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Résumé : Soit m un entier supérieur ou égal à 3 et n un entier positif
arbitraire. Nous démontrons que les systèmes de Schrödinger sur la boule
unité Bm de la forme

−∆v = Ω v ,

où Ω est un potentiel antisymétrique dans Lm/2(Bm, so(n)), peuvent être
écrits sous forme divergence. Nous démontrons par ailleurs que toute solution
v dans Lm/(m−2)(Bm, Rn) est en fait dans L∞

loc et par conséquent aussi dans

W
2,m/2
loc (Bm).

Abstract : Let m be an integer larger or equal to 3 and n an arbitrary
positive integer. We prove that Schrödinger systems on Bm with an anti-
symmetric potential Ω ∈ Lm/2(Bm, Rn) of the form

−∆v = Ω v

can be written in divergence form. We prove moreover that solutions v in
Lm/(m−2)(Bm, Rn) are in fact in L∞

loc(B
m) which also implies the membership

of v to W
2,m/2
loc (Bm, Rn).
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I Introduction

In [Ri1] the author proved the sub-criticality of the following linear systems
in 2 Dimension

−∆u = Ω · ∇u , (I.1)

where u ∈ W 1,2(D2, Rn) and Ω ∈ L2(D2, R2 ⊗ so(n)) (n is an arbitrary
integer, so(n) is the subspace of Mn(R), the space of n × n square matrices,
made of antisymmetric matrices) and we have using the matrix multiplication
: in coordinates (I.1) reads

∀i = 1 · · ·n − ∆ui =
n

∑

j=1

Ωi
j · ∇uj .

Precisely, it is proved in [Ri1] that such a u is in fact in W 2,p
loc (D2, Rn) for

every p < 2. This result has been obtained by writing (I.1) in conservative
form. This was possible due to the following result

Theorem I.1 [Ri1] There exists a map, in a neighborhood of the origin, of
the form

L : L2(D2, R2 ⊗ so(n)) −→ L∞ ∩ W 1,2(D2, Gln(R))

Ω −→ A
(I.2)

such that
div(∇ΩA) := div(∇A − AΩ) = 0 , (I.3)

and with the following controls

‖dist(A, SO(n))‖∞ + ‖A‖W 1,2 ≤ C‖Ω‖L2 , (I.4)

where C is a positive constant independent of Ω. �

Once A is constructed one easily see that

−∆u = Ω · ∇u ⇐⇒ div(A∇u + B∇⊥u) = 0 . (I.5)

where ∇⊥B := (−∂yB, ∂xB) = ∇A − AΩ. The higher integrability of ∇u is
then a direct consequence of this conservative form of the system by applying
Wente’s estimates (see [Ri1] and [Ri2]). This result has lead in particular to
a proof of the Heinz-Hildebrandt’s regularity conjecture for critical points to
conformally invariant problems in two dimension.
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In this paper we will study this time Schrödinger systems of the form

−∆v = Ω v , (I.6)

where v ∈ Lm/(m−2)(Bm, Rn) and Ω ∈ Lm/2(Bm, so(n)), n is an arbitrary
integer and m is an arbitrary integer larger or equal to 3. Bm

r denotes the
m−dimensional ball centered at the origin of R

m and when we don’t write
the subscript it implicitly means that r = 1 (i.e Bm denotes the unit ball).
In coordinates (I.6) means

∀i = 1 · · ·n − ∆vi =

n
∑

j=1

Ωi
j vj .

Like (I.1) in 2-dimension, the system (I.6) is also a-priori critical for v ∈
Lm/(m−2) in m dimension. Indeed, under these assumptions v ∈ Lm/(m−2) and
Ω ∈ Lm/2 we obtain that the r.h.s. of (I.6) and hence ∆v is in L1 and, using

classical singular integral theory, we deduce in return that v ∈ L
m/(m−2),∞
loc

which is ”almost” the information we started from. Such a structure in gen-
eral situations offers no hope for having any of the properties that charac-
terize sub-critical problems such as better integrability of v, local uniqueness
of the solutions...etc. It is a-priori simply critical. However, here again, the
antisymmetry of Ω will imply that sub-criticality in fact holds.

Our main result is the following.

Theorem I.2 Let m ≥ 3 and n ∈ N
∗. For any r < +∞ there exists a map,

in a neighborhood of the origin, of the form

S : Lm/2(Bm, so(n)) −→ L∞ ∩ W 2,m/2(Bm, Gln(R))

Ω −→ A
(I.7)

such that
∆A + AΩ = 0 . (I.8)

with the following controls

‖A‖L∞(Bm) = sup
x∈Bm, X∈Sm−1

|A(x) X| ≤ 1 , (I.9)

A is moreover invertible almost everywhere and A−1 ∈ Lr(Bm) and there
exists C > 0, independent of Ω, such that

‖A−1∇A‖Lm(Bm) + ‖∇A‖W 1,m/2(Bm) ≤ C‖Ω‖Lm/2(Bm) . (I.10)

�
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Remark I.1 In dimension less or equal to 4 -i.e. (m < 5) - one can even
prove the following inequality

‖dist(A, SO(n))‖L∞(Bm) ≤ C ‖Ω‖2
Lm/2(Bm) . (I.11)

It is natural to conjecture that this inequality holds true in higher dimension.
�

Once A is constructed one proves the following result.

Theorem I.3 Let Ω ∈ Lm/2(Bm, so(n)) and A given by the previous theorem
for some r < +∞. For any v ∈ Lm/(m−2), assuming either m < 5 or
∆v ∈ L1

loc, then the following equivalence holds

−∆v = Ω v ⇐⇒ div(A ∇v −∇A v) = 0 . (I.12)

�

We have then been able to write Schrödinger Systems with antisymmetric
potential in conservative form1.

Remark I.2 It would be nice to drop the technical assumption ∆v ∈ L1
loc

whenever m ≥ 5. �

Remark I.3 Results like (I.5) or (I.12) can be interpreted as a PDE version
of the constant variation method. Indeed, it suffices to know one solution of
the auxiliary equations (I.3) resp. (I.8) in order to be able to ”factorize”
the derivative (the divergence operator) for any solution to the linear PDE
(I.1) resp. (I.6). This is exactly what the constant variation Method does for
ODE. �

A corollary of the existence of such conservation law for Schrödinger Sys-
tems with anti-symmetric potential is the sub-criticality of such systems. In
fact we can even prove the following

Theorem I.4 Let n ∈ N
∗ and m ≥ 3. Let v ∈ Lm/(m−2)(Bm, Rn) satisfying

−∆v = Ω v ,

where Ω ∈ Lm/2(Bm, so(n)), then |v| is a subharmonic function and hence

v ∈ L∞
loc ∩ W

2,m/2
loc (Bm, Rn). �

1Observe that the product A ∇v makes sense since A ∈ W 1,m, by Sobolev embeddings,
and we have A ∇v := ∇(A v) −∇A v.
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Our results and their proofs take their source jointly in [Ri1] but also in [DR2]
where F. Da Lio and the author were studying the regularity of 1/2-harmonic
maps from the real line into manifolds - see also [DR1]. They reduced the
original problem to the one of proving that the following equation is sub-
critical in one dimension

∆1/4v = Ω v ,

where v ∈ L2(R, Rn) and Ω ∈ L2(R, so(n)).

We end-up this introduction by making the following remarks.

Remark I.4 It is important to insist on the fact that, a-priori, from the
way we construct them, both the mappings L and S are not continuous be-
tween, respectively, L2(D2, R2 ⊗ so(n)) and L∞ ∩ W 1,2(D2, Gln(R)) and be-
tween Lm/2(Bm, so(n)) and L∞ ∩ W 2,m/2(Bm, Gln(R)). Our constructions
both in [Ri1] and in the present paper are realized by the application of succes-
sively local inversion theorem and continuity argument like the construction
of Coulomb Gauges for Lm/2−curvatures in [Uh]. Recently a construction of
L using a more direct variational method has been proposed by A.Schikorra
in [Sc]. He was following an approach introduced by F.Hélein in order to
construct ”Coulomb Moving Frames” (see [He] lemma 4.1.3). A construc-
tion of S using such a variational argument might a-priori be possible and
would be interesting in itself. �

Remark I.5 In [RS], M. Struwe and the author established the sub-criticality
of (I.1) in arbitrary dimension in Morrey spaces. This was motivated by ap-
plications to the partial regularity of stationary critical points to conformally
invariant Lagrangians in higher dimension. However the existence of the
Matrix valued map A in L∞(Bm, Gln(R)) satisfying

div(∇ΩA) = 0

was problematic due to the fact that Wente integrability by compensation
does not provide L∞ bounds in the classical Morrey spaces but only in their
Littlewood-Paley counterpart (see [Ke]). Here however, since the L∞ control
of A in theorem I.2 is obtained by the application of the Maximum principle,
the chances are high that theorem I.2 extends to higher dimension for the
ad-hoc Morrey spaces which make system (I.6) a-priori critical.

The paper is organized as follows. In section 2 we construct the map S, prov-
ing then theorem-I.2, and using an intermediate construction of a solution
P ∈ W 2,m/2(Bm, SO(n)) solving

1

2

[

∆P P−1 − P ∆P−1
]

+ P Ω P−1 = 0
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that we postpone in the appendix. In section 3 we prove remark I.1. In
section 4 we establish theorem I.3 and in section 5 we prove theorem I.4.

II Proof of theorem I.2.

Let Ω ∈ Lm/2(Bm, so(n)) and v ∈ Lm/m−2(Bm, Rn) satisfying (I.6). Consider
P ∈ W 2,m/2(Bm, SO(n)) given by lemma A.1. We compute

−∆(P v) = ∆P v − P ∆v − 2 div(∇P v) .

Introducing w := P v, the equation (I.6) is then equivalent to

−∆w =
[

∆P P−1 + P Ω P−1
]

w − 2 div(∇P P−1 w) .

Taking into account this special choice of P we have made and satisfying
(A.1), with our notations the system (I.6) becomes equivalent to

−∆w −
1

2

[

∆P P−1 + P ∆P−1
]

w + 2 div(∇P P−1 w) = 0 . (II.1)

Observe that

−
[

∆P P−1 + P ∆P−1
]

= −div(∇P P−1 + P ∇P−1) + 2∇P · ∇P−1

= −2(∇P P−1)2

where we have used twice that ∇P P−1 = −P ∇P−1. The notation for the
r.h.s −2(∇P P−1)2 has to be understood as follows

−2(∇P P−1)2 := −2

m
∑

j=1

(∂xj
P P−1)2

where the squares in the r.h.s refer to Matrix multiplication. Observe that
each ∂xj

P P−1 is an Lm map taking values into so(n) therefore each −(∂xj
P P−1)2

is an Lm/2 map taking values into the space Sym+
n (R) of symmetric non-

negative n × n−matrices2 . Hence

−(∇P P−1)2 ∈ Lm/2(Bm, Sym+
n (R)) .

Combining (II.1) with the previous observations, the Schrödinger system (I.6)
becomes equivalent to

−∆w − (∇P P−1)2 w + 2 div(∇P P−1 w) = 0 . (II.2)

2Indeed if a is a real antisymmetric matrix we have that (a2)t = atat = a2 and for
every x in R

n < x,−(a)2x >= −xta2x = xtatax = (ax)tax ≥ 0
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Standard elliptic estimates gives that for any given r < m/2, if ‖∇P‖Lm is
small enough - depending on r a-priori -, then there exists a unique solution
Q ∈ W 2,r(Bm, Mn(R)) of the following problem







−∆Q − 2∇Q · ∇P P−1 − Q (∇P P−1)2 = 0 in Bm

Q = Id on ∂Bm
(II.3)

This comes from the following a-priori estimates

‖∇Q · ∇P P−1‖Lr ≤ ‖∇Q‖Lrm/m−r ‖∇P‖Lm ≤ Cr ‖Q − Id‖W 2,r
0

‖∇P‖Lm

(II.4)
and

‖(Q − Id) (∇P P−1)2‖Lr ≤ ‖(Q − id)‖Lrm/m−2r ‖(∇P P−1)2‖Lm/2

≤ Cr ‖Q − Id‖W 2,r
0

‖∇P‖2
Lm .

(II.5)
We establish now the following lemma.

Lemma II.1 Let m ≥ 3 and n ∈ N
∗. There exists ε0 > 0 such that for any

P ∈ W 1,m(Bm, SO(n)) satisfying

∫

Bm

|∇P |m < ε0 ,

and any Q ∈ W 2,2m/(m+2)(Bm, Mn(R)) solving







−∆Q − 2∇Q · ∇P P−1 − Q (∇P P−1)2 = 0 in Bm

Q = Id on ∂Bm .

Then Q ∈ L∞ ∩ W 2,m/2(Bm, Mn(R)) and

sup
X∈Rn

‖Q X‖2
L∞(Bm) ≤ 1 . (II.6)

�

Proof of Lemma II.1.

We first show that for any X ∈ R
n the following inequality holds :

∆(X t Q Qt X) ≥ 0 . (II.7)
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We have

∆(X t Q Qt X) = X t ∆Q Qt X + X t Q ∆Qt X + 2X t ∇Q · ∇Qt X

= −2 X t ∇Q · (∇P P−1) Qt X − X t Q(∇P P−1)2 Qt X

+2 X t Q (∇P P−1) · ∇Qt X − X t Q (∇P P−1)2 Qt X

+2X t ∇Q · ∇Qt X

where all this above operations make a distributional sense (Leibnitz rule)
as long as Q ∈ W 2,2m/(m+2)(Bm), which is our assumption. Observe that3

−2 X t ∇Q · (∇P P−1) Qt X = −2 ((∇P P−1) Qt X)t · (X t ∇Q)t

= 2 X t Q (∇P P−1) · ∇Qt X .

Hence we have

∆(X t Q Qt X) = +4 X t Q (∇P P−1) · ∇Qt X

−2X t Q (∇P P−1)2 Qt X + 2X t ∇Q · ∇Qt X .
(II.8)

Cauchy-Schwartz inequality tells that

−2 X t Q (∇P P−1) · ∇Qt X ≤ X t Q (∇P P−1) · (∇P P−1)t Qt X

+X t ∇Q · ∇Qt X .

Since again (∇P P−1)t = −(∇P P−1), the previous inequality implies

4 X t Q (∇P P−1) · ∇Qt X ≥ 2X t Q (∇P P−1)2 Qt X

−2X t ∇Q · ∇Qt X .
(II.9)

Combining (II.8) and (II.9) we obtain (II.7). Applying the Maximum Princi-
ple we obtain4 (II.6). This implies that Q ∈ L∞(Bm). Hence Q (∇P P−1)2 ∈
Lm/2(Bm). Since we have the a-priori estimate (for any 1 < r < m)

‖∇Q · ∇P P−1‖Lr ≤ ‖∇P‖Lm ‖∇Q‖Lrm/m−r

≤ Crǫ0 ‖Q − Id‖W 2,r
0 (Bm) ,

3Since for Y and Z in R
n we have Y t Z = Zt Y

4Since |QtX |2 = Xt Q Qt X .
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Applying it successively for r = 2m/m + 2 and r = m/2 we deduce that, for
ǫ0 chosen small enough, the operator

KP : W 2,r
0 (Bm, Mn(R)) −→ Lr(Bm, Mn(R))

η −→ −∆η − 2∇η · ∇P P−1

is an isomorphism for both r = 2m/m + 2 and r = m/2. Applying it
to η = Q − Id we obtain, since Q (∇P P−1)2 ∈ Lm/2(Bm), that Q ∈
W 2,m/2(Bm, Mn(R)) and the following estimate holds

‖Q − Id‖
W

2,m/2
0 (Bm)

≤ Cm

[
∫

Bm

|∇P |m
]2/m

. (II.10)

This ends the proof of lemma II.1. �

We shall now combine the construction of P (lemma A.1), the estimates
on Q (lemma II.1) and the a-priori estimates on A = QP (lemma A.4) in
order to construct A, assuming first that Ω ∈ Lq for some m/2 < q < m. We
prove the following lemma.

Lemma II.2 Let m > q > m/2 and 1 < r < +∞. There exists ε0 > 0 and
C > 0 such that for any Ω ∈ Lq(Bm, so(n)) satisfying

‖Ω‖Lm/2(Bm) ≤ ε0 , (II.11)

there exists A ∈ W 2,q(Bm, Gln(R)) with A−1 ∈ L∞(Bm) such that






∆A + A Ω = 0 in Bm

A = In on ∂Bm
(II.12)

and the following inequalities hold

i)
‖A−1∇A‖Lm(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (II.13)

ii)
‖A−1 − In‖Lr(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (II.14)

iii)
‖A−1∇A‖Lqm/(m−q)(Bm) ≤ C ‖Ω‖Lq(Bm) , (II.15)

iv)
‖A−1 − In‖L∞(Bm) ≤ C ‖Ω‖Lq(Bm) . (II.16)
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�

Proof of lemma II.2. The construction of P given by lemma A.1

J : U q
ε0

−→ W 2,q(Bm, SO(n))

Ω −→ P

is continuous for m > q > m/2 (though it is not necessarily continuous for
q = m/2 which is the main difficulty in this lemma). We prove now that the
map which to η ∈ Lqm/(m−q)(Bm, Rm ⊗ so(n)) assigns Q ∈ W 2,q(Bm, Mn(R))
satisfying







−∆Q − 2∇Q · η − Q (η)2 = 0 in Bm

Q = Id on ∂Bm
(II.17)

is also continuous for m > q > m/2 and
∫

Bm |η|m < ε0 for some ε0 small
enough. This comes from the following : Let

Lη : W 2,q
0 (Bm, Mn(R)) −→ Lq(Bm, Mn(R))

u −→ −∆u − 2∇u · η − u(η)2

We claim that, for ε0 small enough Lη is continuous and invertible from
W 2,q

0 (Bm, Mn(R)) into Lq(Bm, Mn(R)). Indeed, using the estimates (II.4)
and (II.5) we have that for any fixed s < m/2 and ε0 small enough -depending
on the choice of s - Lη realizes an isomorphism from W 2,s

0 (Bm, Mn) into
Ls(Bm, Mn). We choose then s < m/2 such that s−1 − 2m−1 + q−1 < 2m−1.
Let f ∈ Lq(Bm, Mn(R)) and u be the unique solution in W 2,s

0 (Bm, Mn(R))
solving Lηu = f . We have that

−tr[∆u ut] − 2tr[∇u · η ut] − tr[u(η)2ut] = tr[f ut]

Denote < ·, · > the scalar product on Mn(R) given by < A, B >= tr(A Bt).
We have then

−∆
|u|2

2
+ |∇u|2 + 2 < ∇u, u η > +|uη|2 =< f, u > . (II.18)

where we have used that ηt = −η. Which implies, by Cauchy Schwartz
inequality

∆
|u|2

2
+ < f, u > ≥ 0 . (II.19)
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Let ϕ solving






∆ϕ =< f, u > in Bm

ϕ = 0 in ∂Bm .

Since s−1 − 2 m−1 + q−1 < 2 m−1 we have that

‖φ‖∞ ≤ Cq ‖f‖q ‖u‖sm/(m−2s) ≤ Cq,s ‖f‖q ‖f‖s ≤ C ‖f‖2
q . (II.20)

Since u = 0 on ∂Bm, the combination of (II.19) and (II.20) together with
the maximum principle gives

−‖ϕ‖∞ ≤
|u|2

2
+ ϕ ≤ 0 ,

from which we deduce
‖u‖2

∞ ≤ Cq,s ‖f‖2
q . (II.21)

The equation Lηu = f implies then

‖ − ∆u − 2∇u · η‖Lq ≤ C (1 + ‖η2‖q) ‖f‖q

≤ C (1 + ‖η‖m ‖η‖qm/(m−q)) ‖f‖q .

Combining this fact with the a-priori estimate

‖2∇u · η‖Lq ≤ C‖∇u‖qm/(m−q) ‖η‖m ≤ C ε
1/m
0 ‖u‖W 2,q

0
,

we obtain that, for ε0 small enough, the solution u of Lηu = f in W 2,s
0 is in

fact in W 2,q
0 . This proves the invertibility of Lη from W 2,q

0 (Bm, Mn(R)) into
Lq(Bm, Mn(R)).

Having established the invertibility of Lη in these spaces, the continuity of
the map which to η in Lqm/(m−q)(Bm, Rm⊗so(n)) assigns Q ∈ W 2,q(Bm, Mn(R))
solving (II.17) can now be proved as follows :

Consider a perturbation δ ∈ Lqm/(m−q)(Bm, Rm⊗so(n)) such that we still
have ‖η + δ‖m

m < ε0 and denote Q + q the solution of Lη+δ(Q + q) = 0 equal
to the identity matrix In on ∂Bm. Hence q satisfies






Lη+δq = −Lη+δ(Q) + LηQ = 2∇Q · δ + Q [(η + δ)2 − (η)2] in Bm

q = 0 on ∂Bm .

The inversibility of Lη+δ we established previously implies

‖q‖W 2,q
0

≤ C ‖∇Q‖ qm
m−q

‖δ‖m + C ‖Q‖∞
[

‖η‖m) + ‖δ‖m

]

‖δ‖ qm
m−q

,
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which gives the continuity of the map which to η ∈ Lqm/(m−q) satisfying
∫

Bm |η|m < ε0 assigns Q ∈ W 2,q satisfying (II.17).
Hence, the map we have constructed

K : U q
ε0

−→ W 2,q(Bm, Mn(R)))

Ω −→ A := QP

is continuous for m > q > m/2.
Let r ∈ (1, +∞), ε0 > 0, C > 0 and denote

Wq,r
ε0,C :=

{

Ω ∈ U q
ε0

; A := K(Ω) satisfies (II.12) · · · (II.16)
}

.

We claim that for any m > q > m/2 and r ∈ (1, +∞) there exists ε0 > 0
and C > 0 such that U q

ε0
= Wq,r

ε0,C . This will prove the lemma.
We fix m > q > m/2 and r ∈ (1, +∞). Similarly as above in the

construction of P we shall prove that there exists ε0 and C > 0 such that
Wq,r

ε0,C is non empty, open and closed in U q
ε0

which is clearly arc connected.
This will imply the claim.

First we can show that Wq,r
ε0,C 6= ∅ for C > 0 and ǫ := δ/2 given by

lemma A.4 : in the Lq neighborhood of zero, since K is continuous both
‖nablaA‖m and ‖A − In‖∞ are small5, therefore ‖A−1 − In‖∞ is also small
and hence we have in a Lq neighborhood of 0 that ‖A−1∇A‖m < δ/2 which
implies that the conditions (A.17) is satisfied and we deduce (II.12) · · · (II.16)
for the constant C.

We prove now the closedness of Wq,r
ε0,C for the Lq distance. Let Ωk ∈ Wq,r

ε0,C

converging strongly to Ω∞ in Lq. By the continuity of K we have that
Ak := K(Ωk) converges stongly to the limit A∞ := K(Ω∞) in W 2,q. Our
assumptions, Ωk ∈ Wq,r

ε0,C implies that

‖A−1
k ∇Ak‖m ≤ C ‖Ωk‖m ≤ C ε0

and ‖A−1
k − In‖∞ ≤ C ‖Ωk‖q .

(II.22)

Hence ‖A−1
k ‖∞ and ‖∇A−1

k Ak‖m = ‖A−1
k ∇Ak‖m are uniformly bounded. We

deduce that ‖∇A−1
k ‖m is uniformly bounded and therefore A−1

k converges
strongly to a limit in Ls (∀s < +∞). Since Ak also strongly converges in
L∞ and since AkA

−1
k = A−1

k Ak = In the limit of A−1
k has to be A−1

∞ and then
inequalities (II.12) · · · (II.16) hold for A∞ which implies that Ω∞ ∈ Wq,r

ε0,C .
We prove now that Wq,r

ε0,C is open in U q
ε0

for the Lq distance if we have
taken ε0 small enough and the constant C given by lemma A.4.

5Using the fact that W 2,q embeds in L∞ for q > m/2.
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Let Ω ∈ Wq,r
ε0,C and denote A := K(Ω). Since Ω ∈ Wq,r

ε0,C , we have that

‖A−1‖∞ < +∞. Let a ∈ W 2,q
0 (Bm, Mn(R)), we write A+a = A (In +A−1a).

Hence, Since W 2,q
0 embedds in L∞, for ‖a‖W 2,q small enough, we have

‖(A + a)−1 − A−1‖∞ ≤ C‖A−1‖∞ ‖a‖W 2,q
0

. (II.23)

We have

‖(A + a)−1∇(A + a) − A−1∇A‖m ≤ C
[

‖A−1‖∞ + ‖∇A‖m

]

‖a‖W 2,q
0

.

(II.24)
Hence, since K is continuous and since ‖A−1∇A‖m < C ε0, there exists a
radius ρΩ > 0 such that for any ω ∈ Lq(Bm) such that ‖ω‖q < ρΩ one has

‖K(Ω + ω)−1∇(K(Ω + ω)‖m ≤ 2C ε0 .

Having chosen ε0 small enough in such a way that ε0 + 2C ε0 < δ, we can
apply lemma A.4 and we obtain that K(Ω + ω) satisfies (II.12) · · · (II.16)
for ‖ω‖q < ρΩ and for the constant C given by lemma A.4. This proves that
Wq,r

ε0,C is open in U q
ε0

for the Lq distance if we have taken ε0 small enough and
the constant C given by lemma A.4. We have then concluded the proof of
lemma II.2. �

We shall now deduce the following lemma which implies theorem I.2 :

Lemma II.3 Let 1 < r < +∞. There exists ε0 > 0 and C > 0 such that for
any Ω ∈ Lm/2(Bm, so(n)) satisfying

‖Ω‖Lm/2(Bm) ≤ ε0 , (II.25)

there exists A ∈ L∞ ∩ W 2,m/2(Bm, Gln(R)) with A−1 ∈ Lr(Bm) such that







∆A + A Ω = 0 in Bm

A = In on ∂Bm
(II.26)

and the following inequalities hold

i)
‖A−1∇A‖Lm(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (II.27)

ii)
‖A−1 − In‖Lr(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (II.28)

�
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Proof of lemma II.3.

Let m/2 < q < m and let Ω ∈ Lm/2(Bm, so(n)) satisfying ‖Ωk‖Lm/2 < ε0,
where ε0 is given by lemma II.2. We take a sequence Ωk ∈ Lq(Bm, so(n))
converging to Ω ∈ Lm/2(Bm, so(n)) and also satisfying ‖Ωk‖Lm/2 < ε0.

Consider Ak given by lemma II.2. We know that ‖Ak‖∞ ≤ 1 and that
‖∇Ak‖m, ‖A−1

k ∇Ak‖m and ‖A−1
k −In‖r are uniformly bounded. We can then

extract a subsequence Ak′ which weakly converges to some A in W 1,m and
clearly (A, Ω) satisfies (II.26).

Since ‖A−1
k ∇Ak‖m = ‖∇A−1

k Ak‖m and since, together with ‖A−1
k ‖r, these

sequences are uniformly bounded, we have that ‖∇A−1
k ‖rm/(m+r) is uniformly

bounded. Hence we can then extract our subsequence Ak′ in such a way that
A−1

k′ weakly converges in W 1,rm/(m+r). Therefore A−1
k′ strongly converges in

Ls for any s < r.
Since A−1

k′ Ak′ = Ak′A−1
k′ = In and since Ak′ strongly converges in Lp for

any p < +∞, we can pass to the limit in this identities and we deduce that
the strong limit of A−1

k′ is A−1.
We can now pass to the limit in the estimates (II.13) and (II.14) and we

obtain (II.27) and (II.28) which ends the proof of lemma II.3. �

III Proof of remark I.1.

In this part we restrict to dimensions m = 3 and m = 4. We prove that there
exists Cm > 0 such that

‖Q − In‖L∞(Bm) ≤ Cm

[
∫

Bm

|∇P |m
]4/m

. (III.1)

Where Q is the L∞ ∩ W 2,m/2 map given by lemma II.1. This last estimate,
by taking A := QP , implies theorem I.1 directly and permits hence to skip
the use of lemmas A.4 and lemma II.2.

(III.1) can be proved as follows : Let P given by lemma A.1. From esti-
mate (A.2) and Sobolev-Lorentz estimates (see for instance [Ta]) we deduce
that

‖∇P‖Lm,m/2(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (III.2)

where Lm,m/2 is the Lorentz Space of measurable functions satisfying
∫

R+

t−1/2f ∗(t)m/2 dt < +∞

(f ∗ denotes here the decreasing rearangement of |f |). Since the product of
two Lm,m/2 function is in Lm/2,m/4 and since we are working in this section
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under the assumption m ≤ 4, we deduce the following estimates for any
u ∈ W

2,m/2
0 (Bm, Mn(R)) such that ∆u ∈ Lm/2,m/4(Bm)

‖u (∇P P−1)2‖Lm/2,m/4 ≤ C ‖u‖∞ ‖∇P‖2
Lm,m/2(Bm)

≤ C ‖∆u‖Lm/2,m/4(Bm) ‖∇P‖2
Lm,m/2(Bm) ,

(III.3)

where we used the fact that, under the assumption m ≤ 4, a function having
two derivatives in Lm/2,m/4 is bounded (see again Lorentz-Sobolev embed-
dings in [Ta]). We have moreover

‖∇u · ∇P P−1‖Lm/2,m/4(Bm) ≤ C ‖∇u‖Lm,m/2(Bm) ‖∇P‖Lm,m/2(Bm)

‖∆u‖Lm/2,m/4(Bm) ‖∇P‖Lm,m/2(Bm)

(III.4)

Hence under the assumption that ‖Ω‖m/2 is bellow a sufficiently small con-
stant (which implies that ‖∇P‖Lm,m/2(Bm) is small) we deduce that there

exists a unique u with 2 derivatives in Lm/2,m/4 satisfying







−∆u − 2∇u · ∇P P−1 − u(∇P P−1)2 = (∇P P−1)2

u = 0 on ∂Bm ,
(III.5)

and u satisfies in particular

‖u‖∞ ≤ C ‖∇P‖2
Lm,m/2(Bm) ≤ C ‖Ω‖2

m/2 . (III.6)

As we have seen in lemma II.1, Q − In is the unique solution to (III.5) in

W
2,m/2
0 (Bm, Mn(R)). Hence (III.6) holds for u = Q−In which implies (III.1).

�

IV Proof of theorem I.3.

Let v ∈ L
m

m−2 , since A ∈ W 2,m/2 one has

div(A∇v −∇Av) = A∆v − ∆A v .

This comes simply from a density argument. Hence we have

div(A∇v −∇Av) = A∆v + AΩ v . (IV.1)

Hence, if ∆v = −Ω v, we have that div(A∇v −∇Av) = 0.
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Assuming now that div(A∇v −∇Av) = 0. If the dimension m < 5 one
has from remark I.1 that A−1 ∈ L∞ ∩ W 2,m/2. We can then multiply (IV.1)
by A−1 and one obtains that ∆v = −Ω v. If now ∆v ∈ L1

loc we interpret
the identity 0 = A∆v + AΩ v in the almost everywhere sense and since A is
invertible almost everywhere, we obtain that ∆v = −Ω v a.e. which implies
the same identity in the distributional sense and the result is proved. �

V Proof of theorem I.4.

We prove that |v| is a subharmonic function : ∆|v| ≥ 0. This fact implies6

that |v| is in L∞
loc(B

m) and theorem I.4 will be proved.
Let ε > 0. Since ∆v = −Ω v ∈ L1(Bm) we can consider the scalar product

between ∆v and the L∞ map given by v/(ε + |v|). This gives

v

ε + |v|
· ∆v =

vt

ε + |v|
Ω v = 0 a.e. (V.1)

where we are using the fact that for almost every point x ∈ Bm and any
vector X ∈ R

n X tΩ(x) X = 0 since Ω is antisymmetric almost everywhere.
Let φδ = δ−mφ(·/δ) where φ ∈ C∞

0 (Bm
1 ) and

∫

Bm φ = 1. Denote by
vδ the convolution between v and φδ. We clearly have that ∆vδ converges
strongly in L1 to ∆v and that, moreover, vδ converges almost everywhere to
v. Writting

∣

∣

∣

∣

v

ε + |v|
· ∆v −

vδ

ε + |vδ|
· ∆vδ

∣

∣

∣

∣

≤

∣

∣

∣

∣

v

ε + |v|
−

vδ

ε + |vδ|

∣

∣

∣

∣

|∆v| + |∆v − ∆vδ|

Hence, using dominated convergence, we deduce that

vδ

ε + |vδ|
· ∆vδ −→

v

ε + |v|
· ∆v strongly in L1 . (V.2)

A short computation gives

vδ

ε + |vδ|
· ∆vδ = div

[

|vδ|

ε + |vδ|
∇|vδ|

]

−(ε + |vδ|)
−2

[

(ε + |vδ|) |∇vδ|
2 − |vδ| |∇|vδ||

2
]

(V.3)

Using Kato inequality : |∇v| ≥ |∇|v|| we deduce that

vδ

ε + |vδ|
· ∆vδ − div

[

|vδ|

ε + |vδ|
∇|vδ|

]

≤ 0 (V.4)

6For a subharmonic function f the map which to r assigns |∂Br(x)|−1
∫

∂Br(x) f is
increasing.
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For t ≥ 0 we denote fε(t) := t−ε log[(t+ε)/ε]. Observe that f ′
ε(t) = t/(t+ε).

We the have that
vδ

ε + |vδ|
· ∆vδ − ∆fε(|vδ|) ≤ 0 (V.5)

We have that fε(|vδ|) converges to fε(|v|) in L
m

m−2 as δ converges to 0. Hence,
using also (V.2) we deduce that

vδ

ε + |vδ|
·∆vδ−∆fε(|vδ|) −→

v

ε + |v|
·∆v−∆fε(|v|) in D′(Bm) . (V.6)

Combining (V.1) (V.5) and (V.6) we deduce that

−∆fε(|v|) ≤ 0 (V.7)

Since fε(|v|) converges towards |v| in L
m

m−2 as ε goes to zero, we deduce that
∆|v| ≥ 0 and the theorem I.4 is proved. �

A Appendix

The appendix is devoted to the proof of the following lemma.

Lemma A.1 Let m ≥ 3 and n ∈ N
∗. There exists ε0 > 0 and C > 0 such

that, for any Ω ∈ Lm/2(Bm, so(n)) satisfying

‖Ω‖Lm/2(Bm,so(n)) ≤ ε0 ,

there exists P ∈ W 2,m/2(Bm, SO(n)) satisfying







1
2
[∆P P−1 − P ∆P−1] + P Ω P−1 = 0 in D′(Bm)

P = IdSO(n) on D′(Bm)
(A.1)

and
‖P − Id‖

W
2,m/2
0 (Bm)

≤ C ‖Ω‖Lm/2 . (A.2)

�

Proof of lemma A.1. We follow a similar approach to the one in-
troduced in the appendix of [Ri1] which was itself inspired by the work of
K.Uhlenbeck [Uh]. Let q > m/2 and ε > 0. Consider

U q
ε =

{

Ω ∈ Lq(Bm, so(n)) :

∫

R

|Ω|m/2dx < ε

}

.
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Claim: There exist ε0 > 0 and C > 0 such that

Vq
ǫ0,C :=







Ω ∈ U q
ε0

: there exits P satisfying (A.1) and (A.2)

and P = exp(U) with ||U ||W 2,q
0 (Bm) ≤ C‖Ω‖Lq(Bm)







is open and closed in U q
ε0

for the Lq−norm and thus Vq
ε0,C ≡ U q

ε0
(since U q

ε0

is clearly path connected) .
This claim implies lemma A.1. Indeed, for this ε0 we consider Ω ∈

Lm/2(Bm, so(n)) such that ‖Ω‖Lm/2 < ε0. By convolutions one gets a se-
quence of maps Ωk ∈ U q

ε converging strongly to Ω in Lm/2.
Let Pk ∈ W 2,q(Bm, SO(n)) given by the claim and satisfying both (A.1)

and (A.2) for Ωk. We can extract a subsequence that weakly converges in
W 2,m/2(Bm, SO(n)) to a limit P in W 2,m/2(Bm, Mn(R)) .

By lower semicontinuity of the W 2,m/2−norm under weak convergence
and by Rellich compactness embedding, we deduce that P satisfies (A.2)
and that P takes values into the rotations SO(n). Again by compactness
embedding we have that Pk converges strongly to P in every Lq for q < +∞
and since ∆Pk converges weakly to ∆P in Lm/2 we pass easily to the limit
in the equation (A.1) and lemma-A.1 is proved.

It then remains to prove the claim.

Step 1 : For any ε0 > 0 and C > 0 Vq
ε0

is closed in U q
ε0

. The proof of this
step follows one by one the argument we just used to prove that the claim
implies lemma A.1.

It then remains to establish the following.

Step 2 : There exists ε0 > 0 and C > 0 such that Vq
ε0,C is open in U q

ε0
.

Before to establish the step 2, we will prove a lemma that roughly tells
us that as soon as ‖P − Id‖W 2,m/2 is small enough then (A.2) automatically
holds. Precisely we have.

Lemma A.2 Let m ≥ 3 and n ∈ N
∗. There exists ε1 > 0 and C1 > 0 such

that for any P ∈ W 2,m/2(Bm, SO(m)) sucht that P = Id on ∂Bm, if

‖P − Id‖
W

2,m/2
0 (Bm)

≤ ε1 (A.3)

then

‖P − Id‖
W

2,m/2
0 (Bm)

≤ C1 ‖P−1 ∆P − ∆P−1 P‖Lm/2(Bm) , (A.4)

and such that for any P ∈ W 2,q(Bm, SO(m)) satisfying P = Id on ∂Bm and
(A.3) we have also

‖P − Id‖W 2,q
0 (Bm) ≤ C1 ‖P−1 ∆P − ∆P−1 P‖Lq(Bm) . (A.5)
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�

Proof of lemma A.2. We write

P−1∆P =
1

2

[

P−1∆P − ∆P−1 P
]

+
1

2

[

P−1 ∆P + ∆P−1 P
]

(A.6)

Moreover we have

P−1 ∆P + ∆P−1 P = div
(

P−1∇P + ∇P−1 P
)

− 2∇P−1 · ∇P

= −2∇P−1 · ∇P
(A.7)

Hence, by assumption, we have

‖P−1 ∆P + ∆P−1 P‖Lm/2(Bm) ≤ 2‖∇P‖Lm(Bm) ‖∇P‖Lm(Bm)

≤ 2ε1 ‖∇P‖Lm(Bm)

(A.8)

Since P − Id = 0 on ∂Bm, standard elliptic estimates give

‖∇P‖Lm(Bm) ≤ Cm ‖∆P‖Lm/2(Bm) .

This last fact combined with (A.7) and (A.8) give for 2ε1 Cm < 1/2

‖∆P‖Lm/2(Bm) ≤
2

3
‖P−1∆P − ∆P−1 P‖Lm/2(Bm) .

Using again the fact that P − Id = 0 on ∂Bm, standard elliptic estimates
combined with the previous inequality gives (A.4).

(A.5) is proved in a similar way. Observe that

‖P−1 ∆P + ∆P−1 P‖Lq(Bm) ≤ 2‖∇P‖Lm(Bm) ‖∇P‖Lqm/m−q(Bm)

≤ 2ε1 ‖∇P‖Lqm/m−q(Bm)

(A.9)

Since P − Id = 0 on ∂Bm, standard elliptic estimates give

‖∇P‖Lqm/m−q(Bm) ≤ Cm ‖∆P‖Lq(Bm) .

and we finish the argument as in the case q = m/2 in order to get (A.5) this
completes the proof of lemma A.2. �
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We start now the proof of step 2. For any P0 ∈ W 2,q(Bm, SO(n)) we
introduce the map F P0 defined as follows

F P0 : W 2,q
0 (Bm, so(n)) −→ Lq(Bm, so(n))

V −→ (P0 exp(V ))−1∆(P0 exp(V )) − ∆(P0 exp(V ))−1 P0 exp(V )

We first prove that the map F P0 is C1. This comes from the following facts

i) Since W 2,q for q > m/2 embedds continuously in C0, the map V →
exp (V ) is clearly smooth from W 2,q

0 (Bm, so(n)) into W 2,q(Bm, SO(n)).

ii) The operator ∆ is a smooth linear map from W 2,q(Bm, Mn(R)) into
Lq(Bm, Mn(R)).

iii) Since again W 2,q embedds continuously in L∞ - W 2,q is an algebra -
the following map

Π : W 2,q
0 (Bm, Mn(R)) × Lq(Bm, Mn(R)) −→ Lq(Bm, Mn(R))

(A, B) −→ A B

is also smooth.

Observe that for any ζ ∈ W 2,q
0 (Bm, so(n))

1

2
dF P0

0 · ζ = LP0 · ζ := ∆ζ + [P−1
0 ∇P0,∇ζ ] + [Ω0, ζ ] (A.10)

where 2Ω0 := P−1
0 ∆P0 − ∆P−1

0 P0 We now establish the following lemma

Lemma A.3 There exists ε2 > 0 such that for any U0 ∈ W 2,q
0 (Bm, so(n))

satisfying
‖exp(U0) − Id‖W 2,m/2 ≤ ε2 , (A.11)

then dF P0
0 is invertible between W 2,q

0 (Bm, so(n)) and Lq(Bm, so(n)). �

Proof of Lemma A.3. We aim to prove that there exists ε > 0 such that
whenever ‖exp(U0) − Id‖W 2,m/2 ≤ ε, there exists CU0 > 0, such that for any
ω ∈ Lq(Bm, so(n)) there exists a unique ζ ∈ W 2,q

0 (Bm, so(n)) for which







LP0ζ = ω ,

‖ζ‖W 2,q
0 (Bm,so(n)) ≤ C0 ‖ω‖Lq(Bm,so(n))

(A.12)
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Since W 2,q
0 (Bm) embedds continuously in L∞(Bm) it is clear that [Ω0, ζ ] ∈ Lq.

Moreover

‖[P−1
0 ∇P0,∇ζ ]‖Lq ≤ 2‖∇P0‖Lm ‖∇ζ‖Lqm/m−q ≤ C‖P0− id‖

W
2,m/2
0

‖ζ‖W 2,q
0

.

Hence LP0 is sending continuously W 2,q
0 (Bm, so(n)) into Lq(Bm, so(n)). Since

m > q > m/2 we have that 4/m − 1/q > 2/m. We can hence choose r such
that 4/m − 1/q > 1/r > 2/m (for instance 1/r := 3/m − 1/2q). For such a
r we have

‖[Ω0, ζ ]‖Lr ≤ 2 ‖Ω0‖Lm/2 ‖ζ‖Lrm/m−2r ≤ Cq ‖Ω0‖Lm/2 ‖ζ‖W 2,r
0

(A.13)

and

‖[P−1
0 ∇P0,∇ζ ]‖Lr ≤ 2‖∇P0‖Lm ‖∇ζ‖Lrm/m−r ≤ C‖P0 − id‖

W
2,m/2
0

‖ζ‖W 2,r
0

.

(A.14)
Hence using standard elliptic theory, we obtain that for ‖P0−id‖

W
2,m/2
0

small

enough, for any ω ∈ Lr(Bm, Mn(R)) there exists a unique solution ζ in
W 2,r

0 (Bm, Mn(R) of LP0ζ = ω. Assume moreover that ω takes values into
so(n) then we have, since (P−1

0 ∇P0)
t = −P−1

0 ∇P0 and Ωt
0 = −Ω0,

LP0 · (ζ + ζ t) = 0 .

The uniqueness result we just proved gives then ζ t = −ζ .
Hence we have established that

LP0 : W 2,r
0 (Bm, so(n)) −→ Lr(Bm, so(n))

ζ −→ ∆ζ + [P−1
0 ∇P0,∇ζ ] + [Ω0, ζ ]

is an isomorphism.
Let 1/s := 1/q + 1/r − 2/m. Our assumption on r gives 1/s < 2/m. De-

noting ∆−1
0 the Inverse of the laplacian on Bm for the zero Dirichlet boundary

data, we have

‖∆−1
0 ([Ω0, ζ ])‖∞ ≤ C ‖[Ω0, ζ ]‖Ls ≤ C ‖Ω0‖Lq ‖ζ‖Lmr/m−2r ≤ C ‖Ω0‖Lq ‖ζ‖W 2,r

0
.

Moreover

‖∆−1
0 ([P−1

0 ∇P0,∇ζ ])‖∞ ≤ C ‖[P−1
0 ∇P0,∇ζ ]‖Ls

≤ C ‖∇P0‖Lqm/m−q ‖∇ζ‖Lrm/m−r

≤ C ‖P0 − Id‖W 2,q
0

‖ζ‖W 2,r
0
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From the two previous estimates we deduce that for any ω ∈ Lq(Bm, so(n)),
the unique solution ζ ∈ W 2,r

0 (Bm, so(n)) of LP0ζ = ω is in fact in L∞ and
the following estimate holds

‖ζ‖L∞(Bm) ≤ Cq ‖P0 − Id‖W 2,q
0 (Bm) ‖ζ‖W 2,r

0 (Bm) + Cq ‖ω‖Lq(Bm)

≤ Cq

[

1 + ‖P0 − Id‖W 2,q
0 (Bm)

]

‖ω‖Lq(Bm)

(A.15)

We then obtain that

‖[Ω0, ζ ]‖Lq(Bm) ≤ Cq ‖∆P0‖Lq

[

1 + ‖P0 − Id‖W 2,q
0 (Bm)

]

‖ω‖Lq(Bm) (A.16)

Observe that inequality (A.14) is valid for any r < m and hence in particular
it holds for q : we have for any ξ in W 2,q

0

|[P−1
0 ∇P0,∇ξ]‖Lq ≤ 2‖∇P0‖Lm ‖∇ζ‖Lqm/m−q ≤ C‖P0 − id‖

W
2,m/2
0

‖ζ‖W 2,q
0

.

Hence for ‖P0 − id‖
W

2,m/2
0

having been chosen small enough, by standard

elliptic estimates, the following map

HP0 : W 2,q
0 (Bm, so(n)) −→ Lq(Bm, so(n))

ξ −→ ∆ξ + [P−1
0 ∇P0,∇ξ]

is an isomorphism. Let ξ := (HP0)−1 [ω − [Ω, ζ ]]. The argumentation we
followed above for LP0 applies to HP0 in order to show that it realizes
an isomorphism between W 2,r

0 (Bm, so(n)) and Lr(Bm, so(n)). Hence since
HP0(ξ − ζ) = 0 we deduce that ζ = ξ and hence we have proved that
ζ ∈ W 2,q

0 (Bm, so(n)) and the following estimate holds :

‖ζ‖W 2,q
0 (Bm,so(n)) ≤ Cq

[

1 + ‖∆P0‖Lq

[

1 + ‖P0 − Id‖W 2,q
0 (Bm)

]]

‖ω‖Lq(Bm)

We have then established (A.12) and we have proved lemma A.3. �.

End of the proof of step 2. We fix an ε0 smaller than the ε1 of
lemma A.2 and smaller than the ε2 of lemma A.3. Consider also C equal to
C1 given by lemma A.2. Let Ω0 ∈ Vq

ε0,C . According to Lemma A.3 we can
apply the local inversion theorem and then there exists a neighborhood of
Ω0 in Lq(Bm, so(n)) such that for any Ω in this neighborhood there exists
P ∈ W 2,q(Bm, SO(n)) such that (A.1) holds. In particular this is true for
any Ω in the intersection of this neighborhood with U q

ε0
. Since ε0 ≤ ε1,

Lemma A.2 applies and we deduce that all these Ω belong to Vε0,C . Hence
we have proved that there exists a neighborhood of Ω0 whose intersection
with U q

ε0
is included in Vq

ε0,C. This shows that for this choice of ε0 and C
Vq

ε0,C is open in U q
ε0

. We have the proved step 2 and we deduce lemma A.1.�

22



Lemma A.4 Let m > q > m/2 and r ∈ (1, +∞). There exists δ0 > 0 and
C > 0 such that for any Ω ∈ Lq(Bm, Mn(R)) and A ∈ W 2,q(Bm, Gln(R))
with A−1 ∈ L∞(Bm) satisfying

‖Ω‖Lm/2(Bm) + ‖A−1∇A‖Lm(Bm) ≤ δ , (A.17)

and solving






∆A + A Ω = 0 in Bm

A = In on ∂Bm
(A.18)

then the following inequalities hold

i)
‖A−1∇A‖Lm(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (A.19)

ii)
‖A−1 − In‖Lr(Bm) ≤ C ‖Ω‖Lm/2(Bm) , (A.20)

iii)
‖A−1∇A‖Lq(Bm) ≤ C ‖Ω‖Lq(Bm) , (A.21)

iv)
‖A−1 − In‖L∞(Bm) ≤ C ‖Ω‖Lq(Bm) . (A.22)

�

Proof of lemma A.4. Equation (A.18) is equivalent to the following elliptic
system satisfied by A−1dA























d∗(A−1dA) = −Ω − A−1dA · A−1dA in Bm

d(A−1dA) = A−1dA ∧ A−1dA in Bm

ι∂BmA−1dA = 0 ,

(A.23)

where ι∂Bm denotes the canonical inclusion of ∂Bm in R
m. Classical elliptic

estimates give the existence of a constant Cm, independent of A, such that

‖A−1dA‖Lm(Bm) ≤ Cm ‖Ω‖Lm/2(Bm) + Cm ‖A−1dA‖2
Lm(Bm) . (A.24)

Choosing then δ > 0 small enough in such a way that Cmδ < 1/2, gives
(A.19) with C = 2 Cm. The system (A.18) implies moreover (since we know
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that A−1 is a well defined measurable, L∞−bounded, Matrix valued function)







∆(A−1 − In) =
[

Ω + 2(A−1dA)2
]

(A−1 − I) +
[

Ω + 2(A−1dA)2
]

in Bm

A−1 − In = 0 on ∂Bm

(A.25)
Let 1 < r < +∞ chosen in such a way that r−1 < 2 m−1 − q−1. Since
W 1,m

0 (Bm) embeds in every Lp and thus in Lr(Bm), we have

‖A−1 − In‖Lr(Bm) ≤ Cr ‖
[

Ω + 2(A−1dA)2
]

(A−1 − I)‖Lrm/(m+2r)

+Cr ‖
[

Ω + 2(A−1dA)2
]

‖Lm/2 .
(A.26)

which implies that

‖A−1 − In‖Lr(Bm) ≤ Cr ‖
[

Ω + 2(A−1dA)2
]

‖Lm/2 ‖A−1 − In‖Lr(Bm)

+Cr ‖
[

Ω + 2(A−1dA)2
]

‖Lm/2 .

(A.27)
Hence from (A.19) that we just proved, for δ being chosen small enough -
once r is fixed - in such a way that Cr ‖ [Ω + 2(A−1dA)2] ‖Lm/2 < 1/2 we
obtain

‖A−1 − In‖Lr(Bm) ≤ 2 Cr ‖
[

Ω + 2(A−1dA)2
]

‖Lm/2 ≤ Cm,r ‖Ω‖Lm/2(Bm) .
(A.28)

From the elliptic system (A.23) again we have the existence of a constant
Cq,m > 0 such that

‖A−1∇A‖
L

qm
m−q (Bm)

≤ Cq,m ‖Ω‖q + Cq,m ‖(A−1∇A)2‖q .

≤ Cq,m

[

‖Ω‖q + ‖A−1∇A‖m ‖A−1∇A‖
L

qm
m−q (Bm)

]

.
(A.29)

For δ chosen small enough in such a way that

Cq,m ‖A−1∇A‖m < 2 Cq,m Cm δ < 1/2 ,

we obtain that
‖A−1∇A‖

L
qm

m−q (Bm)
≤ Cq,m ‖Ω‖q . (A.30)
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We write ∇(A−1 − In) = ∇A−1 A A−1 = −A−1∇A (A−1 − In) − A−1∇A .
Let s−1 = r−1 + q−1 − m−1, we have s > m and hence

‖A−1 − In‖L∞(Bm) ≤ Cr,q,m ‖∇(A−1 − In)‖s

≤ Cr,q,m ‖A−1∇A‖ qm
m−q

‖A−1 − In‖r + Cr,q,m ‖A−1∇A‖s

≤ Cr,q,m ‖A−1∇A‖ qm
m−q

‖A−1 − In‖r + Cr,q,m ‖A−1∇A‖ qm
m−q

.

(A.31)
Combining (A.28), (A.30) and (A.31) we obtain (A.22) and lemma A.4 is
proved. �
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