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LINE VORTICES IN THE U(1) - HIGGS MODEL

TRISTAN RIVIERE

ABSTRACT. For a given U(1)-bundle E over M = R*\{&1, ..., 2, }, where
the x; are n distinct points of R?, we minimise the U(1)-Higgs action and
we make an asymptotic analysis of the minimizers when the coupling
constant tends to infinity. We prove that the curvature (= magnetic
field) converges to a limiting curvature that we give explicitely and which
is singular along line vortices which connect the x;. This work is the
three dimensional equivalent of previous works in dimension two (see [3]
and [4]). The results presented here were announced in [12].

1. INTRODUCTION

Consider n distinct points {z1,...,2,} in R® and E a U(1)-bundle over
Mz = R¥N\{xq, ..., 2, }.

Recall that such a bundle is uniquely determined by its first Chern class
ci(F) € H*(Mz Z) =7 ... Z (n summands), that is n integers dy, ..., d,
which correspond to the integrals of ¢1(F) on small spheres surrounding the
points x1,...,x,. In other words F is uniquely determined by a curvature
ho € H?(Mz) on E and for such a curvature one has

1
% hO = Z di7
S i€ Int (S)

where S is any closed, oriented surface of R? enclosing some of the points
z; in its interior, Int(S).

We suppose that Vi d; # 0 and we make the following neutrality hypoth-
esis

S di=0.

i=1...n

Under the previous hypothesis, we can write the sequence of points
{z;,...,2,} and the corresponding degrees {dy,...,d,} in the form
{P1, ..., Pg, N1, ..., Ni} where the P;( resp. N;) correspond to the z; having
positive (resp. negative) integer d; and are repeated as many time as to the
multiplicity |d;].

This paper deals with a variational problem suggested in [8] by J. Fréhlich
and M. Struwe. For any section ¢ of the C -line bundle associated to IV and
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78 TRISTAN RIVIERE

any connection A on E, consider the U(1)— Higgs action

- ~ A
SupA) = [V a0+ AP + 50— o)

z

where V ;¢ is the covariant derivative of ¢ relative to A, dA is the curva-
ture of A and V(|p|) = %(1 —|¢]?)? is the Higgs potential depending on |¢],
which, from a mathematical point of view, could be replaced, in the remain
of the paper, by any “reasonable” potential on || (see [7] part 3) which

forces |¢| to be close to 1. The aim is to minimize Sy (¢, A) and to describe
the minimizers.

The words used above (section, connection, covariant derivative...) come
from geometry but there are also parallel words coming from abelian gauge
theory in physics, that we will mix with the previous ones, to designate the
same objects. We will also say that ¢ is a scalar (Higgs) field, A is the gauge
field (or vector potential), dA is the magnetic field. We will also called |¢|
the density of the scalar field and (i¢, V 4¢) the current where ( , ) is the
usual scalar product on each fiber C and ip the 7 rotation of ¢ on the ori-
ented fibre.

As it is pointed out in [8] for |d;| # 0 S(¢, A) = 400, in fact for any ¢ € [1, n]
and r sufficiently small

/ dA = 2xd;
9By (z;)

thus by Cauchy-Schwartz inequality

d,? )
<[ e (1. 1)
2r 8B, (z:)

integrating (1. 1) in r we get [|dA|?> = 4ooc.

Thus we will adopt the renormalisation proposed in [8].
Consider the following closed 2-form on Mz

hoz—%izz d; *d( ! ) (1. 2)

1,..n |$ - $2|

Where * denote the Hodge operator. hg is a curvature on I and it verifies
the following equations

dhg = 27Y did, in  D'(R?)
=1 (1 3)

d*hy = 0 in DR

where d* = xdx. hg will be called the reference curvature (or magnetic field).
Consider a connection A on E and h = dA it’s curvature, we denote by h
the difference h = h — hg. Formally since dh = 0 in R®\{zy,...,2z,} and
faﬂ h.v = 0 for any regular bounded domain Q of R?, thus there exists a
Esamv : Cocv JUNE 1996, VoL.1, pP. 77-167



LINE VORTICES IN THE U(1) - HIGGS MODEL 79
global 1-form A on R? such that A = dA and

/(B—ho).hoz/ h.hg = /dAA*hO
R?3 R?3 R?3

R3

(1. 4)

(The previous affirmations and equalities could be justified rigourously by
assuming some regularity on h in the neighborhood of the z; and infinity.
3

For instance suppose h € LP(R%) for some 1 < p < 3 and d*h € LI(R?)

for some ¢ > 3. This would imply dh = 27 3", d;6,, in D'(R®) and the

existence of A € WIIO’CS(R?’) for some s > 3 such that h = dA in D'(R?)).
2

In view of (1. 4) we deduce that, by considering f |h — ho|? instead

of fM.’E |l~z|27 on one hand we are substracting the “same infinite quantity”
Jar, |hol?* independent of A and, on the other hand, Iu, |h — ho|? has no

reason, any more, to be infinite (take h = hy N.
Thus we are tempted to replace the classical Higg’s action by the following
one

- - - A
SupA) = [V gl A= hof? + 51— 1ol

z

In view of formulating a well posed variational problem we introduce a finite
covering U, of R®\{z1, ..., z,,} in each open set of which we can trivialize the
bundle. The transition functions are choosen to be regular and we introduce
the following set of minimisation

(@Om Aa) € Hlloc(UOH (C) X Hlloc(UOl;RNS) N
V= ‘f't' 0n~UCY NUz o = gapypp and 1A, = g;ﬁldgaﬁ +1Ag
S/\(QO, A) < 400

We have the following theorem which was already established in [8] and
whose proof is essentially based on the choice of a good gauge which makes
the functional coercive.

THEOREM 1.1. . .
min S\(p, A) is achieved .

(p,A)EV
| |

After having given a proof of theorem 1.1, in the remains of the paper, we
will follow the approach of [2] and [4], that is, we will make the parameter
A= % tend to infinity in view of forcing the density |¢| to be close to 1.

The problem is that we cannot expect, for topological reasons, to find a
section  of the previous non trivial bundle F taking it’s values in the unit
sphere of each fiber. This occurs only out of lines which connect the points
x; according to their multiplicity. The problem is similar to the one in di-
mension 2, here in dimension 3 ¢ necessarily has to have a degree around
those lines which is independent of the local trivialisation and this will makes
the energy tend to infinity. That is the main difficulty that one encounters
when one tries to understand the behaviour of the mininimizers as A tends
to infinity. The different quantities seem to diverge and one has to work

Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



80 TRISTAN RIVIERE

harder to get a norm for which something will remain bounded and con-
verge in some space.

The notation S (p, A) is used in [8] where this variational problem was first
introduced but, since we make the parameter A tend to infinity, to be con-
sistent with [4], the energy denoted by 5/\(997121) becomes Gs(c,o,fl) where

.
£= 5
In fact, as we will see later, the scale £ will be much more relevant than A.

Before we state our main result, we need to introduce the notion of minimal
connection already used in [6]. Let Sj be the set of all the permutations
in {1,...,k}. The following quantity L is called minimal connection of the
sequence (xh di)i:l,...,n

Consider any ¢ € S which realizes the previous minimum (¢ is perhaps not
unique), we will call also minimal connection the 1 dimensional current I
with support in Ule[Pi, Ny (i) oriented by P, — N, (;y and having the integer
multiplicity

0($) = # {Z s.t.x € [PZ,NU(Z)]} .

L is of course the mass of IL.

Our main result is the following:

THEOREM 1.2. For any sequence g, tending to zero and for any sequence

(¢n, Ay) of minimizers of (., on V, one can extract a subsequence, still
denoted (¢, 4,,), such that, for any 1 < p < 3/2

hn = dA,, — hg strongly converges in  H} (R¥\supplL) N W,oF(R?)

where L is a minimal connection associated to the sequence (z;,d;)i=1,. n-
Moreover the limit A, is the solution of

*(—=Ahy + hye + ho) = =271l . (1. 5)

REMARK 1.1. If, for instance, the minimal connection is unique, thus the
complete sequence converges.

REMARK 1.2. Contrary to the 2 dimensional case, we are not able to give
a precise asymptotic expansion of the energy which should be of the form,

when d; = 1,

Gon(ipms A,) = 271 log gi W (e, di) +0(1)
n

Here Wz, d;) is a renormalised energy which represents the self interaction
of the minimal connection on itself. But this has not the same importance as
in the 2-dimensional problem considered in [3] and [4] since, here, we know
where the singularities are going to be located and the renormalized energy
W (z;,d;) could be directly computed once we have fixed the z; and d;.
Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



LINE VORTICES IN THE U(1) - HIGGS MODEL 81

The asymptotic expansion of the minimal energy when all the minimal con-
nections contain a segment with integer multiplicity different from 1 is an
interesting question see remarks 2.1 and 2.2.

REMARK 1.3. The analysis developed in this paper could be adapted for
solving non-gauge invariant problems in dimension 3, that is, variational
problems for functionals of the form

1
B = [T 2

For instance, take Q to be a convex domain of R® and ¢. a boundary con-
dition which simulates the vorticity at the boundary. A particular choice of
g- could be a “H!'-approximation” of a map g,  JQ — S! having some
degree around different points of 992 i.e.

- |ge] € 1 on 09
- dn distinct points (aq, ..., a,) of 92 and n integers (dy, ..., d,,) such that

S di=0

i=1...n

l9:] = 1 on 99\ (U7, B (a;) N 092)
deg(ge, 0B.(a;) N 0Q) = d;
- an upper bound for the Dirichlet energy of g.

= 1
V.9 < | 27 E d? | log —+ K.
/aa = g

One can prove that, given ¢, tending to zero, from a sequence u., of mini-

mizers of I, among H;E (€2, C) one can extract a subsequence which con-
n

verges in H} (Q2\Suppll) to an harmonic map u into S*, where I is a

minimal connection between the (a;,d;) and the degree of u arround the
different segments of IL corresponds to the multiplicity of the minimal con-
nection along its segments. Moreover, if the minimal connection is unique,
the complete sequence converges. The proof of this theorem can be estab-
lished by following the main ideas of the proof of theorem 2. For instance
one can transpose word by word the n-compactness lemma (part 3) to the
non-gauge invariant situation just omitting to write h, A, Ag, hg ! The case
where €2 is not convex is more complicated since it may happen that the
lines of singularities (i.e. the bad set |u.| < 1/2) tend to touch J2 as ¢ — 0.

REMARK 1.4. With some more work, one could establish a stronger con-
vergence than H! away from the line singularities as in the two dimensional
case (see [2]).
REMARK 1.5. As in the two dimensional case, the description of the mini-
mizers for € > 0 is much more interesting and also more difficult than the
one of the limiting situation (see in dimension 2 for £ > 0 [11], [1],...). In
dimension 3, also, we can ask similar question to the ones in dimension 2:
Are there several minimizers 7 In the particular case of a dipole with mul-
tiplicity 1, is the minimizer axially symmetric around the dipole 7 We can
ask also questions specific to the 3 dimension: For instance when the multi-
plicity d of our dipole is no more 1 how does the zero set of || look like ?
We can expect to get d different lines connecting the two poles in a way that
has to be described. The configuration of those lines seems to be given by a
Esamm : Cocv JUNE 1996, VoL.1, pp. 77-167



82 TRISTAN RIVIERE

1-dimensional variational problem, similar to the zero dimensional problem
in 2 dimensions given by the renormalised energy but depending strongly
on €. What could be the resulting interaction energy between those lines ?

The paper is devoted to the proof of theorem 1.2. The organisation of
the proof is similar to the one developed in [4], but the dimension 3 induces
a lot of new technical difficulties. It is for instance much more complicated
to detect and to “catch” lines (which can be a-priori very bad) than a finite
number of points.

One of the main differences comes also from the stress-energy tensor (see
part 2-5) which contains, in dimension 3, a new term preventing a direct
local estimate of the density and its closeness to 1 (see [4] part 3). In
dimension 2 this closeness ensured quite directly the convergence except on
a finite number of small balls. Here, following ideas and classical methods
of the regularity theory for non-linear elliptic problems, we deduce, from
the conservation law of the stress-energy tensor, some kind of monotonicity
formula which is the main tool for proving what we call an “np-compactness”
lemma, ( with reference to the classical e-regularity lemma of the above
mentioned theory). This 7-compactness lemma says that, if the energy on a
ball is sufficiently small compared to the global bound (in log 1) established
in 2-3, one can ensure that, in the ball of half radius, the density |¢| is close
to 1, this is necessary for being far away from the non-compactness locus
(the bad part of R*\{z;,...,2,}) . From the n-compactness Lemma 3.1 we

deduce, in part 4, that, for any o < 1 the bad set is contained in % balls
of radius £ and that, in some sense, we can bound the vorticity around this
union of balls (this is Lemma 4.1). Having located the bad set in something
which looks like a line when ¢ — 0 (% ball or radius %), we finally establish
a first bound, independent of £, which is a bound of the W' norm of the
magnetic field for any 1 < p < 3/2 (see Lemma 5.1 ). This gives us a weak
convergence, in WP of the magnetic field and Theorem 5.1 describes the
limit. In part 6 we work out of the limiting bad set for establishing really the
H' compactness, in fact we were not sure that, away from the limiting bad
set, we could ensure the closeness to 1 for |¢| which, combined with the weak
WP convergence of the magnetic field, leads directly to the compactness.
Here again the main ingredient is the p-compactness lemma. Finally, in part
7, we show that the limiting bad set which, for topological reasons, has to
connect the different points @; according to the multiplicities d;, generates an
energy, at the level ¢, which is asymptotically greater than 27 log % times the
connection it realizes between the (z;, d;) minus a positive quantity as small
as we want. This fact combined with the initial lower bound established
in 2.3 forces the limiting bad set to be a minimal connection between the
(x;,d;). The difficulty in this part is essentially technical, since, the limiting
bad set, is a-priori only a 1-dimensional rectifiable current whose support is
H'-bounded.

In the appendix we prove some technical and basic Lemmas we use in the
paper.
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LINE VORTICES IN THE U(1) - HIGGS MODEL 83

2. PRELIMINARIES AND NOTATIONS
2.1. CHOICE OF A COVERING AND A CouLOMB (GAUGE

First of all we fix a particular covering of R*\{x1, ..., z,,} on which we will
be able to trivialize £ and that will be used in the remains of the paper in
particular in 2.3 for establishing an upper bound for the energy.

Suppose first that the indexing of the (IVy, ..., Ni) is chosen such that the
trivial permutation (¢ — ¢) realizes a minimal connection i.e.

k k
P; — N;| = min P — N,y
Zz:;| t Z| UESk;| t cr(z)|
Suppose now there exists ¢ and ¢’ such that [P;, N;] N [P,, N;/] contains more
than 1 point.

st case: [P, N;] = [Py, Ny]. We do not change the sequence
(P ooy Poy Ny oo, N

2nd case: P, = Py but N; # N/ (or the opposite). Suppose N; € [Py, N;/]
thus we repeat one more time NV; in the negative terms and we add N; in the
positive term thus [P;, N;JU[ Py, Npi] is replaced by [P;, N;JU[F;, N;JU[N;, Ny

3nd case: [P;, N;] C [Py, Ny] with P; # Py and N; # Ny.

In the sequence (P, ..., Py, Ny, ..., Ni) we repeat P; and N; such that

4th case: [Py, N;] C [P;, Ny] with Py # P; and Ny # N;
In the sequence (P4, ..., P, N1, ..., N;) we repeat P, and N; such that

[R7NZ] ) [B'7Ni’] = [1327]32’] ) [B'7Ni’] ) [R'7NZ] ) [NZ7NZ’]

Thus in all the cases we can change the sequence (P, N;);=1, . % and the
number k£ without changing neither the bundle nor the minimal connec-
tion in such a way that for ¢ # ¢ [P, N;] N [Py, Ny] = @ or a point or
[Bv NZ] = [BU Nz']

We proceed to a last reindexing by associating to a couple (P, N;)
the positive integer n; which is the number of times the couple is re-
peated in ((F;, Ni))i=1,.. k. The previous sequence is now represented by
((P;, Niyn;))i=1,.., with & < k. k' will be denoted by k.

Let O; be the middle point of the segment [P, N;], and C;(r) be the union of
the two half cones of vertices P; and N; and of base the disk perpendicular
to [P;, N;], of centre O; and radius r.

We can choose r sufficiently small such that Vi # i C;(r)NCy(r) =0 or
CZ(T‘) = CZ'/(T‘).

Let U; = Cy(r) for i < k and Uy = R3\ Ule C; (%) (Ui)izl,...,k+1 realizes

a covering of R*\{z;,...,7,} on each open set U; of which we can make a
Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



84 TRISTAN RIVIERE

trivialisation of E. By d#; we denote the angular 1-form around the axis
(P;, N;) oriented by P, — N,.

We will only consider trivialisations of E over the U; whose transition func-
tions ¢; k+1(2z) € ST on U; N Upgr = C;(r)\Cy(r/2) verify
Va € Ci(r)\Ci(r/2) g;,€1+1dgi7k+1(x) =1in;db; (2. 1)

Suppose we have a trivialisation of F over the U; whose transition functions
verify (2. 1) we get all the others (verifying (2.1)) simply by multiplying by
¢V where 9 is a global function on all of R3\{x1, ..., 2,}. That is the change
of trivialisation we will consider most of the time.

Consider the following 1-forms

0 z—N; z—F;
M) =5 ¥ w (5= - =) Nt in Ups
0 _ z—N; z=P; Py —N; 2.2
Al =3 Z (|x Nl Te=P |) TP 22

—n;db; in U;, <k
Clearly A?(I=1,..k+ 1) is regular in U; and we have
Vi<k Al (x)=AYz)+n;do; in Uy NU;. (2. 3)
Moreover one verifies that
Vi< k+1 dAY(z)=ho(z) in U (2. 4)

Thus, suppose we have chosen a trivialisation of E over the U; which verifies
(2. 1), (2. 2) is the expression in this trivialisation of a connection whose
curvature is hg.

Consider now a H'-connection A on F thatis A; € H} (U;,R?) forj < k+1
such that

Ak-l—l (ac) = fl](ac) + ndej in Ugp1 0 U]‘. (2. 5)

Let h = dA in R3\{z1, ..., 2,} and suppose h = h — hg € L?(R?). Denote by
A the following global 1-form on R3

A(x):_%d* (h |x)_ MZ/RSZ ul dydack (2. 6)

Since h € L*(R?), dh € W~12(R?) and since supp(dh) C {z;,...,x,} we
have dh = 0 in D'(R?®). Thus we have

1 1
dA = dd* [ hx*x— d*d | h x—
(=) ( * 4w|w|)+ ( * 47r|w|)

_ A(h* L |):h(ac) in D'(R?)

4|z

2. 7)

This implies
d([l—AO—A) =0 in R™\{zy, ..., 7}
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LINE VORTICES IN THE U(1) - HIGGS MODEL 85

where A — A% is a global 1-form defined by
A— A%x) = Aj(z) — A%(2) in U

Since Hlp(R*\{z1,...,2,}) = 0 there exists ¢ € WIZO’CQ(RS\{xl, vy T} R)
such that

A— A% — A(z) = dy(z) in RON\{2q, ..., 2.}
Thus, if we make the global change of trivialisation by multiplying the fiber
over & by e~"¥(%) the new expression of the connection A is given by

Al(z) = Aj — dp(z) = AV(z) + A(z)  in U (2. 8)

Consider now the set among which we are going to minimize G,

(1, A1) € HE (U, ©) x HE (U, R?) st
V= Vi <k Pk+1 = @j@mﬂeﬂ, Apy1 = AJ‘ + ndej in U]‘ N Ukt (2. 9)

Ge(p, A) < +00
where ¢'% is the angular coordinate around the axis [P}, N;] in C;(r)\C; (%)
where we have fixed some horizontal direction equal to 1.
Among V we say that (¢, A) is equivalent to (¢, A’) if there exists
(NS WIZO’CQ(RS\{xl, ey T J, R) such that
VIKI<k+1 Aj=A+dp and ¢ =eVe) in U (2. 10)
ProprosiTION 2.1. Let (¢, A) € V, there exists (¢, A’) € V equivalent to
(¢, A) such that
VI<I<k+1 Aj(z)= AVz) + A(z) in U

where A(z) = —=d~ ((/Nz — hg) * i) : This is what we call the Coulomb

||

gauge of h. [

The proposition is proved just above, the name Coulomb gauge comes from
the fact that

d*A=0 in D(R?. (2. 11)
Moreover one easily verifies that
vie{l,.k} d*AY=0 in D(U) . (2. 12)
Thus
Vie{l,...k} d*Aj=0 in D(U;) . (2. 13)

2.2. EXISTENCE OF MINIMIZERS. PROOF OF THEOREM 1.1

In this part we prove the theorem 1 stated in the introduction. More

precisely we prove the following,
THEOREM 2.3. For any € > 0 the minimum of G, among V' (defined by (2.

9)) is achieved by, at least, one class of couples (pe, Ac) (for the relation 2.
10). The (¢., A.) verify

1 1 .
—§A|%|2 = gl%lz(l —leel®) = 1V z,0: in D'(R\{w1, ..., 2n}) (2. 14)
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and

~d*h. = J. in D'(R%) (2. 15)
where J., the current, is the gauge invariant quantity equal to (i¢p., dAEcps)
in R¥*\{z1, ..., x,}. Moreover |¢.|?, J., h. are regular in R3\{xq,....,z,}. =

Proof of theorem 2.3

Let € be a fixed positive real for the remain of the proof. Let (¢?, flp) be
a minimizing sequence of G.. We have

/ |nP|? :/ |hP — hol? < C' indep. of p . (2. 16)
R3 RA{z1,....zn}

Thus by classical estimates for Calderon - Zygmund operators we have

([ o) ([ ) ee(f i) e o

where AP is defined by (2. 6).

In the class of (¢, fl) consider the Coulomb gauge given by Proposition
II.1. For any [ < k4 1 and K compact set in U;, we have

/ |VA~P99p|2 < C 3
UnK
thus

/ VoI < c+2/ AP
UnK UnK

< C—|—2/ | A2+ (2. 18)
UnK

) 1/2 1/2
o2 ( / IA?I“) ( [ a- |sop|2>2)
UnK UnK

Since A? is regular on U, fU i |A7 " is bounded and from (2.15) we deduce
that

/ |AD + AP|Y < C indep. of p . (2. 19)
UnK

Thus from (2. 18) and (2. 19) it follows that ¢} weakly converges in
W21, ©) (up to a subsequence) and this is also the case for AP = AV AP,

loc

By lower semi continuity of the W2 it is clear that the hmlt (991757 A +
Ag)l:l...k+1 minimizes G..

The fact that equations (2. 14) and (2. 15) are verified in D' (R*\{@1, ..., z,,})
and that, moreover, |¢.|%, J. and h. are regular in R3\{z1, ..., z,} is proved
n [10]. Let us just prove that (2. 15) is verified in D'(R?).

Let © be a bounded domain of R?, since h. € L?(Q), d*h. € W=12(Q),
moreover, since [p.(1 — [¢:]?)? < o0, |¢.| € L*(Q) and this implies that
Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



LINE VORTICES IN THE U(1) - HIGGS MODEL 87

the function J. on R defined by J. = (ip., da, @) in R\{2y,...,2,} is in
LY73(Q) c wh2(Q).

Thus
d*h. +J. e W Q) |
and supp (d*h. + J.) C {z1,..., 2}, so this implies (2. 15). [

2.3. AN UPPER BOUND FOR THE ENERGY

In this section we prove the following lemma

LEmMMA 2.1. For any o > 0 we have
1
m‘;n G. <2n(L+a)ln-+ K(a) (2. 20)
€

where L is the minimal connection between the (z;,d;) and K only depends
on «, not on ¢. [ ]

REMARK 2.6. Contrary to the 2-dim. case, the upper bound for the energy
requires the introduction of an external parameter «. This is not because
the dimension 3 leeds to new technical difficulties, this weaker upper-bound,
Compare to the two dimensional one (see proposition 2.5 [4]), is intrinsically
linked to the dimension 3 for any minimal connection between the (z;,d;)
containing a segment with integer multiplicity different from 1.

Consider for instance the case of a dipole (P, N) of charge d > 1ie ((2;,d;)) =
((P,d),(N,—=d)). The minimal connection is the segment [P, N] with the
integer multiplicity d, that is I = d[|[P, N]|] and L = d|P — N|. The
singular set tends to concentrate along this segment when £ — 0. Suppose
this configuration is adopted for any £ > 0. Then the energy would be
greater than 27d?|P — N|log1! Thus at the stage £, what we call the bad
set prefer to decompose d distinct tubes between P and N which are close to
the segment [P, N] (but not too much so that the interaction energy between
them is at most of order ~ logloge).

REMARK 2.7. If (2;,d;) admits a minimal connection which contains no
segment of integer multiplicity different from 1, then Lemma 2.1 holds for
o = 0. It seems that this is a minimal connection that the singular set would
prefer to adopt.

Proof of Lemma 2.1.

Let a > 0 and £ > 0. We construct (g7, A;) in V verifying (2. 20). First
of all we construct |g|.

For 1 <7 < k consider n; the multiplicity of (F;, N;) in the minimal connec-
tion that we consider and for 1 < s < n; introduce L; ; to be the following
segments.
If n; =1, take L; s = L;; = [P;, N;]. and if n; # 1 we identify the perpen-
dicular plane to (P;, N;) passing by O;, the center of [F;, N;], with C and
denote by (a; s)s=1,.. n; the n;-th roots of 1 multiplied by a. (we suppose
a < 7 in such a way that a;, € C’Z(%) and also for technical reasons which
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will be clear later). Take L; ; = [P, a; 5] U [a; s, Ni].

Consider L the following union of segments
L= Uf:1 Uiy Lis
Let x be the following cut-off function on R4
x(z)=zforz <1 and x(z)=1foraz > 1.

Define |p|(z) = x (M) We have

1 C
VIl + 5 (- o < [ C<o o
/RS 2e? supp(1=|¢|) &2
where ' does not depend on e.
We choose
VIKk4+1 A=A inlU . (2. 22)
We claim that
3 / |A? < 400 . (2. 23)
I=1..k+1 Jy,

It suffices to prove that, if one considers '; the union of the two cones of
vertices p = (0,0 + 1) and N = (0,0, —1) and of base the horizontal unit
disk of center 0 and if we take

1 1—2 z+1 xdy — ydx .
AV = | _q =L I
! h(w—PNWX—NJ ]<ﬁ+w> e

1 1-=z z+1 xdy — ydr
A0 = |Z R3\C
= 3 (m )| e nRe

where X = (z,y,z). Then we have

/I£P+/ 492 < too
C R3\C4

This is verified by a direct computation.

Let [ < k, consider an orthonormal basis (Z},j}, lgl) such that k = ;ﬁ:%;'.
Each horizontal plane is identified with C.
If n; = 1, take
i) = el (x)e™™ in U (2. 24)

where 6; is the polar horizontal angle of x in cylindrical coordinates associ-
ated with (i, J1, k1).

If ng > 1. For 0 < 29 < |P = Oy = Dy (resp. 0> z9 > —|P — Oy]), denote
by a; 5(20) the point a;s(20) = {z = 20} N [P, a15) (resp. ais(z0) = {z =
20} N [ay,s, Ni]). Take

ny ~ —1
£ = Ays(2) :
ei(z,y,2) = [el(z,y, 2) H (m n U, (2. 25)
s=1 ¥
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where & = z + iy, a;5(z) is the projection on {z = 0} ~ C of a; () and A

is an interpolation function between 0 and 1 verifying A = 1in () (
3

z
i 2YA=0
in C; ( ) and A = 0 outside. Precisely we take
4D
for0<=< D Aoy =g =2- oo B
and
/\(|€|7 _Z) = /\(|€|7 Z)
From (2. 24) and (2. 25) we deduce that
rr1 = ol in Upps
If n; = 1, we have from (2. 24)
1
[ val = [ ViR [ lePpdpds:
Ul Ul Ul p
Dl =4
< CH2rx2 —dpdz
(2. 26)
1 Dy—e
< CH+27(2D)) log - —|—47T/ log [(1 - _) ] dz
£ 0 Dy
1
< 2r|P = Niflog = +C
€

where C' does not depend on €

If n; > 1 we write

/ Vorl? = / Vol + / Vol (2. 27)
U, aus) Ae?

One verifies that the second integral on the right hand side of (2. 27) can be
bounded independently of . Indeed, in U;\(Ci(%)
and

r
4

DYUB:(P)UB:(

€ 2"1)) |99|—1
= A( z !

€ - AIfl ) (Z)I

Recall that the o that we consider are strictly less than r/4. The first
integral of (2. 27) can be bounded in the following way

/ |V991|2</ Vil +C
Cl(f) (L

t\y

Dy
—|—2/ dz/
0 Ba(2)\UB(a,s(2),e)

(2. 28)

2
aj s\ z
V1_[(|5_als )
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where B;(z) denotes the horizontal disk of radius r

(07 07 Z) in (Zlvjlv El)

Db_lz and center the point

We have
0 (5-@,52 ) 8@15 C
il > TS 2. 29
e U e X; a2
but 5
als 1 1
e d 7<Cl -
‘32 oo /()\Bal o) 1€ — as(2)[? =

thus we have

2
Dl ny o

/ dz/ 21_[ (5?71’5(2)) < C’04210g1 . (2. 30)
0 Bo(\Blaps(2).2) |07 ©5 \[€ — @rs(2)] £

Concerning the horizontal derivatives in the second integral of the right hand

side of (2. 28) we use an upper bound given by (4.38) in [7]. Finally one

verifies easily that the energy of |¢;| is uniformly bounded, thus we deduce

1
/ IVoi|? < 2rmmy(| Py — Ni| + ca?) logg—l—K(a) . (2. 31)
ai(y)
Combining (2. 21), (2. 23), (2. 26) and (2. 31) we get the desired result.

2.4. PRELIMINARY ESTIMATES

We establish, first, the L* bound for |¢.].

LEMMA 2.2. Let (¢, 1215) € V be a minimizer of G. then we have

loe] <1 in R™\{aq, ..., 2,). (2. 32)
|

Proof of Lemma 2.2.

Suppose w = {z € R¥®\{z1,...,2,}/|¢:|(x) > 1} is not empty. Define @,
in the following way
Pe = P 1f|996| <1
and
Pe = 996/|996| in w
It is clear that

/ (1= |p.2)? < / - lel?)? . (2 33)
R3A\{#z1,....7n} R3™\{z1,....7n}

Moreover since

2
Pe

995|

Vo e w |VA59~95|2($) = ‘VA~5|

and
2
Pe

¢l

Veew |Vielle) = [Vele) + \vg
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we have
Ve ew |V @el|(2) <[V eel(z) . (2.

The previous inequality combined with (2. 33) imply
G (P, Ae) < Go(pe, Ac), contradiction.

We establish, now, preliminary estimates for A, and h.

91

34)

LEMMA 2.3. Let (e, 1215) € V be a minimizer of G., h. = dA. — h° and A.

defined by (2. 6), we have for ¢ sufficiently small

1/3 1
(/ |A5|6) v wapce | e . e
R3 R3 R3 £
1
/ |Vh5|2</ |V2A.? < Clog —, (2.
R3 R3 £
3 1 2 1
Vr<1l VzeR — hZ < Clog —, (2.
r B.(z £
r(z)
3 1 2 1
Vr<l VzeR - hZ < Clog — (2.
r JaB (@) £

and
Vao,y e R¥st. v —y| < 1

1\ 1/2
Aufo) = )l < € (1o ) o=yl

Proof of Lemma 2.3.

35)

36)

37)

38)

. 39)

(2. 35) comes from (2. 20) and classical estimates on Calderon-Zygmund

operators.

From (2. 15) we know that
—~d*h. = J. in D'(R?)
In the other hand, by definition, we have

1 1 1 1
A=~ L ah =L,
e TN

From (2. 20) and (2. 32) we have J. € L*(R?) and

[P = [ iVl < Clog . @

In view of (2. 40), we get, by classical estimates on the Riesz potential

/|VA|2 C/ J? < Clog—

This proves (2. 36).

. 40)
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From (2. 36) we deduce ||h5||%/V172(B1(x)) < Clog? for any x € R®. Thus by
Sobolev injection we have

. 1/6 1\ 172
el <Cllog=) .
Bl(l’) €

Hoélder’s inequality on B, (z) leads to

1/3 )
/ h? < | B, (z)] (/ hg) < Cr?log -
B, (z) B, (z) €

This is (2. 37). Since fB |Vh 1>+ % fB |h2 C'log 1, taking the
trace of h on 0B, (z) we get (2 38).

Wl

Finally (2. 39) is a consequence of (2. 35), (2. 36) , which both imply
[ Acllw22(B, () < C (log 1)1/2 and Sobolev injections. |

The last preliminary estimate is the L° bound (in 1) of |V4, ¢.|. This
estimate with (2. 36) and also (2. 32) are the only preliminary estimates
which are optimal. We have the following Lemma

LEMMA 2.4. There exists C' independent of € such that for any  verifying
dist (2, {z1,...,2.}) > Ce we have

o0

IV 1.¢-1(z) < (2. 41)

Proof of Lemma 2.4.
Let z € RA\U™, B(z;, 2¢).

There exists § > 0 depending only on r, the diameter of the cones C;(r) (i <
k), and { < k such that B(z, 8z) C Uy NRANU™, B(z;,¢). We will only work
in B(z,3¢). Take the Coulomb gauge in U; given by (2. 8) and change a
little bit the trivialisation on B(z,c) such that the expression of A over
B(z, fe) becomes

¥y € Bz, fe)  Aily) = AL(y) + Aly) — Az) . (2. 42)

We just have to multiply all the fibers overB(z, 3¢) by e~y Note that
(2. 2) implies

C
Vy e B(z,8s)  |A7l(y) < <7 (2. 43)
Combining (2. 39), (2. 42) and (2. 43) we have
Yy € B(z, fe) |fll|(y) < g . (2. 44)

¢y verifies the following equation in B(z, f¢)

1 -
~Apr = Sl - |al’) - Afer - 2141V
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Consider a dilation of rate ¢ and denote

oily) = @iley)  and  A(y) = eAi(ey)
We have
—Ap; = @1(1 — |g51|2) — AIQ@I — QiAl.V@l in B(x,ﬁ) . (2. 45)
Let fi = @1(1 — |@i]?) — Ak, from (2. 44) we have
Yy € B(z, ) i) <C . (2. 46)
Since d*A; = 0 on B(z, 3), we write ifll.chl in the following form

QiAl.V@l =d* 22991 Al Z By upl Al

Let U and V be the solutions of the followmg equations

—AU =0 in B(z,p)
(2. 47)
U=g on 0B(z,5)
and
—AV = fi —2d*(ig;A;)  in B(z, )
(2. 48)
V=0 on 0B(z, )

We clearly have ¢, = U 4+ V in B(z, ). Since ||@¢i||r~ < 1, from elliptic
estimates we have,

IVU|(y) < C in B(z,3/2) . (2. 49)

Moreover, since ¢;A; is bounded in B(z, 3),d*(i¢;A;) € W14 (B(x, 3)) for
all ¢ > 1 and we have

VI < p < 4o / VP <O, (2. 50)
(=:9)
Combining (2. 49) and (2. 50) we get
V1<p<+oo / VolP < C)p . (2. 51)
(z.53/2)

We consider now U; and V; the solutions of the following equations

—AU; =0 in B(z,3/2)
(2. 52)
Ul =g on dB(z,/2)
and
—AV) = fi = 2iANV @ in B(z,3/2)
(2. 53)
VIIO on 8B($7ﬁ/2)

Clearly we have ¢; = Uy + Vi and since the right hand side of (2. 53) is
bounded in L Vp < 400 we get

Vi<p<+too |lallwerBes/a) <Cp
and this leads |V@;(2)| < C' by Sobolev embedings.

Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



94 TRISTAN RIVIERE

Thus we have
IVi(z) — iAigi(z)] < C indep. of e,

which is the desired result. []

2.5. THE MAXWELL STRESS-ENERGY TENSOR AND THE ALMOST
MONOTONICITY FORMULA

Because of the renormalisation, by substracting A2 in the energy, the
conservation law of the Maxwell stress tensor given in [10] (formula (2.1),
chapter 2.2) is modified by a term depending on hg which could be bad for
us when we are close to the z; (that could make the monotonicity formula
blow-up). That is the reason why we give explicitly the computation of this
conservation law.

Consider zg € R3\{z1,...,z,}. There exists p > 0 and [ < k + 1 such that
Bp(wo) c U

Let (¢, A) be a minimizer of G. (we omit here the subscript). Consider
(

€ € C&°(B,(x0),R?) and the following perturbation (¢, A;) € V of (¢, A)
vl =i in UiNRA\B,(2)
Vi<k+1 ) )
A;’L =A, inUnN RS\BP (960)
and
pile) = @iz +1€) i By(o)

Al(z) = Ai(z+1t) in By(ao).
We do not write the index [ anymore since all the perturbation is in Uj.
We have
VAtcpt(x) = VAc,o(w +t&) +tVep(z +t£).VE(z) in B,(zo) , (2. 54)

and

. 9Al  0A!
hizzhil—h%:a—ki—a—/ﬂ—h%
= h(e+1€) = by (2) (2. 55)
DA o¢ 9A o
+ot et 5 - ) o 5 in B, (o)

Since we still substract |h°|? to the energy and not [A%!|%, we will have some
change in our stress-energy tensor compared to the classical one.
Since (¢, A) is a minimizer we have

Al
— \Y% ~c,ot 2 %) + = ht h =0
- [ o Vap = 1)’ Z ?

le=0
Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167
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After computations we get

1 1 .
; / [|VA99|2 s (- lol*)? + §hk1] &
0 (o 9¢)
2 (VAkcpaj) ¢ (2. 56)
Jd DA, Jd aAk

Jd
‘|‘hk18 hYE =0

&

(2. 56) is true for any £ € C§°(B,(z0)), thus we have

. ) ,
Vji=1,2,3 a—j[WAﬁPl (= lel?)? + 5 ZM Kl m]

d DA; d OA;
i (’WW) 2 (’WW)

We have

J ; Al — d . e ) . 8121]
ok K%% w) AJ} = 5r (Va2 i9) A+ (V,0,10) 5=

Since the second Higgs equation (2. 15) is

d .
Vk=1,2,3 Z: Ehlﬁ(vak@ =0

and since ) %;khlk =0 (because hj, = —hy;) we have
kl
g N 1L Ohiy, 0A;
Note also that
d OA; d 0A;\ Ohyy OA;
%:_ak (h’“’ ol ) a0 (h’“’ ak) Pl ook 0
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Combining (2. 57), (2. 57) and (2. 58) we have

. 8 2 1 2\2 1
Vji=1,2,3 5 [|VA‘P| + o —lel) +§§ thlhkl]
~2) i(v Vig) —2d i(h hit) (2. 59)
KOk AT VAP KOk R '

9, Ol .
—QZM%(hklh?z) + ZM}WW{” =0 in D'(B,(20)).

The previous identity is gauge invariant, thus it holds on all of R*\{z1, ..., z,,}.
This is the conservation law verified by the stress tensor perturbated by the
term we were looking for

0 onY
zkl: —2% (hiihly) + hkla—]].d

Take xg € R*\{zy,...,2,} (zo will be taken, in the next computation, as the
centre of coordinates), for any r < dist (29, {21, ..., z,}) we multiply (2. 59)
by z; and integrate on B,(0), to give

1
—3/ Vel + =1 —|p[*)?+ |
BT(O)I AP+ 5z (= el + 1A
1
b [ (Ve g e+ ) )
8B, (0) €
+ 2/ |VA99|2—2/ r(Vapn, Viev) (2. 60)
B, (0) 9B,(0)

+ 4/ |h|2—27‘/ hklhﬂl/kl/j
B,(0) 9B, (0)

0 0
— 2/ w‘—(hklhol)—l—/ w‘—,hglhkl:() ,
Br(O)%l: Tk BT(O)%Z: 1 0j

where v denotes the outward unit normal of dB,(0). Denote by h A v the
following 1-form h A v = hyvk.
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We divide (2. 60) by r? and we get

d 1 2 3 2 2 2
S : (g2 =1 h
. [ o [T (10 = 10+

1
= —/ 2|V 0.0 * + w+2|h|2+2|h/\l/|2
T JoB,(0) g2

(2. 61)

4 2 J
-2 h2—|——/ 3y (hgh
7 oo™ Sy 2 TR

oh?
_ _ / Z $] kl hkl

]kl

This looks like a monotonicity formula modulo the three last integrals in
the right hand side of the equality. The first one —r% fBr(o) h? is not so

bad because of the estimate (2. 37). We will see that it has a very small
influence. The last two look very bad since they contain derivatives on
h® which blow-up close to the z;. In fact, we will see that there is some
compensation between the two last terms. Extracting all the quantities of
(2. 61) which contain derivatives of hgy, we get

oh° RO
I = 23 ajhpt =Y w b
/ (o S ok o)

ki

aho Oh°
= 2 h T — Ik
/TO St | St -

k<l J

ohY oh,
—thl ij ajkl zj:$]8—]lk

k<l J

which is equal to

I:/TOQZ/W S s

= - 0k ol dj
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Taking k < [ and jg such that jo # k and jo # [, we have

zyvrwl %&+a@1 :m{%ﬁ+awk+m%]

0k ol dj 0k ol 0k

J

L [20, omt o
ok ol ol

0 0
8h]ol i 8hkjo + ah?k]

oo T a0 T

=040+ *dh® x zj, =0
Thus I = 0. Note also that Z: Dhp = — (1, V 1,¢) and (2. 61) becomes

r

d |1 3
— Vel + == (1 = |¢|*)? + 3|n|?
dr[ [ a0 = el

1 1
= _/ 2V 00* + (1=l +2[h)* + 2lhAv]* (2. 62)
8By (w0) €

r

4 2 .
Y D S IO
r2 By (w0) r By (w0) il ! A

We will deduce from (2. 62) the following Lemma

LEMMA 2.5. For ¢ sufficiently small

Vzo € R3 YV r>0

s kel e+ P < Clog S
r Br(l’o) 9 £
where ' does not depend on e. [ |

REMARK 2.8. In view of Lemma 2.1 and (2. 62) Lemma 2.5 is straight-
forward far away from the x; but when we are close to them there are two
difficulties. Firstly the last term in (2. 62) has to be controlled and secondly
(2. 62) is true only for r < dist (2o, {z1, ..., 2, }).

Proof of Lemma 2.5.

It suffices to prove (2. 63) for r small. Let ro > 0 be small enough such
that the B(z;,rg) are disjoint.
We only have to consider the case where zg belongs to a B(z;,rg), and first
we study the case zg = z;.
x; is taken as the center of coordinates.
Multiply the three components of (2. 59) by the corresponding coordinates
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and sum the three terms that we obtain. We get

3
S LIV i 4 o (1 - o) + 2
i A7 2e2 v

J=1

3
J J
—2a; Z %(ng% Vip) — 22 Z %(hklhjl) (2. 64)
k=1 Kl

3 3
IQZ$]Z 1o, V ,

and (2. 64) can be written in the following form

52 s e+ ot o]
_21,218& o5 (Vo Va0 bt (2. 65)
~[Iwael + 1oty - o]
£2 Y e V) =0 i DB, O1\(0)
lj=1

Remark that the left-hand side of (2. 65) is a distribution on all of B, (0),
we have L' functions, derivatives of L' functions and the last term is also
in L' because || x |h°| =~ To] 18 in LP(B,,(0)) for p < 3 and (i, V ;) €
L*(B,(0)).

We claim that the left-hand side of (2. 65) that we call D, whose support is
included in {0} is equal to 0 in D’(B,,(0)). It can be written in the following
form

23 0 ey 2
: k

where G, Hy; and F belong to L1(B,,(0)).

Since Supp D C {0} in view of (2. 66), D is at most a Dirac at 0. Take
any ¢ € C§°(B(0,1)) and for any 0 < p < rg denote by 1, the function
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e () |
- LERCALy L T e
/Bp(o); p ok \p) M B(0)

Since |ip||V¢|(%) is uniformly bounded for |2| < p independently of p it is
clear that | < D,v¢, > | — 0 as p — 0 and we get that D = 0 in D'(B,,(0)).
Integrating D on B, (0) for any r < rg, we get

d 1 2 3 2 2 2
- o+ (g2 -1 h
7 [ 17 ael e = 1+ 308

@ |r

1 1
=7 | AV SOl - AR 2 A
8B (0) €

r

4 2
-—— h2——/ E 1w, Vi E z:hY).
2 e 2o (o Vi) 2wl

J

The part of h° which diverges close to the pole 0, is in view of (2),
—3d; * d(74) and since ZJ: 2;h% = a Axh® and z A VA = 0 we have that

|z lz] —

3
D ap| < Clx| in B.(0) (2. 68)
7=1
: : _ a2 B (1Al2 _1)2 2
We use the following notation, F,(z) = fBr(o) IV z01° + 55 (|ol* = 1)°+3]A
(2. 67) implies

d (E,,) 4 9 2/ , 0
— 2 - he - - E 1o, Vg E x;h;
dr \ r 2 JB,(0) " JB0) ( i) i Y

From (2. 37) and (2. 68) we have

4 2 1
Yr<r —/ h2—|——/ 1o, Vg 2:h%| < Clog =
o 12 B, (0) r2 B (0) zl:( oV a) Z 7Tt & €

J

Thus & (£2) > —Clog ! and from Lemma 2.1 we have Lz—:) < %log%. The

two previous inequalities imply the result for zqg = z;.

Take now zg € By, (@;)\{z;}. Let d, = |20 — 2;|. We just have established
above

1 / 2 1 212 2 1
Viel"+ =—={1—|p|)"+ |h]" < Clog —.
deo B2d$0 w) | A | 252 ( | | ) | | e

7
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Since Bay, (20) C Bad,, (7;) the previous inequality implies
2

2 1 1
- IVael' + 550 = lel) + [hP < Clog= . (2. 69)
dxo Bd_mo_(o) 2e &
2
For r < d% we have
d [ F, 4 2
4 [EEd] S _ _/ B2l - _/ IV ol x Je A 0| (2. 70)
dT‘ T 7‘2 Br(l’o) 7‘2 Br(l’o)
We use the following bound |z A xh°| < chz)i' and (2. 70) implies
EN
d [E,(xo) 1 r ([ E(x0)\"?
B e eV G .
(B, ol cr (BEY oy

where we have used (2. 37) and Cauchy-Schwarz inequality. In particular,
(2. 71) implies

1/2
4 [M + Crlog 1] < or [M +Crlog 1] (2. 72)
dr r € r &

Integrating (2. 70) between d% and any p < d%, the bound (2. 69) yields
dy E 1
Vp < ¢, M>Clog— :
2 P €

and the lemma is proved for any zg € U™, B(x;, o). On the remains of R?,
as we mentioned above, the proof of (2. 63) is much more straightforward.m

3. THE 7-COMPACTNESS LEMMA

This part is devoted to the proof of the following lemma.

LEMMA 3.1. There exists 7 > 0, and A > 1 such that for any ¢ sufficiently
small, for any (¢, A) € V minimizer of G, for any ¢ € R*\ {21, ...2,,} and
for any Ae < p < min(v, ndy,), where d,, = dist(xg, {x1, ..., xn}), if

1

1 P
- IV i0l? + == (1= [¢[*)? + |h]* < nlog(=
P /Bp(xo) 4 252( ) (5)

then

Il > in B,s(zo)

1
2
Proof of Lemma 3.1.

First of all, we introduce some useful notations. Denote

3
B = [ Vel gz el B,
r\Z0
Lo = [ Vel (= o) + 3l = E(eo)
aBr(l’o) A 282 dr ’

1
F,,(yco):/B )2|VA99.1/|2—|—€—2(1—|c,o|2)2—|—2|h|2—|—2|hA1/|2
»{Zo
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1 dF,.(x
Ba) = [ Va4 S0 e+ 2 2 A = L)
8B, (o) £ dr
and
R (960)2—i hQ—E/ Zhole(icp Vi)
r2 By (z0) r2 By (z0) = J A
Using those notations (2. 62) becomes
d Er($0) Jr ($0)
el = R, ) 3.1
dr [ r ] r + Br(wo) ( )
As in the proof of Lemma 2.5 we use the bound
| R, (20)] < Clog —I—C ( ) (3. 2)

Suppose for some Ae < p < d% we have F,/p < nlog(p/e) (A > 1 will

be fixed later but we already consider couples (7, A) such that log A > %
As in the proof of Lemma 2.5, using (3. 1) and (3. 2), we prove that
Vr <p M < Cnlog(£) and combined with (3. 2) this gives

Vr<p  |Ru(wo)| < Clog —|—Cd2 (mog(g))”z. (3. 3)

Integrating (3. 2) between p and Ae (A will be fixed later) we have

? J, (o) INSY
/AE Td nlog( )—I—C,olog +Cd2 (nlog (g)) . (3. 4)

It is clear that there exists v > 0 independent of ¢ for £ small enough such
that, if p < v and p < dﬂ , we have

P2 P
Cplog +Od2 (nog(£))"/? < ylog (£)

(A has also to be chosen sufficiently large (independently of £) such that
c(nlog A)1/2 < nlog ).

Finally, for Ae < p < min [d,, /2, v], we have
7 Jr (20) p
——=dr < 2nlog | = .
[ < 2o (£) (3. 5)
Thus we have also

/p Jr($0) + Jr/?(xO) d
A

€

r < Cnlog (g) .

Moreover

/p (o) :/ SR Lo 4 FAE xo) +
Ae r d 0 p
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and this implies
e (20) p /p F (20)
ZAs\0) log(£) > 20/
o T Cnlog (D)

Ae r?

dr,

but Fi.(z0)/Ae < Exe(z0)/Ae < Cnlog(£), and this yields
/p Jr($0) + Jr/?(xo) + Fr($0)
A

r r r2

dr < Cnlog (g) . (3. 6)

€

Applying the mean value formula in (3. 6) we get the existence of rg € [Ag, p]
such that

F,
Irq ($0) + JTO/2 ($0) + r—oo(xo) <Cn (3 7)

where (' is independent on ¢ and 7. Our aim is to prove that (3. 7) implies
that
ETO/2 (xo)
To/2
And (3. 8) will imply (see below at the end of the proof of the Lemma),
To/2
Bl g+ [ o)

£

< f(p) where  f(p)—>0asn—0 . (3. 8)

(3. 9)
< ¢g(n) withg—0asn—0
This yields in particular

1 2\2
| B:(0)| /Ba(xo)(l ~ el < ot - 10

and since |V|p|?| < |[V]g|| < |V 0| < C/e, for g(n) sufficiently small (3.
10) implies |¢| > % in By.(zo) and in particular |¢|(zg) > %, which is the
desired result.

The difficulty now is to obtain (3. 8) from (3. 7). (3. 7) says that the
total energy is small except possibly the tangential projections of V ;¢ on
all the spheres in B, (x¢) of center (.

First of all note that we can take ro € [Ae, 777 ]. This is clear if p < ﬁ,

otherwise, since p verifies
Ep(xo)

p
as we mentioned above we have

< nlog (g) ;

B, (%0) p
< -].
Vr <p " < Cnlog (5)
Take r = 1021 =7’ and we have
E,(20) r p
L S Cnlog() + Clog(75)
! 1 1
< Cnlog (r_) + Cnlog [— log —]
€ n €
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but log[% logl] < log (sl:gl) (for e sufficiently small), thus we have
E.(z0)/r" < Cnlog(r'/e) and we get (3. 7) for ro € [Ag, n/log1].

Since ro < 1 dist(xzg, {21, ...,2,}) we can clearly include B,,(2z¢) in some
U;. We trivialize IV over B, (o) and consider the particular representative
of (¢, A) in B, (z¢) C U given by Proposition 2.1 modulo the multiplication
of the fiber over y by e=#4(#0)-¥ for each y in B,y (20), and we have

Aily) = Al (y) + Aly) — A(wo)

Because of (2. 39) we have

i 1/2
Ayl < Ay >|+C<77Wuog1/e>l/2
) (3. 11)

< Q _|_ 0771/2
dy,

We change the scale in view of working in a unit ball and multiply by %
Denote in B(zg, 1)
p(x) = ¢(ro)
fl(x) = rofl(rox) = roAf (roz) + roA(roz)
A(z) = roA(roa)
and  h(x) = dA(z) = radA(rox) = rah(rox)

Thus we have, in particular,

Vie(x) =roV zo(roz)
and
d*h(z) = rgd*h(roz)
moreover (3, A) minimizes the functional
_ . B 1 7raN 2 _ 1 -
Ger(e. A) = [ (WP (@)+ 5 (2) (1= 6B (a) + P (o)
B & o

and verifies the equations

2 (To\? _ . 2
Vie = (2) et-leP
d*h - _
) = (l@va@)
7o
(3. 12) implies, in particular,
(i3, V2 2)(x) = 0 3. 12)

where

3
_ 0P
Vie = Z(ak A’“)(ak ’AW)

= Ap-—2iANVp—id*Ag — |A*¢

Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



LINE VORTICES IN THE U(1) - HIGGS MODEL 105
But we have chosen a gauge such that d*A = 0 and (3. 12) becomes
(ip, Ag) = AV|g]* . (3. 13)

For ¢ € [%, 1], denote by A, the Laplace Beltrami operator on 8B, C R?
and by dt and (x) we denote, respectively, the exterior derivative and the
Hodge operator on 9B, C R>. By definition we have

Ay = dT(*)dT(*) + (*)dT(*)dT on 0B,
If fis a O-form in By, for o € [, 1] we have

2
ar=a,+ 98428

In particular we have

. Jp . Jp 9% (. 0p
A(lg‘ova_f):AU (29978_29_) + @(lwva_f_)

(3. 14)
20 (._ 0
T Sae (’% %)
Using Lemma A.3 and (3. 14) we have,
de 0 . _ _ 0p . _
A (m 80) = 3 (19, 800) + 2(x)dT [(%J(*)dw)]
N A .

+ (19, 800) + 55 (m %) (3. 15)

L 20 (00
09 \'7 95 )"
Using the Laplace Beltrami operator (3. 13) is equivalent to
. g (. 0¢ 2 (._ Op
2 _—— —_— [— —_
(7, 8op) = A5l - oL (10.52) -2 (10.52) . 10)
Combining (3. 15) and (3. 16) we get
op\ op . B o (. _ 0p
A (2997 80’) - 2(*)dT [(%72(*)d—|—@):| + % (2@7%)
P RY 2 (08 20 (0
902 \'?" 9o 2 \'? 9o cdo \'" 9o
(3. 17)

2 /4 9 20 (. 0¢ 4 (. _ 0p
P (A-VM ) T 500 (2997 %) T2 (l%%

L P (L 08), 20 (0
952 \'? 90 c90 "7 dg
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The cancelation of the two maximal order terms 88722(2'95, %), in the right
hand side of (3. 17), is a crucial point of the proof. We have

0\ dp . ) 2 0 g
2(w5E) = 2o |(Fieers)] - 5 [0(’%)]( |
3. 18
O oo 2
+ 5, (AV]el) + —AV]g]

Denote by Tj the following set 17 = B(xo, 1)\B(zo,1/2). Let V be the
1-form solution of

do . _ .
AV = (8—572(*)(11—@) in Ty

(3. 19)
V=0 on 07}
By classical elliptic estimates we have V¢ < 3/2
1/q 9o
Y . _
\A%E < C -, d
(o)™ < (5l
3. 20
op"\"” w0
()" ()
q( T, 80’ ) T1| T |
Moreover
0y . _
dr AV = dt (a_f Z(*)d-rgo) ,
thus
0y . _
(*)dT %,2(*)(11—@ =< dtAV,w > (3 21)

where w = xdo. Applying Lemma A.4 we have

49
o2 Jo

<dTAV,w> = < AdtViw>+ [0 < dV,w >]

2 0
- S <dV,w>
o do

4 9
= <AldViw>w],w> —|—;%[U < dV,w >]

2 0
- ——<dV,w>
o do
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LINE VORTICES IN THE U(1) - HIGGS MODEL 107

Applying the first formula of Lemma A.4 we have

<dTAV,w> = A<dV,w>

2 4
- = <dViw> —|——i[a < dV,w >]
o2 o2 do

3. 22)
2 0 (
- —— <dV,w>
o do
2 0
= A<dViw>+——[o<dV,w>]
0% 0o
Combining (3. 21) and (3. 22) we get
de . _ 2 0
Subtracting (3. 23) and (3. 18)
_0p 20 . Op
A [(up, %) —2<dVw>| = 290 [(up,%)]
(3. 24)
d i 2. , 40
Let H; be the solution of
2 0 ._ Op [
AH = - _r — (A. 2
! o do [U (2997 80)] + 80( Vi)
_ 0 (3. 25)
2
+=A.V]g|* + 23 [0 < dV,w >]
H1 =0 on 8T1
Remark that, since d*A = 0, we have A.V|g|? = d*(A|¢|?) and
8*A—2 *8A72_1*A72 18A72
L AIGP) — G (AleP) = —d (Al#) + ~ (AP
Thus
2 0 . Op
AHl——;% |:O' [(2@7%) —2<dV,w> +
(9 N Lo 1a .o (3. 26)
" (oAl ) + S (Aalel?) + 2L (Al in T
H1 =0 on 8T1
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By classical elliptic estimates we have Vp < §

(L) ()™
(3. 27)

d [ p\ L/p - 1/p
+(T1 9 (digp) ) +(T1|A|99||)

Let H; be the solution of
AHQ =0 in T1

0%

1/p
HqlP <
( T W 1| ) Cp 30

_0p
H; = (ig, %) —-2<dV,w> (3. 28)

09 0
= (ip,55) = 2(:)drV = (ip, 55)  on 9T

Let 17 be the following subannulus of T1, T = By /s(x0)\Bs/s(20). By clas-
sical results on harmonic functions we have
1/2
) . (3. 29)

1/2
( |VH2|2) <C (/
T/ o1

Combining (3. 24), (3. 25) and (3. 28), it is clear that

99
do

(i% %) =2<dV,w>+H+Hy inTh (3. 30)

The conclusion at this point is that we have been able to write (i, %)
(which includes the radial derivative) using tangential derivatives: < dV,w >
plus some remaining terms H; and Hy which are not so bad (we will see this

below).

Forl1<p<3 Sand 1 <g< 2 ﬁxed and to be made precise later, applying

the mean Value formula, we can find ¢t € [8, 8] such that, for C' sufficiently
large, we have 31multaneously

m 1/p
(/ |VH1|p) <G(/ |VH1|p) ,
8Bt Tl
1/ 1/2
(/ |VH2|2) <G(/ |VH2|2)
aB: T
1/q 1/q
v <c vV
([, mvr) <c(f mvr) 5. 31
(/ |st0|2) (/ |st0|2) ,
OBt

192 4 2 (1) (1 1ly?

5B 80’

<o [ 1GER+5(2) ey
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RNLYZ: N 1/p
(L var) " <e (], war)
8Bt Tl

We have also chosen ¢ such that

1 22 _ Tovarr 141242
L, = 0mler= [ ra-ign

and

_ 1 1
<c [ pa-perr=o | S 1ol P,
¢ 70 J By (20)\Byy s2(w0) ©
and combined with (3. 7) the previous inequality gives
1 212
La-jemr<en . (3. 32)
9Biry €

Since ||V ;¢0||cc € C/ein B,y (20) (from Lemma 2.4), we have, in particular,
[IVIglllew < C/e and, in view of (3. 32), for n sufficiently small we have
l¢l > 3 on OBy, (vo) that is [¢| > 1 on 9By (o).

Since H}n(0B:(x0)) = 0 there exists ¢ € C*°(9B,, R) such that

eilzj = i on aBp($0) and / Y € [07 277)
|| 5B

We have

iri = (i (15)) = pte ) (8. 35)

On the other hand one verifies that for any a € C* (9B, C) we have
(x)d1 () (ia,dTa) = (ia, Awa) . (3. 34)
Applying (3. 34) to ¢ we have, using (3. 16),

(+)dT (%) (i@, dTo) = (i, A,9)

=35 (#5¢) = (12:52) + el o

We will replace, in (3. 35), d*(A|¢|?) by d (A|c,o| )+ 2 (Av|g)?)+2Av|g)?
and combining (3. 33) and (3. 35) we obtaln
. o (.0 2(. 0 d
aib == (0. 52) = 2 (10, 52) + PGP + 5 (Aol
(3. 36)
2. (%) 1 . _
—|—;A.I/|g0| +dy ((W — 1) (1, ch,o)) on 0By(zo)
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2 (i, 80) looks a priori bad in the right hand side of (3. 36) in view of
estimating 1 but using (3. 30) we have, using also Lemma A.1,

o (. dp\ _ .0 O, OH,

%(“@%) = 2y Vet
_ o oH,  0H, 3. 37
= 2< dViw> f (3. 37)
B v 2 O, OH,
= 2(%) T% — —(¥)dTV + o + o

Taking ¢ = % and p = %, classical elliptic estimates yield the following upper

bound for faBt(xo) |V rap|4/3,
3/4
/ IVV|3
8Bt(x0)

3/4
(u/h |Y7T?br§) <C
aBt(l’O)
» 1/2
N vi )+ / VL[
(faBt(l’0)| 1| ) ( aBt(l’0)| 2| )
1/2
952
(L) (]
9Bi(z0) | 00 9B1(o)
/4
3 4/3\ 3
Ay
(/a& (z0) 8 ( |SO|) )
3/4
+(/ ~ lg) v “”'4/3) ]
aBt 1’0

Combining (3. 20), (3. 27), (3. 29) and (3. 31), (3. 38) implies

3/4
(/ |VT¢|%) <
8Bt(x0)

4/3 3/4
Alg)? ) (3. 38)

_|_

1/2 2\ 1/2
<C ( |VT99|2) (/ 92 )
T T 80’
(3. 39)
. / % 2 1/2—|— / % 2 1/2
T 80’ oT, 80’

+(/T1|VA|2)1/2+(/T1<1—|@| ) (/ |st0|) +n
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where we have also used the bound [|A||. < =+ ron'/? < C'n established
above (see (3. 11). Let ¢, = faBt(xo) ¥ € [0,27) by Poincaré inequality and
Sobolev embeding we have

3/4
|vw|4/3) . (3.40)
Bt(l’o)

||QE - QEt||H1/2(aBt($O)) < C (/8

Let ¢ be the harmonic extension of 1 in B (o). We have from (3. 40) and
classical results on harmonic functions,

1/2 3/4
( / WP) <C ( / |VT¢|4/3) . (3. 41)
Bu(x0) 9B1(wo)

Let £ Bi(v9) — Ry such that
§=lpl on 0Bi(o)

B B 9 B (3. 42)
& is a minimizer of / IVEP? + (@) (1-¢)?
8Bt(x0) €
Clearly € is the solution of
2
€ - :
— (—) AE+E=1 in By(z0)
"o (3. 43)
£=14l on dB(wo)
By the maximum principle we have
_ 1
max (1 —&) < max (1 —|¢|) < = 3. 44
Bt(xo)( §) 8Bt(IO)( #l) < 5 (3. 44)
Multiply (3. 43) by 1 — £ and integrate on B;(xg), we have
_ 7o\ 2 2 _ _
ver+ (2 u-gt= [ a-950-9
Lo ves () o= [ a-og0-9
and in view of (3. 44) this implies
a ro\? F242
Vel +(=) (1-¢7)
/Bt(l’o) ( £ )
(3. 45)

o€

v

1/2 o\ 1/2
<C (/ (1- W)?) (/ ) -
8Bt(x0) 8Bt(l’O)

Multiply (3. 43) by 327, xi¥ and integrate on Byi(zg) we get the fol-

lowing Pohozaev identity
1

1 - 1 _
St v 22%/ +—/ VEP+

# foy (B 005 [ (2) 0o
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The Pohozaev identity and (3. 45) imply

/aBt(l’o)

(3. 46) combined with (3. 45), give

o¢ |?

v

r 2
<o o velell+ (2) a-ler o 6o
aBt(l’o) €

/ o IV (=) a-ey
<] - |@|2>2)1/2 (/ Il + (2) - |so|2>2)l/fs- 1)
<c(/Tl<1—|so| ) (/ Vol + (1—|99|))1/2-

Let W = fe“z in By(xg), since (¢, A) minimizes Ge .., we have G ., (@, fl) <
Gy (W, A) and this implies

= r0)? vz, L
IVagl + (=) (=12*)”+ —lh]
/Bt(xo) 4 (5) g

. _ 2 _ . 1 -
<[ AR VER+ (22) (1 - IR + 24P + I
Bt(l’o) 9 r

0

(3. 48)

Combining (3. 39), (3. 41), (3. 47) and (3. 48) we have

2 1 _

V.52 + oV = 22 4 |72

Lo 19t (2) 0l i
. g |* : 2
el ) ([ 122]) + v 1%

T1 T1 g Tl 8Tl

1/2 s 2
H(Lamterr) ([ ver+(2) 4 (- 1er))
T1 Tl €

“ 1 -
+/ IVA|2+772+/ Liap
T Be(xo) T0
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Going back to the usual scale we have

2

1 1 dp|* 1 0
Bug(oo) <C |- [ 9ol [ 28 2 |12
ro ro JB,, ro JB,, or ro JB,, or
dp|? .
+ S| 4 [ vap
8BryUdB, 2 | OT By,
3.49
. 1/2 . . 2( )
H [amte?) (=] IveP - ery
(rg ) () (11l
1
+n’ 4+ — |h|2]
ro Btro
Since |A] < i + Cnt/? (see 3. 11), we have
1 ~ ro \?
— |A]? < (d—o) +Crigtltgony . (3. 50)
"0 J By (o) *o

Moreover |[VA|? < 2|VAg|?> + 2|[VA|? and we have |VAp|? < C'/d}, and
Jps IVA|? < Clog L, thus

: 4
ro/ IVA* < C ((;70 + 1o log 1/5) <Cn (3. 51)

0 o

Finally combining (3. 48), (3. 49), (3. 50) and (3. 51) we have

0 To To To

1/2
1 E, 2 E,
o Bg(w0) < E X Ot O+ ((3) Cn) o
(3. 52)

< 0771/2 (& + 1)
To
In the other hand we have by (3. 1)

ET’ ET’ ro T ro
o _ Liry :/ Jr (o) +/ R (z0) (3. 53)
ir 1

70 tro 0 r

we have also

/OJr(QCO) <L/OJT($0)<M<%U (3. 54)
t

~
r tro Jir,

70

and furthermore, since we could have chosen rg < ﬁ we have

"o 2 1/2
/ R, (x0) < Cr‘ologé -|-Ci (M)
¢

70 Zo

(3. 55)

To
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Combining (3. 52), (3. 53), (3. 54) and (3. 55) we easily get that for 5
sufficiently small, independently of rq, we have

E.,
To

(o) < f(p) —0 as n—0

This implies

B < s+ [ Buleo)

£

1
< f(n) + Crolog — + Cn(fm)'*
and since we could have chosen rg < cﬁ we have

1

-3
&7 JB:(z0)

E.
(1—|¢|2)2<?<9(77) —0 asn—0 (3. 56)
and since |V]g|| < |V j¢| < C/e for 5 sufficiently small independent of £ (3.

56) ensures |p|(zo) > 3. This proves the lemma. |

4. LOCATING THE SINGULARITIES

As in [4], the bad set or the locus of the singulartities is by definition the
place where .| < % and where we are going to have a loss of compactness
(as we will see later). The Lemma 3.1 says that a point zo where |¢.|(z0) < 3
produces energy in the ball B,(x¢) greater than p x nlog(£). In view of the
global bound given by Lemma 2.1 we can easily obtain the three dimensional
equivalent of Proposition 4.2 of [4], that is, we can put the bad set in Ci;“) 3-
balls of radius € for @ < 1, where ¢(«) only depends on « (this is equivalent
to say, in dimension 2, that we can put the bad set in ¢(«) 2-balls of radius
£). Contrary to the dimension 2 (see [4], theorem 4.1 and [3] Lemma 4.1)
we are not able to get the same result for o = 1, that is to give the location
of the singularities at the scale £ but as we will see it in part V this is not
necessary in view of getting global WP estimates.

We have the following technical Lemma, part 4 is devoted to the proof of
this lemma.

LEMMA 4.1. Given any 0 < o < 1 and o < v < 1 there exist N, € N and
(Ri)lgz’gNa a finite sequence of disjoint rectangle sets whose boundary are
unions of faces paralled to the planes 2 O y, y O z and « O z such that

1 —3,u>0V1<i< N,, Vo € R; (respVy € R?\R;) there exists a
cube of edge pe® included in R; (resp. in R\ R;) which contains z
(resp. y) and R; is contained in a cube of edge 2¢ (i does not depend
on £). Those cubes have also faces parallel to the planes z O y, y O =
and z O z.

2 —N, < %%l, where ¢(a) only depends on o and {(z;,d;) }i=1....n-

3 —VI<i< N, faRi IV i0l* + 7= (1= |¢l*)? + |h]* < C'log 1 where C
only depends on {(z;,d;) hi=1,...n-
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4 —V1 < i < N, there exists a subset S; of OR; (possibly empty) which
can be contained in n(a, ) balls of radius < €7 such that

1
lo| > 5 on dR;\S;

where n(a,v) only depends on «,~ and {(z;,d;) }i=1. -

5 - for any 1 < @ < N, such that Yk € {1,...,n} 2 € R;, for any
regular closed curve in dR;\S; and for any trivialisation of E over R;,
the degree of ¢/|p| along this curve, which does not depend on the
trivialisation chosen over R;, is bounded by an integer d(«,~y) which
only depends on «,v and {(x;,d;) }i=1..n-

1 5 e~
¢l > 5 in RAUL RiUl, C (?7”)

where 7 is given by Lemma 3.1 and (%, xk) is the cube of centre
xy of edge % parallel to Oz, Oy and Oz. [ |

Proof of Lemma 4.1.

Consider the lattice £*Z?> in R?, and denote by C'(p, z) the cube of centre
z, of edge p and whose faces are parallel to 2 O y, y O z and z O z.
We will only consider the points z; of the lattice such that C'(2e?, z;) is not
included in U7_, (C (%,xk)) Let J, C €*Z be this set. Let (z);e1, be
those which verifies
1 1 2e
— Vil + =1 = |e[H? 4 |h]? > nlog | —
2 g [ a0 1ol I > piog (5

where 7 is the constant given by Lemma 3.1. We have

1 ) 1
S Vel 1 el A > #1221 - ) log
il C(2e%,2;) = €

Since any point of R? is at most covered by 42 of those cubes we have
1 o 1

/ Va0l + 55 (L =10l +h]* > #1, C(1 - @) £ log (4. 1)
RA {1} 2e €

Combining (4. 1) and the global upper bound given by Lemma 2.1 we have

C

#1, < 0—a) e (4. 2)

Moreover let j & I, since

1 1 e
- Avan 2 — (1= 272 h2< 1 -
2e c(zsa7zj)| Al oz (=l + P < log (— )

by Lemma 3.1, |¢| > 1/2in C(e“, z;). In the other hand

P
RB\ U C(e?, z) Uiy C (ack,—) C U C(a?a,zj')

Zela 77 jeJa\Ia
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thus

lp| > in R* U C (=, 2)Ul_, C (wk, %) . (4. 3)

1

2 i€ly

We change now the covering of the bad set, {C'(22?, 2) }ier, into a cov-
ering of cubes {C'(p;, z;) }ier, with edges a little bit smaller than 22 (ie
(2—=148)e™ < p; < 2%, 6 will be fixed later) in view of ensuring conditions 3,
4 and 5 of the lemma on the boundaries of the different connected compo-
nents of R*\ U;ez, 0C(p;, 2;) which will be rectangles verifying 1.

Let 0 < § < 1 chosen small enough at the end of the proof. Let ¢ € I,
from Lemma 2.5 there exists €' independent of € such that

1 1 1

— VielP+ (1= |el»?*+ k> < Clog = . 4.4
5 [ IVaet g A BE < Clog L )
Let @ < 3 < 1 and consider the lattice of size £ (i.e. £°Z?) included in
C'(2¢?, z;). Denote it by (y;) Denote by (y;) the points of

this lattice such that

jeJl(z) NIHED)

0(25 7y]) 77

1 1
S [ Wael g - > #1500 227 (1 5) xlog .

Since a point of C'(2¢%, ;) can be covered by, at most, 4> cubes C'(2¢7, y;)
for j € JZ(2) we have

1
Viel? +==1—1¢l*)?+ |
/C(Wsa)l aPlT Aoz (L= lel) + h]

(4. 5)
1
> C#I15(2;) 267 (1= 3) log B
Combining (4. 4) and (4. 5) we get
C
%(z) <« ————— 4.
#a(2)<(1_ﬁ) cB—a ( 6)
For j € J5(2)\IZ(z;) we have, by Lemma 3.1,
L.
el>1 i ey (4.7
Moreover
C(2%, 2)\ ( U C(eﬁ,yj)) C U C%y)
J€1Z (=) JEIE (A (=)
thus
1 N
lo] > 2 in C'(2e 7Zi)\UjEI£(Zi) CP ) . (4. 8)
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Using the mean value formula we will choose p € ((2 — 6)e™;2¢®) such that

OC(p, z;) intersects a number of cubes C(2¢7,y;), for j € 15(z), bounded
independently of 7, ¢ and such that

1 1
Vel 4+ —1—|e|>)2+|h? < Klog - 4.9
Lo IVael + 5= 1o : (1. 9)
where K only depends on 8, and {(z;,d;) }i=1,... -

Let NV, (%) be the number of indices j € 15 (z;) such that
C2:, ;) N OC (p, ) # 0

If [p1 — p2| > 2¢P N, (2;) and N, (2;) count different indices thus, using (4.
6) we have

e
[255]+1 2e¥—2 pef

f(226—a§)sa Np(’zi) dp < /2 Np(ZZ') dp

=0 e —2 (p+1)ef

< 2P #10 (%) < £
ST
In the other hand, (4. 4) gives
o [* 2, 1 22 2 ¢ el
) o I 36P + oop (L— [P 4 B2 < Klog 2. (4. 11)
€% Jia—)ee  Jac(p,z) 2e €

Applying the mean value formula, simultaneously for (4. 10) and (4. 11)
we deduce the existence of €' independent of ¢ and ¢ and the existence of
pi € ((2—0)e”,2?) such that

Np,‘ (Zz) < C(O&,ﬁ7 5)
. (4. 12)
/ Va0l + s (1= 922 + |B[2 < Clar, B, 8) log =
8C(pirz:) 2e £

We claim now that we can put the bad set ( |¢| < 1/2) on 0C(p;, z;) in a

union of cubes of edges bounded by £%%* such that
1) the number of those cubes is still bounded by N, (z;) < C(«, 3,9)

2) in any trivialisation of E over C'(2¢?, 2;), the degree of ¢/|¢| along the
intersection of dC(p;, z;) and the union of those cubes is bounded indepen-
dently of e.

Let j € Ig(zi) such that C'(2¢°,y;) N aC (p;, 2) # 0.
We claim that there exists k € [1;2NV,, (%) + 2] N N such that
|l > § in
gk _L-a ﬁ_ﬁﬁlﬂ (4 13)
C (5 2 (2Np+2) 7@/j) \C' (5 : (2Npi+2)7yj) NoC (ps 2i) -
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Indeed any cube C'(2¢°,y;) for j' € Ig(zi) intersects at most two of the
following annuli (because of its size)

gk __B-a ﬁ_(k—l)ﬂ
C € : (2Npi+2) 7y] \C € : (2Npi+2) 9 y] fOI’ k € {17 27 cey QNPz —I_ 2} .

In fact, Since the number of the cubes C'(2%,y;) ( j/ € I5(z) ) which
intersect dC'(p;, x;) is bounded by N, there exists necessarily one of those
annuli which intersects none of those cubes.

Let ko € {1,2,...,2N,, + 2} such that (4. 13) is verified.
ﬁ_(ko—l) (B=a) g—to _Lo=a
2 BNpiH2) T2 (2Npi+2)] , we denote by [', the following

For r € |¢
lipshitz closed curve in 0C (z;, p;)
L'y =0(C(r,y;) N oC(ps, )
and X, the surface in dC(p;, z;) that [', bounds
Yy = C(ry5) N OC(pis 2:).

1 . P © ~
—= (1, Vi) = f 1=, V— —f A
[R=ECAPCIE U= (R
— 27Td—/ *iL.I/ s

where d is the degree of ¢/|¢| on I', which is independent of

ﬁ_ (kg—=1) (B—a) ﬁ_@ J_L,B—Ot
2 2Np 12) & 2 2Np, 12)

We have

(4. 14)

re |

mal of 0C(p;, z).
Since || > 1 on I, and |T',| < C r, (4. 14) implies, using Cauchy-Schwartz
inequality, that

2
2rd)? 1 ~
(r) <C / |VA99|2+;(/ |h|) . (4. 15)
T, v,

Moreover we have |A| < |ho| + |h| and
C
hol < — S =3
ol dist?{y;; {z;, ...,z }} ~ 2@

In the other hand, by (2. 38), we have

2
1
(/ |h|) gCrQ/ |h|2 gC’rSlogg . (4. 17)
r ET

Combining (4. 15), (4. 16), (4. 17) and integrating with respect to r we
have

] and where v is the outward unit nor-

(4. 16)

/B_kTO(%J\% 2 4(5 )
e : ord)? — CHF—a
//6_(k0—1) B—a ( il ) c dr < C |VA~QO|2 (4 18)

2 (2Np+2) r 8C (pi,zi)
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In view of (4. 12) this implies
0 -« y 1

2 2N, +2

Thus d is bounded independently of ¢ and € and we have put the bad set

A2 (d? — CeMP=)y < C(a, B,6) (4. 19)

on dC(p;, z) in at most N, cubes of edge less than £ such that the
degree of ¢/|p| in any trivialisation of F over C'(p;, z;) on the boundary of
the intersection of those cubes with dC/(p;, ;) is uniformly bounded inde-
pendently of ¢ and .

The connected components of R*\ U;er, dC(p;, 2;) are sets which boundary
is a union of faces parallel to 2Oy, yOz and zOx and for which conditions
2,3, 4,5 and 6 are verified for v = ﬁiza But there is no reason for condi-
tion 1 to be verified by this sequence of connected components. Some small
changes have to be done in the proof to get 1.

They appear here at the end of the proof in order not to overcomplicate the
beginning.

Let C'(p,y) and C(p’,y') be two cubes with faces parallel to 2Oy, yOz
and zOz and denote by

d(Clp,y):C(p,y")

the minimum among all the distances between the faces of 0C(p, y) and the
faces of C'(p', y') which are parallel.
We are looking for a function A £°Z?® — [2;2+ 1] such that

Vz,2' € %73 y 4y
(4. 20)
d(C(A(2)e?, 2); C(A(2)e, 2')) = ve?

for some v > 0 independent of ¢

Suppose such A\ 9Z3 — [2, 2—|—%] exists. Then in the previous proof, ¥i € I,
choose p;, by the mean value arguments developed above, between A(z;)e®
and (A(z) — 8)e” (where § is independent of ¢ and ¢) instead of choosing p;
between 2¢® and (2 — §)e®. At the end of the proof, one comes exactly to
the same conclusions, that is for R®\ U;e;, dC(p;; ;) the different connected
components verify, 2, 3, 4, 5 and 6, moreover if one have chosen ¢ < v/4
(where v is given by (4. 20) ) since, in taking 0C'(p;, z;) instead of taking
OC(M(2:)e®, z;), smaller than 2™ we have

Vi €Ly i £1 d(Clpizi); Clpan zar) > (v — 2%)€a = %ga (4. 21)

and

Viel,, VYi'gl,
(4. 22)
A(Cpi, 5 CAG), ) > (v = D)e = 2o,

(4. 21) and (4. 22) clearly ensure that the connected components of
R\ User, C (pi, 2;) verify condition 1 for 4 = v/2 and the Lemma is proved.
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Thus, we just have to prove that A ¢2Z3 — [2, 2—|—%] verifying (4. 20) exists.

Take A e%{1,2, ..., 5}3 —[2;24 i] any injective function, and
A(e¥(ny, ng, n3)) = A(e®(n1; 125 73)) where n; is the representative of n; in
Z/5Z belonging to {1,2,...,5}.

We claim that (4. 20) holds for such A

Letting y, y’ € e“Z, two situations may occur
first case : d(C(2:7,2);C(2%, 7)) >
by replacing 2e® by Ae?®, since A € [2,2+ %], we move each face of C'(2¢°, z)

and C'(2e?, 2') parallely along a distance less than % thus

d (CA(2)e%, 2); CO()e, ) > (1 _ %) o 2

second case : d(C(2c%,y),C(2¢%;y)) =0

The parallel faces of C'(2e2, z) and C'(2, 2) are either far from at least £ or
touch themselves. For those which are far from at least €%, replacing 2 by
Ae? as above, we keep the distance between themselves greater than £ /2.
For the parallel faces of C'(2¢%, z) and C'(2e®, 2’) which touch themselves we
have maxj—1 232 — z;| = 2¢” and A has been chosen such that, for points
which are so close, |A(z) — A(2')| > v where

v=min{|Az) = MN2)|, 2 # 7 2,7 €*{1,2,...,5}"}

Thus in replacing 2¢® by Ae® the two parallel faces become distant by at
least ve®. [ |

5. WP ESTIMATES AND WEAK CONVERGENCE FOR THE MAGNETIC
FIELD

This part is devoted to the proof of theorem 5.1 stated below. First, we
establish WP estimates for the renormalised magnetic field h, = h. — hq.
Precisely we have the following lemma

LEMMA 5.1. Let (e, fls) be a minimizer of G, among V and h. = dA, — ho,
we have

Vi<p< ; 3C, indep. of ¢ s.t. / |Vh|P < C,
R3

Proof of Lemma 5.1.
Let 0 < o < 1 and a <y < 1 be fixed later. Let (R;)i<icn, be the union of
disjoint rectangle sets given by Lemma 4.1 and denote T, the following set

Tea = UN R; UL, B(xq,2% /1)
In R*\T.« we have |¢| > 1. Taking the exterior derivative of (2. 15) we have

ARt h=d [(1 _ ﬁ) (i, dAcp)] in RA\T.a . (5. 1)
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T.o can be included in a big ball Bg, of finite radius R. < +00 and we have

p
Vi<p<?2 / (1—%) |(ip, V 50)|” <
R3\Bg, ||

x [ / IV 10l?
R3\Bpg,

p/2
< 400

I3

1—
<c/ <1—|so|2>ff’%]
R3\Bpg,

- 1_%
<c[f <1—|c,o|2>2] x[/ 1V ol?
L/R3 RrR3

(5. 1) in R®\ Bg, and (5. 2) yields by classical estimates on Bessel potential
that

]

2

(5. 2)

Vi<p<2 / VAP < 400 . (5. 3)
R¥\Bg,
Moreover one easily verifies that Vhg € LP(R?\Bg,) for any p > 1. Thus
Vi<p<2 / |IVhP < 400 (5. 4)
R#*\Brg,

and since, from Lemma I1.3, we have h € W12(R?) we have

V1< p<2 /|Vh|p<—|—oo . (5. 5)
R3
This implies, since d*h = d*h in D'(R3),
Vi<p<2 / |d* P < o0 . (5. 6)
R3

We are going to establish a bound independent of ¢ for [, |d*h|P for 1 <
3
p < 5-

Let 0 < 8 < 1 be fixed later and K be the 1-form on R? solution of

*

~AK+K=—— inD(R?
+ @ h|? in D'(R”)
and k = dK the two-form which verifies
d*h
~Ak+k=d in D'(R?) . .
+ (|d*h|5) in D'(R”) (5. 7)
We have
d*h e~ le—vl
Vo € R? Kac:c/ Y dy . 5.8
D=¢ L @Y Ty -9

By classical estimates on Bessel potential we have for any ¢ such that
1<q(l1-p)<2

/ IVE|? < Cq/ |d*h|1(1=F) (5. 9)
R3 R3

We will only work with ¢ > 3. Let 6 = 1 — 3/¢. Sobolev injections give

1/q
Vo €B° ke k)l <G, ([ 1K) eyl . (5.10
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Moreover

Yo € RS |k(2)] = |dK (2)]

=|z—yl 1
<of ( +1) (dH[ (y) dy
re |2 =yl \ |z -yl

and since ¢ > 3, ¢ = qi—l < 3 and Vz € R? we have, Vz € R?,

L - e—q’lx—yl( 1 1) 7 |d*h|1(1=F) 1/
X 7 7 X _
e < ([ (o | as ey
(5. 11
1/q
<, (/ |d*h|q(1—ﬁ))
RS

Multiply (5. 1) by k and integrate on Q.a = R*\T.a we have

~ ~ ~ 1
/ —(k.dd"h + k.d"dh) + k.h = / k.d [(1 — —2) (ic,o, d;ﬁo)]
Q.o Q.o ||

Integrating by parts on both sides of the equality and using the fact that
dh =0 in Q.o we have

- / kd*h Av+ / d*k.d*h + k.d*dh =
T.a Q.o

(5. 12)

1 1
- d”k. (1——) 1, dzp —I-/ k. (1——) o, dip) Ay
k. o) Gt [ A ) o a?)

where v is the 1-form associated to the inward unit normal of 0T .a.
Multiplying (5. 7) by h and integrating on all of R® we have

. . . - d*h
—(h.dd*k + h.d*dk) + k.h = / hd | ——
/Rs ( ) R3 (|d*h|ﬁ)

Integrating by parts on both sides of the equality and using the fact that
dk = 0 in R?® we have

/ d*hdk+hbk=— | |d*h]*7F . (5. 13)
R3 R3
Combining (5. 12) and (5. 13) we have

|d*h)?*~" = —/ k.d*h Av— / d*h.d*k + h.k
R3 T.a T.a

1 .
—/ k. (1 — —2) (tp,d 30) N v+ (5. 14)
T ||

1
+/ d*k.(l——) io d ),
- oE ) (i dad)

We are going to establish some upper bounds for the four terms of the right

hand side of (5. 14).

a) A bound for the fourth term of the r.h.s. of (5. 14).
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/Qaa k. (1= ) (g, d )|

(5. 15)

where L =1 -1,
g g

b) A bound for the third term of the r.h.s. of (5. 14).

Na-l-n
1
k.(l——) o, d o) Av| < K| peora) X / Viol(1—|p|?
/ana =) (i9.d39) Il < 3 [ Vel 1)

(recall Ry, 41 = C(e*/n,2;) for 1 <1< n).

We bound faRi |V z¢(1 = |#|?) in the following way

/aRiIVMI(l— p?) < (/aR |VN|2)1/2 (/aRi(l— |90|2)2)1/2

1

1
< Celog —
€

and since N, + n < £2) we have, using also (5. 11),

1 1/q
< Cgl—alogg (/RS |d*h|q<1—ﬁ>) (5. 16)

1
k(1= —) (io,d;
/aTaa ( W)“” i?)

¢) A bound for the second term of the r.h.s. of (5. 14).

We have d*h = d*h, thus

1/2 1/2
foove < ()" (o)
TEO‘ Taa TEO‘
1/2 2 1/q
< (/ |V;199|2) Teal' ™5 (/ |d*k|q) (5. 17)
T.a RS

&

1/2 1/q
< 29 (1og1) (/ |d*k|q) .
9 R3
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On the other hand fT . h.ke = fT . ho.k + fT . h.k and we have

‘/ hook <||k||oo\/ o
T,a T,a

&

Let R < 400 such that VI < n x; € Bgr(0). Clearly hy € L*(R*\B,(0)),
moreover hg € L"(Bg(0)) for 1 < r < 2. Thus

[kl = [ ol + | o
o T.aNBg(0) T.an[R3\Bx(0)]
and we have

/T ol < [Teell 1ol e 2o\ 8 o) + Tea 1ol L2 (o)

(5. 18)

Combining (5. 11), (5. 18) and the previous inequality we get for any

l<r< %
1/
/ ho.k‘ < Ce2ali=7) (/ |d*h|q<1—ﬁ>) " (5. 19)
La R3

Moreover, using also (5. 11),

1/2
/ h.k‘ < ||k||oo|T5a|1/2(/ h2)
1 q
< Ce? (logg) (/ |\d*h|?(= ﬁ)

d) A bound for the first term of the r.h.s. of (5. 14).

(5. 20)

If v denotes the inward normal for each (R;)i=1.. N.+n We have by cancel-

lation of v and —v on IR; N OR; (i # j)

k.d*h A v :—/ k.(ip,dsz0) Ay
/ana a(uatRy) ( i)

_l_
Z / u,o,dAc,o)/\l/

Denote by k; for i = 1,..., N, 4+ n the mean value of k on R; and by k the
following approximation of k in T.a

Na+n
B
=1

where x(R;) is the characteristic function of R; equal to 1 in R; and 0
elsewhere. Remark that from (5. 10) we deduce that

(5. 21)

_ 1/q
||k — k||LOO(TEOL) < Cq (/RS |d*k|q) 505 (5 22)
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where § =1 — 3 Moreover we have by (5. 21)
Na+n

kd*h Av = / (i, d )
/ana Z 9R; A

(5. 23)
Na+n
Z /aR (i, Ac,o /\I/—I—/ (k—k).(icp,d;lcp)Al/

The second term in the right hand side of (5. 23) can be bounded in the
following way, using (5. 22) and condition 3 of Lemma 4.1,

Na+n

<1k = Bllperm Z/ V1ol

Na+n

Z/ (F— k) (i dy0) A
IR,

1/q SNQ-I—n / 1/2
< ¥k o 1/2 1
oy ([ arwr) e S o 1es )

Since for 7 = 1,..., N, + n we have |0R;| < Ce?* and NV, + n < C(a)/e?,
Na+n

the previous inequality implies
1\ /2 1/q
Z/ (k — k) (ip,dz0) Av| <Oy (log—) g (/ |d*k|q) (5. 24)
AR, € R3

We establish now an upper bound for the first term of the right hand side of
(5. 23). Consider now just the R; which do not contain any of the (2;);=1,...»
since there are only n which contain the (2;) the bound for them in (5. 23)
is easy to establish.

We decompose the vector associated to the 1-form *k; the canonical basis
(€1, €2, e3) of R?, that is kle; + k%ey + kPes. Thus we have

/ k.(ig, d;0) /\V_Zkl/ (1o, Vi0)v A e (5. 25)
OR; =1 OR;

Since R; is a set with faces perpendicular to ey, es, and e3, v A eg, v A ey
and v A es are unit tangent fields on JR; whose integral curves are the in-
tersection of dR; with planes respectively perpendicular to ey, es and es.
faRi(i‘Pv Vip)w Ae for I =1,..,3 is the integral over all the planes per-
pendicular to e; intersecting OR; of the circulation of the current (ip, V ;)
along the integral curves of v A e; that is the curves realized by the inter-
section of those planes perpendicular to ¢; with dR;. Let R; be the convex
envelope of R;. Write R; = TI7_, [}, si]. Let [';(¢) be the following curve

Iy(t) = 0R; N {x € R*/z.e; =t}

[;(t) is oriented by ¢; (i.e. in the plane {x € R?/z.e; = t} oriented by e;T';(¢)
has the positive orientation). We have

.
/ (i, V 30) 0 A ey = — / | f (i0.V 1) (5. 26)
IR, t=r; JTy()
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For i = 1,..., N, and [ = 1,2,3 denote I} = [ri, si] and let I~; be the subset
of t € If such that [';(¢) does not intersect the balls, given by Lemma 4.1, of
radius bounded by £ which contain the bad set on dR;. Since the number
of those balls is bounded by n(«, ) which does not depend neither on ¢ nor
on ¢, the measure of the surface 3} = Uteflirl(t) is bounded in the following
way

|5 < Ce”e (5. 27)

Using the definition of Ef we have

/f (iwyvgw)z[f (i%V;ﬁP)Jr/ (i, Vz0).v Nep. (5. 28)
{/TE) L/ T(t) >

Using this decomposition of dR; we bound the first term of the right hand
side of (5. 23) in the following way. First of all we have

Na .
Zk}/ (ic,o,VAcp).l/Ael‘
=1 3}

Notn 1/2
< Cllk[|pe [Z DG (/ |VA99|2) ]
=1 OR;

(5. 29)
. 1/q . 1/2
<C[ Id*hlq(l‘ﬁ)] 1osns (mgl)
R3 ex e
D 1\ /2 } 1/q
<Cez (log—) [/ |d*h|q<1—ﬁ>] .
£ R3
On the good set on JR; we write
. P ¥
1o, V3 :/f (2—7V~—)—|—
/Zﬁl(t)( i) i Jri \lel” el
(5. 30)
1
+/f (1——) i, V39
i Jri |l ( i)
and we have
Na
Z’gf /f (1—%) (ip, V 1)
gt I JTi(0) ||
Na 1/2 1/2
el |3 ([ a-tepr) ([ wael) ]<5- 3)
i—1 IR, IR,

l/q 1 1
<C [ |d*h|q<1—ﬁ>] —clog ~.
R3 ex 3
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Finally we have, for any trivialisation of F over R;,

/~;fél<t>(|§| ) /f} (|so| Z)/;szf@' "
/ml / /

where d;(t) is the degree of ¢/|¢| on I'/(t) (which is bounded independently
of i and ¢ by condition 5 of Lemma 4.1) and S!(t) is the surface in dR; which
bounds I';(¢) (taking into account the orientation of I';(t)). OR; is of course
oriented by the outward unit normal.

|osbal < [ ol [l
i) IR, IR,

(5. 33)
1 1\ 1/2
<c|[ o+iorp (log—) <C
aR; €°° €
Thus combining (5. 32) and (5. 33) we have
Na QO 2 Na
[ (ievas)| <l | S
; i \ el Aol ; :
(5. 34)

. 1/q 1
< ( |d*h|q(1—ﬁ)) — xe”
R3 e«

Combining (5. 23), (5. 24), (5. 25), (5. 29), (5. 31) and (5. 34) we finally
get an upper bound for the first term in the right hand side of (5. 14),
namely

/ kd*h Av
9T

1 1
< (1 4ol log B + 77 (log E)I/Q—I—

os A <7 19(1-) :
1229 (log = X |d*h|?
£ R3

Combining (5. 14), (5. 15), (5. 19), (5. 20) and (5. 35) we obtain for v > «,
g > 3 and ¢ sufficiently small

- N 1/q
7 < o) ([ aipo=) (5. 36)
RS

where ' does not depend on e.

(5. 35)

RS

Choose g such that 2 — 3 = ¢(1 — ). Since (5. 36) holds for any ¢ > 3,
this holds for any 1 > 5 > % Thus for any 1 < p < % we have

p=1
[ il < oo ([ i) 7 (5. 37)

Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



128 TRISTAN RIVIERE

and we conclude that ||d*h||Lp Rs is bounded independently of ¢ for 1 <
p < % By definition A = ——=15 % d*h, thus by classical estimates on the

47r |ac|
Riesz transform, we have

[aenr< [ vrap<e, [
R3 R3 R3

This proves the Lemma. [ |

From Lemma 5.1 we deduce the following useful corollary

COROLLARY 5.1. Let (., A.) be a minimizer of G among V. Then we
have

3
VQCR?*s. t.  |Q| < +o0 V1<p<§
(5. 38)
/ IV 10” < Cp, 1)

Proof of corollary 5.1

Let 0 < & < 1 and T.o be the set introduced in the proof of Lemma 5.1.
Since |¢| > 1/2 in R3\T.o we have

Vil < O, Vo) + [VIel) (5. 39)
From Lemma 5.1 and equation (2. 15) we deduce

Vi<p<3/2 /|up7 )P <Cp) . (5. 40)

On the other hand for any p € (1;3/2)

y

_p 2

/ IViel? < [Tl (/ Imof)
T, T,

&

(5. 41)
b
< Ceo(p) (log 1) ’ —0ase—0
€

We bound [, |V|¢|[P using a method developed in [3] (lemma X.13).
Recall equation (2. 14) verified by |o|* in R*\{z1,...,x,}

1 |l

SAIPlT = = (L= [el?) + |V gl (5. 42)

Let Jp] = maz(|@l; 1 - ) and let

K= {x e RN{a1,.yzn) s t]e] >1— —} .
n
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Multiply (5. 42) by 1 — || and integrate on K\ UL, B(z;,) we have

1 _
5/ Vil < [ ¥ sel2(1 = Tl
K\UTL, B(zie) K\U?_ B(z,¢)

[ S0-T) 6o

OB(z;,e)

logl/e O &2

S Tlogl/e n;logl/e =

On the other hand

1
R\ K| x < /3(1— ol)? < Cetlog = (5. 44)
R

1
(log 1)2

Let p < 2, we have

/ Vel < |R3\K|1—§x( / mm?)
R3\K R3

1
< Ce?Plog —
€

M)

(5. 45)

The combination of (5. 39), (5. 40), (5. 41), (5. 43) and (5. 45) implies
easily the desired result. [ |

We are now in position to state and prove the following theorem which
was the aim of the section 5.

THEOREM 5.1. Let g, be a sequence of positive numbers tending to 0 and
(¢c,, Ae,) a sequence of minimizers of G.,. One can extract a subse-
quence of g, still denoted ¢,, such that there exists an integer multiplicity
1-dimensional rectifiable current L verifying

L= M(L) < +oc, (5. 46)

= > difled] (5. 47)

H! (supplL) < 400 (5. 48)

and such that k., = iLEn —hg — hy in Wllo’f(R3) forany 1 < p< % where h,
verifies

—Ah,+h,+hg=-2r+L (5. 49)

Proof of theorem 5.1.

Let 0 < o < 1 and o < v < 1. Consider the domains R;, ¢ < n + N,
given by Lemma 4.1 using the notation

Riin, =C(%/n,a)) forl=1,..,n
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By the same Lemma the set

{x € RN{a1, ...,z }5.t.]p| < %} N i:l...L]JVa-I—n OR;

can be contained in C'(a,v)/e” distinct balls of radius less than 7. More-
over, since for each I a number of those balls bounded by C’(«,7), inde-
pendent of £ and ¢, intersect dR;. Provided we multiply the radius by some
coeflicient independent of ¢ and ¢ we can consider that, if such a ball in-
tersects 0R;, it has a centre on JR;. Denote by (af7 rf)k:17,,,7ni the centres
and radii of the balls which intersect dR; (n; is the number of those balls).
Moreover denote by d* the degree of /|| in any trivialisation of E over
R; (for i < N,) on the closed curve 9R; N dB(a¥, r¥) oriented by the out-
ward unit normal of dR;. Lemma 4.1 says that df is uniformly bounded
independently of i and . For topological reasons we have

Vi< N, Y df=0 . (5. 50)
k=1

For any i and k < n;, dR; N 8B(af, r’}) is a union of parts of circles. Each
of these parts of circles belongs to the boundary of exactly two R; which
have a face in common, but for the two R; the orientation of the face is
opposite. Thus if one considers a trivialisation of E over B(af, rf) and if
one adds all the degrees of /|| on the U;0R; N dB(a¥, k) for j such that
af € 0B;, one will cover exactly two times the different parts of circles of
U;0R; N OB(a%, rk) but in the opposite sense and this implies

Vi< N, Vk<n 3> d? =0 . (5 51)

{i<Na+n/3k;<n; S.t. afj =ak}

Let © < N,, since (5. 50) holds, one can establish a connection between the
(af7 df) included in R;, that is, there exists a finite union of on closed regular
oriented curves included in R; with boundary included in U™ {a¥} such
that the 1-dimensional integer multiplicity rectifiable current Lf associated

to this union of curves verify
oLs =3 dillat)) (5. 52)
k=1

Moreover since R; verifies the condition 1 of Lemma 4.1, since from the
conditions 4 and 5 of the same Lemma df and n; are bounded independently
of ¢ and € one can choose L{ such that

Ly = M(L;) < Cla,v) e™ . (5. 53)
Let
Na
L*=> Ls, (5. 54)
=1

since |N,| < C(a)/e® we have
L= M(L®) < C(a,vy) indept. of ¢ . (5. 55)
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Moreover, from (5. 51) we deduce that

n T Nq+l
k k
oLr =2 > dipllay,pll (5. 56)
Contrary to the case ¢ < N, for [ = 1,...,n we cannot trivialize E over

Rn.41=C (%, wl) thus (5. 50) does not hold in this case but we have that

ho/27 is the Euler class of the restriction of the bundle F over dRy,4+; and
theorem 11.16 of [5] implies

NN +1

1
Vi=1..n i = — ho = d; 5. 57
; A 0 ( )

and this imply that

OLE — > diflz]] as e—0 . (5. 58)
=1
Moreover since ny, 4; and dpy,4; are uniformly bounded independently of ¢
we have

M(OL®) < C'  indep. of . (5. 59)

Let ¢, be a sequence of positive number tending to 0, from (5. 55) and
(5. 59), using Federer-Fleming’s compactness theorem (see for instance [9]
page 97), we deduce the existence of a 1-dimensional, integer multiplicity
rectifiable current L and a subsequence still denoted ¢, such that

L — L in DR . (5. 60)
Moreover from (5. 58) we deduce that

oL =Y "diflei] . (5. 61)
=1
From Lemma 5.1 we know that f;)r any 1 < p < 2, [ps|Vhe,|P < C inde-
_oP
pendently of £ and since h., € L7 (R?) we have
3 2p
Vi<p< 2 / |hsn|1’3f3 + |Vh,|P <C indep. of €
R3
One can extract a subsequence still denoted ¢, such that (5. 60) holds and
for 1<p< ; he, — h,  weakly in WP (R?). (5. 62)

Let ¥ be a C*° 1-form on R?® with compact support. Qur aim, now, is to
prove

/ wdip.d*he, + 0. he + < 27L ) >—3 0 (5. 63)
RS

as n tends to infinity. In view of (5. 60) and (5. 62) that will imply (5. 49).
We use the notation h,,, A,, ¢,, L", for h. , Ac, ,¢e, and L.
Recall that on R*\T.« we have

—dd* hy, + by, = d [(1 _ |2) (i9n, dAnc,o)] : (5. 64)

|©n
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Multiplying (5. 64) by #1> and integrating on Q.o = R*\T.a we get

J

*h.d*h, A v+ / xdip.h

Q

wdip.d*hy, + /

eq ) eq

1 .
= —/Q (1 T2 |2) dip. * (1pn, d 5 on) (5. 65)

|[¢n

a
en

1
‘|‘/ (1_—)*¢ ’L'Q«Qn7d~ Pn Av
99,0 |on|? ( An )

where v denotes the 1-form associated to the unit inward normal of 97%a.
Since d*h,, and h, converges in LP(suppt) and since Tea| = R\ Qea| — 0
we have

J

Moreover (1 — [pn]?) = 0in LY(R?) (2 < ¢ < o0) and (ipn,dj ¢n) =
—d*hy, is bounded in LF(R?) (1< p< 3), thus

*d¢.d*hn+/ xh.hy, —> sdip.d*h, + %p.h, . (5. 66)
Q n—+oo R3

a a
en en

n——+oo

/ 11— loal?| [d] [(pmdy @) — O . (5. 67)

en

Moreover

1— o)« v.(ign, d; o) Av
[, (=) timdien

Na+n
<Clele 3o [ =leITa0l
=1 ¢
(5. 68)
Na+n

1/2 1/2
<ol > ([ n-teat?) ([ 19aek)

=1
1 1
T

n n—4oo

Let v denotes the 1-form associated to the unit inward normal to dR;, by
cancelation on common faces we have

Na+n

—/ 0. d*h, Nv =+ Z / $1).(1n, d g on) ANV (5. 69)
0T, ‘= JoR, "

Let t; be the mean value of 1) on R;, we have

1 = il poo(ry < ClIVYlloo 7 (5. 70)
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and

Na+n

> / = il (i d 5 on)

Na+n

1/2
<ONVelle S <2 [oRM? (/aR |v;w|2) (5. 71)

=1
1\ 1/2
< CIVY||oo &5 (logg—) — 0 as n — +oo.

We are led to study closely the quantities

I, = *1;.(in, di wn) Nv for <N,
IR,

Use vector instead of 1-forms ( ie ¢; denotes also the associated vector to

the 1-form ;).

I; :/ . (i, dg n) AV:/ (ip, Vi 0)w A
OR; OR;

Decompose 1; in the canonical basis of R?, v; = Zf’:l @el. We have

I; = ZQN/ Wmvgn@%)-l//\el (5 72)

Let R; = [1o_,[r} s!] be the convex envelope of R; and let T;(t) = dR;N{x €
R3/x.e; =t} as in the proof of Lemma 5.1 (see (5.25)) we have

/ (l@nvng‘on V/\ € = / f ZS«Qm A, Q«Qn) (5 73)
IR Fl

where T';(¢) is oriented by ¢; (i.e. in the plane {z € R®/x.¢; = t} oriented by
e, I'y(t) has the positive orientation). Denote by I! the following interval

[27 z]\U (2 _527 a, _|_€W) 3

where af’l = aF.e;. On T(t) fort € I! we have |p| > 1. Moreover the surface

vl = U Tyt
telrhst\I!
verifies
2 < Cepel (5. 74)
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In one hand we have

S5 e

=1 [=1

No 1/2
<Clloll Y1 ([ 195, 00) 679
=1 7

1\ /2
C||¢||Ooen (log—) — 0

En n—00

On the other hand

ZZW/ fw) (1 - |@i|2) (i¢n, V 1,2n)

=1 [=1

Na
5. 76
< c||w||ooz/aR 1= lpal?l IV 4 0l (5. 76)
=1 ¢

1 1
<C||¢||oo€—a€n10g€— — 0 asn— o

n n

Thus we are led to study the following quantities

©n /
2mdy (1) /f . (5. 77
/If% (m An|son|) i )

where d;(t) is the degree of /|| on I'j(t) in any trivialisation of I over R;.
Let S!(t) be the surface in R; which has I';(t) as boundary (taking into
account the orientation of I'/(t)), we have

/f An:// xhyv . (5. 78)
LI Il Jsi)

Moreover

c||¢||ooze/ hol + [kl - (5. 79)

By Lemma 2.3 we have
Na 1, 1 1/2
S [ S (L)
: €
= =1 (5. 80)

1-|—l o 1
< Ca(z 2) (log —)1/2 — 0 asn— 400
n
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On 9R; we use the bound ||hol|r~(9R,) < dist(aRi;{gl,...,xn})2‘ Thus, using

notations of Lemma 4.1, we have

N,
o 1
h < 3o
25 / |hol Cey ;|dist(8Ri;{9€17---7$n})|2

1
Csia :
];1 |d28t(2j;{$17---7$n})|2

where [, C £2Z and z; are defined in part 4.

We have
v] €l |di8t(2j7 {$17 7$71})| ze€

Let 2a/3 < o' < «. The number of elements of £9Z? included in
Uzle(sgl,xk) is bounded by /Cei(a =) thus separating the j € I, which
can be included in U7_; C (5, 21) and the ones in the exterior of this set
we have

1 1 1 1
E 8/ |h0 gce’fiaXSi,XT—FC{fiaX—SXT
£ (=) 8na €n 8na
n (5. 81)

< Cgia'—Zoz + Cgi(o‘_o‘)

Since we have chosen o' such that 3¢/ — 2 > 0 and &' < « the right hand
side of (5. 81) tends to zero. Combining the previous remark and (5. 80)
we have

—0 as n—0. (5. 82)

Let us compute [7 2rd;(t). First extend d;(t) on [rl; si]\ UpL {af’l} in the
following way : we extend c,o/|c,o| continuously in a map from OR\ U {aF}
into S* and for ¢ € [rl;s!]\ UV {af’l} U It define dy(t) to be the degree of

1) 74
such an extension on I'j(¢). We Clearly have

ZZW/ 27rdl()

=1 [=1

Nq
<Ol Y Ce]
im1 (5. 83)

< OlY)|etr ™ — 0 as n — 00
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. . k,l . .
For [ fixed, suppose we have chosen an indexation such that a;” be increasing

in k, we have

277/ dit) = 2n(ad’ —alh) x (=d
ac[rl'sl]

117

+ 2n(aP = a®l) x (=dP =P +

+ 277((1?“1 — a?i’l) X (—dl’l —

K3

+2m(sh— ) x (= ThL, 4

K3

Considering (5. 50) we get

st ng

277/ di(t) =2x¢ E df’laf’l
!
i k=1

On the other hand we have

Ty
en. _ k0 k,l
<L;™ e >= g d;"a;
k=1

Thus
No 3 ol Na )
Y30 o [ i =Y <L
=1 [=1 . 1=1

Moreover

N
<Ly > = Y <Ly >
=1

K3

_ d?“—lv’)

Na Na
= Y <L >+ <L -1 >,
=1 =1

and we have

Na Ng
YL =i > <YLMLY V]|wsh

< ML) [Vl 22— 0

as

n—0

(5.

. 84)

. 85)

. 86)

. 87)

. 88)

89)

Combining (5. 69), (5. 71), (5. 72), (5. 73), (5. 75), (5. 76), (5. 82), (5.

83), (5. 87) and (5. 88) we get

—/ s d"hy, ANv+ < L0 >— 0 as n— 40 (5. 90)
T, o

Combining (5. 65), (5. 66), (5. 67), (5. 68) and (5. 90) we prove (5. 63)

which implies (5. 49).

It remains to prove that H!(suppL) < +oo. Let r be a positive number,
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(we take r < 1 where 7 is the constant given by Lemma 3.1). Consider the
lattice rZ3, as in the proof of Lemma 4.1 the number of # € rZ? such that

1

2r
2r oC (2r,z) En

N R P R e 1
is bounded by C'/r. This implies that supp(LL°") can be included in % cubes
of edge 2r. Let R > 0, we can extract from £, a subsequence such that
the bad cubes C'(2r,z) for z € rZ®> N Bgr(0) are always the same, thus we
are sure that suppL N Br(0) is included in those cubes. Thus Vr, R >
0 suppL N Br(0) is included in C'/r cubes where C' is independent of R
and r, this implies

H! (suppL) < +oo.

6. STRONG CONVERGENCE OF THE MAGNETIC FIELD AWAY FROM
THE LIMITING SINGULAR SET

In this part we prove the strong convergence in H, (R*\suppL) of the
magnetic field h., for the subsequence given by theorem 5.1. As in [2] and
[3], with some more work, it should be possible to prove the convergence
away from the limiting singular set in a stronger norm, C*(k > 0) for in-
stance.

THEOREM 6.1. Let h., be the sequence given by theorem 5.1 and let L be
the rectifiable current in the same theorem. We have

he, — hy strongly in H_(R*\suppL) . (6. 1)
|

Proof of theorem 6.1.

We still use the notation A,,hk,, ¢n... for A; , he, , e, .... Let zg €
R3\suppL. and r small enough such that B,(z¢) C U; for some [ €
{1,...,k+1} (we use the notation of part 3) and such that r < min(n; ds,/n)
where 7 is given by Lemma 3.1. This is possible since {zy,...,2,} C suppL.
Remark that we have B, (zg) N suppL = 0.

We will prove that h,, converges strongly in H'(B, j4(x0)) to h, given by (5.
19).
Since the limit A, is well identified (= is unique) and since we have weak
convergence in WP (1 < p < 3/2) h, — hy, it is sufficient to prove the
existence of one subsequence of h, which strongly converges in H! to prove
the strong convergence of the complete sequence.
We can trivialize E over B, (z¢) and since B, (x¢) is included in some U; we
can take the Coulomb gauge given by proposition 2.1 ie A = AY+ A, Since
h,, weakly converges in WP (B, (z¢)), A, strongly converges in W (B, (z¢))
and because of corollary 5.1 (5. 38) we can extract a subsequence such that
¢, weakly converges in WH?(B, (z9))(1 < p < 3/2) [in fact it is not dif-
ficult to see that the complete sequence ¢, converges but, because of the
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remark above, we do not take care of it]. Let ¢, be the limit of ¢,, since
fBr(xo)(l — |enl?)* = 0, 4] = 1 and passing to the limit in (2. 15) we have

—d*hy = (ips, dpy) — AY — A, (6. 2)
Moreover since suppL N B, (z¢) = 0, (5. 49) implies
—dd*hy + dA, +dA° =0 in D'(B,(z0)) - (6. 3)
Combining (6. 2) and (6. 3) we get
d(ips., dp,) =0 in  D'(Br(z0)) - (6. 4)
Moreover since d*A? = 0 and d*A, = 0 in (B, (z¢)) we have also
d*(i¢y, dpy) =0 in  D'(B.(z0)) - (6. 5)

From (6. 4) and (6. 5) we deduce the existence of an harmonic function H
such that

(s, dpy) = dH . (6. 6)
Since |4 = 1, we have
dps = (1ps, dps)ips . (6. 7)
Combining (6. 6) and (6. 7) we deduce that
d(pe™ )y =0 in  D'(B,(x0)) (6. 8)

Thus ¢, is a harmonic map from B,(zg) into S!, in particular
¢x € C(B,(x0)).

Our aim, now, is to prove that there exists a subsequence, still denoted
w0, such that for n sufficiently large we have

1 .
ol 25 i Bralzo) (6. 9)

Indeed, as we have already seen below, (6. 9) and the weak convergence of
h,, imply the strong convergence in B, /4(zo).

Let 0 < 5 < r, s will be chosen sufficiently small later. Consider sZ3N
B, (z¢) as in the end of the proof of theorem V.1 B, (z¢)Nsupp L= is included
in C'/s cubes C'(2s,z) where z € sZ> where C' does not depend neither on
s nor on £,. Extract a subsequence such that the bad cubes in B,(zq) are
always the same and denote by T this union of cubes.

Let Q, , = B, (20)\T, we claim that h, — h, strongly in H} (2,5). Let w

loc
be an open set such that w CC €2, s and y be a non negative cut-off function

such that

Yy = 1 in w
(6. 10)
x = 0 in RS\QM
From (2. 15) and the fact that |p,| > % in Q, ; we have
1 . .
—d (| |2d*hn) +h,=0 in Q. . (6. 11)
©n
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Let K, be the solution of

~-AK,+K,=f, in Q.
(6. 12)
K,=0 on s
where f, = d*ﬁn/|d*izn|ﬁ inwand f, =0in Q, \w for 0 < § < 1 (fixed

later). Let k,, = dK,,. For ¢ and (3 such that ¢(1—3) < 2 and 2 < ¢ < 3 we
have by classical elliptic estimates

ag %_ 1/q ~ 1/q
(/ |kn|3—q) + (/ |d*kn|q) <C (/ |d*hn|q<1—ﬁ>) (6. 13)
Qr,s Qr,s w

Multiplying (6. 11) by xk, and integrating on €, s we have

/ Xd*knd*ﬁn+/ kn.d*ﬁnAdX—l—/ Yk b,
Qr,s Qr,s Qr,s

1 . .
_ / (1 - —2) [d*hnd*knx b d Ry A x}
Qr s |on|

In the other hand, taking the exterior derivative of (6. 12), multiplying by
Xh, and integrating on 2, ; we have

wl—

(6. 14)

/ X by ¥k + Xy ke + By d A d¥ky,
Qr,s

(6. 15)
= _/ |d" |7
Combining (6. 14) and (6. 15) we get
Juwipe < el [ a-lePehles+
% Qr,s
(6. 16)
+ |kn||d*ﬁn|+|kn||d*kn|]
Qr,s
First of all we have
‘/Q (1= )| d*hn| (|d"kn] + 1kn])| <
(6. 17)

_1_1 1/2 . 1/q
et ) ]
€n v

we have also

[l ([
QT,S Qr,s

1+4
= _8q
X (/ |d*hn|4q—3) (6. 18)
Qr,s
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and for 2 < g < 3, % < % <§—%< 1, thus (6. 18) implies

. . 1/q
| i) < ( / |d*hn|q<1—ﬁ>) | (6. 19)
Qe w

1/q
/ lld* k] < / B 1% / (ke |? (6. 20)
QT,S Qr,s QT,S

and since h,, is bounded in W'?(B, (x0)) for any 1 < p < S, h,, is bounded

in L*(B,(20)) for any 1 < s < 3 and since 2 < ¢,-L5 < 2 and (6. 20)
combined with (6. 13) gives

- . 1/q
/ hnl|d7ky| < C (/ Id*hnlq(l‘ﬁ)) : (6. 21)
Qe w

Combining (6. 16), (6. 17), (6. 19) and (6. 20) we have

. . 1/q
/|d*hn|2—ﬁ <C (/ |d*hn|q<1—ﬁ>) :

Taking?—ﬁ:q(l—ﬁ%2<q<3implies%<2—ﬁ<2thuswehave

Finally

Vi<p<2 / |d*h,|P < C indep. of n (6. 22)
Let ' CC w since we have
Ah,, = d(d*hy,) in w (6. 23)
3

and since h, is uniformly bounded in W'P(w) 1 < p < S in view of (6.
22) we have, by classical elliptic estimates that h,, is uniformly bounded in
Whe(w) 1< p<2.

Thus we have proved that h, is uniformly bounded in any compact set in-
cluded in €, s for the norm Whr 1 <p<2.

We establish now the strong Hlloc convergence of INzn in Q, ;.
Multiplying (6. 11) by xh, and integrating on €, ; we have

1 . 1 - . 8
/ X 2|d*hn|2—|—/ sl dX A d* by + x| [P = 0. (6. 24)
Qr.s |0l Qr.s |0l

Thus we have

*7 12 7 14 1/4 7 |4 i
/ |2 < C / 17| / hal? ] (6. 25)
w suppx Qe

Since Zzn is uniformly bounded for the norm WP for any p < 2 on suppx CC
Q. 5, hy converges to hy in L*(suppx) and we obtain that d*h,, is uniformly
bounded for the L2 norm on any compact set included in €, .
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Multiplying (6. 11) by X(iLn - ib*)7 we have
1 - 1 -
/ XT3 |d* R, | —/ X5 @ hsed"hipt
Qr.s |0l Qr.s |0l

1 . - - - -
+/ hr o h*).dXAd*hn/ Xy = b)) by = 0

Hence we deduce that

1 ~ -
/ XT3 |d*h,|* — / X|d*hi?  asn — oo
Qr,s |S0n| Qr,s

By lower semicontinuity this implies the strong convergence of d*h,, to d*h,

in L?(K) for any compact K included in €, ;. Because of (6. 23), since we

have already strong convergence of INzn to h, in LQ(QM) we deduce that INzn

strongly converges to hy in H! (€, ). This convergence, combined with (2.
15), yields

d— ) — (1o, do in L} (9, . 6. 26
( ) s (g d) 2 (@) (6. 26)

Moreover, since @, € C°°(B,(xg),S'), the degree of o, on all the generators
of m1(€,5) is 0 and the convergence (6. 26) implies that this is also the
case for ¢, /|p,| for n chosen sufficiently large. Let I be one of the regular
curves in €2, ; which generates m1(€2, 5) and let U be a tubular neighborhood
of I''in €, ;. Consider a closed 2-form wr with support in U which is the
Poincaré dual of I' (see [5] 1.6 for the construction of wr) that is, for any
closed 1-form ¢ in U, wr verifies

/qumup:/rqp . (6. 27)

Since @, /|pn| is regular in U

d( Ll d%):o in U . (6. 28)
lonl” " nl
Thus

/(w_n,d@_n)w_/(’% d%):% degr-£ (6. 29)
U |99n| |99n| |99n| |99n| |99n|

and in the same way

/ (1y, dpy) Nwr = /(icp*, dp,) = 2rdegro, =0 . (6. 30)
U I

/ (upn d-2n ) Awr = /(ic,o*, dos) Nwr (6. 31)
lonl” |nl r

we have, for n chosen sufficiently large, d@gr% =0.

Since

We prove now that |¢,| > % in B, /4(o) that is T, ;N B, /4(z0) = (0. Since
we have already established the strong convergence in H} (B, (20)\T,s) of
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By, in view of Lemma 3.1, to get the desired result, it suffices to prove that,
for n sufficiently large, we have

2 1 r
- Vel + == (1 = |@al®)? + |hn|? log { — ) .(6.32
Jo o TVl gy (el pal? < o ()63

r

Applying the mean value formula we deduce the existence of p € (%, r) such
that

dB,(z0) NT,,s C N balls of radius s
denoted UY, B(a;,s) where N is indep. of s and ,,.

1 1
v~son2+—1—son“+hn2<010g(—) - (6. 33
/QBp(l’o | An | 25721( | |) | | En ( )

[Venl* <C(r,5)

/QBp(xo)\Uf\;lB(ai,Qs)

This is possible because T ; is included in C'/s balls of radius s (where C'
is independent of s and &,), because Lemma 2.5 holds and ¢, converges
strongly in H} (T s). First of all, since N is independent on s and &, there
exists A > 2 (independent on s and £,) N' < N and (b;);en’ such that

b; € 9B, (x0)
U, B(ai, s) € UN B(bj, As) (6. 34)

for j # 5 B(b;,2As) N B(bjr,2As) =0
To prove (6. 32), since (p,, A,) is a minimizer of the energy, it suffices
to find ¢!, B,(xz¢) — C such that ¢/, = ¢, on dB,(z¢) and such that

(¢l,, An) verifies (6. 32).
Construction of ¢/,.
First, for p > t > p — s, we contract the bad parts contained in the

B(b;, As) in the following way. By the mean value formula we can find
i € (X, 2X) such that

vj < N / Venl? < C(r,s) (6. 35)
I(B(by,us)NIBy(x0))
and
1 C 1
Vj <N’ / — (1= |eaH)? < =log—, (6. 36
B(B(b;us)N3B p(x0)) 25%( eal)” < 5 & e (6. 36)

where (' is independent of n and s.

For p — s <t < p denote by T} the following set

t /
7= [0B,(eo)\ Uy Blbj, o)
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and

T — U Tt
p—8KILp

Let B%(z,() be the geodesic ball in dB(xzg,|v — zg|) of centre x and radius
2arcsin(l/2|z|) corresponding to the chord of length [.

In Bz(%bj, %,us) a point z is represented by the coordinates (6,[,t) where
is the angle in geodesic polar coordinates in BQ(%bj; %,us),l is the distance

to 1b; and t = |z
P

We have seen above that, for n sufficiently large, the degree of ¢, /|@,|
on 9(B?(bj, us) N B, (o)) = dB*(bj, pis) is equal to 0. Thus there exists a
regular function Qb% dB%(bj, ps) — R such that

“ (8, s, p) = V() cifn in 9B(b;, pis)

Inl

and

[ =
oB2(bj,us)

where 6, is the representant, in [0;27[ of the mean value of ¢, /|¢,| along
dB?(b;, s). From (6. 35) and Poincaré inequality, we deduce that

/ Wil < C / Vi < Cls,r) . (6. 37)
OB2(by,us) OB2(by,us)

Let C7 = Up_5<t<p%B2(bj,,us) = Up_5<t<pB2(%bj,%us). C7 is starshaped
from b7 = (1 — 35)b;. Denote by 7/ the map from C" into JCY which asso-
ciates to z € CV the point of 9C” which is on the line starting from 7 to x.
We have

: C's
J <
|V7T |($) ~ |$ _ b;|

(6. 38)

where (' is independent of s.
Define ¢/, (x) for p — s < || < p in the following way

z L
Pu(®) = ¢n (’07) in T

L p
"0, p—5s)= |1 ol (8, us; p) — 1)—
A1) = |1+ (ealtOpsip) ~ 1)L

A 0.5
— S

) p—Ss, p—=s
in B? b;,——us
(b — )

)
Xexrp [z—
Hs P

and ¢ (2) = ¢l (7' (2)) in Y

First of all in view of (6. 33) we have

/ Vel <C Venl? < Csr) (6. 40)
p—sJT,
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and

1 1
[z-tapr<e [ [ Su-lekr<osm= o)
TE p—s Tp n €n

On 9T N 9C; we have also, in view of (6. 35)

o
/’ IV%P<C/(/ Veu? <Clsr) . (6. 42)
oTNacy p—s JOB2(bj,us)

and in view of (6. 36)

1
/ — (1=, |*)? C/ / — @l 1?)?
aTNAC; €n p—s JOB2(b;,us) €2

(6. 43)
Clog—
In £22 % B%(b;, 1s) we have
10¢! ¢!
/ < - i i
[Vrenl < C[l = +‘ 5l ]
1 azp% 1 9len]
< — J 0 .44
S e R R et S (Y ST N RS

T i@%@wm%U]

The integration of (6. 44) in p;sBz(bj,,us) gives, in view of (6. 35)

| Vel <
%B2(bj 7“5)

%us 2 C
<o [77 [T (1wt e + S varas
0 0

and note that |1 — [¢! [(0,1,p—s)| < |1 = |¢n|(8, us, p)| thus we have, using
(6. 36),

1
/ (1= [P
%B%bj,us) 2

—us 2 1
/ = (1= leal®)?(8, s, p) 1l d6 (6. 46)
0 0 €n

] 1 o2 1
L L e < Clog L
0 0 B(bj,us)NOB(z0)) 12 En
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Finally, let C’i be the homotetic of C7 by the homotetie of centre b? and rate
k, we have

[ovar < of af Ve @Rvere)
cJ v=0 aci/s
s 82 .
<cf Saf e (6. 47)
v=0"Y acy |,
9 1
< Cs V1o, < C slog—
acy En

Moreover we have
1 51 .
[ogu-ipr <o [ 5[ a-jelree)
i €n 0 &n ac;/s
* v 1 2y2 (6. 48)
<C | —dv — (L= lenl?) .
0o S aci €5

1 1
<C — (1= |ea*)? < C s log —
s[ F0-lea < C s log

n

Combining (6. 40), (6. 41), (6. 47) and (6. 48) we obtain that ¢! verifies

1 1
/ Vet (Lo [P < Cslog— . (6. 49)
Bp(w0)\Bp—s(wo) 25 €

n

Moreover |¢!| > 4 on dB,_,(x0) and from (6. 45) we deduce

/ Vo 2 < Crs) (6. 50)
9Bp—s(w0)
and from (6. 46)
[ Sa-lPr<Clos— (6. 51)
OB o—s(zo) 12 En

Now we fill-up the ball B,_;(z¢) as we did at the end of the proof of Lemma
3.1.

Take the harmonic extension of v,, where v, verifies " = ' /|| on
dB,_s(x¢) and if &, is the solution of

_giAgn + gn =1 in Bp—s($0)
§n =l on 0B,_s(xo)

One verifies that ¢/ = &,e™" in B,_s(x0) is such that

/ Vol 4+ (1= [ < Clrys) (6. 52)
Bo—s(w0) 2571
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Combining (6. 49) and (6. 52) we have extended ¢,, by ¢/, in such a way
that

1 1
/ Ve L (1 |2 < Cslog =+ Crs) . (6. 53)
By(x0) 2e, En

Since h,, weakly converges in W7 (B,(z¢)) for any p < %, h, strongly con-
verges in L?(B,(wo)) thus we have

1/ 12 1 112y2 2 $ 1
- |v~ S‘Qn| +—1_|9‘9n| +|hn| gc_log_—l—crvs
N R 227 ) p o8, HCU)
Choose now s small enough such that % < 5 then we obtain that, for ¢,
sufficiently small,

1

1 P
- IV ; 9%|2‘|' 1_|99n|2 2+|hn|2<7710g_
3 o Tl g 1= el :

This implies by Lemma 3.1 that |¢,| > % in B, 4(%0) C B,/3(%0), and hy,

strongly converges in H'(B, 4(20)). |

7. THE LIMITING SINGULAR SET IDENTIFIED AS A MINIMAL
CONNECTION

In this part we conclude the proof of the theorem 1.2 stated in the intro-
duction by proving the following theorem
THEOREM 7.1. The 1-dimensional rectifiable current IL given by the theo-
rem 5.1 is a minimal connection between the (2;,d;)i=1.. - ]

Proof of theorem 7.1.

We denote by M the rectifiable set associated to IL, by £(y) the approxi-
mate tangent vector (with the orientation given by IL) at y € M and by 6(y)
the positive integer multiplicity of I at the same point. The rectifiability
of M implies that it can be included in a countable union of 1-dimensional
disjoint submanifolds of R? (i.e M C U2,C;) modulo an H' - measure zero
set that we do not consider in working with IL. We have, using the notation
M, = M NC;

L:M]L:/Od%lz / 6 dH"
() M ;MOC,‘

Let o > 0, we claim that for n sufficiently large we have

1 1
| IV aal + 1= feal)? o b > 2m(L = @) log == — C(@) (7. 1)

z n

where C'(«) does not depend on n.

Let N € N be such that

Z/Od?—l1<a : (7. 2)
i>N Y M

For ¢ < N and z € C; denote by N;(z) the plane passing by z perpendicular

to C; and by D;(z,s) the two dimensional disk in this plane of centre z and
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radius s. z also denotes sometimes the normal coordinate along C;.

Let ¢ < N be given. For s > 0 sufficiently small the D;(z,s) for z € C;
are disjoint and U,ec, D;(z, s) is a regular open tubular neighborhood of C;
denoted by U;(s). One verifies, using the coarea formula, that

Ve LY (Ui(s))

/ = /dz/ . 2) |1 = Ci(2)w(2).(a — 2)| dH? w9

where C;(z ) is the curvature of C; at z and v(z) is first normal of C; at z

when Cj(z) # 0.
Choose s sufficiently small such that

sup [sup Ci(z)] X s < a (7. 4)
<IN LzeC;
Let AN (s) for i < N be the following subset of C;

AN (s) = {z € C:/Fj #i,j < Ns.t.Di(z,5) N Uj(s) # 0}
Since the C;,7 < N are disjoint submanifolds of R, for s chosen sufficiently
small we can ensure

Vi< N fdH' <
CinAN(s) N

Denote by BN (s), for i < N, the following subset of C;
BN(s) = {2 € C\AYN(s) /3j > N, Jz € M; N D;(z,5) s.t. O(zx)#0}
For ¢ < N and 7 > N we consider the set

- (7. 5)

R = M 000 [T Ul

Clearly the Rf(s) are all disjoint. Moreover we have
<Y / 0 dH (7. 6)
j>N /R

Since ZigN fc, OdH! < +oo, there exists 3 > 0 independent of i < N such
that

Vi< N H'(BN(s) < 5= BdH' < =
BN (s) N

We claim that, for s sufficiently small, H' (BN (s)) < 3 for i < N. Indeed,

let N/ such that
> / g < : (7. 8)
J>N’

this implies clearly that
<N ed ! : :

>N’
Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



148 TRISTAN RIVIERE

Fix N’ such that (7. 8) holds. Since the C;, N < j < N’ are regular curves
disjoint from the C; 1 <4 < N for s sufficiently small Z?ZN-H HY(R!(s))
is as small as we want for any + < IV thus we can ensure

N/
, g
Vi< N / OdH' < — . (7. 10)
]‘}\7;_1 R (s) 2N
Combining (7. 9), (7. 10), (7. 6) and (7. 7) for s sufficiently small we have
Vi <N bdH' < = (7. 11)

5 (s) N

Fix s > 0 such that (7. 5) and (7. 11) hold. For ¢t > 0 to be chosen suffi-
ciently small bellow, consider the lattice tZ? in R? except the points included
in U, B(z;, %), where 7 is the constant given by Lemma 3.1. Because of
Lemma 3.1 we can put the bad set out of U7, B(z;, %)(i.e., y ¢ U Bz, %)
such that |¢,|(y) < ) in C/t cubes C'(2t,y;) where C' does not depend nei-
ther on n nor on ¢t and where the y; are points of the lattice.

Extract a subsequence such that the bad cubes C'(2¢, y;) are always the same
in UN, U (s).

First of all for t sufficiently small we can ensure

/ OdH' < o . (7. 12)
Mnu* B

=1 Blzit/n)
Denote by N{(z), for i < N and z € C;, the cardinal of the following set
NL‘Z(Z) =# {yl/C(Qtv yl) N Di(Zv S) 7£ ®}

Since a cube C'(2t,y;) can intersect D;(z,s) for z in an interval of size at
most 4¢ we obtain that

/ Ni(z)dH' < C' | (7. 13)
Cq

where C* does not depend on t. Consider 3 such that

VECC HUE)<S= BdH' < = (7. 14)
CinE N

Since C* does not depend on t, there exists N € N independent on ¢ such
that

Vi< N H'({z€C st. Ni(z)=N})<p (7. 15)
where 3 is given by (7. 14) independently of ¢ < N.
Let N = maz;<nyN'. Denote by CN(s,t) the set
CN(s,t) ={2€C; st. Nj(2) > N}
For t verifying

0<t<— (7. 16)
4N 44 '
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we can ensure that there exists k, € [1;2N 4 1] for any 2 € C;\C (s,t) such
that the annulus

k,+1 k.
Li(z,8) = D; | z; 2 s)I\D; | 25 —= s
2N +2 2N 42

does not intersect the bad set (i.e. UiccC'(2t,y1)). Fix ¢ verifying (7. 12)

and (7. 16). From part 6 we know that ¢, tends strongly in H' to ¢,
in the complement of the bad set UiceC'(2¢, 1) in UignUi(s). Thus for n
sufficiently large we have

Vi< N Vzel\CN(s,t)

o fes & (7. 17)
d " 0D(—= ,2 ) =d ;0D s, .

o (i) o on )

Moreover using Lemma A.5 we have

Vi< N, H'—aezeC\AYuUBNuUCY

. (7. 18)
deg (c,o*, oD; (QN n 55 z)) =-0(z) .

Let ¢ = 1 — @, using Lemma 6.1 the bad set in Ulg%C(Qt,yl) can be put

in C(o/)/sgl disjoints open sets of size ~ £ verifying conditions 1, 2, ...,6.
Denote by P!,(z) for i« < N and z € C; the cardinal of the following set

Pi(z) = #{R)/RiN Dji(z,5) # 0}

Since each R; given by Lemma 6.1 for any o' can intersect D;(z, s) for z in
an interval of size at most 4¢® we obtain that

/C Pl(z)dH < C'(a) (7. 19)
where C*(«/) does not depend on &,. Consider once again 3 given by (7.
14), there exists P!, independent of ¢, such that
Vi< N H' ({2 €Cst.PL(z)>PL}) < B (7. 20)
Let P, = max;¢ N Pé, and denote by DZN(S) the set
DN (s) ={z € C;s.t.P:,(2) > Py}

Using Lemma A.6 for H'a.e. z € C\AN U BN uCYN U DN we have in any
trivialisation of E over D;(z,s)

2
Pn

|enl

1
> 276(2)a’ log — —

n

/D,‘<k2+1 s z) \UR;

2N+2 7

(7. 21)

—27 log (QNS—I— 2) — 27 (P,y)°

where d is the maximal degree of ¢, /|¢,| around each R; and is uniformly
bounded independently of ¢, because of conditions 4 and 5 of Lemma 4.1.
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By lowering 7 in Lemma 3.1 we can impose that |¢,| > &' in the complement
of the R;. Thus we have

H' —a.ez e CANAN UBN ucN UDN

o 2 (Al 1 2| ( s ) - (57 22)
nl” 2 210(z)a’ " log — — 27a’" lo — — 27 (P,

Since we are working in U, U; (s)\U™, B(x;, %) we have the strong conver-
gence A, — A in L? thus
/ A2 < C (7. 23)
Uils\UiL  Blit/n)

where C does not depend on ¢,,. Integrating (7. 21) along the C;\ AN UBN U
CNUDY using (7. 3) and (7. 22), since we have the bound using (7. 5), (7.
11), (7. 15) and (7. 20)

/ pam’ < -2
ANUBNUCNUDN N
we get, using also (7. 12),
/ IV 50l* >
Ui(s)\Uizy B(@it/n)

=1

2ra’” (/
uV

=1

(7. 24)
OdH" — 5a) log 1. C(a)

n

M;

where C'(«) does not depend on N. Since o/ = 1 — « considering (7. 2), (7.
23) implies (7. 1).

Combining the upper bound of the total energy given by Lemma 2.1 and (5.
47) which says that I is a connection between the (z;,d;);=1. 5, the lower
bound (7. 1) implies that IL is a minimal connection. |

APPENDIX A. APPENDIX
Lemma A.1. Let ¢,1,& be 0, 1 and 2-forms of By C R? we have

0 de dyp 8@
arle =g~ T g dleen)
8 877 dn 877
and
35 df 3
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Proof of Lemma A.1l.
J B 0 899 0 0y Th
Edﬁp - Z:E@xz Z@xkax |x
_ Z 9 dp Tk
- Ox; Oxy, |ac
_ J 899 dy 0 (g '
N - ox; 87‘ Z@xk ox; ( )de

B 1% 1 1%
= d(@r) rdcp—l— 8rd(logr‘).

The two other equalities are proved in the same way by direct computations.m

Lemma A.2. Let ¢ and n be 0 and 1 forms in By C R®. for r > 0 let dt
and (x) the exterior derivative and the Hodge operator on B, C R> and let

A, be the Laplace-Beltrani operator on 0B,. We have

1% 0 1
d =—d —d
Tor — or Tet P
dy 0 1
dT—— = —d —d
Tor  or Tt r I
Let i, the isometric embeding in i, : 0B, — R3
9 ity = ()it 2
and 3 3 )
¥
— A, p— A, — = ——A, .
or 4 or por®

Proof of Lemma A.2.

By definition
00 _ 00 00p,
or — 9r oror '

Op _ 8,, d¢ Opdr &
“or ~ or 14 r ar r or? "
0 D dp dodr 9%
= 5(dw+5d)+—‘57‘wd
0 de Oedr
= It gy
0 1
= a—dTﬁP—F—dTQP
T T
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Let
xdy ANdz + ydz A de + zdae A dy

w = xdr =

By definition

or or’
thus
on 0 dn dr 0On
o = <ard” T N >“
= <gdn+@,w>w
or r
Since%—‘;ﬁ:Owe have
on 1
dTE = [<d777w>w]‘|‘;<d777w>w

We have (*)27#77 = (*)(n A dr), thus

J, .. 0 an
# — _
8r(*)lrn_*8r(n/\dr) = *(ar/\dr)
= (*)i,#%.

Finally

Lemma A.3. Let ¢ be a O-form on By C R? taking its values into C, we
have

A (i% z—f) - % (19 Arg) = 2(x)dr [(z—j i(*)dw)] + %

(i, Arp)
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Proof of Lemma A.3.

A, (w, g@) = (v, 0F)

= ($)dr(¥) [(g v’dw) + (i%dTg—f)]

= (%) (idT(*)dT@,Z—f) + (%) (dTZ—f,i(*)dT@)

. J . J
+ () (idre (1r52 ) + 4 (i dra-5E )
where we have used the following notation, if ¢ and b are two C 1-form,
1 _
(a,b) = 5[aAbJraAb],
and since ((¥)a) Ab= ((*)b) A a we have

((x)a,0) = ((x)b, a).

This implies

AN 1% dp .
Ar (2@75) - (ZATSO7 or ) + 2( ) (dTEJ/(*)dT@)

. 1%
Ar_ ’
+ (ie0.52)
and finally

b (08) = () B 00)
_ (—zAr ) ma rp) + (wéms@)
= % (i, D) — ( vaﬁrw) T (’AM%>

~ 2 (g—,m )+2( %) dt [(gf,i(*)dw)]

2.
+ i Avp).
This yields the desired result. [ |

Lemma A.4. Let f and 5 be 0 and 1-forms in B; C R? and w = *dr, we
have

<A(fw);w >= Af—r—sz
and

4 0 2
drAn = Adrny + e [r (dn;w)]w — o d (dn;w)
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Proof of Lemma A.4.

We have
Of ow

kR 1A

A(fwy=Afw+2)
k

Moreover one verifies that Aw = —r%w and in the other hand
Yk < %;w >=0 thus

2
A(fw)iw>= Af = 5 f
By definition
dTAn=<dAnw>w=< Adn,w>w
In the other hand
Adry = Al<dpw>w]=Y A {< diiw > 2 deiey Adei
1 Z 1 r

- 22V<dn,w>V( )dacZH/\de . (A1)

+ A<dn;w>w—%<dn;w>w

We have also

Aldpy;w) = (dAnw —I—QZV dn); ( ) + (dn; Aw)

= (dAnw —I—QZ 81 )i 88[ (wz) - % (dn;w)
(A. 2)

0 (1
= <dA77,w>—|—QZ +228[ dn)x Z@l (;)

9
- 2 (dn; w)

= xd(dn) = 0, and since % (%) —0

%) d i
_Q;E(dnw% - “Zilaz (Z )x?)

This implies

20 2
Aldnw) = (dAnw)— ;E<dn;w>—p<dn;w>

(A. 3)
= (dAn;w) - %% [ (dn;w)] -
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Finally
i 10
V<dn;w>.V($—) = - < dn;w >
r r dx;
(A. 4)
- ﬁg <dnw >
r? or G
Combining (A. 1), (A. 3) and (A. 4) we have
Adry = {dDi)w — 5[]
™ = mw)w = g M ldmw)]e
2 20
Hoxd(dnw) = — o [{dipw)]w
2
— 3 (dnw)w.
This yields the desired result. [ |

Lemma A.5. Let Q and w we be two bounded regular subsets of R? such
that €2 is simply connected and w CC Q. Let a > 0 and denote by C' and C
the following cylinders of R>.

C=wx(—a,a) and C=QX(—a,a).

Let T'(8, M) be a I-dimensionnal, finite mass, integer multiplicity rectifiable
current with support included in C" and let ¢» be WH1(C, S1) map such that
¥ is regular in C\C' and

sd(iv, dy) = 27T in Dy(C) (A. 5)

Let I' be a closed regular curve in Q\w and ¥ in Q such that JI' = X.
Denote by I'y, Xy, wy and Qy the sets I' x {t}, X x {t},w x {t} and Q x {t}
for t € (—a,a) then we have

for a.e. t € (—a,a) degryt = degr, v
(A. 6)
== ZyEMﬁEt sgn < & ez > (y)0(y)

where e3 = (0,0, 1) and I'; is oriented by es. [

Proof of Lemma A.5.

First of all we claim that

fOI’ a.et € (_a7 a) ZyEMﬁwt O(y) < —I_OO
(A7)
and  Vyée MNuwy <&(y);es ># 0

This can be proved using the coarea formula of Federer (see for instance [9]
pages 15 and 34). Let ¢ be the function on M which associates the third
coordinate. This is a Lipshitz function in M (which is rectifiable subset of
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R3) moreover for Hla.e.y € M apJit(y) = | < &(y);e, > | thus for any
H'LM integrable function g on M we have

Sl < &y), e3> lgdH' = / / gdH dt
—a J MnNw;

= /_ > gyt

yEMNw

(A. 8)

Take first ¢ = 6, since M (T") < 400 we have

/_a > 8(y)dt < M(T) . (A.9)

yEMNw
For any « > 0 take g, = %, we have
+a
/ 3 by) < M(T) . (A. 10)
N T
Thus, let
t € (—a,a)s.t. Z 8(y) < +oo and
E — yEMﬁwt

Jye MnNw, st 6(y) #0and <&(y),es >=0
from (A. 10) we deduce that

1
Va >0 [E|x =< M(T) (A.11)

This implies (A. 7).
Since I'; is homotopic to I'g in C\C' we have clearly

degr,i = degry,ip . (A. 12)

Let ty € (—a,a) such that (A. 7) holds for ¢t = ¢y and let U be a tubular
neighborhood of I' chosen sufficiently small such that

Ucc\C

and U is diffeomorphic to a neighborhood of the zero section of the normal

bundle NT'of I' C C.

We can suppose that this diffeomorphism sends linearly each intersection
of U and any normal plane in C to I' (at ) to a neigborhood of 0 in the
corresponding fiber (77_17 = NWF) of NT.

Let x be the following function on Q x {to}

0<x<1

X = 0in Q x {to}\z X {to}

X=1inwx {to} (A 13)
supp(dx) C UNQ x {to},

Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



LINE VORTICES IN THE U(1) - HIGGS MODEL 157

and define on all of C x(z,y,t) = x(=,y, to).
Let H be a non negative function of C'¢°(R;R;) such that

H =1 in a neigborhood of 0

(A. 14)
/ =1
R
Let Hﬁo = %H (t}to) for A > 0 chosen sufficiently small
supp (H;O X dx A dt) cU
Let
Ny, = HY dx Adt (A. 15)

We clearly have dnp, = 0, moreover let v € I';; and let P be the vertical
plane (containing es) passing by v, perpendicular to I';, and oriented by the
unit tangent vector 4 of I'y, (oriented by es i.e. such that 4 A es is the unit
outward normal of 9%,) we have

/ﬁrtoz/ dx/\Hiodt = / dy x H;Odt
P. P. Pyl —a

v v v
= 1

where P, is the component of PNU which contains v. Thus g, is the Thom
Class of NT'y, (see [5] chapter 1.6) and from proposition 6.24 of [5] this is
the Poincaré dual of I'y; in C. In the other hand, since SUPP(UBO) C U, we
have

/(“b7 d¢) NNy = / (“bv d¢) AN/
C U

and since (i1, dw) is regular in U and d(ie,dyp) = 0 in U, the Poincaré
duality implies

/C(mb,dzb) Ay, :/ (1Y, dip) = 2mdegr, V. (A. 16)

Remark that nr, = d(XHiodt) thus, since supp(xHﬁOdt) C C, applying (A.
5) we have

[wdonm, = - <sdiv. vyt >
¢ (A. 17)
= 21 < T;XHiodt >
By hypothesis suppT C C" and y = 1 in C' thus
< T;xHLdt >= / HY < &e, > 0dH (A. 18)
M
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<&e3>

Applying the coarea formula (A.8) for g = Hﬁo ie >|0 we have
+a
< T;XHf\Odt - / Z Hto <€7$>dt
- Meens]
yEMNw
(A. 19)
= /+a L (Lt f(t)dt
I AP A
where f is the L! function on (—a,a) such that
= Y 6y <L > (A. 20)
v M1
For almost every to t € (—a,a)
1 fo+A
X/ |f(t) — fto)|dt — 0 as A — 400 (A. 21)
to—A

Suppose the ¢ we have chosen verifying (A. 7) is also a Lebesgue point for
f verifying (A. 21), thus we have

< T, xHdt > — f(to)] ‘/ (t_to) (F(0) —f(to))dt‘
(A. 22)

to+)
< gl [ 10 = Feo)la

to—A

where we have used the fact that %f_—l_aaH (52) = 1. Combining (A. 16),
(A.17), (A. 19), (A. 20) (A. 21) and (A. 22) we get the desired result. m

Lemma A.6. Let 0 < Ry < Ry, 0 < n < Ry, N points ay, ...,an in the ball
Br, (0) of R? such that

ViI<i<N Bn(ai)CBRl(O) ,

Vit By(ai) N By(aj) =0

and let dy,...,dy be N integers in {—D,~D+1,...,D— 1, D}. For any
u: Br,(0)\UY, B,(a;) = Q, — S! such that

degaBn(a,‘)u = dz 3

we have

Zd LI log2 D N® (A. 23)

/ |Vul? > 27
Qn
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Remark A.1. The quantity —2mwlog2 D N°® in the lower bound (A. 23) is

log —R2;R1

not optimal at all. We were just looking for a lower bound 27 ‘Zf\; d;

modulo a term which does not depend on n.

Proof of Lemma A.6.

Let d = Zf\;l d;. suppose d > 0. We are going to prove by induction on
n the following proposition:

Under the previous hypothesis for n < d we have

/ |Vul® > 2ﬂnlogu —2rlog2 D N° (A. 24)
n
n

the case n = 1.

We construct by induction on ¢ for 1 < ¢ < ¢g £ N, a sequence i < r; <

Ry — Ry such that
1— 1y =nif By(a;) C By, (ax) for some k < i

2 — r;is the largest real number such that
ri < RQ - Rl )
OBy, (a;) N (Uj>iBy(aj) Ur<i Bry (ar)) =0,

Vn < r <r; for which 0B, (a;) N (Uj>;B,(a;) Uk<i By, (ag)) =0
we have deg(u, dB,(a;)) # 0

and either deg(u, 9B, (a;)) =0 or r; = Ry — Ry

we stop the construction of the sequence when we obtain an ¢ = ¢y for which

Ty = R2 — Rl.

It is clear that there exists some iy € [1, N] such that r;;, = Ry — Ry.
Indeed (B, (a;))1<igi, is a union of disks which are either disjoint, or one
nested in the other. Moreover if B, (a;) is not contained in an other B,, (ax)
we have for ¢ < ig

deg(u, 0B, (a;)) =0
thus U;<;, By, (@;) is a union of disjoint disks such that the degree of u on each
component of the total boundary is equal to zero. Since Zf\; d; =d > 0, for
topological reasons, it would not be possible to enclose all our balls B, (a;)
in a neutral cluster (i.e. a domain w such that deg(u,dw) = 0), thus such
an ig < N for which r;; = Ry — R, exists.

We introduce some notations for 1 < ¢ < 2p. Let I; be the following set
I, = {77 <r < r;s.t.0B, (az) (U]‘>Z'B77 (az) Uk<i Brk (ak)) = @}
and we have

if r;#n Vrel, deg(u,0B,(a;))#0. (A. 25)
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Let F; and F; be the following sets
fori<ip E;={l#1 st. B,(a)CB,(a))}
and
l# is.t.B, () C By, (a;) and
fori<iw F,=
VI £1, 1< Byla) ¢ B, (ay)
We clearly have

FE,= U Eu{l ,
leF; : {}

and moreover
VZ#Z/E F; (E[U{l})ﬂ (EZ/U{Z/}) =0

Thus we have for any 7 <

/ |Vul? > /dr/ |vu|2+z/ dr/ |Vul|?
re (@) 8B, iem L 9B

:/Iidr/aBTWuP—I—Z l/ dr/a Vul?

JEF;

/ dr/ |Vul?
I 9B,

Let us prove by induction for ¢ < ¢g that

dr/ Vul|? + /dr/ Vul? 2277103;2—
/Il- 8BT| | Z oB | | n

JEL;

keL;

=27 log A#F;.

Suppose (A. 29) is true for ¢ </ — 1. Thus we have

1] > re =l = ) 2ry

keF;
For r € I} we have deg(u, 0B,(a;)) # 0, thus, this implies

Vr e I / |VU| 22T,
8Br(al)

and by Cauchy-Schwartz inequality we get

Vr el / |Vu|* > £
8B, (a;) r

Combining (A. 32) and (A. 30) we have

" 2w
[ar | v = L
I 9By 77+Ekepl 2ry r

_27rlog——27rlog 1+ E Pl
keF; g
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Combining (A. 28) for ¢« = [, (A. 33) and the fact that (A. 29) is true for

1 <1 —1 we have

Vul|? + // Vu2>
/IZ/QBJ DN i Il

JEE
Ul
Vul? + [27rlog — —2rlog4 #Ek] > 27 log —
Jy L 15 ,; T (A3
—2rlog |1+ Z + 27 log H (E) — 27 log4 Z #Ey
keR, keF, K ke,

Since ri > n we clearly have that

14 Z <441 ?

keF; keF;

Thus (A. 34) yields

// |W|2+Z// Va2 > 2rlog— — 2rlog(4 #E)
I, JoB, n

JER;
(A. 35)
—2mlog4 Z #Ey
keF;
From (A. 26) and (A. 27) we deduce that
#HE = #F+ > #Ep . (A. 36)

keF;

Combining (A. 35) and (A. 36) we obtain that the proposition is true for
@ =1, thus (A. 29) holds for ¢ < 4.

Applying inequality (A. 29) for ¢ = ig, since r;;, = Rz — Ry, we obtain (A.
24) ford < 1 =n.

The case n > 1

Suppose (A. 24) is true for any positive integer n < n’. Take a configura-
tion of (a;, d;)1<ign such that ZN di <n' + 1.

If N =1 the proof of (A. 24) for n’ + 1 is straightforward. Suppose now
N > 1 and let

L = max|a; — ay|.
121!
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we can always assume that |a; — ag| = L. We clearly have

-R
/ vl / / Vuf?
Qp\L4nla; L4n 9B,

Ry — Ry
> 2r(n' +1)?log ———=. (A.37)
("4 1)"log ===
Ry — Ry
> 2 "+ 1) log —-—
m(n' + 1) log T
If L < 22V )y og B L+77 > log & —2(N?% +2)log?2 and since N > 2

A. 37) directly implies (A. 24) for d >n'+1. 1L > 22(N?*+1) , there exists
Ui
necessarily &y € [1,2N] such that

Vi By(a) 0[Byorp(a)\ Byosip(ar)] =

In fact, since n < 272N°L cach B q(a;) for i =2,..., N can intersect at most
two B2 rp, for k€ [1,2N].

In the same way, by induction for any j < N such that a; ¢ U;¢j—1By—r, 1 (a;)
we construct k; € [2jN;2(j+ 1) N] verifying

Vi By(a) N[Bys,p (a)\By—k, -1, (a;)] = 0
and we have
Vi<j B%z—kiL(ai) N B2_kJL(a]) =1

We are lead to introduce the following notation, C'(a, s, r) denotes the an-
nulus for s > 1,7 < n and a € B, (0)

Cla,s,1) = By (a)\B,(a)
We have constructed disjoint annuli C'(q;, %,Q_kﬂ_lL) for some j in [1, N]
such that k; < 2N? and the balls B, (a;) are included in the B« -1, (a;).
The sum of the degrees of u on 9B,—«;-1, (a;) is equal to d > n' + 1.

Suppose there is exactly one of those ;7 = j; such that
deg(u,0B,-x; —1, (a;,)) # 0, then we must have

deg(u, 8B2_k]1 —1L(aj1 ))=d

In that case we repeat the procedure in Bykj, -1y (a;,). That is, let Ry o =
3/227Fn 7L, Ry, =27%171L and N; be the number of aj in B, (a;,).

If No=1.
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We clearly have

/ |Vu|2 > 27(n' 4+ 1)210g 7]%2’2;&’2
Qn\Bn(%l)

L
> 27(n +1) logg — (kj, +2)log2 (n/ 4+ 1) (A.38)

> 2r(n/ 4 1) 1og£ —2(N?+1)log2 (n' + 1)
n
and combining (A. 38) with (A. 37) we get the result.

If Ny > 1.

Let Ly be the following length

Ly= max {lai —ay|} = lai, — 4y
14! ai,al‘leBR272(aJ1

and we have

5 Ryo—Rip 5
/ vt > | 1wl
BR272(aJ1)\BL2+n(ai2) Lao+n dBy

Ly+7
> 2r(n/ 4+ 1)1 2,2 :
("4 1)log =~

If Ly < 22N3+2y,

In this case we have
Ry2— Rig
Ly+n
but (k;, +4+2N3) > 2(N*+ N7 +2) and since N < (N2 + 1) and Ny > 2
we easily get that 2(N%+ N2 +2) < N Finally combining (A. 39) and (A.

37) we get the desired result.

log

> log% — (kj, +4+2N3)log?2

If Ly > 22N3y

As previously we construct disjoint annuli C'(a;, %, Q_kﬂ_ng) for some j
in [1, N] such that a; € Bg,,(a;,) and k; < 2N3 in such a way that all the
By(ax) in Br,,(a;,) are included in the B,—x;—1; (a;).
As before the sum of the degrees of v on the 8B2—kj—1L2(a]‘) is equal to
d>n"+1..

In this way we construct by induction for I < p the following sequences
together

N; e N* s, Ni_1 <N +1

a; € {a1,...,an}
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k; € N™ also denoted k; s.t. k; < 2N}
Li>0 st Lp<27h=mlp
and s.t. for any I’ > { Br,(a;,) C Br,,(aj;,)

3
where Ry = Q_kl—l_lLl_l and Ry = §R171
and finally such that

Ry — R
|Vul* > 27 (n' + 1) log 2 L

—_— A. 40
Lt (A. 40)

/BR2J (ajl_l )\BLl(aJl)

We stop the construction at [ = p when one of the following happens.
Let N, be the number of ay, in Bg, (a;,_,)

N, =1

In this case we have

R27p — Rl,p

|Vul* > 27 (n+ 1)*log (A. 41)

/BRQVP(aJp_l )\Bn(%p_1)

Summing (A. 40) for [ < p — 1, since the Bg, (a;_,)\Br,(a;,) are disjoint,
we get

Ray— Ry
Vu2> n—l—llog
/\BR2P( Vel H Lz—|-77

s a]p—l) l>p 1

—27(n' 4+ 1) log2 2(2 + ki) (A. 42)

=1

Ry — Ry
> 27(n' 4+ 1) log ————
( ) 3 ———

-2
Ry — Ry X
227771’4—1107—27771’{—110 2 X2 1—|—N2.
(w4 Dlog ) — 2r(w' 4 1 log > (14 N7)

=1
Adding, now (A. 41) and (A. 42) we have

2 / Ro—R
/ [Vaul[" > 27 (n'+ 1) log =24 —

n

(A. 43)

p—1
—2m(n’+1)log2 x 2 (1+ N})

=1

Moreover 23 7~ (1—|—N2) 2(p— 1)(1+ N?) <2(N - 1)(1+ N?)
Since we are deahng with N > 3(IV =1 or 2 have already been consid-

ered), we have 2N? — 2(N? — N + 1) < N* and we get the desired result
because n’ +1 < ND.
N, > 1. Let L, be the following length

L, = max a; —ay|t =la; — a;
P i#d ai,a,‘/EBRQ,p(%p_l {| Z Zl|} | v Z'p

We have (A. 40) for [ = p

Esaim : Cocv JUNE 1996, VoL.1, pp. 77-167



LINE VORTICES IN THE U(1) - HIGGS MODEL 165
. 2N?242
Case 1: L, <2 N

In this case we have

L,_
/ IVuf? > 2(n’ + 1) log 2~ e-1+2) Z2=L
BR2,p(aJp_1)\BLp(aJp_1)

Ly
(A. 44)
L,_
> 27(n' + 1) log =24 — 27 (n’ + 1) log 2 x 2(N2 + N2_; +2)
n
Combining (A. 44) and (A. 42) we obtain
/ |Vul* > 27(n'+1)log BB
n
(A. 45)

p
—2m(n'+1)log2 x 2 (1+ N})
=1

Since N, > 1, p < N, 230 (14 N?) 2 2(N -1)(1+N?) < N*, we get the
result because n’ +1 > ND.
Case 2: L, > 22N1§+277

We construct, as before, disjoint annuli (C'(ap,, 3,27% 7 L,))1<i<n, (Where
np, > N, and k; € [1,2N7]) such that all the B, (ax) in Bg, (a;,_,) are in-
cluded in the Bz—ki—le(api). The sum of the degrees d; of u on the circles
8B2_ki_1Lp(api) is equal to d > n’ 4+ 1 and in this case there exists two dis-
joints 0By—x;—1, (ap,;) such that d; # 0 (otherwise we continue the previous
construction).

We can apply the hypothesis (A. 24) for n < n’ on the B%Q_ki_le(api)

and we have V1 <17 < nyp

/ |Vul* > 27 min(|d;], n') logﬂ%
B

%2—k,'—1Lp(ap,‘)nQn

(A. 46)

—2rlog2D(N})®
where N; is the number of a; in B2_ki_2Lp(api). In particular we have
np )
Y Ni=N, . (A.47)
=1

Since Y .7 |d;| > n’+1 and since there exists at least two 7 such that |d;| # 0
we have Y7 min(|d;|;n’) > n’+ 1 and summing (A. 46) for i = 1, ..., n, we
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L
/ |Vul? > 27(n' + 1) log 2 —
By, ( 1
—2rDlog 2 [172, [Nj(ki +2) + (N;)°]]  (A-48)

L " :
> 27(n’ + 1) log 779 =21 Dlog 2 [2N,(NZ2 + 1) + X272 (N})?] .

Combining (A. 42), the first line of (A. 44) and (A. 48) we obtain

/ |Vul* > 27 (0 + 1) logu—

n

(A. 49)

p—1 np
—27Dlog 2 [2]\7 D (L NP+ 2N, (NS + 1)+ (V)
=1 =1
In the other hand we have the following bound

let n>2, and (q;)i=1.n s.t.a; <1

n n

Za? < (Zai)5 — 2(20@)3 — 220@

=1 =1 =1

3

(A. 50)

Indeed let ! be such that «; = min;—; , «;. Thus we have

B 5 5 3
(Zai) > o] + Zai + C2af Zai + Ciaf Zai
i=1 i#l i#l i#l fA. 51)
3
> Y af + 2P (Zi;ﬁl O‘i) +5 (Zi;ﬁl O‘i)

and since a; = min;—; _, a; we have Z#l o > ”T_l >, «; and since n > 2
we have 2=t < 1 thus (A. 51) yields
n 2

n 5 n n 3 n
I S e R
=1 =1 =1 =1

which implies (A. 50). Combining (A. 50) and (A. 49) we obtain

an |VU|2 > 277(71’ + 1) log @_
(A. 52)
_27TD10g2 [QN(p_ 1)(1_|_N2) _I_NZ?] :

but p—1 < N =N, thus 2N (p—1)(1+N?)+N) < 2N(N—-N,)(1+N?*)+ N}
and since N, > 2 one verifies that

N° 2 2N(N - Np)(1+ N*) + N}
and (A. 52) implies
/ |Vul> > 27 (n' +1) log
Qn
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Bl o p log 2N°. (A. 53)
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This is the desired result. []

The author thanks F. Bethuel for very interesting discussions on this sub-
ject.
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