Pointwise Expansion of Degenerating Immersions of Finite Total

Curvature

Alexis Michelat* and Tristan Riviéere*

October 17, 2021

Abstract

Generalising classical result of Miiller-Sverdk (1995), we obtain a pointwise estimate of the confor-
mal factor of sequences of conformal immersions from the unit disk of the complex plane of uniformly
bounded total curvature and converging strongly outside of a concentration point towards a branched
immersions for which the quantization of energy holds. We show that the multiplicity associated
to the conformal parameter becomes eventually constant to an integer equal to the order of the
branch point of the limiting branched immersion. Furthermore, we deduce a C° convergence of the
normal unit in the neck regions. Finally, we show that these improved energy quantizations hold for
Willmore surfaces of uniformly bounded energy and precompact conformal class, and for Willmore
spheres arising as solutions of min-max problems in the viscosity method.
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Let ¥ be a Riemann surface (not necessarily closed) and $ : ¥ — R” be a smooth immersion. Denote
by g = ®*grn the induced metric on . We say that ® has finite total curvature if

/ |E|2dvolg < 00,
b

*Department of Mathematics, ETH Zentrum, CH-8093 Ziirich, Switzerland.



where I is the second fundamental form of . In 1994, T. Toro proved the surprising result that as-
suming only that u € W?22(X,R), the graph .¥ = R3® N {(z,y) : y = u(z) for some z € ¥} admits a
bi-Lipschitz parametrisation. The following year, Miiller-Sverak extended this result and showed that
immersed surfaces with finite total curvature are conformally equivalent to a punctured Riemann surface.
Furthermore, they proved a pointwise estimate of the conformal parameter of immersions of finite total
curvature at the ends. The result can be restated in terms of branched immersions of the disk, and this
is this statement due to T. Riviére that we will now state ([29], Lemma A.5). Here, B1(0) C C is the
open unit ball of the complex plane.

Theorem (Miiller-Sverdk [23], Riviere [29]). Let n > 3, and & € W22(B,1(0), R™) N Wh2(B,(0),R™) be
a conformal immersion of B1(0)\ {0} of finite total curvature and assume that

A= log| V| € Li5.(B1(0) \ {0)).

Then ® can be extended to a Lipschitz conformal immersion of B1(0), and there exists a positive integer
6o > 1 and C > 0 such that for all z € B1(0)

C(1—o(1))|z]%t < 10.8| < C(1+ o(1))]z]"".

More precisely, there exists p € W21(B1(0)) (so that u € C°(B1(0)) in particular) and a harmonic
function v : B1(0)\ {0} = R such that

A=p+v,
and
v(z) = (6p — 1) log |z| + h(z),

where h : B1(0) = R is a harmonic function. In particular, we have for some constant C' > 0 depending
only on o

1A = (B0 — ) 1og ]|, o)) < C-

In the study of bubbling of sequences of Willmore immersions (or equivalently of the compactness
of the moduli space), it is of great interest to understand the pointwise behaviour of degenerations of
immersions of uniformly bounded Willmore energy, or equivalently finite total curvature and in the
viscosity method (see [16] and [35]).

In the following theorem, we obtain a pointwise expansion of the conformal factor in the full neck
region of an arbitrary sequence of immersions (not necessarily Willmore).

The following theorem shows that the multiplicity of weakly converging sequence of immersions

becomes eventually constant to an integer. This is a significant improvement of the fundamental work
of Miiller-Sverak ([23]).

Theorem A. Letn > 3 be a fized integer. There exists a universal constant Co(n) > 0 with the following

property. Let {(I;k}keN be a sequence of smooth conformal immersions from the disk By(0) C C into R"
and {pr}peny C (0,1) be such that py . 0, Qx = By \ By, (0) and define for all 0 < a < 1 the
— 00

sub-domain Q,(a) = By \ By-1,,(0). For all k € N, let

o

be the conformal factor of dy. Assume that

sup [|[VAg |12, () < 00, lim limsup/ |Viig|*dz =0
keN Qu(a)

a—0 k—o00



and that there exists a W22(B1(0) \ {0}) N C®(B1(0) \ {0}) immersion ®o such that

loc

log |[V®uo| € Lis.(B1(0) \ {0})

and By, . B in CL (B1(0) \ {0}) (for all I € N). Then, there exists an integer 0y > 1, py, €
:— 00
WHEN(B(0)) such that

IVl i o) < Co(n)/Q Vi 2da
k
and a harmonic function vy, on Qy such that vy, = A\, on 9B1(0), Ay = g + v on Qi and such that for
all 0 < a <1 and for all k € N sufficiently large, we have

19k — (B — 1) 108 |#]) 2.1 (g oy < Coln) (ﬂ IVl + [ |Vﬁk|2dw) |
k

Finally, we have for all pi, <71, <1 and k large enough

1

— *dl/k = 90 — 1.
271' aBrk

In particular, there exists a constant C' > 0 independent of k € N such that for all k € N, and for all
z € Qu(1) =By \ By, (0)

é|z‘6071 < eAk(z) < C|Z|0071.
Remark. Theorem A corresponds to Theorem 3.1.

This theorem has also been obtained recently by Nicolas Marque in the case of minimal simple bubbling
([17]). It constitutes a fundamental ingredient to show that in this special case,, there is an obstruction to
the singularity of the limiting Willmore immersion at branch points (it is stated using the second residue,
see [1]). As such, this result may be seen as a technical result aimed at providing new applications to
the loss compactness of Willmore immersions and in particular an extension of Marque’s main result to
arbitrary codimension. This result also constitutes an improvement of Lemma V.3 of Bernard-Riviere
([2]) since it identifies the multiplicity dj, corresponding to ®;, to be the integer 6y — 1 > 0 eventually
(i.e. for k € N large enough), which also restricts the possibilities of bubbling of Willmore surfaces.
If the limiting branched immersions has a branch point of order, then the bubble that appears at this
point must have a branch point of the same order. Since the result also applies to the viscosity method,
we expect that it should help shedding some light on the problem to determining the Morse index of
branched Willmore spheres realising the min-maz sphere eversion (see [35], [18], [20], [21], [19]).

More generally, an L?! quantization of the energy permits to obtain a pointwise expansion of the
conformal parameter by constructing—using by Hélein’s methods ([10]) and their extension to Willmore
immersions by T. Riviere ([28], [2])—a controlled L?! Coulomb frame.

Theorem B. Under the conditions of Theorem A, assume furthermore that the following strong L**
no-neck energy holds

lim i ([Vidk ] 2.1 0y (ay) = 0-

Then there exists ag > 0 such that for all k € N large enough, there exists a moving frame (f;;’l, f;;g) €
Wb ED(B,, (0) x WHED(B, (0)) and a universal constant Cy(n) (independent of k) such that

< C’l(n) (1 + Hv’ﬁ:kHLQ,l(Qk(ao))) HVﬁk||L2>1(Qk(a0)) .

vak’l‘ L2:1(Bag(0)

|72

L21(Ba, (0))

Furthermore, there exists a sequence of functions p, € W23Y(Ba,(0)) and a universal constant Co(n)
such that

Hv2ﬂk||L1(BaO(0)) + ||vukHL2’l(Bao(0)) + ||#kHLoo(BaO(o)) < Ca(n) /Qk(om) Vit |*da



and there exists a sequence of holomorphic functions ¥y : Bao(0) = C and xj : Bay(0) = C such that
Xk(0) =0, c € C and {ck} ey C C such that cy, e and
—00

Yi(2) = €27 (1+ xu(2)) (1.1)
and
M = et iy (2)] = eRe(er)|z| %71 (1 4 (1)), for all z € Qp(a). (1.2)

Finally, there exists Ay e Cn (satisfying (/YO,/TO> =0) and {A'k,o}keN € C™ such that A’k,o k—) Ay and
—00

for all z € Qi(ap), we have the pointwise identities

.1 . .
0.P) = gecﬁ"’“(z)zeofl (14 xx(2)) (fk,l - ifk,z)

= /Tk’()ze"*l +o (|z\6°71) . (1.3)
Remark. Theorem B corresponds to Theorem 3.5 below.

These two theorems have analogues in the case of multiple bubbles but we will not state them here
for the sake of simplicity of presentation.

We also prove that this stronger quantization property holds for sequences of Willmore immersions
of uniformly bounded Willmore energy and for Willmore spheres arising in min-max constructions in the
viscosity method.

Theorem C. Let X be a closed Riemann surface and assume that {ik}keN is a sequence of smooth
Willmore immersions such that

lim sup W (®,) < oo.

k— o0

Assume furthermore that the conformal class ofi@Zan}keN lies in a compact subset of the moduli space.
Then for all 0 < a < 1 let Qp(a) = Bqag, \ Ba-1,,(0) be a neck domain and 6y € N such that (by
Theorem 3.1)

6o —1 = lim lim O\, AT, (1.4)

a—0 k—oo aBa*er (0)

and define

A = sup <||VA,€||L2,W(Q]C(1)) +/ |Vﬁk|2d:c> :
keN Qk(l)

Then there exist a universal constant Cs = C3(n), and ag = ao({ék}keN) > 0 such that for all 0 < a <
ao and k € N large enough,

Vel @y oy < Compe®N (14 19l 2 1oy ) V7 2 g 1) (L5)
In particular, we deduce by the L*' no-neck energy
lim 1i}£ILSogp IVitkll L2 y (a)) = 0
Remark. Theorem C corresponds to Theorem 4.1 below.
A similar result was proved by Lamm-Sharp ([12]) in the case of conformally invariant problems and

in the more general setting introduced by Riviére ([27]) of elliptic systems with antisymmetric potentials,
and by Changyou Wang in the case of harmonic maps ([37]).



Finally, we show that this hypothesis is indeed satisfied for sequences of Willmore immersions of
precompact conformal class or in the viscosity method for spheres. The proof of such a result builds
on the previous work of Riviere ([28], [32]), Bernard-Riviere ([1], [2]) and Laurain-Riviere ([13], [15],
[14]) and on the general philosophy of integration by compensation and geometric analysis on surfaces
(including [4], [36], [23], [10]). We refer to Theorem 4.1 and Theorem 6.2 for the precise (and somewhat
technical) statement.

Corollary 1.4. Let ¥ be a closed Riemann surface and assume that {§k}keN is a sequence of Willmore
imersions from X into R™ such that

. 712
hmsup/Z |Hg, | dvolgék < 00.

k—oc0

Assume furthermore that the conformal class of {5293@"}1661\1 lies in a compact subset of the moduli

space. Then there exists {ay, - ,am} C 3, sequences {x}” }ren, 1 <@ < n, 1 < j < my such that

x;’ o for all i,j and branched Willmore immersions ®o, : & — R, &1 : §2 = CU {o0} — R"
— 00

and {pz’j}keN C (0, 00) with ij P 0 and foralll1<i<mand1<j#j <m,
—00

- . . .
i,j i,J i3 i,j

. ) —x

lim max{pf.,—&—pk., |’f’“|}:oo

k— 00 Pk’j PZJ p;] + P;c’j
such that
Viig, — Vilg_ — Z Vitgs (o) L —ai?)) =0 (1.6)
=1 j=1 L21(%)

The proof of Corollary is found at the end of Section 4.

Remark. (1) The writing of (1.6) and (1.7), classical in concentration compactness theory, makes use
of implicit cutoff functions (see [37]).

2) This result is optimal in the C%# topology since the C%# norm for § > 0 is not scaling invariant.
g g
For another C° theory for the blow-up of elliptic equations of order 2, see [24], [12] and [37].

More precisely, the C° energy quantization permits to link the values of the normal of the limiting
immersion of the one of bubbles. Let us state the result in the case of a single bubble for simplicity.

Corollary 1.5. Let X be a closed Riemann surface and assume that {(fk}keN is a sequence of Willmore
immersions from 3 in R™ such that

lim / |I§'q; |2dvolg$ < 00.
s F k

k—o0

Assume furthermore that the conformal class of{fﬁ*,;an}keN lies in a compact subset of the moduli space.
Following [2], let ®oo : ¥ — R™ be such that for some finite collection {a1, - ,am} C X, we have

B, — B in CL.(S\ {ar, - ,am}) forall | € N.
Let 1 < i <n and assume that a single bubble \f/éo 182 5 R forms at a;. Then we have
itg_(ai) = Mg (00). (1.8)

In the case of bubbles over bubbles, normals at junctions coincide with the value of the normal at
N = 0o € §? of the bubble. The proof is exactly the same.



2 Uniform control of the conformal factor in necks

For the definitions related to Lorentz spaces, we refer the reader to the Appendix (Section 7.1).

In this section we obtain a refinement of Lemma V.3 of [2].

Theorem 2.1. There exists a positive real numbers €1 = €1(n) > 0 and To(n) > 0 with the following
property. Let 0 < 26r < R < oo be fized radii and ® : Q = By \ B-(0) = R" be a weak immersion of
finite total curvature such that

9l ) < £1(n). (2.1)

=

Fiz some (%) < a <1, and define Qn = Bar \ Ba-1,(0). Then we have

19— dlog [2)llyas o, < To (Vanwum,w(m + de) (2.2)

and for all r < p < R, we have

d— S o\ dA"
2 B,

1
<Ty / | ViiPdr + 7/ |Vii|*dx (2.3)
Bmax{p,2r} \Br(0) log (%) Q

In particular, there exists a universal constant Ty, =T{(n) and A, € R such that

The proof relies on the strategy developed in [2] (and the lemmas from [13], [15] for the Lemmas 2.2
and 2.3) and the following two lemmas, which will allow us to move from a L** bound to a L*! bound
in a quantitative way.

Lemma 2.2. Let u: Br\ B,(0) = R be a harmonic function such that for some pg € (r, R)

/ dyud#t =0.
9Byq

Then there exists a universal constant Ty > 0 (independent of 0 < 4r < R < o0) such that for all
1
3 1

(%)2 <a< 5 we have

IVelle (s, 3,1, 0 < T1IVElL2 (5,05, 0 -

1
Proof. First, we show that for all = !r < p < aR, and for all 0 < o < 5 Ve have

4 3 1
IVl on,00 < tog@y Vo T=app |V e~ b, Bt (29
By a slight abuse of notation, we will write r instead of p in the following estimates.

1 _
AsO<ac< 50 we have for all 2 € 0B,.(0), the inclusion B(;_q),(z) C By-1, \ Bar(0). Therefore,
thanks to the mean value property, we have for all 0 < 8 < (1 — a)r

1

Vi) = 55 Josae

Vu(y) dot (y). (2.6)



Now, thanks to the co-area formula, we have (if I, (r) = (@T, (1- a)r))

1—a)r

[ Vuto)ldy = [, (/ |Vu<y>|d%1<y>)dﬁ
Ba—a)r\B@a—ayr/2(x) % OBg(x)

(170&)7“ d,B
> inf Vu(y)|ds#" / 22 —100(2) inf / V() d#r
serk (ﬁ /E)Bﬁ(x)' )l <y>> A (ﬂ iy VDI W)

Therefore, there exists 5 € (@, (1- a)r) (notice that this shows that the limiting values p = a~1r
and p = aR are admissible) such that

o et [ Vuy)ldy
() S Ba—a)r\B(1—a)r/2(x)
or
L Vu(y)[dA () < ——— / Vuly)|dy. (2.7)
273 dBg(x) 2mlog(2)5? B(i—a)r\B1—a)r/2(x)

Now, notice that

“13(1_Q)T\§(1_a)7‘/2(w) L2»1(]R2) = 4/0 (g (B(l_a)T \ B(l—a)'f'/z(z) N {x : ]‘ > t}) ’ dt
=2V3r(1l —a)r. (2.8)
11—
Furthermore, as § > %, we have

1 4

7T >

Therefore, we have by the mean value property (2.6), the inequalities (2.7), (2.8), (2.9) and the duality
L2,1/L2,oo

1 1
Vi@ S5 [ wuwlan

2
~ wlog(2)(1 — )22 HlB(l—a)r\E(l—a)r/z(I)

S - — 5
“log(2) Vr(1—a)r L220(B,-1,\Bar(0)) -

As x € 0B,(0) was arbitrary, this proves the inequality (2.5). Now, as u is harmonic, there exists
{an}, ez C C such that

L2.1(R?) ||vu”Lz’oo(B(l—a)r\E(l—a)r/Q(z))

u(p,0) = ag +dlogp+ > (anp™ +a=mp ") e,

nez*
which implies by the hypothesis that
0= / Oyudst = 2nd (2.10)
9B,
so that forall r < p < R
d,u =
o8,



Therefore, integrating by parts, we find

/ |Vu(z)|>dx :/ dyuud* —/ dyuudA?
Bar\B,-1, OBar 8B, 1,

= / Oyu(u — U r)d A" —/ o (u — Ug-1,) dA? (2.11)
8-BO<R

Boc_lr
where %, :][ wds" is the average of u on p, for all 7 < p < R.
OB,

Now, if Ty = [y(Hz(S"), L*(S)) is the constant of the injection H2(S') < L'(S') (for the norm
defined by the L? norm of the harmonic extension), we get by (2.5) for all 7 < p < R

Oy (u —1,) dA"
B,

< Vullpe o, 1v = Tplla o5,

< 4 3 ! \Y T
< tog@ V7 (@ —ajp IV hem B0 * Top lullys o,

4 31
= 1og(2) \/;(1 — oy 2 Vel 5B 0) VUl B, -, 00

which implies by (2.11) that

s /3 1
IVeillie(sn B, 1) S Tog@) \/;(1 —a) 2 Vel oz, 0

and this concludes the proof of the Lemma. O

In the following Lemma we obtain a slight improvement from [15] and generalise it to a W21 estimate,
that will be used in the proof of Theorem 4.1.

Lemma 2.3. Let 0 < 4r < R < 00 be fized radii, and u : Q = Br \ B(0) — R be a harmonic function
such that for some pgy € (r, R)

/ d,ud#t = 0.
9Byq

Then for all (%)E < a <1, we have

2 «
IVullzi s, B, o) <32\ 5175 IV B 0) -
9 ™ «
IVl s, 1o <32y 57— VUl B0

Proof. As u is harmonic on Bg \ B,(0), there exists {an},c, C C and d € R such that

u(z) = ag + dlog|z| + 2Re <Z anz"> .

neZ
Thanks to (2.10), we deduce that d = 0. Furthermore, taking polar coordinates z = pe?, we have the
identity
2
=4 Z NN Ay Ty p" T 21 (2.12)

n,mez*

|Vul? = 4|0,u* = 4

g nanz" !

nez*




This implies by the inequality 0 < 4r < R < oo that

R
1
\Vu(z)|*de =8 E [n|?|an?p?" " tdp = 87 g n|? <|an|2 R?™ — p2n >
/BR\B,.(O) 2n ( )

n€zx v’ nez*
2|n| 1 7\ 2l

_ 2p2n| 1 1) 2 1 (4 (7)

4r Y |nllan*R (1 (R >+47r > Inllanl® (1 -

n>1 n<—1

157 N 1

> - || (Ian|2R2| 4 |a‘”|2r2nl> . (2.13)
n>1

First L?! estimate. Now, we have

H1”L2=1(BR\§T) = 4ﬁ (R2 - 7"2>§ < 4ﬁR

while for all m > 1,

1 R™ "
2™l (0B, o)) = AV (RE = 7%) + 4/ / (R? — )% dt <4y/mr™R+4v/7 / Rdt = 4y/mR™ .

Likewise, for all m > 2

1
L21(Br\B,(0)) o\l

By (2.12), we have

3 Tt 1
- r2) dt < 4\/E/ — 4T <8
0 m—1rm-

1
tm

1

2™

1
2
e

Vul <2 [nllag]p" ",

nez*

and the following estimates by Cauchy-Schwarz inequality

a\ Il
IVl 5 B ooy S 16V | D Inllan] (@B)™ 4+ 37 Inla—n] ()

n>1 n>1

Nl
Nl

1
> Inllaq PR + nlle-nl®

n>1

<16y (Z |na2”')

nez*

2

_ a 2 p2|n| g 1
= 16\/271'1 o Z:l In||an|“RI™ + |n|la_y| Tl (2.14)

Combining (2.13) and (2.14) yields

2

1627« 4 «
QX 5 HVUHLQ(BR\ET(O)) =32 Bl-a ||VU||L2(BR\§7.(0))»

IVulleer (5.5, 0, 00 = T4

which concludes the proof of the first part of the Lemma.

Second Wh! estimate. As Au = 0, we have |V?u| = 4|02u/, and

O2u(z) = Z n(n —1)z""2

nez*

Now, for all m € Z\ {—2}, we have

of +1 2m +2 1 +2
el 5, o =25 [ 0" = =2 (@R = (a7t



In particular, we have by the triangle inequality and Cauchy-Schwarz inequality

[n[|n —1] i
H8§u||L1(BaR\§a,1T(O)) <2 Z n |an] ((O‘R)n - (0‘ 17“) )

nez*
Ind In| 2.\ Il
=273 |n — 1jaq|(@R)!"! (1_ (O‘Rf) >+27r > In=1lal (5) (1_ (g) )
n21 n<—1
In|
<23 fn—lanl@B)" + 3 0 = 1lanl (5)
n>1 n>—1 T
In —1J? : 1 :
" 2|n] 2 p2|n| 2
< T .
_2W<Z T ) > lnllanPRAM 4> |nflan)| 2
nez* n>1 n<—1
Now, notice that
|” Q2nl — n?+1 o2 202 1 4o
=2 e T 421 < .
2 L e i) ST
ne€Lx n>1

Recalling from (2.3) that

157
Vu(z)2dz > — Y |n| <a 2R 4 |a_,,|? )
[ iy .

n>1

we deduce that

4oy 4 [T
2 _
Haz“HLl(BaR\Ea,lT(o)) = (1—a?) X 1571 ||V“||L2(BR\§T(O)) =8 151 — a2 ||V ||L2(BR\B (0))

which concludes the proof as |V2u| = 4|02ul. O

/ R
Remark 2.4. Notice that ||V log ‘z|||L2(BR\§ (0y) = V2my/log () while
r r

IV 1og |2l 2.1 (5, 5., () _4/1R (L?(Bar \ Ba-1,(0)))* dt+4/ o (.,2”2 (81 \ By-1,.(0 )))%dt

:%(QQRQ_ _2 2) V- R / rtht—sz(log( >+10g<1+ 1—(042701%)2>>.

In particular, for all fixed 0 < a < 1, if {Ri}cn, {7k} peny € (0,00) are sequences chosen such that

Ry
— — 00, we have
T k—oo

IV1og |2l 2B, \B, s, (o)
lim —k =
k—o00 HVIOg‘Z||‘L2(3Rk\§%(0))

If the assumption 4r < R does not hold, observe that we get the estimate

8v/2 «
IVull 2 (B B, o)) < el IVullzp0 B, (0)) -

R

Proposition 2.5. Let 0 < 27 < R < oo be fived radii, and u : Q = Bg \ B,.(0) — R be a harmonic
function such that for some py € (r, R)

/ dyudt = 0.
9By,

10



T\ 3 1
Then for all (E> <a< e

IVullizs (g5, -1 o)) < 24TV VUl Lo (5,05, (0)) -
where 'y is given in Lemma 2.2.

Proof. Let § = \/a. Then by Lemma 2.3, we have

125
||V“||L2,1(BB2R\§B_2T(0)) < 1-3 3 ||Vu||L2(B53\§B_1T(O))'

Furthermore, by Lemma 2.3, we have

Vullp, <T]

(Bsr\B,_1,(0)) IVl (8,\B, (0))

Therefore, as 8 = \/a < 1/2, we find

12Va
IVullza g, B, 0 = ﬁrl IVullyzoe (B, 0)) < 24TV VUl (8,05, 0

which concludes the proof of the corollary. O

We will also need a quantitative estimate of the Lorentz-Sobolev embedding W21 (Q) — C°(Q).

Lemma 2.6. Letn > 2, Q C R™ be a bounded connected open set and u € WH1(Q). Then u € C°(Q)
and for all x,y € Q such that Byj_y|(x) U Byjz_y(y) C Q, we have

n+1
() - u(y)]| < j(n) IVl

Furthermore, if Q is a bounded Lipschitz open subset of R™, then there exists a constant Cy = Cy()
such that

Lr QN By y (2) * (2.15)

= ol ey < Ca [ Vallpa oy (2.16)

where Uq :][ud.,f” is the mean of u.
Q

Remarks on the proof. The proof proceeds in a fairly standard way, using an estimate on averages, the
Lt/ L71° duality and Lebesgue differentiation theorem on R™. The extension to the case of domains
is easily given by extension operators and interpolation theory to obtain a continue linear extension
operator WH(1(Q) — W1 (R") (using the Stein-Weiss interpolation theorem).

Proof. Let x € Q and d = dist(z,0) > 0. For all 0 < r < d, let

uﬂc,rz][ udZL" = 1 n/ uwdL".
B, (z) a(n)r B, (z)

Then for all 0 < r < d, we have

1
er = 773 /B o Hrrty =y

so that

are

= / Vulz+r(y —x)) - (y —z)dy S][ |Vu|ldL™. (2.17)
B1(0) B.(z)

11



Therefore, we have by Fubini theorem and the duality L™!/L7-1°>° (see the estimate (7.8)) for all
0<t<d

t
/(;

Vu(y)|dZL"(y dr— // Vu(y)|1lg. mndZL"
amlwém' ) o Ve d 27 i

T B o WS BN SR\ 0
o a(n) /B,,(gg)|v ) </x gl ™" ) A2 (y) < (n—l)a(n) /Bt(x) |z — |7 1d$ (y)

1 1 1

< — ||V N —_— — |V n
= w2l Ve @0 [T |ty e ) ) E | B0

Uz r
dr

as for all z € R™

1
N

= na(n)m-T1. (2.18)

Lﬁ"’o(Rn)

Therefore, by the Sobolev embedding W11(R) C C°(R), the function (0,d] — R, + wu, , is continuous,
and for all 0 < s < t < d, we have

t
|u:v,s - uz,tl é /
s

Let {7n}, ey C (0,00) such that r, — 0. Then (2.19) implies that

n—roo

1

dr < —— |Vu|; . .
S )t IVullns (s,

(2.19)

Ug,r

dr

— 0

1
Ua,r — Uz, | < ““‘rHV”MLnJuzmxﬁmmm}@g)nmr%x

na(n)w

which implies that {us ., }, oy is @ Cauchy sequence. Now, recall that by the Lebesgue differentiation
theorem, for £™ almost all = € 0, we have

u(z) = }1_1{(1) Ug -

Therefore, for £ almost all € Q and for all 0 < r < d(z) = dist(z, 9Q), we have

1
u(r) —u < — | Vaully m, o) - 2.20
[u(x) =t r| < () E IVUullpn (s, (2 (2.20)

To prove that u is continuous, let z,y € € such that (2.20) holds for z and y (the proof is an adaptation
of the Holder continuous embedding of Campanato spaces of the right indices). Furthermore, without
loss of generality, we can assume that x # y, and 2|z — y| < max {d(x),d(y)}, so that

B2|x—y\ (x) U Bg‘z_m(y) c Q.
Therefore, if r = |z — y| we have

u() = u(y)] < [u(@) = vor| + Uz = uyr[ + [u(y) = uy,,|

1
s25655(HVumﬂMBMﬂM@>+HVum%WBwﬂmwQ—%mnrfu%r (221)

so we need only estimate |ug , — Uy.r|, 88

IVl s, @)+ IVUllLa e, ) 530

We have

1 Ny, L w22} AL (2,
a(n)?“”/Br(w)u(Zl)df () aln)rm /BT(y) (22)dL" (22)

1 i .
— (a(n)r”)2/B e )(u(zq) —u(2))dL" (21)d L™ ()

Ug,r — Uy,r =

12



1
= W/B B </0 Vu(zo +t(z1 — 22)) - (21 — @)dlf) dL"(z1)dL" (z2) (2.22)

Furthermore, for all ¢ € [0,1] and (z1,22) € B.(x) X B;(y), we have z3 + t(z1 — 22) € Ba,(x) and
|z1 — 22| < 2r. Therefore, Fubini’s theorem implies that (by (7.8))

/Brm (/o Vaulz +t(z1 = 22)) - (21 = 22>dt> AL (1)

< /1 / [Vu(ze + (21 = 22))| |21 — 22|"dL" (21) | dt
~ 0 BT(J) |Zl —Z2|n71

1 ! 1
< =2 Vu(zg +t(- — 2 - _ dt
n /0 [Vulzz + 4 Dl H |- —2lllL72r = (5, ()
1
< ()R /0 IVl oy = 27" a(m) 75 [Vl o (2.23)
Therefore, by (2.22) and (2.23), we find
< 1 2™ 4" _ 2m v
|Ua,r — ty,r| < a(n)r Jp, ) a(n)% ”VUHL"J(BZM,y‘(x)) (22) = T(n)% [ UHLM(BQ‘E,M(I))-
(2.24)
Furthermore, as the argument is symmetric in x and y notice that
2m .
i = ty| € o min QT 21 T
Finally, thanks to (2.21) and (2.24) we get
2n+1
lule) ~ulw)l < a(n)w Ve Lt (Bajp—y (7)) (2.25)

which implies that u is continuous, with modulus of continuity at x

2n+1

r— (n)% ||Vu||L”v1(SlﬁBQT(x))'

«

Now, for the L* bound, first consider the case d = R, and let G : R™ x R®™ — RU {co} be the Green’s
function of the Laplacian on R™. Then

1 1 n
G = L»=1(R"
Vy ($7y) ’I’LO[(’I’L) |.T 7 y‘n,1 € ! ( )
and we have for all x € R"”
u(@) = | AyG(z,y)u(y)dy = — A VyG(2,y) - Vu(y)dy
R n
and (2.18) implies that
n—1 (n—1) 1
HUHLoc(Rn) < ) HVUHLnJ(Rn) ||VyG(337y)HLﬁ=oc(Rn) = m HVUHL"J(R") ‘|x—|”1 LT ()
(n—1) 1
= ——5 VUl nigny £ —— [Vl 2.26
i ® 1V < s IVl (226)

Now, (thanks to [3] IX.7) there exists a linear extension operator

p: |J wr@— |J whrr

1<p<oo 1<p<oo

13



such that for 1 < p < oo the restriction P|[W1?(2) — W1P(R™) be a continuous linear operator. Then
by identifying W1 (Q2) with a closed subset of LP(R™)"*!  the Stein-Weiss interpolation theorem implies
that for all P extends as a continuous linear operator W1 (1D (Q) into W1 (D (R"), as the Sobolev
embedding L"™(2) < L4(Q) for all 1 < ¢ < oo shows that Vu € L™(Q) implies that u € L™(Q).
Therefore, by (2.26), for all u € Wh1(Q), we have

[ullpee @y S IVPUle0 gy < T [Pullgnagny < T3 (”uHL"‘l(Q) + ||quL"11(Q)>

_
na(n)

< Tyl gy + IVl ) (227)
where we have used in the last line the embedding W1 (Q) — L™1(Q).

Now, (2.27) implies by the classical Poincaré-Wirtinger inequality and the continuous embedding
L™ (Q) — L"(Q)

lu = Tl e @) < T5(lu = ol @) + VUl o) < Ts (Fg IVullyn oy + ||VU||an1(Q))
< Ca() [Vullpn(q)

and this concludes the proof of the Lemma. O

Now, we will need to refine the L°>° bound to obtain an estimate independent of the conformal class
(bounded away from —oo) of flat annuli in R™.

Proposition 2.7. Let 0 < 2r < R < 0o and Q = Bgr \ B,.(0) C R™. Then there exists a universal
constant T'y = Ty(n) such that for all u € WH(D(Q), we have

[u = ol @) < Ta(n) [VUllpniq) - (2.28)

Remarks on the proof. By scaling invariance of the inequality of Lemma 2.6, the constant C4(2(r))
inequality (2.16) for annuli Q(r) = Ba,.\ B,-(0) is independent of 0 < r < oo, which allows one to introduce
a dyadic decomposition of the annulus Q = Bpg \ B,(0) since the conformal class log (£) > log(2) is
bounded from below. Using once more the L™!/L7-1>° duality and Fubini’s theorem, we deduce that
the various averages can be controlled by the L™! norm of Vu which finally permits after a suitable
decomposition to obtain the inequality (2.28).

Proof. First, observe that the L° norm and the (n,1) norm of the gradient ||V ||;..q, are scaling

invariant (see (2.40) for the case n = 2). Therefore, the constant C4(€2) in Theorem 2.1 is scaling
invariant. In particular, there exists a universal constant Cj(n) = Cy(Bz \ Bi(0)) such that for all
0 <7 <ooand uc WhD(By, \ B,(0)), we have

— !
[~ 5,300 [ s, 0 < GO I3, 3,00 229)

Now, as 2r < R let J € N such that

27r < R <271y,

Then we have

J—1

Q) = Bg \ B% (0) U U Boj+1, \§27r(0)
3=0

For the convenience of notation, let us write Q; = Byj+1,. \ By, for all 0 < j < J — 1. Thanks to (2.29)
for all 0 < j < J, we have

llu *ﬂjHLw(Qj) < Cy(n) [Vull g,y where u; :]{2 ud L

14



Hu — W\ B (0) H < CYn) [Vl s (5 1 a(0)) - (2.30)

Lo°(Br\Br/2(0))

Now define for all r <t < R

U :]l udA"
0B:(0)

For all r < t < R, thanks to a similar argument as given in (2.17), we have

g |Vu|da#™ .
0By

Furthermore, if r < r; < R is a fixed radius, thanks to the co-area formula, we have for .Z! almost all
te (Tl, R)

t
/ Vu|dant = 2 (/ Vuldem 1) 4L (s) = d/ Vuldem.
OB, ot a8, dt JB\B,, (0)

Therefore, we have

/ < L / </ |Vu|d%n1>dt
- nan tn— 8B,

du
dt "

T2
-1 (™1
Vulde™ +”—/ — / \Vulde™ | dt
na(n) Bt\Brl (0) na(n) ot B\B., (0)
Vu
= n—l/ _ | Vulde™ + ‘ )‘1{r1<\1|<t}d$ (x)dt
m(”) ry JB,,\B., (0) B.,\Br,
(2.31)
Furthermore, observe that
Vu(@)| , n 1 1
[ ey < L9 a0 ||,
Boy\Bry (0) 7] n 2 2" L2 (8,,\B., (o))
< a(n)™1 By (0) (2.32)

while by Fubini’s theorem

"2 Vu(z n "2 dt n
/ / - | ti )|1{,.1§|$‘9}d.$ (ar)dt:/ V(o) </ tn_ldt> AL (z)
r1 JBry\Byy (0) B, \Bi, (0) ||

1 1 1
- Vo) (s~ ) 239
n—=1Jp,\B,, 0 |z] 5

Finally, we get by (2.31), (2.32), (2.33), (2.34) and (2.18)

"2 d 1 1 Vu
/ CTUt dt < n—1 / o |Vu|df” / / | )|1{r1<|w\<t}d$ ( )
ro At na(n) rj By, \Br, (0) B, \Br,
11 . 1 1
= — / B |VuldL™ + / B |Vu(z)] (n_l - nl)
no(n) ry By, \Br, (0) no(n) By, \Br, (0) |z )
1 |Vu(z)| 1
= dL™(2) < ——— |Vaullynin 5 2.34
na(n) /TQ\BT1 o) |z[n1 (=) < no(n)« IVulpn(s,,\5., ©) (2.34)

Therefore, we have for all r <r; <ry < R

1
|ur, = ury | < W HVUHLM(B,Q\ET.1 ()" (2.35)

15



Furthermore, recalling that 8(n) = s#"~1(S"~!) = na(n) we obtain for all 7 < s < t < R, thanks to
(2.35) that

n t
udL" = 7/ / wdA" ) d
J{gt\BS@ By —s) J, (m ) g

t pnfl 1 pnfl
SL <tn—1 ABtud% +B(n)n0¢(?’l)% ||vu||L"’1(Bt\BS(O))>

B n t'n, _ Sn N ﬁ(n) tn _ Sn B
= By — ) ( T <”)]é3t“d“” T a1Vl B o)
1

= war Yl g
b na(mE 1Y e B0

and the reverse inequality (given by (2.35))
n—1
n— p n—1 ﬁ(n) n—
/aB wdA" 2 /aBt A e VUl gap.o) forall s<p<t

shows that forall r < s <t < R

][ udL" 7][ udm 1
B:\B,(0) 0B,

Therefore, by the triangle inequality we finally obtain that for all 0 < j < J —1,

][ ud.ﬁf”—][ udL" ][ udﬁ"—][ wdsm !
Byj+1,\By;,.(0) Br\B:(0) Byj+1,\By;,.(0) OByjt1,.

<

na(n)* IVl 5,03, 0) -

na(n

lu; — gl = <

+][ ud%"‘l—/ uds" ! +][ ud.,zﬂ”—/ udA"
8sz+1r aBR BR\BT(O) BBR
3
< — IVullpnig) (2.36)
na(n)w
and likewise,
_ _ 3
UBR\Br/2(0) — UQ‘ < — [IVullpnag) - (2.37)
na(n)»

Finally, thanks to (2.30), (2.36) and (2.37), we have

3
na(n)®

and this concludes the proof of the Proposition. O

s — Tl ey < (ai(n) n ) IVl

‘We now come back to the proof of Theorem 2.1.

Remarks on the proof. The proof closely follows the one of [2], using the L*! estimate in lieu of
the L? one, using the previous Lemma (2.5) to prove the inequality (2.2), and Proposition 2.7 for the
inequality (2.3).

Proof. (of Theorem 2.1) Thanks to Lemma IV.1 [2], there exists a universal constant I's = I's(n) > 0
and an extension 7 : B(0) = ¥,_2(R"™) of 7 such that
=i on Q=Bg\B.(0)

. ) (2.38)
HVnHLMQ( < Te(n) [ Viilly2q) -

Br(0))
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Therefore, by Lemma IV.3 of [2], there exists a universal constant I'; = T'7(n) and a moving Coulomb
frame (€1,é) € WH2(Bg(0), 5"~ 1) x WH2(Bg(0), 8™~ 1) such that

A=x(EAE) div(e, V) =0
{ (€11 &) (e1- Vé) (2.39)

o2 L2 2
IVeLllt2Bro) T 1Vl (Br0) < T7(n) IVl (q) -

Furthermore, notice that for all u € VVSJ’C(Q’D(]W)7 and for all p > 0, we have

IVl e, o)) = 4/0 (L2(B0N {o: [Vu(@)| > 1)) d2(1)
= 4/ (/ 1{x:|Vu(x)|>t}dj2(x)> Az (t) = 4/ </ 1{y:|V(uo¢p)(y)|>pt}P2d$2(Z/)) dz'(t)
0 B,(0) 0 B1(0)

1
2

—4f (@(muyw@wﬁwbgfdz%w> 7L (s) = V(w0 0l 5, 0 (2.40)
1

where ¢,(y) = py. Now, if i : Bg(0) — R is the unique solution of the system

Ap=V+te -véy in Bg(0
{ K € - Ve in Br(0) (2.41)

w=0 on 0Bg(0)
then i = p o g solves (with evident notations)
Afi =V1é - Ve in By(0)
=20 on St

Therefore, the improved Wente inequality ([10], 3.4.1) shows that there exists a universal constant I's > 0
such that

—

v€2

HVIU'HLZJ(BR(O)) = ||VMHL2,1(131(0)) <Ts HV61 L2(B1(0)) H L2(B1 (0)) =Ts Hvel||L2(BR(0)) ||ve2HL2(BR(O))

< Ir / ViiPda. (2.42)
Q

DN | =

Furthermore, notice that we also have the optimal inequality

1 /3 R R 1 /3 R
IVullL2(Bro) < 4\/;||V61||L2(BR(0)) IVellL2(p (o)) < 8\/;F7(”) /Q |Vii|*da. (2.43)

Now, let v = X — pon Q = Bg \ B,(0). Then v is harmonic on Q and v = X on dBg(0). Then as v is
harmonic, there exists d € R and {a},;, C C such that

v(p,0) = ag +dlogp+ Z (arp”™ +azkp ") ™.
kez*
Now, noticing that for all r < p < R

1
d=— [ o, (2.44)
21 B,

this implies that v — dlog |z| satisfies the hypothesis of Proposition 2.5. Therefore, using the identity
T3 1
7) <o<i
[V(v—dlog |ZD||L2’1(BQR\§OL71,,,) <24T1Va V(v —dlog ‘Z|)HL2,<><>(BR\37T(0))

< 24T1Va (”V()\ —dlog |Z|)HL2,oo(BR\§T(0)) =+ ||VN||L2,oc(BR\§T(o)))

v =\~ pu, the inequalities (2.43) and || [[;2.00(.y < 2| [l2(.), We have for all (
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< 240va (9 = d1og 2] ) + 211 Vil
<24F1\F<||V(>\ dlog |z[)|l 2,00 () + 7 fF7 /‘V”‘ dl’)- (2.45)

Furthermore, notice that by the co-area formula, for all s € (r, R) such that 2s < R, we have

2s
/ [Vu(z)|dz :/ ,0/ |Vo|da! dp > log(2) inf ,0/
Bas\B:(0) s OB P s<p<2s OB

Therefore, there exists p € (s,2s) such that

|Vv|d%1> .

P P

1 1
Vold#! < / Vou(x)|lde < ———||11]]; 2. =1 [|VVU[|; 2.00 =
/aB| | log(2)p st\ﬁs(m' (@)l log(2)p 1oz o) V0l (5208 0
1

4/37
0g(2)p T 4V3 3||VUHL2°°(325\B (0)) = 1o ( ) (HV)‘||L2=°C(Q) +2HVM||L2(Q))

f
< Tog(®) <||v L2 ) + 5 \fn /vn2dx>.

This implies by (2.44) that

2
|d|§log(Q)\f<|w||LM(Q \/>F7 /|Vn|2dx>. (2.46)

As [|V1og [2][|1 2.0 (q) = 2/, by (2.45) and (2.46) there exists a universal constant I'g = I'g(n) such that

[IV(v—dlog |ZD||L2’1(B@R\§Q71T) <Ty(n)va <||V)\||L2,w(m + /Q |V7‘i|2dx) . (2.47)
i 1
Finally, putting together (2.42), (2.47) and recalling that A = p + v, we have for all (%) "<a< 1

V(A —dlog |Z|)HLN(BQR\EQ,L,,(O)) < [[V(v —dlog ‘Z|)HL2.1(3QR\§Q717_) + ||vﬂ||L2,1(BaR\Ba_1(o))
1
< Ty(n)va (||VA|L2,OC(Q) +/ |Vﬁ|2d:c> + 5P7(n)r8/ |Vii|2da. (2.48)
Q Q
Now, we estimate for 7 < p < R the following quantity

d— 1 A\ dH#?
2T

0B,

L OyudAt|.

0B,

We have, recalling that p is well defined on Br(0) and satisfies (2.41), we find

O:/ p(x )Alog( |)daz:—log(R>/ (?l,ud%1+/ A,ulog<|$|>d
Br\B, P aB, Br\B,(0) R

—log <R) Oy d A +/ Aplog (' |> / (Ve - Véy)log (“") de.  (2.49)
P 8B, BRr(0) B, (0) R

First, the previous estimate (2.42) yields

|| 1 1
Aplog ( dzr| = V- Viog|z|dz| < = [|Vpllg 2.1 —
/BR(m R Br(0) 2 EAERO) | al ] o e 0
< @n(n)rg/ Vi da. (2.50)
Q
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Now, using once more Lemma IV.3 of [2], we see that exists a Coulomb moving frame (f1, f2) €
Wt2(B,(0), 5" 1) x Wh2(B,(0), S™!) such that

i =x(fi A fo)

and using the same inequalities as in (2.38) and (2.39)

fi +H f‘ H _T n/ Vi%dz + T n/ Vil 2dx
H Hlrz(s, o) 2|12z, 0 Jop L7 BT,(O)| | () B,,\E,.(O)| |
< Fﬁ(n)F7(n)/ B |Vﬁ|2dm+F7(n)/ _|ViilPdz < (1 +F6(n))F7(n)/ _|Vill*da.
Ba\Bo(0) B\B(0) Bunax(p20y \Br(0)
(2.51)

Now, let 1 be the solution of
Ay =V1ifi -V in B,(0)
=0 on 9B,(0).
As in (2.51), we get
1 "
IVlesioop < 5Trs [ vk (252)
’ 2 Busax (2 \Br(0)

Furthermore, we have

/ (Vieér- ve)log (le) da = / (VLfi ~Vf§) log (' |> da = / AY log <|x|> da
B, (0) R B,(0) B, (0) R

P

= —log (R> oh dt — / Vi - Vg |z|dx (2.53)
p 9B, B,
while by the Cauchy-Schwarz inequality
1
O dA| = / A da| = VLF - Vide| < S(1+ rﬁ(n))n(n)/ Vit 2da.
8BP Bﬂ(o) BP(O) 2 Bmax{p,2T}\B'r‘(O)
(2.54)

We estimate as previously by (2.52)

1
||

< gn(n)rs / \Vii2da.

1
5 IVOlL2a8,00 B
2 (B, (0)) Bumax{p,2r} \Br(0)

/ Vi - Viog |z|dz| <

L2 (B, (0))
(2.55)

Therefore, (2.53), (2.54) and (2.55) yield

/B (Ve - Vez)log(| |> (;(1+F5(n))F7(n))log (f) +\fr7(n)rs) /B max{m\ﬁr(o)|Vﬁ|2dx.

P

(2.56)
Finally, by (2.49), (2.50) and (2.56) we obtain for some universal constant I'g = T'g(n)
1 1 p 1 p
— OpudH#| <To(n) |Vide + |V7| dx (2.57)
2 Bunax{p.203\Br(0) log (%) 0
which completes the proof of the theorem, up to the L* estimate which is a direct consequence of the
inequality 4r < R and of Proposition 2.7. O
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3 Pointwise expansion of the conformal factor and of the im-
mersion

3.1 Case of one bubbling domain

In the next Theorem, we obtain an integrality result for the multiplicity of a sequence of weak immersions
from annuli converging strongly outside of the origin.

Theorem 3.1. Let {(fk}keN be a sequence of smooth conformal immersions from the disk B1(0) C C
into R™, let

1 -
Ak
et = Vo
Mol

be the conformal factor of ®y,, and {Pr}ren C (0,1) be such that py o 0, Q, = B1\B,,(0) and assume
c— 00
that

sup/ B | Vil |>dz < e1(n), sup [[VAk (12,00 (0, ) < 00
keNJ B, (0)\B,, (0) keN

where £1(n) is_given by the proof of Theorem 2.1. Define for all 0 < a <1 and k € N large enough
O (a) = Ba \ Ba-1,,(0), and assume that

a=0 ko0

lim lim sup/ |Vﬁk|2d:r =0
Qp (@)

and that there exists a Wli’f(B1 (0)\ {0}) N C=(B1(0) \ {0}) immersion ®o, such that
log [Vbeo| € LS. (B1(0) \ {0})

and B, P B in CL_(B1(0) \ {0}) (for alll € N). Then, there exists an integer 0y > 1, uy €
e deel
WHEN(B1(0)) such that
1 "
Vel < gTonTs [ [V7da
k

and a harmonic function vy, on Qi such that vy, = A\, on 9B1(0), A\ = g + v on Qi and such that for
all 0 < a < 1 and such that for all k € N sufficiently large

IV (v = (00 = 1)1og [2)[[ 21 (0 () < To (VaIVAlez,oomk) +/Q IVﬁkIde)
k

for some universal constant I'1g = T'19(n). Furthermore, we have for all pr, < 1 <1 and k large enough

1

—_— *dl/k = 90 —1.
271' 6B'rk

Remarks on the proof. In Step 1, we first use the classical fact that branch points of Willmore
surfaces are positive integers, Theorem 2.1 and the strong convergence outside of 0 to show that the
multiplicity dj converges towards a non-negative integer.

In Step 2, as in [32] (see Lemma A.2, A.3 and A.5), we construct a moving frame that allows us to

obtain a precise expansion of 9,®), in the annular region and show how the existence of a holomorphic
function implies in virtue of the first step that for k large enough, the multiplicity must be an integer.

Proof. First, applying Lemma A.5 of [32], we deduce that there exists an integer 6y > 1 and Ay € c™\{o}
such that

Boo(2) = Re (Ag2") + o(|2|")
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0:800(2) = 5 Aoz +o(|2 7). (3.1)

Step 1. Asymptotic integrality.

First, define Qi (a) = By \ Byt o (0) and recall that by Theorem 2.1, we have (applying the inequality
on ) for all a™lp, < p <

1
dy — — o NdA| < Ty |Vii|2dx + - / |Vii|?dx
21 Jom, Brax{p2a-1p} \Ba-1,, (0) log (?7) Qi ()
Now, taking p = o?, we get
1 1 = 12 1 = 12
dp — — O\, dH| < Iy \Vnk| dr + — N |Vnk| dx
2T OB,2 Baz\Boﬁlpk log ((;—k) Qr ()

Therefore, the no-neck energy (see [2])

lim hmsup/ |Vﬁk|2d1’ =0
Qk(a)

a=0 k00

implies that

1
dp — — AN, dA =0

lim lim sup 5
T JoB, 2

a=0 koo

Furthermore, as 500 has a branch point of order 5 — 1 > 0 at z = 0, we have the expansion for some
B eR

Ao (2) = (00 — 1) log |z[ + 5 + O(|z])

we have by the strong convergence

1
— O\ dA" — / Oy hoe AL = 0y — 1 + O(a?).
9B,2

27 Jop, k—oo 2T
Finally, this implies that
hm limsup |dy, — (0o — 1)| = 0. (3.2)

=0 koo

Now, recalling that dy is independent of a > 0 (as it corresponds to the coefficient in front of the
logarithm of the associated harmonic function v on By \ B,-1,, (0)), we deduce that (3.2) implies that

dy — 0y — 1. (3.3)
k—o0

Step 2: Moving frames and integrality.

As in the proof of the forthcoming Theorem 2.1, we introduce an extension of fin : By (0) = %,—2(R™)
of fig : Qp = B1 \ By, (0) = 9,—2(R™) such that

=1 on Qi = B\ B, (0)

H ‘ <Ts(n) | Viikll 2 (q,) -

Therefore, by Lemma IV.3 of [2], there exists a constant I'7(n) and a Coulomb moving frame (f_;;’h ]?];2) €
W12(B1(0), S"71) x Wh2(B;(0), 8" 1) of i), such that

iy = *(fea A fr) div (f_;cl 'Vﬁc,Q) =0

Hvﬁc,l‘ H I, 2‘ < T7(n) [[Vikll 2 -

L2(B,(0))

(3.4)

L2(B1(0)) L2(B1(0))
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Now, define for all j =1,2 ¢ ; = e‘AkBIjék. As 5k is conformal, (€ 1, €k 2) is a Coulomb frame of i,

on Q. Furthermore, as 7y = iy on Qy, both (fi 1, fr2) and (€x.1,€x,2) are Coulomb frames of 7 on

Q, so there exists a rotation e’’* such that
(fen +if2) = €% (€1 + i€h2) -
Now, we let f; 1, f,2 be the vector fields such that
d@k(fkﬁj) = f_;;J for all j =1,2.
Then observe as 5;@ is conformal that

8ig = (fiois Fog) = (dBr(fiei), dBr(fieg)) = X (fiois fie)
so we have
(Frois frg) = €26, 5.
Likewise, if (f7 ;, f,;"’j) is the dual framing, we deduce that
[fajl=e™  forall j=1,2.
Now, let p the unique solution of

Apr, =V fi1 Ve in Bi(0)
pr =0 on 0B1(0).

Furthermore, introduce the notation vy = A\, — pg. Then vy is harmonic, and by Step 1, we have

1

dy = —
2 aBPk

*dy, — 90 — 1.
k—o0

As f;;’l ~8l,f;;72 = 0 on 9B1(0), we also have
dpr = #(fr1 - dfe2)
Then we compute with Zs indices for all j € {1,2}
dp A fi 5 = Cedpan) A (< f ;) = (1) (fror - dfi2) A frjsa.
Likewise, as in [32], we compute
dfy ;= (—1) (ﬁcl 'dﬁc,2> A fr s
Therefore, we have
d(e " fi;)=0 in Qp for j=1,2.

In particular, by Stokes theorem, we have for all pp, <11 <719 <1

0:/ d(e_“"f,jj) :/ e_“’“f,:j—/ e_“’“f;j.
By \Bir, (0) ’ 8By, ’ 8By, ’

Therefore, we introduce the constants ¢; € R defined for all pi, < p <1 by

J— Mk f£*
Ck,j 7/ e fk,j'
B

P
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Now, introduce the complex valued 1-forms
Joo=Ffe1tifio Jrz=fe1—ifeas
so that
Jea = §(fk,z+fk,z) Tro = Q*i(fk,z*fk,z)-
Notice also that
wdfy, , = —ifr.. and *dfy > = ifiz.
Furthermore, if

fk,z =
frz=

(fe,1 — ifk,2)
(fre1 +ifr2),

N~ N~

then for all smooth function ¢ : Q) — C, we have

dp=dy - fea fr1+tde- frafio
=dp- fk,z flj;,z +dp- fk,zflj,?'

Now, we introduce the differential form a € Q'(R?\ {0})

o= % x dlog|z| = % * (Vlog\z| frz f. + Viog |2 - kafl:E)
= 5 Vloglel - fis i — g Viog |2l iz fis
In particular, notice that
O¢+L,V10g|z| Jrzfrz = i,Vlog|z| N T (3.10)
2m o 2ms ’
As log is harmonic on R?\ {0}, the differential form « is closed on Q4 and we deduce that the 1-form

. — p Mk X .
wr,j =€ M fj ek ja

/ Wk,j = 07
9By,

we deduce by Poincaré lemma that there exists (oy1,0%,2) € W1’2(Qk, R2) such that

is also closed. Furthermore, as

dog,j = wg,; = e—ukf]:’j — e for j =1,2.
Therefore, we deduce if ¢y = cy,1 +ick,2 and o), = 0,1 +i0y,2 that
doy = e " (fi1 +ifia) — cka
= (6_% - CLVIOgM “Jr z) (fer+fra) fr+ c—kV1og|z| ez fis
2mi ’ : 2k o 2 Tkz

This implies by (3.10) that

a (o - 5 log 2]) = (e~ =V log 2| - frz) Fic (3.11)
Therefore, the function
Ck
Tk = O — Q—M_log|z|
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9 90
3Tky1’ aTkyg

is holomorphic. Now, let (
define

) be the dual basis of (7,1, Tk,2), where 73, = T 1 + i7,2. Then we

p=eHr— C—k.Vlog 12| - fr.zs (3.12)
i
and we notice that (3.11) implies that

ATk +imk2) = (Re (0) +iIm (@) (fiq +ifiz)
= (Re (o) feq —Im (‘P)fgz) +i (Im (0)fr1+Re (@)f/jz)

() = (hete) ) ()

<§> - ﬁ (-I}fn(s(i;) EI;EZD (f‘i:) (3.13)

Therefore, we deduce that

This implies that

Now, defining

we compute thanks to (3.6) and (3.13)

o .
ai;: = ﬁdék “(Re () fr1 +Im (9) fro —i (Tm (¢) f1 — Re (@) fr.2))
N 2ILI2 (Re (@) fiea +Im () fice — i (T (9)fra = Re (9)fiz))

e ((Re (o) + ilm (¢)) fr.1 + (Im (o) — iRe () ﬁaz)

= g (o —ifia) = 55 (Fea —ife)
= k1 — i ko) = = (fe1 —ifr2)-
2|l 29
Therefore, we deduce that

eM - - O®y 01, Th(2) [ = e
5 (Ehy — iCh2) = 0:Pp = 877:37; = 162(%0) (fk,l - ka,2) (3.14)

Now, recall by (3.5) that there exists a rotation e’’* (beware that the function 6 is multi-valued) such
that

fr1 +ifie =€ (Eq +icyo).
Therefore, (3.14), (3.14) and Ay, = py + vy imply that

A @exk ! —i6
ety =€’ + o Viog|z| - frz = m,(2)e” k. (3.15)

Recalling that

1

dy = —
2w aBpk

*dy — 90 —1,
k—oo

we will now show that dj, = 6y — 1 for k large enough. First, recall that there exists a rotation e*’* such
that

(Fioq + ifi2) = €% (1 + i), (3.16)
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and that there exists vector fields fj 1, fi,2 such that
d®y(frj) = fr;  forall j=1,2. (3.17)

To simplify the notations, we will now delete the subscript & in the following formulas. Now, rewrite
(3.16) as

fi+ifs = €& + i) = cos(A)ey — sin(0)&, + i (sin(h)&y + cos(0)és)
so that
f1 = cos(A)&, — sin(0)é,
{f; = sin(#)€; + cos(h)é
Now, write fi = (fi, f2), f2 = (f4, f2), and observe that
dB(f1) = e fle1+ e 38 = fi = cos(0)e1 — sin(6)é,
dd(fy) = M fley + et f2ey = fo = sin(A)e; + cos(f)es
implies that
f1 = e *cos(h), —sin(8))
{fg = e~ (sin(h), cos(h)).

Therefore, we deduce that

(3.18)

fi = e*cos(f)dx, — e sin(8)dx,
fi = e*sin(f)dz, + e cos(8)dzxs.

Recall the definitions (from (3.9))
—p . 1 .
Cj:/ e "f; J=12, fz=§(f1 +if2).
aB

Introducing

1

c= —%(01 —ica),

we have for some holomorphic function x on Qj and for all z € Q. (in the preceding notations, we have
X = 74, in the previous notations) by (3.15)

e’ = x(2)e™ +2ce*Vloglz| - f= (3.19)

Notice that e = cos(f) + i sin(#) implies that

X
fz= 5 ((cos(8), —sin(0)) + i(sin(P), cos(h)))
= % (cos(6) 4 isin(0),icos(f) — sin(h)) = ? (cos(8) 4 isin(0), i(cos(f) + isin(d)))
e~ At
=— L), (3.20)

Therefore, recalling the notation z = x1 + ixs, (3.19) and (3.20) imply that

v —i i : —i i L1 X2 .
e’ = x(2)e 4+ ce”Vlog|z| - (1,i) = x(2)e™" + ce <z|2’ |22> - (1,4)

0 T1 + T2

T =R e

= x(2)e™ " + ce PR
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0
; ce
= x(2)e™" + —

= (3.21)

Now, as the left hand-side of (3.21) is real, taking imaginary parts of the right hand-side, we find that

0 =,—if
—if _ .0 €€ ce
— — =0.
x(2)e ™ =X + - -
Multiplying this identity by €*?, we deduce that
20 (_ 7y C ) __y
e (XE+2) +x(x) - S =0.
This implies that
c c ?
20 _ x(2) — > _ x(z) — >
() -2 ¢
G-z -2
Finally, as e” > 0, we deduce thanks to (3.21) that
c
o ox(z) - -
el = g .
'X(Z) - z’
Letting now v be the holomorphic function such that
c
9() =x(2) -
we deduce that
i0 ¥(2)
e’ = . (3.22)
(=)l
This implies readily that
aw) (W(z) )
dd=Im ( — ) =Im dz | . 3.23
(% o) (3:23)

Indeed, we have formally (in other words, the following expression must be understood as the equality
of two multi-valued functions, i.e. modulo 27%)

i =tog (L1,

Therefore, we have

o= ML) _1

=56 ) VeV
1w, 10w
= S =5 (3.24)

As 0 is real, we deduce that

=
—
Ny
<
3
=
&
—
U
]
I

i00 = —i00 = —é(‘?f) (3.25)

Using that d = 8 + 9, we deduce from (3.24) and (3.25) that
= 1 (oY (81/)) (8¢>
dd=00+00=—(——|— )| =Im | —].
2i ( b \Y v
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Finally, we deduce from (3.23) that

df € 277,
0B,

Now, a classical computation shows that

*dv = do.

This can be directly checked using the Coulomb condition, but as we have already used it to obtain the
closedness of e™* ff and e " f5, we can also check this property with these 1-forms. Recall that thanks

to (3.18)

e M f =e" cos(f)dxy — e” sin(0)dzo
e M f3 = e”sin(0)dxy + " cos(0)dxs.

Therefore, that e f{ be closed is equivalent to

0 = (0z,v) €” cos(0) — (0x,0) € sin(0) + (0, v)e” sin() + (0,,0)e” cos(9)

or (writing scripts for partial derivatives)

(vg + 61) cos(0) + (v1 — 02)sin(f) = 0.
Likewise, the closedness of e™# f5 is equivalent to

(—v1 + 62) cos(8) + (v2 + 61) sin(f) = 0.
Therefore, (3.26) and (3.27) are equivalent to the system

(COS(G) sin(6) > (1/2 + 91> _o.
sin(f) —cos(9) ) \v1 — 69

As

det (Z?j((g; _Siclz)(se()e)) = —cos?(0) —sin2(8) = —1 #0,

we deduce that
{1/2 +60, =0
v1 —6=0
In other words, (3.28) is equivalent to Vv = V40, or
xdv = db.

Therefore, thanks to (3.1) and (3.28), we deduce that for k large enough

1

— *dezeo—]..
2T 4B,

This argument concludes the proof of the Proposition.

(3.26)

(3.27)

(3.28)

(3.29)

O

We are now going to improve the expansion of the conformal parameter to obtain a pointwise estimate

of Vq_ik

We first need an extension lemma which is a refinement of Lemma IV.1 of [2].

completeness, we add all details.
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Lemma 3.2. Let 0 <r < 1 and ii € WY@V (By, \ B,.(0),%,_2(R™)). There exists e2(n) > 0 with the
following property. Assume that

IViillpas(g,,\5, 0 < €3(n)-

Then there exists an extension 7i € WLED (By,.(0),4,_2(R™)) such that i = i on Ba, \ B,(0) and a
universal constant Cs(n) such that

HV%

Proof. First, as in [5] 3.2.28, we view &, _»(R") as a submanifold of RN™ for some (large) N (n). Thanks
to the Sobolev embedding W1 (31 (By,. \ B,(0)) C C°(Bsy, \ B,(0)) and scaling invariance, there exists
P €%, 2(R") C RN and a universal constant T'13(n) > 0 independent of 7 > 0 such that

< Cs(n) | Vil s

L21(By,) — B2, \B(0))

”ﬁ*ﬁHLm B \B.(0 < Fll(n) HVﬁHL2,1 Bo, \B,.(0 < Fll(n)€3(n). (3.30)
(Ba2r\B#(0)) (B2-\B:(0))

As ¥, _2(R™) is a compact smooth submanifold, its injectivity radius is strictly positive, there exists
e3(n) > 0 independent of p € ¥, _»(R™) such that (3.30) implies that 7i(Ba, \ B,(0)) is included in a
geodesic ball of 4, _5(R™). Therefore, we deduce that there exists § = d(n) > 0 such that 7i(Ba,\ B, (0)) C
Bs(p) global coordinates ¢ : Bs(p) — ¢(Bs(p)) € R™™ (where m(n) = dim%,_(R™)). Once more, by
compactness, we can assume that ¢ = §(n) has been fixed independently of p and such that
-1

V™ e oy ) < (3:31)
depends only on n. Furthermore, we can assume without loss of generality that o(Bs(p)) = B?nb(") (0) =
Bj*(0) is the standard geodesics ball in R™ of radius § > 0. Now, apply the extension Theorem 7.2 to

the composition i, = ¢ 07 : By, \ B,(0) — R™™ to find an extension 7, : Ba,(0) — R™™ such that

—

Ny

‘w1,<2’1>(32r(o)) < Taz(n) el 3, 00

We deduce by the Poincaré-Wirtinger inequality that

an“’ L2 (Bar () Fiz(n) (HVWHLQJ(BW\BNO” + H”‘f’ ~ "By, \B, L2’1(Bzr\Br(0))>
< Tis(n) (L+7) ||Vﬁw||L2,1(32,\§r(o))
<2I'i3 HVﬁAPHLzl(BQT\ET(O))
Taking = plo ﬁQP finishes the proof of the theorem by the previous remark in (3.31). O

The next lemma is an easy consequence of Lemme (5.1.4) of [10] (see also Lemma IV.3 of [2]).

1 _
Lemma 3.3. (W%ZY_controlled Coulomb frame) Let 0 < r < 3 and i € WHED(B; \ B,(0)) —
Y, —2(R™). Then there exists 0 < e3(n) < e2(n) with the following property. Assume that

HVﬁHL?J(Bl\ET(O)) < e3(n).

Then there exists (€1,€2) € WLED(B(0)) x WHED(B1(0)) — R™ which is a Coulomb frame on
B1\ B(0) associated to 7i such that

7=x(e Aé&) in B\ B-(0 d
ii=x(e1ANé) in B;\B.(0) an { & -0,6, =0  on OB (0),

and there exists a universal constant Cg(n) > 0 such that

- 12 — 12 12
IVeLlltz s, o) + IVellizs, o) < 105(”)2 IViillL 2 5,0\ B, (0)

1
198120y + IV iz gy 0 < Co) (14 1Vl (505, 0p) IV l2a o0 By - (332)
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Remark 3.4. Notice that we do not have in general &) - 9,€5 = 0 on 9B,.(0).
Proof. First, as e3(n) < e2(n), we have
HVﬁ”LZJ(Bm,\E,,.(o)) < ea(n).

Therefore, by Lemma 3.2, there exists an extension 7 : By (0) = %,—2(R™) (such that fi = iion By \B,(0))
and satisfying (up to replacing Cs(n) by max {1,C5(n)} in Lemma 3.2)

an’ L2.1(B,(0)) = C5(’I’L) ||vnHL2’1(B2r\§r(0)) + ”vn”Lz’l(Bl\Ezr(O))
< C5(n) V215,15, ) < Co(m)es(n). (333)
1
By the inequality || - ||p2 < 2—\/?” - |lL2 (see the Appendix (7.6)), we deduce by (3.33) that
|vi < IHV: <L )
i — ||Vl ——C5(n)es(n
L2(B1(0) ~ 2V/2 LABi) T 22
so taking
2v/2 8r
0< 63(”) < M?,

we deduce by Lemme 5.1.4 of [10] that there exists a Coulomb frame (€1, &) € W2(B1(0))xW2(B1(0)) —
R™ such that

~ . . div ((?1 . Vé’g) =0 in Bl(O)
=% (€1 N &) and . -

€1 -0,8,=0 on 0B;(0),
and (by [10], (5.23), (5.24) p.244) and the elementary inequality

1-V1-t<t for all ¢ € [0,1],

we deduce that

52 2 167 3 > >
IVeLlltz s, o) + IVellizs, o)) < 5 (1 - \/1 ~ & /31(0) |Vn|2d$) < 2/31(0) \Viide.  (3.34)

Now, let p : B1(0) — R be the unique solution of

Ap=Vte-vé,  in Bi(0)
p=0 on 0B1(0)

Then by the generalised Wente inequality (or [4] and the Sobolev embedding W21 (R?) < Wh(Z1(R?)),
we have

2

IVulliza s, 0y < 2P0 IVELllL2 s, o)) IVEllL2 (5, (0)) < To HV% L3, 0)) (3.35)
Now recall the identity ([10], (5.39), p. 247)
Ve 2 + |Véy|? = 2|V ul? + | Vil (3.36)
Therefore, we have
Vér + Ve < V2V[Va [ + Vel < 2V + V2|Vil. (3:37)
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The identity (3.37) and the estimates (3.33), (3.34) and (3.35) yield

Vel (s, o) + IVellLan (s, o)) < 21Vl s, o)) + \/§HVﬁ

L2:1(B1(0))
2

57, I
L2(B1(0)) L21(B1(0))
1 12 ~
< 2T, HVﬁ‘ + x/iHVﬁ
8 L21(B1(0)) L21(B1(0))
1 e B
< 5T0Cs () IVllia (5,5, o) + V2 C5 (0) IV ll 21 (5,15, 0)
< Cs(n) (1 + ||VﬁHL2,1(Bl\§T(o))) IIVﬁHLm(Bl\E(O)) ) (3.38)
where
1
CG(TL) = max {8F005(n)27 \/505(711)} .
The estimate (3.38) finishes the proof of the lemma. O

We can finally state the precise pointwise estimate.

Theorem 3.5. Under the conditions of Theorem 3.1, assume furthermore that the following strong L'
no-neck energy holds

lim Hm [ Vidy[lp20 0, (a)) = 0- (3.39)

Then, there exists ag > 0 such that for all k € N large enough, there exists a moving frame (f;;’l, ﬁg) €
WD (B, (0) x WHED (B, (0)) and a universal constant C7(n) (independent of k) such that

fos.|

s

< Cr(n) (1 + HVﬁkHLQvl(Qk(ao))) IVikll 2.1 (0 (ao)) -

L1 (Bay (0)) L2 (Bag (0))

Furthermore, there exists a sequence of functions p, € W*(Ba,(0)) and a universal constant Cg(n)
such that

V21 oy oy 1V 20 (B 0)) + 1k e (8, (0) < Ca() (1 + ‘|Vﬁk||L2~1<m<ao)>> IV7ikll2.1 (0 a0

and there exists a sequence of holomorphic functions ¥y : Bay(0) = C and xj : Ba,(0) = C such that
Xk(0) =0, c € C and {ck} ey C C such that cy, e and
—00

Pr(z) = e* 2% (14 xk(2)) (3.40)
and

M = et |ihy(2)] = eRe(er)|z| %71 (1 4 0(1)), for all z € Qp(a). (3.41)

Finally, there exists Ay eCn (such that (/TOJT@ =0) and {A'k,o}

for all z € Qp(ap), we have the pointwise identities

€ C™ such that ffk,o — /Yo and
keN k—00

- 1 - - N
azq)k — §eCk+Mk(Z)zao—1 (1 + Xk(2>) (ka _ Z-sz) _ Ak,OZ% + 0(|Z|90—1) (3_42)

Proof. Step 1: Expansion of V&, in the neck region. By, fix ag > 0 such that for all k£ € N large
enough

IViik |l L2 (0 (a0)) < €3(1) (3.43)
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where e3(n ) > 0 is given by Lemma 3.3. Then we define as in the proof of Theorem 3.1 for all j = 1,2
ek,j =€, 8‘701(1);€7 and by Lemma 3.2, Lemma 3.3, (3.42) and (3.43), there exists a controlled extension

it Bog(0) = Ga(R™) if 7ig, : Qo) = %—2(R™) such that

g = Tk in Qk(ao) = Bao \Baglpk (0)
|7

L2t (Bay (0) < C5(n) Vil 20 (o) -

and a Coulomb frame (fi 1, fr.2) € WH2D(B,, (0), 57~ 1) x WD (B, (0), S*~1) associated to i such
that

_ div (f;,1 : Vﬁ,2) —0 in Ba,(0)

e =% (flo1 A fr2) i Ba,(0)  and . . (3.44)
fen - Oufr2 on 0Bq,(0)

and

fos

|75

< Cs(n) (1 + I\Vﬁkllm,l(m(ao») IVTkll 20 (0 (ag)y - (3:4D)

L21(Ba,(0)) L21(Bay (0))

Finally, we introduce the rotation 6y (which is a multivalued function on Q(a)) such that

(ﬁ,l + iﬁﬂ) = e (&1 +ick2)  on Qi(ag) (3.46)
As previously, let uj the unique solution of

Aﬂk = VJ‘JF];J . V,JF/;,Q in Bao (O)
e =0 on 0B,,(0).

Then we have by the improved Wente inequality j, € W52 (B, (0))NC°(B,, (0)) and (3.45) for some
universal constant Cy(n)

V21 oy o) F 1V 21 By 0)) + 1k e (8, (0) < Colm )(1+‘|Wk||L2»l<m<ao>>> IV7ikll2.1 (0 (a0))
(3.47)

Furthermore, introduce the notation vy = A\ — px. Then v is harmonic, and implies that for k large
enough

1

— dvy — =10y — 1.
2T ¥ ka—wo 0

Indeed, recall that by the proof of Theorem 3.1, % dv = dfj, and that there exists a holomorphic function
i Qr(ap) — C such that

o _ e

Tk 3.48
oA (3:45)
In particular, a computation of the proof of Theorem 3.1 shows that
df, = Im (M> , (3.49)
VY
so that for all ozglpk < p<ap
1 1
— xdvy, = — dby, = —Im €.
2 Jop, T Jog, 27 B,
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1
dp = — xdv, — 90 — ].,
27'(' aBp k—o0
we deduce that
1 1
f*dl/k/ = — d9k200—1
2m o, 27 Jop,

for all k large enough. In other words vy satisfies as in (3.28)

61-21% + 8z19k =0
. 3.50
{(9I1Vk—aI29k=O ( )
Therefore, we deduce by (3.50) that
1 1 ;
O, = 5 (8T1 Ve — i@mzyk) = 5 (6129k + z‘é‘n@k) = % (87"10k — 187«29k> =10,0. (351)
As dO), = 90, + 00y, (3.49) implies that
. 1 8¢k 1 8zwk
100y = ———— = — dz =0lo , 3.52
L= =y gl (352)

as Oz = 0 implies that 0,1, = 0z, = 0 and

0. oglu| = g log (v () = 5 AT = 5
Therefore, (3.51) and (3.52) show that

0wk~ loglunl) = 0.

So the function v; — log Wkl is anti-holomorphic and real, so it must be constant by the maximum
principle as Qx(ag) = Ba, \ B ag'p, 18 connected. Therefore, there exists 5 € R such that

v(z) =k +log [¥r(2)], (3.53)

or
e (2) = Yk |y (2)]. (3.54)

Now, as % = e 1) is holomorphic and satisfies

1 g1
—Im / % = —Im / O _ 6o — 1, (3.55)
2m oB, v, 27 aB, WYk
we can assume without loss of generality that v, = 0. Furthermore, (3.55) shows that the holomorphic
1-form % on Q(ap) admits the expansion
81/% dz
— =(6p—1)— d
= (0~ )T+l
where &, admits a holomorphic extension on By, (0). In particular, ¢, admits a Laurent series expansion
oo
wk‘(z) = Z amzma
m:eo—l
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where ag,_1 # 0. Therefore, ¢, extends holomorphically in B,,(0), and letting ¢; € C be such that
e* = ag,—1,
there exists a holomorphic function yyj : Ba,(0) — C such that x%(0) = 0 and
Ur(z) = e 2% (1 + xi(2)), (3.56)
where we have explicitly

Xk(2) = Z ek @y 2 (B0 1),

m:«%
Notice in particular as Ay = uy, + vy that
e = et [ (2)], (3.57)

where 1)y, is holomorphic and admits the expansion (3.56). Now, we come back to the identity (3.46) to
observe that

- 1 - . =g ]. = . ]. i > .
8Z<I>k = 5 (6m1(pk — Zaﬂm(bk) = 56)\’“ (€k71 — Zekvg) = 56)\1“6 O <fk,1 — kag) . (358)
Now, observe that by (3.48) and (3.57)
et = el (2)] x (L (o) (3.59)
etre err |y (2 ety (2). .
|t (2)]
Therefore, (3.58), (3.59) and (3.56) finally yield the expansion
.1 .
0.81 = 5o hnl2) (fix =i o)
1 L
= e (L (=) (Foa =i o) (3.60)

By (3.45) and (3.47), et (ﬁ,l - ifm) € WHED 0 CO(B,, (0), $"1) and

s e C. 1+||VR v
He“k (fk,l - ka,z)H <e o(m) (119 7k 2.1 2y (g ) I lI21 (0 ()
L (Bay (0))

[v (e (Fea —i2)

< (Cs(n) + Cy(n)) (1 + HVﬁkIIwmk(ao))) IVl 2. 2, ) o (19 7k 1121 0, () )1 V76 12.3 (02 )
(3.61)

L21(Bag(0))

In particular, if

1 P y n
§eck+#k(o) (fk,l — ka,g) (O) = Ak,O eC \{0}

then (notice that Ay # 0 as @y is an immersion) (3.60) becomes
8.8y, = Ap 02! 0 (|2|%71) for all z € Qp(ap).

Furthermore by the strong convergence of & towards @, in CL_(B;(0) \ {0}) (for all [ € N) which
satisfies

0:oc = A2~ + o (|o%7),
we deduce that
gk,O — /Yo.
k—o0

This concludes the proof of the theorem. O
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3.2 General case

Theorem 3.6. Let {‘ik}keN be a sequence of smooth conformal immersions from the disk B1(0) C C
into R™. Let m € N, and for all 1 < j < m, let {a]}ren C Bi1(0), {pi.}ken C (0,00) and define for
0 <a<1andk large enough

=50\ UB, (). @) =B\ U, ., a)).

j/(af;) =g fork

a~lp]

Assume that for all 1 < j # j' < m, and all 0 < o < 1 we have Ba,lpi(ai) N B

large enough, and

J J
— 0 a, — 0.
Pk k—oo k k—o0
Furthermore, assume that
S 12
sup/ |Vii|“de < e1(n), Sup [[VAk 2.0 (0, ) < 00,
keNJa, keN '

where €1(n) is given by the proof of Theorem 2.1. Finally, assume that

lim limsup/ |ViiL|?dr = 0
Qi (o)

a=0 k0o

and that there exists a W22 (B1(0) \ {0}) N C®(B1(0) \ {0}) immersion B such that

log |[V®oo| € LiS.(B1(0) \ {0})

and By, v B in CL(B1(0)\ {0}). For all k € N, let
— 00

1 -
Ak
et = Vo
Voilbde

be the conformal factor of 3y, Then, there exists a positive integer 8y > 1, and for all k € N integers
01, - ,07 € N such that for all k € N large enough

iei =6y —1,
j=1

and for all k € N, there exists 1/2 < ay <1 and A € R such that

J
Ak — Z@fc log |z — aj,| — A <Ty (||V/\k|L2,oo(Qk) —|—/ |Vﬁk|2dx> (3.62)
j=1 2
Lo (Q (k)

for some universal constant T'1y = T'14(n). Furthermore, we have for all 0 < pi < 1 such that

U B, (al) € By, (0).
j=1
and for all k € N large enough
1
— * duk = 6‘0 —1.
2m JoB,, (0)

Finally, for allk € N and j € {1,--- ,m}, we have
1

— xdv, =00 € Z.
21 Jon ; (al) g
k

34



Proof. Indeed, the same argument shows that there exists a holomorphic function ¢y, on 2 and c,ﬁ, e cpt €
C such that

sz
ek — —z@k + Z k
j=1%— a’k
and the same computation shows if
N
Y(2) = en(z) = Y —F—
j=17% " %
that
ol — Yr(2)
¥k (2)]

Therefore, we have

and forall 1 < j <m

/ ~doy, € 277,
9B ; (al)

k

Furthermore, we have

lim by, = 27 (6 — 1) > 0. (3.63)
k—o0 831(0)

In particular, if {p}, oy C (0,00) is such that py P 0 and
— 00

G CBQ 1p (0),

then we also have for k € N large enough

1
—Im/ 8wk_90—1>0
27 0B, (0) Yk

which implies that )y, admits a holomorphic extension on B;(0). Analytic continuation then implies that
forall1<j<m

Therefore, we have by (3.63) for k large enough

1 m
*Z/ dfy =0y — 1.
u j:1 aBPi ((l;c)

Then, we deduce by the argument of Lemma V.3 of [2] that there exists a universal constant I'15(n) =
I'15(n) such that for all k € N there exists 1/2 < ay, < 1 such that for all k£ € N large enough

Uk — Z% log |z — a;| — A <Ti5(n) (”VA’C”L?’OO(Qk) —|—/ |Vﬁk|2da:> , (3.64)
Qp

=1 Lee (Qk (k)
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In particular, as p, € L>(B1(0)) we get the estimate (3.62) from (3.64) and ||pk ||« (5, (o)) < T16 for
some universal I';g = T'1g(A,n) (thanks to Wente’s estimate), we deduce that there exists a universal
constant C' = C(n, A), where

A= s (190l + [ (Vi
keN Qp

such that for all & large enough and z € Q4(1/2) (noticing that Ay is bounded by the strong convergence
outside of 0)

1 Ak (2)
— < mei <C. (3.65)
C i 1gd
[z~ all’
j=1
This additional remarks completes the proof of the Proposition. O

Remarks 3.7. (1) The integers 9{; a priori depend on k, but we will see in the case of interest of
bubbling of Willmore immersions, they must stabilise for k large enough.

(2) The reader will notice that we do not need the limiting immersion to be smooth, but merely C1:®
for some 0 < o < 1 (this allows one to define branch points, [8]). As in the application we restrict
to Willmore immersions, we automatically get the smoothness of the limiting immersion outside
of the point of concentration.

Theorem 3.5 also has an analogue in this setting, but we will not state it for the sake of brevity of
the paper.

4 Improved energy quantization for Willmore immersions

In this section, we build on [2] to obtain an improved no-neck energy.

Theorem 4.1. Let ¥ be a closed Riemann surface and assume that {Ci;k}keN is a sequence of smooth
Willmore immersions such that

lim sup W (®},) < co.

k—o0

Assume furthermore that the conformal class of g = §ZgR7L is precompact in the moduli space. Then for
all0 < a <1 let Qp(a) = Bary, \ Ba-1,,(0) be a neck domain and 8y € N such that (by Theorem 3.1)

0p — 1 = lim lim o\, dA", (4.1)
a—0 k—oo aBa—lry(O)

and define

k(1

A = sup <||VAk||L2,N(Qk(1)) +/ |Vﬁk|2dm> .
keN (1)

Then, there exist a universal constant T'17 = Ti7(n), and ag = oao({®rtren) > 0 such that for all
0 <a<ayandk € N large enough,

IViTk |21 0y (ay) < Tar(n)el7tm? (1 + ||Vﬁk||L2(Qk(4Oé))) IViikll L2 (0 (40)) - (4.2)
In particular, we deduce by the L? no-neck energy

Jiapy Y sup [|V 7 [1.2.1 0, ay) = 0
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Proof. Step 1: L*>!-quantization of the mean curvature. Here, we will prove that

lim lim sup (He)"“ﬁk‘

a=0 koo

+ He)\kv.ﬁk‘

L2:1(Qx () Ll(Qk(a))>
This statement is a consequence of the following lemma.

Theorem 4.2. There exists constants Ry(n),e4(n) > 0 with the following property. Let 0 < 100r < R <
Ro(n), and ¥ Bgr(0) = R™ be a weak conformal Willmore immersion of finite total curvature, such that

sup / Vi de < eq(n).
r<s<R/2J Bss\Bs(0)

Set Q = Bg \ B,(0), and

A= VAo ) + / Viilda,

where X is the conformal parameter of ®. Then there exists a universal constant s =Ts(n) such that

1
4r \ 3 1
for all (5R> <a< 5 we have

e H

+ He’\Vﬁ’

< Tis(n) (1+A) PN (14 Vit ) [ Villoy . (43)

L21(Q,) L1(24)

Remarks on the proof. The proof closely follows the proof in [2]. In Step 1, we use the previous
results to obtain the L' N W1 control for the harmonic parts of tensors, and the Wente inequality for
the part with Dirichlet boundary conditions.

In Step 2, we use a structural property of the unit normal 7 to transfer the L?! control of A H
into a L?! control of Vii. The proof uses other results on moving frames from [10], and the rest follows
again by classical Calderén-Zygmund estimates, Wente inequality, and an averaging lemma. The proof
is quite lengthy but globally straightforward.

Remark 4.3. Notice that by L*!/L? duality, we have

HV(ekﬁ)‘ < H(V)\)eAﬁ‘ + He’\Vﬁ

+ He’\ﬁ)

< IV 2o, | A

L1(Qa) L1(Qa) L1(Qq L2:1(Q,) L1 (Q4)

1
Proof. Define for all (1> * <a<1the open subset Q, = Bor \ Ba-1, of . We follow step by steps

the proof of Lemma VI.6 of [2]. First, the pointwise estimate on Vii is identical and we find that there
exists T'yg = T'19(n), g = I'jg(n) > 0 such that for all z € Byg/s5 \ Bs,/4(0)

r I
vittz) < .3 [ VitPdg? < Dov/Em) (4.4)
|Z‘ By |\B|z|/2(0) |Z|
so that
IVl 2.0 () < VA9V €4(n)
€1(71)2 .
and we can choose g4(n) = ——=——. Therefore, thanks to Theorem 2.1, there exists d € R such that

VTl (n)

5\Fornd (N sa 1
and for all | — (—) =4 < — < —, there exists A, € R such that
4 % 4 4

A = dlog |z — Aallpe g,y < To(n)y/ %A +T4(n) <Tq(n) <\/5A +/ |Vﬁ|2dx> . (4.5)
Q
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As 57 is Willmore, the following 1-form is closed :
&=1Im (aﬁ +|H?03 + g~ @ (H, ho) ®5<i>') .

As  is well-defined on Bgr(0), the the Poincaré lemma, implies that there exists L: Bgr(0) — R™ such
that

e

2 0L = 0H + |H|?0% + g~ @ (H, ho) ® 89. (4.6)

Now, introduce for 0 < s < R/2

Nl=

d(s) = %/ |Vii|2da
87 JB3.\B,,2(0)

Then we have trivially for all 2r < s < R/2

s3(s) < ( /Q |Vﬁ|2dz> — |Vl (4.7)

and Fubini’s theorem implies that for all r <1y <ry < R/2

T2 T2 ] T2 = 2
/ 56(s)%ds = / - / |Vii(z)|2dx | ds = / / Ml{s/quKgs}dxds
T1 T1 s BZS\ES/Z(O) 1 BQ’"2 \ET‘l /2(0) § -

= 1og(4)/ |V (4.8)
Bayy\ By (0)
Now, (4.4) shows that for some C19 = Cip(n)
max {X®)|7(2)], | Ho(2)|} < [Vii(2)] < Cro8((:]). (4.9)

Furthermore, the same argument of [2] (see [1] for more details) using a Theorem from [7] implies that
there exists a constant C1; = C11(n) such that

A |\VH(2)| < CHM for all z € Q5 (4.10)

|2l
Therefore, we have thanks to (4.6), (4.9) and (4.10)

IVL(z)| = 2|0L(z)| < e *?) (CH‘S'(ZZ') + 20105(z)2) . (4.11)

Now assume for simplicity that o = 1/2 (then we do not need to use the precised form (4.5) and we can
use instead Lemma V.3 from [2]). Denoting for all r < s < R

L, =][ Ldsxt,
OB
we deduce from (4.10) that for all z € Q5 (taking a = 1/2 in (4.5))
|L(z) = Ly < / VLA < 2me* R =D (C16(12]) + 2C10|2[5(12]) - 5(]])

1z

< 27T 1A A2 (CH + 2000 ||vm|L2(Q)) 5(12)). (4.12)

Then we get

/ |L(2) = Ljzy|?eP|d2|” < 2™ (011 +2C1 ||Vﬁ||L2(Q)> / 8(|2])?|d=?
Q1) 0
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R/2
= 47T2€2F1A (OH + 2CHo ||Vﬁ||L2(Q)) / 552(3)d8
2r

= 4n?% log(4)e? A (011 +2C1o |\Vﬁ||L2(Q)) IVl 2 - (4.13)

Now, we continue the proof in an exact same way to obtain the pointwise estimate (for some universal
constant C1o = Ci2(n))

A2l L] < Crae®™™ (14 9l g ) 197l sy - (4.14)
Therefore, we get

HeMZ)Lﬂlzw

2T A — -
ety S 2V (L [Vl ) V720 (415)

Combining (4.13) and (4.15) implies as || - l2.0c(.) < || [l2(.) that

He)‘L

2 2 A — —
ety S (710800) £ 207C12) 0 (14 [l o) [Vl
= Cy3(n)e”™ ™ (1 + ||VﬁHL2(Q)) IViillpz(q) -
The estimates (4.12), (4.14) and (4.7) imply that for all z € ;5
AO|L(2)] < (2mmax {Cr1(n), 2C10(n)} + Cra(n) €T (14 Vil oy ) (IV7llay + 1218021 ) 1217

< 2 (2 max {C1y (1), 2C10(n)} + Caa () 4 (14 | Vill s ) IVl 121!

R R 1
= Cuae™ (14 19la) ) 1920 7 (4.16)
Now, recall that there exists S : Br(0) — R and R : Br(0) — A2R™ such that
VS =L -V
VR=LAV®+2HAV*T,
we trivially obtain from the pointwise inequality (4.16), (4.9) and (4.7) for all z € Q5
V()] < 200 (14 [ Vil ) 19l 1
< L2(Q) L2@) ]
and
— R . 1
|VR(Z)| < 2014(’(1)62F1A (1 + an”LZ(Q)> HVH”LQ(Q) m + 4010(71)5(|Z|)
- R 1
< 2(Cha(n) +2C19(n)) 24 (1 + ||V”HL2(Q)) IVl 2 ER
Therefore, if Ci5(n) = 4v/7(C14(n) + 2C10(n)) > 0, we deduce that
IV Sl ) < Crs@)e™™ (14 | Viillaq) ) [Vl
R < 1A i i . :
[VA].....q, ,, < Crse™ (14 1¥lla(e) ) 19720 (4.17)

Now, define for all 2r < p < §

S, :][ Sdx', R, :][ Rdat.
0B,(0) 8B,(0)
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Following the exact same steps as [2], we find that for some universal constant C15 = Ci6(n)

ds,

ds, | |dR,
dp

I

< Cra(m)e™™ (14 |Vl () IVl () 5(0) (4.18)

Therefore, (4.8) and (4.18) imply that

/§ ‘ ds,
2r dp

We will now use a precised version of Lemma VI.2 of [2] (proved in [13], see also [15]).

2

- |2
\ |8,

dp

2
pd LY (p) < Crg(n)?eiTi (1 n ||Vﬁ||L2(Q)) IV 0 - (4.19)

Lemma 4.4. There exists a universal constant Ry > 0 with the following property. Let0 < 4r < R < Ry,
Q = Br\ B:(0) - R, a,b: Q — R such that Va € L>*(Q) and Vb € L*(Q), and u : Q@ — R be a
solution of

Ap=Va-Vtb  in Q.

Furthermore, define forr < p < R

1
Ep:][ odAt = — odAr.
8B,(0) 2mp JoB,(0)

Then Vo € L2(R2), and there exists a positive constant T'sg > 0 independent of 0 < 4r < R such that for

all (%)% <o¢<%

HV@HL"‘(BQR\EML,.) < Ty (HVGHLZM(Q) HVb||L2(Q) + ||V¢THL2(Q) + HVSDHLZOO(Q)) :

Proof. Let @ : Br(0) — R and b : Br(0) — R the extensions of a and b given by Theorem 7.2. As
0 < 4r < R and scaling invariance of the L?° and the L? norm of the gradient, we deduce that there
exists a universal constant I'sg >> 0 such that

IVl a0 < Tao (IVallam oy + lollzmqen)
|v3 < Tao (IVbllz(gy + [Bllacay)

L2(Br(0))
Thanks to Poincaré-Wirtinger inequality, and as @ = a and b=bon Q, we deduce that

IVall 2. B0y < T20 (||Va||L2»°C(Q) + Ha - EBR(O)‘ LQYW(Q)) = I’y (Va”m,oo(BR(o)) + Ha - EBR(O)‘

<Tq (||va||L2»°°(Q) + Ha N EBR(O)‘ LZ'OO(BR(O))>

< T30 [|Vall2.00 () + T20Crw (L*®) R Vall 2,00 (5, (0)) -
1
Therefore, if T'ooCpyw (L) Ry < 37 we find
Va2 (B 0)) < 2T20 IVl () »
1
and likewise, provided 'yoCpyw (L?)Ry < AL find

< 2I'99 ||VD .
H HL2(BR(0))* 20 [IV8lla o)
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Now, let u : Bg(0) — R be the solution of
Au=Va-V*tb  in Bg(0)
u=0 on OBg(0).

Then the improved Wente inequality of Bethuel ([10], 3.3.6) and the scaling invariance shows that there
exists a universal constant I'y; >> 0 such that

190l aopy < P21 11Vl 2. (0 || 79 < A3 | Vallgem g [Vl ey

L2(Br(0))

Now, let v = ¢ —u — (¢ — u),.. Then v is a harmonic function such that for all r < p < R

d,vdH#' = 0.
oB,

Therefore, Lemma 2.2 implies that

HVUHL%BQR\EQ_M(O)) < ||VUHL2,00(Q) <Iy (||VGHL2&°(Q) HVbHL2(Q) + HVSDTHL‘Z(Q) + ||V<P||L2,oo(ﬂ))
which concludes the proof. O]
Now, recall that the following system holds
AS=—%Vii-V*R
AR = (~1)"« (Vi JVER) + V7 - V48,

First, thanks to Lemma IV.1 of [2], we extend the restriction @i : Bg \ B,(0) — %,_2(R") to a map
7 : Br(0) = 94,_2(R™) such that

Hvﬁ’

AS =—%Vii- VR in Q
AR = (—1)" (V%l_v{é) +AVA-VES Q.

< C vi .
L2(BR(0)) — o(n) || nHLZ’(Q)

In particular we have
(4.20)

Therefore, applying the proof of Lemma 4.4 by using the already constructed extension of 7, we deduce
thanks to (4.17) and (4.19) that

19820, + | V]

<C 2r' A (1 . ) _—
L2(91/4)_ 17(TL)€ +HV””L2(Q) ”VHHLZ(Q)

As in [2], we obtain readily

198 la(a,.) + |V

L2(21/2) < Cus(n)e™ (1 + HVﬁHW(Q)) IVl 2(q)

1Sy, + | ] < Crg(me™ (14 |Vl ) IVl - (421)
/ Lo (Q1/2)

Now, introduce the following slight variant from a Lemma of [13].

Lemma 4.5. Let Ry > 0 be the constant of Lemma 4.4. Let 0 < 16r < R < Ry, Q = Br \ B,(0) — R,
a,b:Q — R such that Va € L?(Q2) and Vb € L*(Q), and ¢ : Q — R be a solution of

Ap=Va-V*b in Q.

=

Assume that ||90||L°c(89) < 0o. Then there exists a universal constant I'oo > 0 such that for all (%) <
a < 1,
H(pHLoo(Q) + ||v<‘0||L2’1(BaR\§Q—1T(O)) + HV2(’0HL1(BQR\§Q—1T(O)) < F22 (”VG'HL?(Q) ||VbHL2(Q) + H‘)OHLOO(é)Q)) :
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Proof. As in the proof of Lemma 4.4, introduce extensions @ : Br(0) = R and b: Bgr(0) = R of a and
b, such that

[Vallrz(Br(0)) < 220 [[Valliz2(q)
[VOllr2(Br(0)) < 2T20 | VO]l 20 -

Now, let v : Br(0) — R be the solution of

Av=Va-V*tb  in Bg(0)
v=0 on dBg(0).

Then the improved Wente inequality and the Coifman-Lions-Meyer-Semmes estimate ([4]) shows (by
scaling invariance of the different norms considered) that

Il (Bry) + IVVIL21 By + V0l L B0y < T22 1VallLzq) VOl - (4.22)
Now let u = ¢ — v. Then u is harmonic, and let d € R, {an}, ., C C such that
u(z) = ag + dlog|z| + Re <Z an2"> .
nez*

Then we have by the maximum principle for all r < p < R

1 2 )
dlogp| = |5 Yo < [l 90 -
L B = T e
Therefore, we have
R
|d|log —)= lag + dlog R — (ap + dlogr)| < |ag + dlog R| + |ao + dlog 7| < 2 [|ullp«po) - (4.23)

Now, recall that

R A2
HVIOg |ZH|L271(BR\§,,(O)) = 4\/77' <10g (T> —+ log <]_ +4/1— (E) ))

R
V2 log |Z|HL1(BR\§T(O)) =462 log ‘z|HL1(BR\§T(O)) = 4rlog (7’) . (4.24)

Therefore, as R > 4r, (4.23) and (4.24) imply that

R
19 (@108 Dl 5,1, ) < 47 (o () + 1082 ) ] < 1697
HV2 (leg |Z|)HL1(BR\§T(O)) < 8T ||u||L°°(é)Q) . (4'25)
These estimates (4.23) imply by Lemmas 2.3 and 4.5 imply that

W2+ V7
5

2
IVellios 5B, 0 T IVl 5,0, - o) <647 75— RO IV (= dlog [2D)lla

Bry2\B/2(0))
+ 247 [[ull 0 90

V2447 V2447

Now, recall that the mean value formula and the maximum principle ([9] 1.10) imply that for all z €
Br \ B,(0), and 0 < p < dist(x, ),

2 2
[Vu(z)| < - lull oo o8, (2)) < ’ l[ull oo o02) - (4.27)
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2 1 1
HVU\|L2(B§/2\§2T(O)) :/ uoyudt —/ udyudst

0BR/2(0) 0B2,(0)
< Nulls a0y (/ |Vu|dA! +/ |Vu|d%ﬂ1> (4.28)
9B /2(0) 9B2,.(0)
the estimate (4.27) shows that
1 1 ||u||L°°(6Q) 1 ||UHLoo(aQ) 1
|Vulds#" + |Vuldst™ < 4 ————dH + e
8B 2(0) 9B3,(0) OB ,5(0) R 9B3,(0) T
= 8m ||u||L<>c(6sz) : (4.29)
Therefore, we have by (4.28) and (4.29)
||vu||L2(BR/2\§2T(o)) <2V2m ||uHLoo(aQ) : (4.30)
Combining (4.26) and (4.30) shows that
2/ + V2 V2 + /7
2
IVullies goB, o, 00 T 1V Ul .5, 0 < (256\/ﬁa - 24m 236 ) s oy
V2+ T
Combining the maximum principle and inequalities (4.22), (4.31) yields the expected estimate. O

Now, apply Lemma 4.5 to the estimates (4.21) shows by using the previous extension i of 7 that

IV5 020, + | VE]

< Cro(m)e™ A (14 |Vt 2y ) V7
L2 (Q1yn) 10(n)e FVillLe o) ) 1Vl 20

< Chg(n)e™h (1 + ||Vﬁ||L2(Q)) IViillL2(q) - (4.32)

2 2R
v SHLI(QUQ) + HV R’ LY (Qi2) —

As (see [28] for the definition of the restriction operator L between a 2-vector and a vector)
e = ivls VP — ivﬁl_vlq“», (4.33)
we trivially have
|4

< [VSllger(

Qy2) T HVE‘

< 2019 ()™ (14 IVl ) [ Villzay -
(4.34)

L21(Q12) L21(Q212)

Now, (4.33) implies that
2NN + 20, 1 = ivL (0.9) - V& + ivLs V(0.8) - iwazﬁ) Lvid - ivﬁl_ v (0.).
so that
0. H = —2(8.\)e H + ivl (8.5) - e VP + ivis LeMV(8,P) — %wazé) Le Vo
- EV}?L@”\VL (8z@> .
As VA e L2, *H € L>! and e *V2® € L2, we deduce by (4.32) and (4.34) that

He)‘Vﬁ‘

< 4T A — N
Ll(Ql/z) = CQO(n) (1 + A) € (1 + ||V7’l||L2(Q)) ||VTLHL2(Q) s

and this concludes the proof of the Theorem. O
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For all neck region of the form Q; = Bg, \ By, (0), define for all 0 < a < 1
Qk(()é) = BaRk \Eoﬁlrk (0)

The estimate (4.3) implies that

e ff ‘ H ey ’ <C 14 A)eCart (1 Vi ) Vi
[ B oy 1T g, ) S Conlm) (LAY (1 [V, ) | nkanm(k(za);,
4.35
where
A =sup (IVA 20 ) + VK20, ) < 0,
keN

is finite by hypothesis. Therefore, the no-neck energy

Jimg Jim sup IVl 2 (0 (a)) = 0 (4.36)

implies by (4.35) that

lim lim sup <He)"“ﬁk‘

a=0 koo

+ He/\kVﬁk‘

L21(Qk (@) Ll(Qk(a))>

Step 2: L*>!'-quantization of the Weingarten tensor The proof relies on an algebraic computa-
tion first given in [28] (I1.10). We will give its easy derivation in codimension 1.

Algebraic identity in codimension 1. Let d: B (0) — R? be a conformal immersion, and 7 :

1 - "

B1(0) — S? be its unit normal. If e* = E|V<I>| is the associate conformal parameter and €; = e~ 0, ®

for 7 = 1,2, we have by definition

{7 x ‘fl = (é’i X &) X & = (€1,81)8 — (€2,1)8 = & (437)
n X €3 = —€].
As |7i| = 1, we have for all j = 1,2
Op, M = <V61j i, €1)€1 + <Vazj 7, €2)€s = —Iy ;&1 — Iz j€5.
This implies that
Vit = (=11 161 — 11262, —11 261 — I3 9€5) (4.38)
and (4.37) combined with the identity @ x o= —(7 x @) (valid for all @, 7 € R3) yield
Op; M X 1l = =l j€1 X 71 — Ty ;€5 x i =T ;€5 — Il ;€.
Therefore, we deduce that
Vit X it = (Ogy Tl X 7, =0y, 71 X 1) = (—lg 28 + 11 28, —1; 18 +T; 287). (4.39)
As
e MH = % (L1 +1a2), (4.40)
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the identities (4.39) and (4.40) show that

VLT_i X 7+ QHV(I; = (]117151 + H172€2,H1,2€1 + ]127252)

(4.41)
Comparing (4.41) and (4.38), we deduce that

Vit =it x Vi — 2H V. (4.42)
Taking the divergence of this equation we find

At = Vit x VYit — 2 div(HV®).

Argument in arbitrary codimension. Then we can find a trivialisation of 7 such that 7 =
1 ATig A\ -+ AT _o satisfying the Coulomb condition

div (V7ig - 7iy) =0 forall 1 < fg,v<n-—2.

(4.43)
Furthermore, recall that for all 1 < 8 <n — 2, [28] implies that (using (4.43) for the second condition)
n—2
Vitg = — % (A V'iig) + > (Vilg,iiy) - iy — 2 HgVO (4.44)
~y=1
Taking the divergence of this equation yields by the Coulomb condition (4.43)
n—2
Aiig = —* (VA AV idg) + Y (Vitg, ii,) - Vii, — 2 div (Hﬁw) . (4.45)
~y=1

Now, as in (2.39) (recall that this comes from Lemma IV.1. in [2]), construct for small enough « > 0
and k large enough (thanks to the no-neck property) an extension 7i

L : BaRk (0) — gn_Q(Rn) of T_ik :
Qr(a) = Bar, (0) \ Ba-1,,(0) = %, _2(R™) such that for some universal constant Cos = Caa(n) > 0
v

Furthermore, as in Lemma IV.1 of [2] (see also [10] 4.1.3 — 4.1.7) we can construct extensions ﬁf of ﬁf

< Oy

L2(Bar, (0) 2 [Vl 0 o) -

(4.46)

on Byg, (0) such that

~ ~1 ~n—2
T = T Ao+ ATl on Byg, (0)

satisfying the Coulomb condition for all 1 < 8,7 <n — 2
div (v%f i) =0
. (4.47)
Oyity -7y =0  on on OB, (0)
and for all 1 < 8 <n —2 (by (4.46) for the second inequality)

=p 7

Furthermore, using [10] 4.1.7, we have the estimate for all 1 < 8 <n — 2

for all Byg, (0)

< Cy(n HV%‘ <l (n
L2(Bag, (0)) 22(n) || Vi L2(Bun, (0)) (1)

=5 =
ank nz

< Ciy(n) [ Vi : 4.49
Lz’l(BaRk (0)) — 22(”) || nkHLZ(Qk(a)) ( )

Let us recall the argument for this crucial step. By (4.47), there exists Az~ : Bag, (0) — R™ such that

o ~B ~
VA, = Vit - i - (4.50)
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Furthermore, the boundary conditions of (4.47) implies that we can choose fYBw such that /Tgﬁ =0on
OByr, (0). Therefore, we have

- ~8 ~
A&y, =Vii, - Vi, in Bag, (0)
+=0 on OBg4g, (0)

(4.51)

Therefore, we get by the improved Wente estimate and (4.48)

T ~p = S o2
VA ‘ < Ch(n HVn ‘ H 7l ‘ < O (n)Chy(n) || VT .

19850 oy = [T ) 198 ) S ClI ) IV, o

(4.52)
Combining the pointwise identity (4.50) with (4.52) yields (4.49).
Now fix some 1 < 8 <n —2 and let @, : Bygr,(0) = R™ be the unique solution of
~ B\ N2 =B v, =B
Aﬁ:—*(Vﬁ /\VLﬁ>+ Vi, i) - Vit,  in Bug, (0

k k k ;< ko k) k R (0) (4.53)

Q_L'k =0 in 8Boch (0)

Now, thanks to (4.43), we can apply [4], scaling invariance and (4.46) to find that there exists Cag =
Ca3(n) > 0 such that

2
- 12
< C3C23 | Vitk |tz (a)) -

< 01 |
D= Y L (B, o) =

Hvzﬁk’HLl(BaRk(o

Furthermore, as @, = 0 on 0Bag,(0), and scaling invariance (of [[ukll (5., 0y IVUklr21(s., o)
ol Ry

and HVQUkHLl(B R (0))) and Sobolev embedding, there exists Coy = Caq(n) > 0 such that
alvg
- - . L2
kLo (B, 0)) T IVEEL21 (B, 5, (0)) + ||V2UkHL1(BQRk o < Coa [ Vitklltz o, (o)) - (4.54)

Now, by Theorem (4.2), H,'fvfﬁk € L*>(Q (). Furthermore, as

. k .
lim — = oo, limsup Ry < o0,
k—oo T k—o00

there exists by Theorem 7.2 an extension F: Bag, (0) = R™ of H,fVi;k such that for all k£ large enough

—

7 <C HHﬁvq? ’
Ml (Bag, o) = 2s () || V8

L21(Q4(a)

where Ca5(n) > 0 is independent of k large enough and 0 < o < ag(n) fixed (small enough with respect
to some ap(n) > 0). Now, let ¥ : Qx(a) — R™ be the solution of the system

AT, = —2div (ﬁk> in Bur,, (0)
T =0 on 0Bgur,(0).
As we trivially have

Jasecio] <

W@ (Ban, (0)) —

L21(Bag, (0)

scaling invariance and standard Calderén-Zygmund estimates show that there exits a universal constant
Co = Cog (n) such that

”vq_j’kHszl(Ban(o)) < C26(n) “ﬁk‘

< HPYV® ’
L21(Bar, (0)) 025(71)026(%) H kv k

L2 (Q (@)
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< 2Ch5(n)C H e ‘ . 4.55
< 2C55(n)Ca6(n) ||e™* Hy L (6 (o) (4.55)
Furthermore, the Sobolev embedding shows that for some universal constant I'o3 > 0
- - e T
1Okl (B, (0)) < T28 IVOkIIL21(5, 4, 0)) < T28C25(12)Cas(n) He ka‘ Lo (O (a)) (4.56)

Finally, let gy = ﬁg — Uy, — Uk. The @ : Qr(a) — R™ is harmonic and
A(ﬁk =0 in Qk(a)
o = nﬁ on 0Bug, (0)
op =il —dp — T  on dBy-1,,(0).

In particular, as ﬁk,f[)’k,ﬁf € L (Qk(e)) (as || = 1 and using the bounds (4.54) and (4.69)), if dp €R
and {@y}, c; C C" are such that

Br(2) = o + dy log |2| + Re ( > 6nz"> ,

nez*

||§DI€H (9 e 2 o =
L>(0(2)) (1+C’27(n) ||Vnk||iQ(Qk(a))+Cg7(n)He’\’“Hk‘

() ()

so that by the proof of Lemma 4.5

Lw(nk(a))) ’
(4.57)

1V Gkt @ o2y) < 16V + Cas(n) ((1 ¥kl oy ) ) 192 + [ ]

L2=1(Qk(a))>

2 . . -
HV @k|}L1(Qk(a/2)) < 871 + Cas(n) ((1 + ||V7”Lk||L2(Qk(a))) ank||L2(Qk(a)) + He k Hy, L2>1(Qk(a))> .

(4.58)
Finally, we have by (4.54), (4.55), (4.58) and Theorem 4.2 for some Cag(n) > 0
HVﬁg‘ Lot (ayzy = 1V Pl @2y F IV ERl2 1 (0, 02)) + VT2 (04 02)
< 16y/7 + Cag(n) (1 + A) (1 + ||Vﬁk||L2(Qk(2a))) IV 12 60, 20 - (4.59)
Therefore, the no-neck energy yields for all 1 < g <n —2
lim sup lim sup HVﬁﬁ‘ < 16y/T. (4.60)
a—0  k—oo L2:1(Qk (@)
Now, as
n—2
\Vitg| = an/\ WA N <O |V, (4.61)
p=1
we deduce from (4.60) that
lim sup lim sup || Vi1 2.1 (0, (a)) < <16y/7(n —2) < oo (4.62)
a—0 k—o0

Now, define 7y, : Byr,, (0) \ Ba-1,, (0) such that for all z € Qi () such that [z| =7

ﬁk(z) :]{93 ( )ﬁk d%l
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We will prove that for certain universal constants Csg(n)

|75t |1y oy < a0 (14 193kl 20 00 ) 197 120 20 (4.63)

and this will finish the proof of the Theorem by using Lemmas 4.4, 4.5. Indeed, notice that the following
lemma imply by (4.54) and (4.55) that

|}Vu;€||L21(BmR o) < Cai(n )HVﬁkHiz(Qk(a))

[V, Y(Bar,, (0) = < Cs1(n) He’\’“ﬁ (4.64)

L21(Qp ()

Lemma 4.6. Letn > 2, 0 <r < R < o0, 1 = Br\ B,(0) C R*, 1 < p < oo and assume that
u € WHP(Bg \ B,(0)). Define w: Q — R to be the radial function such that for allr <t < R if t = ||,
then

1
u(x) =u :][ wdA" ! = 77/ wdA" 1
' 9B, (0) Bn)t" =t Jap, (o)

Then u € WHP(Q) and
||va||LP(Q) < ||vu||LP(Q)

Furthermore, for all 1 < p < oo, and 1 < q < oo, there exists a constant C(p,q) independent of
0 <7< R < oo such that for allu € WP (Q), w € WHPD(Q) and

HVE”Lm(Q) < C(p,q) HVU”Lp,q(Q) .

Proof. First, assume that u € W1P(Q) for some 1 < p < co. Recall that by the proof of Proposition 2.7,
we have

Ut

‘ g][ |Vu| 277 (4.65)
dt 9B (0)

Therefore, as w is radial, we have by the co-area formula

IV g = B(n) / " @ " ings, (4.66)
Furthermore, by Holder’s inequality and (4.65)
d | 1 n—1 ’ 1 n—1 n—1\ %

‘dtUt < By /8&(0) |Vu|ds# < Boe1r /BBt(O) \VulP ds™ =" (B(n)t"~")»" (4.67)
_ W /6 o Yl do. (4.68)

Putting together (4.66) and (4.67), we find by a new application of the co-area formula

R
IValf < [ ( / wwnl) di= [ Tupaz” = |Vulfyg.
r OB, (0) Br\B:(0)

The last statement comes from the Stein-Weiss interpolation theorem ([10], 3.3.3). O

Now, in order to obtain (4.63), recall the algebraic equation on Q(«) from (4.44)

n—2
Vit = — « (ﬁk. A vLﬁf) S (Vi i) — 2 HI V&,
y=1
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To simplify notations, let
= Z Vity, i) — 2 HY V.

Then (4.49) implies that

. Lo N B
HG’“‘ Loy = 22 IVl @) +4He kH’“‘ L2 (@ (a)) (4.69)
We have
d 8 ~ 5 1| |4 A - 7 A d 5
el S ng N\ 8Tnk A | + | =G| = (nk ) A 0.7, dH° *Gk,t (4.70)
"™ 9B, (0) dt 0B,(0) dt
Furthermore, by (4.69) and Lemma 4.6, we have (as G is radial)
=G = HVE < Cs3(n ( Vi )+ H v ’ ) . 471
H e @ ) s g oy < O8IVl vy Y

Now, the e-regularity ([28] 1.5) combined with the small L? norm of Vi in Q4 (2«) implies that there
exists a universal constant Csy(n) such that

. Csa(n .
HV’rLkHLoo(aBt) < St( ) (/ o |Vnk2d$>
B2t \B:,2(0)

— = — 1 —
17k = Tkl L 03, (0y) < /{9 o Vit A" < 2w Ca4(n) | Viikll 25,03, 0

W=

so that

Therefore,

][ (7 — fin.e) A Oty dA| < 27Csa(n) | Viikll; 2 (g, (20)) ][ Vil | dt?. (4.72)
0B:(0) 8B4 (0)

t

The proof of Lemma 4.6 now implies by (4.72) that

< Cas5(n) 972 2 | V75

(4.73)

T — i) A Oty dA :
]éBt(O) ( ) g L2:1(Q () L2 (2 (@)

Finally, thanks to (4.70), (4.71) and (4.73), we find

Hvﬁf

< Caan) (I s + e A

c Vi Hv*ﬂ‘ .
(a))) + Cs5(n) [Vl 20, (20)) || VT 121 ( (@)
(4.74)

L2 (Qk(a)) L2 (Q

Therefore, (4.59) and (4.74) imply that

Hvﬁf

eAka‘

<
< Cs3(n) ( L?J(Q,c(a)))
+ Cas(n) (16\/E+C9(n) (14+A) (1 + ||VﬁkHL2(Qk(2a))> ||Vﬁk||Lz(m(2a))) IV7kl12(0, (20)

< Cs6(n) (1+ A)? etTn(mA (1 + ||Vﬁk”L2(Qk(2a))) IVTikllL2 0y (20)) - (4.75)

L2 (2 (@)

Therefore, (4.64) and (4.75) imply that

HV%"’@HH (Qp(a)) = ankHL2 A@ue) T HV“kHLz 1p(a)) T HVU’CHLz(Qk ()
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< C37(n)€F2(n)A (1 + HVﬁkHLZ(Qk(Qa))) ||Vﬁk||L2(Qk(2a)) (4.76)
We can now use Lemma 2.3 (or equivalently Proposition 2.5) and Lemma 4.6 to get for all 0 < § < 1
||V (95’6 *E)HLM(Q,C(Ba)) <245 ||V (@ *@)Hp(gk(a» <488 HV@HL%QMM)
<488 (HVﬁk”L?(Qk(a)) + IVl 20y ) + HVﬁkHLz‘(Qk(a)))
< Cys(n)B el2mA (1 + vanm(ﬂk@a))) IV |2 60, (200 - (4.77)

Therefore, taking § =1/2 in (4.77), we get by (4.76) and (4.77) show that
Hv@k||L2,l(Qk(a/2)) S C39(n) eFQ(n)A (1 + ||vﬁk||L2(Qk(2a))) ||vﬁk||L2(Qk(2a)) . (478)

Finally, by (4.54), (4.55) and (4.56) we obtain the expected estimate for fig = Uy + U + G on Qx(a/2),
and for 7, by the algebraic inequality (4.61). O

Remark 4.7. Observe that for the mean curvature, we have the improved (because of the Sobolev
embedding W1 (R?) < L?1(R?)) no-neck energy

=0

lim lim su HeA’“Vﬁ (
P L @y o))

a—0 k—o00

but this is not completely clear if this also holds for V7, (here, Qi (a) = Bog, \ Ba-1r, (0)). However,
notice that (4.51) implies that

|95

< C(n)||Vi?
LY (Bary (0) — (M) IViill2 (g o)

S ~8 ~
and as V1 Ag ., = Vi, - ﬁz, we deduce that
=6 = =6 3
V27, - iy + Vity, - Vit € L'(Bag, (0)),
and by the Cauchy-Schwarz inequality, this implies that for all 1 < 8,7 <n —2

=8 =v
PG

< C'(n) | Vigl; :
LY (Bar, (0) (M) 1V7k 2 ()

~B .
Therefore, we deduce as 7i;, = nf on Q(«) that

. . 2.
Olélg% hlrcrisip H7rnk (V=7

)HLl(Qk(a)) =0,

(where 7y, is the projection on the normal bundle) but this is not completely clear how one may obtain
the same result for the tangential part of V27iy,.

We finish this section by the proof of Corollary 1.4.

Proof of Corollary 1.4. Introduce for all a > 0 small enough the domain decomposition of [2]:

= (E \ G Ba(ai)> U Qg () U iiB(i,j, a, k),
i=1 i=1 j=1
where
m m; m m; o, .
Q) = U Be(a;) \ U B pii (419 U U U B (@7 )\ U Boﬁlp;‘ca‘” (")
i=1 j=1 i=1j=1j/cl jrerii
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-UaoUJU U 9@
i=1 i=1j=1j'elij

and

B(iajaavk):B—l 11 l'k U B 7‘, CE};J)

jrersi
and for all 1 <7 < m, for all 1 < j < m,;, we have
%,J
pikj, — 0.
pkv k—o0

Thanks to the no-neck property, we have

hm lim sup [|V7ik |y 2.0 (0, (a)) = 0-
=0 koo

By the strong convergence, for all 0 < o < «g, we have

limsup [|7i — fico|[f, (5, ) =0,
k—o0

where ¥, = X\ U:n 1 B (a;). This implies by Proposition 2.7 that there exists sequences of constants
{i(a)}rem, {E07 7’ (@) }ken C A" 72R™ such that for all i, j

i lim sup 75 = G| g2t 0y = O
lim lim sup H ng — CkJ o (0‘)” =0

a0 Leyoo Loo Q197 (a))

Since |7ix| = 1, we deduce that up to a subsequence ¢;.(ap) v &l () such that |¢% (ag)| = 1. Likewise,

there exists {a },cy C (0,00) such that ¢ (ax) — € Where | " | = 1. Therefore, we deduce that there
exists &%, 477" € §"~1 such that

1 1 . — 7 . =
Yim lim sup |77 — & |1 g ay) =
lim hmsup”nk — gha H =0.

a=0 ko0 L= (177 ()

Finally, in a bubble domain B(4, j, o, k), there exists a sequence {/ﬁ;’j tren C R such that the function

&7 : By-r(zp? )\ | Bala)") =R

jreri
2o e (Bulp2) - Bulay”))
converges smoothly towards to the branched Willmore sphere iigg : C — R™. Since
figii(2) = 7ig, (Pk2),
we deduce that for all 0 < o < ayp,

L21(B(i,5,a,k))

HVﬁk - Vﬁ@g((ﬂi’j)fl')‘

This implies that there exists {Jg’j(a)}keN C A" 2R" such that

lim limsupHﬁ — itz (P21 )) —d (o H =0
a5y o [ = A (077 ) = GOy
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Since 7 and figi,; are unitary, we deduce that

s . 7%, _
o d5 1" () =0,

so that

lim lim sup Hﬁk - ﬁi}.i,j((pzj)—l )H

a=0 ko0 Lo (B(i,4,00,k))

Notice that the function 7, — ﬁ,i,f,,.;((p;’j)_l -) is independent of a and that B(i,j,«, k) C B(i, 4,8, k)
for aw < B, which implies that

o
kgrolo N — Ng . ((pk) )Lx(B(i,j,ao»k))

Now, using the proof of Proposition 2.7, we deduce that we can take
Gia) = ][ , - R dst !
aBgilpk (=)

and since ééol : C — R" extends to an immersion S? — R™, the normal has a continuous extension and
identifying N = (0,0,1) € S? and oo € C U {co}, we deduce that

lim lim Hﬁkfﬁqgl,l(N)H y
oo

a0 k=00 Lee (i () -
and likewise for all 1 <i <m and 1 < j < m;, we have
lim 1i H* g (N H )
lim linjolip g, n(I)wJ( ) Lo (67 (a)
Which completes the proof of the theorem. O

In the next section we recall basic facts on the viscosity method for the Willmore energy, and then
in the following section we show the improved L?! quantization in this setting.

5 The viscosity method for the Willmore energy

We first introduce for all weak immersion ® : S2 — R” of finite total curvature the associated metric
g = ®*gr» on S2. By the uniformisation theorem, there exists a function w : S? — R such that

g =¢e*go,

where g is a metric of constant Gauss curvature 47 and unit volume on S2. Furthermore, in all fixed
chart ¢ : B1(0) — S?, we define p1 : B1(0) — R such that

A=w+p,
where in the given chart
g = e>dz|%
For technical reasons, we will have to make a peculiar choice of w (see [35], Definition I11.2).

Definition 5.1. Under the preceding notations, we say that a choice (w,¢) of a map w : S? — R and
of a diffeomorphism ¢ : S? — S? is an Aubin gauge if

1
g0 = s and / zzcjez“c""(”’)alvolgs2 (z)=0 for all j =1,2,3,
S2

where gg» is the standard metric on S2.

52



We also recall that the limiting maps arise from a sequence of critical point of the following regular-
isation of the Willmore energy (see [35] for more details) :

N N . 2
Wg(@):W(®)+02/ (1+18P) dvol,
S2

1 1
+ — = dwl|?dvol +47r/ we 2dvol, — 27 lo / dol)
log(%) (2 /S2| ‘g v g S2 v g & S2 v 9

where w : 52 — R is as above.

We need a refinement of a standard estimate (see [10], 3.3.6).

Lemma 5.2. Let Q be a open subset of R? whose boundary is a finite union of C* Jordan curves. Let
f € LY(Q) and let u be the solution of

{Au f in Q (5.1)

u=20 on 0f).

Then Vu € L?*°(Q), and

2
IVullp s, ) < 3\/;||f||L1(Q)

Remark 5.3. We need an estimate independent of the domain for a sequence of annuli of conformal
class diverging to co, but the argument applies to a general domain (although some regularity conditions
seem to be necessary).

Proof. First assume that f € C%%(Q) for some 0 < a < 1. Then by Schauder theory, u € C*%(Q), and
by Stokes theorem ([11] 1.2.1), we find as w = 0 on 052 that for all z € Q

0 =5 =

d¢ N dC. (5.2)

As Au=40%u and |d¢]* =

, the pointwise estimate (5.2) implies that

/ - T jacp. (5.3)

d¢ A d¢
2

du(z) = —% (

Now, define f € L'(R?) by

_ f(z) for all z € Q
0 for all z € R?\ Q.

and U : R? — C by

[ 19— L (<< - é) *f) (=), (5.4)

where x indicates the convolution on R?. Now, recall that for all 1 < p < oo and g € LP(R?,C), we have
||f*gHLp(]R2) ||f||L1(R2 ”g”LP(R2 .

Interpolating between L' and LP for all p > 2 shows by the Stein-Weiss interpolation theorem ([10] 3.3.3)
that for all g € L?°°(R?,C)

_ 2x1 p 1 p 7
17 % 9| .o oy < V2 ( + o ) 171l g 19l 2.0 oy = V2 (2+ H) 17l ey N9l o ey -
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Taking the infimum in p > 2 (that is, p — 0o) shows that for all g € L»*°(R?),
||? * gHLQ,oo(]R2) < 3\/§ H?HLl(RQ) ”gHLZvOO(RQ) . (55)

Therefore, we deduce from (5.3) and (5.5) that

- 3V2 1 3
I 191
L2 (R2) 4 H ||L (R2) | | 2,00 (B2) \/7 L1(Q
Now, as U = 9,u on  and 2|0,u| = |Vu|, we finally deduce that
2
”vu”L?vm(Q) <3 - ”fHLl(Q) : (5.6)

In the general case f € L'(Q), by density of C*(Q) in L'(Q), let {fi} ey C C°(Q) such that
Ty — 6.7

Then uy, € C*°(Q) (defined to be the solution of the system (5.1) with f replaced by fi and the same
boundary conditions) so for all k € N, Vuy, € L*»*°(Q) and

2
||VUkHL2m(Q) = 3\/;||ka1(9) : (5.8)

As {||fk||L1(Q)}k . is bounded, up to a subsequence wuy, L Ueo 0 the weak topology of W1 (2:)(Q).
c —00
Therefore, (5.7) and (5.8) yield

o 2
900 ey < T inf [V ) < 3y = 1111 gy -

Furthermore, as fj . fin LY(Q), we have Auy, = f in 2'(), so we deduce that u., = u and this
— 00

concludes the proof of the lemma. O

Finally, recall the following Lemma from [2] (se also [6]).

Lemma 5.4. Let Q be a Lipschitz bounded open subset of R2, 1 < p < oo and 1 < q < oo, and
(a,b) € WHP9)(B1(0)) x Wh(Z>)(B(0)). Let u: B1(0) — R be the solution of

Au=Va-V+h in Q
u=0 on O0f).

Then there exists a constant Cp, 4(Q2) > 0 such that

HV“HLp,q(Q) < Cpq(Q) Hva”LP,q(Q) ||Vb||L2»OC(Q) .

Remark 5.5. Notice that by scaling invariance, we have for all R > 0 if Qr = Br(0)

HVUHLM(BR(())) < 02,1(31(0)) ||vaHL2~1(BR(O)) HVbHL?,oo(BR(o)) :

6 Improved energy quantization in the viscosity method

The viscosity method ([22], [34], [33], [26], [25], [35], [31], [21]) developed by the T. Riviére and col-
laborators aims at constructing solutions of min-max problems for functionals that do not satisfy the
Palais-Smale condition or defined on spaces that are not Banach manifolds. Here, we will be focusing on
the viscosity method for Willmore surfaces ([35]). Let us recall a couple of definitions
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Definition 6.1. Let M = W2%(S2 R") be the space of W2* immersions from the sphere S? into R".
We say that a family A C P(M) is an admissible family if for every homeomorphism ¥ of .# isotopic
to the identity, we have

VAe A, Y(A) e A

Now fix some admissible family & C P(W2**(5% R")) and define

Fo = inf supW(A).
For all o > 0 and all smooth immersion & : $2 — R"™, recall the definition

- - _, 2 -
Wg(@):W(q))—l-aQ/ (1+|H|2) dvol, + o(®),
b))

L

log ()

where & is the Onofri energy (see above or [35] for more details), and define
Blo) = nf sup W,(A).

We can now introduce the main result of this section.

Theorem 6.2. Let {04}, .y C (0,00) be such that oy, 2 0 and let {®)}ren : 52 — R™ be a sequence
— 00

of critical points associated to W, such that
Wo, (B1) = Blor) — Bo
k—o0

W, (B) — W (By) ! (©1)
Ok k) — k) =0 .
log (é) log log (U—lk)

Let {Ri} ey > {7k} pen C (0,00) be such that

. R .
lim —% = 0, lim sup Ry < oo,
k—oo Tk k—s o0

and for all 0 < a < 1 and k € N, let Qi(a) = Bar,, \ Ba-1,,(0) be a neck region, i.e. such that

lim lim sup / | Vi |2dz = 0.
Bas\Bj /2(0)

a—0k—o0 20 lrp<s<aRy/2
Then we have

Jimn, h,ﬁisogp IVikllL2.1.04 (a)) = O-

Remarks on the proof. The proof is in the same spirit of the proof of the no-neck energy for the L?!
norm in the case of Willmore immersions, up to the need to introduce more conversation laws and derive
more estimates to obtain the L?! estimates.

Proof. As in [35], we give the proof in the special case n = 3. By Theorem 4.1 this is not restrictive.

A = sup <|V)\k|L2’°°(B1(0)) +/ |Vﬁk|2dx> =
kEN B1(0)

and
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Furthermore, the entropy condition (6.1) and the improved Onofri inequality show (see [2] II1.2)

o o
WkllLes(B1(0)) = ©
log (%) (B0 log log (é)
! / \dwg 2. dvol ! (6.2)
w7, dvolg, =o .
log (o—ilk) S2 gk 9k log log (7)
1 1 o 1
5 [ ldwilg dvoly, +4m [ wre *“*dvoly, —2mlog [ dvoly, | =
log (U—lk) 2 Js2 52 log log (i)
Thanks to [35], we already have
Y, i sup [|V7ikl2 @, (o) = O-

Therefore, as in Lemma IV.1 in [2] (and using the same argument as in Lemma 4.4), there exists a
controlled extension 7y, : Bar, (0) = %,—2(R™) such that 7y, = i, on Q(a) = Bag, (0) \ Ba-1,, (0) and

[v7
v

in all equations involving 7, on Byg, (0), we replace 7ij, by 7;[1@ as one need only obtain estimates on

< Vit 2
L2(Bar, (0)) wo(m) Vit iz o o)

V|| 6.3
Lz’l(BaRk(O))_KO(n)H k21 (@ () » (6.3)

Ok (a), where rtik = 1. Likewise, H & can be replaced by a controlled extension using Lemma B.4 in [15]
(see also the Appendix).

Now, by [35], let Ly : B;(0) — R3 be such that

ALy, = +d (ﬁk +202(1+ |ﬁk|2)ﬁk) —9 (1 +202(1 + \ﬁkﬁ)) H,  diiy

1
+ |Hy)? + o7 (1 + | Hy|?)
( * ) log (O'k Area(®(52))
1

log (i)

b
()

Then following [35], we have

1 2 -
1 ) <2|dwk§2]k — 2mwye” 2 + j) * dOy
I L

(dBy,, dwy) g, * dwy + g (rdewy,) . (6.4)

9k

o ~ 1
ML (2)] < (m (n) (1 4+ A)er(mA IVl L2y a)) T+ l(ok)) — for all z € Qp(a/2),

|2
so that

| L] < 2V (m1(n) (14 8) N Vi (g o)) + 10w ) -

L2 (Qk(a/2))
Now let Y}, : Bog, (0) — R (see [35], VI.21) be the solution of

(6.5)

AY), = —4e*M o} (1 — Hyy) — 21(oy) Kgowie® + 87 l(op)e* M Area(®(5?)) 7! in Byr,(0)
Y, =0 on 0B, (0).

Then we have (recall that Ky, = 47 by the chosen normalisation in Definition 5.1)

(14 HE) dvoly, + 87 1(0%) il o) / 2hk g

1A lr g (o < 407 /
(Bary, (0)) B, (0)

Bar,, (0)
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Area(®y(Bar, (0))  +
+ 8 i(on) Aron(8,.(5%) = o(l(ok)). (6.6)

Therefore, Lemma 7.9 implies by (6.6) that

2 ~
IVYillL2. (Bor, 0)) < 3\/;||AY’€||L1(BULR;C 0y = o(l(or)) < (k) (6.7)

for k large enough. Now, let ¥ : Byg, (0) — R? be the solution of

(6.8)

AY), = v%k : VLYk in BOéRk (O)
Uk: =0 on 8Bo¢Rk (0)

By scaling invariance and the inequality of Lemma 5.4, we deduce by (6.7) that for some universal
constant ko > 0

VYl 2. (B, 5, (0))

IVOkllz (5,5, ) < #2 HVﬁ’“’ L21(Bag, (0))
< kKako(n) ||VﬁkHL2,1(Qk(a)) ||VYk||L2,oo(BaRk ) = l(ok) ||Vﬁk||L2,1(Qk(a)) . (6.9)

Furthermore, we have by Lemma 5.4 and scaling invariance

HVYk||L2=°C(BaRk o)y = K3ko(n) ||Vﬁk||L2(Qk(a)) o(l(ow))

||vgk||L2(BaRk (0)) < K3 HVﬁk‘ L2(Bar, (0))
< Uow) VikllL2 o) (6.10)

Now, recall that the Codazzi identity ([35], II1.58) implies that

2 2
div [ e "y 0y, B, —e M > 105, P | =0 in Bag,(0) (6.11)

j=1 j=1

Therefore, by the Poincaré Lemma, there exists Dy : By r.(0) — R3 such that

k—o0

2 2
VD = | e Zﬂl,jazj By, e Zﬂz,jaxj 3,

j=1 j=1
Notice that we have the trivial estimate
Hw)k vy S 2NV, ) < 2VA. (6.12)
Furthermore,
I(o%) HVD;@\ oy < 2108 197z gy - (6.13)

Now, let Ey : Bag, (0) — R3 be the solution of

{Aﬁk =2V(l(ox)wr) -V D in Bag,(0) (6.14)

Ek =0 on 8BaRk (0)

The improved Wente estimate, the scaling invariance and the estimates (6.1) and (6.12) imply that

VE ‘ < 20 l(op) ||V Hvﬁ < 4roVA o(\/1(oR)) < /1

195y = 20010 IV o [Ty ) S A0 o) < V]
) 1 /3 )

VE ‘ <=2 o) IV HVD ] < VI(ow). 6.15

” b L2(Bagr, (0)) — 2V 7 (o) | wkHL2(BaRk(O)) k L2(Bar, (0) (o) (6.15)
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Now, let F}, : Bag, (0) = R3 be such that
20Jk Z(O'k) Vlﬁk = vLﬁk + VEk

Combining (6.13), (6.15), and recalling that (o) ”wk”LO"(BaRk (o)) = o(l(ox)) (by (6.1)), we deduce that

—

<91 N Hvﬁ ‘ HVE ‘
iy ay = 2Ho i@ VDR s g 0y T 1V ES 121 (Bag, (0))

< (o) IViikllp 21 0 (a)) T VoK) (6.16)

Finally, let @y : Bag, (0) — R3 be the solution of

A’LUk = V%k . VL (’171C - Ek) in BaRk (0)
If)k =0 on aBaRk (O)

As previously, the improved Wente implies that

HV(ﬁk —Ek)‘

IV@kllL21 (5 p, 0)) < Ko HVﬁ’“‘

L2(Bar,, (0)) L2(Bar,,(0))

< kg HV%k

v VE H
L2(Q) (@) (' Ul (zan, o) F F L2(BaRk(0))>

< 10r (M) V7l g, ) (10) 197kl (o) + VIR )
< kor(n)VA (’z‘(ak)ﬁx + \/@) < Uow) (6.17)
for k large enough. Finally, if Z : Qx(a) — R3 satisfies
VLiZ, = it x vt (Uk - E}) — Vi,
the estimates (6.9), (6.15), (6.17) show that (as 7y = fix on Qp(av))

|[v2

Finally, following constants and using the controlled extension iy, of i, we deduce as in [35] (see (VL.75))
that

ooty KO [Vt 0, 00) + Vi(ow) + (o). (6.18)

Hz (14207 (1 + HY) — Uok)wr) e Hy + (VUk +V* (ﬁk + Zk)) X V&, e ™ + (o) VEDy - VB e~

L2 (2())
< ka(n)ers IVikllL2 (. 2a)) - (6.19)

Furthermore, as {(o%) [|wk |y« (0, (a)) = 0(l(ok)), we have 2(1 + 202(1 + H?) — l(og)wy) > 1 for k large
enough and by the estimates (6.9), (6.13), (6.16), (6.18), (6.19), we deduce that

A 7 ka(MA (|7 7 -
He A ‘szwnk(a)) < £a(n)e" M [Viikll 2 20)) +1UOR) VTR L22 0 (0))

+1(o%) IViik || L2 (0 (a)) T VoK) + (o) IVitkll 21 (@ a)) T VHOR) + (o) + 21(0%) IVitkllL21 (0 a))
< Ka ()" M Viikl| 2 0 20y) + 5 U0k) VKl (0 () + 3L(08)- (6.20)

Thanks to the proof of Theorem 3.1 and (6.20), we have

— rs(n)A — Ak 1T
172kl 201 (0 a2 < 5 () ('V"k”wm(a» + He kH’“’ L2,1<Qk<a>>)

< ke (n)e™ MM Vg L2 0, (2a)) F B LOR) IV7k] 20 (0, () T 3L(0)- (6.21)
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Furthermore, thanks to the e-regularity ([28]), we obtain

||Vﬁk||L2~1(BaRk (O\Buap, /2(0) = K7(n) ||Vﬁk||L2(32aRk_ \Ban, /4(0)

||Vﬁk||L2‘1(Bza—1rk \Ea—lrk (0)) S K7(n) ”Vﬁk HL2(B40¢_17‘k \Ea_lrk./Q(o)) : (622)

Finally, by (6.21) and (6.22), we have
IViTk |21 0y (o)) < K8 ()™ DM VT 2 0 20y 5 UO) [VTkll20 (0 () + 310k,
which directly implies as [(c},) v 0 that for k large enough
HVﬁk“szl(Qk(a)) < 2"68(n)6’€8(n)A HVﬁk”LQ(Qk(Qa))
and the improved no-neck energy
altii% 11]?:8&1) ||Vﬁ’f||L2v1(Qk(a)) =0.

This concludes the proof of the Theorem. O

We close this article with a short appendix concerning Lorentz spaces.

7 Appendix

7.1 Some basic properties of Lorentz spaces

Fix a measured space (X, ut). Define for all 0 < t < oo the measurable function f. on (0,00) by
£o(t) = inf A > 05 (X A o2 |f(@)] > A}) < 1)
and recall that for all A > 0
ZL1((0,00) N {t s fu(t) > M) = (X N {a: [f(2)] > A}).

In particular, using twice the usual slicing formula (valid for an arbitrary measure u that need not be
o-finite), we find

1 llo(x = P /Omvmxm{x F@) > L=y / N (0,00) N L2 £u(1) > 2] D
- / (0= om0 -

To simplify notations we will often remove the reference to the measure p. This motivates the introduction
of the following quasi-norm for 1 < p < co and 1 < ¢ < oo

R dt\
e = ([ B r20%) " ()

1 t
If we define fio.(t) = n / f«(s)ds, then the associated norm to LP? is
0

i = ([ ¢ s )d’“‘) , (72)

and (LP9(X, p), || - HLP,Q(X)) is a Banach space for all 1 < p < oo and 1 < ¢ < oco. Now, we have by
Fubini’s theorem for all f € Lp’q(X, )

b 1_
[ llpe x) :/o tf’f** / / () 1gocs<rydsdt = / fa(s </0 te 2]—{0<s<t}dt> ds
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= h «(s Ootfldzdt)ds:p Oosifl*sds:L (% -
[ o/ L [T s = Pl

Therefore, | - |Lp,1( x) Is a norm for all 1 < p < oco. Furthermore, notice that Fubini’s theorem also shows
([30]) that

o =0t ([ 2o @i > apE F) &

In particular, for ¢ = 1 each of the quantities (7.1), (7.2) and (7.3) defines a norm on LP'!(X, u1). Finally,
for ¢ = 0o, we define the quasi-norm

[l oy = SUp £ (1 (X 0 {2 | f(2)] > A}))7 = sup ¢7 f. (1)
A>0 t>0

and the norm
1
||fHLp‘oo(X) = sup tpf**(t)
t>0

makes (LP°(X), [ |[;p.0(x)) a Banach space (they are the classical Marcinkiewicz weak LP spaces).
Notice however that L'> is not a Banach space. We have the general inequality for all 1 < p < oo

p
[ flipexy < N llpoecx) < o1 | flrps(x) -

The norms are related as follows (see [30]).

Lemma 7.1. Foralll<p<oo and 1 < q<r <oo, and for all f € L1 X, 1) we have

1
q q
|f|LP1M(X) S <p> |f|Lp,q(X)

r—aq

q\ ™
|f|LP,T'(X) S (p) |f‘Lp=q(X) .

Proof. As f, is decreasing, we have for all 0 < t < co

1 t, s\t
dro=(1 [ $ro?) <

1

q q
S - f P9 )
(p> | flLr.acx)

which implies that for all 1 < ¢ < oo

Q
A
VR
iSEES]
c\
2
w
Sle
b
—
)
S~—
w | &
~_
sl

-

q q
b= < (£) Flipacn- (7.4
Now, assume that 1 < g < r < oco. Then (7.4) implies that
o0 dt\ " o0 7 -
heon = ([ 20%) = ([ rors roroF) <1055 00 s
0 0
q\
< (p) . (75)
This concludes the proof of the Lemma. O
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In particular, if ¢ = 1, as || fllo1(x) = 327 [f|Le1(x), We deduce by (7.5) that

1
p—1/1\ " p—1
v <52 (5) 7 Wlhoncr = B Wlinay < Wlansn-

In particular as |- |y, x) = || - [ILs(x), We have
p—1
Iy < By Wl
Notice that for p = 2. this yields
1
1fllL2cx) < EW5) 11|z x) - (7.6)

Finally, recall the inequality

‘/xfgd“‘ s /OOO Fo()ga(t)dt.

It implies that for all 1 < p < oo

%) %) N , dt oo N
| r0aoit= [0 0 OF <l [ A

while for all 1 < p < co and 1 < g < oo, we have by Holder’s inequality (applied to the Haar measure

v = % on (0, 50))

dt
t)? = |f|Lp,1(X) |g‘Lp'=:>C(X) )

o0 % 1 dt L AtNT [ [ L v
/0 f*(t)g*(t)dt = /0 tpf*(t)tp’ g*(ﬂ? < (/0 tqff(t)t> </0 tr' gl (t)dt) = |f|Lp,q(X) |9|Lp’yq’(X)‘

Therefore, we have for all 1 <p < oo and 1 < ¢ < o0

’/X fg dﬂ’ < ‘f|Lp,q(x) |9‘Lp',q’(x) < ||fHLz7‘4(X) HgHLP/«(I'(X) (7.7)

and one shows that for all 1 < p < oo and 1 < ¢ < oo, the dual space of LP9(X, ) is e’ (X,p). In
particular, (7.7) implies that for all 1 < p < o0

2

s = 555 [ nE 0 1f@I> ) a

The main case of interest in this article is the L?! norm, which now can be defined as

s =4 [ (X0 (o3 1) > ) de,

and
1
; fodu| < 3 ||fHL2v1(X) |g|L2~°O(X) < ||f||L2-1(X) HgHL?vm(X) :
As
1 1 1 n
N =t =T gn=t| = a(n)™T,
n |||z —yl L1 (Rn, ") |z —y| La-1 % (Rn, #n)
we have for all open subset Q C R” and f € L™(Q), for all y € R®
|f(z)] n—1 1 n—1 n—1
4L (r) < —— _— = D " . (7.8
J @ < M e [y | = T sy (78)
In particular, if QO C R?, we have
FACIIP VT
dZL*(x) < —||flls2.1/00 - 7.9
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7.2 Extension operators on annuli

The following result was used in [2] and [15].

Lemma 7.2. Letn >2,¢ >0 and 1 +¢ < R < oo and Qp = Br \ B1(0) be the associated annulus.
Then there exists a linear extension operator

T J whrer - |J WH(Bk(0)

1<p<oo 1<p<oco

such that for all 1 < p < oo, there exists a universal constant Ci(n,e) > 0 (independent of R > 1+¢)
such that for all 1 < p < oo

HTu”wLp(BR(o)) < Ci(n,e) ||UHW1,p(QR) .

Furthermore, for all 1 < p < o0 and 1 < q < oo, T extends as a linear operator Wl*(p*q)(QR) —
W9 (Bg(0)) such that for some universal constant Co(n, p,q,€)

||TU||W1,<p,q)(BR(o)) < C2(n,p,q,¢€) ||UHW1,(p,q>(QR) .

Proof. The second assertion follows directly from the Stein-Weiss interpolation theorem ([10], 3.3.3). For
the first part, construct by [3], IX.7 a linear extension operator T such that for all u € WP(By,.\ B1(0)),
Tu € WHP(B14.(0)) and such that

T <
HTUHWLP(Bl_,_E(o)) < Clne) HUHWLP(BHE(O)) : (7.10)

Now, if u € WHP(Bg(0)), just consider the restriction u|By1.(0) \ B1(0), and define
u(x) if x € B \§1+5(0)
Tu(z) =< ~
Tu(x) if x € B11.(0).
As Tu = on Byy. \ B1(0), T satisfies the claimed properties by (7.10). O

Remark 7.3. Although the norm of the norm of the operator T : W1P(Qr) — W1P(Bg(0)) does not
depend on 1 < p < oo, the norm of T : WHP9) (Qr) — W9 (Bx(0)) depends a priori on 1 < p < oo
and 1 < ¢ < oo, as the constant of the Stein-Weiss interpolation theorem depends on these parameters.
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