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I The Willmore Equation in Divergence Form.

The Willmore energy of an oriented surface Σ immersed in R3 reads

W (~Φ) =

∫

Σ

|H |2 dvolg , (I.1)

where ~Φ is the immersion, ~H the mean curvature of the surface and g is the
induced metric on the surface from the flat metric of R3. The complete Helfrich
energy introduced by Wolfgang Helfrich in the early seventies for the modeliza-
tion of cell membranes, see [Hef], involves the substraction to H of a spontaneous
curvature H0 and the addition of further terms proportional to the area A of
the surface and the enclosed volume V of the immersion in R3 :

Hef(~Φ) =

∫

Σ

|H − H0|
2 dvolg + (µ − H2

0 ) A + λ V , (I.2)

where λ and µ are constants. These additional terms are sub-critical in compari-
son to the L2 norm of the mean curvature and will be ignored in our presentation
since they have no essential influence on the nature of the error estimates we
present below.

The Euler Lagrange Equation of the Willmore Functional (I.1) has been
written, maybe for the first time, by the student of Wilhelm Blaschke, Gerhardt
Thomsen, in his dissertation defended in 1923 : ~Φ is a critical smooth immersion
for W if and only if it satisfies

(W) ∆gH + 2H (H2 − K) = 0 ,

where ∆g is the negative Laplace Beltrami operator on the surface Σ for the
induced metric g and K is the Gauss curvature of g.

Trying to develop analysis (compactness, regularity properties, error esti-
mates...) with equation (W) is made very delicate in particular by the fact
that the non-linearity is cubic in the principal curvatures of the immersed sur-
face whereas, a-priori, the control given by the Lagrangian (I.1) from which the
equation is deduced is only quadratic in the principal curvatures.

We first present the following new formulation of Willmore equation in 3
dimension which solves the functional analysis we are raising: ~Φ is a critical
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immersion to (I.1), i.e. satisfies (W), if and only if, in conformal parametrization

(~Φx · ~Φy = 0 and |~Φx|
2 = |~Φy|

2),

(WI) div
(

−2∇ ~H + 3H ∇~n + ~H ×∇⊥~n
)

= 0

where div and ∇ are the classical divergence and gradient operators with respect
to the flat metric on the x, y−plane, ~n is the unit normal vector to the immersion,
~H = H ~n and ∇⊥ is the rotation by π/2 of ∇ : ∇⊥ = (−∂y , ∂x ). Observe that
this formulation (WI) of Willmore equation is solving the previous mentioned
functional analysis paradox : the new dependance of the principal curvatures in
the non-linearity 3H ∇~n + ~H ×∇⊥~n is now quadratic and compatible with the
control given by the lagrangian W .

II Conservation laws for Willmore equation -

the Conformal Willmore Equation.

From the new formulation (WI) we deduce the following conservation laws : if
~Φ is a smooth local conformal parametrization of a Willmore surface then

(WII)















































There exists a vector field locally on Σ, ~L ∈ R
3, such that

∇~Φ · ∇⊥~L = ∂y
~Φ · ∂x

~L − ∂x
~Φ · ∂y

~L = 0 and

∇~Φ ×∇⊥~L − 2∇⊥H ∇Φ =

∂y
~Φ × ∂x

~L − ∂x
~Φ × ∂y

~L − 2
[

∂yH ∂x
~Φ − ∂xH ∂y

~Φ
]

= 0

When ~Φ is Willmore - i.e. solves (WI) - one takes

∇⊥~L = −2∇ ~H + 3H ∇~n + ~H ×∇⊥~n , (II.3)

but more generally the system (WII) can be considered as it is stated, independently
of the choice (II.3). The system (WII) is made of jacobians and can therefore
be written in divergence form again. (WII) is stable in the sense that solutions
to (WII) of uniformly bounded Willmore energy converge weakly, modulo ex-
traction of a subsequence, to a solution of (WII). It also passes to the limit
for Palais-Smale sequences to Willmore. This leads to new proofs of existence
results for minimizers of the Willmore functional under various constraints (for
a fixed Σ, for a fixed Σ and a fixed conformal class for g, for a fixed Σ and fixed
area of g...etc).

The system (WII) is equivalent to the conformal Willmore equation - crit-
ical points to (I.1) with prescribed conformal structure - : in local conformal
coordinates there exists an holomorphic function f(z) such that

(CW) ∆gH + 2H (H2 − K) = e2λ < h0, f(z) > ,

where h0 = h0
11 + ih0

12 is the Weingarten operator in the conformal coordinates
~Φ - (h0

ij)ij is the trace free second fundamental form of Σ - and eλ is the
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conformal factor eλ = |~Φx| = |~Φy|. In fact f is not an arbitrary holomorphic
function , it is the local expression of a global holomorphic section of (T ∗

0,1Σ)−1⊗
(T ∗

0,1Σ)−1 where T ∗
0,1Σ is the canonical bundle of Σ viewed as a riemann surface

with the conformal structure induced by g. Hence f belongs to a complex
finite dimensional space. In other words our conservation law system (WII) is
equivalent to Willmore equation (W) modulo a Lagrange multiplier belonging
to a finite dimensional complex space - its dimension is 1 for instance when Σ
is a torus.

III Error Estimates for Willmore Equation.

We address in this section the following question : Let ~Φk be a sequence of
immersion satisfying ”more and more” the Willmore equation, does ~Φk converge
to a solution to Willmore equation and ”how fast” does this convergence happen
? We illustrate how the system (WII) can be helpful to treat such a question
by looking at the simplest possible setting :

Let ~Φk be an embedding of C into R3 such that
∫

C
|∇~nk|

2 dvolgk
< ε0 for

some ε0 > 0 that will be chosed small enough later. By a result of S.Müller and
V.Sverak and by F.Hélein we can (see [Hel]), modulo a change of parametriza-

tion, choose ~Φk to be a sequence of conformal bilipschitz W 2,2 embedding such
that ‖∇2~Φk‖L2(C) + ‖∇~Φk‖L∞(C) is uniformly bounded. Assume that the Will-
more equation (WI) is satisfied modulo an error ek which goes to zero strongly
in H−2 :

div
(

−2∇ ~Hk + 3Hk ∇~nk + ~Hk ×∇⊥~nk

)

= ek −→ 0 in H−2 .

We proceed to the following Hodge decompositions. First, in one hand, there
exist a sequence ~Lk uniformly bounded in the weak L2 space, L2,∞, and a
sequence ~Ek converging strongly to zero in L2 such that ‖ ~Ek‖L2 ≤ C ‖ek‖H−1

and
−2∇ ~Hk + 3Hk ∇~nk + ~Hk ×∇⊥~nk = ∇⊥~Lk + ∇ ~Ek , (III.4)

in the other hand, we have the existence of Sk, Tk, ~Rk and ~Qk such that











∇~Φk · ~Lk = ∇Sk + ∇⊥Tk ,

∇~Φk × ~Lk − 2Hk ∇~Φk = ∇~Rk + ∇⊥ ~Qk .

(III.5)

Some computation - the same as the one which proves (WI) =⇒ (WII) - leads

to the identities ∇⊥~Lk · ∇~Φk = −∇~Φk · ∇ ~Ek = −∆Tk and ∇~Φk × ∇⊥~Lk −
2∇⊥Hk · ∇~Φk = −∇~Φk ×∇ ~Ek = ∆ ~Qk We deduce from classical elliptic theory
the following estimates















‖∇Tk‖L2,∞ ≤ C
[

‖∇~Φk‖L∞ + ‖∆~Φ‖L2

]

‖ek‖H−1 ,

‖∇ ~Qk‖L2,∞ ≤ C
[

‖∇~Φk‖L∞ + ‖∆~Φ‖L2

]

‖ek‖H−1 .

(III.6)
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Moreover the pair (~Rk, Sk) satisfy the system on C











∆~Rk = ∇⊥ ~Rk ×∇~nk + ∇Sk · ∇⊥~nk + div(∇Tk ~nk) ,

∆Sk = ∇⊥ ~Rk · ∇~nk − div(∇ ~Qk · ~nk) .

(III.7)

Observe that beside the error terms div(∇Tk ~nk) and div(∇ ~Qk · ~nk), there
are only jacobians in the right-hand-sides of (III.7). We deduce from this last
crucial fact the following estimates, for ε0 chosen small enough, using a Wente
type inequality due to F.Bethuel (theorem 3.4.5 in [Hel]) and standard elliptic
theory,

‖∇~Rk‖L2,∞ + ‖∇Sk‖L2,∞ ≤ C
[

‖∇~Φk‖L∞ + ‖∆~Φ‖L2

]

‖ek‖H−1 . (III.8)

A further independent computation gives

2∆~Φ =
[

∇⊥S −∇T
]

· ∇~Φ −
[

∇~R + ∇⊥ ~Q
]

×∇⊥~Φ . (III.9)

Combining (III.6), (III.8) and (III.9) we obtain

‖∆~Φ‖L2,∞ ≤ C
[

‖∇~Φk‖
2
L∞ + ‖∆~Φ‖2

L2

]

‖ek‖H−1 . (III.10)

We can normalize the sequence ∇~Φk in such a way that ‖∇~Φk‖∞ = ‖∇idC‖∞.
Thus we conclude for every p < 2, that

‖∇(~Φk − idC)‖W
1,p

loc
≤ C

∥

∥

∥
div

(

2∇ ~Hk − 3Hk ∇~nk − ~Hk ×∇⊥~nk

)∥

∥

∥

H−2

(III.11)

We were here considering the simplest framework of the embedding of a
plane with little Willmore energy. In the general situation, even for the flow,
such an estimate can be established except that the limiting immersion is only
a-priori Conformal Willmore (satisfy (CW)). Then, the possible cancelation of
the holomorphic Lagrange multiplier f , that would make the equation satisfied
by the limiting map being exactly Willmore, has to be further understood.

Such an error control estimate of the form (III.11) has been established when
the error was converging to zero in the space L2 by E.Kuwert and R.Schätzle
(see [KS]). Here we have gained 2 derivatives by requiring the equation to be
solved modulo an error controled only in the space H−2 which is critical for
Willmore Euler Lagrange equation (WI) - one cannot afford less.

The results presented in this talk have been established in the following two
works [Ri] and [BR], the last one being a collaboration in preparation with Yann
Bernard.
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