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Abstract

We study the minimization problem for the Yang-Mills energy under fixed boundary connection
in supercritical dimension n > 5. We define the natural function space Ag in which to formulate
this problem in analogy to the space of integral currents used for the classical Plateau problem. The
space A¢g can be also interpreted as a space of weak connections on a "real measure theoretic version”
of reflexive sheaves from complex geometry.

We prove the weak closure result which ensures the existence of energy-minimizing weak connections
in Ag.

We then prove that any weak connection from Ag can be obtained as a L?-limit of classical connec-
tions over bundles with defects. This approximation result is then extended to a Morrey analogue.
We prove the optimal regularity result for Yang-Mills local minimizers. On the way to prove this
result we establish a Coulomb gauge extraction theorem for weak curvatures with small Yang-Mills
density. This generalizes to the general framework of weak L? curvatures previous works of Meyer-
Riviére and Tao-Tian in which respectively a strong approximability property and an admissibility
property were assumed in addition.

MSC classes: 58E15, 49Q20, 57R57, 53C07, 81T13, 53C65, 49Q15.

1 Introduction

1.1 A nonintegrable Plateau problem
1.1.1 The classical Plateau problem

Consider a smooth simple closed curve v in R?®. The classical Plateau problem can be formulated as
follows:
“Find a surface ¥ C R* with boundary « of smallest area”. (1.1)

Part of the problem is giving a suitable meaning to the terms “surface”, “boundary” and “area”, in such a
way as to extend the classical notions from a smooth setting to one where a minimizer is assured to exist.
The parametric approach to problem (L)) consists in considering immersed images of the unit disk:

Let u : D? — R? be a smooth immersion

such that u|sp2 is a parameterization of ~ .
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One then looks for minimizers of the following area functional, defined in terms of coordinates x,y on
D2

A(u) ::/ |0pu X Oyul|dzdy .
D2

An immediate difficulty which arises is the fact that the functional A(u) has a large symmetry group: for
all ¢ belonging to the group of orientation-preserving diffeomorphisms of D?, i.e. for any immersion u
as above there holds

A(u) = A(uo¢) for all ¢ € Gyt = Diff" (D?) . (1.2)
This infinite-dimensional symmetry group Gpiq: is responsible for possible loss of compactness of area-
minimizing sequences of maps. It is then required to break this infinite dimensional symmetry in order
to hope for minimizing sequences to have some compactness. A now classical strategy introduced by
J. Douglas and T. Rado consists in minimizing a more coercive functional, the Dirichlet energy F, for
which

A(u) < E(u) := %/1)2 | Dul?

instead of the area A with equality if and only if the parametrization of the immersed disc u is confor-
mal. Such change has the effect of providing “good” minimizing sequences for A(u) (so-called Coulomb
immersions).

1.1.2 A nonintegrable analogue of the Plateau problem

Consider a smooth compact Riemannian n-manifold M with boundary and let G be a compact con-
nected simply connected nonabelian Lie group with Lie algebra g. We assume that a principal G-bundle
P — OM is fixed over the boundary of M. On P we consider a G-invariant connection w, which
corresponds to an equivariant horizontal n-plane distribution @ (see [29] for notations and definitions).

Analogously to the Plateau problem, we may then ask which is the “most integrable” extension of
P, @ to a horizontal distribution on a principal G-bundle over M . By Frobenius’ theorem, the condition
for integrability in this case is that for any two horizontal G-invariant vector fields X, Y, their lie bracket
[X,Y] be again horizontal. The L2-error to integrability of an extension of @ over M can be measured
by taking vertical projections V of [X;, X;] for X;, X, varying in an orthonormal basis of Q:

| S mix e (1.3

Note that F(X,Y) = V([X,Y]) is known to be a tensor, and F is nothing but the curvature of the
connection.

From now on we will work on the associated vector bundle £ — M corresponding to the adjoint
representation of G and we identify the connection form with a covariant derivative V on E. In a
trivialization we have the local expression

V%a4a,

where A is a g-valued 1-form on a given chart of M. The structure equation relating curvature to
connection takes the form .
FZAdA+ANA (1.4)

in a trivialization. Here A represents a tensorization of the usual exterior product of forms with the Lie
bracket on g. In this setting the L2-error in integrability (I3) is identified with the Yang-Mills energy,
which we consider as being a functional of the connection V:

IM(V) = MWHQ- (1.5)



We observe that, similarly to the area functional in the Plateau problem, Y M has again a large invariance
group given by changing coordinates in the fibers via G. The corresponding group

G:={9g: M — G} (1.6)
acts on the curvature form F' =" F;dx; Adz; via
Fz]Hgile]gv |F|’_>|971Fg|:|F| ’

where we used the fact that the canonical norm on the Lie algebra g is given by the Killing form (see

again [29]).

1.2 Natural spaces of connections and the critical dimension n =4

The natural function spaces in which to consider the minimization of Y M are identified by consider-
ing the local form of the structure equation (L4)). The curvature form F' is naturally required to be
L? in order for the energy to be finite. In the abelian situation G = U(1) there holds A A A = 0 and
[ |Fg|> = [ |dA|* hence W2 is a natural space to consider for the connection forms A. In a non-abelian
framework the situation is more delicate due to the nonlinearity A A A. Assuming A € W12 the linear
term dA of ([T4) belongs to L?, but the L? control of the quadratic nonlinearity A A A requires a priori
AeL*.

In dimensions n < 4 the norm inequality underlying the Sobolev embedding W2 — L* implies that
we have both dA and AA A in L?2. This embedding is not valid anymore in dimensions n > 5, which
are called supercritical dimensions.

Going back to the critical dimension n = 4 or to subcritical dimensions, K. K. Uhlenbeck [48] has
proved the local existence of good gauges, similar to conformal parametrizations in the classical plateau
problem, in which the L?-norm of F controls the W2 norm of A by optimizing the more coercive

functional
/ (IFol? + |d°A]?) > / Fol?

The class in which to formulate this Yang-Mills minimization problem is in this case the space of connec-
tions over classical bundles £ — M which in each chart for some trivialization have connection forms A
belonging to Wllo’f:

AL2(E) := {V connection on E — M s.t. in some W?2-gauge A € W2} . (1.7)

loc
The following result permits to solve the Yang-Mills-Plateau problem in this case:

Theorem 1.1 ([48],[42],[40],[34]). Let M be a compact Riemannian 4-manifold and E — M a classical
vector G -bundle. Consider a sequence of connections Vi, € AY2(E) such that their curvature forms Fy
are equibounded in L? and such that we have the weak convergence

F,.—~F inlL?.

Then F is the curvature form of a connection V € AV2(E) where E — M is a classical vector G -bundle
(possibly different than E ).

The proof of theorem [[LT] combines the local extraction of Coulomb gauges satisfying

d*A=0



together with a covering argument and a point removability result. We introduce the following space,
where M* is a compact riemannian manifold, A4 is a g-valued 1-form and F is a g-valued 2-form:

) Acl? FrZdA+AnAcI?el?,
Ac(M?®) :=

and loc. 3 g € Wh2(M4, G) st. A% € W12
where A9 := g7 'dg + g~ 'Ag is the expression of A after the gauge change g. Note that
U AY2(E)=Ac(M?),

E—M*

where the union is over all smooth G-bundles F — M*.

One obtains as a direct consequence of Theorem [[LT] the following result:

Theorem 1.2. Let M be a compact Riemannian 4-manifold with boundary and let ¢ be the connection
form of a smooth connection on a classical G-bundle Eg — OM . Consider the space Ag,¢(M) consisting
of all connections V € Ag(M) for bundles E whose restrictions over M are equal to Ey and such that
the restriction of V to Epy s locally gauge-equivalent to d + ¢. Then the following holds:

inf{ IFI?: F2ZdA+ AN A, AeAG@(M)} (1.8)
M

is achieved and the minimizer is the connection form corresponding to a smooth connection over a classical
G-bundle E — M .

1.3 Supercritical dimension n =5

As noted above, dimensions n > 5 are more challenging because the nonlinearity of the structure equation
([T4) is not controlled by the linear part anymore in the “natural” Sobolev scpace W12, The following
question was at the origin of the present work:

Question 1. Which is the correct replacement for the spaces AV2(E) in dimension n > 57

For the clarity of the presentation we restrict in this work to the case of dimension 5 and to an
euclidean setting. The extension of all our results to higher dimensions n > 5 as well as to general
Riemannian manifolds will be done in a forthcoming work [37]. One of the main achievements of the
present work is to provide the following ad hoc replacement of A2 in supercritical dimension:

Definition 1.3 (Weak connections in dimension 5). For two L? connection forms A, A" over B> we
write A ~ A’ if there exists a gauge change g € WY2(B®, G) such that A" = g~ 'dg + g1 Ag. The class
of all such L? connection forms A’ is denoted [A]. We denote the class of L? weak connections on
singular bundles over M as follows:

[A]: AcL? FiZdA+AnAc L2
Ac(B®) :=<{ Vpe M ae. r>0,3A(r) € Ag(0B,(p))
5. A~ A(r)

The fact that Ag is the correct function space for the variational study of Y M in 5-dimensions is a
consequence of the following result:



Theorem 1.4 (sequential weak closure of Ag). Let [Ax] € Ac(B®) be a sequence of connections
such that the corresponding curvature forms F) are equibounded in L*(B°) and converge weakly to a
2-form F. Then F corresponds to [A] € Ag(B®).

Definition and Theorem [[L4] are inspired by the slicing approach to the closure theorem for recti-

fiable currents, initially introduced by B. White [50], R. L. Jerrard [26] and used by L. Ambrosio and B.
Kirchheim [2] for their striking proof of the closure theorem for rectifiable currents in metric spaces. The
idea behind this approach is that a current is rectifiable when its slices via level sets of Lipschitz functions
give a metric bounded variation (M BV, for short) function with respect to the flat metric between the
sliced currents.
The closure theorem for rectifiable currents corresponds then to a compactness result for M BV functions,
valid when the oscillations of slices are controlled via the overlying total mass functional for sequences of
weakly convergent currents. This mass-finiteness condition was weakened by R. M. Hardt and T. Riviére
[20], who introduced the notion of rectifiable scans.

In [35] the authors used the ideas coming from the theory of scans for defining the class of weak LP
curvatures over U(1)-bundles and proving the weak closure theorem relevant for minimizing the p-Yang-
Mills energy [,, |F|? in supercritical dimension 3 for 1 < p < 3/2 (see also [28]). This class of weak
curvatures is identified via Poincaré duality with the class of LP vector fields on 3-dimensional manifolds
having integer fluxes through “almost all spheres”.

1.4 The Yang-Mills-Plateau problem in dimension n = 5: a definition of weak
traces

Since an element [A] € Ag(B®) is only assumed to be in L? it seems a priori problematic to define its
trace on OB® in order to pose the Yang-Mills Plateau problem in Ag(B®) and take advantage of the
Sequential Weak Closure Theorem[[.4l To obtain a suitable notion of trace, the following idea introduced
in [32] is used. Consider the slice equivalence class distance

dist([A], [A']) = min{||A — g~ dg — g~  Agllpan : g € WS, G)} .

Consider the boundary connection ¢ as a special slice and impose an oscillation bound for nearby slices.
More precisely, we have the following definition:

Definition 1.5 (boundary trace for B®). For a given connection form ¢ € AM2(S*) we define the space
of weak connection classes [A] over B> having trace in the class [¢] as follows:

[A] s.t. forr 11, r¢N }
there holds dist([A(r,0)],[#]) — 0 .

A% (B®) := Aq(B®) N { (1.9)

where N is a Lebesgue-null set and A(r,0) is the a.e.-defined L? form 77A on S* obtained by pulling
back A via the homothety 7, : S* — 9B,.(0).

The following result whose proof is similar to the one for the abelian case [32] guarantees that Ag (B5)
is the right space on which to define the analogue of (L8]):

Theorem 1.6 (properties of the trace). The classes Ag (B5) satisfy the following properties:

1. (closure) for any 1-form ¢ € Ac(S*), the class Ag,,(B®) is closed under sequential weak L?-
convergence of the corresponding curvature forms F'.

2. (nontriviality) if ¢,7 are 1-forms in Ag(S*) such that [¢] # [¢] as gauge-equivalence classes,
then A% (B%) N AL(B%) = 0.



3. (compatibility) for any smooth connection 1-form ¢, ¥V is a connection of a classical bundle
over the finitely punctured ball E — B>\ {p1,...,pr} satisfying i3 A € [@] if and only if the

corresponding connection form A belongs to A‘é (B5).

Combining now Theorem [[L4] and Theorem we obtain the following, which is one of the main
results of the present work:

Theorem 1.7 (Yang-Mills-Plateau solution in dimension 5). For all ¢ € Ag(S*) there exists a
minimizer [A] € Ag (B5) to the following Yang-Mills Plateau problem:

inf{ FI2: F2ZdA+ AN A, [A] eAg(Bf’)} . (1.10)
B5
The analogous result for the case of G = U(1) was proved in [32] using the result [35].

: ¢
1.5 Naturality of the space Ay,

Our aim now is to establish a regularity result for solutions to the Yang-Mills Plateau problem as given
by Theorem [[.7], corresponding to the regularity result of Theorem in dimension n = 4.

The proof of the partial regularity of solutions to (LI0) goes through a more torough description of
our space Ag(B®) as being the L?-closure of the space of connections which are smooth away from a set
of isolated points. More precisely, we introduce the class

F corresponding to some [A] € Ag (B%) s.t.
R®?(B°) :=< Fk,Jai,...,ax € B>, F = Fy for a smooth connectionV ) (1.11)
on some smooth G-bundle E — B° \ {a1,...,ax}
The strong approximation will occur with respect to the following geometric distance:
distp(F, F') := min{||[F — g~ 'Fgl|r2@s) : g9:B° — G measurable} . (1.12)
We then have the following:

Theorem 1.8 (Naturality of Ag) Let [A] € Ag(BE’) and let F € L? be the connection form of an
L? representative A of [A]. Then there exist curvature forms F}, corresponding to connection forms Ay,
[A)] € R>?(B®) such that

A, — A inL? F,—F inL?.

In particular there holds
distp (Fy, F) — 0, as k — oo .

The strategy of proof of Theorem [[.§is based on the strong approximation procedure that F. Bethuel

introduced for his approximation results [6] for Sobolev maps into manifolds. However recall the fact
that as discussed above, unlike the case of Sobolev maps (where ||dul/zr controls |ul|.=), here ||F| 12
does not control the connection form. Hence the strategy for filling the “good cubes” differs completely
from the one available in the case of Sobolev maps and requires a completely new argument.
Pushing the comparison with the case of Sobolev maps into manifolds further, the corresponding weak clo-
sure result for Sobolev maps in W1?(B™, N™) for instance is a direct consequence of Rellich-Kondrachov’s
theorem, whereas in our case the analogous result, Theorem [[4] for weak connections, required a sub-
stantial amount of work.



1.6 Coulomb gauge extraction result for weak curvatures with small densities

We first improve the result of Theorem [[L§ to an approximation result for Morrey curvatures, reading as
follows:

Theorem 1.9 (Morrey counterpart of Theorem EI0). There exist constants C,e; with the following

properties. Let I be the curvature form corresponding to an L* connection form A with [A] € Fz(B%).

Assume that )

sup —/ IF]? < e . (1.13)
B, (z)

zr T

Then we can find curvature forms Fy, corresponding to smooth connection forms Ay, such that

1B — Fllp2@sy — 0, (1.14)
Ak — Allp2ssy = 0, (1.15)
and .
Sup—/ |F)? < Ce . (1.16)
z,r T J B, ()

We recall that the Morrey norms of a function f are defined as follows:

1 P
Tl asee mny = sup / flP .
H HMa P(B") z€Bn,r>0 rn—ap Bo(x) | |

Thus the above theorem asserts that for curvature forms which are My"*-small on B®, Theorem [[¥ can
be refined to ensure uniform Mg 2 hounds for the curvatures of the approximating smooth connections,
as well as the strong L?-convergence of the connection forms.

Continuing the previous approximation result with the Coulomb gauge extraction method of [31I] for
admissible connections or the one of [44] for smooth connections in Morrey spaces, we have the following
generalization of these results to our space Ag which is clearly much larger than the space of admissible
connections:

Theorem 1.10 (Coulomb gauge extraction in Morrey norm). There exist constants €, C depending only
on the dimension such that the following holds. Let F be a weak curvature corresponding to an L?
connection form A with [A] € Ag(B®) and assume that

1 2 2
— F = || F < .
sup r /Br(z) | | H ||I\/[20a2(Bu) S €

x,r

Then there exists a gauge change g € W12(B° G) such that the transformed connection form A, =
g 'dg + g ' Ag satisfies

d*A, = 0inB°, (1.17)
5}
A —
< ’87’>
1 ! 1
<sup—/ |A|4> + <sup—/ IVAI2> S COlF |2 gsy - (1.19)
@z, T JB,.(x) zr T JB,.(x)

0 on OB® | (1.18)

|
N



1.7 e-regularity result for stationary weak curvatures in Ag(B®)

The main result of [31] together with Theorem [[LT0 gives the e-regularity:

Theorem 1.11 (e-regularity). There exists a constant € > 0 such that the following holds. Let F be a
weak curvature corresponding to an L? connection form A with [A] € Ag(B®), such that for all smooth
perturbations 1 € C§° (B>, A'B° ® g) there holds

d
- F 2
di /]Bs [Faconl

and such that for all vector fields X € C§°(B°,R5) the function ¢; = id+tX satisfies

=0 (1.20)
t=0

d *
rn |¢tFA|2

=0. 1.21
dt Jss (121)

t=0

Assume that )

—/ |F|2 <e.
r BT(IU)

Then F is the curvature form of a smooth connection over B, 3(x0).
Because of the above theorem we can also extend the regularity result of [31]:

Corollary 1.12 (partial regularity for stationary weak curvatures). Let F be a weak curvature corre-
sponding to an L? connection form A with [A] € Ac(B®), satisfying (L20) and (L2I)).

Then there exists a closed set K C B> such that H'(K) = 0 and locally around every point in B®\ K
there exist a gauge change such that A, is a smooth form.

1.8 Optimal regularity result for Yang-Mills Plateau minimizers

Since we work in the natural class Ag (B%) in which a Yang-Mills minimizer exists according to Theorem
[C7 we may then apply Federer dimension reduction techniques and obtain:

Theorem 1.13 (optimal partial regularity for Yang-Mills-Plateau minimizers). Let ¢ be a smooth g-
valued connection 1-form over OB®. Then the minimizer of

inf{HFA||L2(IB5) : [A] c AG1¢(BS)}

belongs to R (B°), i.e. the corresponding class [A] € Ag,¢(B°) has a representative which is locally
smooth outside a finite set.

An analogue of this result was proven by a completely different, combinatorial technique in [33] for
the case of U(1)-curvatures.

The result of Theorem is optimal in the following sense. Recall that in [I9] it was proven that
there exist smooth boundary data for harmonic maps u : B3> — S* such that the energy-minimizing
harmonic map would need to have a bounded from below number of singularities. By a similar procedure
it is possible to find smooth connection forms ¢ on bundles over dB° for which the minimizers of ([LI0)
are forced to have singularities. Therefore in general (even in the case when the connection corresponding
to ¢ does not have nontrivial topology) we cannot expect the minimizers of (ILI0) to be smooth, and
the optimal regularity space for them is thus Rg°(B®).



1.9 Further remarks and conjectures
Note that the requirement (L20) for all n € C§°(B®, A'B® ® g) is equivalent to the fact that the equation
d(+F) + [+F, A] = 0 (1.22)

holds in the sense of distributions. We say that [A] € Ag(B®) is a weak Yang-Mills connection if (L22)
holds in the sense of distributions.

The related works [31], [46], [44] proved regularity results analogous to our Corollary under
stronger assumptions, e.g. requiring the limit connection to be approximable in some sense. Our main
contribution in this direction is indeed the approximability Theorem [[.9] which allows to extend such
results to the space of weak connections on singular bundles Ag(B?).

As a consequence of our strong convergence result as in Theorem we obtain the following

Proposition 1.14 (Bianchi identity for weak curvatures). Assume that A, F are the L? curvature and
connection forms corresponding to a weak connection class [A] € Ag(R®). Then the equation

daF :=dF +[F,A] =0 (1.23)
holds in the sense of distributions.

Take now G = U(n). Observe that in this case we havdl
d(tr(F))=0 in D'(B®),

but if [A] € R°°(B°) then it is not true anymore, as in the smooth case, that the form d (tr(F A F))
representing the second Chern classis equal to zero. We have indeed

k
d(tr(F A F)) =81y dids, inD'(B°),
i=1
where
di:/ tr(FAF)€eZ
aBr(al)

represent the degrees of topological singularities situated at the points ai...,ax. For a general element
[A] € Ac(B®) one can then ask “how many” such topological singularities exist.

Following the procedure of [28], [27] (in which our approximation theorem is stated as a conjecture) one
obtains using the new result of Theorem the following:

Theorem 1.15 (see [27],[28]). If F is a curvature form of a connection A with [A] € Ag(B®) then there
exists a rectifiable integral 1-current I such that

1

where C is a universal constant.

Following the seminal works of Brezis, Coron and Lieb [9] and of Giaquinta, Modica and Soucek [16],
we can define the relaxed energy for connection classes [A] € Ag(B®) in terms of their curvature form F
as a supremum is taken over 1-Lipschitz functions & over B°:

VMo (F) = |F|? + sup {/ dE Ntr(FAF) —
BS

€ te(F A F)] . (1.24)
B |dé|oc<1

§4

I This was not the case for the space of weak U(1)-curvatures F7z(B2) introduced in [35].



In [23] it was proven that the minimization of Y M, over R°?(B%) presents a gap phenomenon
analogous to the celebrated one in the theory of harmonic maps []], [7]. We expect the relaxed energy to
be lower-semicontinuous in Ag(B®), in particular it is natural to ask :

Vo e Aq(SY) is  inf YM,q(Fa) achieved ? .

A%, (B5)
Using the relaxed energy
YMu(F.G) = | [F2+ sup / de A [te(F A F) — (G AG)] |
B |d§|ec <1 JB5

and following the main lines of [39] one should be able to construct weak Yang-Mills curvatures F
corresponding to [A] € Ag(B®) of arbitrarily small Yang-Mills energy and such that the topological
singular set is dense:

spt (d (tr(F A F))) =B5 .

In other words, one should be able to construct everywhere discontinuous Yang-Mills connections.

We may define Ag(B") in a stratifying way : by requiring that A € L?, F € L? and for all centers
z and almost all radii 7 > 0 the restriction i35 (z)A belongs, up to measurable gauge and rescaling, to
Ac(S"71). This definition extends to compact Riemannian n-manifolds by requiring A to be locally
equivalent to a form in Ag(B™).

We prove in a future work [37] that the techniques and proofs of our main results in the present paper
extend to general compact riemannian manifolds and to higher dimension. It is then natural to adress
the regularity conjecture made by Tian [46] for Q-self dual curvatures to our Ag-type spaces:

Conjecture 1 (Tian’s regularity conjecture). Assume Q is a closed differential (n — 4)-form on
a compact n-dimensional Riemannian manifold M. Curvature forms corresponding to classes [A] €
Ac (M) satisfying Q AN F = «F have a singular set of Hausdorff dimension <n —6.

Since Q-instantons belonging to Ag are stationary, up to now we can only prove using Corollary [LT2]
that H" *(sing(F)) = 0. The resolution of this conjecture would be of particular geometric interest on
Calabi Yau 4-folds where © is a parallel form invariant by the special holonomy (see [I3] and [46]).

1.10 Plan of the paper

The paper is organized as follows. In Section 2] we prove the Weak Closure Theorem [[.4

In Section [l we prove an extension of the point removability result in dimension 4 which is analogous
to the result of [48] but relaxes the hypotheses that the connections are Yang-Mills, utilizing instead the
theory from [40] based on lorentz space techniques and on the Coulomb gauge equation. This allows to
obtain compactness result for general sequences of connections, which was not present in the literature
before, and is needed in the proof of weak closure of section

In Section @l we prove the approximation results of Theorem and of Theorem

In Section [l we prove the regularity results of Theorem [LTIl Corollary and Theorem At the
beginning of the section we include a short proof of Proposition [L.T4l

In Section [f] we prove the properties of the trace stated in Theorem

The Appendix [Al is dedicated to a modification of the Coulomb gauge extraction of K. Uhlenbeck [48]
which is needed in Section @l for the proof of the approximation under Morrey norm smallness of Theorem
1.9
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2 Weak closure for non-abelian curvatures in 5 dimensions

2.1 Ingredients for the proof of Theorem [1.4]

We describe here what enters the proof of Theorem [[4] while making a parallel to the works [2] and [20] on
metric currents and scans, which present analogous definitions of weak objects as sets of slices “connected”
via a compatibility condition based on an overlying integrable quantity (in our case this control comes
from the curvature 2-form F'). Our closure result comes from the interplay of three ingredients:

o A geometric distance on sliced 1-forms: for A, A" which are L? connection forms over S* we use
the gauge-orbit distance

dist([A], [A']) = min{||A — g~ dg — g~ A'gllaee) : g € WS, G)} .

This corresponds to the use of the flat distance for the closure theorem of integral currents by
Ambrosio-Kirchheim [2].

e The fact that the above distance interacts well with our energy at the level of slices, which follows
from Theorem [LTl More precisely we have that sublevels of A > ||Fal[z2(s1) are dist-compact.
In [20] a similar interaction occurs between the flat distance and the fractional mass of rectifiable
currents.

e The oscillation control on slices of a fixed weak curvature, obtained via the overlying 2-form F'.
More precisely, if we identify S* by homothety with each one of the spheres S := dB;(z), S’ :=
OBy (2') then the pullbacks A(t,z), A(t',2") of igA, i A satisty

dist([A(t, 2)], [A(t',2")]) < ClIF || 2qas) (|l — o' + |t = '])1/2 .

In 2] the corresponding fact is the interpretation of rectifiability as a bound of the metric variation
of the slices.

We can find L?-controlled connection forms A, corresponding to F),, and obtain a weak limit A
which will be an L? connection form corresponding to F. The main difficulty is to find gauges g in
which the slices iBBT(z)A become V[/lloc2

The above overall strategy is the one which worked in the abelian case G = U(1) as well and was
employed in [35].

We start by identifying the traces on lower dimensional sets 0B, (x¢) with elements of a metric space
(V,dist) where Y = Ag(S*)/ ~ and ~ is the guage-equivalence relation, such that we have a local control
of the Hélder norm of the slice functions in terms of the L?-norms of the F),,. We will use Proposition
2.1 for this.

Mixing a compactness result for slice functions with respect to the distance on ) with the weak
convergence of the A, we will manage to obtain the convergence of a.e. slice to an element which is
gauge-equivalent to an element in A, (S*) as desired.

2.2 The metric space )

To prove the weak closure result for Ag we use a slicing technique. In the definition of Ag we required
that any weak connection have a gauge on each slice in which it is represented by a W2 form. Therefore
we consider the following space of possible slice classes:

V= Ag(s)/ ~, (2.1)

11



where the equivalence relation ~ on global L? connections is
A~Bif3ge WS, G) st. g ldg+g 'Ag=B .

We define the following gauge-invariant function:

W=

“dist”(A, A') := (inf {/ |A—g tdg—g tAg]*: g€ WLQ(S‘*,G)})
S4
For two connection forms A, A’ if ga,gar are W12 gauges such that
B=gy'dga+g,'Aga, B =B=gy'dga + g Aga
then, since A — g~'dg+ g~'Ag is a continuous group action of G N W12 on Ag(S?), we have
“dist”(A, A') = “dist”(B, B') .

“dist” then descends to a well-defined distance dist([A], [A’]) on equivalence classes of connection forms.
Let
[A] = image of A under the projection Ag(S*) — Ag(S*)/ ~ .

The natural metric to impose on ) is the L?-distance between (global) gauge orbits (cfr [12]):
dist([A], [B]) = inf {||A" — B'|| 24y : A" € [4], B' € [B]} . (2.2)

On the metric space (Y, dist) we will study the functional
N:Y =R, N(A4)]) :/ |[Fal? . (2.3)
S4

Note that because the curvature satisfies Fy-14414-144 = g 'F4g and since the norm on 2-forms is

G-invariant, we have that N([A]) does not depend on the representative A employed to compute Flj.

2.3 The slice a.e. convergence

We employ the following abstract theorem. See [20] Thm. 9.1 for the original inspiration. We use
the notation overlapping with the previous section. The goal will be to justify this overlap in notation
subsequently, by proving that the spaces and functions of Section2.2]satisfy the hypotheses of the theorem.

Proposition 2.1. Consider a metric space (Y, dist) on which a function N : Y — RY is defined.
Suppose that the following hypothesis is met:

VC > 0 the sublevels {N < C'} are seq. compact in'Y . (H)
Suppose [, :[0,1] = Y are measurable maps such that
dist(fn(), fa(t')) < Clt = ¢|'/2 (24)
and that )
sgp/0 N(fn(t))dt < C .

Then fn have a subsequence which converges pointwise almost everywhere. The limiting function f also
satisfies

dist(f(t), f(t')) < C|t —t'|*/2, /O N(f(t))dt < C .

12



Proof. We divide the interval [0,1] in ¢ subintervals I of equal length ¢~2. For each n, i, by Chebychev
inequality we obtain

{tezg; N(fa(t)) < qu}‘ -0,

therefore up to extracting a subsequence, by pigeonhole principle we may assume
q C
tell: VnN(fu(t) < e >0.

Consider then
tie (V{Nofu>Cl?}NIL.
neN
Since sublevels of N are compact, up to extracting a subsequence we obtain

Vianv dlSt(fn(t:])vfn+1(t:])) S 2—71 :
Up to extracting a diagonal subsequence
Vivnaqv dlSt(fn(tg)afn+l(tg)) S 27"

In particular, using the uniform hélderianity of f,, and the triangle inequality, we have that for all 7 and
for ¢t € I there holds

dist(fn(t), fasn(t) 27" +¢7"

Since {t}; , form a dense subset of [0,1] we deduce that for all ¢t € [0,1] the sequence {f,(t)}, is
Cauchy thus it has a limit in the completion of ). By Fatou theorem we obtain

1
/ lim inf A(f (8))dt < C |
0 n

therefore for a.e. t € [0,1] the sequence N (f,(t)) in bounded. Since the sublevels of N are compact
in Y, for such ¢ the limit of {f,(¢)}, belongs to J. We define thus f(¢) := lim,, f,,(t) and the desired
properties follow by Fatou’s lemma and by the pointwise dist-convergence. [l

2.4 Verifying the hypothesis of Proposition 2.1]

We verify that we can apply Proposition 1] to our situation, where the goal is to prove weak closure for
the class Ag.

2.4.1 The compactness result ((H])

We start by verifying the first statement of the hypothesis (H]) for Y, N as in Section 2.2}

Proposition 2.2. Let ) be the space of slices as in 1) and N : Y — RT be the norm of the curvature
as in 23). Then N has sublevels which are compact with respect to the distance dist defined in ([2.2).

Proof. We assume that we are given a sequence of curvatures F), corresponding to connection form classes
[A,], such that
[ Fnll2st) < C .

The claim of the proposition is that the [A,] have a convergent subsequence with respect to the distance
dist.
Up to a global gauge change we may assume that the A,, are controlled globally in L? (see Lemma 2.3)):

[Anl[L2s1) S 1 FnllL2(st) -

13



Up to extracting a subsequence we have that
A, =~ Ay ,F, ~F, inL*S").

Step 1. Concentration points of the curvature energy and a good atlas. By usual covering arguments
we have that up to extracting a subsequence there exist a finite number of concentration points of the
curvature’s L?-energy ai,...,an in S*. In other words there holds

Ve > 0,p. ;= liminfinf < p > 0,29 € S*\ UB.(a;) |Fo?>d7>0.
n—o0 B§4(10)

The number N of such points is N < C/§ where C' is the above L?-bound on the curvatures.

Up to diminishing € and p := p. we may suppose €+ pe < pin;(S*) and that the balls B.(a;) are dis-
joint. We can find a cover by the balls Bc(a;) and by finitely many balls B,(z;) such that the maximum
number of overlaps of those balls is a universal constant. The B,(x;)’s will be called good balls and they
will be simply denoted B; below.

Step 2. Uhlenbeck Coulomb gauges converge weakly on the good balls. Using Uhlenbeck’s gauge
extraction of Theorem 3.4 on each B; one finds a gauge g, such that A% = (g!)71dg’, + (¢°) "t A9l €
W12 and such that

d* AL =0, ||ALlwre S| Fallze on B; .

Therefore up to a diagonal subsequence we also may assume that
Al — A" weakly in W'? and strongly in L? . (2.5)
By interpolation since the g/, are bounded in L> we see that
g\, — ¢* weakly in W2 and strongly in L9,Vq < oo .

This strong convergence in L? together with the weak convergence of A,, and of the dg’ in L? implies
Ap = gnd(g7) " + gn AL (gn) Tt = g'd(g) T+ g AN (g) T = Ain D

and by uniqueness of weak limits the A? obtained above are the local expressions of the limit A in the
limit gauges ¢°.

Step 3. Point removability and strong global gauge convergence on good part. By Proposition [B.5] the
gauge changes g% := g/ (g!)~! needed to pass from A! to AJ are controlled in W*2 N Cy. Therefore
up to taking a diagonal subsequence we have for all i, j

g9 — ¢" weakly in W22, strongly in W2 and locally uniformly in C° .

In particular we can apply the gauge extension procedure of the proof of Theorem both to g%
and to g% on balls covering any open contractible subset /9°°? in the complement of the bad balls
Be(ay),...,Bc(ay), obtaining gauge transformations g9°°¢ g9°°¢. We recall that in this process we

multiply gauges by the constants g%j then truncate the error terms (gff )"tg¥ away from B; N B;. We
note that up to extracting subsequences we may assume (by compactness of G and finiteness of the balls
intersecting U/9°°?) that the constants involved also converge:

gi — g4 .
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This implies together with (ZX) that on U9°°¢
ggood(An) N ggood(A) in LQ(Ugood) )

Step 4. The bad part’s contribution. The last part of the proof consists of noticing that by diminishing
¢ and by letting U9°°¢ increase to a set of full measure, we may find gauges gf = (g9°°?)~1g9°°¢ such
that

1
gﬁ)_ldgs + (gﬁ)_lAngs — A in L? outside a set of measure T
By extracting a diagonal subsequence we obtain g,, such that
9 dgn + g, Angn — A'in L*(S") .

Therefore
dist([4,],[4]) = 0,

as desired. 0

2.4.2 The second hypothesis of Proposition [2.7]

We now assume given a sequence of weak curvatures F,, corresponding to [A4,] € Ag on B® which are
bounded in L? and converge weakly in L? to a 2-form F. For a fixed center xy € B® and for a radii
t € [r,2r] with r > 0, the slices of the connections A,, via spheres 0B;(x¢) are defined and taking values
in Y for a.e. ¢t by the assumption that [A,] € Ag. We then define (classes of) functions

Failn2r] =Y, falt) = [igBt(Io)An} .
Notation: We denote A(s) the slice along 0Bs(wo) i.e. the pullback of i35 (, 1A to S* via the homo-
thety S* — 0B (z0) when it exists.
We verify that the f,, satisfy the hypothesis ([2.4I):

Lemma 2.3. Assume that Fis the curvature form corresponding to [A] € A and choose a representative
A which is L? on Ba.(x0)\ By(1o). Then there exists a gauge change g such that A’ := g=*dg+ g~ 'Ag
has no radial component and such that for a.e. t >t € [r,2r]

1
[ 140 - 2@)F < e 7 (2:6)
St r Bi(20)\ By (o)

for a universal implicit constant.

Proof. We will assume xg = 0 for simplicity. Note that

t t
[ 1A Bt = [ [ 1pis, APodpd
v sty

Solve the following ODE in polar coordinates:
apg(wap) = _Ap(wap)g(wap)a for [S [t/at] )
g(w,t') =id, for all w € S* .

It then follows that for A’ = g~ 'dg + g~ Ag there holds

T

714;6 = A; = 0 5

k
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therefore at (w, p) we write
Zxkg_leig = ZxkakA; - ZxkaiA% + Zxk[ ;C, ;] = ap(pA;) .
k k k k

In other words
PO (97 F9)oB.(x0) = p(pitp,A') -

Integrating in s we have for a.e. ¢ > t’ and then in w we obtain

% / ! % 112
/ tizgp A —tisp, A" = /
S4 S4

< ft—t Pl FP
S%x [t,t]

t 2
/ pd, (g~ Fg) dp
t/

We used Jensen’s inequality and the fact that the norm is G-invariant. Note that for w € S* there holds
A'(s)(w) = sipp A (sw) ,
therefore from above it follows

/WA@fAWWs
S4

[t —t'|

) Jp.B,

[FJ? .

Since ¢’ > r the thesis follows. O

In the end the functions f,,(¢) which will satisfy ([2.4]) in our situation will be the slice functions of the
connection forms A, (¢) in the gauges given by Lemma 23] Note that as a direct consequence of Lemma
we have also

~

F, F,
st (A (0], (a0 § 112020 e Wby, e (2.8)

2.5 Proof of the Closure Theorem [1.4]

We consider a sequence F,, corresponding to [A,] € Ag(B®) as in Theorem [[4] and we construct

representatives A, such that
[ap<c [ mp,
B5 B5

like in Lemma We thus have that up to extracting a subsequence there holds
A, — A in L*(B%) . (2.9)

As noted above it suffices that for all centers 2o and a.e. radius ¢ > 0 the homothety pullback to S* of
the slice i35 A of the limit connection form A is in Ag (S*) or equivalently corresponds to a class in V.
Fix xo € B® and a range of radii [r,2r]. It is sufficient to prove that

ae. s€r2r], A(s) € Aa(S?) . (2.10)

We will assume for simplicity that zo = 0 and we apply Lemma 2.3 obtaining new gauges for the A, in
which (28)) is valid. From now on we are going to work in these gauges only. For simplicity of notation
we still denote the expressions of the A,, in these gauges by A, . Note that we still obtain the control

| Anll2(Bo\B,) S 1 Fullz2
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if in the proof of Lemma 23] for A = A,, we replace the ODE ([Z7) by
99w, p) = =(An)p(w, p)g(w,p), for p € [s,1],
g(w, s) =id, for all w € S* .

for s such that A, (s) satisfies
1
[An ()2 < ~lFnllze -

Thus we may still suppose that (29) holds on Bs, \ B,. We next prove that in this case we have a
stronger convergence:

Lemma 2.4. Assume that for a sequence of connection forms A, € L*(Ba, \ B,, N'R% ® g) there holds
1An () = An(t) | L2se) < Clt — '}/

and that
A, =~ A  weakly in L? on Bo, \ B, .

Then there exists a subsequence n' such that
for a.e. s € [r,2r] there holds A, (s) — A(s)  weakly in L*(S*) . (2.11)

Proof. The weak convergence hypothesis means that
/An/\ﬂ%/A/\ﬂfor all B € L*(Ba, \ B, N*R° ® g) .

Consider an arbitrary 3-form w which is L? on S* and a test 1-form ¢(t) on [r,2r]. By taking

B:=hiwA@(t) where h; : S* — 9By is a homothety

/T2T /84 Ap() Aw A p(t) = /TQT /S4 At) Aw(z) Ap(t) .

£0) = [ An) nw,
§4
then from the first hypothesis it follows that

() = £ ()]

we obtain

If we use the notation

[[An(t) = An(t) 22 ||l 2
Clt —t')"?||w|| g2 .

IAIA

By Arzela-Ascoli theorem the f& have a subsequence which converges uniformly to a 1/2-Hélder function
with the same Holder constant:

sup [f,/(t) — f(H)| = 0.

te[r,2r]

By applying this reasoning to a countable L?-dense subset D of w’s in L?(S* A3TS* ® g) and by a
diagonal procedure we obtain that

Yw e D, sup |f2(t) — f()] —0.

te[r,2r]

Since the functionals w — [ A, (t) A w are strongly continuous on L? forms for a.e. t, we obtain that
the above convergence holds on all w € L?, completing the proof. [l
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We are now ready to conclude the proof of the weak closure result.

End of proof of Theorem[I.): Consider the global weak limit connection form A € L?(B%). As said above
we prove that a.e. slice of it is in Ag(S*) by considering separately the groups of slices with center zg
and radii in [r,2r]. We assumed 2y = 0 for simplicity and we obtained that the A, have a weakly
convergent subsequence on Bs, \ B,., therefore we may apply Lemma 2.4l We obtain up to extracting a
subsequence the slicewise a.e. weak convergence ([2.11]):

for a.e. s € [r,2r] there holds A, (s) — A(s) weakly in L*(S*) .

Note that in this case the slicewise weak limit A(s) is indeed the slice of the limit connection.

On the other hand we saw in Section 4] that the hypotheses of Proposition 2] are verified for our
A,, therefore we also have up to another subsequence extraction

for a.e. s € [r,2r] there holds [A,(s)] — [A%(s)] in (I, dist) .
We have now to compare the slice A(s) of the weak limit with the dist-limit of slices A9(s). Since

: d _ : -1 -1 d
dist([An(s)), [A°)) = dnf 97 dg 497 An(s)g — A%(s) 22

we obtain a sequence g,(s) € W12(S*, G) such that
Gn(8)71dgn (5) + gn(8) "L An(s)gn(s) — A%(s) = 0  strongly in L? . (2.12)

It follows that
ldgn ()2 S NA%(S) 2 + ([ An(s) ] L2 -

From

[An(t) = An(t) 2 < Clt — ']/
and from the fact that for all n there exists s € [r, 2r] such that
[An(s)llz2 S [Fnll> <C

it follows that A, (s) is bounded in L?. Thus dg,(s) is also bounded in L?. Thus up to extracting a
subsequence (dependent on t)
dgn(t) = dgeo(t) weakly in L? .

Since g, (s) is also bounded in L we obtain by Rellich’s theorem and by interpolation that up to
extracting a subsequence n(t)
In(t) = goo(t) in LIV < oo .

The last two facts together with the convergence A, (¥) R A(t) suffice to prove that
gn(O)T An()gn(t) = goo(t) T A(t)goo(t) in D'(SY)
gn()"dgn(t) = goo(t) " dgeo(t) in D'(SY) .
This is valid for a.e. ¢ € [r,2r]. Therefore
AYt) = goo(t) 1 dgoo(t) + goo (1) L A(t)goo(t),  for ave. t € [r,27] .
Since A%(t) € Ag(S*), this shows that for a.e. ¢ the slice A(t) of the limit connection form A belongs

to Ag(S?), as desired. O

18



3 Coulomb gauges and point removability in 4 dimensions

In this section we prove an improved point removability result based on [40)].

3.1 Uhlenbeck Coulomb gauge
In [47] Uhlenbeck proved the following point removability result:

Theorem 3.1 ([47], Thm. 4.6). Let V be a Yang-Mills connection in a bundle P over B*\ {0}. If the
L? norm of the curvature F' of V 1is finite, then there exists a gauge in which the bundle P extends to a
smooth bundle P over B* and the connection V extends to a smooth Yang Mills connection V in B*.

We recall that for a connection which in local coordinates is written V = d + A, being Yang-Mills
means that the curvature F' = F'4 satisfies in the weak sense

d3Fa=0. (3.1)

The regularity theory of Uhlenbeck allows to prove that W12 Yang-Mills connections d+ A on trivial
bundles are smooth up to a gauge change in the balls B,(x) such that [, (@) |F|? < €y for a constant
P

€o independent of A, F'. This uses the regularity theory for the nonlinear (in A) equation (B1), which
when I’ does not have much energy and A is in Coulomb gauge can be seen as an elliptic system.

Therefore the main step in the proof of Theorem [Blis the proof that we can find a global gauge ex-
tending over a neighborhood of the origin, in which the connection is W2 so that the elliptic regularity
can be applied. In Uhlenbeck [47] the elliptic regularity of equation (B]) is used on B\ {0} in order to
provide the needed estimates on concentric annuli. We will describe here how to proceed without this
regularity.

Using a result from [40] we obtain that the analogue of Theorem Bl holds without the assumption
that [BJ) holds. It appears that this result is not present in the literature, although it is hinted at in [4].
We will prove the following

Theorem 3.2 (Point removability [47] with no Yang-Mills assumption). Let V be a W12 connection in
a bundle P over B*\ {0}. If the L*> norm of the curvature F of V is finite, then there exists a gauge
in which the bundle P extends to a smooth bundle P over B* and the connection V extends to a W2
connection V in B*.

Theorem allows to prove weak compactness for sequences of W12 connections with curvatures
bounded in L?, again removing the assumption that the limit is Yang-Mills present in [42], [12]. The
strategy in the paper [42] was to consider minimizing sequences A, € AY?(E) for the Yang-Mills func-
tional and prove that their connections converge locally weakly in W2 while the curvatures converge
locally weakly in L?, outside a finite set of “bad points” where the curvature energy density concentrates.
This allowed to obtain that the limit (which corresponds to a Yang-Mills minimizer) is Yang-Mills outside
those points. The point removability theorem [B.I] which worked under the Yang-Mills assumptions then
provided a way for extending the limit bundle and connection over each bad point. Note that here is the
only instance where the assumption of having an energy minimizing sequence was used in [42]. We can
thus use our improved Theorem to immediately obtain:

Theorem 3.3 (Bubbling [42] for general sequences). Assume that A, € AY2(E) on a smooth bundle
E over a smooth compact Riemannian 4-manifold M . If ||Fa,l| 2 < C for all n then up to extracting
a subsequence we have that A, converge locally weakly in W12 to a connection Ay € Al’Q(E) over a
possibly different bundle.

19



3.2 Coulomb gauges and Lorentz-improved regularity

We recall that the connection form A and the curvature form F' are related in local coordinates by the
distributional equation F' = dA 4+ A A A. Recall that by Hodge theory the differential DA is controlled
via dA and d*A. It is then heuristically clear that if we desire a control on DA via the curvature we
must therefore have some restrictions on d*A. The estimates coming from the nonlinear elliptic system
corresponding to d,d* replaces the control via equation (B]) as used in [48]. We recall the celebrated
result of K. K. Uhlenbeck which is our starting point.

Theorem 3.4 ([48], Thm. 1.3). There exists a constant ey as follows. Assume that d + A is the local
expression of a connection of a trivial bundle E — € over a compact Riemannian 4-manifold Q0 such
that A € Wli)f and the curvature F := Fy salisfies

/Q|F|2 <ep . (3.2)

Then there exists a gauge g € VVZQOCQ(Q) such that the transformed connection form
Ay =g dg+ g~ Ag

satisfies

d'A;=0 on Q

and is controlled by the curvature:

/Q DA, + </ﬂ |Ag|4> < c/Q P2 . (3.3)

This result allows us to find controlled gauges in concentric dyadic annuli around the origin. To patch

together the gauges of two overlapping annuli we use the following result, for which we use the techniques
of [40] Thm. IV.1.

Proposition 3.5. , Suppose that A and B = g~ 'dg+ g~ 'Ag are connection forms corresponding to two
gauge-related connections belonging to AY?(E) where E — Q is a trivial bundle over a domain Q C R*
such that

d*A=d"B=0.

If A,B € WY2 then the gauge change g is W22 N C°. Moreover for some g € G we have the bound
lg = gllzerwz2 < [Alfe + 1Bl - (3.4)

Proof. From
dg=gB—Ag,

since multiplication is continuous from W% x (W2 N L) to W2 L*%2) it follows that dg €
W2 — 42 and
ldgllpas S [|Allwre + [ Bllwre -

From the above equation and using d*A = d*B = 0 and identifying 1-forms with vector fields we obtain
Ag=d'dg=dg-A— B-dg,
where both terms are products of elements of L(*2?) therefore belong to L(*1). We have

1Ag]l L < ldgllLaa (1Al Lan + 1Bllan) S HAIT @ + 1Bl -
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By the continuous embeddings W21 — Wh1) <y 1,50 valid in 4 dimensions, we obtain

g = GllLerwz2 SNANG @ + 1BllF @ = (%),

where § is the average of g done in the space RV, N = k x k in which the manifold G is embedded as
group of matrices. Since g € G a.e., we also have

diSt]RN (ga G) 5 (*) )
therefore there exists g € G such that
lg = gl < () S 1A%z + Blifye

as desired. Note that W2 connections in 4-dimensions can be approximated by smooth connections in
W2 norm (see Lemma [£4] ). By applying the above result on balls B,(z) with p — 0 for a.e. =, we
obtain that g € C° too. O

Notation: from now on we denote by Sj the spherical shell By 2x \ By-2x-s.

Lemma 3.6. There exists a constant 6 > 0 such that if fSk |F|?> < 6 then the bundle E is trivial over
Sk and there exists a gauge g over Sk in which the connection corresponding to F' is represented by a
W2 form A which satisfies

d"Ar =0, [[DAklz2(s,) + [ Akllacse) < I1F(IL2s,) - (3.5)

Proof. Without loss of generality let k& = 0, because the norms of F', A and DA appearing in (B35
have the same scaling. We cover Sy by two charts Uy, U_ which are tubular neighborhoods of opposite
half-shells. In U4 the connection has the local expression A4 . Since the bundle is trivial over Uy we
can apply Theorem B4l and up to a change of gauge A satisfies (B.5]).

On U, NU_ there exists g such that A, = g~'dg + g~ 'A_g. By Proposition we have that
g € CY and for some § € G there holds

lg — gl < 0% (3.6)

in particular it is not possible for g to realize a nontrivial homotopy class [UyNU_, G], provided §? < Cg
for some Cg depending on the topology of G. Therefore it is possible to extend ¢ in a Lipschitz way
over U_ and we find a global trivialization over the whole of Sy. Applying Theorem B4 again we find

Ap as in [B3). O
3.3 Proof of Theorem

Proof. The bundle is non-smooth just at the origin, therefore we may work replacing B;(0) by a ball
B,(0) with p > 0 on which [, |F|*> < . In other words we don’t loose any generality if we assume
P

fBl(O) |F|> < §. We fix § later, but it will be smaller than the constant § of Lemma and than the
constant ey of theorem [3.41

We apply Lemma and we start with the connections Ay defined on Sy and satisfying (3.3). On
each Siy1 NSk there is a gauge change g such that

Agy1 = g5, g + g5, Argr - (3.7)
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By Proposition 3.5l there exist g, € G such that

gk — GrllLorwz2 S | Aklfe + | Ak ll5e - (3.8)

Now we propagate the gauge along the increasing Sy’s. In order to cancel the contributions of the
approximating constant gauges gy, we define for example A; = goA17, 1 — Jo LAy = Jo Lo go(Ay).
This means that A; differs from Ay on S; NSy just by a small gauge. Similarly define

k—1
Ak = Bk(Ak), hk = Hg:l .
1=0

We use theif_lk 's as a reference to define a global gauge. Define g on Ski1 N Sk to be such that
A1 = gr(Ax), ie. _ _
Gk = hi ‘g tgeh - (3.9)

The g ’s are better than the g;’s because they don’t contain the gauge jumps gi. From (B3] and (33,
by multiplying by constants, i.e. by isometries of G, we have

Hgk - id||L°°ﬂW2’2(SkﬁSk+1) = ||gk - §k||L°°ﬂW2’2(SkﬁSk+1) (3'10)

[ore [
Sk Sk41

Next extend gy radially on S, := By-2x-3s \ By-2t-14 and on S} := By-2r41 \ By-2r. Call this extension

i Note that
Z/S |FI> <6 . (3.11)
k

k>1

Because of BI1)), (BII) and because the radial extension is tame enough there holds:

A

H:gk - id”LwnW“(S;uS,j) <.

Let § be small enough so that ‘gr. = expiq(@r), 19kl Lo w22 (s ustus,) ~ 19k = il peqwz2(s - ustus,) -
This is possible because eXpZ-_d1 is well-behaved near the identity.
We create a family of cutoff functions similar to the one used in Littlewood-Paley decompositions. Con-

sider a function 7(r) which is smooth, decreasing, equal to 0 for » > 2 and to 1 for » < 1. We can
assume |n'| < 2. Then define . (z) := n(22*|x|) — n(2%+*|z|) and consider @y, := Yrpr. We have

@kl < llorllzooesry
1D*@kll: S 1D*¢kllpese) + ldvellLallder | pasey + D> Wrll L2 llkl oo st
<

H‘PkHL“ﬁWZvQ(S’V) .

By extending §j via exp(@y) we obtain a continuous extension of g on Sy US, US;" which still satisfies
the same estimates as gx. Use the notation . We then define on B*\ {0}

A= Hgk .
=0
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Since g is nonidentity on at most 5 dyadic rings, this product has locally finitely many factors different
than the identity therefore it is well-defined. We also have that since W22 N L™ is an algebra

1A= idllLonw228, voy S Y 19k — idllLeawz2(n o))

k>k

S Z gk — z'dHLoomvvm(Skus,;us,j)
k>k

S D gk — idll Lenwea(sy)
K>k

s > e
k>k S

In particular we see that A — id at zero, therefore the bundle extends, as desired. We must now prove
that in this gauge the connection form A is W2, Recall that if the gauges would be chosen all equal to
gr then the connection would become Ay on S, and this is just a constant conjugation of the original
Ay, as in [B3). Since the cutoff parts g5 on S, U S,': are controlled in W22 N L still by the right hand
side of ([B9) we obtain using [BI1]) and the fact that the g have similar estimates as the g that

1A S 3 (18 asy) + 198D aq ) + 106D a6 )

k>0

< Y (1A Bagsy + 18612 me0s ) + 1813251 )
k>0

S Y Akl asy + D0 Aklvras,)
k>0 k>0

< 6462,

In the last passage we used (B.I1) and the inequality between ¢? and ¢*. This concludes the proof of
Theorem B2 O

4 Approximation of nonabelian curvatures in 5 dimensions

In this section we prove the fact that weak curvatures F corresponding to classes [A] € Ag(B°) can
be strongly approximated up to gauge by smooth curvatures on bundles with finitely many defects. We
consider the class

F curvature form s.t. 3k,3aq,...,a, € B®,
R (B°) = F = Fy for a smooth connectionV . (4.1)

on some smooth G-bundle E — B° \ {a1,...,ax}

4.1 Approximation on balls with small boundary energy

In this section we prove the extension result which will help to define our approximating connections.
We consider the scale 7 = 1.

Proposition 4.1. Let F € L?(B3, A\’2R° ® g) and A € L*(B3, A'R® ® g) be such that in the sense of
distributions

F=dA+ANA onBj.
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Fiz also a constant F € N’R® ® g and a constant A € N'R® @ g. There exists a constant ey > 0
independent of the other choices such that if

/ F? < e, / A2 < o, AP < €
S4 S4

then there exists A € L2(B3, A'R5 @ g) and §: B®> — G such that:
o it A=i%A and A= A outside B,
e §(A) is smooth in the interior of BY,
e there holds
IdA+ AN A = FlZams) S col(lFlZams) + 1 FlIZan) + I1F = FllZas) - (4.2)

and . - -
I|A — AHLZ(B:,) <C||A- AHL2(§4) . (4.3)

Moreover we have that

o If e Ag then Fj € Ag,

o If U; C B is open and iga A is continuous on U; N S* then A,[] are continuous on U; NBY .
Proof. Step 1. Coulomb gauge on the boundary. Let g be the change of gauge g given by Theorem [A.T]
such that ) )

{ diam(Ag) = dsu (g~ 'dg+ (9" Ag)) =0,

| Agllwrzty < C(I1F |2ty + | All2(st)) -

From the equation defining A,, namely

(4.4)

Ag=g 'dg+g Ay,
we obtain (in our notation we identify 1-forms and vector fields using the metric)
Asig = dsa(gAg — Ag)
= dg-Ay+ (g —id)ds Ay + dsu A,
A (A~ A)g] - d2u[A (g — id)] — d3u A

— dg Ay + (g — id) dsudy — da[(A— A)g] — d3ulA (g — id)] +
5
+d§4 <Z 7:§4d1'k f <'L§4 (121 — Ag), 'L§4 dl'k>>
k=1 st
= dg-Ag+ (9 —id)ds Ay — dsa[(A — A) g] — dga[A (g — id)] +

5
55 o ][ (2 (A — g~ Ag), itaday) |
k=1 S

where in the last row we used the fact that [y, (i% (9 tdg), i%idxy) = 0. Note that if g is the average of g
on S* taken in R®, then using the mean value formula there exists x € S*such that |g(x)—g| < C|lg—g|| .2
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and up to changing ¢ to ggo where gy is a constant rotation, we may also assume g(z) = id. Now
by elliptic estimates and using the embedding W~? — L3 and the Hélder estimate |[ab|| s <
llal|L2]|bl| L2 we deduce:

ldglliz@y < NdglZzllAgllTs + llg — il sl Al 74

A= AL + llg — id|Za [ AlIZz + 1A — AllZ2llg — idlZ- -
Utilizing the Sobolev inequality ||g — id|| s+ < ||dg||z2 and the facts that

14glZs < IFIZ: + 1Al

~

<605

~

IAlZ, < e,

we absorb the terms not containing A — A from the right hand side to the left hand side. For ey > 0

small enough we thus obtain B
1dgl|L2ss) < CllA = Al 2. (4.5)

We have using (@) and the fact that F' is constant
g g Fg — i P[P <4 [FP? | |g—id’ < o |[Fll72s3) -
5 5 2
Since Fa, = g~ ! F g, using the previous identity we obtain
/S4 |FA9 - ’L§4F|2 5 €0 HFH%z(B&S) + /S4 |F — ’L§4F|2 . (46)
Using now the last line of (£4) we obtain
|[Fa, —dAg* < A" SIF L2 + 1ALz 51 -
st st

Combining this with (6] we obtain

folddy — 5P S o [FWaggey + foo|F— i2u T4 .
HIF N2y + 1A 22 (s -

Step 2. Estension to the interior. For any 1-form 1 in W12(S*) we denote by 7 the unique solution
of the following minimization problem

inf {/m |dC|? + |d*= C|? dz® C € WEA(A'B®) O = n} : (4.8)
A classical argument shows that it is uniquely given by
d*= 7 =0 in B® ,
d*=(dn) =0 in B, (4.9)
e on OB° ,
and one has

723 @s) < ClIVAllwsrzz@s) < C llnllwizss) - (4.10)
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Let
€Ty dl‘j — Iy dSC,L

B:=) F; R (4.11)

i<j

Observe that
{d*R5BO in B® ,

d*= (dB) =0 in BS .
Thus B is the solution to (&S] for its restriction to the boundary : %, B
i2,B=1 .
Observe that < B,dr >=0 and d*z* B = 0 therefore

d*s* (iZ.B) =0 on S* . (4.12)

—~—

We apply the same extension technique 7 — 7 to n = m(A,) obtaining a 1-form m(A,) satisfying the
analogues of (£9). We also define the constant 1-form

5
Ay = day ][S (Ay,idadry)
k=1

and we note

Ay =n(A,) + 4,

Step 3. Estimates on the extended curvatures. Note that dm(A,) = dA, since A, is constant. Using
(@3, @I2) and (@) we have that by Hodge inequality

I7(Ag) = i3 Bll3y12 gy < C faa ld(m(Ag) — i2:B)[?
= Jgu ldAg — i F]? < C e ||F||2L2(1535)+ (4.13)
+C fou [F - ZS4F|2 +C ||F||L2(S4) +C ||A||L2(S4
Combining now ([@I0) and (£I3) we obtain
|dA, F||L2(]BS5) = ||d7T( 9) — F||L2(IB%5)
< C Jguld(Ag —igB)? < C eo IF|[72(ps+ (4.14)
+C f§4 |F = ZS4F|2 +C ||F||L2(S4) +C ||A||L2(S4
Using (I0) again, we obtain
14g A Agliees) S I AglLas) < I1Agllivrzsey < CIF 2@ + C Al L2 - (4.15)
Combining ([@I4) and [@IH) we obtain
||dAg+A~g/\A F||L2 @) < Ceo ||F||L2(Bo

) (4.16)
+C f§4 |F_ZS4F| +C ||F||L2 0) + C ||A||L2 0)
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Step 4. Correcting the restriction on the boundary. Extend now g radially in B® and denote by § this
extension. We have using (L0

f]Bss |§_1F§ - F|2 <4 |F|2 fmaf) |9 — id|2 dx®
. - - (4.17)
< C ||FHL2(]B5) fg4 |g - ld' < C €0 ||F||L2(IB5) '

Combining ([@I6) and @IT) gives
|‘dAg =+ Ag A\ /[g — §717§||2L2(Bs) S C €0 HF||%2(IB5)+

+C Ju|F = i3 F2 + O || Fl[ oo + C 1Al Lo, -

Denote A := (Ag)g—l = g/igg—l +gdg~'. Observe that with this notation one has

Fi=§Fa, g "

This one form A extends A4 in B? , there is a gauge in which it is smooth and we have the desired estimate

[@Z). Note also that i%[A = i%(Ay);1] = (5 Ag)y-1 = i%A. Then define A = A, = g outside BP.

Since ig, (/1 — A) = 0 we obtain via integration by parts that the distributional expression of F; is L?.
Step 5. Verifying the compatibility conditions. We notice that if i%, A is C° on U; N'S* then so is any
of its Coulomb gauges g by Proposition .2 below and thus the radial and harmonic extensions 121, g are
continuous up to the boundary, verifying our second compatibility statement.

For the first statement, suppose given S = 9B(x,p) such that i§A € Ag(S), itF € L?. Define
St :=SNB>. Consider a local W2 gauge g; on a chart U; of S intersecting S+ such that g (zg+/1)
is W2 on U;. Then g;g~'(A,) is W12 on U; NS and has the same trace as g;(A) on 9S*. Thus
gi(fl) is also W2 on the whole of U; as desired.

Step 6. Verification of ([@3)). We now use the formula for A from the previous step, as well as the
estimates ([LI0) and ([£3) to prove the following sequence of estimates:

IA - Allfa@sy < |dg1* + 11§ — id|| )| A = AgllZaas)
IBS
S (o) (Idgllfeny + g — idlaen)
< A=Al -
This concludes the proof. (I

The following result was used in Step 5 above:

Proposition 4.2 (|27] Prop. 3.4). , Suppose that B is a smooth connection on a 4 -dimensional manifold
M and that Ac = g~ 'dg+ g~ 'Bg is a W2 Coulomb gauge then also g (and thus Bc ) is smooth.

The proof of the above proposition goes as follows: by Lorentz space theory (see [40]) we obtain
that if Ac, B € W12 d*Ac = 0 then g € W22 N C° (this is analogue to the 2-dimensional Wente
lemma). This regularity for g allows to apply classical elliptic theory to the elliptic system issued from
d*(g7tdg) = d*(g~tAcyg) and to conclude by bootstrap.

4.1.1 Approximation under a smallness condition on F only

In this section we state a modification of Proposition 1] which can be applied when only a bound on F
and not one on A is available. This modification will prove useful for Theorem [[L9
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Proposition 4.3 (modified version of Prop. ). Let F € L?(B3, A\’R° ® g) and A € L?(B3, A'R® ® g)
be such that in the sense of distributions

F=dA+ANA onB.

Fiz also a constant F € N’R° ® g. There exists a constant eg > 0 independent of the other choices such
that if

|F|2 < €
S4

then there exists A € L2(B3, A'R5 @ g) and §: B> — G such that:
° i§4121 =i A and A = A outside B,
o G(A) is smooth in the interior of B,

e there holds L
1A + AN Al agge) < 1FI3agen (418)

and .
Al L2@s) < IF[1 720y + 1ANI7 261y - (4.19)

Proof. We follow the proof of Proposition 1.1l with slightly less refined estimates.
Step 1. Classical Coulomb gauge on the boundary. Let g be the Coulomb gauge as constructed by
Uhlenbeck [48], i.e. such that

{ d5aAy = d(g~ dg + 9" Ag) =0,
[Agllwr2sty < ClIF | p2(sty -
We deduce using the definition of A, that

ldgll3zgey < € (1 4gl3agny + 14320y ) S IFIZ2en + 1Al 2n) -

Steps 2-3. Estimates for the extensions. We define B as in Proposition 1] and flg will be the similar
extension of A,. By elliptic and Hodge estimates using the fact that d%, A, = 0 we obtain
1dAgll 2%y S 1117 2(s1)

and
1Ag A Al L2(gs) < ||f‘~1g||i4(135) S Al Tasey S €oll Fll72ey -
These estimate give
15, 12260y S IFII72s1) -
Step 4. Correcting the extension on the boundary. We consider the harmonic extension g to g. Note

that W1H2(B® G) is the strong Wh?-closure of C*°(B°, G) since m2(G) = 0, therefore the extension
exists and is smooth. We also have the estimates

19— idll72gs) S 143017250y S 1dgll7aey S NF T 2gey + AT 2y -
thus if we define A = g[lgg—l + gdg~" it follows that

A 2y S IAgll72ms) + 149117 2css
S IF N 2@y + 1A 720 -

28



4.2 Smoothing in 4-dimensions

Before applying the above extension result we will always use the following classical result for p =2,n =
4, X =St

Lemma 4.4. Let p >n/2 and let A be a W1P connection over an n-dimensional manifold X . Let K
be a (possibly empty) compact set on which A is C°. Then there exists a sequence A, of C° connections
over X such that A,|x = Alx and

Tl]l_}r% ||A77 — AHWl,p(X) = 0 G,’Ild Tl]l_}r% ||F‘Ay7 — FAHW1,p(X) = 0 .

Proof. If we had just functions f, f, : X — A'R" ® g in our statement, then the result would be classical
(even without the restriction on p) and it would suffice to mollify f in order to obtain approximants
fn = f * py where p, is a scale-n smooth mollifier.

The problem which we face is just the fact that A is not globally defined: we have instead local expressions
A; in the chart U;, and we must mollify A; to A;, for which A4, = gigldgij + giglAjmgij = gi;(Aj)
are still true. We use a partition of unity (6;); adapted to the charts U; and define p,(x) = n,"p(x/1:),
where 7, := min{n, dist(z, K)/2}. Then we define

(Ay)i = 0;A; * p, + Z i gis (Air % pyy) -
i Ai
By the cocycle condition g;igi; = gi; we obtain the desired (A4,); = ¢i((Ay);). The derivatives of 6;
enter the estimate of [|A, — Allw1.»(x) introducing a possibly huge L> factor, however this factor is
independent on 7. We therefore have lim, o ||Ai, — Ai|lwre = 0.

The restriction on the exponent p is needed in to prove the convergence of curvatures. This is based on
the following inequality:

|[Fa— FgllLe ldA —dB||rr + [[(A— B) A Allzr + ||(A— B) A Bl|r

<
S I1DA= DBt + [|A = Bllz2r ([ All 2 + 1Bl 2») -

We are able to conclude using the WP -convergence of the A, because we have the Sobolev embedding
WP s L2P valid precisely when p > n/2. We leave the details of the proof to the reader. O

4.3 Good grids and good balls

In order to detect the regions where to apply the approximation step of the previous section we con-
struct controlled families of balls which depend on F' and on its L? connection A and are used for the
approximation.

4.3.1 Good grids

We thus define our basic object:

Definition 4.5. Assume that A C R® is a discrete set and 1 < o < 2 is a constant such that the balls
Bi(p),p € A cover R® and for each p € A the only ball of the form Ba(q),q € A covering p is the one
with ¢ = p. Fiz a scale r > 0. A collection of balls B; = B,.(x;) with r; € [r,ar] and {z;} = rANB°
will be called a grid of balls of scale 7.

A, a €]1,2] as above can be found, e.g. we may take A to be a body-centered cubic lattice:

A=p"1[22°U((1,...,1) +22%)], a€]1,2/8], Be]V5/2,2[.
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a, A will be fixed from now on; their only role is to ensure that for any choice of r; in the allowed the
balls of the grid cover B®. We can choose the r; above such that a good control on the boundary of our
grids is available:

Proposition 4.6. Let F € L*(B°, A\’2R5®¢) and A € L?*(B®, A'R°®g). For each fived scale r > 0 pick
the finitely many radii r; € [r,ar] uniformly and independently at random.

There exist a constant C' depending only on the dimension and a modulus of continuity o(r) depending
only on F such that at fized r the following hold with positive probability:

r F2§C/ F? 4.20
§ij/aBi| F<c ) Ik (420)
r A2§C/ AP? 4.21
§ij/aBi| Fsc 1 (421)

and, with the notation F; := {, @ F
r |F — ;> <o(r), (4.22)
X

r;/m |A =42 <olr) . (4.23)

Proof. Since the annuli B, (2;) \ Br(2;) can be divided into N families having no overlaps we obtain

/ (Z / |F|2> dp S 1F o
T i OB, (xi)

therefore for randomly picked r; € [r, ar]

r rasyralk
> /a - 2 e

with probability > 1— X, where C' depends on X, which in turn will be fixed later. This will give [£22)),
(#23). The same reasoning can be applied also to A and we obtain that uniformly chosen p € [r, 2r]
satisfies a ([L2I]) with probability > 1 — X.

Fix now smooth approximants G* to F as a function in L?(B®, A2R? ® g): assume that

JRCE
]BS

Take 0o (1) = ming ox(r) for ox(r) := ¢ +7%|G*||c1. For r such that 0. (r) = ox(r) we apply the above
argument to G¥ — ' and obtain

r G’“—F2§/ G —FP?
E/BBW' s ie-n

Bl
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with probability > 1 — X. Let G¥ := fB (@) G*. By a straightforward computation and by Jensen’s
inequality we have, independently of 7,

D 3) NN EN D O RN B
i /E)Bri(fﬂi) i Bar(zi)
< 3 / G — FP?
i Bar(zi)
< I

We then estimate by triangle inequality between F,F,G}, Gy

_ 1 _
- FoRPSgrY [ 165G Sonlr).
zi:/aB”m) k 21: OBy, (1)

This shows (L2Z2) once we take o(r) = C o0x(r). We proceed similarly to obtain also ([@23) with
probability higher than X. For each r each one of the events ([@20), (E21I), @E22), [@23) fails with
probability < X thus their intersection fails with probability < 4X. We thus choose X > 1/4 and
conclude the proof. O

The conditions obtained via Proposition are contemporarily valid for a positive probability on
uniformly chosen radii, thus the new condition of having a W2 representative of the connection class
on each 0B,(x;) keeps them valid too.

4.3.2 Good grids for Morrey curvatures
We denote || - ||as the following Morrey norm:

1
1712, := sup = / F(y)dy .
z,r T JB,(z)

™

We next extend the statement of Proposition [4.6] to a situation where we have a Morrey control on F':

Proposition 4.7 (extension of Prop. 6. Consider a grid as in Definition[[.5. Let F € L*(B®, A’R*®g)
and A € L*(B°, \'R% ® g). For each fized scale r > 0 pick the finitely many radii r; € [r, ar] uniformly
and independently at random.

There exist a constant C' depending only on the dimension and a modulus of continuity o(r) depending
only on F such that at fixed r we have [@22), (£23) and the following, with positive probability:

1
/ |F|? < C’—/ |F|?  for all i (4.24)
B i JB,

and

/ |A|2§Cl/ |A]? for alli . (4.25)
dB; i JB,

3

Remark 4.8. In particular if | F||3; < oo then we directly obtain from 24 that ||F||%2(6Bi) < C||F|%-
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Proof. We note that in the end of the proof of Proposition [.6] we had obtained that the estimates ([Z22])
and ([£23)) hold contemporarily with probability at least 1 —2X . In other words the estimates hold once
we choose r,/r € I, C [1,a] and [], |[Ix| > 1 —2X. In particular all of the I} satisfy

1> L] >1-2X . (4.26)

We then obtain by Chebychev’s inequality that

C
pr [ e[ P
B, (z1) AT J B, (k)

by recalling that « is bounded from above depending only on the dimension and using ([E28]) we see that
there exists a choice

ar

Your| = <= (4.27)

1
1-2X
which will ensure that for each % there holds Yo x| < |Ix|r/2. Since the number of balls is finite, with
positive probability for each k& we have [@22)), (£23) and

C
[Ny N
B, (zk) AT J Bar(z1)

which implies (£224]). We may similarly ensure (Z20]) as well, up to increasing C' by a controlled factor. O

C

4.3.3 Good and bad balls

We intend to apply Proposition Bl to B; belonging to grids as in Proposition 6], for F, A as in the
definition of Ag(B®) and for F' = F; on B; with the notations of Proposition In this situation
(rescaled versions of) the estimates of Proposition 1] are valid for all but few “good” balls. We start by
fixing the definition of “good” and “bad”

Lemma-Definition 4.9. Fiz a constant 6 > 0 and a scale r > 0. Let A, F, B;,0(r) be as in Proposition
[£:6. We say that B; is a §-good ball with respect to A, F,o(r) if the following bounds hold:

/ [FI* <6, (4.28)
0B;
1
- [ AP <4, (4.29)
T B;
1 —
= |F —Fif> <o(r) , (4.30)
1 _
2 |A —A;* <o(r) . (4.31)

In this case we will denote G, the set of good balls and B, the set of the remaining (so-called “bad”) balls
of scale r.

The cardinality of B, can then be estimated as follows:

Fl72ms Allr2msy 1
s < WFlie | Mlsen 1

~ or or3 r

In particular the total volume of the bad balls vanishes as v — 0.
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Proof. The second statement follows from the first because the volume of each bad ball is ~ 7°. To prove
the estimate on #8, we separately estimate the sets B; of cubes for which (gi) fails.
Using Proposition we then obtain

s#B s > [ rpsy [ e
B;eB; 9Bi B>
1
sy £ S [ AP [ ojap,
B,cBy” 9Bi rJBs
oy £ Y [ ir-Fpe?,
B;€B3 9Bi "
ot £ Y [ ja-apsdd
B;eBy 9B "
Since B = U}, B; we obtain the desired result. O

Going back to the r scale by pull backing all forms to the good ball C! using the dilation map
x—r~ 1z, denoting A, =r~! Z?Zl Aj(r—ta) daj,

Joi ldAr + A, NA, = F2da® < C 6 [, [F|? da®+
+Cr fac;; |F — iBCiFF dvolyci + C'rd fac;‘ |F|? dvolyes -

Summing up over the good balls - index i - using (£20) and ([@22) we finally obtain the desired estimate

z/_ A, + Ay A Ay — F2 da® < C 5+ 0,(1) .
ieg ' Cr
4.3.4 Good balls in the Morrey case

We now provide a version of the previous results useful for the approximation with bounds on Morrey
norms. The relevant new feature is that there exists a constant ¢; depending only on the underlying
manifold (in our case B®) such that when the Morrey norm of F satisfies

IF sy < €1 s (4.32)

from Remark 4.8 we automatically have the condition

/ |F|2<€0.
g4

In this case we will nevertheless fix § > 0 much smaller than ¢y, depending on r. The gain of the
Morrey bound will be that under condition (£32)) are able to apply Proposition in order to perform
a controlled smooth extension on §-bad balls.

4.4 Proof of Theorem [1.§

We are going to prove the following result:
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Theorem 4.10. Let F be the distributional curvature corresponding to an L? connection form A with
[A] € AL(B5). Then there exist F, € R°™%(B®) such that

|F — Fullp2@sy =0, asn—0.
Moreover we can also insure at the same time
HA*An”L?(IBf))‘}O; asn — 0 .

Proof. The proof consists in giving an “approximation algorithm” for F', which is divided into several
steps. After each step the approximant connection obtained at that point will be denoted by A, therefore
this notation represents different connection forms at different steps of the approximation.

Step 1

Start with F, A as in the definition of Ag(B®) and fix » > 0. Apply Proposition and choose well
behaved radii r; such that [@20), (E2I) and @22) hold. We may also assume that i35 A € Ag(9B;)
for each i, as remarked immediately after Proposition .6l

Step 2

Apply Definition-Lemma and define the families G,., B, with respect to the data from Step 1 and for
a small constant 6 > 0 to be fixed later.

The family G, can be partitioned into subfamilies of disjoint balls G*,...,G", where N depends only
on the discrete set A and on the constant « fixed in Definition E5]

Step 3

Fix B; = B(wi,ri) € G'. Let (ijp A)y, € Ac(dB;), as in the definition of Ag(0B;). Define then
Ap, = T1p, A, Fp, := 7 F, where 7 : B> — B; is the homothety 7(z) = 2; + ;2. From the estimates

(Z28), (@29) we obtain
/ P 2 <6, / Ap P <5
§4 §4

We require 0 to be smaller than the constant ey of Proposition [l Combining with (£31]) and requiring
r to be sufficiently small, we also obtain -
|A1|2 <€ .

We may thus apply Proposition Ellto A = Ap,,F = Fp,,F = F;,A = A;. We then pull back the
approximants to B; via Tl;l and we denote the resulting approximant connection by A. The error
estimate ([{2]) of Proposition ] becomes:

[dA+ANA = Fi|l72p, S OllEl 728, + 07l Fl 208, + I F = idp, Fill 7208, -
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Step 4: iteration

Iterate Step 3 for all B; € G'. Since such balls are disjoint, the local replacements of A, F' by /i, Fj are
done independently. The total error that we obtain at the end is, using the estimates of Proposition [£.0]

1F; = Fllieesy S D IF = Fillfagy +6 > IElfs,) +

B;eg! B;eg!
+ or Z ”FH%Z(BBi)""T Z |‘F_igBiFi||2L2(BBi)
B;eg!t B;eg?
S OIF @ +or)+ Y IF = Fillizg, -

B;eg?

Note that in particular the total L?-error of averages satisfies

€1 = |Bl| ][ F; —][ F
; B(x,2r) 4 B(x;,2r)

2
<N|F4 = Fl 72 -

Step 5: iteration

We iterate Step 4. More precisely, we start with Ay = A and at step k > 1 we use the balls from family
G* to approximate the curvature F' 'ix—1 obtained from step £ — 1. At step k£ we use the constants

F‘Z-k = 7[ Firoa .
B(xz;,2r)

Denote the new error introduced on the averages by ej, analogously as e; above. Note that each B;
intersects a finite number of other balls (this number depends only on A, « from Definition[L.5]). Therefore
the total error after the final step k = N is

N
HFAN - F||2L2(IB%5) /S Z HFAk - FAk—lH%Z(BE})
k=1

N
S NO|IFllze@s) + No(r) + > ex
k=1

A

C(N) <5IIF|L2(BS> +o(r) + ) IIF ~ Fi|%2(Bi)> :

where the last sum is taken over all the balls B; of our grid and C(N) depends just on A, « from
Definition BBl Since for any L? function f there holds

limo/ |f(z+h) — f(z)|*dz =0

[p|—=

we deduce that -
S NF = FEli2p,) =0 () >0 asr—0
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as well. Thus we have the following final estimate on our approximation:
1Fin = Fllf2ms) < 01 Fllz2ges) + o(r) +0'(r) -
Note that as a result of Proposition I we also have that AN is continuous on the interior of U{B; :
B; € gr}
Step 6

We extend A on a bad ball B; € B, as follows. First apply Lemma 4 to A and to the compact
K := 0B; N UG, to obtain A, on 0B, such that 4, = A on K and A, is C?. Then we utilize the

radial projection 7; : B; \ {z;} — 0B; and define flj = w7 Ay. We have the following estimate, using
Step 5:

r (||FA]. - FAH%?(@Bj) + ||FAH%2(aBj))

r(og +[|Fz — Fj”%?(aBj)) + HF”%?(Bj) :

IFs e, S
<

Step 7: iteration

We iterate Step 6 for all bad balls. Since we modify at most N times the connection on each ball, the
final bound for the connection A obtained after this process is still

> P78, Sron+ o)+ IF|72wus,) -
B;eB,
The total error which we obtain is as follows:
£z — F||2L2(IB%5) S Z 1F5 — FH%Z(Bi) + Z 1F5 — FH%Z(BJ)
B;€G, B;eB;

S OIF | Las) +o(r) +0'(r) + oy +o(r) + | FllL2(us,) -

For r,d,n small enough the first terms become as small as desired. The last term converges to zero
by dominated convergence: indeed |U B,| — 0 as » — 0 by Lemma and the function yyup, F' is
dominated by F € L?.

Step 8

From the previous step we have A such that |F4 = Fllr2@s) < 5 and A is C° outside the centers of
bad balls by construction (see Step 3 and Step 6, and recall that by Definition [0 the ball B; C By, (x;)
does not cover z; for j # i). We now mollify A outside this finite set of centers, and we obtain the
wanted curvature Fy, € R*.

By a similar reasoning we also insure [|A, — Al|z2@s) — 0 utilizing [{3) instead of [{Z) as above.

Utilizing the fact that the construction of Proposition 4]l and the radial extension on the bad balls do
not affect the boundary condition on our balls we obtain the approximation also in R>?(B®) for weak
connections in A% (BP). O

4.5 Proof of Morrey approximation Theorem

We now provide the modifications needed to prove the Theorem along the same steps as Theorem
4, 10]
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4.5.1 Strategy of L? approximation

It is enough to prove that for each fixed € > 0 we may find a smooth approximating curvature F which
is closer than € to F in L?-norm and satisfies (LI6). To do this, we utilize the division into good and
bad cubes like in the previous section and the construction for F proceeds as in the proof of Theorem
with the following modifications:

In Step 1 we utilize Proposition [£.7] instead of Proposition A6l
In Step 2 we further partition also the family of d-bad balls B, into disjointed subfamilies By, ..., By .
In Step 3 we keep also track of the error estimate (L3]) of Proposition ], which reads:

1A = Aillz2s,) < CrllA = 4|20, -
The above estimate propagates through Step 4 where we obtain

1A= Alfeen S D2 1A= Aillizon,) -
B;eg?t

In Step 5 this and (L23) gives

HAN - AH%%M) S Z A= AiH%Z(]BEw) =d(r).

In Step 6 we still apply Lemma 4] but we replace the radial extension by the application of
Proposition to the groups of bad balls Bj constructed in Step 2. This is allowed by the
hypothesis ||F||3; < €0 and by the discussion of Section FE3.41 After this procedure on each bad
ball B; we obtain the estimate

IFillZ2(5,) < rlon + I1FllT28,) -
We similarly have the estimate for A:
1A 25,y S (0q + Al 72(08,)) -

In Step 7 we then collect the contributions from all bad balls like in Steps 4-5. We use the properties
stated in Proposition .7 to obtain

Z ||FAH%2(Bj) S rog +o(r) + |Fl L2ws,) + |AllL2wus,)
B]‘GBT

Z [A725,) S rog+o(r) + FllL2ws, + 1AllL2us,) »
B;eB,

and by the same dominated convergence reasoning as in Step 7 of Theorem [4] we obtain (.14 and
(LI5).

Step 8 proceeds exactly as in Theorem Ml

We now prove the bounds (LI6]) for F' constructed as above. We need to estimate

1 A
H
p By (x)

uniformly in p, z. We consider separately the cases p 2 r and p < r.
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4.5.2 The case p2>r
In this situation we simply estimate
LIS ML D S AL
By () i 7 Bp(z)NB; i:Bar(x:)NB,

In this case we utilize the fact that the cover {B;} had the bounded intersection property, the fact that
« is bounded and the fact that as a consequence of Prop. 1] or Prop. (depending on the balls
involved), ||F|z2(B,) S IIF|lz2(B,) thus

AL N
By (x) Bep(x) Bep(x)

By definition of Morrey norm, we continue with

1 . 1
! / AP <l / FP < el FI3 .
P JB,(z) P JB.,(z)

cp

which finishes the proof.

4.5.3 The case p<r

In this case we will use elliptic regularity for the proof. We note the following scale-invariant inequalities
valid for the harmonic extensions:

44y sy <€ [ AP Al <C [l
: 9B, : 9B,

If B,(z) C B; then for an application of Step 3 or 6 on B; we can thus write:

Pl = 1A+ Ay AP
s [ jadpe | 1A
BP(I) Bp(m)
%
< |Bp|5</ |dAg|5/2> +|B|5< |Ag|5>
B, (x) B, (x)
3 s
< ) (/ |dAg|5/2) +(/ A, |>]
Bi Bi
S p</ AP+ [ |Ag|4>
9B, oB,,
< p(l+ ) |Flsom,

where in the first equality we used the gauge-invariance of a , making the gauge change ¢ irrelevant, and
in the last estimate we use the results of Propositions F1] ([.3]).

The desired estimate then follows similarly to the case p 2 r. In the general case B,(xz) N B; # 0
we have to just replace B,(x) by B,(z) N B; and the same estimates work. We note that the number
of steps of type 3 or 6 in which we modify F over B,(z) is bounded above by a constant C'(N) which
ultimately depends only on the dimension. [
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5 Regularity results

This section is devoted to the proofs of Theorem [[LT]] and its important Corollary and the regu-
larity of minimizers, Theorem The structure of the proofs is analogous to the celebrated theory
of harmonic maps, cfr. [43] and the references therein. We apply our new approximation and extended
regularity results in order to complete all the steps for curvatures in Ag(B®). The analogous results hold
on general Riemannian compact 5-manifolds and the proofs can be extended by working in charts and
including error terms corresponding to the fact that the metric is not euclidean.

We start by proving Proposition [LT4] accoding to which the Bianchi identity d4F = 0 is verified by
curvature forms F and connection forms A corresponding to [A] € Ag(B%).

Proof of Proposition [1.17: We utilize the result of Theorem [[.8 namely the existence of a sequence of
connection forms Ay which are L? and have curvatures Fj also in L2, such that [A;] € R*°(B®) and

A, — A inL?, F,— F in L%.

In particular we have dFj, " —  dF and Jgs @ A [F, Ak] = [gs @ A [F, A] for all C°(B?) test 1-forms
¢. This implies in particular that

da,Fr — daF in the sense of distributions ,

thus we reduce to prove (L23) for [A] € R°°(B®). In this case we see directly from the classical results that
daF = 0 locally outside the defects aq,...,ax of the classical bundle from the definition of R*°. Since

we have that d4 F is a tempered distribution, it must then be locally near a; of the form ny:o caéé?),

where (5;0‘) is the a-th distributional derivative of the Dirac mass at . On the other hand, since F' € L?
and [A4, F] € L' we obtain that dsF € ngclﬂ near a;. Since we can construct forms ¢, which are
bounded in W2 but have values of the first | derivatives in a;, larger than n we see that if ¢, # 0 for
some « then

C > (daF,¢n) = Y cadl®) = 00,
a=1

which is a contradiction. Thus d4F = 0 and this concludes the proof. (|

5.1 Partial regularity for stationary connections in Ag

In this section we show how to bootstrap the results of [31] to the space Ag(B®), in order to prove the
partial regularity result of Corollary [[.T2

The main step is to improve on the result of [3I] by removing the smooth approximability require-
ment (cfr. Theorem 1.3 of [3T]). Once this proof is done, the strategy of [31] can proceed to the proof of
Theorem [[LTT] and to the regularity result of Corollary [LT2 with no changes.

Proof of Theorem [LI10: In [31] the existence of €, C' for which a gauge ¢ in which (LI7), (LI8) and (LI9)
hold was proved under the assumption that A be strongly approximable in W12 N L* by connection
forms of smooth connections. In particular we may apply the result of [3I] to the connection forms Ak
furnished by Theorem We obtain gauge changes g such that

Ay = (Ak) satisfies (LI7),(CI8), (TI9)

9k
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with F replaced by Fj. Since Ay & A, 1Akl Lz S| Fellre S ||F]lL2 we obtain
ldgellze < C(l Akl 2 + || Axllz2) < €

therefore up to subsequence we can assume that gy converge pointwise a.e., weakly in W2 and (by
interpolation with L°°) in L? for all p < co. Similarly we may assume that Ay — A in L7 for all
q < 2*. It follows from the defining equation g,;ldgk + g,;lAkgk = Ay that

glzldgk — gotdgso  strongly in L? |

thus we have that

Agao = Ax )
in particular g, is such that conditions (LI7), (LI8) and (LI9) hold, since they are stable under strong
L? limits. O

5.2 The regularity of local minimizers of the Yang-Mills energy in dimension
5

In this section we prove Theorem [[.13] which is a new result since the existence of minimizers and thus
the availability of energy comparison techniques was not available before the introduction of the class

Ag.
5.2.1 Luckhaus type lemma for weak curvatures

Our aim in this section is to prove the following proposition, using a Luckhaus-type lemma for interpo-
lating weak connections with LZ-small curvatures while paying a small curvature cost.

Proposition 5.1. Assume that F}, are curvature forms corresponding to local minimizers [Ax] € Ag(B®)
and that Fy, = F weakly in L* and supy, ||Fy||12@ms) < C. Then Fy, — F strongly sin L* on a smaller
ball B , and F is a local minimizer as well.

2

The main tool for the proof above is the following lemma:

Lemma 5.2 (Luckhaus-type lemma in Ag). Assume that Fy, Fy are curvature forms on S* correspond-
ing to connection forms Ag, Ay € Ag(S*). Consider the inclusions i; : S* — S* x {t}, t = 0,1 and
assume

||Ft||L2(S4) < €, HAt||L2(S4) <e€ fort=0,1. (5.1)

Then there exists a connection form A corresponding to [A] € Aq(S* x [0,1]) such that
i§4><{t}A:iIAta t=0,1 (5.2)

and
IF4llL2stxjo,1)) < CllFollpe + [[Fillz2 - (5.3)

Proof. By Uhlenbeck’s result [48] we may find gauge changes g;,i = 0,1 such that if A; = 9; Ydg; +
g; " A;gi then we have || A;][y1.2 < C||F||z2. On S*x [0, 1] we use the convex combination of connections

Alw,t) :==tA; (w) + (1 — ) Ap(w) ,
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for which the formal curvature form F(t,-) := dA 4+ A A A satisfies
IFl2sixoay < NdAllL2sixio + AN i xqo.1))
1dAoll L2(st) + ldAL ]| 2se) + [ Aol agsey + [l Au ]l L2se)
+HAOHL4(S4) + ||A1||L4(S4)
S Follzessy + 11 F1lL2esey

IN

where in the last step the implicit constant also depends on ¢q.

We next extend the trivializations go oo, g1 041 to a global trivialization g over S* x [0,1] in order

to have a well-defined connection form A := (A4),-1 satisfying (B.2). To do this we note that since the

1

curvature form F will change into F; = gFg~! we need only to control the extension ¢ in L2 norm.

Note the bounds
ldgillz2ss) < Il Aillza@e) + 1 Aillzzssy S Iz + [Aillzzsy, i=0,1,

following from the definition of the A;. By the classical Luckhaus lemma [30] we then achieve a W12-
controlled extension g : S* x [0,1] — G such that

lgllwre@ixoay S Y (Fillass) + 1Al L2s))
i=0,1

which allows to complete the proof. (I

Proof of Proposition[21l: Step 1. We divide the interval [1/2,1] in N > [1/C¢] equal subintervals, for
e < €. By pigeonhole principle there exists one of such intervals I = [a,b] C [1/2,1] such that up to
subsequence we may assume

[FellL2(aifelery) < & I1Fll2(fasfalery) <€

Step 2. Up to pulling back via a reparameterization fg : IB%Z \ B> — ~% x [0,1] we may reduce to

the setting of Lemma (.2 with Fy = i}, Fi, Fi = i, . Let Fy, be fi I where F' is the interpolant
b a )

produced in the Lemma The function f,, produces the following rescaled estimate:

I Eell2@sneg) S N7 Pkl L2@s\s) + I1F Il L2@s\8p)) -
It is easy to check that the curvature defined as follows is still in Fz(B®):
F  onB
Fp:={ F,, onB}\B],
Fk on Bs \Bg .
Step 3. We utilize the fact that Fj, is locally minimizing to write the following inequalities:

||Fk||2L2(mag) < ||Fk||%2(mag)

IN

I Fill3 e,

HFH%%Bg) + HFkH%Z(Bg\Bg)
HF”QL?(IB{;) +o(1) .

In particular we see that no energy is lost in the limit on B?:

1 Fxllz2@a) = 1F 1|22 B.) »
which proves the result. [l
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5.2.2 Dimension reduction for the singular set

This section is devoted to the proof of Theorem [[LTI3l We utilize the following definition:

Definition 5.3. We denote by reg(F) the set of points x such that over some neighborhood U > x there
exists a smooth classical G-bundle P — U such that F is the curvature form of a smooth connection
over P. The complement of regF is denoted sing(F).

Proof of Theorem [I.13: Tt can be proved (see [46] or [31]) from the monotonicity formula (see [38]) that
for minimizing curvatures F, H!(sing(F)) = 0. If S := singF’ and F is a minimizing curvature we
consider now s > 0 for which H*(SN Q') > 0. Then H®-a.e. xy there holds

hr/r\lilonf)\ H*(S N Bya(xo)) > 0. (5.4)

From the monotonicity formula we have (see [40]) that for any subsequence A; — 0 such that the blown-
up curvature forms Fy, := 73, , F', the weak limit curvature form Fj is radially homogeneous. Here 7y ;
is the homothety of factor A and center x. By Proposition [5.1] the convergence is also strong and Fp is
a minimizer.

S; = singF, which are the blow-ups of S, satisfy H*(S; N By2) = A; *H*(S N By, /2) thus from

B4l we obtain
HS(SO N Bl/g) >0. (55)

As in [46] from the stationarity we deduce that Fj is radial and radially homogeneous. In particular Sy
is also radially invariant, i.e. ASy C Sy for A > 0. Assume Sy # {0}. In particular Sy must then contain
a line and in this case H!(Sp) > 0. However since Fp is still a minimizer this contradicts Corollary [[LT2

The fact that Sy = {0} for blown-up curvatures implies also that for a minimizer F' the singular points
do not accumulate. Indeed if z; — x¢ were accumulating singular points, then by carefully choosing the
blowup sequence we would be able to obtain Fy such that Sy D {0,u/4} where u is a unit vector. O

6 Consequences of closure and approximability

We will prove here Theorem which completes the proof of Theorem [[L7l The proofs are along the
lines of the reasoning [32] done in the case of abelian curvatures.

The distance dist on gauge-equivalence classes of connections is used to compare the boundary datum
with the slices of forms F' € Ag. We abuse notation and denote by f(x + p) the form (with variable
x € S*) corresponding to the restriction to dB;_, of the form F. This notation is inspired by the
analogy to slicing via parallel hyperplanes, instead of spheres. We then define the class Ag,w(IB%5) via the
continuity requirement

dist(f(z + p'),0(x)) = 0,as p' — 01 . (6.1)

It is clear that the definition (6] satisfies the nontriviality and compatibility conditions, since dist(,-)
is a distance and since for R> having smooth boundary datum implies that in a neighborhood of OB®
the slices are smooth up to gauge and converge in the smooth topology to . The validity of the
well-posedness is a bit less trivial, therefore we prove it separately.

Theorem 6.1. If F, € Ag ,(B°) are converging weakly in L? to a form F € Ag(B°) then also F
belongs to Ag,,(B®).
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Proof. By weak semicontinuity of the L? norm we have that F,, are bounded in this norm, ||F,||r2(5,\5,_,) <

C.

Therefore by Lemma 23] the f,, are dist-equi-Holder, so a subsequence (which we do not relabel) of
the f, converges to a slice function fo, with values in Y a.e.. For all p’ € [0, p] the forms f,(-+p’) are
a Cauchy sequence in n, for the distance dist. This is enough to imply that f., is equal to the slice of
F. Even if F' is just defined up to zero measure sets, it still has a dist-continuous representative. By
uniform convergence it is clear that f still satisfies (G.]). O

The same proof also gives an apparently stronger result:

Theorem 6.2. If F,, € Ag ., (B®) are converging weakly in L* to a form F € Ag(B®) then the forms
pn converge with respect to the distance dist to a form ¢ and also F belongs to AGW(IB%E’).

Remark 6.3. The definition of the distance can be extended as in [32)] and allows to extend the definition
of the boundary value to arbitrary domains.

A Controlled gauges on the 4-sphere

Recall that m: L*(S*, g) — (Span {if.dxy, k=1,..., 5})L denotes the L? projection operator.

In this section we follow the overall structure of the argument from [48] to prove the following result:

Theorem A.1. There exist constants ey, C' with the following properties. If A € WH2(S*, g) is a (global)
connection form over S* such that the corresponding curvature form F satisfies

1F || L2y + [ All L2(ss) < €0
then there exists a gauge transformation g € W22(S* G) such that
dii (97 dg) = da(m(g™" dg))

and denoting A9 = g~ 'dg + g~ ' Ag the new expression of the connection form after the gauge transfor-
mation g there holds

d§4 (7T (Ag)) =0 and HAg”Wl’?(S‘*) < C(HF||L2(S4) 4+ HAHLQ(S4)> .
The proof consists in studying the case where the integrability exponent 2 is replaced by p > 2 first,
and then obtaining the p = 2 cases as a limit. Note that for p > 2 the space W2P(S*, G) embeds
continuously in C°(S*, @), thus gauges g of small W?2?-norm will be expressible as g = exp(v) for some

v € W2P(S* g), due to the local invertibility of the exponential map exp : G — g.

We then consider the space

Ep = {UGWZP(SA!)Q): / vzk05k17"'75}
s

where xj, are the ambient coordinate functions relative to the canonical immersion S* — R®. In case
p > 2 the Banach space E, is, by the above considerations, the local model of the Banach manifold

M, = {g e W*r(st, Q) : /(g_ldg,i§4dmk> =0,k=1,.. .,5} .
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We then consider the sets
Uy = {Ae WIS ANTS @)+ [|Fallrese) + 1Al 2oy < e
and their subsets
AeUys: 3g € My s.t. di(m(A9)) =0,
Vyri= ¢ [m(A9)lwia < Cy(|FllLa + ||Allza) for ¢ = 2,p

and | F||p2 + [|Allzz < €

A.1 Proof of Theorem [A.1]

Like in [48] we prove theorem [AT] by showing that if eg > 0 is small enough then for p > 2 we may find
C)p such that
€0,Cp __ 7€
VeoCr = g0 (A1)

We are interested in (A1) just for p = 2 but we use the cases p > 2 in the proof: we successively prove
the following statements.

1. U, is path-connected.
2. For p > 2 the set VI is closed in WhP(S%, AITS! ® g).

3. For p > 2 there exists Cp, ¢g such that the set V;U’C” is open relative to Us°. In particular (A.T])
is true for p > 2.

4. There exists K such that if g € M), [|A9||+ < K and
dss(m(A%)) = 0, [|Fl[L2 + [|A]l 2 < o

then
[A[[wre < Co(|[Flr2 + [[Allz2) -

5. The case p =2 of (AJ) follows from the case p > 2.

Proof of step 1

Fix p > 2,6, A € U;. We observe that 0 € U;. Moreover the connection forms A;(z) := tA(tx) for
t € [0,1] all belong to Uy as well, like in [48].

Proof of step 2

Let Ay € V;’C” be a sequence of connection forms converging in WP to A. Consider the gauges gp as

in the definition of V;’Cp. We may assume that the A?* have a weak W'?-limit A. The bounds and
equation in the definition of V;’C” are preserved under weak limit thus we finish if we prove that A is
gauge-equivalent to A via a gauge g € M,. We note that from dg, = grA}* — Argr and the fact that

G C RY is bounded it follows that ||dgx|/ .+ < | AY |lwie + ||Ax|lwie, thus it has a weakly convergent
1,p*

subsequence, g — ¢. Thus we may pass to the limit the gauge change equation and obtain indeed

A =AY and also g € M,.
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Proof of step 3
Fix p>2 and let A € V;’Cp. Consider the following data:
g € M,,
n e WLPESHAITS' ' ®g) .
Consider the following function of such g, 7, with values in LP N {zy, k=1,...,5}z2:
Na(g,n) :=dss (7 (97 dg + g~ (A+n)g)) = dss (97 dg +7 (97 (A+m)g)) -

Note that N4(id,0) = 0 and N, is C'. We want to apply the implicit function theorem in order to
solve in ¢ the equation N4(g,n) =0 for n in a WP -neighborhood of id € M,. The implicit function
theorem will imply also that the dependence of g on 1 will be continuous. Note that up to order 1 in ¢
there holds exp(tv)*! ~ 1 £ tv. Using this and the fact that F, is the tangent space to M, at id we
find the linearization of N4 at (id,0) in the first variable:
Ha(v) = 0,Na(id, 0)[t]
0

= 5 _0 [d&a (m ((exp(tv))_ldexp(tv) + exp(tv) " (A + n)exp(tv)))]

= d5 (dv -+ m([A])
= dgadv+ [7(A),dv] .

In the last passage we utilized the fact that 7 acts only on the coefficients of A and thus 7[A,v] = [1A, V]
and the fact that di,[m(A),v] = [d& (7 (A)),v] + [7(A),dv] where the first term vanishes by hypothesis.
We see that Ha : E, — LP N {xg, k=1,...,5}+ 22 is thus given by

Hy(v) = Agav + [w(A), dv] .
By elliptic theory and Sobolev and Hélder inequalities in dimension 4 we have

[Ha()llzr = [[Assvl[re = [[[w(A), dv]||r

> oplvllwer = cpllm(A)Lallvlwzr -

For ¢, /cy||m(A)||ps < 5 we find that Hy4 is invertible and the thesis follows.

Proof of step 4
We start by observing that since d§, (m(A9)) =0, (g~ 'dg,i%.dxy) 2 = 0 there holds

5
daA? = ) 5wy ][ (A9, it dxy,)
k=1 st

5
Z5$k][ <g71Ag,i§4d.Tk> ,
k=1 s

thus by invariance of the norm and Jensen’s inequality
5
|dsa A9 . = / 25;%][ (g7 Ag,i%iday)
st i s*

e ([ 14r)" =il
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By Hodge inequality

IVA?| 2 1A 2 + || dga A 2

S
S NF e + AN Zs + | All 2 -

If ||A9||p+ < K small enough then the second term above is estimated by K|V AY| 2 which can then be
absorbed to the left side of the inequality, giving the desired estimate.

Proof of step 5

We approximate A € Us° by smooth Ay in W12 norm. In particular there holds A, € WP for all

E(),Cp

p > 2. We may obtain that Ay € U° =V)” 7, p > 2 and in particular we find g € M, such that
A s S N Akllwre S I Fellze + [|Ak]2 S o

where the constants depend only on the exponents p and 2. By possibly diminishing ¢y we thus achieve
|AZ¥||L+ < K for all k. By the closure result of Step 2 for p = 2 we thus obtain that the same estimate
holds for A and for some gauge g € My and by Step 4 we conclude that A € V;O’K , as desired. [J
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