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Abstract: In this work we prove that any unitary Sobolev W12 connection of an Hermitian bundle
over a closed Kéhler surface whose curvature is (1,1) defines a smooth holomorphic structure. We
prove moreover that such a connection can be strongly approximated in any W% (p < 2) norm
by smooth connections satisfying the same integrability condition and consequently carrying smooth
holomorphic structures.
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1 Introduction

The calculus of variations of Yang-Mills in 4-dimensions has naturally led to the definition of Sobolev
connections [7]. In particular, its application concerns the compactification of Yang-Mills moduli
spaces [5, Chapter 4]. Sobolev connections, which we will define rigorously later, arise as limits in
the space of Yang-Mills connections modulo gauge transformations. We consider this notion in the
following complex framework. Let E be C*° complex vector bundle of rank n over a Kahler manifold X
and hg be some reference Hermitian inner product in the fibers of E: i.e. (E, hp) defines an Hermitian
vector bundle. We shall sometimes consider E issued from its associated GL,(C) principal bundle or
from its associated unitary principal bundle.

The classical Newlander-Nirenberg theorem [35] states that given an almost-complex structure J over
an even dimensional smooth manifold X then the torsion of J (also called the Nijenhuis tensor)
vanishes if and only if J defines a complex structure. Let Fy be the curvature 2-form associated to
a connection V of (F, hg) over a complex manifold X. We will be interested in the "bundle” version
of the Newlander-Nirenberg theorem (see [5, Theorem 2.1.53], [34, Chapter 1, Section 3, Proposition
p. 9]). It states that unitary connections satisfying F%2 = (0 are in one to one correspondance with
holomorphic structures:

Let V be a smooth unitary connection of a C* hermitian bundle (E, hy) over a complex manifold X .
Then X has a holomorphic structure if and only if F%Q = 0.

One of the goals of this article is to extend this identification to Sobolev connections. More precisely, we
analyse what we call weak holomorphic structures, that is Sobolev connections (see the definition 1.1
below) satisfying the integrability condition Fg’z = 0 and study the analogue of the Newlander-
Nirenberg theorem in this regime. Since 02

Fg™ =

gives us the integrability of the complex manifold (in the sense that it gives the existence of a complex

structure), then we call such a vanishing condition the integrability condition.

In addition, because the problem of weak closures naturally appears in the calculus of variations, we
will look at the strong approximation of such weak holomorphic structures by smooth ones.

1.1 Background

Since our results will be heavily using notation and results from complex analysis in several variables,
Appendix C contains a short incursion into these. We are interested in the space of Sobolev WP
connections of E which are defined as follows:

Definition 1.1. Let Vg be a smooth connection of a vector bundle E, we denote
SPP(E, hy) := {V =Vo+n where ne€ Wk’p(Ql(adho(E)))}

where WEP(Q(ady, (E))) is the space of Sobolev WXP 1-form sections into the sub-bundle of the
endomorphism bundle End(E) made of the unitary endomorphisms for the reference metric hg.

Then S*P(E, hg) is called the space of Sobolev unitary W*P-connections of (E, ho).

We will heavily use gauge theory in order to obtain our results. To this extent we find it useful to
recall to the reader the notion of a gauge transformation of a connection V € S¥P(E, hg). Let g be
a section of the Hermitian vector bundle F, then the gauge transformation of V = Vo 4+ n by g is
defined as V9 =V + n9, where

n? =g tdg+ g 'ng.



Let {U;}; be a cover of a Kihler manifold X. Then such a connection V € S*P(E, hg) can be
represented in each U; as

where d is the exterior derivative and A; € W*P(Q'U; ® u(n)) is a connection 1-form. Hence, for a
local gauge transformation g : U; — U(n) on V, we define the transformation of A; by g as such:

A =g dg+ g Aig in U;.

In this framework we study the convergence of Sobolev unitary connections, and their respective
Sobolev structures in the case of closed Kihler surfaces X?2. In particular, we consider unitary con-
nections belonging to the space SV2(E, hg) over X2.

Convergence of Sobolev connections is a subtle problem that deserves to be detailed before going
forward. It is customary to define the distance of two Sobolev connections by fixing a system of charts
and trivialisations of the connections and measuring the Sobolev distance in each trivialisation. In
the calculus of variations of Yang-Mills, however, it is of interest to study the compactness of the
space of connections with bounded LP curvature (see for example [19], [5] and [28]). In this context,
the convergence of Sobolev connections is always taken modulo gauge transformations due to the
non-coerciveness of the Yang-Mills functional. To this extent, we define the following gauge invariant
distance function between two given connections:

Definition 1.2. Let X? be a closed Kihler surface and p > 1. We define the gauge invariant distance
between Sobolev connections as the functional

dist, : SY? x S — Rx

given by:

dist,,(V1, Va) := inf Vi — VI[P w? /FFap2
(V190 i= ot 9= 3Pt + [ 1Fe, — P

where GY2(GL,(C)) is the space of W2 gauge transformations on E for the group GL,(C).

1.2 Motivation

One of the motivations for addressing these questions takes its roots in a paper of G. Tian [26] in
which the closure of the space of smooth Yang-Mills fields has been studied. It leads naturally to
the study of Yang-Mills fields on a bundle well defined away from a co-dimension 4 closed rectifiable
set in the basis. The attempts in [17] and [18] was to give a suitable notion of such singular bundles
together with a singular connection that enjoys a sequential weak closure property. The attached sin-
gular “bundle” to these singular connections could be thought as a real version of coherent sheaves.
The goal of mixing the notion of weak connection with the integrability condition Fg’2 = 0 is to check
whether the corresponding singular bundle coincide with the classical notion of coherent sheaves in
the complex framework. The present paper is bringing a positive answer to this question when the
basis is a Kdhler surface.

These questions lead to the formulation of a weak notion of the Newlander-Nirenberg theorem, whereby
we want to show the existence of weak holomorphic structures under the condition Fg’2 = 0 and con-
sequently the weak closure of these structures. Indeed, the problem of existence of weak holomorphic
structures has been studied in the case of one dimensional complex spaces. Under the assumption that
V has L?! regularity (L?! is the Lorentz space 2,1) for one complex dimensional spaces, F. Helein
gives a solution in [29, Lemma 4.1.7]. The case of L?! regularity is, however, subcritical. The critical
case of L? connections has been proven by B. Sharp in [30]. Analysing higher-dimensional cases leads
to non-trivial difficulties and through this work we are building a few mathematical frameworks that



allow us to tackle this problem in the case of critical regularity over Kéahler surfaces.

In a work which is in preparation by the authors together with M. Petrache [20], we will show the
analogue of these results for general closed Kihler manifolds X¢ in critical regularity regime. This will
be an additional step towards a better understanding of Sobolev connections in the complex framework
and a study of singular bundles in this setting.

1.3 Results

We will be interested in the convergence of Sobolev W12 unitary connections, and their respective
Sobolev structures in the case of closed Kéahler surface. Thus, we positively answer the analogue of the
Newlander-Nirenberg theorem for W12 unitary connections and the question of strong convergence.

More precisely, our first main result is the following:

Theorem 1.1. Let V be a unitary W2 connection of an hermitian bundle (E,hg) over a closed
Kiihler surface X?. Assume V satisfies the integrability condition

F¥*=0 (1.1)
then there exists a smooth holomorphic structure £ on E and a (| W24 section h of the bundle of
positive Hermitian endomorphisms of E such that =

V =3+ htdh + O (1.2)

where Og is the O—operator associated to the holomorphic bundle & and Oy is the 1-0 part of the Chern
connection associated! to the holomorphic structure £ and the chosen reference hermitian product hg.

The second main result of this paper asserts that Sobolev holomorphic structures associated to Sobolev
unitary connections are strongly approximable by smooth ones in 2 complex dimension (the dimension
for which the Yang-Mills energy is critical) under the cohomological condition H§’2 (X?2) =0:

Theorem 1.2. Under the assumptions of Theorem 1.1 and the cohomological condition
H%z (XQ) -0

there exists a sequence of smooth connections Vi on a smooth holomorphic bundle & satisfying

02
FG =0,
and converging to V in the sense of:
dist,(Vg, V) = inf V—V”p2+/ Fy, — FgelPw? =0 1.3
(Ve V)= ot [ =P+ P, = Feelre (13)

for any p < 2, where GY2(GL,(C)) is the space of W2 gauge transformations on E for the group
GL,(C).

Moreover, there exists a family of isomorphisms Hy, such that
ggk = 'H;l 0 0g o Hy,.

That is, the sequence of connections Vi, act on an equivalent bundles to E. 0O

!These connections are not necessarily unitary with respect to ho anymore.



Remark 1.1. We have formulated these theorems by considering closed Kdahler surfaces. This con-
sideration has been done for simplicity, since it allows us to use the fact that 99" + 80 is locally
equal to the Hodge-Laplace operator %Ad = %(dd* +d*d). The reader should take into account the fact
that the results are generalisable to closed complex surfaces by carefully dealing with error between the
89" 4+ 8" and Ay operators.

The strong approximation of Sobolev connections by smooth ones has been proven in the case of
Riemannian manifolds without the integrability condition (1.1). This is less involved and hence, one
of the novelties of this paper is exploring how the approximation can be achieved by adding the
integrability condition.

There has been a definition of weak connections with L? bounded curvature given by the second author
in collaboration with M. Petrache in [17] and [18]. This definition was motivated in a search of the
closure of Sobolev connections below a Yang-Mills energy level. Roughly speaking a weak connection
in real 5-dimensions is defined as being an L? 1-form into a Lie algebra g such that its restriction
on a.e. 4-sphere is a Sobolev connection. In higher dimensions weak connections are defined in an
iterative way. That is, for n > 5, a weak connection in n-dimensions is an L? form A into the Lie
Algebra such that when restricted to a.e n — 1 spheres is itself a weak connection. This space has been
proved to be weakly sequentially closed under Yang-Mills Energy control. This was one of the main
results in [17] and [18].

In higher even dimensions, for the weak connections defined in [18] over a complex manifold and
satisfying in addition the integrability condition F%Q = 0, we expect theorems 1.1 and 1.2 to extend in
the following way: We expect to have necessary singularities and the smooth holomorphic structures
should be replaced by the more general notion of coherent sheaves. The question remains to know how
smooth these sheaves can be and if a weak holomorphic structure defines a coherent sheaf or not.

1.4 Structure of the paper

Section 2 is devoted to the proof of theorem 1.2 in the case of small W12 connection norm. This
proof is not going to be used for proving the theorem in its full generality. However, we thought that
it could be useful for the reader to expose a different approach in this particular case and the scheme
of the proof we are giving in this section is going to be used in later ones.

Under the smallness condition of the W12 connection norm, in Section 3 we prove that connections
satisfying the integrability condition (1.1) are locally holomorphically trivialisable, meaning that in
any geodesic ball embedded in our manifold X? where we have the local representation V ~ d + A,
we show the existence of g € GL,(C) such that A®! = —dg-g~!. Using this result, we prove theorem
1.1 in Section 4.

Sections 5 and 6 are dedicated to proving theorem 1.2 in the case of high W2 connection norm.
The former section proves the strong approximation result, and the latter concludes the statement by
proving that the connections V act on equivalent bundles to E.



1.5 Notations

distp(Vk, V)

the space of n X n complex valued square matrices

the space of symmetric matrices

the space of W12 gauge transformations on E for the group G L, (C)

the space of smooth sections over X?

the space of WP sections over X2

the space of (p, q)-forms defined on X2

the space of g-valued (p, ¢)-forms on U

the space of Sobolev functions W?2P that vanish on the boundary of the domain
¥ = — * 0%, formal adjoint of d (see [6, p. 83])

N is the inverse operator of Az = 99" +0°0 applied to the (p, ¢)-form w
4-dimensional unit open ball

4-dimensional open ball of radius r > 0

[A,B]=AANB+ BAA,if A B are (p,q)-forms

g 19 + g~ 1A% g

the norm of the operator T': X — Y, for X,Y Banach spaces

the spectrum of the operator T'

the resolvent of the operator 7', defined as C\ o(T")

for k-forms A =} ;_, xrdzy denote A(z) = 3 a;(x)dzy

infoeglv2(GL(n,(C)) sz Vi — V"|pw2 + fX2 |ka — Fyo|P w?



2 Density under low energy

Given a unitary W2 connection V of the hermitian bundle (E, hg) over a closed Kihler surface X2
satisfying F%2 = 0, we assume without loss of generality that B* is a geodesic ball in X? and that V
trivialises as V ~ d+ A in B*, where A is a connection 1-form. Moreover, in this section we will work
with low W12 connection norm in B* i.e. A satisfies the smallness condition

||A||W1,2(B4) < 50(X2, w)

for some £9(X?,w) > 0 depending on the surface X2 and the Kihler form w. We will use the smallness
assumption throughout this section. Moreover, to fix ideas we will assume that B? is the flat closed
unit ball.

We start by showing how to smooth 1-forms, keeping the approximating sequence unitary. This method
however, does not ensure the integrability condition (1.1). Let p > 1 and A € W'P(Q'B*®u(n)) then
we can always find a smooth sequence of unitary 1-forms Ay € C*®(Q'B* ® u(n)) such that

A, — Ain WIP(BY).

— T
Indeed, we can write A as A = A% — 401" where A%! = a1dZ; + aadZs. Since for each i = 1,2, we
have a; € WP(B* u(n)), then by the density of C* functions into WP, there exist sequences

oy — ap in WHP(BY)

and
Qg ) — ag in WHP(BY).

—T
By defining Ag’l = oy pdz1+oo pdze and Ay, = Ag’l —Ag’l , we obtain by construction the convergence
of A, to our initial form A in WP, Moreover, Ay, is a unitary 1-form.

The next lemma helps us to prove that we can always find a perturbation of a given a connection
I-form A € WP with low norm such that the integrability condition (1.1) is satisfied.

Lemma 2.1. Let p > 2. There exists ¢ > 0 depending on p such that for any A € WHP(Q!B*@u(n))
satisfying HA||W1,,,(B4) < g, there ewists a 1-form

AcwhP(Q'B @ u(n))

that satisfies the integrability condition

0,2 _
F>*=0
and .
H HW <CH AO,Q‘ ’
Lp(B4) Lr(B%)

for some constant C' > 0 depending on p. Moreover, if A is smooth then A is also.

In the proof we will use Sobolev embeddings under the assumption that p € [2,4) - which is the more
delicate case. If p > 4, the results hold by considering the corresponding Sobolev embeddings.

Proof of Lemma 2.1. In order to obtain a form satisfying the integrability condition, we want to
perturb the A with a form V € C*(Q'B*,u(n)) such that Fg’iv =0. We express V by V =v — 77,



where v € WHP(Q%1 B* @ M,,(C)). We expand F,?fiv = 0:

0=Fyly = (dA+V)+(A+V)A(A+V))"?
= (dA+ V)2 + (A+V)A(A+V))*?2
_ ((5—1—8)(140»1 40l _|_A1,0_|_V1,0))072
+((Ao,l + y01 +A170+V170) A (onl 4+ Vo1 JrA1,O+V1,0))0,2
= 9A% 4 VOl + A0 A A0 4 [A0L VO] 4 VO A YOI
= Fy? 4+ VOl +[A01 VO] 4 YOl A Y0l
= FE’Q +0v + [A%L 0] +v Av

Thus, we get the following equation
v+ [v, A% + v Av = —F2.

By the fact that we work on a Ké&hler manifold, we know that 99" = %A - dz1 N\ dz3 on the space
0%2B4. Thus, we want to transform the PDE above into an elliptic one by taking v of the form

V=0 w
with w = 0 on B* - so that & is well defined. We solve the following elliptic system:
00w+ 0w, A% + 9" WwAD W= —F}°.

Since A%! and Fg,z have small norms, we can solve it using a fixed point argument. We consider the
following Dirichlet problem:

0w =—-[0w A -0 WA w— Fg’z in B4
w =0 on B

We fix k and we build the following sequence {w;}72, of forms that solve the PDEs:

%*wl = —Fg’Q
678*(,@ = —[g*wl, Ao’l] — g*wl A 5*w1 — Fg’Q
%*Wj—i-l = —[g*wj, Ao’l} — E*a)j A\ g*wj - Fg’Q

where w; =0 on B* for all j > 1.



Claim. {w;}32, exists and is a bounded sequence in W2p,

By classical elliptic theory, since Fg’Z € LP  there exists a constant C; > 0 depending only on p such
that

||W1HW2,p(B4) <(C; H%*ojl‘

-ae

<0 |2

Lr(B* Lr(B%) Lr(B%)

LP(B*%)

By induction we prove that w; exists and satisfies the uniform bound [|w;|lyy2. 54y < 2C1 HngQ‘

We assume that w; exists and ||wj\|W2,p(B4) < 20 HFS‘QHL 5 and prove that w;;q exists with the
P

same W2P bound. By the Sobolev embedding W? « L4%/(4=P) there exists constants Cy > 0,C3 > 0
so that

[ < Ca | Ve llunnqry < Co o lyangany < 201 - Ca|F5)

L4/(4-p) (B4) Lp(B*)

and
1A v oy < C A% [ sy < Coe

In addition, since 4p/(4 — p) > 2p for any p > 2, then WP continuously embeds into L? and we can
bound HFA||LP(B4) as such:
2 2
1FallLogey < dAl Lo gy + 1 AlL20 81y < I Allwrp ey + C3 [l Allwrspa)
< HAHWLP(BAL) + Cse HAHI/VI,p(BzL)
= (1 + Cs¢) ||A||W1,p(34) .

Define the constant Cy := 1 + Cse. Moreover, since p > 2, we have the embedding L2P/(4=P) — [P,

Denote B B B
fj= —[8*wj,A0’1] — a*w]' A 8*0.)]‘ — Fg’Q.

Using the estimates above we obtain:

0,2
A

1illopy < |05 4%

< |@"ws, 4%

e T

Lp(B4) H Lp(B4)

0,2
7]

) + Hg*wj A 5*%

L2p/(4=p) (B4 L2p/(4=p) (B4) LP(B4)
0,2
7 )

. 2
1A% W avra-m ey + Ha*wj ‘ L4e/(4=p) (B4) H

i * 1

<

=%
Wi

L4p/(4—p)(B4) Lr(B*)

< CyCy HFS‘QHL;;(B‘I) e+4C?. C2 ‘Fga) .

0,2
[Allyrocpsy + HFA ’

Lr(BY)

0,2 2 M2 0,2
e R

< (CyCye + 4C2C2C4e + 1) HFE;?

Lr(B*)
Hence, —[0" w;, A% — 9 wj A9 w; — FE’Q € L? and the solution w;11 to the PDE
00 wip1 = —[0"wj, A% = wi AND wj — FB{Q in B

(2.1)

wjit1 =0 on B4

exists. Choosing ¢ > 0 such that
CyCse +4C2C3C1e < 1



is satisfied, it follows that we can obtain the required bound:

=C ||fj||Lp(B4) <204 HF,%Q‘

s —
||wj+1||W2,p(B4) S Cl Ha aw]+1H

Lp(B4) Lp(B4)

Hence, by induction, we have proven the claim.
Claim. {w;}32; is a Cauchy sequence.

Since each w; satisfies the elliptic PDE (2.1), we can estimate the difference w;; —w; as such:

w1 _Wj||W2>P(B4) = C(”% Bl 1HW2P B HA lep (B9
0,2
e, s =)
< 20¢e||lwj — wi—tlly2a(psy

where C' > 0 is a constant depending on p. Choosing € such that in addition 2Ce < 1 is satisfied, it
then follows that the sequence is Cauchy.

Because W?2P is a Banach space and the sequence {Wj};')il is Cauchy, we have that the sequence

converges strongly in W?2P to a limit which we denote by w. Moreover, by construction w satisfies the
PDE:

0w =—[0w A -0 WA w— Fg’2 in B4
w =0 on OB*.
e =% =T 0,2
Define A=A+0w—-0w . ThenFA’ = (0 and

a-a],,,, = ow-7"

<4,
P

whip wlp
Using the result above, we can prove the following theorem of this section:

Theorem 2.1. There exists g > 0 such that if A € W12(Q1B* u(n)) satisfies the smallness condition
[Allw12(psy < €0

and the integrability condition Fg’Q = 0, then there exists a smooth sequence Ay € C*™(Q'B* u(n)) so
that:
A = A in WH2(Q1B* u(n))

and satisfies the integrability condition Fgf = 0.

Proof of Theorem 2.1. As we have discussed at the start of this section, we can always construct a

sequence smooth sequence of forms Ay, that converge in W12 to A and F — 0= 2’2 in L? as
k — oo. Let € > 0 be the constant given by Lemma 2.1 and pick g9 = /2. Then there exists kg > 0
such that HAk — AH < gg for all k > kg and:
Wh2(B4)
Ak ‘W1’2(B4 HAk — Ale 2(p4) ”AHWLQ(B‘l) < 250 = €.

10



Thus, for each k > kg we can apply Lemma 2.1 in order to obtain a perturbed sequence Aj satisfying
the integrability condition Fgf = 0 and there exists a constant C' > 0 such that

T e
Thus,
4= Al < = A+ A= 4]
S L P R
as k — 00. This concludes the statement. O

3 Existence of holomorphic trivialisations

In this section we prove that under the integrability condition FQ’Q = 0 we obtain the existence of
local holomorphic trivialisations assuming low W12 norm for A as before. We state the result:

Theorem 3.1. There exists g > 0 such that if A € WY2(QIB* @ u(n)) satisfies
[All 121y < €0,

and the integrability condition Fg’2 = 0. There exists 7 > 0 and g € W?4(B* GL,(C)) for all ¢ < 2
such that
APt = _9g. g7t in B2, (3.1)

and there exists a constant Cy > 0 such that
g — idHWZq(Bg) < Cq ||A”W1»2(B4) and ng - idHWM(B;%) <Gy HA||W1’2(B4) :

Moreover, A9 = h™10h where h =" g.

This result is an analog of the real case framework. Indeed, the flatness condition F4 = 0 together
with the compactness of the Lie group G imply that A = —dg-g~! where g € W22N L. This can be
easily done by using Uhlenbeck’s gauge extraction procedure [27]. In the complex framework, however,

due to the lack of compactness of the group G L, (C), we fail to obtain W22?NL> regularity of g and g~ .

Strategy:

Since this proof is quite technical, we start by describing the strategy. We will first prove in Proposi-
tion 3.2 that we can extend a small perturbation of our connection 1-form A to CP? while also keeping
the integrability condition (1.1). Secondly, Lemma 3.1 shows that this extended form is holomorphi-
cally trivialisable in the sense of (3.1). Thirdly, Lemma 3.2 proves a technical result which shows the
existence of holomorphic trivialisations of forms that are more regular than W2 and this will help us
later to cancel the initial perturbation we have added.

By combining all these steps, we obtain in Theorem 3.1 the existence of holomorphic trivialisation of

our initial form A%! in B? for some r > 0. We conclude the section with Corollary 3.1 which proves
a stability result.

11



3.1 Holomorphic trivialisations for CP? extensions

We can assume without loss of generality that the ball of radius 2, B equiped with the canonical com-
plex structure, is holomorphically embedded into CP? (simply take the embedding (z,w) — [z, w, 1])
. Before we start we need to prove the following technical proposition:

Proposition 3.1. There exists € > 0 such that for any A € W2(Q'CP? @ u(n)) satisfying the bound

HAH < g, the operator
W12(CP?)

L : W»2(Q?CP? ® M,(C)) — L*(Q°CP? ® M,(C))
defined by )
L;i(w)=080"w+ [A%,9"w] (3.2)
is Fredholm and invertible.

Proof of Proposition 3.1. It follows from Garding’s Inequality, that the operator 99" is elliptic over
CP? (see [8, p. 93]), and hence it is also Fredholm. By choosing € > 0 so that A is small in norm, it
follows that the operator [Ao,l’g*_] has small operator norm. Hence, from the continuity of the index
maps [24, Theorem 4.4.2, p.185], we have that L ; is Fredholm and has the same index as 89" as an
operator mapping W22(CP?, M, (C)) to L?(CP?, M, (C)).

It is well-known that there are no global nonzero holomorphic (0,2)-forms on CP? [8, p. 118]. This
implies that 98" is an invertible operator on the space of (0,2)-forms and consequently has index 0.
Thus, it follows that index(L ;) = index(dd") = 0.

It remains to show that L ; has trivial kernel. Once we have shown this, we can use the zero index of
L ; in order to conclude that L ; is invertible. Assume w € KerL ;. Hence, w satisfies

00w = —[A%, 97 w).

By the Fredholm Lemma, we obtain

lwlwee < C||00°w| | < Oz 2 + 1A%, 876) )
Sl (L P P o o Y
< ClLi(W)|| 2 + Celwllya.

for some constants C,C" > 0. We can take the term C’e ||w||;2.2 on the left hand side of the inequality:
(1= C') wlly22 < C[|Lz(@)] 2 -

Choosing € > 0 such that 1 — C’e > %, then we can divide by the positive factor 1 — C’e. We obtain
the bound: o
lollwz2 < T4 Lzl -

Because w € KerL ;, we have that w = 0. Since w was arbitrarily chosen from the kernel, it follows
that the kernel of L ; is trivial: KerL ; = {0}. This finishes the proof. O

Having this result at our disposal, we can prove the existence of a CP? extension of our connection
form A, keeping the integrability condition (1.1).

12



Proposition 3.2. There exists ¢ > 0 such that for any A € W12(Q'B* @ u(n)) satisfying Fg’Q =0
and |[Ally12pay < €, there eists A € Wh(Q'CP? @ u(n)) that satisfies F%Q = 0 in CP? and
w e W22(Q02CP? @ M,,(C)) such that A% = A% 4+ 9w in BL.

Moreover, w satisfies the estimate ||w||y2z2cpzy < C || Ally12 for some constant C' > 0.

Proof of Proposition 3.2. Step 1. We can decompose A into its (0,1) and (1,0) parts: A = Ao’l—onlT
where
A% = a1dz + axdm

and a; € WH2(B* u(n)) for i = 1,2. We extend each q; into Bj to a compactly supported function
&, so that &; = 0 in Bé \ B§/2. Indeed, for each 7 = 1,2 we solve:

A¢; = 0 inBj,\B]
¢; = «; on an

¢o; = 0 on aB§/2

Such solutions exist by [13, Remark 7.2, Chapter 2| and satisfy
9illwrass 1) < Cllaillirzony) < C'levillyrzps)

for some constants C,C’ > 0. We can now define the following extensions on Bj:

o; in B}
&; =i in By, \Bi
0 in B3\ By,

By the construction of ¢;, the functions &; are well-defined W12(B3) Sobolev functions that satisfy
the estimate:

16lly12(pay < Cllaillyrzpy -
Define the (0,1)-form A%! = @1dz7 4 G2dZz; and
A 10,1 ) 1T 1,2/01 p4
A= A% - A0 e WEEH(Q'B3 @ u(n)).

By covering CP?\ B3 with coordinate charts, we can trivially extend Aby 0on CP?\ B}. Thus, we have
obtained A € W2(Q'CP? @ u(n)) and there exists a constant C' > 0 such that HAHWl , < CllA e -

Step 2. Tt remains to perturb the form A so that we obtain the integrability condition. This can be
done by finding a (0, 2)-form solution w to the integrability condition:

F2 =0
A+9 w—-8"w
This amounts to solving the following PDE globally on the complex projective space CP?:

00w+ [A%,0'w] = - wAD w-— Fz,z (3.3)

13



where w is a (0,2) form on CP?. Using the invertibility of the operator L 4 proven in Proposition 3.1,
we can solve equation (3.3) using a fixed point method. This is done by mimicking the procedure we
have employed before, in Lemma 2.1. Indeed, consider the sequence given by:

0,2
LA(wl) = _FA
LA(CUQ) = —g*wl A 5*{,01 — Fg’Q
LA(wk) = —g*wk_l A g*wk_l — Fg’2

By showing that the sequence wy, converges strongly in W22, we obtain a W22 solution to the required
equation (3.3). Since L ; is invertible as an operator W?22 to L?, it is clear that existence holds for
each wy, k > 1. We need to show that the sequence {wg}72, is a Cauchy in W22,

Let eg :=C HFE’Q‘ where C' > 0 is the constant appearing in Fredholm inequality:

L2(CP?)’
I8llw22(cp2y < ClILA@)|| p2(cp2) -

Claim. {w;}%°, is a Cauchy sequence in W22(CP?).

We first show by induction the uniform bound on the sequence [|wg ||y2.2(cp2) < 2€0. By the Fredholm
Lemma [24, Lemma 4.3.9] we have that

=¢eqg < 2¢9

0,2’
L2(CP?)

Jenllweesy < C 12 40 xepmy = €|

Let k > 1. By the Sobolev embedding W2(CP?) — L*(CP?) there exists a constant C; > 0 so that

Thus, the following inequalities follow:

a*
0 wk’

) <Ci Hg*wkH <} HwkHW%?((cW) :

L4(CP?) — W1.2(CP?)

lwrilweacrzy < C L aGren)|] ey

<C Hg*wk A E*wk‘

|57
L2(CP?) A lr2(cp?)
< O ol cen) + <0
<C-Cf HwkH%/vzz((sz) + &g
By the induction hypothesis, we assume the bound ||wkHW2,2((CP2) < 2¢g. Thus,
Jokllwascosy < 4C- CHiek +20

Having chosen ¢ > 0 such that 4(C' - C1)e < 1 and HAH <C [ Allyy12(psy < €, it follows that

4(C - CHep < 1 and we conclude

W1.2(CP?)
[wrt1llw2.2cp2y < 2€0-

14



By induction, we have proven that we have a uniform bound for the sequence of 2-forms {wy}:

”WkHWz,z cp2y < 2¢gp.
(CP?)

for all & > 1. It remains to show that {wy} is a Cauchy sequence. Let k > 2. Thus, we derive the
following bounds from the recurrence relation satisfied by the sequence:

Hwkﬂ—wkHW%?(CW) < CHLA(WkJrl—Wk)HLz(Cp2)

< C H5*<wk — Wk_1) Ag*wk‘

L2(CP?)

C 0" wn-1 7D (o = w)

L2(CP?)
< 4C- 01280 Hwk — wk*1||W272((C]P’2)
To simplify notation, denote &1 := 4C - C?¢y < 1. We further expand our estimate above:

k1 = wrllweeery < € lwk = wi-tllzecey < - < et lwr = wollwas(epey < 4efed

Let ¢ > k > 0. It follows that

lwe = wellwazcpzy < llwe — wetllwazcpzy + lwe—1 — willwzecp2y
< 4€£ e + Jlwe1 — wee 2HW22 cp?) lwe—2 — u"’fHW“(@P"")

§45£ 1 2—}—4512 2 2+...+45’f53

l—k
42 . ok e k
— 450 * 81 * 1*61 S 51

This is clearly a Cauchy sequence by the inequality above and the claim is proven.

Hence, since {wj,}?%, is a Cauchy sequence in the Banach space W22(Q02CP? @ M,,(C)), it has a

~ P =T
limit w and converges strongly in W22 to it. Hence, by defining A = A +0 w — 0 w , we obtain a
skew-Hermitian 1-form, satisfying Fg’z = 0 such that A% = A% + 9w = A% + Yw in B

Moreover, by convergence, we have that the uniform bound is satisfied by the limiting form w, indeed
lwllypze < 260 = 2C HFAHLQ. By construction of A, it is clear that there exists a constant ¢’ > 0 so
that ||Fj||,» < C'||Ally12. This leads to the required estimate on w, [[wlly22 < C||A[[y12, where
C > 0 is some constant.

O]

Lemma 3.1. There exists ¢ > 0 such that for any form A € WY2(QICP? ® u(n)) satisfying the
integrability condition (1.1) and Hfl ’W” < e, there exists a gauge §j € W>4(CP?,GL,(C)) for any
q < 2 such that

Ao,l — _gg . g*l

and there exists a constant Cq > 0 such that

19— idlzaqces) < Co|A] g

and

7" = idlhynaicrey < Co 4] 12 -
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Proof of Lemma 3.1. Step 1. We prove this result using a fixed point argument. Indeed, consider the
linear operator:

T : Wh2(CP?, M,,(C)) — WH2(CP?, M,(C))
given by _ 3
T(§) = =0 N(A'§) +id.
We verify that this operator is well-defined. It follows from the Garding inequality on CP? (see for
example [8, p. 93]) that we have the elliptic estimate

for some constant C. Moreover, using the 9-Hodge decomposition (C.2) we can decompose A5 as
such:

5*N(AO’1§)H <C H%*N(Ao’lfl)‘

wi2(cp? L2(CP?)

A%G = 9"ON (A 5) + 00" N(A™'g) (3.4)
and because 8 L 9, it follows that

- oo, [

L2’
Consequently,
25° A7( 40,1~ 70,1~
H88 N4 g)HL2 = HA g‘ L2
Putting the above together, we obtain:
oN (A )| < c||avg] < c|a] ] .
|7 Ny <€A ) < poceon 1L cm

Furthermore, using the Sobolev embedding in 4-dimensions W12 < L*, there exists a constant C’ so
that

1912 - (3.5)

Thus, the operator T is well-defined, mapping W'? functions to W2 function.

e, <

AOJH

wi, w2

We can now show that T has a unique fixed point. Consider §1,go € W2(CP?, M, (C)). Then

_ _ _ |la* 20,1/~ — ~
1T(g1) = T(g2)llwr2(cpey = ‘ 0 N(A™ (91 gz»HWl,z(@Pﬂ)'

Using the above inequalities, we obtain

FEar A0l %~  ~ /|| 01 PO

Ha N(A™ (@1 92))HW1,2(<CJP2) oA leﬂ((cwﬁ) 191 = G2 llw2(ce)
and we can choose € > 0 such that the bound HAOJHW12(CP2) < ¢ is small gives that the factor
c’ AO’lHWI 2(c7?) is strictly smaller than 1. Hence, T is a contraction operator and there exists a

unique fixed point § € Wh2(CP?, M, (C)), T(§) = §. Thus, we have
9§ = —00 N(A%'g).

Step 2. We can now show that the equation above coupled with the integrability condition satisfied
by A%! imply that § solves the required PDE: 9§ = —A%!1g. The d-Hodge decomposition (3.4) gives

95 = —A% G+ 9 aN(A% ). (3.6)
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Since the operators N and 0 compute, N0 = NO (see [4]), we can further compute the term
8 ON(A%1):
9 ON(A"G) =" NO(A" §) = " N (A g — A% A dg).
Using the above equation (3.6), the equation becomes
O ON(A%G) =" N(BA g — A% N Dg) = 0" N(BAM g+ A% A A% G — A% A GTON (A% g)).

Since A satisfies the integrability condition Fg’2 = 0, we have the recurrence relation:

9 ON(A% G) = —9"N(A% A9 ON (A% g)). (3.7)
Thus, it is natural to consider the operator

L: L*(Q'CP? @ M,(C)) — L*(Q'CP? ® M, (C))
Vi -9 NAY AV).

We need to establish whether £ is a well-defined operator and find its fixed points in order to analyse
equation (3.7). By the Sobolev embedding W14/3 < L2 it follows that

L) p2cpzy < CNLV) a3 cp2)
for some constant C' > 0. We also have that

IVLV) | zoss(ee2 < € |[VPN(A A V)|

L4/3(CP?)
and consequently, since N(A%! A V) is a (0,2)-form in 4-dimensions, the elliptic estimate holds:

o2 v

<C H%*N(on1 A V)‘

—c|aiay

LA/3(CP? LA/3(CP? LA/3(CP?)

By the Holder inequality and the estimates above, it immediately follows that:

£l ey < € [ 4% [Vl z(cp)

L4(CP?) ‘

Similarly as before, this means that £ is a well-defined contraction operator and has a unique fixed
point. In particular, 0 is its fixed point. We know from equation (3.7) that 9 ON(A%1g) is also a
fixed point for £ and, thus, we have that the term & ON (A%1g) vanishes. In particular, the equation

is solved: )
G =—A"3g.

Step 3. Tt remains to show that § € W%4(CP?, GL,(C)) for all ¢ < 2 and the required estimates. Let
g < 2. We know that g is a W12 map and satisfies:

g —id =3 N(A%g).
Since g is a fixed point of T', then it satisfies the estimate (3.8), which means:

. 70,1 ~
19 — idllyr2(cp2y < C HA HW1,2(<CP2) 1912

< ¢4 1 — iy +of A

W1.2(CP? W12(CP?)
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Because HAO’IHI/W 2 (CP?) < g, where ¢ is small, then there exists a constant C' > 0 such that

~ . 70,1
Hg - ZdHWLQ((CIPQ) < C HA HWL?((CIFQ) .
Since g satisfies this estimate, we can bootstrap using Lemma B.1 and Remark B.1(i), from which
follow the required estimate and regularity:

19 = idlyaqce < Co |4 (38)

wi2(cp?)’

for some constant Cy; > 0.

We need to show that § is in GL,(C) over CP? and that its inverse satisfies a similar estimate as (3.8).
Arguing in a similar way, we can show that there exists & € W%4(CP?, GL,(C)) for any ¢ < 2 such
that

o = uA%!

ind @ —idlly2acp2y < Cq HAHWL?(CIP?) for some conNS‘cant Cqy > 0. Iri particular, we have that
d(ug) = 0. Hence, there exists a holomorphic function h such that ug = h. However, since the only

holomorphic functions on CP? are the constant ones [8], then & is a constant.

We can pick 3/2 < go < 2 so that we obtain the Sobolev embedding W29 < L° on any 3-dimensional
hypersurface. Moreover, by [23, Section 4.8.2, Theorem 1], there exists ¢1 € (qo,2) such that a,g§ €

W2"11(CIF’2,MTL((C)) and 4§ € W2% and ||@g — idHWQ,qO((CPg) < Cy ‘ A Wi (ce?) for some constant

Cyo > 0. By Fubini, there exists a radius r > 0 and 2y € CP? such that

~ o~ . / A
|ag — Zd”wlqo(aBé(zo)) < 204, AHWL?((CJP?)

where B%(z) is holomorphically embedded in CP2. Thus, by the embedding of W% into L> in 3-

. . . // ~ o~ . // e .
dimensions, there exists a constant Cj > 0 so that [[ag — deLoo(aBﬁ(ZO)) <Cy AHWL?((CIP?)' Having
chosen € > 0 such that HAHle(C]P’Q) < ¢ is small enough, we obtain that h = 4§ € GL,(C) over

OB,(z). However, because h is a constant, then h € GL,(C) and satisfies the estimate:

Hil B Z.dHLOO((CIP?) =¢ HAHWW(B‘l) ’

for some constant C' > 0.

Hence, we can define §—! := h~la. Since G~ 'g = id by construction, we obtain that § maps into

GL,(C). Moreover, it follows that g=' € W24(CP?, GL,(C)) for any q < 2, and by the estimates on
@, we obtain that for each ¢ < 2 there exists a constant C; > 0 such that

7! = il < CalAlraqees

This conclude the proof of Lemma 3.1. 0

3.2 Existence and stability over unit balls in X?

Before proving the existence of a local holomorphic trivialisation for our initial W12 connection 1-
form, we need to show a stronger version of existence. We consider forms of small norm in WP,
p > 3. This will be a useful result for our final theorem.

18



Lemma 3.2. Let p > 3. There exists € > 0 such that for any w € WIP(QY1B* @ M, (C)) satisfying
FY? =0 and [wllwip(pay < €, there exists r € (1/2,1) and gauges u,u~t € W?P(BX GL,(C)) so that

w=—0u-u"" in B,
with estimates ||u — idﬂwz,p(B;;) <C ||w||W1,p(B4) and Hu‘l - idHWQYP(Bé) <C Hw||W1,p(B4).

Remark 3.1. The reader can note the fact that the technique to solve this Lemma is similar to the ideas
used in the previous one. However, this proof will rely more on regularity results from the literature
on the analysis of several complex variables and regularity results we introduce in the Appendiz C.

Proof of Lemma 3.2. Step 1. Let g = 4p/(4 — p). We show the existence of a gauge u € GL,(C) that
”almost” solves our equation modulo a perturbation term. Indeed, in Step 2 we can show that the
perturbation term vanishes and consequentially u is the solution. Let 17,75 be the operators defined
as in (C.4) and (C.5). Note that we can extend 77 and T3 to operators defined on Sobolev spaces by
density arguments.

We define the operator
H o L2(BY, Mo(C)) N{f : 0f € L1} — L®(B*, Mo (C)) N{f : 0f € L}

given by
H(u) = id + Ty (~w - ),

where id is the identity map u +— u.
Claim. H is well-defined.

Since Tj takes (0,1)-forms to functions we only need to check that H maps L N {f : df € Li}to
L>®N{f:0f € L1}. By the Sobolev embedding WP — L4, there exists a constant C7 > 0 so that

|l Loy < Crllwllwrn(se
) (BY) -

The assumption p > 3 implies that ¢ = 4p/(4 — p) > 12. Consequently, for u € L>(B*, M,,(C))N{f :
0f € L9} we have w-u € L9. Moreover O(w - u) € L%/2. We prove this.

[BICE u)HLq/2(B4) < HEWHL(I/2(B4) [l oo 1y + o /\EUHLW2(B4)

(3.9)
= Ha"JHLq/2(B4) [ull oo 3y + 1]l Loy HauHL‘Z(B‘l)
Crucially, we have that Fo* = 9w + w Aw = 0. Because w € L9(B*), then dw € L9/2. Thus,
10 )|z < Mllzagmsy 1l ooy + 190 o) 104l o,
< 015 HWHL‘Z(B4) ||U”Loo(B4) + Hw||Lq(B4) HEUHL‘I(B‘L) (310)

< 2wl (Il + [0l o ) -

where we have implicitly used the fact that we can choose e <1 so that [lwl|y 1,y < €. Hence, we

have shown that O(w - u) € L9/2. Taking into account that ¢/2 > 6 and the embedding W1 4/2 — L4,
we can apply Proposition C.2 to the (0, 1)-form w - u and obtain the estimate:

HTI(W : U)HLOO(B‘l) + HETI(W : U)HLq(B4) <C (HW : U”Lq(B4) + HE(W : U)HLq/2(B4)> . (3.11)
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This shows that, #H is well-defined, since the operator T7(w-) is a well-defined map from L>* N {f :
Jf € L} to LN {f:0f € L9}. We have proven the claim.

Next, we show that H has a fixed point. From (3.11), it follows that

T2 (w - )l o () + 0T (w - @) oy < € (H“’”LQ(B‘*) el oo (1) + (|00 - “)HLq/2(B4)> '

Since w is less than € in W1 norm and using (3.10), for any u,us € L>®(B* M,(C))N{f:df € L4}
we have:

1H(u1) = H(u2) || oo gay + |0H (u1) — OH ()| Loy
= 1T (—w - (ur = w2)) | oo ey + [|OT1 (—w - (ur — Uz))HLoo(B4)

< Ce (Hul — UQHLOO(BAL) + Hg(ul - uQ)HLq(B“)) ’

Choosing ¢ > 0 such that Ce < 1, we obtain that H is a contraction and therefore there exists
u € L®(B* M,(C))n{f:0f € L4} satisfying

u=1id+Ti(—w-u) = H(u).

This fixed point ”almost” solves the required equation. We will show in the next step that the error
we obtain vanishes in light of the integrability condition Fo? =0.

Step 2. Having obtained this fixed point, we show that u satisfies Ou = —w - u. Since we have proven

that u—id = T} (—w-u), we get Ju = T} (—w-u) € LI. We can apply Theorem C.1 from the Appendix
to get the integral representation of —w - u:

—w-u =0T (~w u) +To(0(~w - u))
and expand the last term in the following way:
To(0(—w - u)) =To(—0w - u+w A du)
=T(—0w - u—+wA Ty (—w - u))
=T (0w -u+wA (~w-u—Ta(d(~w-u)))
= To(— (0w + w Aw)u —w A To(d(—w - u))).

By using the fact that w satisfies the integrability condition FO? = 0w+ wAw= 0, we obtain:

To(0(—w - u)) = To(w A Ta(0(—w - u))).

We want to show that this recurrence equation implies that T5(9(—w-u)) = 0. From Proposition C.1,
T is a well-defined operator mapping L® to W for any s > 1 and the following estimate holds:

7@ ) gy < €T 0) e
< CllwAT(0(~w - u))HLq(B4)
< C ol gy 1T - )] e

< CCre | Ta(B(=w - w)) || oo oy
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where C is the Sobolev constant given by the Sobolev embedding W4 <+ L*> (g > 6) in 4 dimensions.
Moreover, we also choose € > 0 so that 1 — C' - Cie > 0 and

(1-C-Cie) || To(0(~w - u))HLoo(B4) <0.
Thus, T5(0(—w - u)) = 0 and we can conclude that the d-equation is solved:
ou=—w-u in B,
Step 3. It remains to show that u € GL,(C) and satisfies the required estimates. We have:
[ = id|| oo g1y = [H () — id|| oo (1)

< Cllwllyrepay vl oo gy
< Cellu —idl| oo oy + C llwllyprp(ps) -

Thus, since € > 0 is small, we get the L*>° bound:

lu = idl e (3 < Tz lllwrn(ss) -

Because we can assume that 1 — Ce > 1 for ¢ small enough, then |lu — id|| oo g1y < 2C ||w|lyyrp(pay-
This implies that v € GL,(C). Remark B.1(iii) gives the existence of r € (1/2,1) and a constant
C > 0 such that

|u — idHW&p(B;l) <C HWHWLP(B‘l) :

1

Moreover, since u~ "+ exists, we have the following L estimate:

le™ = ddl] ooy < Nl = w7 | ooy < [l ooy Nt = ] oo 39y
< Hu’l — idHLOO(B‘l) ”U - idHLOO(B‘l) + Hu - id”L‘X’(B‘l)

The estimate on u also implies that the norm of u — id in L™ is small. Hence, the estimate of u™!
then follows: .

[ = id]| oo (51
T T il e

o™ = i ey < = Clllwoz.

for some constant C' > 0. By Remark B.1 applied to u~!, we obtain a similar estimate. This finishes
the proof of Lemma 3.2. 0

Having the results above at our disposal, we are ready to proceed at showing the existence of local
holomorphic trivialisations in B for some r > 0.

Theorem 3.1. There exists eg > 0 such that if A€ WY2(Q'B* @ u(n)) satisfies
[Ally12(p1) < eo,

and the integrability condition FB{Z = 0. There exists > 0 and g,g~* € W?9(B} GL,(C)) for all
q < 2 such that
APt = —9g. 47! in B, (3.12)

and there exists a constant Cq > 0 such that
Hg - idHW‘Aq(B;%) < Cq ”AHWL?(BAI) and Hgil - iduwz,q(B;}) < Cq HAHWL?(B‘*) :

Moreover, A9 = h='0h where h =g g.
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Proof of Theorem 3.1. From Proposition 3.2, there exists a 1-form A e WH2(Q'CP? @ u(n)) satisfying
the integrability condition so that A%! = A%! + 9w in B%, where w € W22(Q%2CP? ® M,,(C)) with
estimate [lwlly2.2(cp2y < [|[Ally1.2(pa). This implies that

|4 < C [ Al (3.13)

WL2(CP?)

for some constant C' > 0.

Lemma 3.1 applied to the form A gives the existence of a gauge § € W24(CP?, GL,,(C)) for all ¢ < 2
so that _ .
05 =—-A%g in CP?

and for each g < 2 there exists Cy > 0 such that

15— idllyzaere) < Co | A  and
1 < e (3.14)
l97" = il ey < Ca HAHWLQ((CIP’Q) ’

On the unit ball B* we can rewrite (AO’I)Q as such:

In order to find a gauge ¢ for A%! that gives a holomorphical trivialisation, it remains to find a gauge
change u that cancels perturbation term —g—! (Yw) g

ou =g (Yw)g - u. (3.15)

We claim that the composition of gauges g - u satisfies the statement.

Since the Sobolev embedding W24 « [24/(2=49) holds for any ¢ < 2, it implies that §,§ ! € N LA.
q<oo

Because A and A satisfy the integrability condition on B*: Fg’Q = 0 and Fg’Q = 0, imply that
w € W22(Q%2B*) satisfies the following PDE:

1
§Aw = —[A%! Yw] — Yw A Yw.

Proposition B.2 applied to this PDE improves on the regularity of w inside B%. Indeed, we have a
much better regularity w € W, ’q(B4 M, (C)) for any g < 4. Sobolev embeddings yield:

dw € (| Wid(B*, M, = () Li.

q<4 g<oo

1

Putting together the regularity of Yw, § and g~! we can obtain the regularity of ! (Jw) g

TWw)ge (\Wed < () L. (3.16)

q<4 g<oo

Fix p > 3 and § > 0 small,. There exists ro € (0, 1) so that ||g~" (Jw < ¢. This (0, 1)-form

I

also solves .7 =01m . Hence, we apply Lemma 3.2 to g— w) g 1n y rescaling) to
1 IF( =0in B. H ly L 3.2 to gt (Yw) g in By (b li

Jw)g —
get the existence of r € (10/2,79) and u € W?P(B2 GL,(C)) that solves the d-equation above (3.15):

Oou=g"'(Ww)g-u in B2,
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and satisfies the estimates
Hu - Z.dHW?yp(B;%) <C Hg_l (19‘*)) QHWLZ(B;*) <C HA||W1,2(B4) (3~17)
and
Hu_l - idHWQ,p(Bf}) <C ”g_l (19"‘)) gHWL?(B;l) <C HA||W1,2(B4) ) (3-18)
for some constant C' > 0.
Define g := gu in B?. By construction, the required d-equation is solved:

0g = —A%lg in B} (3.19)

We show that g satisfies the required estimate: for any ¢ < 2 there exists C;, > 0 such that
Hg—id\|W2,q(B4 ) < C’||A||W1,2(B4). Let ¢ < 2 arbitrary. The triangle inequality applied on the
T’O T

norm W24 gives:
lg — Z'd”vvlq(B;%) < (g —id)(u — id)|’W2«q(B;1) + 19— Z.dHWQA(B;‘f) + [Ju — Z.dHWQA(B;‘f) :

Using the results of [23, Section 4.8.2, Theorem 1] and the regularity of g —id € [, W24(B}) and
u —id € W2P(B2), it follows that (§ — id)(u — id) € Ny<2 W?24(B}) with

1(g — id)(u — id) |l y2a(pry < Cllg — idlly2.a1 gy - w—idllyw2n gy

for some ¢ € (gq,2) and constant C' > 0. Hence, from (3.13), (3.14) and (3.17) it immediately follows
that there exists a constant C; > 0 such that:

lg — idHWZq(B;l) < HA”WL?(B‘i) ‘
By arguing in a completely analogous way, we obtain the fact that
-1 .
HQ - Zduwz,q(gg) < C'q HAHWL?(B‘*) :
It remains to show the existence of h. We apply g to A in B? to get:
g_ —1/7 —1 40,1 17018 _ -1 —15017%
AV =g (0g+0g)+g Avg—g A% g=g O0g—g AV g.

—T - ——T
Since (3.19) holds, then 957 = —g" A%!" . Hence, (g”) ! 0g" = —A01 | By plugging this into the
equation above, we get
_ 1 /=71 A _ _ _
A =g o9+ (3") 0979 =(3"9)'0G" 9).

We conclude the proof by defining h :=g’'g, and h € W24(B2,iu(n)) for any q < 2. O

Remark 3.2.

(i) Firstly, from the proof of the theorem above that the radius r > 0 can be chosen to be the same
under small perturbations of the 1-form A.

(ii) Secondly, all the above estimates on g hold also for g=!.

the ones of g as in the proof of Lemma 3.2.

They can be similarly computed using
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Having made the above remarks, we end the section by proving a stability result for holomorphic
trivialisations. Later on, this Corollary will be used to show the convergence of holomorphic structures.

Corollary 3.1. Letr < 1, A; € WH2(Q'B* @ u(n)) and g1 € W*4(B2,GL,(C)) satisfying Theorem
3.1. There exists § > 0 such that for all Ay € WH2(Q'B* @ u(n)) with Fgf = 0 satisfying

||A1 - A2||W1,2(B4) < 5a

there exists a radius o € (r/2,r) depending only on Ay and a gauge g2 € (| W>4(Bp,, GLn(C)) that
q<2
trivialises Ao in the sense: _
Ay = —0gy - 92_1 in Bfo

with the following estimates: for any q < 2 there exists Cy > 0 such that

gz = idllyzaze, ) < Co (il + zllzms)
and there exists C > 0 such that

lgr = g2ll o s ) < CllAT = Azllyrz(pay

for any p < 12.

Proof of Corollary 3.1. Choose § > 0 such that Ay is a small perturbation of A;. By Remark 3.2(i)
and Theorem 3.1 applied to the forms A; and A we obtain the existence of r > 0 and gauges
g1,92 € W24(B% GL,(C)) for any q < 2 so that

dg1 = —A?’l g1 and Ogy = —Ag’l - go in Bf

and there exists a constant C; > 0 such that

Hgl - idHWQ’q(Bﬁ) < Cq HAIHWLQ(B‘l) )
llg2 — id||W2,q(B$) <y ||A2||W1,2(B4)

< Cy (I41lyreqsy + 141 = Aallyragge)  and (3:20)
"951 - id”wlq(Bg) <y ||A2||W172(B4)

<Gy <||A1HWL2(B4) + (| AL - A2||W1,2(B4))

Since g1 and g2 holomorphically trivialise A; and A respectively, we can relate the transition gauge
9y 191 with the difference 1-form Ay — A; through the following -equation:

gy 'g1) = g5 ' (A — A1)" g2 - (95" 1) (3.21)

We first estimate g, 191 — id using the inequalities (3.20) and then use the equation to show that
9oy Lg1 —id is only bounded by the norm of Ay — A;. Fix ¢ < 2. The triangle inequality gives:

[ idHWZq@;L) < llgx " —id)(gr - id)HWZq(B;l)
+ Hggl - idHWQ,q(B;l) + ||91 - Z'dHI/V?,q(Bé)
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Hence, by the results of [23, Section 4.8.2, Theorem 1] applied to the product

(95" — id)(g1 — id)

and estimates (3.20), there exists a constant C; > 0 so that

192 91 = idl| o sy < Call Atllyrz + [ Azllyr.2)

(3.22)
< 2C, (A1l + || AL — Azl[jp1.2)-

for any ¢ < 2. We can use equation (3.21) in order to find an a-posteriori estimate of g, Lo —id
involving only the 1-form Ay — A;. Let s < 4. By the regularity of 0 in L® (see [11]) there exists a
holomorphic function h and a constant C's > 0 such that

gz g1 = hHLSS/(G*S)(B;%) < C; [[0(gy " gn)| L (BY)
< Cs ||lgy M (Ag — Ap)Phgo|

-1
Lsp/(p=5)(B4) 92 ngLP(B;%) ’
where s < p < oo arbitrary. Hence, it follows that there exists C > 0 depending on A; such that
-1 -1 .
|92 g1 — hHLsz/(ﬁfs)(B;;) < O Ay = Azl pay g2 g1 — ZdHLP(B;%) + Cl[A1r = Asllyrz (s -

There exists ¢ < 2 such that W?2? < LP. Since g;lgl — id is bounded in W29 (3.22), then it is also
bounded in LP. Hence,

ng_lgl - hHLGS/(Gfs)(Bé) <C ”Al - A2HW1v2(B4) :
Since s < 4, there exists a constant C' > 0 independent of p such that
—1
ng g1 — hHLp(Bg) <C ”Al - A2HW172(B4) )

for any p < 12. Having this inequality at our disposal, we can turn to estimate g1 — go - h. Let p < 12,
then:

lgr = g2 hll o gy = [|(92 = id)(h = 93" 91) + = 97" 02| 1o ) -

For v € (p,12), we get:

g1 —g2- hHLP(B;‘f) <llg2 — Z'd”va/(vfp)(B;}) |’95191 - h| Lv(BY) + “95191 - hHLp(Bg) .

Thus, there exists a constant C,, > 0 depending on v,p and A; such that
191 = 92 Ml Lo sy < Cop A1 = Azllypr2(pay -
Moreover, go - h solves the equation:
(g2 h) = Ay (g2 h).

in a distributional sense. It remains to show that the gy - h is bounded in W29 by the norms of A;
and Ag in a possible slightly smaller ball. Let ro € (r/2,7), then there exists a constant C' > 0 such
that

lg2 - h — idHWIJ(B;lO) <C (Hgg? ' hHL2(B;g) +llg2-h— Z"‘l|’L2(l3ﬁ)> :

Consequently, by using the J-equation satisfied by gs - h, it follows that:
lgz - b = idllwr2ps ) < C <HA2HL4(B;4) 192 - Bl pacpay + lg2 - b — g1ll 2 (pay + llid — ngLQ(B;‘f)) :

25



Having shown that go - h € LP for all p < 12, we obtain
llga - h — idHWW(Bﬁo) <C (HA1||W172(B4) + HA2||W1,2(B4)> .

Hence, given that go - h € W2 and go - h — id is bounded by A; and A, we get from Lemma B.1 and
Remark B.1(ii) the estimate: for any ¢ < 2 there exists a constant C; > 0 such that:

lgz - b = idllyazs ) < Co (1A1lwragas + 1 Azllyras)) -

By redefining g2 as gs - h, we have proven our stability result. O

4 Proof of Theorem 1.1

We pick geodesic balls B2(z;) covering X? on which the connection can be trivialised: V ~ d + 4;
and

14illwr2 sy < 20(X75w),

where £9(X?2,w) is given by Theorem 3.1. Because X? is a compact manifold, there are finitely many
such balls covering X2. By Theorem 3.1 there exists 7' € (0,7), o; € W?P(B%(z;), GL,(C)) and
hi =51 a; € WHP(BY, Sym(n)) for any p < 2 so that A7 = h; '0h;. Hence

V7 =~ d + h; 'Ok, in BY (z;). (4.1)

It remains to show that V defines a connection on a holomorphic vector bundle structure £. In order
to achieve this, it is enough to find holomorphic transition functions. On the initial bundle E, there
exists gauge transition functions g;; € W2(Bg(z;) N B (x;),U(n)) such that

A% = A

) J

Define the transition functions
0ij = 07 ' 9ij0;- (4.2)

We show that these functions are holomorphic and consequently since they define a cocycle, they
define a holomorphic vector bundle structure £ over the Kihler manifold X?:

gaij = 50’2‘_1 - 9ij05 + Ui—lggij <o+ ai_lgijgo'j
=0, AP gijoj + 0y 1 Bgijo; — o7 gAY o
= Ui_lgijgiglAngijUj + J{lggijaj — Ul-_lgijA?’laj
=07 9 (A?J n giglggio oj+0; ' 0gijo; — O',L-_lgijA?’la'j.

This equation gives:
801']' =0

and shows that the transition functions are holomorphic. Thus, there exists a holomorphic vector
bundle structure & which is compatible with V since (V74)?% = V7 in local coordinates. From the
local representation (4.1) we finally obtain:

Vo’l = 55.
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5 Density under high energy

Until now we have looked at results under the assumption of low W2 connection norm. In this section
we lose this assumption. As before we assume that we work on the flat unit ball B*. In section 5.4
we show how to generalise our results on the closed Kihler surface X2. We start by investigating the
case when A € WH2(Q!B* ® u(n)) and [ Ally1.2(pay < oo. Furthermore, through-out the section we

assume the integrability condition F2’2 = 0 is satisfied.

Difficulty:

If we want to proceed as in the case of low W2 connection norm, we start by smoothing A inside
B* by simple convolution and thus, obtain a sequence of smooth forms A converging to A in W12
as k — oo. The integrability condition (1.1) is, however, lost for Ay. Furthermore, since we want

to preserve the condition for each k, the argument reduces to finding a sequence of perturbations
wy € C®(2%2B* @ M,,(C)) uniformly bounded in W2 that solve

90wy, =~ |9'wp, AYY| = T AD'wh — FYZin B
wr =0 on OB*

Since Az’l is not small in W12 norm, we cannot hope to apply a fixed point argument even if Fgf is
very small in L? norm (it converges to Fg,z = 0). To make the situation worse, the linear operator
20" - + {5*~, Ag’l} might have non-trivial kernel.

Hence, in this section we have developed a method that deals with the case of A; having high W12
norm. We present it below:

Strategy:

We recall that in Section 2, Proposition 3.1 and Lemma 3.2, we were able to find a perturbation 9w
to the form A in order to obtain the integrability condition (1.1) over CP2. This method, however,
heavily used that the operator L ; (3.2) is invertible under the smallness condition of the W2 norm
of A. Following this blueprint, our idea is to find a unitary gauge change g of A such that the operator

99" - + {5*~, (Ao’l)g} is invertible.

Firstly, we will need to acquaint ourselves with this idea. We found it natural to start by considering
the case of linear perturbations of A and show that we can always find a smooth perturbation U such

that the operator 99 - + [5*-, AL 4 ﬁgU} acting on (0, 2) forms has a trivial kernel for some § > 0.

Having this idea, we search for a unitary gauge change g that forces the operator 99" -+ [5*-, (A071)g }
to have trivial kernel. Moreover, we show that for k£ large enough, the same gauge g gives that the
operators 90" - + [5*~, (A2’1>g} are also invertible. This enables us to find a perturbation wj that
solves

%*wk + [g*wf, (AZ’l)g} —i—g*wk /\g*wk = _Fj%;
with wy = 0 on OB*, and satisfies the estimate:

H 0,2
A

( A2,1)g
for some constant C' > 0. Moreover, as k — 0o, we show that the W22 norm of wy, is uniformly
bounded. Using this estimate, together with the convergence of A; to A in W2 and Fg’z =0, we

-1
lwlly22(pey < C‘HT .
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obtain the strong convergence of the sequence wy, to 0.

Hence, we prove the first theorem of this section by also taking into account that g is a unitary
gauge transformation, and we can thus, use the invariance of the L? norm under the action of g:

0,2 10,2 |l 20,2
[ e el o

2
The local theorem on B? is stated as follows:

Theorem 5.1. Let A € WH2(Q'B* @ u(n)), with Fg’Q = 0. There exists a smooth sequence of forms
A € CX(QUB @ u(n)), Fy? =0 and Ay — A in WH2(BY).

Moreover, using the local theorem, we will show that it implies the global existence of an approximating
smooth sequence. In particular, we obtain:

Theorem 5.2. Let V a W2 unitary connection over X?, satisfying the integrability condition
02 _
Fg© = 0.
Then there exists a sequence of smooth unitary connections Vi, with F%E = 0 such that

dista(Vi, V) = 0.

5.1 Linear perturbation

We will be looking at finding a small linear perturbation that forces the operator
LAo,l = %* . —I—[Ao’l,g*-]

to have trivial kernel, assuming a 0 boundary condition. Let U € C*(B%, M,(C)). We define the
following operators

Lo : WE*(Q92B* @ M, (C)) — L*(Q°2?B* © M,,(C))

w00 w + A% 97w

Loy : Wi (Q92BY @ M,(C)) — L*(Q%2B* ® M,(C))
w +— Low + SByw

where By = [0U,d"-].

Proposition 5.1. Ly and Lg are Fredholm operators of index zero from the space V[/IZJ’2(QO’2B4 ®
M, (C)) to L*(B*, M,,(C)).

Proof of Proposition 5.1. It is sufficient to prove this statement for Ly. Lg is Fredholm. Indeed, Lg is

elliptic on the domain B* and the domain Wg’2 is the space of (0,2) forms vanishing on 9B* . Thus,
by [31] for some C' > 0 the estimate

lwllwaa < C (120wl paan + Il 2gan)

holds for all w € 1/1/127’2(907234 ® M, (C)). From this we can deduce that Lg is Fredholm. Moreover,
99" = %Adzﬁ A dZg is an elliptic operator of Fredholm index zero mapping VV%’Q(QO’QB4 ® M,(C)) to
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L2(Q2%2B* @ M, (C)).

Let Ay be a smooth sequence of 1-forms converging strongly in W12 to A. Then the bracket operator

w [Ag’l, 3wl

is compact W22(Q%2(B%)) to L?>(Q%2(B*)). Indeed, Ay is bounded in L and hence:

*
)

H 45", 12(B4)

W]H < C || Akl oo (pay

é*w\

L2(B%)

for some constant C' > 0, where we have used that W2 is compactly embedded in L? in 4-dimensions,

by Rellich-Kondrachov [2]. By the compact embeddedness, it follows that the operators w [Ag’l L0 W

are compact W22 to L? for all k. Hence, using the compactness of these operators and the fact that
90" is Fredholm, then by [24, Theorem 4.4.2, p.185]) we have

index(99" - —i—[AZ’l,g*‘]) = index(9d") = 0.
Moreover, for a fixed € > 0 given by [24, Theorem 4.4.2, p.185], then there exists kg > 0 such that for
all k > kg, we have that ‘H[Ag’l — onl,g*]m < ¢ since Aj, converges strongly to A in W12, Thus, by

applying [24, Theorem 4.4.2, p.185] to the perturbation operator [Ag’1 — A0L 5*] and to Lo, we obtain
that
index(Lg) = index (Lo + [AZ’l — A% 9") = index (D" - _|_[A2:1’5*.]) =0

This proves the statement. O

We will be working with operators of the form Ly and Lgy, where B € R is small and U €
W22(B* M,(C)). By the Proposition above the kernel of Lg is finite dimensional. On the L? or-
thogonal space of KerLy denoted by (K erLo)J-, there exists a compact operator S = L U from L?
. 2,2
into W5~ such that

S : RanLo — (KerLg)™ .

By classical spectral theory, S has discrete spectrum with a possible accumulation point at 0 (see for
example [22, Theorem VI.15]). This means that the spectrum of S'is {A1, A2, ..., A\, ...} where \,, — 0.

Thus, on (KerLg)®’, the spectrum of Lyg is

o
W wEE

where A\, — 0. If we assume KerLg # {0}, we have that 0 has to be in the spectrum as well and then

o L 1
S VWi it

is the spectrum of the operator Lg. In addition, Lg ¢ has discrete spectrum by arguing as before with
A%l 4+ 80U instead of A%,

The following proposition states. It that the number of eigenvalues near 0 of Lg cannot exceed the
multiplicity of the 0 eigenvalue of Ly for 5 small enough. This was proven in [3, Theorem 1]. We
denote by m be the multiplicity of 0 for the operator L.

Proposition 5.2. There exists 5y > 0 so that for each 0 < 5 < By, Lgy has at most m finitely many
not necessarily distinct eigenvalues )\8)(5), e )\gm) (B) near 0 that converge to 0 as  — 0.
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Proof of Proposition 5.2. Denote gy := ‘)\%‘ .and let e < g9. Since the ball B.(0) = {|\| < e} CC

is compact, then Lgy has finitely many not necessarily distinct mg eigenvalues in B¢ (0): )\g}) B8),- -,
)\gjmﬁ )(B). The statement follows by [3, Theorem 1]. O

Define the following operator:

1
Pyyi=——— Loy — A" td\
B 5] m:s( 8 )

where ¢ is chosen as in Proposition 5.2. Since we have isolated branched points of the spectrum, we

can rewrite this as
—A)"ta.
omi Z j{)\ A (8)|=e Lo )

1

for some 7 small enough. Each term of this sum is the projection onto the generalised eigenspace of
Lg iy corresponding to the eigenvalue )\(UZ) (B) (see [21, Chapter XII]). By Proposition 5.2 on the circle
|A] = &, we have that A\ € p(Lg ). Thus, the resolvent Ry = (Lgy — A)~! is analytic on the ¢ circle.
It follows that Pgy is also analytic in terms of § for 3 small enough. Similarly, we can define the
operator Py associated to L.

We denote the generalised eigenspace (as defined in [24, Chapter 5]) corresponding to 0 for Ly by

Go=J {v e W22(Q%2B* M, (C))|LEv = 0}
k=1

and the range of Pg i by

Gow = U D {v e W335 & M, (©)I(Law — A (30 — 0}
k=1 1i=1

respectively. The following proposition will show that these two spaces are isomorphic for small values

of 3.
Proposition 5.3. There exists By > 0 so that Pgy : Go — Gg,u is an isomorphism for all 0 < 3 < By.

Proof of Proposition 5.3. From [21, Theorem XIL5], Pgy and Py define two surjective projection
operators:
Py : WE2(Q%2B* ® M, (C)) = Gay

and
Py : WE*(Q2%2B* @ M,,(C)) — Go.

Claim 1. There exists Sy > 0 so that for all 3 < By, Pgy is surjective as an operator from Gg to

Ga,u.
1
Py —P= - i A (Lgu — )‘)71 — (Lo — )‘)71 dX (5.1)

1 )

= - — L — i L _ B Lo — —1\z
= |A|e< 0 § B'(Lo (Bu(Lo — M) ))
(Lo—)\) dA

= 0(p)
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Thus, there exists By such that for all 5 < 5y we have the following bound for the norm of the operator

P(B3) — P(0): ,
1P, = Pollyyz2 < 6

Since Lg — A is a continuous operator from WI%’2 to L? for any \, B € R, we have that
(Lo —A) "Gy

is closed, since RanPy = Gy is closed (see [21, Theorem XIL5]). This implies that Pg ;G is closed as
Pg 1y is a composition of two continuous operators.

Assume that PgyGo # Ggu. Since Pg Gy is closed in Ggp, we can apply Riesz Lemma (see for
example [24, Lemma 1.2.13]). Then there exists u € Gz where ||lul|;;22 =1 and
D

inf - 1.
e U Ve = 2

Pg 1y is a projection operator and u € Gg, then u is its own projection - u = Pgyu. Moreover, the
norm distance between v and Pyu satisfies the following inequality

luv = Poully22 = [|Pguu — Poully2e < [[Psr = Polly22 [[uly2
=1Psv — Pollyzz < 55-

The last inequality holds, because 3 is chosen to be small. From the above estimate, we can easily
estimate the norm of Pyu:

1
|]P0u||W12),2 < ||uHW;2 + |lu— PouHles,z <1+ 3.
By further computing, we get
| Ps,uPou — POUHW;»2 = ||PsuPou— POPOUHW%Q
P2=P,
< _
= HPﬁ,U POHw%2 HPOUHVV%2
1 1
< @ + E-

Thus,
1

Hu — Pﬁ’UPOUHWZQ_)’Q < ||P/8’UPQU — PouHWg,z + Hu — POUHWI%Q < %6 + 162

Since Pg y Pyu € Pg yGo, we get a contradiction with Ii)nf G lu—v|y22 > % Hence, P3Gy = Gg v
velrg ubo
and we have proven the claim that Pgy is surjective from Go to Gg .

Claim 2. Py is injective as an operator from G to Gg .

We have shown in (5.1) that

Psy— Py = L e (Z B'(Lo— N)"H(Bu(Lo — A)_l)i> dA.

21 4
=1

31



Define Egy = Pgy — Py. Then Eg s is a well-defined bounded operator defined on the space of W22
(0,2) forms. Moreover, there exists By > 0 such that for all 0 < 5 < Sy we have

IEsull < 1.

Let w € Gg such that Pgyw = 0. Without loss of generality we can assume |lw||22 = 1. Then we
obtain the following:

0="Pow) = —35 5§|>\\:€(LB,U —A)lwdA
_%mjﬁ,\\:e ((Lo — )\)—1 _ iﬁi([jo — )‘)_I(BU(LO _ )\)—1)2') wd\

= w+ E@Uw.

Hence
1= [wlly2e = [[Egvwlly22 < |1Esullllwlly22 = 1Esull < 1.

We have obtained a contradiction. Hence, for all 8 < By we have that Pg is injective from G to Gg 7.

From the two claims above, there exists Sy > 0 so that
PBvU : Go — G@U

is an isomorphism for all 8 < Sp. O

The last ingredient we need to prove, in order to obtain the existence of a perturbation that makes
KerLgy trivial, is the next statement. It gives us the perturbation U which will satisfy the neces-
sary condition to make the kernel trivial. This next Proposition together with the existence of the
isomorphism Pg;; will be key to proving the result.

Proposition 5.4. There exists a smooth Hermitian function U € C°°(B*,u(n)) such that By is
ingjective on KerLy.

Proof of Proposition 5.4. Since KerLg is finite dimensional, let {e1,...,en} be an orthonormal basis
of it.

Let v € KerLg, v # 0. We show that for each such v, we can find U, such that By, v # 0. Assume
by contradiction that Byv = 0 for all smooth functions U on B%. Define the linear operator H(w) :=

e 702
([w,c‘) v]) : O (Bt ® M, (C)) — C*®°(Q2?B* ® M,(C)) which satisfies the fact that H(w(z)) =

H(w)(z), where w(z) means that each component of w is applied to z. Moreover, we have that
0 = Byv = [0U,d v] = H(dU)

for all smooth functions U on B*. Applying Proposition A.1 to H, we obtain that H = 0. By density
of smooth (0, 1)-forms into W2 (0, 1)-forms, it follows in particular that

H(AM) = (A% 8] = 0.
Putting this together with the fact that v € KerLg, we obtain:

0= Lov = 99" v.
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Since v = 0 on B* and 89 v = 0, then v = 0 in B, This is a contradiction because vlly22 = 1.
D
Hence, there exists U, € C*(B*, M,,(C)) so that By,v # 0.

Next, we show that such a U, can be chosen to be Hermitian. Indeed since U, € M, (C), there exists
a decomposition in terms of its Hermitian and anti-Hermitian part:

U, =U; + Uy,

where Uy € C°(B* u(n)) and Uy € C*®(B*,iu(n)). Assume that By,v = 0, otherwise we redefine
U, := U;y. Under this assumption, by linearity it then necessarily follows that

By,v # 0.
If this condition holds, then by multiplying with i,
1By,v = Biy,v # 0.
Moreover, iUl € C*°(B*,u(n)) and in this case we redefine U, := iU,. Hence, there exists
U, € C°°(B* u(n)) so that By,v # 0, for any v € KerLg,v # 0. (5.2)

Claim. There exists U smooth Hermitian function such that By is injective on KerLy.

We formulate the following inductive hypothesis:

there exists U* € C*°(B*,u(n)) supported in V¥ C B* such that
Z(k) =

{Byre; };?:1 is linearly independent,

where k < N. We show by induction that Z(/N) holds from which it follows that By~ is injective on
KerLy.

By (5.2), there exists U; such that By,e; # 0. Without loss of generality, by multiplying with a
compactly supported function p1, we can localise Uy in V; € B*. Hence Z(1) holds. Assume that for
k < N, Z(k) holds. We prove that Z(k + 1) holds as well.

If {BUkej};‘fill is linearly independent, then set U**! = U¥. Otherwise there exists A1, ..., Ag41 not
all 0 such that Z?ill AiByre; = 0. Notice that A\gy1 # 0.

By (5.2) there exists U1 such that By, Zf’:ll Aie; # 0. We can choose a neighbourhood Vi1 and
Vk C VF disjoint from Vi,q such that {Byre; };‘?:1 is linearly independent in V* and

k+1
Bpk+1Uk+1 Z /\iei 7é 0 in Vk+1

=1

In particular, we can define functions pi4; compactly supported in Vi1, pr compactly supported in
Vk. Define U]CJrl = pkUk + pk+1Uk+1.

It remains to show that {Byr+1e; }fill is linearly independent. Assume there exists 1, ..., Bx+1 such
that
k+1 k+1
ZBJBPkUk+pk+1Uk+1€j = ZﬁjBUkJrlej = 0. (5.3)
Jj=1 Jj=1
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In the neighbourhood V¥, we have that

k+1
> " BiByre; =0.
j=1
Then (B1,...,Bk+1) = c(A1, ..., Agr1) for some constant c. Hence, in Vi1, we have that
k+1

C Z >\jBU;H1€j = 0.
J=1

By the choice of U1, we obtain that ¢ = 0. Hence 1 = ... = fg+1 = 0. To conclude, define
VE+l = VE U Vi, 1. This proves the induction.

Hence, we have obtained U = UY such that {Bye; };V:1 are linearly independent, where {e; };VZI is the
orthonormal basis of KerLy we picked initially. It follows that By is injective on KerLy.

We are now ready to prove the result of this section.

Lemma 5.1. There exists a small constant 3 € [0,1] and U € C*(B*, M,,(C)) such that
KerLgy = {0}

where

Lay : W2 (Q%2B* @ M,(C)) — L*(Q*2B* ® M,(C)).
Hence, Lgy is an invertible operator.

Proof of Lemma 5.1. The case when § = 0 and KerLy = {0} is trivial. We focus on the case when
KerLy # {0}.

We assume the worst case scenario dimGo = co. By Proposition 5.4, there exists U € C°°(B*, u(n))
so that By is injective on KerLg. Furthermore it follows from Proposition 5.3 that there exists an
isomorphism Pg 7 between G and G 7 for all 3 < 3y for some 5y > 0. We want to show the existence
of 8 so that KerLgy = {0}.

Assume that for all 5 < fy we have that KerLgy # {0}. We aim at showing by contradiction that
for some 8 < By we will get that KerLgy = {0}. Thus, let the space

Sgu = PBT}](KGTL@U).

Since KerLgy is finite dimensional and its dimension is bounded by the dimension of KerLy by
Proposition 5.2. Because Pgr is an isomorphism, then Sz is a finite dimensional space in G of
dimension at most dimKerLy. Moreover, KerLy M Sgy is also finite dimensional and there exists
an orthonormal basis of this space. We can complete it, to obtain an orthonormal basis {ef U é\le
on Sgy, where N = dimKerLgy = dimSgy. Fix 1 < j < N and € > 0 small enough such that

A € p(Lyp) for all [A] = e. We compute the following:

1
0= LoyPape?’ = — L Loy — NPV an
suPsue; 57 LBU ]{ME( suU = A€
1 U
21 A |)\|:e J
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1
— gL+ 8B0) (Lo 5By~ X)) da
™ [A|=€
1
- 2W4LO+BBU)fQ (Lo — N E:ﬁZLO* (B (Lo - ) 7)) ax
1 18U
= T omi Otf;kf‘Lo Vel dA
1 N N N
+B5 Lo > B Lo — A)TH(Bu (Lo — A) eV dA
T |/\|:e im1
1
—B—DB Lo — A"tV an
O Uﬁ_e( 0= A)
+75 U}[ B(Lo— A)"Y(Bu (Lo — A)~H)ie?Y dx
2mi /\_G; ( ) J
1
= LoelV - By (Byef’U — Ly 72'_ (Lo — N 'By(Lo — X))V d>\> (5.4)
+0(8%)
The last equality holds because ef U e G and we have
1
BU _ “1.8U ;5\ _ AU
Poe;” = _2m'7|{>\ 6(Lo —A) e; dA=e;".

We further discuss two cases:

Case 1. ef’U ¢ KerLg

U
Because e?

Fredholm, we have

is an element of the orthonormal basis, then e]@ U e (KerLgy)*. Moreover, since Lg is

1= el yge = € flz0ct

L 00|77 20 = 005),

2,2
D
where C > 0 is a constant independent of 5. Since 8 < By is small, we get a contradiction.

Case 2. ef’U € KerlLyg

Because the equation (5.4) vanishes for any 8 < 5y and KerLgy # {0} it follows that
Byel = LO% | (Lo — \) "' Bu(Lo — M)~ 'e) ¥ da. (5.5)
A|=e

Using the invertibility of the operator Ly — A, where A € p(Lg) then (Lo — A\)"'(Lg — \) = id. Thus,
by expanding we obtain that
(Lo —\) 'Ly —id = (Lo — \) "'\

(Lo —A)~1&e — %)ef’U = (Lo — A)*le]@’U. Since ef’U € KerLy, then
_ 1
(Lo — \) 18U — —Xef’U.
We obtain the following:
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1 U
(55) = —Lg AJL0 — ) 1XBUef’ d\
id
_ _7{ | <(L0 N+ &) Byel ¥ d (5.6)
Al=e

= —2rmiByeV — f (Lo — N)~'Bye dx
[A|=¢

Putting the above equalities 5.5 and 5.6 together, we have that
(1+2mi)Bye = — A:E(LO — N 'ByelV dx = 2riRyBye)?
We apply Py on both sides of the equation to get (1+ 2m’)POBUef’U = 27riP§BUef’U. Moreover, since
Py is a projection, and thus satisfies PO2 = Py, our computations then give us the following equality
(1+ 27Ti)PoBU65’U = QWiPOBUef’U.
This can be true only if POBUef U=, Together with
(1+2mi)Bye) ¥ = 2miPyByel",
it implies that BUe? U= 0. This is a contradiction by the choice of our initial U.

We conclude that for some 3 < By we have KerLgy = {0}. O

5.2 Gauge perturbation

After having acquainted ourselves with the linear perturbation in the section before, we are now in a
position to generalise the previous results. First consider operators of the form

Tiaonyae) = 90" - +[(A%)E) 5"

where
T poryasr) : W52 (Q? B @ M, (C)) — L*(Q%2B* ® M,(C))

and g(BU) := exp(BU) € C>(B* U(n)). For the following proofs we will denote T 40,1 and T y0,19060)
by Ty and T} ;7 respectively. We can remark the fact that Ty = Lg.

Similar to the linear case, we can deduce that T has a discrete spectrum for any U and 3, with
B < 1 small (so that exp is defined). Moreover, the family of operators have discrete spectrum with
no accumulation points and we can express them as

*

Tsy = 00 C4[(A01)9(BY) F")

= %* -+ Z [ﬁnAmg*']
n=0
= 00 AT+ Y A

n=1

where A; = A%! and A,, are (0,1)-forms. This shows that the resolvent is an analytic function of
B. Thus, the operator is analytic in the sense of Kato (see [21]). In a completely analogous way to
Proposition 5.2 we have the existence of m not necessarily distinct eigenvalues corresponding to T s,
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namely )\8)(5), cey )\gn)(ﬁ). There exists € > 0 so that |)\g)(6)] <egforall f>0and 1 <i<m. In
this section we denote Pg; by

1
Py =——— (Tsr — \)"tdx
g 271 |>\|:5 A

and it is an analytic function of 8 on || = e. Similarly, we define Py for the operator Tj.

We denote the generalised eigenspace corresponding to 0 for Ty by

Go = G {v e W22(Q%2B* @ M, (C))|Tkv = 0}

k=1
and the range of Pgyr by
Gow = J P {v e WH Q2B © M (€))|(Tpu = A (8)"v = 0
k=1 i=1

respectively.

Since g(BU) = exp(BU), we then have the existence of an operator Bg ;s so that
8B = (AW — 0 5

and Bgy is analytic in 8 (in particular it does not have any poles). Since U is a smooth Hermitian
mapping we can obtain

By = [0U +[A",U),0"] + O(B),
by expanding Bgr in 3. Define
By = [0U + [A",U],0"]

as a map from W?)’2(QO’QB4 ® M,(C)) to L?(2%2B* ® M,,(C)). Thus, by again using the smoothness
of U, we can expand T3 7 in U and obtain

Tsu =To+ BBsy = To + BBoy + O(B?).

In a completely analogous way we also have that Pg ;7 is an isomorphism between Gy and Gz 7. Hence,
we can assume this and prove the reciprocal version of Lemma 5.1. Firstly, we prove an analogue of
Proposition 5.4. The proof will follow very similar steps as before.

Proposition 5.5. There ezists a smooth Hermitian function U € C*(B* u(n)) such that Byy is
ingective on KerTy.

Remark 5.1. [t is important to remark that this proof will give us a function U that belongs to the Lie
algebraw(n). This, in turn, will yield a perturbation by a gauge that is unitary, since g(SU) = exp(BU).
It is crucial to find a unitary gauge, because it will preserve our Hermitian vector bundle structure
later on.

Proof of Proposition 5.5. Since KerTy is finite dimensional, let {ej,...,ex} be an orthonormal basis
of it.
Let v € KerTy, v # 0. We show that for each such v, we can find U, such that By, v # 0. Assume

by contradiction that By v = 0 for all smooth functions U on B*. Define the linear operators

0,

Ho(w) = ([[4%,].5"0)) L 0% (B M, (C)) - C® (2B ® M, (C))

37



and
07

. 2
Hy(w) == ([w, ) v]) L O (B @ M,,(C)) —» C®(Q*B* ® M,(C))
which satisfies the fact that Hy(w(z)) = Ho(w)(z). Moreover, we have that

0= Boyv = [0U + [A%!, U], 8" v] = Hy(dU) + Ho(U)

for all smooth functions U on B*. Applying Proposition A.2 to H; and Hy, we obtain that Hiod =0
and Hy = 0. In particular, we have obtained that for all U smooth functions on B%,

Hi(dU) = [0U, 8 v] = 0.

This is a contradiction by Proposition 5.1. Hence, there exists U, € C*°(B*, M,,(C)) so that By y,v #
0.

Next, we show that such a U, can be chosen to be Hermitian. Indeed since U, € M, (C), there exists
a decomposition in terms of its Hermitian and anti-Hermitian part:

U’U = U1+U27

where U; € C*°(B* u(n)) and Uz € C°°(B*,iu(n)). Assume that By ,v = 0, otherwise we redefine
U, := U;j. Under this assumption, by linearity it then necessarily follows that

Bo,y,v # 0.
If this condition holds, then by multiplying with i,
1Bo,u,v = By iv,v # 0.
Moreover, iUy € C*°(B*,u(n)) and in this case we redefine U, := iU,. Hence, there exists
U, € C*(B*,u(n)) so that By y,v # 0, for any v € KerTp,v # 0. (5.7)
Claim. There exists U smooth Hermitian function such that By is injective on KerTy.

We formulate the following inductive hypothesis:

there exists U* € C*°(B*,u(n)) supported in V¥ C B* such that
Z(k) =

{By yrej }g’?:l is linearly independent,

where £ < N. We show by induction that Z(/N) holds from which it follows that By ;v is injective on
KerTy.

By (5.7), there exists U; such that By ,e; # 0. Without loss of generality, by multiplying with a
compactly supported p1, we can localise U; in a neighbourhood V3 C B%. Hence Z(1) holds. Assume
that for £ < N, Z(k) holds. We prove that Z(k + 1) holds as well.

If {B()’Ukej}‘];i% is linearly independent, then set U*T! = UF. Otherwise there exists Ay, ..., Apy1 not
all 0 such that Zfill AiBy yre; = 0. Notice that Ary1 # 0.
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By (5.7) there exists Uy, such that By, ., Zfill Aie; # 0. We can choose a neighbourhood Vi
and V¥ C V* disjoint from V., such that {Boyrej }§:1 is linearly independent in V* and

k+1

Bo,py1Uiia Z Aie; # 0 in Vi
=1

In particular, we can define functions piy1 compactly supported in Vi1, pr compactly supported in
Vk. Define UFtH! .= pkUk + pr+1Ug+y1-

It remains to show that {BokaH €j }fill is linearly independent. Assume there exists 1, ..., Bxr1 such
that
k+1 k+1
ZﬁjBO»PkUk+Pk+lUk+lej - ZBjBO,Uk“ej =0. (5:8)
j=1 j=1

In the neighbourhood V¥, we have that

k+1

> BiByyre; =0.

=1
Then (B1,...,Bk+1) = c¢(A1, ..., Ak41) for some constant c. Hence, in Vi1, we have that

k+1
CZ )\jB[)’Uk_Hej =0.
j=1

By the choice of Uyy1, we obtain that ¢ = 0. Hence 51 = ... = fg+1 = 0. To conclude, define
VkE+L = VE U Vi, 1. This proves the induction.

Hence, we have obtained U = U" such that {BU,U€]‘}§-V: , are linearly independent, where e; the
orthonormal basis of KerTp we have picked initially. It follows that By ¢ is injective on KerTp. O

The following Lemma proves our perturbation result.

Lemma 5.2. There exists a small constant 3 € [0,1] and U € C*(B*,u(n)) such that
KerTgy = {0}

where
Tar - WHH(QM2BY @ M, (C)) — L*(Q%2B* @ M, (C)).

Hence, Ty is an invertible operator.

Proof of Lemma 5.2. We argue as before:

The case when 8 = 0 and KerTy = {0} is trivial. We focus on the case when KerTy # {0}.

We assume the worst case scenario dimGo = oo. By Proposition 5.5, there exists U € C°°(B*,u(n))
so that By is injective on KerTy. To further set up our proof, it follows from Proposition 5.3 that

there exists an isomorphism Pgy between Go and Gg for all < By for some 3y > 0. We want to
show the existence of 3 so that KerTgy = {0}.
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Assume that for all 5 < By we have that KerTgy # {0}. We aim at showing by contradiction that
for some 3 < By we will get that KerTp = {0}. Thus, let the space

Spu = Pﬂillj(KerLB’U).

Since KerTp is finite dimensional, its dimension is bounded by the dimension of KerTy by Propo-
sition 5.2. Because Pg is an isomorphism, then Sg; is a finite dimensional space in Gy of size at

most dimKerTy. Moreover, Kerly N Sgr is also finite dimensional and there exists an orthonormal

basis of this space. We can complete it, to obtain an orthonormal basis {ef U ;V: 1 on Sgr, where

N = dimKerTgy = dimSgy. Fix 1 < j < N and € > 0 small enough such that A € p(Tj) for all
|A| = . We compute the following:
We compute the following:

1
0=TspPspet? = ——T 7§ Tsr — APV ax
U PsUe; 50g LAV IA\:e( BU—A) e
1 ,
= oo -(To + BB3s,v) 7{ (To+ BB,y — A) 1657[] dA
™ [A|=¢
1
=T Ty — NtV dr
2T 07|§>\:€( 0 ) ¥

1 _ _
— %5 (BM — T ﬁl (To — N) "' Bay(To — \) lef’U dA) + 0(6?)

1 _ _
—%#”—2m5<&w—ﬂyﬁ_C%—A>%MM%—%)%?HM>+OW% (5.9)

B,

# Ve Gy and we have

The last equality holds because e

1
P0€@7U = ——

J 271

—1 BU U
7{\':6(% — NtV an =Y.

By further expanding Bg ¢y in  we can rewrite the vanishing equation (5.9) as such:

1
0= Toe" - 5 (B(LU —To ?{AI (To — X) ' Bou (T — N)~te? dA) +0(8%). (5.10)

We discuss two cases:

Case 1. ef’U ¢ KerTp

@’U @’U c

j (KerTy)*. Moreover, since Tj is

Because €.~ is an element of the orthonormal basis, then e
Fredholm, we have

1= ey < e
w

22 —
D

12 S0B) 7] ae =00,

where C > 0 is a constant independent of 5. Since 5 < By is small, we get a contradiction.
Case 2. ef’U € Kerly

Because the equation (5.10) holds for any 5 < By and KerTy # {0} we then have that

Bo,Uef’U = Toj{ (To — A) ' Bo (Ty — A)_lef’U dA.
[A|=€
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By computing in an analogous way as in Lemma 5.1 we get that the equation above implies that

BO,Uef U — 0. This is a contradiction with our initial choice of U. Thus, we found 8 and U so that
KerTgy = {0}.

O]

5.3 Local density result in the high energy case

We start this section by first proving the existence of trivial kernels for approximating smooth connec-
tion 1-forms. Secondly, we prove the existence of perturbations that give us the integrability condition
(1.1) in B*. Finally, we will end this section with proving the main result - that we can always
approximate connection forms by smooth ones in B%, in such a way that we satisfy the integrability
condition (1.1) throughout

Proposition 5.6. Let A € WY2(Q'B* ® u(n)) and a smooth sequence of forms Ap — A in WhH2,
Then there exists a gauge g € C=(B* U(n)) and ko € N such that

()
KerTqo1y9 = {0} and KGT‘T(Az,l)Q = {0}
for all k > kq. In particular, the operators T(Ao,1)g and T q0.1ys are all invertible.
k
(ii)
-1

(a2

Proof of Proposition 5.6. (i) The existence of a unitary smooth gauge g is given by Lemma 5.2. We
have that

< 2|1y

sup
k>ko

KeTT(A0,1)g = {0}
It remains to prove that there exists kg € N so that K erT( A0y = {0} for all k& > ko.
k
In order to prove this statement, we assume by contradiction that K erT( A0S # {0} and let 0 # wy, €
KGTT(A%I)Q. We can also assume without loss of generality that Hwk”wsz’(m) = 1. Since KerT(go1ys
is trivial and T{0.1ys is Fredholm, we then get (see [24, Lemma 4.3.9]):
L= llwrllyze gy < Cagl|Teaosyow 2 gy

for some constant C'4 4 > 0 depending on the initial 1-form A and on the gauge change g.
We compute this further:

liGary -y )

Indeed, we can bound the last bracket above by [|Ag — Alyr1.2(p4:

1 o [Tyl = [ Feaonrss = Ty oy

[[(4)" = (o), ]|

12(B%) < Cg HAk - A”L4(B4) Hwk||L4(B4)

< Cy 14 — Al Iz
= Cy || Ay — AHWL?(B‘*) :
for some constant C,; depending on g. Since the constants are independent of k, it follows that

1 S CA,g . Cg ||A]€ — A”leg(le) — 0 as k — oo.
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Thus, for k large enough the above inequality yields a contradiction. We then have that there exists
ko large so that wi = 0 and that KerT(Ao,l)g = {0} for all k£ > k9. We conclude that since T(Ao,l)g
k

and 7T, (4019 for each k > kg are all operators of index zero and their kernel is trivial, they are invertible.
k

(ii) Since T, (A0.1y9 has trivial kernel and is an operator of index zero, its inverse exists mapping L? to

WD and we have that H’T “ and g is smooth by

A0.1)
construction, then we can assume without loss of generality that H)T A1) T a0
for any k > ko. Hence [24, Theorem 1.5.5(iii)], gives that

1
A01) <3

A0.1y9

Il

7

[T agnys T(A01)g
<

<[l

~ T3 g
01 A0,1)9 A01 g A0.1)9
m Ay ) 1-— H‘T 9 — L a0.1ys ‘ ( )

Thus, for & > kg, we have

[y

Hence, by taking the sup over all k > kg, we obtain the result. ]

The following Lemma proves the existence of a perturbation under the conditions that 7’401 has trivial
0,2 . . 2
kernel and that F',” is small in L norm.

Lemma 5.3. There exists a constant C > 0 such that for every A € WH2(Q'B* @ u(n)) with T 401

—C | there exists w € W22(QO Bt ® M, (C)) a solution of

inwvertible and satisfying HFE{2 S H’T ‘

the PDE: o _ _ _
90w+ [A%L 3w + T wA T w=—Fy*

satisfying the estimate

Hw0||W22(B4) < C/m A01M HF,?;2‘ (5.11)

L2(B*%)

where C' > 0 is a constant independent of A.

Proof of Lemma 5.3. We construct the followm% sequence of solutions:

T po1wg = —F ’
=~
Tpoiwy = —8 wog N0 wo — FX’Q
ok ok
Tyorwe =—0 w1 AND wy — Fg’Q
~ Nk
Thoawr = —0 wip_1 N0 wi_1 — Fg’2

Claim. {w;}7°, is a Cauchy sequence in Wl%’z

We first show by induction the uniform bound on the sequence

0,2
leokllyze < 2N Taoal |75

L2(B4)
Since T'40.1 is invertible, then we have the identity:

wo = TAO 1TA0 1WQ.
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Hence, from the definition of the norm of operators, it follows that:

<2k ) [#4?

Let k > 0. By the Sobolev embedding of W12 < L* there exists a constant C; > 0 so that

ol a2ty < T | 1 Taoaccoll oy = [T I | 252

L2(B%) L2(B%)

<aifpa]

- < Ot lonllyz2 e -

W12(B4)
Then we have:

HwkHWIQjZ(B4 < m AOlm ”TAO“")kHL2 (B%)

< Iz B N ] L
< Ci[|| T | lwn—117 ey + | T [ H Fy* L2(B4)
< CRIT sl o ey + Tl I | 52
By the induction hypothesis we have that |jwy_ 1HW2 2pay < 2|[|T 504 }H Hng Lo Thus,
loulhwzzon < ACHNTZ N [£82] g + Tt W97
Choosing the constant C' > 0 such that % o < 4C%, we obtain by assumption
AR 2] e < MR I 87 e <
and we conclude that
oz < 25 152 o e
Hence, by induction it follows that the sequence is uniformly bounded in Wé’2
Jenhwzey < 2 Tte | E52]) .
for all & > 0. It remains to show that {w;}}2 is a Cauchy sequence.
Let & > 0. It follows that
lwkst = wrllypze gy < WmNWHMWH—WWMM>
< ||T Ao 1 YWk — wp_1) A D wy 1284
HHMJMpwklAawhﬂ%l>mwﬁ
< ACITL I [ F82 | e e = nmrllwz o

Choosing the constant C' > 0 such that % < 4C'1, we obtain by assumption

AC | Tl I |42

02
e < ST 82 <
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and we can conclude that the sequence {wy}72, is Cauchy. Hence, we have proven the claim.

Moreover, because Wff is a Banach space and {wi}72, is a Cauchy sequence, there exists ws such
that wr — weo as kK — o0 in W%Q Moreover, by the strong convergence and the uniform bound of the

and
12(B4)

sequence we obtain that HwooHW? 21y < 2(|| 70 || H 02’

00" wWoo + [A%, 0" wao] + 0 woo AT weo = —F9°.

We can conclude this section with the main result.

Theorem 5.1. Let A € WH2(Q'B* @ u(n)), with Fg’Q = 0. There exists a smooth sequence of forms
Ap € CX(QBY @ u(n)), Fy? =0 and A, — A in WEA(QB* @ u(n)).

Proof of Theorem 5.1. By Lemma 5.2 there exists a unitary gauge change g € C>°(B*,U(n)) so that
T\ g0.1y9 1s invertible WD to L2. Moreover, we can obtain a smooth sequence Ay by simple convolution

such that HFOQ‘ — 0and A, — A in W2 as k — co. By Proposition 5.6(i) there exists ko

L2(B*%)
so that for all k& > kg, T s is invertible and that Ai — A9. Moreover, since the change of gauge is
unitary we also have that HF ‘ = 9’92 .
L2(B4) Ak L2(B4)

Moreover, by Proposition 5.6(ii) we know that

su T* < 2“‘
kzllci) (Ak ) (AO '
Thus, for all £ > kg, it follows that 1 5 > L 5. Let C > 0 the constant given by
T 2| 7a0)s |
(a3’
Lemma 5.3. There exists k; > kg such that
' Fi < < < ¢
A9 2 2
My 2| Taons I |l
(A’

for all k > k. Hence, for each k > kq, Lemma 5.3 gives the existence of (0,2) forms wy satisfying the
estimate

-1

!
(AOl) <20

L2(B%)

0,2
=
A

0,2
Ay

lorllwzz s < |7 Ty 125’

where C’ > 0 is a constant independent of k. Moreover, each wy, solve the PDE:

90" wy, + [(A ) B wk} + 0w ATy = —FY, (5.12)
0,2 _ 0,2 :
ie. FAnga = (. Since HF ’ 284 converges strongly to 0, the estimates on the (0,2) forms wy

give wy — 0 in WD as k — oo. Thus, we obtain the strong convergence
~ g
(401)" + 8 wr = (4™ im w2,

Define the sequence of connection forms
-1

- —x —1——=1\7
A = ((A%l)g +0 wg — (A%l)g + 0 wy ) e WH(Q'B* @ u(n)) N C™.
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Because g is a smooth unitary gauge, and Ai — A9 in W2 by construction, then this sequence of
forms are unitary and convergent in W2, We need to establish that A; — A in W2, Indeed, we
obtain the following L? convergence:

HAi - AgHLz =0 Hg_l (Ax — A)9HL2 —0 ggﬂ [ Ak — Al[> — 0.

Because the limit is unique, then A, — A in W2, Moreover, the smooth sequence Ay, satisfies the
integrability condition Fﬁf = 0 by construction of wy in (5.12). O

5.4 Global density result

In this section we will use the result we have proven in the above section in order to obtain a global
result for a closed Kahler surface X 2. In order to be able to generalise, we will work on global forms
over X2. The 0 operator over X? is well-defined and acts on the space of (p, ¢)-forms:

0 : APY(X?) - APITL(X?).
Its corresponding dual operator, 9" is defined as a map:
" API(X?) - APTTL(X?),
On the space AP4(X?) the 9-Hodge theorem [8] gives the orthogonal L? decomposition:
API(X?) = QAP H(X?) + E*Ap’qul(Xz) + HPI(X?), (5.13)

where HP4(X?) is the space of holomorphic (p, q)-forms. Since X? is a closed Kihler surface, then we
remark that HP9(X?) is finite dimensional. In particular, by (5.13) under the condition 7—[%2()( 2 =0,

then (0,2)-form w € A%2(X?) can be written as follows:
w =00 a.
Since @ and @ define elliptic complexes over closed Kihler surfaces (see for example [15, Chapter IV]):
0 — A20(X?) & AP (X2) B A02(x2) - 0
and . .
0— A%2(x%) & A% (x2) & A%0(X2) 0
then the operator ?76* is elliptic on (0, 2)-forms over closed Kéhler surfaces. In particular it is Fredholm
and moreover, 00 is self-adjoint. Thus, its Fredholm index vanishes:

index(90") = dimKer(99") — dimCoker(99") = dimKer(0d ) — dimKer(99") = 0. (5.14)
We redefine our operator 7401 as such:
Ty : Iy2.2 (.AO’Q(XQ)) — e (./40’2 (XZ))

where V is a W2 unitary connection over X2 and I'yys. is the space of locally WP4 sections. We can
directly apply Lemma 5.2 to obtain the existence of a global smooth section g so that Kerlys = 0.
Moreover, by (5.14) and Proposition 5.1 applied to Ty it follows that Tys is a Fredholm operator of
index 0. Hence, CokerTyg is empty and the operator Tyy is invertible.

It follows that we can apply Lemma 5.3 to VY and we can conclude that, similarly to Theorem 5.1,
we have proven:

Theorem 5.2. Let V a W2 unitary connection over X?, satisfying the integrability condition
02 _
Fg© = 0.
Then there exists a sequence of smooth unitary connections Vi, with Fgf =0 such that

dista(Vi, V) — 0.
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6 Proof of Theorem 1.2

By Theorem 5.2 applied to the given W2 connection V, we obtain the existence of a sequence of
smooth connections V that converge to V in the sense of

dista(Vy, V) — 0.
Step 1. There exists 7 > 0 and a finite good cover {B2(z;)} such that
V ~d+ A; in BXx;)

with
IVAill 282y < €05

where g > 0 is given by Theorem 3.1. Since V} converges to V in the sense of dists, it follows that in
each ball B(x;) with V = d+Ai-C we have Fj’,? =0, Ai-“ — A; in W2 and Fye — Fyu, in L? ask — oo.

By Theorem 3.1 there exists v’ < r and 0; € W?P(B%(2;), GL,(C)) for any p < 2 such that
A?’l = —0o; - 0;1.

Let 0 > 0 be the constant in Corollary 3.1. There exists kg > 0 so that HAi~C — AiHWL? < 0 for all
k > ko. Corollary 3.1 applied to each Af, k > ko gives the existence of a sequence

af € W*P(BY, (w:), GLn(C))
of gauges that holomorphically trivialise A? :

(a8)" = gt (of)

with the estimates

k k
ko, <CHA.—A~ 6.1
|t o (B ) T e (6.1)
for some constant C' > 0 and any p < 12, and for each ¢ < 2 there exists Cy > 0 such that
ko k ,
"’i _Zdew(Bﬁ,/z(mi)) = (HAi WAR(Bia) ‘AZHWI’Q(B;I(“)) (62)
By an abuse of notations, from now on, we will use 7’ to denote 7//2. From (6.1), o — o; in

LP(BY(x;)) for any p < 12. Moreover, the uniform bound (6.2) gives that the sequence converges
strongly in W24 for any ¢ < 2. Since limits are unique, we obtain that af converges strongly to o; in
W24 for any q < 2. Af is smooth, it follows that each gauge af is smooth.

—T
By defining h¥ = 0¥ - 0¥, we have that each Y is uniformly bounded in W?P?(B%, Sym(n)) and

ok -1
(Af) = (hf) OnY — h;ton; in WH2(B2 (x;)) for any p < 2. (6.3)

Moreover, the corresponding curvature forms satisfy the following gauge relation:

-1
F(Ak)“i“ - (Uﬂ (FA"> o
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Combining the estimate (6.1) with the L? convergence of the sequence Fx, we have

Pyt 7 Fap o LP(B}:(x;)) for any p < 2. (6.4)

Analogously to the proof of theorem 1.1 in Section 4, there exists smooth holomorphic structures &
such that
01 _ 5
vk - agk .

Thus, (6.3) and (6.4) yield that for any p < 2 we obtain the required convergence:
diStp(Vk, V) —0

over the holomorphic vector bundle structures &, and £. In the next step we prove that this conver-
gence leads to an isomorphism between the two structures.

Step 2. We construct bundle isomorphisms H; between the holomorphic bundles £, and £ such that
ggk = /H,;l 0 0g o Hy,.

Let 4,j such that there exist gauge transition functions g;; € W?(B2(x;) N BX(z;),U(n)) and gf’j €
C*>°(BXx;) N BX(z;),U(n)) satisfying:

A=A, i BMa) N B(z)
and .
(A;.f)g” =AY in BA(y) N Bl(xy).
Since gf’j — gij in W22 by construction, from [10] there exist ¢¥ € W?2(B%(x;),U(n)) and (f)? €
W22(B% (z;),U(n)) such that
k A k
9ij = (@) 'Qij‘¢j-

Using the notation introduced in Section 4, there exists holomorphic transition functions for the
structures £ and & defined as:

-1
-1 k k k k
Oij =0, *Gij0j and o = (o) " Gij 05 -

Consider the functions Hf = 0;1 . gbf . UZ]-C and ’H;‘: = 0;1 . gb;“ . Ué?. By construction, we have:

ok = <H§>_1 o HE

J

k

Thus, Hi = {”Hf“}z defines a bundle isomorphism and since oy are holomorphic, it preserves the

holomorphic structure:
O, = M; ' 0 Og o H.

This finishes our proof.
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A Linear Operators

We prove the following results that will be used in Section 4:

Proposition A.1. Let D be a bounded domain in R™, g a Lie algebra and for k € N, let
H:C®(Q'D®g) » Q"D ®qg)

be a linear operator such that H(A)(x) = H(A(z)) for allz € D and A € C*°(Q'D ® g). If for all
U e C>®(D,g) we have
H(dU) =0 (A.1)

then H = 0.

Before we prove this statement we remark that the condition H(A)(z) = H(A(x)) in general prevents
H from being a differential operator acting on forms A. Otherwise the statement cannot be true. For
example take H = d, H(dU) = 0 - since d? = 0, but d # 0.

Proof of Proposition A.1. Fix A € C*®°(Q'D®g), then we can write it as A = Y1 | a;dz;. Fix g € D
arbitrary and define the function V(z) := " | aij(xo)x;. Then dV = A(zg). Moreover, by (A.1) we

have
H(dV) = H(A(0)) = H(A)(xo) = 0.

Hence, because 1z is arbitrary, we have that H(A) = 0 and since A was an arbitrarily chosen smooth
1-form, then H = 0. O

Next, we prove a more general statement than the one above:

Proposition A.2. Let D be a bounded domain in R™, g a Lie algebra and for k € N, let
Hy: C>®(D,g) — C®(0FD ® g)

and
H:C®(Q'D®g) — C®(Q"D ®g)

be linear operators such that Ho(U)(x) = Ho(U(x)) for all z € D. If for all U € C*(D,g) we have
Ho(U) + Hy(dU) =0 (A.2)
then Hy =0 and Hi od = 0.

Proof of Proposition A.2. Fix U € C*®(D,g) and z € D. Define V, := U(z) a constant function.
Then by (A.2), we have
Ho(Vz) = Ho(U(x)) = Ho(U)(x) = 0.

Since x is arbitrary in D, then we have that Hyo(U) = 0. Since U is an arbitrarily chosen smooth
function, then Hy = 0. Hence, from this and (A.2), we also obtain Hy o d = 0. This concludes the
proof. ]
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B Sobolev Estimates

In this section of the Appendix, we will prove a few results that help us bootstrap certain d-equations.
These results have been heavily used in order to prove the regularity of sections which yield a holo-
morphic structure over a given closed Kahler surface.

Lemma B.1. Let D a domain holomorphically embedded in CP? and w € WH2(Q%'D @ M, (C)) such
that w satisfies the integrability condition (1.1). Let g € L*(D, M,,(C)) be a distributional solution of
the equation:

Jg=—-w-g

is solved in a distributional sense and ||g — idHL4(D) <C Hwle,z(D). Then there exists a subdomain
Dy C D, and for each q € (1,2), a constant Cq > 0 such that:

llg — idHW&q(DO) <Cy HWHWLQ(D) .

Proof of Lemma B.1. We start with a bootstrapping procedure. Firstly, let Dy be a slightly smaller
subdomain of D such that we obtain the existence of a constant C' > 0 and the following inequality
holds:

lg = idllyr 2y < € (199 2y + lg = il z2()) < € (el oy lglzacoy + llg = idl 2 ) -

By using the embedding of W12 into L* in 4-dimensions, it follows that for some constant C' > 0, we
have:

9= idllraqopy < € (Ilhraqoy g = idl oy + [l + 19 = idl )
Hence, by |lg — id||4(py < C |lwlly12(p), We obtain:
lg = idllwr2(py) < Cllwllwrzp -

Once we have obtained the W12 estimate on Dy, we can proceed to bootstrapping to W24 regularity.
We can apply 9" to the d-equation to obtain the elliptic PDE:

V09 = —(w-g) = —Yw - g — *(xw A Jg),

which holds in a distributional sense. Since 90 is equal to the Hodge Laplacian d*d acting on functions,
we can apply Proposition B.1 and obtain that g € VViCq (Do, M,,(C) for all ¢ < 2 and for each ¢ < 2
there exists a constant C; > 0 such that

190250y < Ca lllragon) (B.1)
Without loss of generality, we can assume g € W24(Dg, M,,(C) for all ¢ < 2, otherwise we pick a

slightly smaller domain than Dy. It remains to show the required bound. Since ¥ is elliptic, we have
the a-priori estimate:

lg = idl2apy) < C (I1999] oy, + 19 = idll sagy) ) (B.2)
for any ¢ € (1,2). We estimate 9 dg:
HQ@QHLQ(DO) < ||VWHL2(DO) HgHL?q/(?*q)(DO) + HW||L4(DO) HVQHL‘lq/(‘I*q)(DO) :

Since W2 embeds into L*, it follows that
HﬁggHLq(Do) <C ||W”W1,2(D) (HQHL?q/(%q)(DO) + HVQ“LALq/(élfq)(DO)) )
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for some constant C' > 0. Moreover, W24 embeds into L2%/(2=9) and W'¢ embeds into L*/(4=9),
Using these embeddings, there exists a constant Cy > 0 and C' > 0 such that:

19801 oy < Ca o) Nallwzaoy + € Nllwnapy -
By the bound (B.1), it follows that there exists Cy > 0:
19991l a(pyy < Calwllwrzoy Iwllwrzipg) + € lwllwrzo) -
Thus, for some constant C; > 0 we have the estimate:
HﬁagHLq(Do) < Cgllwllwrzpy -

Putting this together with the fact that [|g —id| qpy < lg —id|fapy < Cllwllyr2(p) and (B.2),
there exists a constant C; > 0 such that

llg — idHWZQ(DO) <Gy HWHWL?(D) :
Since ¢ € (1,2) is arbitrary, we have proven the result. ]

Remark B.1.

(i) In the statement above, if D = CP?, then Dy = D = CP?. This is the case because O is elliptic
on CP2.

1) Assume instead of ||g — id|| ;4. < Cl|w||yiri2/py, the slightly perturb inequality:
LY(D) wh2(D)
lg = idll sy < C lllyrapy + Cor

where Cy > 0 is a small constant. We can conclude from the proof of the statement that all
arguments pass through and we can reach the natural conclusion:

lg — idllyy2.0pyy < C (kuwl,gw) + co) for all q < 2.

(iii) If we higher regularity of w, we can obtain similar estimates using classical elliptic regularity
results. Let p > 2, a (0,1)-form w € WHP(Q%1 D ® M, (C)), satisfying a smallness condition and
the integrability condition (1.1). Moreover,

lg — idll oo (py < Cllwllwrr(py -
Then we can bootstrap the equation solved by g to show that g € VVi’f with the expected estimate:
lg il 2y < Cp [l

This means that there exists a domain Do C D such that ||g — id||y2.(py) < Cp llwllwre(py -

We can start proving two bootstrap procedures for two types of PDE-s. The general technique is to
use show the boundedness of Morrey norms in order to bootstrap beyond the critical embedding level.
We use the ideas from [19].

50



Proposition B.1. Let N € N*, A € W12(B* CV) and fa € C®(CN,CY) such that there exists
C > 0 satisfying:
[fa(€)] < CIEIIVA] + [A][VE]

and v € WH2(B* RY) solving the equation:

Au = fa(u)

in a distributional sense, then u € Wz’p(B4, C) for any p < 2 and for any p < 2 there exists C,, > 0

loc
such that [[ullyy2e gay < Cp [Allwr2(pa)-

Proof of Proposition B.1. Dimension 4 is critical in this case because W24/3 < L* and we cannot di-
rectly bootstrap. In order to improve on the regularity of u, we will use the Adams-Morrey embedding.

Claim. 3y > 0 such that

sup ,0_7/ lul* 4+ |Vul?dz? < oo
w0€BY ,(0), 0<p<1/4 B (zo)

Let € > 0 to be fixed later. There exists pg > 0 such that:

o Al v2.2(5 <e.
xOGBf/2(O)7 0<p<po ( p(zO))

We can always find such ¢ and py since p — [ B (o) is continuous. Fix xg € Bf/2(0) and p < po
arbitrary. To prove this claim we first consider :

Ap = fa(u) inBé(mo)
¢ =0 on 833(500)

Let v :=u — ¢. Then Av = 0 and it easy to see that Alv|* > 0, and A|Vv|> > 0in B,(x¢). Applying
the divergence theorem, we get that Vr < p:

Olv|* d|Vul?
/ >0, and / > 0.
9B (z) OT OBi(xo) OT

These inequalities imply that:

d |1 44 d |1 9. 4
— / |v|*dz*| >0 and — / |Voul“dz™| > 0.
dr | rt B(zo) dr | rt B} (o)

1
Since these derivatives are non-negative, it follows that the functions r — — i) Bi(z0) lv[*dz* and
ra b

o 2 4 . . . . .
T i) BA(z0) |Vv|*dz* are increasing in r. In particular:

/ lo|*dz? < 44/ lv|*dz*  and / |Vu|?dz? < 44/ |Vu|?dz?.
B3, (o) Bi(xo) B}, (zo) Bi(xo)
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Using these decays, we can bound [gs (z0) lu*dz* and [ ( |Vu|?dz* as such:
p/4\T0 p/a(@0)

47 4 4 44
fB;l/4(g;0) |u|*dx* < 8fB§/4(x0) [v|* 4+ |p|*dx

< 27 pga 011420 48 [y Il e’ B3
< 272 fB;‘(aco) lu|*dz* + 16 fB;}(:vo) lo|*da*
Similarly, for Vu we get the bound:
4
Vul?dz* <270 Vul?dz' +4 [ (z0)|Ve|?da’. B.4
¥
Bﬁ/4(10) Bj (o) ’

There exists a constant C' > 0 so that we can bound Ay in the L*3 norm:

1ACN a3 Ba@oy) = IFa(WllLars(Ba(a))

IN

¢ <||A||L4(B;‘;(x0)) IVull L2 (B3 (g)) + VAl L2(B1(20)) ||U”L4(B;4,(a:0))) :

Since ¢ vanishes on the boundary, by Calderon-Zygmund inequality [25], it follows that

Iellwzar3(B1(zg)) < C <||A||L4(B;‘;(x0)) IVull 2 (B3 (2g)) + VAl L2(B1(20)) ||U||L4(B;‘;(a;0))) ;

for some constant C' > 0. Moreover, the Sobolev embedding W2 — L4 gives:

ellwzas(Bo)y < C 1 Alwr2(B1(20) (HVU||L2(Bg(x0)) + Hu||L4(B;,1(xo))) ; (B.5)

Thus, combining (B.5) with the inequalities (B.3) and (B.4), we obtain the decay:

/4 |t + [Vul2da? < (2—2+00HAHWLQ(B%@O)))/ ul* + |Vu|2da?
Bp/4(x0) B4

5(@0)

for some constant Cy > 0. We can choose € > 0 so that Coe* < 272 to get:

/ lul* 4+ |Vul?dz? < 2_1/ lul* + |Vu|?dz?. (B.6)
B3, (x0) B (o)
This estimate gives the required existence of v > 0, and proves the claim.

It remains to prove the main regularity result using the claim. From the equation satisfied by u and
the decay inequality (B.6), we obtain the bound:

sup p_V/ |Au*3da* < 0o
moGBil/Q(O), 0<p<1/4 B (wo)

By Adams-Morrey embedding, we get a bound on HIlAuHLP(B;;m(O)), p > 2 where I; is the Riesz

potential (see [1]). We obtain Vu € LF (B* C) for p > 2. Hence, the PDE becomes sub-critical and

loc

we can bootstrap to get u € W2P(B*,C) for any p < 2. O
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Proposition B.2. Let A € L*(B* C) and fa € C®(B*, C) such that there exists C > 0 satisfying:

|fa(€)] < ClE)* + |Al¢]

and u € W2(B*, RN) satisfying
Au = fa(Va)

then u € VVfOf(B‘l, C) for any p <4 and Hu”Wzi’f < Cp [|All pa(pay where Gy is a constant.

Proof of Proposition B.2. Dimension 4 is critical in this case because Vu € W12 < L* and we cannot
directly bootstrap. In order to improve on the regularity of u, we will use the Adams-Morrey embed-
ding.

Claim. 3y > 0 such that

sup p_7/ |Vau|tde? < oo
B3 (zo)

zo€B?* (0), 0<p<1/4

1/2

Let € > 0 to be fixed later. There exists pg > 0 such that:

sup |’AHL4(B;‘;(330)) <€

zo€B?*, (0), 0<p<po

1/2

We can always find such ¢ and pg since p — |, B (o) is continuous. Fix zg € Bf/Q(O) and p < po
P
arbitrary. To prove this claim we first consider :

Ap = fa(Vu) in B;l(:no)
v =0 on 8B§(az0)

Let v :=u —¢. Then Av = 0 and it easy to see that A|Vv|* > 0 in B(xg), for some r < p. Applying
the divergence theorem, we get that Vr < p:

/ oVl
>0
OBi(zy) OT

d |1
— / |Voltdzt| >0
d?“ T4 Bff(aco)

1
and consequently the function 7 — — I} BA(z0) |Vou|*dz* is increasing. In particular,
7" T

/ |Vo|tde* < 4_4/ |Voltda?

B;‘M(xo) B (zo)

Using this decay, we can obtain a bound for [ |Vu|*dz:
Bp/4(x0)

/ |Vaultdz? < 8/ Vot + |Ve|*dz?
By, (xo) B, 4(@0)
< 2_5/ |Voltda? +8/ V| da?

B} (o) B (zo)

22/ |Vl dat + 16/ \V|tda?
B (o) B3 (o)
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Moreover, there exists a constants C; > 0 and Cy > 0 such that

’|A‘P‘|i2(3;}(zo)) < Cl||fA(VU)HL2 (Bi(0))

IA

4
Co (Al 30 1Vl i B3(o0)) + 1908 (54 )

IN

8C2 (1AL 4530 IVl 830007 + 1734 B3Ga0) )

Since ¢ vanishes on the boundary of B;‘;(aco), then by elliptic estimates, we have for some constant
C > 0 the inequality:

||80||%v2,2(34(x0)) < C||ASDH%2 (Bi(z0))

from which we deduce that ||Vg0Hi4(Bz( < (| ‘AQDHLQ(BAL o)) Putting this inequality together with
the bound on Ay, we get the following decay

/34 o |Vt < (27 CO|A|‘14<Bé<zo>>)/JB4< Vul'dat
/4

»(x0)

We can choose £ > 0 so that Coe* < 272 and obtain:

/ |Vu|tdz?t < 2_1/ \Vu|tdxt.
By 4(w0) B (o)

This decay implies the existence of v > 0 and proves the claim.

Because |Aul? = | f(Vu)[* < C (|Vul* + |[Vu|?|A]?), we can use the claim above to obtain the following

bound:
sup p_”’/ |Auf?dz? < oo
20€B] 5 (0), 0<p<1/4 B3 (zo0)

By Adams-Morrey embedding, we get a bound on ||I;Aul|re, p > 2 where I is the Riesz potential
(see [1]). Thus, it follows that Vu € LY (B* C) for p > 4. Since the PDE becomes sub-critical, we

loc

can bootstrap to get u € W, ’p(B4 C) for any r < 2. O

C Several Complex Variables

We briefly recall some of the results we will be using from the theory of several complex variables.
Valuable reads include [32], [4] and [6].

Definition C.1. Let D be a bounded domain in C*. We say D has boundary of class C* if for every
p € 0D and U neighbourhood of p, there exists a C* function r : U — R such that UND = {z €
Ul r(z) <0}, UNOD = {z € U| r(z) =0} and Vr(z) # 0 on UNAD. Then r is called a C* local
defining function for D. If D C U, then r is a global defining function.

Moreover, we need to define what pseudoconvexity is:

Definition C.2. Let D be a bounded domain in C* and r a C? defining function. D is pseudoconvex
at p € 9D if the Levi form

Ly(r,t) =Y 8228th itk >0
i,j=

for all t € Tpl’O(BD). D is strictly pseudoconvex at p if Ly(r,t) > 0 whenever t # 0. If D is
(strictly) pseudoconvez for all p € OD then D is (strictly) pseudoconvex.
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Over a bounded domain D C C”, we define the operator
J:QPID — QPITID
acting on forms w =), ;wrydzr A dZ; by

Ow = Z@;kwudzk ANdzr NdzZ g,
kIJ

where [ is an index set of size p and J is an index set of size ¢q. Let ¢ € Q79D and ¢ € OPa=1D a
compactly supported form. Then, we compute the dual operator ¥ of 9 with respect to the L? scalar
product:

/Dtr (gb A *MT> = (¢, 00) = (Z brrdzr A dzJ,Za;kwudfk Adzp A dm)) .

1J kI1J

where * is the Hodge star operator mapping Q79D to Q"~%"~P. Using the fact that (dz;, dZ;) = 26,5,
then by integrating by parts and rearranging the terms we get

(¢, 00) =2+ (Z azk¢IJ,¢IH> )

IH kJ

for H index set of size ¢ — 1, J index set of size ¢ and I index set of size p. Hence, by defining

19¢ =2 Z 8Zk¢[JdZ[ ANdZp,
kIJH

we obtain the required duality B
(¢,00) = (99, 1))

In geometric applications, it is useful to work on local orthonormal basis 7; - 73, spanning the complex
tangent space at a point P, T};OD. Thus, we can replace the frame {dz;} with {7;} and define L; the
vector fields dual to 7;. Note that 7; are not necessarily 0-closed and error terms or lower order will
appear when applying the 0 operator on forms. We have:

0p = kawu?k ATr ATy + terms of order zero,
kIJ

and
do = Z Liorgmr AT+ terms of order zero.
kIJH

Moreover, we can also obtain the following expression of ¥ in terms of the operator 0:
¥ = — * 0%,

see [6, Proposition 5.1.1]. If ¢ and v do not necessarily have compact support, then

(00.0) = (0.00) + [ (o(0.dr)o. v}
where ¢ is a (p, ¢)-form and ¢ a (p, ¢—1)-form and we are using the notation in the literature o (¢, dr)¢

to denote
T

o(9,dr)p = *x0r A *aT )

55



More explicitly, o(d,dr)¢ is the form whose components are in the Or frame of ¢. ‘We denote the
components of ¢ that are in the Or frame, by ¢x. Thus, if J(Q?Ldr)gb =0, then ¥ = 8*, where 9" is
the Hilbert adjoint operator. In this case we say that ¢ € Dom(a*), i.c. ¢ is in the domain of 8.

It is also useful to remark the fact that if a (0, ¢)-form « vanishes on the boundary, it follows that
« vanishes component wise on the boundary. This is because the frame Jr does not vanish on the
boundary, unlike dr which does vanish! In terms of the notation above, ¢ = 0 on 9D is equivalent to
o(¥,dr)¢ =0 and o(0,dr)¢ = 0 on 0D, where 0(9,dr)- = Or A - is the adjoint operator of (¥, dr).

Before we state a few results regarding regularity and Hodge type decomposition, we say that ¢ is
in the domain of the Kohn-Laplace Ay (also denoted in the literature by O) ¢ € Dom(Ag) if and
only if ¢ € Dom(d") and dp € Dom(d). These conditions are called the -Neumann boundary
conditions over the domain D, i.e. they amount to saying that ¢ = 0 and (0¢)x = 0 over 9D.

Moreover, it was shown for Hilbert spaces [6] and Sobolev spaces [33] that over pseudoconvex domains
D there exists the inverse operator

N : WSP(QPID) — WETLP(QP4 D)
of the operator Az and moreover N¢ € Dom(Ag), AzN¢ = ¢,
INO[lyss1o < CllAlpysn for any ¢ € QP9D.
We also have the estimate:

10Ny + | < C |l

9" No|
Ws+l/2,p

This shows that over domains with boundary the operators Az, 0 and consequently 8" are not elliptic,
but they do satisfy the above sub-elliptic estimates.

We also obtain the -Hodge decomposition for any form ¢ € QP:
¢=00 N+ 8 ON¢+ h, (C.1)

where h is a holomorphic form, i.e. it satisfies: 0h = 0 and 8"h = 0. For domains D with vanishing
(p, q) Dolbeault cohomology Hg’q(D) = 0 or for domains D C C" for some n we have

¢ =00 Np+ 09 ON¢. (C.2)

We refer the reader to [4] and [8]. In particular, over Stein manifolds (manifolds that holomorphically
embedd into C", for some n), there are no holomorphic forms in the 9-Hodge decomposition.

We recall the Integral Representation Theorem which was proven in [16] for (0, ¢)-forms and
initially in [9] for (0, 1)-forms. Before doing so, we will have to define a few key operators. Let D be
a strictly pseudoconvex domain in C" with defining function r such that

znjia% tit; > clt)?
b> e
; 181@-8;@ =

for some ¢ € R and t € R2",
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The Bochner-Martinelli-Koppelman kernel (see [4, Theorem 11.1.2]) is given by:

n = — n = — n—1
K(C, z) _ 1 Zi:l(@‘ — Z;)d(; A (Zz’:l(dCi - dzi) A dCz‘) ' (0‘3)

2mi)m ¢ —2[? ¢ —2[?

We define the kernel K, as being the form of (0, ¢) degree in z and (n,n—¢—1) degree in (. Moreover,
the boundary kernels K, K[‘?O given by

1 2?21(@ —Z;)dG; A D1 9¢;r(€)dg;
@mi) ¢ = 2]? >ic1 %ﬂ"(C)(Q ) B )
ALY ( > (G — Zz’)dCz‘> ' N ( 2_im1 9, 0¢,r(C)dC; A dCi) ’
ky+ka=n—2 ¢ — 2|2 S 060 (G — i)

K9 =

and

9 _
Koo =

LSz 2 0 ()G A dG
@ri)r ¢ — 2P Sy 06r(O)(G — 2)

For each ¢ > 1 we can, thus, define
T, : C*(Q™D) — > (Q%1D)

given by
T (o) = / KoNa— KJ A a when ¢ =1 (C.4)
D oD

and
a) = / K, 1N when ¢ > 1, (C.5)
D

where by K¢ we understand the form of (0,0) degree in z.

We now formulate the representation theorem (this can be found in [16, Section 3] and [4, Theorem
11.2.7)):

Theorem C.1. Let D be a bounded strictly pseudoconvex domain in C™ with C? boundary, 0 < ¢ < n
and o € C*(Q%9D,C). Then we have the following representations:

/ K& (¢, 2)a(C) + Ti(Da)  when g =0
a(z) (T ) + Tyy1(0) when q¢ > 0.

Moreover, for results concerning regularity of operators Tj,, we recommend to the reader [12] (optimal
LP results for (0,1)-forms) and [16] (LP and Holder regularity results for (0, ¢)-forms).

Results in the unit ball B*

Since the operators 0, ¥ have been stated in their full generality, in this section we will be more
concrete and deal with the case when the domain D is chosen as B%, embedded into C?. At the end

of this section we prove regularity results for the operators 77 and T> we have defined above and can
also be found in [16].
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In particular, on B* we define
r(z) = |z]* — 1.

Then 7 is a global defining function for B*. Thus, B? is an example of a strictly pseudoconvex domain.
Indeed, if the pick the defining function above, we have that the Levi form

Ly(r,t) = [t|* >0
for all pc B t € Tpl’o(aB‘l), t#0.

On B* take the canonical complex structure J. At each point p € B*, we can find an orthonormal
(0,1) fields L7 and Ly, that span the complexified tangential space T;,C (0B*). We will explictly com-
pute them.

Let e*, Je*, dr, Jdr define the Hopf frame. These define the a orthonormal basis for (0, 1)-forms.
Namely, 7 = e* + iJe* and 9r = dr + iJdr. In terms of Z; and Za, they satisfy:

dr = %(zﬁdzl + z1dzZ1 + 29dZ3 + Zadz9) = %(ar +0r)
Jdr = #(—Zdzl + 21dZ] + 20dZ3 — Zadzy) = %(57" —or)
(C.6)
e* = %(Zdel — z1dzg + Z2dz] — Z1dZ3) = %(T +7)
Je* = o (zZdz — 7idz — zadzy + 21dze) = (T — 7).
We obtain the explicit formulation of 7 and Or:
T = 1(zdz — 71d%:)
(C.7)

or = % (Zldﬁ + ngﬁ)

Moreover, the vector fields Lz and Lz, can be computed as follows:

Lz = 5 (0er —i0jer) = L (2002, — 2105,)

D=

Lz =3(0, —i0ar) = X (2105, + %205,) .

We prove a regularity result for (0,2)-forms in the domain B*, which comes in-handy in our results.
We are unaware of such a result being available in the literature.

Proposition C.1. The operator Ty maps LP(Q%2B*) into W1P(Q%! B*) whenever p > 1.

Proof of Proposition C.1. From the formula (C.3), we obtain

_ 1 (G EdG S —dE A dG
BeA=m™5cm T

We expand the equation above to get:

1

Tunjc =t ((¢y —Z1)dC1 Adzg A dCa + (Co — Z2)dCo A dzr A dCq)

Kl(gvz) =
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Let a = fdz; A dzs € LP(Q%2B*). From the formula of T3 it follows that:

1 1 _ _
Th(a) = < /(Cz—zz)fdélAdQ/\dCzAdCz)dZT

An? B ¢ — z[*

1 1 _ _ _
+ <—47T2/B4 m(gl —Z1)fd¢1 AdCy A dla A d<2> dz.

Since each component of K is a quasi-potential in the sense of [14, Definition 3.7.1], then we can
apply [14, Theorem 3.7.1] component wise to T5(«) to get the required result:

IT2() [ (pay < lldllpocpay -
O

In addition, the following result builds upon the sharp estimates of the Henkin operator (77 in our
notation) found by [12]. In particular, we show that for estimating Th«, where a is a (0,1) form, we
can relax the condition da = 0. The estimates we find are not sharp.

Proposition C.2. Let p > 6 and g > 6 such that WHP(BY) — LY(B*) and a € LI(Q% B*) satisfying
Jda € Lp(B4). Then there exists a constant C > 0 depending on p and q such that:

Tl ey + 0710 gy < € (o) + 130 o)

Proof of Proposition C.2. We refer to the proofs presented in [12]. We recall:

T (o) = B4Ko/\a— 8B4Kg/\04.

In [12, Section 5] it is shown that the first term has good regularity. In particular that |, g1 Ko N a

belongs to a Lipschitz space when o € LY for ¢ > 6. We focus our attention to the second term which
is problematic. By Stokes we obtain:

Kg/\a: 5[(3/\04— Kg/\ga.
B4 B4 B4
Since da does not vanish, we obtain two terms. The first integral is estimated in [12, Section 5,6] and
yields the regularity result:

I71(0) | oty < C ]l gy -

for some constant C' > 0. It remains to deal with the term: [, K Ada. However, since 0K is more
singular than Kg , since dar € LP, we have at least the estimate:

Kg/\ga

- < CHEQHLP(B‘l)'

L (B%)

Hence, we have that there exists a constant C' > 0 such that

[Thctl oo (pay < C (HO‘HL‘I(B“) + HEO‘HLP(B4)> :
Since Oa is well-defined, by density of smooth forms, we obtain by Theorem C.1 the following equation:

a = 0Ty (a) + Tz(0c),
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and B _
HaTl(a)HLq(Bél) < llallpacpsy + HTQ(aa)HL‘Z(B4) :

By Proposition C.1, we have that T»(da) € WP < L4, In particular, we obtain constants C,C’ > 0
such that:

||5T1(04)HLQ(B4) <C <||a||Lq(B4) + }}TQ(EO‘)le,p(Bél)) < (HO‘HL‘I(B‘l) + HgaHLP(B‘I)) :

Hence, by putting everything together we get:

T ooy + 0710 gy < € (o) + 130 o)
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