 1 . For any u in HY(B®,5%) N A%g (degg = 0) there exists J a Lebesgue
mesurable subset of z axis NB* such that

dlgraphu]|(B® x §%) = —0[J] x [$*] ~ (3)

(We replace the sign - by + if ((0,0,1)) = (0,0,-1))

For the convenience of the reader, we illustrate the meaning of (3) on a simple example:
assume that u has a finite number of singularities a?: of degree 1 which necessarily
alternate along the z axis (this is imposed by topological reasons in the axially symmetric

case: see [8]) the graph of u has the following boundary:

i i
dlgraphu][(B® x 5%) = —0[| Jla7, a1l x [$7) = ~(Q_[{aF 3] — [{ai }) x [S7]

=1 =1
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Using this formalism we can give the following interpretation of L(u,v): for v and v in
H; (B?,S?) N A% there exists a one dimensional current I, , with support on the z axis
such that

— 81,5 x [5?] = (dlgraph u) — dlgraphv])|(B® x 5),

and M(Ly ) = L(u,v)
see [5]; in the particular case where one of the two maps is in R7 ¢ this current is rectifiable,
with multiplicity 1 and of the form +[J1] — [J2] where J1 and J; are Lebesgue measurable

on B3N 7 axis.

In order to prove theorem 2, we are going to construct u and v verifying conditions
(C1) (C2) and (C3) below; we have the following:

THEOREM 3 . There exists u and v in A% g verifying the three following conditions:

(C1)dlgraphv]|(B® x §%) = —8[J] x [5%] where J is a Lebesgue measurable
subset of (a,b) verifying 0 < H(JIN(a,B)) <B—aforanya<a<pf< b
v € C®(B?\ [a,b]; S%)

(C2) v is a minimizer of F, among H}(B* 5%)N A%s

(C3) L(u,v)=0

Theorem 2, then is a consequence of theorem 3 and the following:

LeMMA 2 . Let u and v in H}(B®,5%) N A% 5 verifying (C1) (C2) and (C3) then u is an
axially symmetric harmonic map in C*°(B?/{(0,0,2);a < z < b}) whose singular set is
exactly the segment [a,b] on the Z axis.

Proof of lemma 2:The regularity of u away from the z axis comes directly from the axial

symmetry of u and the fact that u is harmonic: indeed the angle function of u verifies the

following elliptic equation for r > 0:

0 3¢ sin2¢

o =0

( )+ 5,0 T o

In any ball B,(z) centered on the z axis which does not intersect [a,b] we observe, as in
theorem 9 [8] that u minimize the classical relaxed energy E(u) + 8nL(u) among A},
so, by theorem 7.2 [8] u is C> away from [a,b]. Let us.now consider a small ball B,(x)

centered on the z axis between a and b then

L{u,v) =0 = Odlgraphu]|B,(z) = dgraphv] |_Bp(9:)
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Moreover, since 0 < HX(JN\(z—p,z+p)) < 2p, [J]| Bo(z) # 0, Olgraph v]| By(z) = 0 thus
dlgraphu]|B,(z) # 0 and u is not regular on B,(z) so sing(u) = [a,b]. This completes
the proof of lemma 2.A

Remark: We may conjecture (C1) and (C2) imply (C3). Actually if we replace (C1) by
"y have a finite number of singularity” this is true: that is the Theorem1. By constructing
two such maps u and v which verify (C1) (C2) and (C3) we avoid a more general eventuel

result.

The rest of the paper (section IIL.2) is devoted to the proof of theorem 3; that is the
construction of u and v verifying (C1) (C2) and (C3). They will be obtained as strong

limits of sequences u, and v, in R}g.
I11.2) Proof of theorem 3

we will construct u, and v, two sequences of R% ¢ N Hy(B?,S?%) which verifie (D1) and
(D2):

(D1) vy, converges strongly in H' to v which verifies (C 1)
(D2) there exists a sequence of minimizers un of Fy, among H +(B?, SHN A%

which strongly converges in H !

The strong limits of those two sequences verifie (C1) (C2) and (C3): (C1) is contained
in (D1), (C2) comes easily from the sequentially lower semicontinuity for the weak H'
topology of F, (exactly like in lemma 5), finally theorem 1 implies that L(un,vn) =0 and
the two strong convergences enable us to pass to the limit in L, since L is continuous for
the strong H' topology (see[l]) then (C3) is verified.

Remark: (D2) is of course the most difficult condition to obtain and the strong convergence

is necessary: a simple weak convergence could efface all the singularities we have added.
II1.2) a) Construction of a familly of sequences v, verifying (D1)

As we have announced in the introduction v, will be constructed by adding more
and more singularities, and because of v, must strongly converge, we have to do this by

spending little energy. So we need the following lemma:
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LeMMA 3 . Let u in H;(BE",Sz) NA%g and —1 < a < < 1 two reals such that u be
regular in a neighborhood V of the segment [a; 8] on the Z axis. Then for any C > 8w
there exists 4 in H; (B3,5?)N A% g such that

(a) (0,0,a) and (0,0,3) are the only one singularities of 4
in V and with opposite degrees =1 or F1
b) @=wuinB/V

0 /;3 V(u - @)Pdz < C|8 — a

Proof of lemma 3: This lemma is a direct application of the ”construction of the

dipole” in the axially axially symmetric case made in [8 }(lemma 6.1) and we shortly recall
it here for the convenience of the reader.
We modify u into two balls of radii €|8 — a|, centered in (0,0, ) and in (0,0,4) and

we also modify u into the cylinder joining them; precisely into

Qe = {(r,0,2)/a <z<Pandr <e|f—al}
U{(r,8,2)/r* + (2 — @) < £’ — o}
U{(r,0,2)/r* + (2 — B < 1B —of’}

and for e sufficiently small such that Q. C V. Let QFf = Q. N{z > ﬁ%’—g} and Q7 =
Q.N{z < !%} 9t N 907 is the horizontal disk Bglﬂ_al((0,0, %ﬁ)) Let @ coincide,
on this disk, with the unique conformal axially homeomorphism that maps onto the large
spherical region {X € S? : |X —(0,0,1)| > tan(¢(¢|B — af; £+23)} Let @ coincide with
v in B3/Q.. The rest of i is, in Q7 the natural radial extension centered in (0,0, ) of
its value on 897 and in QF, @ is the natural radial extention centered in (0,0, 8) of its
value on 8Q7F. We remark that such modifications preserve the axial symmetry of the map
and maintain its angle function in [—7;+n] . The map that we obtain is only lipschitz
in V/{(0,0,a);(0,0,8)} but it does not spend a lot of H' energy to smooth the angle
function in this domain.

So we obtain (see [8]):

x
€

¢|f—el
2
/ |Vii|*dz < 8|8 — a| + O(e) + 27 / / 2| — alz%!%épdz dr
Q. T z
0

r

€

en [ [Vafds < 8718 — ol + 0(&) + CllgIfi=(am
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But %f = 0 on the z axis in V' then H%ﬁ”%w(ge) —+0ase— 0. Since @ = u in B*/Q. and

since [, |Vu|®dz — 0 as ¢ — 0 we obtain the desired result.A

Thus the singularities will be added dipole by dipole. Each singularity will be an end of a
segment of the sequence of sets on the Z axis that we introduce now.

Let pn and 6, be two sequences of positive reals verifying the following condition:

b—a

0<ég < 5

0 < pint1 < 6

We denote by E = (E,) the associated sequence of subset of [a, b] constructed by induction

as follows:

open segments of length 6, < p2
Ey = [a'a b] ) En+% = En \
each centred at the middles of the segments of Ey,

closed segments of length yn11 < 62 each centered at
ik the middles of the segments of [a,5] \ B, 1 in [a, b]

Let &, be the set of such sequences (E,); we have the following lemma:
LEMMA 4 . For any E in &, there exists v, in R g N H}(B?,S?) such that

a) Ographv,]|(B® x S%) = —8[En] X [S?]
b) v, verifie (D1)

Remark: Since vy, is in R g the cartesian currents equality of the lemma signifies that the
singularities of v, are exactly the ends of the segments of E, and for any given segment of
E, the degree of the singularity at the superior end is 4+1 and the degree of the singularity

at the inferior end is -1

Proof of lemma 4: We construct v, by induction: let vy be any map in H gl (B3,S%)n
RT s whose singularities are exactly a and b. From v, we construct v,41/2 € Rig whose
graph has the boundary —8[E,11/2) x [S?] by inserting dipoles of length 65 < u? each
centered at the center of the segments of E,, as it is made in lemma 2 for a given constant
C > 8r independent of n. then, similary, from v,4;/2 we construct vp41 € R’ & whose

graph has the boundary —8[En41] x [S?] by inserting dipoles of length pni1 < §2 each
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centered at the center of the segments of [a, 5]/ Ent1/2 in [a, b]; those dipoles of course will
have an opposite orientation than those that we have added between n and n + 1/2.

We now verify that v, strongly converges in H'. N, the number of segment of E, 1s

N,=2/3+4"+1/3
0 / V(0n — v ja)Pde < O (47(2/3) +1/3) 60 < C'4% ¢ ()"
B3
wad [ [F(enens— vwr)ide O @(E@/5) +1/3) = D s S C4 ()"
B3

then / |V (vp41 — va)Pdz < O7 4™ * (u2)*"
B3

it is clear that v, is a Cauchy sequence in H?, let v be its limit there exists a Lebesgue
measurable subset J of B3Nz axis such that 8[graphv]|B® x §? = —0[J]x[S?]. [En]-[J]is
a mass equibounded sequence of 1 dimension currents, we can extract a weakly convergent

sequence of currents always denoted [Ey] — [J]; let L be the limit
[E.]—[J]— L and spt(L) C [a,b].
Since v, — v strongly in H! we have

dlgraph v,] — O[graph v]
then O[E,) - 90[J]—0 S0 JlL]=0

The constancy theorem (see [4]) implies L = 0 and [Ey] — [J]. Thus, xn, the characteristic
function of E, weakly converges in L™ to x the characteristic function of J.

Let us show now that
V(a, 8) €R? a<a<pB<b then 0<H(JN (e, 8)) < B—a.

For p sufficiently large there exists a segment S of E, such that 5 C [, B8] thus it is
sufficient to show that 0 < [y xdz < |S|. Since xn — x in L%%, Jsxndz — [gxdz;

moreover
on
/ Xn+1+p dT = / Xntpdr — (244" +1) — ww (4m+! — 1) Hn+p+1
S S 3 3
n n+1
— 15| -6 Sk+p PSR Brtp 4k 4
=181-6, = > —gPW £+ ) A 1)
k=1 k=1
s [ =181, 3 B 4 3 R
gy k=1 k=1
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using the condition (C) verified by 6, and pn the result easily follow.A
II1.2) b) Choice of E,; strong convergence of a sequence of minimizers:(D2)
«)A strong convergence lemma

The following result which is very useful is a simple consequence of theorem 1

LEMMA 5 . Let w, be in H} (B*,5%) N'RY 5 which strongly converges in H' tow and let
un be a sequence of minimizers of F,,, among H;(B®,5%) N A% s which weakly converges
tow in H; if w is in R% ¢ then

a) u minimizes F,, in H}(B*,8%) N A%g

b) the convergence of u, to u is strong

Proof of lemma 5: First we show that lim,— 4o Fuw,(un) = Fu(u). Let £ be in
C(B3;R) with ||VE|] < 1, the sequentially lower semicontinuity for the weak H' topology
of the functional

u——>/ |Vu|2d:v+2/ D(u).Vde (see[l])
B3 B3

implies that

lim inf |Vun|? dz + 2/ D(up).Védz > / |Vul|? dz + 2/ D(u).VEédz
n—+0c0 Jps B3 B3 B3
Since w, — w strongly in H': [5s D(wn).VEdz — [p: D(w).VEdz then
liminf F,,, (upn) = Fu(u)

moreover , using the fact that lim,—co Fu, (v) = Fw(u) and the minimality of u, for Iy,
then F,,(u) > limsup,,_, o, Fuw, (4n) thus

lim Fy, (un) = Fu(u)

Let v € H}{(B*,5*)NA%s  Fu,(v) 2 Fu,(un) = F,(v) > Fyp(u) thus u minimizes Fy
among H; (B*,5%)N A% . Suppose now that w is in R g, we apply theorem 1 and we
have L(u,w) = 0 and u € R7%g; since

lim E(up)= ngrwawn (un) = Fy(u) = E(u)

n—4+oo
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,Un strongly converge to u. This completes the proof of the lemma.A
B)the choice of E,

As we have announced in the introduction for v, in R%¢ the minimizing problem F,,
among A% s N H; (B®,5?%) only depends on the singularities of v, and not intrinsically on
Un, this is a direct consequence of theoreml. Thus the set of the minimizers is exactly the

following

u € H; (B?, S$)NR% g s.t. u minimize F(u) among H;(Bs,Sz) NA%s

s
I

with the constraint

dlgraphu]|(B® x §%) = —8[E,] x [S?]

we consider now the following lemma which is an application of lemma 4

LEMMA 6 . For any sequence (&,) of positive real numbers tending to zero there exists
(En) in &, such that

Yn>1 Yuel, infyer,_, / |V (u — v)|2dw < &n
B3

Proof of lemma 6:We construct E, by induction; Eq = [a,b] ; suppose Ey is constructed

then (8,)p<n—1 and (pp)p<n are fixed, the associated to E, maps v, of the lemma 4 are
also fixed. we consider two sequences of positive reals (68)ren and (uﬁ y1)ken tending
to zero such that Vi € IN pf ; < (6%)? and 6§ < (uf)?. Let Ef ., be the sequence
of subsets of [a,b] constructed by adding dipoles of size 6% and inversed dipoles of size
pk .y exactly as in III 2j) a) and let vk, € H}(B® 5%) N RYs be the perturbation of
v, for each k after having added all the dipoles and the inversed dipoles of rank k, we
have O[graphvE_ ]|(B® x §%) = —8[EE 1] x [S?]. Clearly vk, — v, strongly in H' as
k — 4o0. Let

u e Hy(B?, S%)NR%s s.t. u minimize F(u) among H;(B?, SN A%s
IF = with the constraint

dlgraphu]|B® x §* = —3[Ex ;] x [$?]
suppose that

VK elN 3k>K and ux€lf,,

4
such that infyer, / |V (ur —v)*dz > €ny1 )
B3

33



. up minimizes ka+1. Since E(uy) is unifomly bounded we can extract a subsequence of
ug (allways denoted uy) which weakly converge but, since vf,; — vn € R}y strongly in
H' from lemma 5 we know that this subsequence strongly converges to an element of I;

we then contradict the inequality (4). The lemma is proved.AA

Let €, = 1/2", we consider as from now one the sequence (E,) € &b associated to

€n in lemma 5.
v) construction of a strongly H'! convergent sequence of minimizers

Let p > 0 we construct (ujy )n<p such that
uy € I, and /Ba IV(up ~ u;_1)|2dac <1/2% (5)

let v be any element of I,, we note ub = v; we know that

infuer,_, / IV(u—ub)Pde < 1/2°
BS

let u2~! be an element of I,—; such that [g, IV(ub™! —ub)|Pdz < 1/2°...

We construct now u, € I, such that u, strictly converges in H'. From (u‘,{,)ng we
extract (“25( k))kGlN which weakly converge in H! but those ug)( k) are minimizers of Fy,,
from lemma 5 this convergence is strong and ug, the limit,is a minimizer of F,,. From u;( k)
we extract u;, (6(k)) which weakly converge in H' but as before this convergence is strong
and u1, the limit, is a minimizer of F,,. Because of the strong convergence of ug, (6(k)) and

u;'((ﬁ(k)) and the inequality (5) for n=1

/ IV (ug — u1)|?de < 1/2
B3
Then by induction we construct u, in I, such that
/ IV (tp — tn—1)?dz < 1/2"
B3

This is a Cauchy sequence in H!. u, and v, verify (D1) and (D2), this proves theorem 3.
A
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