
ESAIM: COCV 22 (2016) 1282–1324 ESAIM: Control, Optimisation and Calculus of Variations
DOI: 10.1051/cocv/2016039 www.esaim-cocv.org

A VISCOSITY METHOD FOR THE MIN-MAX CONSTRUCTION
OF CLOSED GEODESICS ∗
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Abstract. We present a viscosity approach to the min-max construction of closed geodesics on compact
Riemannian manifolds of arbitrary dimension. The existence is proved in the case of surfaces, and
reduced to a topological condition in general. We also construct counter-examples in dimension 1 and
2 to the ε-regularity in the convergence procedure. Furthermore, we prove the lower semi-continuity of
the index of our sequence of critical points converging towards a closed non-trivial geodesic.
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1. Introduction

1.1. General framework

This article intends at motivating the approach developed by the second author in [45] in the simpler case of
the construction of closed geodesics. We present first the general framework of problems this method aims at
tackling.

Suppose we want to construct a critical point of a C1 function f : X → R+, where X is a complete C1,1

Finsler manifold, which we interpret as the energy of a geometric or physical problem. A critical point x ∈ X
of f is non-trivial if its energy is positive, i.e. if Df(x) = 0 and f(x) > 0. If inf f(X) = 0, we cannot simply
minimise f to search for a non-trivial critical point, so we use a so-called min-max method. Let us denote
P∗(X) = P(X) \ {∅} the set of non-empty subsets of X and choose some A ⊂ P∗(X). We define the
min-max

β = inf
A∈A

sup
x∈A

f(x).

Thanks of general theorem such as the “mountain pass” (see for example [47]), if β < ∞ and if the function f
satisfies the Palais−Smale condition on X , under suitable assumptions on A , β is a critical value of f . So if
β > 0, we get a non-trivial critical point of f . We recall that f satisfies the Palais−Smale condition at c ∈ R if
for all sequence {xn}n∈N

⊂ X , such that

f(xn) −−−−→
n→∞ c, and Df(xn) −−−−→

n→∞ 0,
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there exists x ∈ X and a subsequence of {xn}n∈N
converging to x. In general, a lack of coerciveness can prevent

the energy to verify the Palais−Smale condition. The viscosity method consists in approximating f by a function
satisfying the Palais−Smale condition. If g : X → R+ is C1, we set, for all σ ≥ 0,

fσ(x) = f(x) + σ2g(x),

and define

β(σ) = inf
A∈A

sup
x∈A

fσ(x).

If for all σ > 0, fσ verifies the Palais−Smale condition, and β(σ) <∞, then we can get a critical point xσ ∈ X
such that

fσ(xσ) = β(σ).

We can easily see that

β(σ) −→
σ→0

β(0) > 0,

and at this point if we can construct a sequence of positive numbers {σn}n∈N
, and a sequence {xσn}n∈N

of
critical points associated to {fσn}n∈N

such that

σ2
n g(xσn) −−−−→

n→∞ 0,

if we manage to extract a subsequence of {xσn}n∈N
converging in a sufficiently strong topology to an element

x ∈ X , such that

f(xσn) −−−−→
n→∞ f(x), and Df(xσn) −−−−→

n→∞ Df(x),

then x ∈ X will be critical point of f of non-trivial energy β = β(0) > 0.
One new feature of our work is the absence of ε-regularity, as the counter-examples shows in Section 10. The

convergence is assured instead by the existence of a quasi-conservation law.

1.2. Construction of closed geodesics

The problem of the construction of closed geodesics on compact manifolds is an ancient problem which has
stimulated great developments in the field of calculus of variations, dynamical systems [5, 21] and algebraic
topology [10, 49]. After the pioneering work of Hadamard [22] and Poincaré [43], the first existence results on
2-dimensional spheres equipped with arbitrary metric were obtained by Birkhoff in 1917 [8] and in 1927 for
the general case of spheres of higher dimension (we refer to [16] for a modern proof). We refer to [2, 11, 51] for
historical developments, and to [10] for a more mathematical treatment of the subject.

Let (Mm, h) a compact Riemannian manifold of class Cν (ν ≥ 3). Referring to the notations in the beginning
of the introduction, we let X = W2,2

ι (S1,M), where

W2,2
ι (S1,M) = W2,2(S1,M) ∩ {u : u(t) ∈M, and u̇(t) �= 0 for all t ∈ S1

}
.* (1.1)

Write f = L the length of curve functional, such that for all u ∈ W2,2
ι (S1,M),

L(u) =
∫

S1
|u̇| dL 1.

*Note that this makes sense thanks of the Sobolev imbedding W2,2(S1, M).
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and g = κ2, where

κ(u) =
∣∣∣∣∇ u̇

|u̇|

u̇

|u̇|
∣∣∣∣

is the geodesic curvature of a curve u ∈ W2,2
ι (S1,M). We then consider for all σ ≥ 0, the energy Eσ:

W2,2
ι (S1,M) → R, defined for all u ∈ W2,2

ι (S1,M) by

Eσ(u) =
∫

S1
(1 + σ2κ2(u))|u̇|dL 1.

Of course, we can replace f by the Dirichlet energy, which verifies the Palais−Smale condition: it is a classical
way to construct a closed geodesic on compact manifolds (see for instance [47]). However, we are interested in
the application of this method to the min-max construction of minimal surfaces, and the Dirichlet energy does
not satisfy any more the Palais−Smale condition in dimension 2. Therefore it makes sense to consider first a
simpler case, to see if the method works correctly, and where are the difficulties. Indeed, there are three issues
that we might encounter.

Firstly, we need to construct an appropriate min-max method, giving a β(0) > 0. Secondly, if {un}n∈N
is

a sequence of critical points associated to {Eσ} (where {σn}n∈N
is a sequence of positive numbers converging

to 0)

lim inf
n→∞

∫
S1
σ2

nκ
2(un)dL 1 −−−−→

n→∞ 0.

Thirdly, passing to the limit in the Euler−Lagrange equation is delicate, as we loose the estimates on the
second derivative.

The first problem can easily be solved, using basic properties of the injective radius of compact manifolds.
For the second one, there exist indeed counter-examples, and we use a general technique coming from an article
of Michael Struwe [46] to construct an “entropic” sequence of critical points, in the sense that

Eσn(un) = β(σn), and
∫

S1
σ2

nκ
2(un)dL 1 ≤ 1

log 1
σn

·

Finally, the limiting procedure depends on a quasi-conservation law of the Euler−Lagrange equation, corre-
sponding to the general scheme of Noether theorem (see [25]).

We are almost in the position of stating our main result. We first recall that the index of a critical point
u ∈ W2,2

ι (S1,M) of Eσ (σ ≥ 0 arbitrary) is the dimension of the maximal vector subspace of W2,2
u (S1,M)

where the second derivative D2Eσ(u) is negative semi-definite.
For the definition of admissible sets and of the families of maps A ,A0, we refer to Section 6.

Theorem 1.1. Let (Mm, h) a compact Riemannian manifold of class Cν , (ν ≥ 3). If there exists an admissible
set A for W2,2(S1,M), then there exists a sequence of positive numbers {σn}n∈N

converging to 0 and a sequence
of critical points {un}n∈N

associated to {Eσn}n∈N
, such that

β(σn) = inf
A0∈A0

sup
u∈A0

Eσn(u) <∞, β(0) = inf
A∈A

sup
u∈A

L(u) > 0,

Eσn(un) = β(σn), σ2
n

∫
S1
κ2(un)|u̇n|dL 1 ≤ 1

log 1
σn

,

un
L∞−−−−→

n→∞ u, and u̇n
a.e.−−−−→

n→∞ u̇ (1.2)

where u is a closed non-trivial Cν geodesic of length β(0) > 0. Furthermore, we have lower semi-continuity of
the index, i.e.

Ind(u) ≤ lim inf
n→∞ Ind(un).
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S1 [0, 1] S2

Figure 1. Canonical sweep-out of S2.

Proof. The proof is made of the reunion of Theorems 6.4, 7.1, 8.1 and 9.3. In particular, the remark after
Theorem 8.1 shows that the hypothesis is satisfied if M is two-dimensional. �

Methods of viscosity were already successfully used in the past in various contexts: in elliptic partial differential
equations [46], hyperbolic partial differential equations [52, 53] harmonic maps from surfaces [29, 30, 48], and
recently by the second author for free boundary problems [17], Yang–Mills equations [54]. One general feature
in these pieces is the ε-regularity that one can get independently of σ. For example, in [29], the authors consider
immersions of a Riemannian surface (M2, h) into spheres Sk (k ∈ N, and k ≥ 2), with

Eσ(u) =
∫

M

(|∇u|2 + σ2|Δu|2) dvolg,

then the ε-regularity means that there exists ε > 0, and δ > 0, such that for all x ∈M , and r > 0, there exists
a constant C = C(r, ε) such that for all σ > 0, for all critical point uσ of Eσ, the inequality∫

Br(x)

(|∇uσ|2 + σ2|Δuσ|2
)
dvolg < ε,

implies that for all k ∈ N, for all 0 < α < 1,

‖uσ‖Ck,α(Bδr(x)) ≤ C,

and this ensures that the limits of {uσ}σ>0 are smooth, using classical results on the resolution of singularities
for harmonic maps (see the references cited in [29]). One new phenomena is the absence of ε-regularity in our
construction, as the following counter-examples shows (see Sect. 10 for the proof). We first define the canonical
sweep-out of S2 by Figure 1 (see the proof of Thm. 8.1 for a precise definition).

Proposition 1.2. On S2 equipped with its standard metric, let A the admissible set of curves given by the
canonical sweep-out on S2. There exists a sequence {σn}n∈N

of positive real numbers converging to 0 and a
sequence of critical points {un}n∈N

of {Eσn}n∈N
, and a curve u ∈ W1,2(S1,M), such that

Eσn(un) −−−−→
n→∞ β(0) = π, L(un) −−−−→

n→∞
π

2
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and

un
L∞−−−−→

n→∞ u strongly, and un
W1,2−−−−→
n→∞ u weakly, u̇n �−−−−→

n→∞ u̇ a.e.

Furthermore, there exists a negligible subset N ⊂ S1 such that {u̇n(t)}n∈N
has no limit point for all t ∈ S1 \N ,

and for all open interval I ⊂ S1,

L(u|I) < lim inf
n→∞ L(un|I).

Due to the absence of ε-regularity, we had to exploit quasi-conservation law issued from “almost Noether
theorem”, in order to apply technics from compensated compactness to get the strong convergence in (1.2).

Finally, we note that our approach can also be applied for the construction of non-compact manifolds admit-
ting non-trivial closed geodesics thanks of the article of Benci and Giannoni [6].

2. Analytic and geometric preliminaries

Let (Mm, h) be a compact Riemannian manifold of dimension m greater than 2, and of class Cν (where
ν ≥ 3). We always assume that M is equipped with its Levi−Civita connection ∇ (we refer for definitions in
Riemannian geometry to [26,31,40], and to [19] for the definitions and notations on measures). Let us recall the
definition of Sobolev spaces used in the following. One possible construction is to embed isometrically M into
an euclidean space Rq (q ∈ N) thanks of Nash isometric embedding theorem, which we can apply here because
M is a Cν manifold and ν ≥ 3. Hence in the following, we can suppose that M is a submanifold of Rq. Let us
denote S1 = C ∩ {z : |z| = 1}.

Definition 2.1. The Sobolev space W2,2(S1,M) is defined as follow

W2,2(S1,M) = W2,2(S1,M) ∩ {u : u(t) ∈M for all t ∈ S1
}
.

The space of Sobolev immersions W2,2
ι (S1,M) is

W2,2
ι (S1,M) = W2,2(S1,M) ∩ {u : u̇(t) �= 0 for all t ∈ S1

}
.

Finally, the vector space of tangent vector fields along an immersion u ∈ W2,2
ι (S1,M) is denoted by

W2,2
u (S1, TM) = W2,2(S1, TM) ∩ {v : v(t) ∈ Tu(t)M for all t ∈ S1

}
.

Remark 2.2. All these conditions make sense, because of the Sobolev embedding theorem, there is a continu-
ous injection W2,2(S1,Rq) into the space C1, 1

2 (S1,Rq) of differentiable mappings with 1
2 -HÃPlder continuous

derivative.

We first remark that W2,2
ι (S1,M) has a natural C2 complete Finsler manifold structure, modelled on the

Hilbert space W2,2(S1,Rq), as it is an open set of the Hilbert manifold W2,2(S1,M). Furthermore for all
u ∈ W2,2

ι (S1,M), the tangent space of W2,2
ι (S1,M) can be identified with W2,2

u (S1, TM). For more precisions
about the properties of W2,2

ι (S1,M), we refer to the Appendix.

Definition 2.3. The covariant derivative along an immersion u ∈ W2,2
ι (S1,M) induced by the Levi−Civita

connexion ∇ with be denoted Dt when there is no ambiguity on the curve.

We recall that an immersion u : S1 →M is said to be a geodesic if

Dtu̇ = 0.
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We now make some remarks on the geodesic curvature. We first recall Fenchel’s inequality [20]: for all
u ∈W 2,2

ι (S1,Rq), we have ∫
S1
κRq(u)|u̇| dL 1 ≥ 2π.

Therefore, as we suppose (Mm, h) isometrically embedded into Rq. In particular, if ∇ is the Levi−Civita
connection of Rq equipped with its flat metric, recalling that ∇ = ∇h is the Levi−Civita connection of (Mm, h),
we have

∇ = (∇)�

where � is the tangent part. Therefore, as the second fundamental I = IM form of the immersion Mm ↪→ Rq is
defined for two tangent vectors X,Y ∈ Γ (TM) by

I(X,Y ) = I(Y,X) = (∇XY )⊥,

we have if u ∈ W2,2
ι (S1,M), and |u̇| = 1

κ2
Rq(u) = |∇u̇u̇|2 = |(∇u̇u̇)� + (∇u̇u̇)⊥|2 = |∇u̇u̇+ I(u̇, u̇)|2

= κ2
M (u) + |I(u̇, u̇)|2 = κ2(u) + |I(u̇, u̇)|2.

Then, if {e1, . . . , em} is a local orthonormal frame in M , we define the norm of the second fundamental form by

|I|2 =
m∑

i,j=1

|I(ei, ej)|2

so by compactness of Mm, there exists a constant 0 < AM <∞ such that

‖IM‖L∞(M) ≤ AM .

Then, by Fenchel’s inequality, we have for all u ∈ W2,2
ι (S1,M)

2π ≤
∫

S1

(
κ2(u) +A2

M

) 1
2 |u̇|dL 1

and by Cauchy−Schwarz inequality,

4π2 ≤ L(u)
(∫

S1
(κ2(u) +A2

M )|u̇|dL 1

)
≤ (1 +A2

M )L(u)
∫

S1
(1 + κ2(u))|u̇|dL 1

therefore for all u ∈ W2,2
ι (S1,M)

4π2

L(u)
≤ (1 +A2

M )
∫

S1
(1 + κ2(u))|u̇|dL 1. (2.1)

3. First variation of energy

For all σ ≥ 0, let Eσ : W2,2
ι (S1,M) → R be given by

Eσ(u) =
∫

S1
(1 + σ2κ(u)2)|u̇|dL 1 (3.1)
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for all u ∈ W2,2
ι (S1,M), where κ is the geodesic curvature defined in the preceding section. If σ = 0, then E0

coincides with the length of curve and we note

L(u) = E0(u) =
∫

S1
|u̇|dL 1

for all u ∈ W2,2
ι (S1,M).

We will state and prove some elementary lemmas before we proceed with the derivation of the first and
second variations of the energy.

Lemma 3.1. For all σ ≥ 0, the energy Eσ : W2,2
ι (S1,M) → R is a Cν−1 function.

Proof. Indeed, if P : M × Rq → TM is the orthogonal projection, then is it a Cν−1 function. If Fσ : M × Rq \
{0} × Rq is the mapping defined by

(x, y, z) 
→ Fσ(x, y, z) = (1 + σ2 〈Px(z), Px(z)〉x) 〈y, y〉 1
2
x ,

then Fσ is a Cν−1 function. The claim is therefore a simple consequence of Lebesgue’s dominated convergence
theorem, as

Eσ(u) =
∫

S1
Fσ(u, u̇, ü)dL 1.

This concludes the proof of the first lemma. �

We will now derive formulae for the derivatives of the curvature and other geometric quantities. A variation
of a curve u ∈ W2,2

ι (S1,M) ∩ C3(S1,M) is a map γ ∈ C3(I × S1,M), such that I is an open interval of
R containing 0, and γ(0, ·) = u, and for all s ∈ I, γ(s, ·) ∈ W2,2

ι (S1,M). The variation vector field v ∈
W2,2

u (S1, TM) ∩ C2(S1,M) is defined as

v = ∂sγ(s, ·)|s=0.

As a consequence, if X = W2,2
ι (S1,M), we have

DEσ(u) · v = 〈DEσ(u), v〉T∗X,TX =
d
ds
Eσ(γ(s, ·))|s=0.

We denote Dt (resp. Ds) the covariant derivative along the curve t 
→ γ(·, t) (resp. s 
→ γ(s, ·)). We have the
following commutation result.

Lemma 3.2. Under the afore mentioned hypothesis, we have

Dt∂sγ(s, t) = Ds∂tγ(s, t)

for all (s, t) ∈ I × S1, and if [· , ·] is the Lie bracket, then

[∂sγ, ∂tγ] = 0.

Proof. If γ = (γ1, . . . , γm) be the local expression of γ in a local coordinates system,

∂sγ =
m∑

k=1

∂sγk∂k, ∂tγ =
d∑

k=1

∂tγk∂k
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Thanks of the defining properties of a connexion, we have

Dt∂sγ =
m∑

i,j,k=1

(
∂2

ts γk + ∂sγi ∂tγj Γ
k
ij

)
∂k

Ds∂tγ =
m∑

i,j,k=1

(
∂2

st γk + ∂tγi ∂sγj Γ
k
ij

)
∂k

as the connection is symmetric, i.e. Γ k
ij = Γ k

ji, if suffices now to exchange the index i and j of one of the two
preceding lines. And by Schwarz lemma, we have ∂2

s,tγ = ∂2
t,sγ, so the first part of the lemma is proved.

Dt∂sγ(s, t) = ∇∂tγ(s,t)∂sγ(s, t), Ds∂tγ(s, t) = ∇∂sγ(s,t)∂tγ(s, t).

we deduce that

[∂sγ(s, t), ∂tγ(s, t)] = Dt∂sγ(s, t) = ∇∂tγ(s,t)∂sγ(s, t) −∇∂sγ(s,t)∂tγ(s, t)

= Dt∂sγ(s, t) −Ds∂tγ(s, t) = 0,

which completes the proof of the lemma. �

We will denote in the following, if (x, v) ∈ TM ,

|v| =
√
gx(v, v) =

√
〈v, v〉x.

We now aim at calculating the first variation of the curvature.

κ(s, t) =
∣∣∣∣Dt

(
∂tγ(s, t)
|∂tγ(s, t)|

)
1

|∂tγ(s, t)|
∣∣∣∣

where Dt is the covariant derivative along the curve t 
→ γ(·, t). As γ is extensive for s close enough to 0, we
have

κ(s, t) =
∣∣∣∣∇ ∂tγ(s,t)

|∂tγ(s,t)|

∂tγ(s, t)
|∂tγ(s, t)|

∣∣∣∣ ·
To simplify notations, let us write γt = ∂tγ, γs = ∂sγ, and γt =

∂tγ

|∂tγ| .

Proposition 3.3. Under the preceding hypothesis, we have the following identities

1. ∂s|γt| = 〈∇γtγs, γt〉 = α|γt|, where α =
〈∇γt

γs, γt

〉
,

2. [γs, γt] = −〈∇γtγs, γt〉 γt = −αγt,
3. ∂sκ

2 = 2
〈∇2

γt
γs,∇γtγt

〉− 4ακ2 + 2 〈R(γs, γt)γt,∇γtγt〉 (α = 〈∇γtγs, γt〉).
Proof.

1. We have

∂s|γt| =
1
|γt| 〈Dsγt, γt〉 = 〈Dtγs, γt〉 = 〈∇γtγs, γt〉 .

2. Indeed, thanks of Lemma 3.2, we have

[γs, γt] = ∇γsγt −∇γt
γs = ∇∂sγ

∂tγ

|∂tγ| − ∇ ∂tγ
|∂tγ|

∂sγ = Ds
∂tγ

|∂tγ| −
1

|∂tγ|∇∂tγ∂sγ

=
Ds∂tγ

|∂tγ| − ∂s|∂tγ|
|∂tγ|2 ∂tγ − Dt∂sγ

|∂tγ| = − 〈∇γt
γs, γt

〉
γt
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3. Finally,

∂sκ
2 = 2

〈
Ds∇γt

γt,∇γt
γt

〉
= 2
〈∇γs∇γt

γt,∇γt
γt

〉
and ∇γsγt = ∇γt

γs − αγt, therefore

∂sκ
2 = 2

〈∇γs∇γt
γt −∇γt

∇γsγt −∇[γs,γt]
γt,∇γt

γt

〉
+ 2
〈∇γt

∇γsγt,∇γt
γt

〉
+ 2
〈∇[γs,γt]

γt,∇γt
γt

〉
= 2
〈
R(γs, γt)γt,∇γt

γt

〉
+ 2
〈∇γt

(∇γt
γs − αγt),∇γt

γt

〉
+ 2
〈∇−αγt

γt,∇γt
γt

〉
= 2
〈
R(γs, γt)γt,∇γt

γt

〉− 4ακ2 + 2
〈∇γt

∇γt
γs,∇γt

γt

〉− 2
〈
dg(γt)γt,∇γt

γt

〉
= 2
〈
R(γs, γt)γt,∇γt

γt

〉− 4ακ2 + 2
〈∇γt

∇γt
γs,∇γt

γt

〉
as |γt| = 1, we deduce that 0 = d 〈γt, γt〉 · γt = 2

〈∇γt
γt, γt

〉
.

This calculation ends the proof of the proposition. �

Therefore, a standard approximation argument gives the following theorem.

Proposition 3.4. If u ∈ W2,2
ι (S1,M), L = L(u), and v ∈ W2,2

u (S1, TM), then

DEσ(u) · v =
∫ L

0

〈Dtv, u̇〉dL 1 + σ2

∫ L

0

2
〈
D2

t v,Dtu̇
〉− 3 〈Dtv, u̇〉κ2(u) + 2 〈R(v, u̇)u̇, Dtu̇〉dL 1. (3.2)

if R is the Riemannian curvature tensor on (Mm, g).

Proof. Thanks of the preceding lemmas, if γ is a variation of u such that ∂sγ|s=0 = v, then we have

d
ds
Eσ(γ(s, ·)) =

∫
S1
σ2(∂sκ

2(s, t))|∂tγ(s, t)|dt+
∫

S1
(1 + σ2κ2(s, t))∂s|∂tγ(s, t)|dt

= σ2

∫ L

0

〈∇γt
∇γt

γs,∇γt
γt

〉− 4ακ2 + 2 〈R(γs, γt)γt, Dtγt〉dL 1 +
∫ L

0

(1 + σ2κ2)αdL 1

=
∫ L

0

〈Dtv, u̇〉 + σ2

∫ L

0

2
〈
D2

t v,Dtu̇
〉
dL 1 − 3 〈Dtv, u̇〉κ2(u) + 2 〈R(v, u̇)u̇, Dtu̇〉 dL 1.

So we have the desired result. �

If u is a critical point of Eσ of at least class C3, then

d
ds
Es(γ(s, ·)) =

∫ L

0

−2σ2
〈
∇γt

γs,∇2
γt
γt

〉
+
〈∇γt

γs, (1 − 3σ2κ2)γt

〉
+ 2σ2

〈
Us, R(∇γt

γt, γt)γt

〉
dτ

=
∫ L

0

〈
2σ2∇3

γt
γt + ∇γt

((3σ2κ2 − 1)γt) + 2σ2R(∇γt
, γt)γt, γs

〉
dτ

as
〈
R(γs, γt)γt,∇γt

γt

〉
=
〈
γs, R(∇γt

γt, γt)γt

〉
. As a consequence (3.2) is equivalent to the following

Euler−Lagrange equation
Dtu̇ = σ2

{
Dt

(
2D2

t u̇+ 3κ2u̇
)

+ 2R(Dtu̇, u̇)u̇
}

(3.3)

in the distributional sense. According to the forecoming part 7, this equation implies that u is a Cν−1 function.
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4. Second variation of energy

We recall that the second variation or Hessian is defined as follows. Let u be a critical point of Eσ. For every
v ∈ W2,2

u (S1, TM), if γ : I × S1 is a C2 variation of u such that ∂sγs=0 = v, we define

D2Eσ(u)[v, v] =
∂2

∂s2
Eσ(γ(s, ·))

∣∣∣∣
s=0

and this definition is independent of the variation.

Proposition 4.1. If u ∈ W2,2
ι (S1,M) is a critical point of Eσ, then for all v ∈ W2,2

u (S1, TM), we have

D2Eσ(u)[v, v] = 2σ2

∫ L

0

|D2
t v|2 + |R(v, u̇)u̇|2 + 2

(
4 〈Dtv, u̇〉2 + 2 〈Dtv, u̇〉 − |Dtv|2 + 〈R(u̇, v)v, u̇〉

)
κ2(u)

− (〈D2
t v, u̇

〉
+ 〈Dtv,Dtu̇〉

)2 − 8 〈Dtv, u̇〉
〈
D2

t v,Dtu̇
〉

+ 〈∇u̇R(v, u̇)v,Dtu̇〉
+ 〈∇vR(v, u̇)u̇, Dtu̇〉 + 〈R(Dtv), u̇)v,Dtu̇〉 − 〈R(Dtu̇, v)v,Dtu̇〉 + 3 〈R(v, u̇)Dtv,Dtu̇〉
+ 〈R(u̇, Dtv)u̇, Dtu̇〉 + 2 〈R(v, u̇)Dtv,Dtu̇〉 − 6 〈Dtv, u̇〉 〈R(v, u̇)u̇, Dtu̇〉dL 1

+ 4σ2

∫ L

0

〈Dtv, u̇〉
(〈
D2

t v,Dtu̇
〉− 2 〈Dtv, u̇〉κ2(u) + 〈R(v, u̇)u̇, Dtu̇〉

)
dL 1

+
∫ L

0

(
1 + σ2κ2(u)

) (|Dtv|2 − 〈Dtv, u̇〉2 − 〈R(u̇, v)v, u̇〉
)

dL 1 (4.1)

Proof. We may then choose a variation γ such that⎧⎪⎨⎪⎩
Ds∂sγ = 0
γ(0, ·) = u

∂sγ|s=0 = v

(4.2)

Indeed, as u is critical point of Eσ, it is a C2 function (as ν − 1 ≥ 2). The Cauchy−Lipschitz theorem asserts
the existence of a local C2 function defined on an open neighbourhood of {0} × S1 of this differential system.

Let us denote with a slight change in the notations γt =
∂tγ

|∂tγt| , γs = ∂sγ, α = 〈∇γtγs, γt〉. We will make

constant use of the following identity

∇γs∇γt = ∇γt∇γs +R(γs, γt) − α∇γt . (4.3)

which is a direct consequence of 3.3, as R is defined such that

R(γs, γt) = ∇γs∇γt −∇γt∇γs −∇[γs,γt].

As [γs, γt] = −αγt, the preceding equation is equivalent to (4.3).
We shall also use the notations Dt = ∇γt , Ds = ∇γs . As a consequence (4.3) reads

DsDt = DtDs +R(γs, γt) − 〈Dtγs, γt〉Dt

with α = 〈Dtγs, γt〉. Finally, one has [γs, γt] = −αγt, so in our new notation, this gives

Dsγt = Dtγs − 〈Dtγs, γt〉 γt = Dtγs − αγt.

Recall that
κ2 = 〈Dtγt, Dtγt〉 .



1292 A. MICHELAT AND T. RIVIÉRE

We shall now proceed with the calculus of the second derivative of κ2. By compatibility of the metric with ∇,
we have

∂2
sκ

2 = 2
〈
D2

sDtγt, Dtγt

〉
+ 2 〈DsDtγt, DsDtγt〉 = 2 {(1) + (2)} .

now

DsDtγt =DtDsγt +R(γs, γt)γt − 〈Dtγs, γt〉Dtγt

=Dt (Dtγs − 〈Dtγs, γt〉 γt) + R(γs, γt)γt − 〈Dtγs, γt〉Dtγt

=D2
t γs − (

〈
D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉)γt − 2 〈Dtγs, γt〉Dtγt +R(γs, γt)γt

= (I) − (II) − 2(III) + (IV).

We split the computation into four parts.

Ds(I) = DsD
2
t γs =DtDsDtγs +R(γs, γt)Dtγs − αD2

t γs

=Dt (DtDsγs +R(γs, γt)γs − αDtγs) +R(γs, γt)Dtγs − αD2
t γs

=DtR(γs, γt)γs + R(Dtγs, γt)γs +R(γs, Dtγt)γs +R(γs, γt)Dtγs

− (∂tα)Dtγs − αD2
t γs +R(γs, γt)Dtγs − αD2

t γs

=DtR(γs, γt)γs + R(Dtγs, γt)γs +R(γs, Dtγt)γs + 2R(γs, γt)Dtγs

− (∂tα)Dtγs − 2αD2
t γs.

We recall the notation α = 〈Dtγs, γt〉. As (II) = ∂tαγt,

Ds(II) = ∂s∂tαγt + ∂tαDsγt

= ∂s∂tαγt + ∂tαDtγs − α∂tαγt

Furthermore,

∂sα = 〈DsDtγs, γt〉 + 〈Dtγs, Dsγt〉
= 〈DtDsγs +R(γs, γt)γs − αDtγs, γt〉 + 〈Dtγs, Dtγs − αγt〉
= |Dtγs|2 − 2α2 − 〈R(γt, γs)γs, γt〉 ·

Recalling that (III) = αDtγt, one has

Ds(III) =
(|Dtγs|2 − 2α2 − 〈R(γt, γs)γs, γt〉

)
Dtγt + αDsDtγt

=
(|Dtγs|2 − 2α2 − 〈R(γt, γs)γs, γt〉

)
Dtγt + α

{
D2

t γs − (∂tα)γt − 2αDtγt +R(γs, γt)γt

}
=
(|Dtγs|2 − 4α2 − 〈R(γt, γs)γs, γt〉

)
Dtγt + α

{
D2

t γs − (∂tα)γt +R(γs, γt)γt

}
.

According to the defining properties of the Riemannian curvature tensor R, we have

Ds(IV) = Ds(R(γs, γt)γt) = DsR(γs, γt)γt +R(Dsγs, γt)γt +R(γs, Dsγt)γt +R(γs, γt)Dsγt

=DsR(γs, γt)γt +R(γs, Dtγs)γt +R(γs, γt)Dtγs − 2αR(γs, γt)γt

as Dsγt = Dtγs − αγt. If |γt| = 1, we have

〈γt, Dtγt〉 = 0.

In s = 0, we have

〈Ds(II), Dtγt〉 = ∂tα 〈Dtγs, Dtγt〉 =
(〈
D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉

) 〈Dtγs, Dtγt〉
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and

〈Ds(III), Dtγt〉 =
(|Dtγs|2 − 2α2 − 〈R(γt, γs)γs, γt〉

)
κ2 + 〈Dtγs, γt〉

〈
D2

t γs, Dtγt

〉
.

The first term of the second derivative is

(1) = 〈DtR(γs, γt)γs +R(Dtγs, γt)γs +R(γs, Dtγt)γs + 2R(γs, γt)Dtγs, Dtγt〉 (I)
− (〈D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉

) 〈Dtγs, Dtγt〉 − 2 〈Dtγs, γt〉
〈
D2

t γs, Dtγt

〉
(I)

− (〈D2
t γs, γt

〉
+ 〈Dtγs, Dtγt〉

) 〈Dtγs, Dtγt〉 (II)

− 2
(
|Dtγs|2 − 4 〈Dtγs, γt〉2 − 〈R(γt, γs)γs, γt〉

)
κ2 − 2 〈Dtγs, γt〉

〈
D2

t γs, Dtγt

〉
(III)

+ 〈DsR(γs, γt)γt, Dtγt〉 + 〈R(γs, Dtγs)γt, Dtγt〉 + 〈R(γs, γt)Dtγs, Dtγt〉 (IV)
− 2 〈Dtγs, γt〉 〈R(γs, γt)γt, Dtγt〉 (IV)

while

(2) =
∣∣D2

t γs − (
〈
D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉)γt − 2 〈Dtγs, γt〉Dtγt +R(γs, γt)γt

∣∣2
= |D2

t γs|2 +
(〈
D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉

)2
+ 4 〈Dtγs, γt〉κ2 + |R(γs, γt)γt|2

− 2
(〈
D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉

) 〈
D2

t γs, γt

〉− 4 〈Dtγs, γt〉
〈
D2

t γs, Dtγt

〉
+ 2
〈
R(γs, γt)γt, D

2
t γs

〉
− 4 〈Dtγs, γt〉 〈R(γs, γt)γt, Dtγt〉

We deduce that in s = 0, we have

∂2
sκ

2 = 2|D2
t γs|2 + 2|R(γs, γt)γt|2 + 4

(
4 〈Dtγs, γt〉2 + 2 〈Dtγs, γt〉 − |Dtγs|2 + 〈R(γt, γs)γs, γt〉

)
κ2

− 2
(〈
D2

t γs, γt

〉
+ 〈Dtγs, Dtγt〉

)2 − 16 〈Dtγs, γt〉
〈
D2

t γs, Dtγt

〉
+ 2 〈DtR(γs, γt)γs, Dtγt〉 + 2 〈DsR(γs, γt)γt, Dtγt〉 + 2 〈R(Dtγs, γt)γs, Dtγt〉
+ 2 〈R(γs, Dtγt)γs, Dtγt〉 + 6 〈R(γs, γt)Dtγs, Dtγt〉 + 2 〈R(γt, Dtγs)γt, Dtγt〉
+ 4
〈
R(γs, γt)γt, D

2
t γs

〉− 12 〈Dtγs, γt〉 〈R(γs, γt)γt, Dtγt〉
Now

∂sκ
2 = 2

〈
D2

t v,Dtu̇
〉− 4 〈Dtv, u̇〉κ2 + 2 〈R(v, u̇)u̇, Dtu̇〉 ,

and ∫
S1

(
1 + σ2κ2

)
∂2

s |γt|dL 1 =
∫

S1

(
1 + σ2

)
∂s

〈
∇γtγs,

γt

|γt|
〉

dL 1

=
∫

S1

(
1 + σ2κ2

){〈∇γsDγtγs,
γt

|γt|
〉

+
〈
∇γtγs,

∇γsγt

|γt|
〉
−
〈
∇γtγs,−〈∇γtγs, γt〉 γt

|γt|3
〉}

dL 1

=
∫

S1
(1 + σ2κ2)

{〈
∇γt∇γsγs,

γt

|γt|
〉

+
〈
R(γs, γt)γs,

γt

|γt|
〉

+ |∇ γt
|γt|

γs|2|γt| −
〈
∇ γt

|γt|
γs, γt

〉2

|γt|
}

dL 1.

As Dsγs = 0, at s = 0, the preceding equation is equal to∫ L

0

(
1 + σ2κ2(u)

){|Dtv|2 − 〈Dtv, u̇〉2 − 〈R(u̇, v)v, u̇〉
}

dL 1.

Furthermore
d2

ds2
Eσ(γ(s, ·)) =

∫
S1
σ2∂2

sκ
2|γt| + 2σ2∂sκ

2∂s|γt| + (1 + σ2κ2)∂2
s |γt|dL 1
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Finally, we deduce that

D2Eσ(u)[v, v] = 2σ2

∫ L

0

|D2
t v|2 + |R(v, u̇)u̇|2 + 2

(
4 〈Dtv, u̇〉2 + 2 〈Dtv, u̇〉 − |Dtv|2 + 〈R(u̇, v)v, u̇〉

)
κ2(u)

− (〈D2
t v, u̇

〉
+ 〈Dtv,Dtu̇〉

)2 − 8 〈Dtv, u̇〉
〈
D2

t v,Dtu̇
〉

+ 〈∇u̇R(v, u̇)v,Dtu̇〉
+ 〈∇vR(v, u̇)u̇, Dtu̇〉 + 〈R(Dtv), u̇)v,Dtu̇〉 − 〈R(Dtu̇, v)v,Dtu̇〉 + 3 〈R(v, u̇)Dtv,Dtu̇〉
+ 〈R(u̇, Dtv)u̇, Dtu̇〉 + 2 〈R(v, u̇)Dtv,Dtu̇〉 − 6 〈Dtv, u̇〉 〈R(v, u̇)u̇, Dtu̇〉dL 1

+ 4σ2

∫ L

0

〈Dtv, u̇〉
(〈
D2

t v,Dtu̇
〉− 2 〈Dtv, u̇〉κ2(u) + 〈R(v, u̇)u̇, Dtu̇〉

)
dL 1

+
∫ L

0

(
1 + σ2κ2(u)

) (|Dtv|2 − 〈Dtv, u̇〉2 − 〈R(u̇, v)v, u̇〉
)

dL 1 (4.4)

which concludes the proof of the proposition. �

We will use later the result to investigate the index of the curves in Section 9.

5. Palais−Smale condition

We recall the definition of the Palais−Smale condition.

Definition 5.1. Let X be a Finsler Cν manifold (ν ∈ N ∪ {∞}), and f ∈ C1(X). We say that f satisfies the
Palais−Smale condition at the level c ∈ R if for every sequence {xn}n∈N

⊂ X , if

f(xn) −−−−→
n→∞ c, and Df(xn) −−−−→

n→∞ 0

then there exist a subsequence of {xn}n∈N
(strongly) converging towards an element x ∈ X .

However, as our Lagrangian Eσ is invariant under diffeomorphisms, we only have the Palais−Smale condition
up to re-parametrisation (see also [34]).

Theorem 5.2. Let σ, c > 0 two positive real numbers, and {un}n∈N
a sequence such that

Eσ(un) −−−−→
n→∞ c, DEσ(un) −−−−→

n→∞ 0 (5.1)

Then there exists an immersion u ∈ W2,2
ι (S1,M) and a subsequence of {un}n∈N

(still denotes {un}n∈N
), and a

sequence of orientation-preserving C1-diffeomorphisms {ϕn}n∈N
⊂ Diff+(S1) such that un◦ϕn −−−−→

n→∞ u strongly

in W2,2(S1,M).

Proof. Let {un}n∈N
⊂ W2,2

ι (S1,M) a sequence such that

Eσ(un) −−−−→
n→∞ c, and DEσ(un) −−−−→

n→∞ 0

The second hypothesis should be interpreted as

lim
n→∞ sup

{
DEσ(un) · v, v ∈ W2,2

un
(S1, TM) and ‖v‖W2,2

un (S1) ≤ 1
}

= 0 (5.2)

where we recall that for all u ∈ W2,2
ι (S1,M) and v ∈ W2,2

u (S1, TM)

DEσ(u) · v =
∫

S1

(
2σ2
〈
Dtu̇n, D

2
t v
〉

+ (1 − 3σ2κ2(un)) 〈u̇n, Dtv〉 + 2σ2 〈R(Dtu̇n, u̇n)u̇n, Dtv〉
) |u̇|dL 1 (5.3)
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For all n large enough, we have

Eσ(un) ≤ 2c

so we suppose that this assumption is realised for all n ∈ N. Then thanks of (2.1)

2π2σ2

(1 +A2
M )

1
c
≤ L(un) ≤ 2c for all n ∈ N,

so the length cannot degenerate and there exists a constant ε > 0 such that

Ln = L(un) =
∫

S1
|u̇n|dL 1 ≥ ε

cσ2
, and Eσ(un) ≤ 2c

for all n great enough. We may then assume this property for all n ∈ N, and that Ln −−−−→
n→∞ L > 0. As the

manifold (M, g) is compact,
sup
n∈N

‖un‖L∞(S1) <∞,

so obviously
sup
n∈N

‖un‖L2(S1) <∞.

Then, re-parametrising {un}n∈N
at constant speed (but keeping notations), i.e. |u̇n| = L(un), we have

‖u̇n‖L∞(S1) ≤ 2c

so as Ln ≤ 2c for all n ∈ N, we have

‖u̇n‖L2(S1) <∞.

We deduce that
sup
n∈N

‖un‖W2,2(S1) <∞. (5.4)

Then, by Cauchy−Schwarz inequality, for all (x, y) ∈ S1 × S1,

|un(x) − un(y)| =
∣∣∣∣∫

S1
u̇n(t)dL 1t

∣∣∣∣ ≤√|x− y| ‖u̇n‖L2(S1) ·

so the sequence {un}n∈N
is equicontinuous, and likewise

|u̇n(x) − u̇n(y)| ≤
√
|x− y| ‖Dtu̇n‖L2(S1) , (5.5)

and this gives the Sobolev embedding W2,2(S1,M) ⊂ C0, 1
2 (S1,M). Therefore, by Rellich−Kondrachov (resp.

Arzelà−Ascoli) theorem there exists u ∈ W2,2(S1,M) such that {un}n∈N
converges weakly (resp. strongly) in

W2,2(S1,M) (resp. W1,∞(S1,M)) to u. So we have

un ⇀ u weakly in W2,2(S1),
un → u strongly in L∞(S1), (5.6)
u̇n → u̇ strongly in L∞(S1).

Furthermore, as {u̇n}n∈N
is at constant speed parametrisation and, by uniform convergence, if L = L(u), we

have

Ln −−−−→
n→∞ L
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and we deduce that u is parametrised at constant speed on S1. In particular, u ∈ W2,2
ι (S1,M).

In particular,
lim

n→∞ ‖un − u‖W1,2(S1) = 0. (5.7)

By compactness of S1, we deduce that {Dtu̇n}n∈N
converge in L2(S1,M) to Dtu̇ if and only if∫

S1
|P (un)(ün − ü)|2|u̇n|dL 1 −−−−→

n→∞ 0.

As {un}n∈N
is bounded in W2,2

ι (S1,M), we deduce that if vn = P (un)(un − u), then

lim
n→∞DEσ(un) · vn = 0

and

DEσ(un) · vn =
∫

S1

(
2σ2
〈
Dtu̇n, P (un)(ün − ü) + 2DP (un)(u̇n)(u̇n − u̇) +D2P (un)(u̇n, u̇n)(un − u))

〉
(5.8)

+ (1 − 3σ2κ2(un)) 〈u̇n, P (un)(u̇n − u̇) +DP (un)(u̇n)(un − u)〉 (5.9)
+2 〈R(Dtu̇n, u̇n)u̇n, P (un)(un − u)〉) |u̇n|dL 1. (5.10)

As (M, g) is a Cν compact manifold, and P is Cν−1 and {un}n∈N
is bounded in W1,∞(S1,M). This ensures

the existence of a constant c2 = c2(M) > 0 independent of n ∈ N such that

‖DP (un)(u̇n − u̇)‖L∞(S1) ≤ c2 ‖u̇n‖L∞(S1) ‖u̇n − u̇‖L∞(S1)

‖DP (un)(u̇n)(un − u)‖L∞(S1) ≤ c2 ‖u̇n‖L∞(S1) ‖un − u‖L∞(S1)

‖DP (un)(u̇n)(u̇n − u̇)‖L2(S1) ≤ c2 ‖u̇n‖L∞(S1) ‖u̇n − u̇‖L2(S1)∥∥D2P (un)(u̇n, u̇n)(un − u)
∥∥

L2(S1)
≤ c2 ‖u̇n‖2

L∞(S1) ‖un − u‖L2(S1) .

Now {Dtu̇n}n∈N
is bounded in L2(S1, TM) so by Cauchy−Schwarz inequality,∣∣∣∣∫

S1

〈
Dtu̇n, 2DP (un)(u̇n)(u̇n − u̇) +D2P (un)(u̇n, u̇n)(un − u)

〉 |u̇n|dL 1

∣∣∣∣
≤ c2 ‖Dtu̇n‖L2(S1) ‖u̇n‖2

L∞(S1)

(
2 ‖u̇n − u̇‖L2(S1) + ‖u̇n‖L∞(S1) ‖un − u‖L2(S1)

)
−−−−→
n→∞ 0

We can estimate (5.9) as follows:∣∣∣∣∫
S1

(
1 + 3σ2κ2(un)

) 〈u̇n, P (un)(u̇n)(un − u) +DP (un)(u̇n)(u̇n − u̇)〉 |u̇n|dL 1

∣∣∣∣
≤ c2

(
1 + 3σ2 ‖Dtu̇n‖2

L2(S1)

)
‖u̇n‖3

L2(S1)

(
‖u̇n − u̇‖L2(S1) + ‖un − u‖L2(S1)

)
−−−−→
n→∞ 0.

Finally, the metric g is Cν , so the (3, 1)-curvature tensor R is Cν−2, its components are bounded on the
compact manifold (M, g) in the following sense: if we write∫

S1
〈R(Dtu̇n, u̇n)u̇n, P (un)(un − u)〉 |u̇n|dL 1 =

∫
S1

n∑
i,j,k,l=1

Rl
i,j,kDtu̇

i
nu̇

j
nu̇

k
n(P (un)(un − u))l |u̇n|dL 1.

and define ‖R‖L∞(M) = sup
1≤i,j,k,l≤n

∥∥Rl
i,j,k

∥∥
L∞(M)

, then ‖R‖L∞(M) <∞, and

∣∣∣∣∫
S1

〈R(Dtu̇n, u̇n)u̇n, P (un)(un − u)〉 |u̇n|dL 1

∣∣∣∣ ≤‖R‖L∞(S1) ‖Dtu̇n‖L2(S1)

(∫
S1

|u̇n|6|P (un)(un − u)|2dL 1

) 1
2

≤c2 ‖R‖L∞(S1)‖Dtu̇n‖L2(S1) ‖u̇n‖3
L∞(S1) ‖un−u‖L2(S1) −−−−→n→∞ 0.
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The first member of (5.8) is equal to∫
S1

〈Dtu̇n, P (un)(ün − ü)〉 |u̇n|dL 1 =
∫

S1

(|P (un)(ün − ü)|2 + 〈P (un)ü, P (un)(ün − ü)〉) |u̇n|dL 1

As {Dtu̇n}n∈N
converges weakly towards Dtu̇ in L2(S1, TM), and {P (un)ü}n∈N

is bounded on L2(S1, TM), we
have

lim
n→∞

∫
S1

〈Dtu, P (un)(ün − ü)〉 |u̇n|dL 1 = 0.

We finally deduce that

lim
n→∞

∫
S1

|Dtu̇n − P (un)ü|2|u̇n|dL 1 = 0,

so thanks of (5.6)
lim

n→∞ ‖un − u‖W2,2(S1) = 0.

This concludes the proof of the theorem, up to the following remark: as on compact manifolds, the Sobolev
spaces do not depend on the Riemannian metric (see [3]), and {un}n∈N

converges in the W2,2 norm to an
immersion u ∈ W2,2

ι (S1,M), then {un}n∈N
also converges to u for the Finsler distance d on W2,2

ι (S1,M) (see
the appendix for the definitions). �

6. Min-Max construction of adapted sequence of critical points

We aim in this section as constructing a sequence of critical points {un}n∈N
associated to {σn}n∈N

, where
{σn}n∈N

is a sequence of positive numbers converging to 0, such that

σ2
n

∫
S1
κ2(un)|u̇n|dL 1 −−−−→

n→∞ 0.

The principle of proof is adapted from a result of Michael Struwe (see [46]).

Definition 6.1. A family of non-empty sets A ⊂ P∗(W2,2(S1,M)) is admissible if the three following condi-
tions are realised by A :

(1) For all A ∈ A , for all u ∈ A , either u is a constant curve either u ∈ W2,2
ι (S1,M),

(2) For every homeomorphism ϕ of W2,2
ι (S1,M) with itself isotopic to the identity map, for all A ∈ A ,

ϕ(A) ∈ A,

(3) There exists a positive integer k ∈ N such that for all A ∈ A , we can write A =
{
uA

t

}
t∈[0,1]k

, and the map

[0, 1]k → W2,2(S1,M)

t 
→ uA
t

is continuous.
We now fix an admissible set A ⊂ P∗ (W2,2(S1,M)

)
such that

0 < β(0) = inf
A∈A

supL(A) <∞.

We then define the family A0 ∈ P∗(W2,2
ι (S1,M)) from A by

A0 = {A0, A ∈ A and A0 �= ∅} ,
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where for all A ∈ A ,

A0 = A ∩
{
u : L(u) ≥ β(0)

2

}
·

We remark that if ϕ is an homeomorphism of W2,2
ι (S1,M) isotopic to the identity, in general, ϕ(A0) �= ϕ(A)0.

For all σ > 0, we define
β(σ) = inf

A0∈A0
supEσ(A0) <∞.

Indeed, the function L is continuous on W2,2(S1,M), and for all A0 ∈ A0, A0 = {ut}t∈I , where I is a closed
subset of [0, 1]k, so the application I → W2,2

ι (S1,M), t→ ut is continuous thus

supEσ(A0) = sup
t∈I

Eσ(ut) <∞.

and β(σ) <∞.
We now observe that

β(σ) −−−−→
n→∞ β(0).

To prove this claim, remark that for all σ > 0, β(σ) ≥ β(0) so by definition of β(0), for all ε > 0, there exists
A ∈ A , such that

sup
u∈A

L(u) < β(0) + ε.

Therefore

sup
u∈A0

Eσ(u) ≤ β(0) + ε+ σ2 sup
u∈A0

∫
S1
κ2(u)dL 1 ≤ β(0) + ε+ Cσ2

so for Cσ2 ≤ ε, we have

β(0) ≤ β(σ) ≤ β(0) + 2ε

and β is increasing, so the claim is proved.
As β is monotone, Lebesgue theorem ensures that this real function is differentiable L 1 almost everywhere.

In particular,

δ = lim inf
σ→0

(
σ log

1
σ
β′(σ)

)
= 0. (6.1)

Let us argue by contradiction. If δ > 0, then for all σ > 0 small enough, we have

β(σ) − β(0) ≥
∫ σ

0

β′(s)ds ≥ 1
2
δ

∫ σ

0

ds
s log 1

s

= ∞,

which gives the contradiction.
These observations allow to introduce the following definition.

Definition 6.2. Let σ > 0 a fixed positive real number. We say that the function β satisfies the entropy
condition at a point σ if it is differentiable at σ and

β′(σ) ≤ 1
σ log 1

σ

· (6.2)
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A formal derivation under the min-max would give a sequence of positive {σn}n∈N
converging to 0, and a

sequence of critical points {un}n∈N
associated to {σn}n∈N

, such that

σn log
1
σn

dEσn

dσ
(un) → 0 when n→ ∞,

which in turn would imply that

lim
n→∞σ2

n

∫
S1
κ2(un)|u̇n|dL 1 = 0.

The preceding intuition can be made rigorous thanks of the following proposition.

Proposition 6.3. There exists a constant C = C(β(0)), such that for all 0 < σ ≤ C(β(0)) for which β satisfies
the entropy condition (6.2), there exists a critical point uσ ∈ W2,2

ι (S1,M) of Eσ such that

Eσ(uσ) = β(σ), and ∂σEσ(uσ) ≤ β′(σ) +
1

σ log 1
σ

· (6.3)

Proof.
Step 1. Estimation of the derivative of Eσ.
Let ε > 0 a positive fixed constant. We consider a sequence {σn}n∈N

strictly decreasing to σ > 0. Let A0 ∈ A0

and u ∈ A0, such that
Eσ(u) ≥ β(σ) − ε(σn − σ)

and
Eσn(u) ≤ β(σn) + ε(σn − σ).

Such a pair (u,A0) always exists, for n large enough. As β is differentiable at σ, we have

β(σn) ≤ β(σ) + (β′(σ) + ε)(σn − σ)

for n large enough, from which we deduce that

β(σ) − ε(σn − σ) ≤ Eσ(u) ≤ Eσn(u) ≤ β(σ) + (β′(σ) + 2ε)(σn − σ) (6.4)

If u satisfies (6.4), then

Eσn(u) − Eσ(u)
σn − σ

≤ β′(σ) + 3ε

so according to the mean value theorem, there exists σ′ ∈ [σ, σn], such that

∂σEσ′(u) ≤ β′(σ) + 3ε.

But

∂σEσ′ (u) =
∫

S1
2σ′κ2(u)|u̇|dL 1 =

σ′

σ
∂σEσ(u)

so for all u ∈ W2,2
ι (S1,M) satisfying the inequalities (6.4),

∂σEσ(u) ≤ β′(σ) + 3ε. (6.5)
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Step 2. Existence of almost Palais−Smale sequences.
We want to show that there exists a sequence {un}n∈N

satisfying (6.4) and such that

‖DEσn(un)‖ −→
n→∞ 0 (6.6)

We shall be careful to distinguish this condition from the Palais−Smale condition for Eσ, but we will show in
the next step that it implies Palais−Smale condition for Eσ.

We argue by contradiction, supposing the existence of a positive constant δ > 0 such that for all immersion
u ∈ W2,2

ι (S1,M) satisfying (6.4), we have for n large enough

‖DEσn(u)‖ ≥ δ.

Let X0
n a pseudo-gradient vector field (see [47].) for Eσn , i.e. a locally Lipschitz bounded function X0

n :
W2,2

ι (S1,M) → TW2,2
ι (S1,M), such that for all w ∈ W2,2

ι (S1,M) such that DEσn(w) �= 0,

‖X0
n(w)‖ < 2 min {‖DEσn(w)‖, 1}

DEσn(w) ·X0
n(w) > min {‖DEσn(w)‖, 1} ‖DEσ(w)‖.

Let ψ ∈ D(R) a positive non-decreasing cut-off function such that 0 ≤ ψ ≤ 1, suppψ ⊂ R+, and ψ = 1 on
[1,∞[. We define * for all n ∈ N,

ψn(u) = ψ

(
Eσ(u) − (β(σ) − ε(σn − σ))

ε(σn − σ)

)
ψ

(
4

β(0)
e−

4
β(0)

σ

(
L(u) − β(0)

2

))
·

Let ϕn the global flow associated to −Xn = −ψnX
0
n, defined by⎧⎨⎩

d
dt
ϕt

n(u) = −Xn(ϕt
n(u))

ϕ0
n(u) = u

(6.7)

Note that ϕn is C1 from respect of the first variable, and that for all t ∈ R+, ϕt
n : W2,2

ι (S1,M) → W2,2
ι (S1,M)

is a locally Lipschitz homeomorphism. We remark that A0 is invariant under the action of ϕn, and that for all
A0 ∈ A0, for all t ≥ 0, ϕt

n(A0) = ϕt
n(A0)0. We have

d
dt
E(ϕt

n(u)) = −ψn(u)DEσn(u) ·Xn(u) ≤ −δψn(u) ≤ 0

We would like to show that t 
→ Eσ(ϕt
n(u)) is also decreasing. Consider, u ∈ W2,2

ι (S1,M), v ∈ W2,2
u (S1, TM),

DEσn(u) · v =
∫ L

0

(
2σ2

n

〈
Dtu̇, D

2
t v
〉− (3σ2κ(u)2 − 1) 〈u̇, Dtv〉 + 2σ2

n〈R(Dtu̇, u̇)u̇, v〉
)
dL 1

= DEσ(u) · v + (σ2
n − σ2)

∫ L

0

2
〈
Dtu̇, D

2
t v
〉− 3κ(u)2 〈u̇, Dtv〉 + 2〈R(Dtu̇, u̇)u̇, v〉dL 1

where L = L(u) (recall that the arc-length parametrization where |u̇| = 1 is possible because our Lagrangian is
invariant under diffeomorphism). As a consequence, we have

|DEσn(u) · v −DEσ(u) · v| ≤ (σ2
n − σ2)

{
2 ‖Dtu̇‖L2([0,L])

∥∥D2
t v
∥∥

L2([0,L])
+ 3 ‖Dtv‖L∞([0,L]) ‖Dtu̇‖2

L2([0,L])

+ 2 ‖R‖L∞(M) ‖Dtu̇‖L2([0,L]) ‖v‖L∞([0,L])

}
≤C(u)(σ2

n − σ2)‖v‖W2,2
u (S1,TM).

*Note that we use a different cut-off function from the original paper [46].
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Furthermore, the proof of Theorem 5.2 (where we prove Palais−Smale condition), shows the existence of a
continuous function fM : R∗

+ × R+ → R+ increasing in each parameter, depending only on (Mm, g) such that

C(u) ≤ fM (σn, Eσn(u))

so for all u satisfying (6.4),

C(u) ≤ fM (σn, β(σ) + (β′(σ) + ε)(σn − σ)) (6.8)

therefore C(u) is uniformly bounded by a positive constant independent of u. We deduce that

sup
{
|(DEσn(u) −DEσ(u)) · v| , ‖v‖W2,2

u (S1,TM) ≤ 1
}

−→
n→∞ 0. (6.9)

Now we can estimate the derivative of t 
→ Eσ(ϕt
n(u)) as follows:

d
dt
Eσ(ϕt

n(u)) = DEσ(ϕt
n(u)) ·Xn(ϕt

n(u))

≤ −ψn(ϕt
n(u))DEσn(ϕt

n(u)) ·X0
n(ϕt

n(u)) + C(ϕt
n(u))(σ2

n − σ2)‖X0
n(ϕt

n(u))‖W2,2
ϕt

n(u)
(S1,TM)

≤ −2ψn(ϕt
n(u))δ + 2C(ϕt

n(u))(σ2
n − σ2) (6.10)

For all n ∈ N, let us a fix an element An ∈ A0 such that

sup
u∈An

Eσn(u) ≤ β(σn) + ε(σn − σ).

For all u ∈ An, the map t 
→ Eσn(ϕt
n(u)) is decreasing, so for all t ≥ 0, according to (6.8),

Eσn(ϕt
n(u)) ≤ Eσn(u) ≤ β(σn) + ε(σn − σ)

C(ϕt
n(u)) ≤ f(σn, Eσn(ϕt

n(u)) ≤ f(σ0, β(σ) + (β′(σ) + 2ε) (σ0 − σ))

By invariance of A0 under the action of the semi-flow {ϕt
n}t≥0, for all t ≥ 0, we define

BAn(t) = sup
u∈An

Eσ(ϕt
n(u)) ≥ β(σ)

and BAn(t) is attained only at points ut
n = ϕt

n(u) satisfying (6.4), and for such a ut
n, we have

β(σ) − ε(σn − σ) ≤ Eσ(ut
n) ≤ Eσn(ut

n) ≤ β(σ) + (β′(σ) + 2ε)(σn − σ).

Furthermore,

∂σEσ(ut
n) ≤ β′(σ) + 3ε,

so if we choose ε =
(

8σ log
1
σ

)−1

, as β satisfies the entropy condition (6.2) at σ, we have by (6.5)

∫
S1
σ2κ2(ut

n)|u̇t
n|dL 1 ≤ 7

8
1

log 1
σ

,



1302 A. MICHELAT AND T. RIVIÉRE

so for all σn − σ ≤ 1
8

L(ut
n) ≥ β(σ) − ε(σn − σ) −

∫
S1
σ2κ2(ut

n)|u̇t
n|dL 1

≥ β(0) − 1
log 1

σ

≥ 3
4
β(0)

for σ ≤ C(β(0)) = e−
4

β(0) . Therefore, for all σ ≤ C(β(0)), and n large enough such that 8(σn − σ) ≤ 1, we have
ψn(ut

n) = 1, so thanks of (6.10), if n is large enough,

d
dt
BAn(t) ≤ −δ (6.11)

thus
BAn(t) ≤ β(σn) + ε(σn − σ) − δt

so for t large enough, BAn(t) < β(σ), contradicting the definition of β(σ).

Step 3. Convergence and conclusion.
Thanks of Step 2, we can choose a sequence {un}n∈N

∈ W2,2
ι (S1,M) satisfying (6.4), and such that

lim
n→∞ ‖DEσn(un)‖ = 0

Furthermore, we note by (6.5) and the proof of second step that for n large enough, we have

L(un) ≥ 3
4
β(0).

So (6.9) gives
sup
n∈N

Eσ(un) <∞, and ‖DEσ(un)‖ −→
n→∞ 0 inf

n∈N

L(un) > 0

As a consequence, {un}n∈N
is a Palais−Smale sequence for Eσ, we can suppose thanks of Theorem 5.2 that

there exists u ∈ W2,2
ι (S1,M) such that

un −→
n→∞ u strongly in W2,2

ι (S1,M)

In particular, thanks of (6.4), we have

β(σ) = lim
n→∞Eσn(un) = Eσ(u)

and
∂σEσ(u) ≤ lim inf

n→∞ ∂σEσn(u) ≤ β′(σ) + 3ε,

which concludes the proof of the proposition. �

We now come to the main result of this section.

Theorem 6.4. There exists a sequence {σn}n∈N
of positive numbers converging to 0, and a sequence of critical

points {un}n∈N
of {Eσn}n∈N

such that

β(0) ≤ Eσn(un) = β(σn), and lim
n→∞σ2

n

∫
S1
κ2(un)|u̇n|dL 1 = 0.

Proof. Choosing a sequence {σn}n∈N
converging to 0 such that for all n ∈ N, the function β satisfies the entropy

condition (6.2) at σn (which is possible as β is differentiable L 1 almost everywhere and satisfies (6.1)), the
theorem is now an easy consequence of the preceding proposition. �
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7. Limiting procedure

Theorem 7.1. Let (Mm, h) a Riemannian compact manifold of class Cν (ν ≥ 3), such that there exist an
admissible subset A ⊂ P∗(W2,2(S1,M)), and define A0 as. For all σ ≥ 0, we define

β(σ) = inf
A0∈A0

sup
u∈A

Eσ(u). (7.1)

If for σ small enough, β(σ) <∞ and β(0) > 0, there exists a sequence {σn}n∈N
of positive numbers converging

to 0, verifying

Eσn(un) = β(σn), σ2
n

∫
S1
κ2(un)dL 1 ≤ 1

log 1
σn

and a closed non-trivial geodesic u : S1 → M such that {un}n∈N
converges to u strongly in L∞(S1,M) and

{u̇n}n∈N
converge to u̇ almost everywhere.

Proof.
Step 1. Quasi-conservation law and length convergence.

Let {un}n∈N
a sequence given by the Theorem 6.4, in arc-length parametrization. We define, for all n ∈ N,

Ln = L(un). Let {vn}n∈N
defined by

vn = u̇n − σ2
n(2D2

t u̇n + 3κ2(un)u̇n).

A priori, vn belongs to the dual of W2,2
un

(S1, TM). However, thanks of (3.3), we have

Dtvn = 2σ2
nR(Dtu̇n, u̇n)u̇n ∈ L2(S1).

Thus vn ∈ W1,2
un

(S1, TM), and

〈u̇n, vn〉 = 1 − σ2
n

(
2
〈
D2

t u̇n, u̇n

〉
+ 3κ2(un)

)
(7.2)

= 1 − σ2
nκ

2(un) (7.3)

as |u̇n| = 1, so 0 = 2 〈Dtu̇n, u̇n〉, and we have

0 =
〈
D2

t u̇n, u̇n

〉
+ 〈Dtu̇n, Dtu̇n〉 =

〈
D2

t u̇n, u̇n

〉
+ κ2(un).

Remark that vn ∈ W1,2([0, Ln]) implies that un is in Cν−1([0, Ln],M). Indeed,

2σ2
nD

2
t u̇n = u̇n − vn − 3σ2

nκ
2(un)u̇n ∈ L1([0, Ln])

so D2
t u̇n ∈ L1([0, Ln]), and u ∈ W3,1([0, Ln]). An immediate bootstrap argument implies that un ∈

Wν,1(S1,M) ⊂ Cν−1(S1,M) and vn ∈ Wν−1,1(S1,M) ⊂ Cν−2(S1,M). Furthermore, Dtvn −→
n→∞ 0 in L2(S1).

Indeed (recall Ln = L(un)),∫ Ln

0

σ2
n|R(Dtu̇n, u̇n)u̇n|2dL 1 ≤ ‖R‖L∞(M)

∫ Ln

0

σ2
n|Dtu̇n|2dL 1 = ‖R‖L∞(M)

∫
S1
κ2(un)|u̇n|dL 1,

We deduce that

‖Dtvn‖L2(S1) ≤ 2 ‖R‖L∞(M) σn

(
σ2

n

∫
S1
κ2(un)|u̇n|dL 1

) 1
2

−→
n→∞ 0
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In particular, there exist v ∈M such that

‖vn − v‖L∞(S1) −→
n→∞ 0.

If we set vn =
1
2π

∫
S1
vndL 1, this is equivalent to

‖vn − vn‖L∞(S1) −→
n→∞ 0,

which in turn implies that∫ Ln

0

vn · vndL 1 =
∫ Ln

0

|vn|2dL 1 +
∫ Ln

0

(vn − vn) · vndL 1

= Ln|vn|2 +
∫ Ln

0

(vn − vn) · vndL 1

and

εn =
∫ Ln

0

(vn − vn) · vndL 1 ≤ Ln|vn| ‖vn − vn‖L∞(S1) −→
n→∞ 0.

On the other hand,∫ Ln

0

vn · vndL 1 =
∫ Ln

0

u̇n · vndL 1 − 3σ2
n

∫ Ln

0

κ2(un)u̇n · vndL 1 ≤ Ln|vn| + 3σ2
n

∫ Ln

0

κ2(un)dL 1|vn|

so

Ln|vn|2 + εn ≤ Ln|vn| + 3σ2
n

∫
S1
κ2(un)|u̇n|dL 1.

Now, Ln ≥ β(0) pour tout n ∈ N, so

|vn| ≤ 1 +
3

β(0)
σ2

n

∫
S1
κ2(un)|u̇n|dL 1 −→

n→∞ 1.

And we get

|v| = lim
n→∞

1
Ln

∫ Ln

0

|vn|dL 1 ≤ 1. (7.4)

Step 2. Weak convergence
The sequence {un}n∈N

is bounded in W1,∞(S1,M), as (M, g) is compact, and {Ln}n∈N
is bounded. Therefore

Arzelà−Ascoli and Banach–Alaoglu theorems imply that we can extract a subsequence from {un}n∈N
(which is

still denoted {un}n∈N
), such that {un}n∈N

in L∞ and weakly-* to a function u ∈ W1,∞([0, L],M). In particular
{u̇n}n∈N

converges almost everywhere to u̇, for all interval I such that for n large enough, I ⊂ [0, Ln], we have∫
I

〈u̇n, vn〉dL 1 −−−−→
n→∞

∫
I

〈u̇, v〉dL 1

and according to (7.2),

1
L 1(I)

∫
I

〈u̇n, vn〉 = 1 − 1
L 1(I)

∫
I

σ2
nκ

2(un)dL 1 −−−−→
n→∞ 1.
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Furthermore, as |u̇n| = 1, and {u̇n}n∈N
converges almost everywhere to u̇ so |u̇| ≤ 1. According to (7.4), |v| ≤ 1,

so thanks of Cauchy−Schwarz inequality, we have |u̇| = 1, and |v| = 1. We deduce that

L =
∫

S1
|u̇|dL 1 = lim

n→∞Ln ≥ β(0),

As Eσn(un) = β(σn), and β(σn) −−−−→
n→∞ β(0), we get L = β(0). Indeed,

β(0) = β(σn) + o(1) = Ln +
∫

S1
σ2

nκ
2(un)|u̇n|dL 1 + o(1),

so Ln −−−−→
n→∞ β(0).

Step 3. Limiting equation.
We wish now to pass to the limit in the Euler−Lagrange equation. We need the following technical lemma,

stated separately for the sake of clarity.

Lemma 7.2. Let v ∈ W2,2
u (S1, TM), and for all n ∈ N, vn = P (un)v ∈ W2,2

un
(S1, TM), where P (un) is the

orthogonal projection on TunM . We have

(1)

vn
L∞−−−−→

n→∞ v,

(2)

{Dtvn}n∈N
is bounded in L∞ and Dtvn

L2−−−−→
n→∞ Dtv,

(3) ∫ Ln

0

σ2
n|D2

t vn|dL 1 −−−−→
n→∞ 0.

Proof of Lemma 7.2. If n is a normal vector field to M , the orthogonal projection P (un) : Rq → TunM is
given by

P (un)v = v − n(un) 〈n(un), v〉 = v − n(un) 〈n(un) − n(u), v〉

and un −−−−→
n→∞ u in L∞, so P (un)v −−−−→

n→∞ v in L∞.

Dt(P (un)v − v) = −Dn(un)[u̇n] 〈n(un) − n(u), v〉 − n(un) 〈Dn(un)[u̇n] −Dn(u)[u̇], v〉
− n(un) 〈n(un) − n(u), Dtv〉 .

Therefore, Dt(P (un)v) is bounded in L∞, and converges into L2 to Dtv. Finally,

D2
t (P (un)v) = D2P (un)[u̇n, u̇n]v +DP (un)[Dtu̇n]v + 2P (un)[u̇n]Dtv + P (un)D2

t v

and P is Cν−1 (and ν − 1 ≥ 2), so there exist a constant C independent of n such that

∫ Ln

0

σ2
n|D2

t (P (un)v)|2dL 1 ≤ Cσ2
n ‖v‖W2,2(S1) + Cσn ‖v‖L2(S1)

(∫ Ln

0

σ2
nκ

2(un)dL 1

) 1
2

−−−−→
n→∞ 0.

which completes the proof of the lemma. �
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For all σ > 0, define Fσ = DEσ −DE0. We have

σ2
nFσn(un) · vn = σ2

n

∫ Ln

0

2
〈
D2

t vn, Dtu̇n

〉
+ 3κ2(un) 〈u̇n, Dtvn〉 + 2 〈R(Dtu̇n, u̇n)u̇n, vn〉dL 1

≤ 2

(∫ Ln

0

σ2
n|D2

t vn|dL 1

) 1
2
(∫ Ln

0

σ2
n|Dtu̇n|dL 1

) 1
2

+ 3 ‖Dtvn‖L∞(S1)

∫ Ln

0

σ2
nκ

2(un)dL 1

+2 ‖R‖L∞(M) ‖vn‖L2(S1) σn

(∫ Ln

0

σ2
nκ

2(un)dL 1

) 1
2

−−−−→
n→∞ 0

whereas ∫ Ln

0

〈Dtvn, u̇n〉dL 1 −−−−→
n→∞

∫ L

0

〈Dtv, u̇〉dL 1.

As for all n ∈ N, un is a critical point of Eσn , we have

DEσn(un) · vn =
∫ Ln

0

〈Dtvn, u̇n〉dL 1 + σ2
nFσn(un) · vn = 0

so we deduce ∫ L

0

〈Dtv, u̇〉 dL 1 = 0

for all v ∈ W2,2
u (S1, TM), i.e. u is a distributional solution of

d2

dt2
u+ I(u̇, u̇) = 0 (7.5)

where I is the second fundamental form of the immersion u : S1 → (Mm, h). This implies that
d2

dt2
u ∈

L∞([0, L],M), so u ∈ W2,∞([0, L]), and by a immediate bootstrap argument, we get that actually u ∈ Cν([0, L]),
|u̇| = 1,

Dtu =
d2

dt2
u+ I(u̇, u̇) = 0 (7.6)

We conclude that u is a non-trivial closed geodesic of length β(0) > 0. �

8. Admissible family construction

Theorem 8.1. Let (Mm, h) a compact Riemannian manifold of class Cν (ν ≥ 3). We assume if Mm is simply
connected that the first non-trivial class of higher homotopy group is homotopic to an immersion. Then there
exists an admissible set A in W2,2(S1,M), in the sense of Definition 6.1.

Proof. Since Mm is a compact manifold, Hm(Mm,Z) � Z hence there exists k ≤ m such that πk(M) �= {1}.
According to Hurewicz theorem, if π1(M) = 1 (otherwise, we can minimize directly on a non-trivial homotopy
class), there exists and integer k such that Hi(M) = {1} for all i < k, Hk(M) �= {1}, then πi(M) = {1} for all
i < k, and πk(M) � Hk(M). As Hm(Mm,Z) � Z, there exist k ≤ m such that πk(M) �= {1}. Let f : Sk → M
a continuous homotopically non-trivial. We may assume that f is of class Cν , because according to Whitney
theorem, every continuous map between manifolds is homotopic to a regular map (see [24, 55]). We further
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assume by hypothesis that f is an immersion. On Sk let us consider the following canonical sweep-out (see
Fig. 1)

{x3 = 1 − 2t3, . . . , xk+1 = 1 − 2tk+1} (8.1)

where t3, . . . , tk+1 ∈ [0, 1]. This gives a map g : Sk → Sk of degree 1. Write, for t ∈ [0, 1]k−1, ut : S1 → Sk the
circle defined by (8.1). Then for all but finitely t ∈ [0, 1]k−1, ut is an immersed curve. We define

A =
{
{ϕ ◦ f ◦ ut}t∈[0,1]k−1 , ϕ ∈ Homeo 0(W2,2

ι (S1,M))
}

where Homeo 0(W2,2
ι (S1,M)) is the set of locally Lipschitz homeomorphisms of W2,2

ι (S1,M) isotopic to the
identity map. The manifold (Mm, g) being compact, its injectivity radius inj(M) is positive. Let us show that
for all ϕ ∈ Homeo 0(W2,2

ι (S1,M)),

sup
t∈[0,1]k−1

L(ϕ ◦ f ◦ ut) ≥ inj(M). (8.2)

We argue by contradiction. If if (8.2) is not satisfied, for all t ∈ [0, 1]k−1, the curve ϕ ◦ f ◦ ut : S1 → M is
null-homotopic. This implies that ϕ ◦ f ◦ g is null-homotopic. Now ϕ is isotopic to the identity map, so ϕ ◦ f ◦ g
is homotopic to f ◦ g. But as g : Sk → Sk is a degree one map, and f : Sk → M homotopically non-trivial,
f ◦ g : Sk →M cannot be null-homotopic. We deduce that

β(0) = inf
A∈A

sup
u∈A

L(u) ≥ inj(M) > 0,

which concludes the proof of the theorem. �

Remark 8.2. We remark that in case of m = 2, if M2 is not simply connected, the existence of closed geodesics
is trivial, and otherwise, M2 is diffeomorphic to the two-sphere S2, so and using the same argument furnishes
an admissible family. Furthermore, if the first non-trivial map f : Sk →Mm is such that 2k ≤ m, as immersions
are generic [24], the hypothesis is empty. We also remark that one could replace this construction by a more
elaborated one using regular homotopy: if there exists k ≤ m such that π1(Imm(Sk,Mm)) �= {0}, then we
can also produce an admissible family by an immediate adaptation of this argument. We do not know if this
condition always holds for a simply connected compact manifold Mm.

9. Lower semi-continuity of the index

Motivating by the construction by a min-max viscosity method of minimal surfaces of given index, we aim
at proving here that the index of the constructed curves in lower semi-continuous.

Definition 9.1. Let σ ≥ 0, and u a critical point of Eσ. The index of u, noted Ind(u) ∈ N ∪ {∞}, is equal
to the dimension of the larger subspace of W2,2

u (S1, TM), on which the second derivative D2Eσ(u) (defined
by (4.1)) is negative semi-definite.

The proof of the index lower semi-continuity will be an easy consequence of the following lemma.

Lemma 9.2. Let {σn}n∈N
a sequence of positive real numbers converging to 0. If {un}n∈N

is a sequence of
critical points associated to {Eσn}n∈N

, such that {un}n∈N
(resp. {u̇n}n∈N

) converge in L∞ (resp. almost every-
where) to a closed non-trivial geodesic u ∈ W2,2

ι (S1,M) (resp. to u̇) of length L > 0. If {vn}n∈N
is a sequence

verifying vn ∈ W2,2
un

(S1, TM), vn
L∞−−−−→

n→∞ v ∈ W2,2
u (S1, TM), Dtvn

L2−−−−→
n→∞ Dtv, {vn}n∈N

is bounded in L∞, and∫
S1
σ2

nκ
2(un)|u̇n|dL 1 −−−−→

n→∞ 0,
∫

S1
σ2

n|D2
t vn|2|u̇n|dL 1 −−−−→

n→∞ 0.
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Then

D2Eσn(un)[vn, vn] −−−−→
n→∞ D2E0(u)[v, v] =

∫ L

0

(
|Dtv|2 − 〈Dtv, u̇〉2 − 〈R(u̇, v)v, u̇〉

)
dL 1.

Proof. The hypothesis implies that {vn}n∈N
is bounded in L∞(S1,M), and in W1,2(S1,M). Furthermore,

Theorem 7.1 shows that {u̇n}n∈N
converges to Lp(S1,M) (if Ln = L(u), we have Ln −−−−→

n→∞ L) for all 1 ≤ p <∞
according to Lebesgue’s dominated convergence theorem.

All estimates are elementary, using only Cauchy−Schwarz inequality, and otherwise, R being a Cν−2 (ν−2 ≥
1) tensor on the compact Cν manifold (M, g) implies that

max{‖R‖L∞(M) , ‖∇R‖L∞(M)} <∞

As for all n ∈ N, |u̇n| = 1,

sup
n∈N

‖∇u̇nR‖L∞(M) ≤ ‖∇R‖L∞(M) <∞

sup
n∈N

‖∇vnR‖L∞(M) ≤ ‖∇R‖L∞(M) sup
n∈N

‖vn‖L∞(S1) <∞

We have

σ2
n

∫ Ln

0

|D2
t vn|2 + |R(vn, u̇n)u̇n|2dL 1 ≤

∫ Ln

0

σ2
n|D2

t vn|2dL 1 + σ2
n ‖R‖L∞(M) ‖vn‖2

L2([0,Ln]) −−−−→n→∞ 0

We write

Kn =
(∫

S1
σ2

nκ
2(un)|u̇n|dL 1

) 1
2

=

(∫ Ln

0

σ2
nκ

2(un)dL 1

) 1
2

−−−−→
n→∞ 0.

We estimate the other terms as following.

σ2
n

∣∣∣∣∣
∫ Ln

0

(
4 〈Dtvn, u̇n〉2 + 2 〈Dtvn, u̇n〉 − |Dtvn|2 + 〈R(u̇n, vn)vn, u̇n〉

)
κ2(un)dL 1

∣∣∣∣∣
≤
(
4 ‖Dtvn‖2

L∞([0,Ln]) + 2 ‖Dtvn‖L∞([0,Ln]) + ‖R‖L∞(M) ‖vn‖L∞([0,Ln])

)
K2

n

σ2
n

∣∣∣∣∣
∫ Ln

0

(〈
D2

t vn, u̇n

〉
+ 〈Dtvn, Dtu̇n〉

)2
dL 1

∣∣∣∣∣ ≤ 2
∫ Ln

0

σ2
n

∥∥D2
t vn

∥∥2
L2([0,Ln])

+ 2 ‖Dtvn‖2
L∞([0,Ln])K

2
n

σ2
n

∣∣∣∣∣
∫ Ln

0

〈∇u̇nR(vn, u̇n)vn, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖∇R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖vn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

〈∇vnR(vn, u̇n)u̇n, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖vn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

〈R(Dtvn, u̇n)vn, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖∇R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖Dtvn‖L2([0,Ln])Kn
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σ2
n

∣∣∣∣∣
∫ Ln

0

〈R(Dtu̇n, vn)vn, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ ‖R‖L∞(M) ‖vn‖2
L∞([0,Ln])K

2
n

σ2
n

∣∣∣∣∣
∫ Ln

0

〈R(vn, u̇n)Dtvn, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖Dtvn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

〈R(u̇n, Dtvn)u̇n, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖R‖L∞(M) ‖Dtvn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

〈R(vn, u̇n)Dtvn, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖Dtvn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

〈Dtvn, u̇n〉 〈R(vn, u̇n)u̇n, Dtu̇n〉dL 1

∣∣∣∣∣ ≤ σn ‖R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖Dtvn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

〈Dtvn, u̇n〉
(〈
D2

t vn, Dtu̇n

〉− 2 〈Dtvn, u̇n〉κ2(un) + 〈R(vn, u̇n)u̇n, Dtu̇n〉
)
dL 1

∣∣∣∣∣
≤ σ2

n ‖Dtvn‖L∞([0,Ln])

∥∥D2
t vn

∥∥2
L2(S1)

Kn + 2 ‖Dtvn‖2
L∞([0,Ln])K

2
n

+ σn ‖R‖L∞(M) ‖vn‖L∞([0,Ln]) ‖Dtvn‖L2([0,Ln])Kn

σ2
n

∣∣∣∣∣
∫ Ln

0

(
|Dtvn|2 − 〈Dtvn, u̇n〉2 − 〈R(u̇n, vn)vn, u̇n〉

)
κ2(un)dL 1

∣∣∣∣∣
≤
(
‖Dtvn‖2

L∞([0,Ln]) + ‖R‖L∞(M) ‖vn‖2
L∞([0,Ln])

)
K2

n.

Finally, the unit vector sequence {u̇n}n∈N
converge almost everywhere to u̇ (which is also a unit vector), so we

can apply Lebesgue’s dominated convergence theorem to get∫
S1

(
|∇ u̇n

|u̇n|
vn|2 −

〈
∇ u̇n

|u̇n|
vn,

u̇n

|u̇n|
〉2

−
〈
R

(
u̇n

|u̇n| , vn

)
vn,

u̇n

|u̇n|
〉)

|u̇n|dL 1

−−−−→
n→∞

∫
S1

(
|∇ u̇

|u̇|
v|2 −

〈
∇ u̇

|u̇|
v, u̇
〉2

−
〈
R

(
u̇

|u̇| , v
)
v,

u̇

|u̇|
〉)

|u̇|dL 1,

which completes the proof of the lemma. �

Theorem 9.3. Under the hypothesis of 7.1, if {un}n∈N
is the sequence of critical points associated to {Eσn},

to a non-trivial closed geodesic u ∈ W2,2
ι (S1,M), we have

Ind(u) ≤ lim inf
n→∞ Ind(un).
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Proof. If v ∈ W2,2
u (S1, TM), and P (un) is the orthogonal projection Rq → TunM , if vn = P (un), la suite

{vn}n∈N
thanks of Lemma 7.2, {vn}n∈N

satisfies the hypothesis of Lemma 9.2. If v1, . . . , vI ∈ W1,2(S1,M) is
a free orthonormal family in L2(S1,M) such that D2E0 is negative semi-definite on Span

{
v1, . . . , vI

}
, then, if

vj
n = P (un)vj , the family

{
v1

n, . . . , v
I
n

}
is free in W2,2

un
(S1,M), for n large enough. As D2E0(u)[vj , vj ] < 0, we

have
D2Eσn(un)[vn, vn] −−−−→

n→∞ D2E0(u)[vj , vj ] < 0

so for n large enough, D2Eσn(un)[vn, vn] < 0, and
{
v1

n, . . . , v
I
n

}
is free, thus

I ≤ lim inf
n→∞ Ind(un).

This implies that

Ind(u) ≤ lim inf
n→∞ Ind(un).

which concludes the proof of the theorem. �

10. Counter-examples

10.1. Counter-examples in dimension 1

Let (M2, h) a compact C3 Riemannian surface of constant Gauss curvature KM ∈ R (which is just equal to
the sectional curvature in our convention). Let σ > 0, and uσ a critical point of Eσ. We know that u is C2 and
satisfies (10.1)

Dtu̇ = σ2
{
Dt

(
2D2

t u̇+ 3κ2u̇
)

+ 2R(Dtu̇, u̇)u̇
}

(10.1)

Let ν a normal vector to the curve u, and k the signed curvature, defined as

Dtu̇ = kν

As 〈Dtu̇, u̇〉 = 0, k is well-defined. Moreover, Frénet equations in dimension 2 imply that

Dtν = −ku̇,

so

D2
t u̇ = k̇ν − k2u̇,

D3
t u̇ = k̈ν + k̇(−ku̇) − 2k̇ku̇− k2(kν) = k̈ν − 3k̇ku̇− k3ν.

As

Dt(k2u̇) = 2k̇ku̇+ k3ν

the equation (10.1) is equivalent to

kν = σ2(2k̈ + k3)ν + 2σ2kR(ν, u̇)u̇

Taking the scalar product with ν, we get

kσ(t) = σ2(2k̈σ(t) + k3
σ(t) + 2KMkσ(t)) (10.2)

We can explicitly solve this equation thanks of the Jacobi elliptic functions (see [13, 33]).
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Let 0 ≤ p < 1, we define fp : R → R

fp(t) =
∫ t

0

dθ√
1 − p2 sin2 θ

(10.3)

and Jacobi elliptic functions sn, cn and dn as

sn(t, p) = sin f−1
p (t)

cn(t, p) = cos f−1
p (t)

dn(t, p) =
√

1 − p2sn2(t)

and the function K : [0, 1[→ R+ by

K (p) = fp

(π
2

)
=
∫ π

2

0

dθ√
1 − p2 sin2 θ

·

The functions sn, cn, are 4K -periodic, and dn is 2K -periodic. If we write snp = sn(·, p), cnp = cn(·, p),
dnp = dn(·, p), we have

˙snp = cnpdnp

˙cnp = −cnpdnp

˙dnp = −p2snpcnp

and if dn = dn(·, p) (0 ≤ p < 1),

d̈n + 2dn3 − (2 − p2)dn = 0.

The function t 
→ u(t) = a dn(bt, p), u is a solution of the differential equation

ü+ 2
(
b

a

)2

u3 − b2(2 − p2)u = 0

Fix 0 ≤ p < 1, we have

kσ(t) = ±
(

1
σ2

2(1 − 2σ2KM )
(2 − p2)

) 1
2

dn

((
1 − 2σ2KM

2(2 − p2)

) 1
2 t

σ
, p

)
(10.4)

and

σ2k2
σ(t) = 2

1 − 2σ2KM

2 − p2

(
1 − p2sn2

((
1 − 2σ2KM

2(2 − p2)

) 1
2 t

σ
, p

))
If C(σ) is the constant

C(σ) =
(

1 − 2σ2KM

2(2 − p(σ)2)

) 1
2

Then, k2
σ is a 2σC(σ)−1K (p(σ))-periodic function and L(σ)-periodic (L(σ) = L(u)). Thus there existsm(σ) ∈ N

such that L(σ) = 2σm(σ)C(σ)−1K (p(σ)). In particular (see [33], p. 19),∫ L(σ)

0

σ2k2
σ(t)dt = 8σm(σ)C(σ)

∫ K (σ)

0

dn2
p(σ)(t)dt

= 4σm(σ)

√
2 − 4σ2KM

2 − p(σ)2

∫ π
2

0

√
1 − p(σ)2 sin2(t)dt
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If {σn}n∈N
is a sequence of positive numbers converging to 0 such that

L = lim
n→∞L(σn) > 0,

if p(σn) −−−−→
n→∞ p ∈ [0, 1[, we have K (p(σn)) −−−−→

n→∞ K (p) ∈
[π
2
,∞
)

and

∫ L(σn)

0

σ2
nk

2
σn

(t)dt =
2L(σn)C(σn)2

K (p(σn))

∫ π
2

0

√
1 − p(σn)2 sin2(t)dt

−−−−→
n→∞

4L
(2 − p2)K (p)

∫ π
2

0

√
1 − p2 sin2(t) dt > 0, (10.5)

which give a family of counter-examples, as we will see in next section.

10.1.1. Explicit counter-example on S2

The goal of this section is to prove the following result.

Proposition 10.1. On S2 equipped with its standard metric, let A the admissible set of curves given by the
canonical sweep-out on S2. There exists a sequence {σn}n∈N

of positive real numbers converging to 0 and a
sequence of critical points {un}n∈N

of {Eσn}n∈N
, and a curve u ∈ W1,2(S1,M), such that

Eσn(un) −−−−→
n→∞ β(0) = π, L(un) −−−−→

n→∞
π

2

and

un
L∞−−−−→

n→∞ u strongly, un
W1,2−−−−→
n→∞ u weakly, and u̇n �−−−−→

n→∞ u̇ a.e.

Furthermore, there exists a negligible subset N ⊂ S1 such that {u̇n(t)}n∈N
has no limit point for all t ∈ S1 \N ,

and for all open interval I ⊂ S1,

L(u|I) < lim inf
n→∞ L(un|I).

Proof. The shortest closed geodesics on S2 equipped with the standard metric are of length π (the great circles).
We choose p = 0 in and define

uσ(t) =
σ

(1 − 2σ2)
1
2

(
cos
(

(1 − 2σ2)
1
2
t

σ

)
, sin
(

(1 − 2σ2)
1
2
t

σ

)
,
(1 − 2σ2)

1
2

σ

√
1 − σ2

1 − 2σ2

)

then |u̇σ| = 1, and on S2,

Dtu̇σ(t) = üσ(t) = − (1 − 2σ2)
1
2

σ
uσ(t)

so

k(uσ(t)) = − (1 − 2σ2)
1
2

σ

and uσ is a critical point of Eσ for all σ > 0. And for all {σn}n∈N
converging to 0,

uσn

L∞−−−−→
n→∞ (0, 0, 1)
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and as C(σ) =
1
2
(1 − 2σ2)

1
2 , K (0) =

π

2
, we have

Eσ(uσ) = 2L(σ)(1 − σ2) = 4πσm(σ)
1 − σ2

(1 − 2σ2)
1
2
,

where m(σ) is an arbitrary integer. So if we choose

σn =
1
4n
, m(σn) = n

then writing un = uσn ,

Eσn(un) −−−−→
n→∞ π = β(0), L(un) −−−−→

n→∞
π

2
=
β(0)

2

while

un
L∞

−−−−→
n→∞ u ≡ (0, 0, 1)

and according to Riemann−Lebesgue lemma, {u̇n}n∈N
converges weakly in L2 to u̇ = 0, and if we consider

{u̇n}n∈N
as a sequence of functions on R (extended by periodicity), for all t ∈ R/Q, {u̇n(t)}n∈N

has no limit
point (as for all α ∈ R/Q, {cos(nα)}n∈N

and {sin(nα)}n∈N
are dense in [−1, 1]). So finally, we have

un −−−−→
n→∞ u weakly in W1,2(S1, S2)

and for all open interval I ⊂ S1,

0 = L(u(I)) < lim inf
n→∞ L(un(I)) =

π

2
L 1(I).

which concludes the proof of the proposition. �

10.1.2. Surfaces of Constant Gauss Curvature

Proposition 10.2. Let (M2, h) a compact Riemannian surface of constant Gauss curvature, and β(0) is the
length of the shortest closed geodesic in (M2, g). For all 1 ≤ 2ε < 2, there exists a sequence of positive numbers
{σn}n∈N

converging to 0, and a sequence of critical points {un}n∈N
associated to {Eσn}n∈N

such that

Eσn(un) −−−−→
n→∞ β(0), L(un) −−−−→

n→∞ εβ(0)

and

un
L∞−−−−→

n→∞ u strongly, un
W1,2−−−−→
n→∞ u weakly, and u̇n �−−−−→

n→∞ u̇ a.e.

and

L(u) < lim inf
n→∞ L(un).

Proof. We fix 0 ≤ p < 1, and recall that KM ∈ R is the Gauss curvature. We consider a sequence {un}n∈N

of critical points of {Eσn}n∈N
given by (10.4) (i.e. the solutions of Dtu̇ = kν, where we choose {σn}n∈N

and
{m(σn)}n∈N

such that

Eσn(un) −−−−→
n→∞ β(0)
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The sequence {un}n∈N
is bounded in W1,2(S1,M), so we can extract a subsequence (still denotes {un}n∈N

)
strongly converging in L∞(S1,M), and weakly converging in W1,2(S1,M) to a function u ∈ W1,2(S1,M).

For all interval I ⊂ [0, L] such that I ⊂ [0, Ln] for n large enough, we have

L(u|I)2 =
(∫

I

|u̇|dL 1

)2

≤ |I|
∫

I

|u̇|2dL 1 ≤ |I| lim inf
n→∞

∫
I

|u̇n|2dL 1

and {un}n∈N
is in arc-length parametrization, so

L(un)2 = |I|
∫

I

|u̇n|2dL 1

and

L(u|I) ≤ lim inf
n→∞ L(un|I). (10.6)

Furthermore, we have

L(u) < lim inf
n→∞ L(un). (10.7)

We prove this assertion by contradiction. Assume that we have the equality in 10.7, then {u̇n}n∈N
converges

almost everywhere to u̇, and in particular,

Ln = L(un) −−−−→
n→∞ L(u) = L,

and u ∈ W2,2
ι (S1,M), as we can pass to the limit in the arc-length expression |u̇n| = 1. Thanks of the proof of

theorem (7.1), for all v ∈ W2,2
u , if vn = P (un)v we have∫ Ln

0

〈u̇n, Dtvn〉 = −3
∫ Ln

0

σ2
nκ

2(un) 〈u̇n, Dtvn〉 + o(1) (10.8)

and {Dtvn}n∈N
is bounded in L∞, so {〈u̇n, Dtvn〉}n∈N

is bounded in L∞ and is a sequence of continuous
functions, while

{
σ2

nκ
2(un)

}
n∈N

converges weakly in L2 to 1. Indeed,

σ2
nκ

2(un) =
2(1 − 2σ2

nKM )
2 − p2

(
1 − p2

2

)
+
p2(1 − 2σ2

nKM )
2 − p2

cnp

((
2(1 − 2σ2

nKM )
2 − p2

) 1
2 t

σ

)
and the last term converges weakly in L2 to 0 according to Riemann−Lebesgue theorem. So we can pass to the
limit in (10.8) to find that ∫ L

0

〈u̇, Dtv〉 = −3
∫ L

0

〈u̇, Dtv〉dL 1

so u is a closed geodesic. As we have chosen {σn}n∈N
, and {m(σn}) such that

Eσn(un) −−−−→
n→∞ β(0),

then

L = ε(p)β(0) =

(
1 +

4
(2 − p2)K (p)

∫ π
2

0

√
1 − p2 sin2(t)dt

)−1

β(0) < β(0)

so u is a non-trivial closed geodesic of length strictly inferior that the length of the shortest closed geodesic,
which yields the desired contradiction. Finally as 0 ≤ p < 1, and

ε(p) −−−→
p→0

1
2
, ε(p) −−−→

p→1
1,

this completes the proof of the proposition. �
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10.1.3. General Surfaces

In the case of a general surface, we get

kσ(t) = σ2
(
2k̈σ(t) + k3

σ(t) + 2K (u̇(t), ν(t)) kσ(t))
)

(10.9)

where K(u̇(t), ν(t)) is the sectional curvature of the 2-plan u̇(t)∧ν(t). Let K+
M (resp. K−

M ) the maximum (resp.
minimum) of sectional curvature of (M, g). If s is the sign function

k̈σ(t) +
1
2
k3

σ(t) +
(
K

s(kσ(t))
M − 1

2σ2

)
kσ(t) ≥ 0,

k̈σ(t) +
1
2
k3

σ(t) +
(
K

−s(kσ(t))
M − 1

2σ2

)
kσ(t) ≤ 0.

If we write C(σ,K) =
(

1 − 2σ2K

2(2 − p(σ)2)

)
, an elementary application of comparison principle implies that there

exists a solution kσ of (10.9) such that

2
σ
C(σ,K+

M )dn
(
C(σ,K+

M )
t

σ
, p(σ)

)
≤ kσ(t) ≤ 2

σ
C(σ,K−

M )dn
(
C(σ,K−

M )
t

σ
, p(σ)

)
. (10.10)

Furthermore, thanks of a result of Joel Langer and David A. Singer [33], we can extend this procedure to
get counter-examples in any dimension m ≥ 2. Finally inequality (10.10) permits to extend the result of the
general result of the previous subsection.

Proposition 10.3. If (M2, h) is a Riemannian surface, for all β > 0, for all 1 < 2ε < 2, there exists a sequence
of positive numbers {σn}n∈N

converging to 0, and a sequence of critical points {un}n∈N
associated to {Eσn}n∈N

such that

Eσn(un) −−−−→
n→∞ β, L(un) −−−−→

n→∞ εβ

and

un
L∞

−−−−→
n→∞ u strongly, and un

W1,2

−−−−→
n→∞ u weakly, u̇n �−−−−→

n→∞ u̇ a.e.

and

L(u) < lim inf
n→∞ L(un).

10.2. Counter-examples in dimension 2

Thanks of an article of Pinkall (see [41]), if u is a critical point of Eσ, then thanks of the Hopf fibration,
we can create an Hopf torus which is a critical point of the Willmore energy. We will take slightly different
conventions than the article of Pinkall. Let p : S3 → S2 the map defined by

p(w, z) = (|w|2 − |z|2, 2wz)

for all (w, z) ∈ S3, where
S3 = C2 ∩ {(w, z) : |w|2 + |z|2 = 1

}
.

We recall that p is surjective, and we see that it is invariant by the action of S1 by rotation. It will be
convenient for computations to use quaternions for writing the Hopf fibration. Le q 
→ q̃ is the real vector space
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automorphism such that q leaves 1, j and k unchanged, and which sends i to −i. It is easy to verify that the
Hopf fibration is given by

p(q) = q̃q

if we identify q = (w, z) ∈ S3.
Let γ a curve γ : [0, L] → S2 a closed curve of length L > 0. Let Γ a lift of γ by the fibration p, i.e. a curve

Γ : [0, L] → S3 such that p◦Γ = γ. We now parametrize Γ by arc-length, and we defined the Hopf torus of γ as

Γ (t, θ) = eiθΓ (t)

and assume that t 
→ Γ̇ (t) is orthogonal to ∂θΓ . As Γ �= 0, Γ̇ is proportional to Γ in H: there exists a smooth
function λ : [0, L] → H such that

Γ̇ (t) = λ(t)Γ (t), ∀t ∈ [0, L].

Moreover,
〈
Γ̇ , Γ
〉

= 0 implies that Reλ = 0, and as ∂tΓ is proportional to ∂θΓ , λ is orthogonal to eiθ for all

θ ∈ S1, so λ ∈ Span(j, k). To produce the counter-example, we now proceed with the derivation of the mean
curvature of the Hopf torus Γ .

We have

γ̇ = 2Γ̃λΓ.

so |γ̇| = 2. We should be now careful that γ : [0, L
2 ] → S2, and Γ : [0, L

2 ] × S1 → S3. We can easily check that
n : [0, L

2 ] → S3 is a unit normal vector field to the surface Γ , if

n(t, θ) = ieiθλ(t)Γ (t).

If we define the function κ by the formula

λ′ = 2iκλ,

then {
∂tn(t, θ) = −2κ(t)∂tΓ (t, θ) − ∂θΓ (t, θ)
∂θn(t, θ) = −∂tΓ (t, θ)

and κ is also the curvature of the curve γ. Indeed,

γ̈ = 2Γ̃λ′Γ − 4γ

so

∇ γ̇
|γ̇|

γ̇

|γ̇| =
1
4
4κΓ̃ iλΓ = κν

if ν is the normal of γ. If we had taken in the beginning a curve parametrized by arc-length, and if we write γ0

the new curve in the arc-length parametrization of Γ , then

γ0(t) = γ(2t),

and if we now write the curvature with the original curve, we get{
∂tn(t, θ) = −2κ(t)∂tΓ (t, θ) − ∂θΓ (t, θ)
∂θn(t, θ) = −∂tΓ (t, θ).

(10.11)



A VISCOSITY METHOD FOR THE MIN-MAX CONSTRUCTION OF CLOSED GEODESICS 1317

The mean curvature is defined as

H(t, θ) =
1
2
Tr dn(t, θ)

and the Gaussian curvature by

K(t, θ) = det dn(t, θ).

With the new convention about κ, we have

H(t, θ) = κ(2t), K(t, θ) = −1.

We now define the Willmore σ-energy, by

Wσ(�Φ) =
∫

Σ

(1 + σ2| �H |2)dvolg

is H is a the average of the principal curvature of an immersion �Φ from a Riemannian surface Σ in S3. Then �Φ
is a critical point of Wσ if and only if

2H = σ2(ΔgH + 2H(H2 − 2K)) (10.12)

if Δg is the Laplace operator for the metric g induced by �Φ on Σ by the metric of S3, and K is the Gauss
curvature. As |∂tΓ | = |∂θΓ | = 1, and ∂tΓ is orthogonal to ∂θΓ , we have

ΔgH(t, θ) =
d2

dt2
κ(2t) = 4κ̈(2t)

so (10.12) is equivalent to

2κ(2t) = σ2(4κ̈(2t) + 2κ(2t)3 + 4κ(2t))

which is equivalent to

κ = σ2(2κ̈+ κ3 + 2κ).

This last expression is nothing else than (10.1), so Γ is a critical point of Wσ if and only if γ is a critical point
of Eσ. And

Wσ(Γ ) =
∫

[0, L
2 ]

(1 + σ2κ(2t))dt dθ = πEσ(γ).

Furthermore, the second fundamental form |IΓ |2 of Γ is equal to 4H2 − 2K = 4κ2 + 2, so

Aσ(Γ ) =
∫

Γ

(1 + σ2|IΓ |2)dvolg =
∫

[0, L
2 ]×S1

(1 + 2σ2 + 4σ2κ2(2t))dtdθ

= (1 + 2σ2)πEσ′ (γ), σ′ =
2σ√

1 + 2σ2
·

and as |I|2 depends only of H , Γ is a critical point of Aσ if and only if it is a critical point of Wσ′ , every
1-dimension elliptic Jacobi function constructed in the preceding section can be lifted to a critical point of Aσ.
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Proposition 10.4. For all β > 0, there exists a sequence {σn}n∈N
of positive real numbers converging to 0,

a sequence of flat torii
{
T 2

n

}
n∈N

converging to a torus T 2, and a sequence {�Φn : T 2
n → S3}n∈N of conformal

immersions which are critical points associated to {Aσn}n∈N
, such that

lim
n→∞Aσn(�Φn) = β, lim

n→∞ H 2(�Φn(T 2
n)) =

β

2
,

and {�Φn}n∈N weakly converges to a limiting map �Φ ∈ W1,2(T 2, S3), but {�Φn}n∈N nowhere strongly converges;
for all open subset U ⊂ T 2

H 2(�Φ(T 2 ∩ U)) < lim inf
n→∞ H 2(�Φn(T 2

n ∩ U)).

Proof. The proof is now an easy consequence of (10.7), as we can lift the degenerate family of critical {un}n∈N

constructed in the preceding subsection in a family of immersions {�Φn}n∈N which are critical points of {Aσn}**,
where for all n ∈ N,

Tn = [0, an] × S1 = R2/ (an + 2πi) Z2

(
an =

Ln

2

)
·

As Ln −−−−→
n→∞ L, and the lifted curves are conformal immersions {�Φn}n∈N such that

|∂t
�Φn| = |∂θ

�Φn| = 1,

this sequence is bounded in W1,2(S1,M), so converges weakly to an element �Φ ∈ W1,2(S1,M), and thanks of
Proposition 10.1, for all open subset U ⊂ T 2

H 2(�Φ(T 2 ∩ U)) < lim inf
n→∞ H 2(�Φn(T 2

n ∩ U)),

which concludes the proof. �

Appendix A. completeness of the space of immersions

Let (Mm, h) ⊂ Rq a Cν (ν ≥ 3) embedded Riemannian submanifold of Rq. We recall the definitions

W2,2(S1,M) = W2,2(S1,Rq) ∩ {γ : γ(t) ∈M for L 1 almost all t ∈ S1
}

W2,2
ι (S1,M) = W2,2(S1,M) ∩ {γ : γ̇(t) �= 0 for L 1almost all t ∈ S1

}
and for all γ ∈ W2,2

ι (S1,M), we define

W2,2
γ (S1, TM) = W2,2(S1,Rq) ∩ {v : v(t) ∈ Tγ(t)M for L 1almost all t ∈ S1

}
.

Then we define for all γ ∈ W2,2
ι (S1,M) the following norm for v ∈ W2,2

γ (S1, TM)

‖v‖γ =
(∫

S1

(
|v|2 + |∇v|2g + |∇2v|2g

)
dvolg

) 1
2

where g = γ∗h (locally g = |γ̇|dL 1), and ∇ = γ∗∇h is the pull-back of the Levi−Civita connection ∇h of
(Mm, h). We first make a the following simple remark that this norm controls the L∞ norm of |∇v|g. Indeed,

**Changing the σn of the 1-dimensional counter-example into σ′
n.



A VISCOSITY METHOD FOR THE MIN-MAX CONSTRUCTION OF CLOSED GEODESICS 1319

we have by Cauchy−Schwarz inequality, taking arc-length parametrisation (where L = L(u))∫
S1

|∇2v|2dvolg =
∫ L

0

|∇2
∂tγv|2dt

≥ 1
L

(∫ L

0

|∇∂tγ(∇∂tγv)|dt
)

≥ 1
L
‖|∇γtv|‖2

L∞([0,L])

=
1
L
‖|∇v|g‖2

L∞(S1)

so

‖|∇v|g‖L∞(S1) ≤
√
L

(∫
S1

|∇2v|2gdvolg

) 1
2

≤ L(γ) ‖v‖γ . (A.1)

and in particular, the factor |∇v|2g is irrelevant, and only added for convenience in the proof of the following
theorem.

Then, by an immediate adaptation of the arguments in the book of Klingenberg for the case W1,2(S1,M)
([27], 1.2), W2,2(S1,M) is a complete C2 Hilbert submanifold of the Hilbert space W2,2(S1,Rq). As W2,2

ι (S1,M)
is an open subset of W2,2(S1,M), it is also a C2 Hilbert manifold and for all γ ∈ W2,2

ι (S1,M) the tangent
space TγW2,2

ι (S1,M) is simply

TγW2,2
ι (S1,M) = W2,2

γ (S1, TM).

Therefore, equipped with the family of norms
{ ‖ · ‖γ

}
γ∈W2,2

ι (S1,M)
, the space of immersions W2,2

ι (S1,M) is
a C2 Finsler manifold taking local trivialisation induced by the preceding Hilbert manifold structure. Then if
γ0, γ1 ∈ W2,2

ι (S1,M), we define

d(γ0, γ1) = inf
{∫ 1

0

‖∂sγ(s, ·)‖γ(s,·) ds : γ ∈ C1([0, 1],W2,2
ι (S1,M)), γ(0) = γ0, γ(1) = γ1

}
A classical result of Palais [39] asserts that d is a distance on W2,2

ι (S1,M). However, this construction does not
address the problem of completeness of W2,2

ι (S1,M) equipped with this distance d, and this issue is treated in
the following theorem.

Theorem A.1. The Finsler manifold (W2,2
ι (S1,M), d) is a complete metric space.

Proof. We first need a simple form of Grönwall’s lemma

Lemma A.2. Let f ∈ C1([0, 1]), g ∈ L1([0, 1]), such that for all s ∈ (0, 1)

f ′(s) ≤ g(s)(1 + f(s)).

Then for all s ∈ [0, 1], we have

f(s) ≤ −1 + (1 + f(0))e
∫

s
0 g(τ)dτ .

Proof. We simply differentiate

F (s) = (1 + f(s)) e−
∫

s
0 g(τ)dτ

to get F ′(s) ≤ 0. Therefore F is decreasing and F (s) ≤ F (0) for all s ∈ [0, 1], which implies the afore mentioned
conclusion. �

We now come back to the proof of the theorem.
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Step 1. Uniform control of the W2,2 Finsler norm.
Let γ ∈ C1([0, 1],W2,2

ι (S1,M)) a path such that

E (γ) =
∫ 1

0

‖∂sγ(s, ·)‖γ(s,·) ds <∞

We want to make sure that under this hypothesis, we have γ(1) ∈ W2,2
ι (S1,M) i.e. that no degeneracy can

occur. We first check that γ1 has controlled W2,2 norm. This will actually result of an uniform control as the
W2,2 norm. We recall the notations

γt = ∂tγ, γs = ∂sγ, and γt =
γt

|γt| .

Then, if u ∈ W2,2
ι (S1,M), we make the decomposition

‖u‖2
W2,2(S1) =

∫
S1

(
|u|2 + |∇u|2g + |∇2u|2g

)
dvolg = ‖u‖2

L2(S1) + ‖u‖2
Ẇ1,2(S1) + ‖u‖2

Ẇ2,2(S1)

First by definition we have |∇γ|g = 1, so

‖γ‖Ẇ1,2(S1) =
∫

S1
|∇γ|2gdvolg =

∫
S1

dvolg =
∫

S1
|γt|dt

and by Cauchy−Schwarz inequality,

d
ds

‖γ‖2
Ẇ1,2(S1)

=
∫

S1

〈∇γt
γs, γt

〉 |γt|dt

≤
(∫

S1
|∇γs|2gdvolg

) 1
2
(∫

S1
|γt|dt

) 1
2

≤ ‖∂sγ(s, ·)‖γ(s,·) ‖γ‖Ẇ1,2(S1)

so

sup
s∈[0,1]

‖γ(s, ·)‖Ẇ1,2(S1) ≤ ‖γ(0, ·)‖Ẇ1,2(S1) +
1
2

∫ 1

0

‖∂sγ(s, ·)‖γ(s,·) ds = Γ1 (A.2)

Then we have by (A.2) and (A.1)

d
ds

‖γ‖2
L2(S1) =

d
ds

∫
S1

|γ|2dvolg =
∫

S1

(
2 〈γs, γ〉 + |γ|2 〈∇γt

γs, γt

〉) |γt|dt

≤ 2
(∫

S1
|γ|2dvolg

) 1
2
(∫

S1
|γs|2dvolg

) 1
2

+ ‖ |∇γs|g ‖L∞(S1)

∫
S1

|γ|2dvolg

≤ 2
(∫

S1
|γ|2dvolg

) 1
2
(∫

S1
|γs|2dvolg

) 1
2

+ Γ1

(∫ 1

0

|∇2γs|2dvolg

) 1
2 ∫

S1
|γ|2dvolg.

so by Young’s inequality

d
ds

‖γ(s, ·)‖2
L2(S1) ≤ (2 + Γ1) ‖∂sγ(s, ·)‖γ(s,·)

(
‖γ(s, ·)‖L2(S1) + ‖γ(s, ·)‖2

L2(S1)

)
≤ 2(2 + Γ1) ‖∂sγ(s, ·)‖γ(s,·)

(
1 + ‖γ(s, ·)‖2

L2(S1)

)
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while by Grönwall’s lemma, we have

sup
s∈[0,1]

‖γ(s, ·)‖2
L2(S1) ≤ −1 +

(
1 + ‖γ(0, ·)‖2

L2(S1)

)
e2(2+Γ1)

∫ 1
0 ‖∂sγ(s,·)‖γ(s,·)ds

≤
(
1 + ‖γ(0, ·)‖2

L2(S1)

)
e2(2+Γ1)E (γ). (A.3)

Finally we deduce by (A.1) that

d
ds

‖γ‖2
Ẇ2,2(S1)

=
d
ds

∫
S1

|∇γtγt|2|γt|−3dt

=
∫

S1
2 〈∇γs∇γtγt,∇γtγt〉 |γt|−3dt− 3

∫
S1

|∇γtγt|2 〈∇γtγs, γt〉 |γt|−5dt

= 2
∫

S1

〈∇2
γt
γs +R(γs, γt)γt,∇γtγt

〉 |γt|−3dt− 3
∫

S1
|∇2γ|2g

〈∇γt
γs, γt

〉 |γt|dt

= 2
∫

S1

(
1

|γt|4
〈∇2

γt
γs,∇γtγt

〉
+

1
|γt|2 〈R(γs, γt)γt,∇γtγt〉

)
|γt| dt− 3

∫
S1

|∇2γ|2g
〈∇γt

γs, γt

〉 |γt|dt

≤ 2
(∫

S1
|∇2γs|2gdvolg

) 1
2
(∫

S1
|∇2γ|2dvolg

) 1
2

+ 2‖R‖L∞(M)

(∫
S1

|γs|2gdvolg

) 1
2
(∫

S1
|∇2γ|2gdvolg

) 1
2

+ 3‖|∇γs|g‖L∞(S1)

∫
S1

|∇2γ|2gdvolg

≤ 2
(∫

S1
|∇2γs|2gdvolg

) 1
2
(∫

S1
|∇2γ|2dvolg

) 1
2

+ 2‖R‖L∞(M)

(∫
S1

|γs|2gdvolg

) 1
2
(∫

S1
|∇2γ|2gdvolg

) 1
2

+ 3Γ1

(∫ 1

0

|∇2γs|2dvolg

) 1
2 ∫

S1
|∇2γ|2gdvolg

so for all s ∈ [0, 1], we have by Young’s inequality

d
ds

‖γ(s, ·)‖2
Ẇ 2,2(S1) ≤ ‖∂sγ(s, ·)‖γ(s,·)

(
2(1 + ‖R‖L∞(M)) ‖γ(s, ·)‖Ẇ 2,2(S1) + 3Γ1 ‖γ(s, ·)‖2

Ẇ 2,2(S1)

)
≤
(
1 + 3Γ1 + ‖R‖L∞(S1)

)
‖∂sγ(s, ·)‖γ(s,·)

(
1 + ‖γ(s, ·)‖2

Ẇ 2,2(S1)

)
Therefore, we obtain by Grönwall’s lemma for Γ2 = 1 + +3Γ1 + ‖R‖L∞(S1)

sup
s∈[0,1]

‖γ(s, ·)‖2
Ẇ2,2(S1) ≤

(
1 + ‖γ(0, ·)‖2

Ẇ2,2(S1)

)
eΓ2E (γ) <∞ (A.4)

So finally, we obtain by (A.3), (A.2) and (A.4) for some constant 0 < C0 < ∞ (depending on E (γ) and the
curvature of M)

sup
s∈[0,1]

‖γ(s, ·)‖2
W2,2(S1) ≤ C0

(
1 + ‖γ(0, ·)‖2

W2,2(S1)

)
eC0E (γ) <∞. (A.5)

Step 2. We now want to show that γ1 is still an immersion, i.e.

sup
s∈[0,1]

‖log |γ̇(s)|‖L∞(S1) <∞.

We aim at proving the following finite energy inequality∫ 1

0

∫
S1

∣∣∣∣ ∂2

∂s∂t
log |∂tγ(s, t)|

∣∣∣∣dtds <∞.
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Abbreviating γs = ∂sγ, γt = ∂tγ, we compute by compatibility of the Levi−Civita connection, and its absence
of torsion

∂

∂t

(
∂

∂s
log |γt|

)
=

∂

∂t

( 〈∇γsγt, γt〉
|γt|2

)
=

∂

∂t

(〈
∇ γt

|γt|
γs,

γt

|γt|
〉)

=
〈
∇2

γt
|γt|

γs,
γt

|γt|
〉
|γt| +

〈
∇ γt

|γt|
γs,∇ γt

|γt|

γt

|γt|
〉
|γt|

therefore by Cauchy−Schwarz inequality∫ 1

0

∫
S1

∣∣∣∣ ∂2

∂s∂t
log |∂tγ(s, t)|

∣∣∣∣ dtds ≤ ∫ 1

0

∫
S1

(∣∣∣∇2
γt
|γt|

γs

∣∣∣ |γt| + |∇ γt
|γt|

γs|κ(γ)|γt|
)

dtds

≤
∫ 1

0

(∫
S1

|∇2γs|2g|γt|dt
) 1

2
(∫

S1
|γt|dt

) 1
2

ds+
∫ 1

0

(∫
S1

|∇γs|2g|γt|dt
) 1

2
(∫

S1
κ2(γ)|γt|dt

) 1
2

ds

Then by (A.2), we have for all s ∈ [0, 1]

C2
1 = sup

s∈[0,1]

∫
S1

|∂tγ(s, t)|dt = sup
s∈[0,1]

‖γ(s, ·)‖2
Ẇ 1,2(S1) ≤ ‖γ(0, ·)‖2

Ẇ 1,2(S1) +
1
2

∫ 1

0

‖∂sγ(s, ·)‖γ(s,·) ds

On the other hand,

κ2(γ) = |∇γt
γt|2 =

1
|γt|2

∣∣∣∣ 1
|γt|∇γtγt − 1

|γt|3 〈∇γtγt, γt〉 γt

∣∣∣∣2
=

1
|γt|2

(
1

|γt|2 |∇γtγt|2 − 2
|γt|4 〈∇γtγt, γt〉2 +

1
|γt|6 〈∇γtγt, γt〉2 |γt|2

)
=

1
|γt|4 |∇γtγt|2 − 〈∇γtγt, γt〉2

|γt|6

= |∇2γ|2g − 〈∇γtγt, γt〉2
|γt|6

≤ |∇2γ|2g
therefore by (A.4)

C2
2 = sup

s∈[0,1]

∫
S1
κ2(γ(s, ·))dvolg ≤ sup

s∈[0,1]

∥∥∇2γ(s, ·)∥∥2
Ẇ2,2(S1)

≤
(
1 + ‖γ(0, ·)‖2

Ẇ2,2(S1)

)
eΓ2E (γ) <∞

and ∫ 1

0

∫
S1

∣∣∣∣ ∂2

∂s∂t
log |∂tγ(s, t)|

∣∣∣∣ dtds ≤ max {C1, C2} E (γ) <∞

and by Sobolev injection, we get the result. Indeed, for L 1 almost all s ∈ [0, 1] we have t → ∂s log |γt(s, t)| ∈
W1,1(S1), so by Sobolev embedding W1,1(S1) ⊂ L∞(S1), we have∫ 1

0

‖∂s log |γ̇(s)| ‖L∞(S1) ds <∞.

Now we define

f : [0, 1] → R+

s 
→ ‖log |γ̇(s)|‖L∞(S1)
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and for all m ∈ N, and 0 = s0 < . . . < sn = 1, we have by the triangle inequality

n∑
i=1

|f(ti) − f(ti−1)| =
m∑

i=1

∣∣∣‖log |γ̇(si)|‖L∞(S1) − ‖log |γ̇(si−1)|‖L∞(S1)

∣∣∣
≤

n∑
i=1

‖log |γ̇(si)| − log |γ̇(si−1)| ‖L∞(S1)

=
n∑

i=1

∥∥∥∥∥
∫ si

si−1

∂s log |γ̇(s)|ds
∥∥∥∥∥

L∞(S1)

≤
n∑

i=1

∫ si

si−1

‖∂s log |γ̇(s)|‖L∞(S1) ds

=
∫ 1

0

‖∂s log |γ̇(s)|‖L∞(S1) ds

and following [19] 2.5.16, if g : R → R, and −∞ < a < b <∞, we define the total variation of g between a and
b as

Vb
a g = sup

n∑
i=1

|g(si) − g(si−1)|

corresponding to all finite sequences a = s0 < . . . < sn = b. Then by 2.9.19(2) of [19] if V b
a g <∞, the derivative

g′ exists L 1 almost everywhere on (a, b) and∫ b

a

|g′|dL 1 ≤ V b
a g <∞.

Therefore, we deduce that f is a function of bounded variation on [0, 1] and∫ 1

0

∣∣∣∂s ‖log |γ̇(s)|‖L∞(S1)

∣∣∣ds ≤ ∫ 1

0

‖∂s log |γ̇(s)| ‖L∞(S1) <∞

so f ∈W 1,1([0, 1]) so by Sobolev embedding, we conclude that

sup
s∈[0,1]

‖log |γ̇(s)| ‖L∞(S1) ≤
∫ 1

0

‖∂s log |γ̇(s)| ‖L∞(S1) ≤ max {C1, C2} E (γ) <∞. (A.6)

Therefore, γ1 is an immersion. Therefore, this inequality (A.6) together with (A.5) shows the completeness of
the metric space (W2,2

ι (S1,M), d). �
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