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Résumé : Soit m un entier supérieur ou égal a 3 et n un entier positif
arbitraire. Nous démontrons que les systémes de Schrédinger sur la boule

unité B™ de la forme
-Av=Quv ,

oi1 0 est un potentiel antisymétrique dans L™?(B™, so(n)), peuvent étre
écrits sous forme divergence. Nous démontrons par ailleurs que toute solution
v dans L™/ (m=2)(B™ R") est en fait dans Ly, et par conséquent aussi dans

Wi (B™).
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Abstract : Let m be an integer larger or equal to 3 and n an arbitrary
positive integer. We prove that Schrodinger systems on B™ with an anti-
symmetric potential Q € L™/2(B™, R") of the form

—Av=Quw

can be written in divergence form. We prove moreover that solutions v in
Lm/m=2)(Bm R") are in fact in L{2,(B™) which also implies the membership
of v to WZ’m/Z(Bm,R").
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I Introduction

In [Ril] the author proved the sub-criticality of the following linear systems
in 2 Dimension

—Au=Q-Vu (L.1)

where u € WH?(D? R") and Q € L*(D? R? ® so(n)) (n is an arbitrary
integer, so(n) is the subspace of M, (R), the space of n X n square matrices,
made of antisymmetric matrices) and we have using the matrix multiplication
: in coordinates (I.1) reads

Vi=1---n —Aui:ZQé-Vuj
j=1
Precisely, it is proved in [Ril] that such a u is in fact in W;2?(D? R") for

every p < 2. This result has been obtained by writing (I.1) in conservative
form. This was possible due to the following result

Theorem 1.1 [Ril] There exists a map, in a neighborhood of the origin, of
the form

L : L*(D*R*®so(n)) — L*NWY(D? GI,(R))
(1.2)

Q — A
such that
div(VqA) := div(VA—AQ) =0 (1.3)
and with the following controls
[dist(A, SO + 1Al < CIRz2 (14)
where C' 1s a positive constant independent of €. O

Once A is constructed one easily see that
—Au=Q-Vu = div(AVu + BV+u) =0 . (1.5)

where VB := (-0,B,0,B) = VA — AQ. The higher integrability of Vu is
then a direct consequence of this conservative form of the system by applying
Wente’s estimates (see [Ril] and [Ri2]). This result has lead in particular to
a proof of the Heinz-Hildebrandt’s regularity conjecture for critical points to
conformally invariant problems in two dimension.



In this paper we will study this time Schrodinger systems of the form
—-Av=Quv (1.6)

where v € L™™=2(B™ R") and Q € L™?(B™, s0(n)), n is an arbitrary
integer and m is an arbitrary integer larger or equal to 3. B]" denotes the
m—dimensional ball centered at the origin of R™ and when we don’t write
the subscript it implicitly means that 7 = 1 (i.e B™ denotes the unit ball).
In coordinates (1.6) means

Vi=1---n —Avi:ZQ;-vj
j=1

Like (I.1) in 2-dimension, the system (1.6) is also a-priori critical for v €
L™ (m=2) in m dimension. Indeed, under these assumptions v € L™ (m=2) and
Q € L™/? we obtain that the r.h.s. of (1.6) and hence Av is in L' and, using
classical singular integral theory, we deduce in return that v € ng(mfz)’oo
which is ”almost” the information we started from. Such a structure in gen-
eral situations offers no hope for having any of the properties that charac-
terize sub-critical problems such as better integrability of v, local uniqueness
of the solutions...etc. It is a-priori simply critical. However, here again, the
antisymmetry of 2 will imply that sub-criticality in fact holds.

Our main result is the following.

Theorem 1.2 Let m > 3 and n € N*. For any r < 400 there exists a map,
in a neighborhood of the origin, of the form

S . L™*(B™ so(n)) — L®NW*"%B™ Gl,(R))

(L.7)
Q — A
such that
AA+AQ =0 . (1.8)
with the following controls
| Al oo (pmy = sup |A(z) X| <1 (1.9)

zeB™, XcSm—1

A is moreover invertible almost everywhere and A=' € L"(B™) and there
exists C > 0, independent of €1, such that

0



Remark 1.1 In dimension less or equal to 4 -i.e. (m < 5) - one can even
prove the following inequality

Idist(A, SOM))]|=(zm) < C [QU2eg (L11)

B™)

It is natural to conjecture that this inequality holds true in higher dimension.
O

Once A is constructed one proves the following result.

Theorem 1.3 Let Q € L™/2(B™, so(n)) and A given by the previous theorem
for some r < +oo. For any v € L™ 2 assuming either m < 5 or
Av € L, then the following equivalence holds

loc
—Av=Quv = div(AVo—-VAv)=0 . (L.12)
UJ

We have then been able to write Schrédinger Systems with antisymmetric
potential in conservative form®.

Remark 1.2 [t would be nice to drop the technical assumption Av € Li

whenever m > 5. O

Remark 1.3 Results like (1.5) or (1.12) can be interpreted as a PDE version
of the constant variation method. Indeed, it suffices to know one solution of
the auziliary equations (1.3) resp. (1.8) in order to be able to "factorize”
the derivative (the divergence operator) for any solution to the linear PDE
(I.1) resp. (1.6). This is exactly what the constant variation Method does for
ODE. U

A corollary of the existence of such conservation law for Schrédinger Sys-
tems with anti-symmetric potential is the sub-criticality of such systems. In
fact we can even prove the following

Theorem 1.4 Let n € N* and m > 3. Let v € L™ (™2 (B™ R") satisfying

-Av=Quv
where Q0 € L™?(B™, s0(n)), then |v| is a subharmonic function and hence
ve L NWE™A(Bm R). 0

!Observe that the product A Vv makes sense since A € W™, by Sobolev embeddings,
and we have A Vv := V(4 v) — VA v.



Our results and their proofs take their source jointly in [Ril] but also in [DR2]
where F. Da Lio and the author were studying the regularity of 1/2-harmonic
maps from the real line into manifolds - see also [DR1]. They reduced the
original problem to the one of proving that the following equation is sub-
critical in one dimension

Ay =Quv |
where v € L*(R,R") and Q € L*(R, so(n)).
We end-up this introduction by making the following remarks.

Remark 1.4 [t is important to insist on the fact that, a-priori, from the
way we construct them, both the mappings L and S are not continuous be-
tween, respectively, L*(D?* R? @ so(n)) and L N WY3(D? GI,(R)) and be-
tween L™%(B™, so(n)) and L™ N W*™2(B™ Gl,(R)). Our constructions
both in [Ril] and in the present paper are realized by the application of succes-
siwely local inversion theorem and continuity arqument like the construction
of Coulomb Gauges for L™'%— curvatures in [Uh]. Recently a construction of
L using a more direct variational method has been proposed by A.Schikorra
in [Sc]. He was following an approach introduced by F.Hélein in order to
construct ”Coulomb Moving Frames” (see [He] lemma 4.1.3). A construc-
tion of & using such a variational argument might a-priori be possible and
would be interesting in itself. 0

Remark 1.5 In [RS], M. Struwe and the author established the sub-criticality
of (I.1) in arbitrary dimension in Morrey spaces. This was motivated by ap-
plications to the partial regularity of stationary critical points to conformally

invariant Lagrangians in higher dimension. However the existence of the
Matriz valued map A in L*(B™,Gl,(R)) satisfying

d'lU(VQA) =0

was problematic due to the fact that Wente integrability by compensation
does not provide L> bounds in the classical Morrey spaces but only in their
Littlewood-Paley counterpart (see [Ke]). Here however, since the L control
of A in theorem 1.2 is obtained by the application of the Mazximum principle,
the chances are high that theorem 1.2 extends to higher dimension for the
ad-hoc Morrey spaces which make system (1.6) a-priori critical.

The paper is organized as follows. In section 2 we construct the map S, prov-
ing then theorem-1.2, and using an intermediate construction of a solution
P e W*m/2(B™ SO(n)) solving

1

5 [AP P =P AP+ PQ P =0
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that we postpone in the appendix. In section 3 we prove remark 1.1. In
section 4 we establish theorem 1.3 and in section 5 we prove theorem 1.4.

II Proof of theorem 1.2.

Let Q € L™/2(B™, so(n)) and v € L™/™~%(B™ R") satisfying (1.6). Consider
P e W*m2(B™ SO(n)) given by lemma A.1. We compute

—A(Pv)=APv— P Av—2div(VP v)
Introducing w := P v, the equation (I.6) is then equivalent to
—Aw=[AP P'+ PQP™'| w—2div(VP P~' w)

Taking into account this special choice of P we have made and satisfying
(A.1), with our notations the system (I.6) becomes equivalent to

—Aw — % [AP PP+ P AP w+2div(VP P w)=0 . (IL1)
Observe that
—[AP PT'+ P AP =—div(VP P"'+ P VP ) +2VP - VP!
= —2(VP P71)?

where we have used twice that VP P! = —P VP~!. The notation for the
r.h.s —2(VP P71)? has to be understood as follows

—2(VP P7')? = =2) (0,,P P')’
j=1
where the squares in the r.h.s refer to Matrix multiplication. Observe that
each 9,, P P~"is an L' map taking values into so(n) therefore each —(9,, P P~")?

is an L™/? map taking values into the space Sym?(R) of symmetric non-
negative n x n—matrices? . Hence

—(VP P12 e L™?(B™, Sym;}(R))

Combining (II.1) with the previous observations, the Schrédinger system (1.6)
becomes equivalent to

—Aw — (VP P w42 div(VP Pt w)=0 . (11.2)
2Indeed if a is a real antisymmetric matrix we have that (a?)! = a’a® = a? and for
every x in R" < z, —(a)?x >= —a'a®z = 2ta’az = (ax)tax >0



Standard elliptic estimates gives that for any given r < m/2, if ||VP| pm is
small enough - depending on r a-priori -, then there exists a unique solution
Q € W?"(B™, M,(R)) of the following problem

—AQ —-2VQ-VP P71 —Q (VP P12 =0 in B™
(I1.3)
Q=1d on 0B™

This comes from the following a-priori estimates

IVQ - VP P71 < [IVQ rmmr IVPllpm < C; (|Q = Id]lyy2r VP
(I1.4)

and

(@ = 1d) (VP PVl < (@ = id)[| prmm—2r (VP P12 gy

< C, 1|Q — Id|lyzr VP
(I1.5)

We establish now the following lemma.

Lemma I1.1 Let m > 3 and n € N*. There exists eg > 0 such that for any
P e Wbt™(B™, SO(n)) satisfying

/ VP <y

and any Q € W/ (m+2)(pm N (R)) solving
“AQ-2VQ-VPP'—Q (VPP )2 =0  inB™
Q=1d on OB™

Then Q € L® NW?2™/2(B™ M,(R)) and

sup ||QX||%OO(Bm) <1 . (I1.6)
XeRn
O
Proof of Lemma II.1.
We first show that for any X € R” the following inequality holds :
AX'QQ'X)>0 . (IL.7)



We have
A(XtQQtX) = X'AQQ'X + X'QAQ' X +2X'VQ -VQ' X

= 2X'VQ- (VP P HQ'X - X'Q(VP PH)*Q' X
+2X'Q (VP P - VQ'X - X'Q(VP P12 Q' X
+2X'VQ-VQ'X

where all this above operations make a distributional sense (Leibnitz rule)
as long as Q € W22/ (m+2)(Bm) which is our assumption. Observe that®

—2X'VQ- (VP P HQ'X =-2(VP P HQ'X) - (X'VQ)

=2X'Q(VP PY)-VQ'X
Hence we have

AX'QQR'X) =+4X'Q (VP P71 . VQ'X
(I1.8)
—2X'Q (VP P2 Q' X +2X'VQ-VQ' X

Cauchy-Schwartz inequality tells that
—2X'Q (VPP VQ'X <X'Q (VPP - (VPP )Q'X
+X'VQ -VQ'X
Since again (VP P71t = —(VP P7'), the previous inequality implies

4X'Q (VP P Y. VQ'X >2X'Q(VP P 1)Q'X
(I1.9)
—2X'VQ - -VQ'X

Combining (I1.8) and (I1.9) we obtain (I1.7). Applying the Maximum Princi-
ple we obtain* (I1.6). This implies that @ € L>(B™). Hence Q (VP P71)? €
L™/2(B™). Since we have the a-priori estimate (for any 1 < r < m)

IVQ-VP P < IVP|lpm [Vl rm/m-r

< Creo Q= Idllyyarmy

3Since for Y and Z in R™® we have Y* Z = ZtY
4Since |Q'X|? = X' Q Q' X.




Applying it successively for r = 2m/m + 2 and r = m/2 we deduce that, for
€o chosen small enough, the operator

Kp : W2'(B™ M,(R)) — L"(B™ M,(R))

n — —An—2Vn-VP P!
is an isomorphism for both r = 2m/m + 2 and r = m/2. Applying it
to n = Q — Id we obtain, since Q (VP P~1)? € L™?(B™), that Q €
W2m/2(B™ M,(R)) and the following estimate holds

m

2/m
1@~ Hdlyzwrspmy < o | [ 19PIP] T ata0

This ends the proof of lemma II.1. O

We shall now combine the construction of P (lemma A.1), the estimates
on @ (lemma II.1) and the a-priori estimates on A = QP (lemma A.4) in
order to construct A, assuming first that Q2 € L? for some m/2 < ¢ < m. We
prove the following lemma.

Lemma II.2 Let m > q¢ > m/2 and 1 <r < +oco. There exists ¢ > 0 and
C > 0 such that for any Q € L1(B™, so(n)) satisfying

”Q”Lm/2(Bm) <é¢ , (I1.11)
there exists A € W>4(B™ GI,(R)) with A~! € L>(B™) such that
AA+AQ=0 in B™

(I1.12)
A=1, on OB™
and the following inequalities hold

)
IATV Al (my < C {1 gz (my (I1.13)

i)
IA™ = Lllr ) < C 1@l pmszsmy (IL.14)

i)
||A_1VA||Lqm/(m—q)(Bm) S C ||Q||Lq(Bm) 5 (1115)

iv)
A~ — L||poegmy < C Q| Lagmy - (I1.16)



Proof of lemma II.2. The construction of P given by lemma A.1
J UL — W(B™ SO(n))
Q — P

is continuous for m > ¢ > m/2 (though it is not necessarily continuous for
g = m/2 which is the main difficulty in this lemma). We prove now that the
map which to n € Li™/(m=9(B™ R™ @ so(n)) assigns Q € W>4(B™, M,(R))
satisfying

~AQ-2VQ-n—Q (n)?=0  inB"

Q=1d on 0B™

(IL.17)

is also continuous for m > ¢ > m/2 and me In|™ < go for some gy small
enough. This comes from the following : Let

L, : WgYB™, M,(R)) — LY(B™, M,(R))

u — —Au —2Vu-n— u(n)?

We claim that, for ey small enough L, is continuous and invertible from
Wy(B™, M, (R)) into LI(B™, M,(R)). Indeed, using the estimates (II.4)
and (I1.5) we have that for any fixed s < m/2 and ¢ small enough -depending
on the choice of s - L, realizes an isomorphism from VVO2 *(B™, M,) into
L#*(B™, M,,). We choose then s < m/2 such that s™' —2m™! + ¢! < 2m™1.
Let f € LY(B™, M,(R)) and u be the unique solution in W*(B™, M,(R))
solving L,u = f. We have that

—tr[Auu'] — 2tr[Vu - nu'] — triu(n)®u'] = tr[f u']

Denote < -, - > the scalar product on M, (R) given by < A, B >= tr(A B").
We have then

2
—A|u7 + | Vul? +2 < Vu,un > +un* =< fu> . (I1.18)
where we have used that n* = —n. Which implies, by Cauchy Schwartz
inequality
2
A|u7+ <fu>>0 . (IL.19)
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Let ¢ solving
Ap =< f,u> in B™
=0 in 0B™

Since st —2m~ ! 4+ ¢! < 2m~! we have that

9llce < Collfllg Nutllsm/om—2sy < Cos 1flla 1F1s < CNFNE - (11.20)

Since v = 0 on dB™, the combination of (II.19) and (I.20) together with
the maximum principle gives

Jul®
el <M o <o
from which we deduce
lull3%e < Cos IF15 - (I1.21)
The equation L,u = f implies then

| = Au=2Vu-nlle < C L+ [0%g) [1f1lq

< C @A 1nllm 1nllgm/om—a)) [1f1lq

Combining this fact with the a-priori estimate

1/m
12Vu -1l ze < ClIVullgn/m—) [0llm < C g™ ully2e

we obtain that, for £y small enough, the solution u of L,u = f in I/VO2 s in
fact in W3 This proves the invertibility of L, from Wy 9(B™, M, (R)) into
Li(B™, M, (R)).

Having established the invertibility of L, in these spaces, the continuity of
the map which to n in L9™/(m=9)(B™ R™®so0(n)) assigns Q € W*4(B™, M, (R))
solving (I1.17) can now be proved as follows :

Consider a perturbation § € L™/ (m=9)(B™ R™® so(n)) such that we still
have ||n+ || < &9 and denote @) + ¢ the solution of L,s(Q + ¢) = 0 equal
to the identity matrix I,, on dB™. Hence ¢ satisfies

Lyysq = —Lyys(Q) + LyQ =2VQ -6+ Q [(n+6)* = (n)’] ~ in B™
q=0 on 0B™
The inversibility of L, ;s we established previously implies

lglhyza < C 1VQlLam 18 +C 1Qlloe [Inllmy + 13]m] 10l 2.

11



which gives the continuity of the map which to n € L/ ("9 satisfying
S INlm < €0 assigns Q € W satisfying (I1.17).
Hence, the map we have constructed

K : Ui — W>1(B™ M,(R)))
Q — A:=QP

is continuous for m > ¢ > m/2.
Let r € (1,+00), &9 > 0, C' > 0 and denote

Wit ={Qeul ; A:=K(Q) satisfies (IL12) --- (IL16) }

We claim that for any m > ¢ > m/2 and r € (1,+00) there exists g > 0
and C' > 0 such that ¢4 = W' .. This will prove the lemma.

We fix m > ¢ > m/2 and r € (1,400). Similarly as above in the
construction of P we shall prove that there exists eg and C' > 0 such that
Wq ¢ 1s non empty, open and closed in U2 which is clearly arc connected.
ThlS will imply the claim.

First we can show that W', # () for C > 0 and € := §/2 given by
lemma A.4 : in the L? nelghborhood of zero, since K is continuous both
|nablaAl|,, and ||A — I,|| are small®, therefore ||A™' — I,||s is also small
and hence we have in a L? neighborhood of 0 that [|[A~'V Al|,, < §/2 which
implies that the conditions (A.17) is satisfied and we deduce (I1.12) - - - (I1.16)
for the constant C.

We prove now the closedness of Wg(fc for the L? distance. Let 2, € Wg(fc
converging strongly to €2, in LY. By the continuity of K we have that
Ay = K(%) converges stongly to the limit Ay, = K() in W% Our
assumptions, 2, € Wq ¢ implies that

ALV Agllm < C [1Q4]1m < C &0
(I1.22)
and |4 = Llleo < C %]l

Hence || A; oo and [|[VALY Agllm = [| AV Aglm are uniformly bounded. We
deduce that |[VA;!||,, is uniformly bounded and therefore A, ' converges
strongly to a limit in L® (Vs < 4+00). Since Ay also strongly converges in
L and since AkAlzl = A;lAk = [,, the limit of A,;l has to be A! and then
inequalities (I1.12) - -- (II.16) hold for A, which implies that Q. € W',

We prove now that Wq ¢ 1s open in U for the L? distance if we have
taken £y small enough and the constant C' given by lemma A.4.

Using the fact that W27 embeds in L* for ¢ > m/2.
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Let Q2 € WI', and denote A := K(Q). Since Q € W2’ we have that
|A~Y|s < +o00. Let a € W2U(B™, M, (R)), we write A+a = A (I, + A 'a).
Hence, Since W2? embedds in L*, for ||a||y2. small enough, we have

I(A+a)™ = A7 oo < CIA oo Nlallypza (I1.23)
We have

I(A+a)7'V(A+a) = A7'VA, < C[[[ Ao + [[VAIL] llally2a
(I1.24)
Hence, since K is continuous and since ||A71VAl|,, < C &g, there exists a
radius pg > 0 such that for any w € L9(B™) such that ||w||, < pq one has

Q2+ w) ' VK(Q + W)l < 20 g

Having chosen ¢ small enough in such a way that ey + 2C ¢y < 9, we can
apply lemma A.4 and we obtain that K(Q + w) satisfies (II.12) --- (I1.16)
for ||w||, < pq and for the constant C' given by lemma A.4. This proves that
W2 is open in U2 for the L7 distance if we have taken gy small enough and

the constant C' given by lemma A.4. We have then concluded the proof of
lemma I1.2. 0J

We shall now deduce the following lemma which implies theorem 1.2 :

Lemma 1I1.3 Let 1 < r < 4o00. There exists eg > 0 and C' > 0 such that for
any Q0 € L"™2(B™, so(n)) satisfying

1920 Lmr2gmy < €0 (I1.25)
there exists A € L NW?2>™/2(B™ GI,(R)) with A=' € L"(B™) such that

AA+AQ=0 in B™

(I1.26)
A=1, on 0B™
and the following inequalities hold
0
ATV Al gy < C Q] gmrpmy (I1.27)
i)
IA™ = Lullrgm) < C Q2 gmy (I1.28)
O
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Proof of lemma II.3.

Let m/2 < ¢ < m and let Q € L™?(B™, so(n)) satisfying ||| m/2 < €0,
where g¢ is given by lemma I1.2. We take a sequence € € LI(B™, so(n))
converging to Q € L™?(B™, s0(n)) and also satisfying ||| zm/2 < €o.

Consider Ay given by lemma II1.2. We know that ||Agl| < 1 and that
IV Allms |4 'V Ag |l and || A, — ]|, are uniformly bounded. We can then
extract a subsequence Ay which weakly converges to some A in W™ and
clearly (A, <) satisfies (I1.26).

Since || A, 'V Apllm = [VA," Ag|lm and since, together with || A, ||, these
sequences are uniformly bounded, we have that ||[VA; ||, J(m+r) is uniformly
bounded. Hence we can then extract our subsequence A in such a way that
A,;,l weakly converges in W1h™/(m+1)  Therefore A,;,l strongly converges in
L? for any s < r.

Since A,;,lAk/ = Ak/Ag,l = [, and since A, strongly converges in LP for
any p < 400, we can pass to the limit in this identities and we deduce that
the strong limit of A;,! is A1,

We can now pass to the limit in the estimates (I1.13) and (I[.14) and we
obtain (I1.27) and (I1.28) which ends the proof of lemma II.3. O

III Proof of remark I.1.
In this part we restrict to dimensions m = 3 and m = 4. We prove that there
exists C), > 0 such that

m

4/m
1Q = Lullzesm < Con U |vp|m] | 1)

Where Q is the L>® N W?2™/2 map given by lemma II.1. This last estimate,
by taking A := @QP, implies theorem 1.1 directly and permits hence to skip
the use of lemmas A.4 and lemma I1.2.

(ITI.1) can be proved as follows : Let P given by lemma A.1. From esti-
mate (A.2) and Sobolev-Lorentz estimates (see for instance [Ta]) we deduce
that

IVP|| pmmrzgmy < C ||| pmy2gmy (I11.2)

where L™™/2 is the Lorentz Space of measurable functions satisfying
/ Y2 ()™ dt < +oo
R4

(f* denotes here the decreasing rearangement of |f|). Since the product of
two L™™/2 function is in L™/?™/* and since we are working in this section

14



under the assumption m < 4, we deduce the following estimates for any
u € WOZM/Q(Bm, M, (R)) such that Au € L™/>™/4(B™)

lw (VP P72 < C llulloo IV Pl mm 2 pm)
(I11.3)
S C ||Au||Lm/2,m/4(Bm) ||VP||im,m/2(Bm) )

where we used the fact that, under the assumption m < 4, a function having
two derivatives in L™/2™/* is bounded (see again Lorentz-Sobolev embed-
dings in [Ta]). We have moreover

(I11.4)
8l VPl

Hence under the assumption that ||€2|,,/2 is bellow a sufficiently small con-
stant (which implies that [[VP| pmm/gmy is small) we deduce that there

exists a unique u with 2 derivatives in L™/%"/* satisfying

—~Au—2Vu-VPP ' —u(VPP )2 = (VPP )?

(IIL.5)
u=>0 on OB™ |
and u satisfies in particular

As we have seen in lemma II.1, ) — I, is the unique solution to (IIL.5) in
WZ™?2(Bm, M,(R)). Hence (II1.6) holds for u = Q—I,, which implies (IIL.1).
O
IV Proof of theorem I.3.
Let v € L=, since A € W2™/2 one has

div(AVv — VAv) = AAv — AA v
This comes simply from a density argument. Hence we have

div(AVv — VAv) = AAv+ AQ v . (IV.1)

Hence, if Av = —Q v, we have that div(AVv — VAv) = 0.

15



Assuming now that div(AVv — VAv) = 0. If the dimension m < 5 one
has from remark 1.1 that A= € L= N W?2™/2 We can then multiply (IV.1)
by A~! and one obtains that Av = —Q v. If now Av € L} we interpret
the identity 0 = AAv + AQ v in the almost everywhere sense and since A is
invertible almost everywhere, we obtain that Av = —§ v a.e. which implies

the same identity in the distributional sense and the result is proved. O

V Proof of theorem 1.4.

We prove that |v] is a subharmonic function : Alv| > 0. This fact implies®
that |v| is in Lg° (B™) and theorem 1.4 will be proved.

loc

Let € > 0. Since Av = —Quv € L'(B™) we can consider the scalar product
between Av and the L map given by v/(e + |v|). This gives

v vt

-Av = Qu=0 a.e. (V.1)
€+ |v| €+ |v|

where we are using the fact that for almost every point x € B™ and any
vector X € R™ X'Q(z) X = 0 since ) is antisymmetric almost everywhere.

Let ¢5 = 0 "¢(-/0) where ¢ € C5°(BY") and [, ¢ = 1. Denote by
vs the convolution between v and ¢5. We clearly have that Awvs converges
strongly in L' to Av and that, moreover, vs converges almost everywhere to
v. Writting

v Vs
€+ |v| € + |vs]

v Vs
e+ v e+ |vs

AU&‘ <

‘ |Av| 4+ |Av — Awg|

Hence, using dominated convergence, we deduce that

Vs (%

- Avs — - Av strongly in L' . V.2
ctul T T et &Y (V-2)
A short computation gives
vs | Avs = div l [vs V|v5|]
€ + ve] €+ |vs] (V.3)

—(e+[vs)™* [(e+ lvsl) [Vvsl® — [vs| [V]vsl|?]
Using Kato inequality : |Vv| > |V]v|| we deduce that

|vs]

+ |vs|

Vs
€ + |vs

- Avs — div L V\vﬂ} <0 (V.4)

SFor a subharmonic function f the map which to r assigns [0B,(z)|~" [, w8
increasing.
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For t > 0 we denote f.(t) := t—e log[(t+¢)/e]. Observe that f.(t) =t/(t+¢).
We the have that s
————Avs — Af. <0 V.5
O Aus— Al < (v5)
We have that f.(|vs|) converges to f.(|v]) in L=~ as § converges to 0. Hence,
using also (V.2) we deduce that

Vs
€ + |vs

Avs— Af(los]) — %M-Av—mzuvn in D'(B™) . (V.6)

Combining (V.1) (V.5) and (V.6) we deduce that

—Afe(v]) <0 (V.7)
Since f.(|v]) converges towards |v| in Lm-2 as e goes to zero, we deduce that
Alv| > 0 and the theorem 1.4 is proved. O
A Appendix
The appendix is devoted to the proof of the following lemma.

Lemma A.1 Let m > 3 and n € N*. There exists ¢¢ > 0 and C' > 0 such
that, for any Q € L™?(B™, so(n)) satisfying

”Q”Lm/Q(Bm,so(n)) <é¢ ,

there exists P € W2™/2(B™ SO(n)) satisfying

AP P =P AP YN+ PQP' =0 in D(B™
(A1)
P = [dSO(n) on 'D/<Bm>
and
|P = Idlly2ms2 gy < C Qe (A.2)
]

Proof of lemma A.1. We follow a similar approach to the one in-
troduced in the appendix of [Ril] which was itself inspired by the work of
K.Uhlenbeck [Uh]. Let ¢ > m/2 and € > 0. Consider

Ui = {Q € LYB™, so0(n)) : / Q"™ 2dx < 5} .
R
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Claim: There exist eg > 0 and C' > 0 such that

Qe Ul :there exits P satisfying (A.1) and (A.2)
Vg(hc = .
and P = exp(U) with ||U|y20gmy < Cl|Qf| La(sm)

is open and closed in U2 for the Li—norm and thus VI o = UL (since UL
is clearly path connected) .

This claim implies lemma A.1. Indeed, for this g we consider 2 &
L™2%(B™ so(n)) such that ||| m2 < €. By convolutions one gets a se-
quence of maps Q € U? converging strongly to € in L™/2.

Let P, € W24(B™,S0(n)) given by the claim and satisfying both (A.1)
and (A.2) for €. We can extract a subsequence that weakly converges in
W2m/2(B™ SO(n)) to a limit P in W2™/2(B™ M, (R)) .

By lower semicontinuity of the W?™/2—norm under weak convergence
and by Rellich compactness embedding, we deduce that P satisfies (A.2)
and that P takes values into the rotations SO(n). Again by compactness
embedding we have that Py converges strongly to P in every L4 for ¢ < +00
and since AP, converges weakly to AP in L"™/? we pass easily to the limit
in the equation (A.1) and lemma-A.1 is proved.

It then remains to prove the claim.

Step 1 : For any ey > 0 and C' > 0 VI s closed in UZ . The proof of this
step follows one by one the argument we just used to prove that the claim
implies lemma A.1.

It then remains to establish the following.

Step 2 : There exists eg > 0 and C' > 0 such that Vgo,c is open in UL .

Before to establish the step 2, we will prove a lemma that roughly tells
us that as soon as ||P — Id||2m/2 is small enough then (A.2) automatically
holds. Precisely we have.

Lemma A.2 Let m > 3 and n € N*. There exists ¢ > 0 and Cy > 0 such
that for any P € W2™/2(B™ SO(m)) sucht that P = Id on OB™, if

”P — [d”wg,mm(Bm) < S5 (A3)
then

1P = Td]| y2m2 gy < Ch I[P~ AP — AP™" Pl pmp2gmy (A.4)

B™)

and such that for any P € W24(B™ SO(m)) satisfying P = Id on B™ and
(A.3) we have also

|P = Id]|yy2a(gmy < C1 |[P™H AP = AP™Y Pllpagam) (A.5)
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Proof of lemma A.2. We write

PT'AP = % [PT'AP — AP P]

l -1 -1
+2[P AP+ AP P]

Moreover we have
P'AP+AP' P =div(P'VP+VP ' P)—2VP'.VP
= 2VP'.VP
Hence, by assumption, we have
|P~H AP + AP Pllpmzgmy < 2[VP|zmim) [VP|Lmim
< 2¢1 ||VP| pmipm)
Since P — Id = 0 on 0B™, standard elliptic estimates give
HVPHL’"(B’”) <Cn ”AP”Lm/2(Bm)

This last fact combined with (A.7) and (A.8) give for 2¢; C,, < 1/2

2, _
AP pms2ggmy < §||P 'YAP — AP Pl sz (gmy

(A7)

(A.8)

Using again the fact that P — Id = 0 on 0B™, standard elliptic estimates

combined with the previous inequality gives (A.4).
(A.5) is proved in a similar way. Observe that

[P AP + AP Pliagamy < 2|V Pllumm) VPl s
< 2eq ||VP||Lqm/m—q(Bm)

Since P — Id = 0 on 0B™, standard elliptic estimates give

VP pam/m-aggmy < Com |AP| Laam)

(A.9)

and we finish the argument as in the case ¢ = m/2 in order to get (A.5) this

completes the proof of lemma A.2.
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We start now the proof of step 2. For any P, € W24(B™,S0(n)) we
introduce the map F*? defined as follows

FRooo w24(B™, so(n)) — LY(B™, so(n))
V. — (P exp(V))TA(Py exp(V)) — A(Py exp(V)) ™' By exp(V)
We first prove that the map FF° is C'. This comes from the following facts

i) Since W24 for ¢ > m/2 embedds continuously in C°, the map V —
exp (V) is clearly smooth from W;4(B™, so(n)) into W24(B™, SO(n)).

ii) The operator A is a smooth linear map from W24(B™, M,(R)) into
L1(B™, M,(R)).

iii) Since again W% embedds continuously in L*® - W% is an algebra -
the following map

II : WOZ’q(Bm,Mn(R)) x LY(B™ M,(R)) — L%(B™, M,(R))
(A, B) — AB
is also smooth.

Observe that for any ¢ € W.9(B™, so(n))
1
AFy" - ¢ =L - ¢ = AC+ [Py 'V Ry, V¢ + [, (] (A.10)

where 2€) := PO_1 AP, — APO_1 Py We now establish the following lemma

Lemma A.3 There exists €5 > 0 such that for any Uy € W5 (B™, so(n))
satisfying
lexp(Up) — Id||yy2mp < €2 (A.11)

then dF}* is invertible between W (B™, so(n)) and Li(B™, so(n)). O
Proof of Lemma A.3. We aim to prove that there exists € > 0 such that

whenever ||exp(Uy) — Id||yy2m2 < €, there exists Cp, > 0, such that for any
w € LI(B™, so(n)) there exists a unique ¢ € W%(B™, so(n)) for which

"C=w

(A.12)
HC”W2 q(Bm 50 n) < CO HWHLQ B™ so(n))
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Since W ¢(B™) embedds continuously in L®(B™) it is clear that [, (] € L.
Moreover

P VP, V][l < 2 VPl V|| am/m—a < Cl|Po—idll y2imre [[Cllip2a

Hence L™ is sending continuously Wy ¢(B™, so(n)) into LI(B™, so(n)). Since
m > q > m/2 we have that 4/m — 1/q > 2/m. We can hence choose r such
that 4/m —1/q > 1/r > 2/m (for instance 1/r := 3/m — 1/2q). For such a
r we have

11820, CHlzr < 2 (2] sz [SIprmim—2r < Cq 190 sz [Clly2r (A1)
and

1P VP, V]llr < 2| V|| [V prmim—r < Cll Py = idll|yzimre (Il e
(A.14)
Hence using standard elliptic theory, we obtain that for ||y —id[||;,2.m/> small
0

enough, for any w € L"(B™, M,(R)) there exists a unique solution ¢ in
W' (B™, M,(R) of Lp,¢( = w. Assume moreover that w takes values into
so(n) then we have, since (Py ' V) = —P;' VP and Qf = —Qy,

L™ (C+¢) =0

The uniqueness result we just proved gives then ¢! = —(.
Hence we have established that

L™ . WZ"(B™, so(n)) — L"(B™, so(n))

¢ — ACH [Py VP, V(] + [0, (]

is an isomorphism.

Let 1/s:=1/q+ 1/r —2/m. Our assumption on r gives 1/s < 2/m. De-
noting A, ' the Inverse of the laplacian on B™ for the zero Dirichlet boundary
data, we have

126 ([0, ) lloe < C 1€, €]
Moreover

1A ([P 'V Py, VDl < C I[Py VP, V(]

o < C[Qoll 2o Il e sm-zr < C 0]l o [|C 2

LS
< C IV Pl garsen-a (V€] pomsons
< C ||Py — Idllyzo ]y
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From the two previous estimates we deduce that for any w € LY(B™, so(n)),
the unique solution ¢ € W (B™, so(n)) of Lp,( = w is in fact in L™ and
the following estimate holds

[¢llzem) < Cy 1Py = Tdllwzagamy I€Hwarsm) + Ca llollzacm
(A.15)
<Gy [L4+11Ps = Edllyzagam)] Nollzasm)

We then obtain that
119, Clllzemm) < Cy 1AR e [1+ 1Py = Idllyzagm| lllzasm) (A.16)

Observe that inequality (A.14) is valid for any » < m and hence in particular
it holds for ¢ : we have for any £ in WOQ’q

1Ps "V P, Vel < 20V ol [VC amm-a < ClIPy = idyy2msz (1]l 2

Hence for ||Py — id||;2m/> having been chosen small enough, by standard
0

elliptic estimates, the following map

HP © W29(B™, so(n)) — LY(B™, so0(n))

£ — ALH[F'VR, V¢

is an isomorphism. Let ¢ := (H™)™1[w —[Q,(]]. The argumentation we
followed above for L' applies to H' in order to show that it realizes
an isomorphism between W7 (B™, so(n)) and L"(B™, so(n)). Hence since
H™ (¢ — () = 0 we deduce that ¢ = ¢ and hence we have proved that
¢ € W2%(B™, so(n)) and the following estimate holds :

1<l somy) < Ca [1+||AP0||Lq 1+||P0—Id||wg,q(3m)” || pagzmy

We have then established (A.12) and we have proved lemma A.3. O.

End of the proof of step 2. We fix an ¢y smaller than the ¢, of
lemma A.2 and smaller than the 5 of lemma A.3. Consider also C' equal to
C} given by lemma A.2. Let Q) € Vgo,C' According to Lemma A.3 we can
apply the local inversion theorem and then there exists a neighborhood of
Qp in LY(B™, so(n)) such that for any € in this neighborhood there exists
P € W%9(B™ SO(n)) such that (A.1) holds. In particular this is true for
any €) in the intersection of this neighborhood with ¢Z. Since g9 < ey,
Lemma A.2 applies and we deduce that all these 2 belong to V., . Hence
we have proved that there exists a neighborhood of 2y whose intersection
with U2 is included in VI . This shows that for this choice of gy and C
qu,C is open in U2 . We have the proved step 2 and we deduce lemma A.1.[]

£

22



Lemma A.4 Let m > q > m/2 and r € (1,400). There ezists §o > 0 and
C > 0 such that for any Q € LY(B™, M,(R)) and A € W>4(B™, Gl,(R))
with A~ € L>®(B™) satisfying

1Q0] pmr2gmy + |ATVA| prgmy <6, (A.17)

and solving
AA+AQ=0 in B™

(A.18)
A=1, on O0B™
then the following inequalities hold

)
IAT VAl g (gmy < C {1 gz (my (A.19)

i)
1A™ = Lllr ) < C 1@l Lmszgmy (A.20)

i)
ATV A|lam) < C QU Lasm) (A.21)

iv)
IA™ = Lillze(mmy) < C Q| pamy - (A.22)
O

Proof of lemma A.4. Equation (A.18) is equivalent to the following elliptic
system satisfied by A~1dA

d*(A7'dA) = —Q — A7'dA- A7'dA in B™
d(A7*dA) = A'dA N ATNdA in B™ (A.23)
LaBmAildA = 0 s

where typm denotes the canonical inclusion of 9B™ in R™. Classical elliptic
estimates give the existence of a constant C,,, independent of A, such that

JA A sy < Con 1920 sz + Con A7 A gy - (A24)

Choosing then 6 > 0 small enough in such a way that C,,0 < 1/2, gives
(A.19) with C' = 2C,,. The system (A.18) implies moreover (since we know
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that A~1 is a well defined measurable, L>—bounded, Matrix valued function)

AAT = 1) = [Q+2(A7dA?] (A7 = 1) + [Q+ 2(AdA)?] in B™

A1 —1,=0 on 0B™
(A.25)
Let 1 < r < 400 chosen in such a way that r=! < 2m~' — ¢~ !. Since
Wy™(B™) embeds in every LP and thus in L"(B™), we have
”Ail — [nHLr(Bm) S CT ” |:Q + 2(A71d14>21| (Ail — [)HLTm/(m+2r)
(A.26)

0, || [+ 2(A7 dAY?] ||

which implies that
47 = Lulzrgmy < G I [0+ 2047 AP e A7 = Ll
+C, || [Q+2(A_1dA)2} || L2

(A.27)
Hence from (A.19) that we just proved, for § being chosen small enough -
once r is fixed - in such a way that C, || [Q+2(A7 dA)?] || pme < 1/2 we
obtain

IA™ = Lullzegmy < 2C, || [+ 2(A7 dA)Y?] | msz < Congr Q] iz (m)
(A.28)
From the elliptic system (A.23) again we have the existence of a constant
Cqm > 0 such that

IATVA|| gz < Com 1920l + Com (AT VA),

Lm=a(Bm)

(A.29)

—1 —1

< Gy [19lo + |47 VA |A7 VA g |
For ¢ chosen small enough in such a way that
Com |ATVA],, <2Cym Crid < 1/2
we obtain that

A VAN gm0 S Com 19 (A.30)
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We write V(A™' =) = VAT AA = -AVAA'-1,) - A'VA.

Let s7' =r~t 4+ 471 —m™! we have s > m and hence
A7 = Lallo(m) < Crgm [IV(A™ = L)l
S qu,m ||A_1VA||757TQ ||f4_1 - In”?" + Cr,q,m ||A_1VA||S

< Crgon 1A VAl A = L]l + Crgon A7 VA g

(A.31)
Combining (A.28), (A.30) and (A.31) we obtain (A.22) and lemma A.4 is
proved. O
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