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Abstract: We consider calculus of variations of the Yang-Mills func-
tional in dimensions larger than the critical dimension 4. We explain how
this naturally leads to a class of – a priori not well-defined – singular bundles
including possibly “almost everywhere singular bundles”. In order to over-
come this difficulty, we suggest a suitable new framework, namely the notion
of singular bundles with bounded L2-curvatures.

I Introduction.

I.1 Yang-Mills functional and the Uhlenbeck Coulomb

gauge extraction result in dimensions n ≤ 4.

Let π : P −→ M be a principal G-bundle over a compact n-dimensional
Riemannian manifold M . The structure group G of P is assumed to be a
compact Lie group with Lie algebra g. We denote by D(P ) the space of
connections on P . For any connection D let FD ∈ Ω2(M, ad(P )) denote the
curvature of D. The Yang-Mills functional is then defined as

YM(D) =

∫

M

|FD|
2 dvolg , (I.1)

where dvolg denotes the volume form on M induced by the metric g. The
norm of FD is induced by the Killing form on g and the Riemannian metric
on M .

In order to proceed to calculus of variations (such as finding critical points,
minimizers and saddle points) of the Yang-Mills functional, a first approach
consists in enlarging the class of smooth connections to the class of Sobolev
W 1,2-connections. The space of these Sobolev W 1,2-connections is defined to
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be – modulo the addition of an arbitrary smooth reference connection D0

– the space W 1,2(Γ(T ∗M ⊗ ad(P ))). The latter consists of W 1,2-sections of
the bundle T ∗M ⊗ ad(P ) which are in the closure of smooth sections for
the W 1,2-norm (see for instance [Uh1], [FrU] for details). For smooth local
trivializations P =

⋃

i∈I π
−1(Ui), where the Ui form a covering of M by

open sets over which the bundle P is trivial and transition functions of P by
gij ∈ C∞(Ui ∩Uj , G), the previously defined W 1,2-connections are families of
W 1,2-1-forms Ai on Ui taking values into the Lie algebra g. Moreover, they
are related by the formulae

Aj = g−1
ij Aigij + g−1

ij dgij in W 1,2(∧1(Ui ∩ Uj) ⊗ g) .

This framework of Sobolev connections and Sobolev gauge transfor-
mations over smooth bundles was successful for pursuing calculus of vari-
ation questions for the Yang-Mills functional up to the critical dimension
n = 4. Note that the dimension 4 is critical in the sense that in this dimen-
sion the functional is conformally invariant which is related to the fact that
the Yang-Mills equation (I.5) is critical precisely in dimension 4. The suc-
cess of this framework is due to the fundamental Coulomb gauge extraction
theorem by K. Uhlenbeck.

Theorem I.1 [Uh1] Let n ≤ 4, then there exists ε(n) > 0 such that the
following holds: Let A be a W 1,2-1-form over the unit ball Bn taking values
into the Lie algebra g, i.e. A ∈W 1,2(∧1(Bn) ⊗ g). Assuming

YM(A) =

∫

Bn

|dA+ A ∧A|2 dxn < ε(n) , (I.2)

there exists a W 2,2-map g from Bn into G, i.e. a gauge transformation, such
that the 1-form Acoul given by Acoul := g−1Ag+g−1dg satisfies the W 1,2-norm
control

‖Acoul‖
2
W 1,2(Bn) ≤ C(n)

∫

Bn

|dA+ A ∧A|2 dxn , (I.3)

where C(n) is independent of A, and the Coulomb gauge condition

d∗Acoul = 0 in Bn . (I.4)

�

This result is the main tool in doing calculus of variations with the Yang-
Mills functional in dimensions less or equal to 4. For instance, it gives the
required coercivity of the Yang-Mills functional in order to get the existence
of minimizers under the small energy assumption (I.2) for some boundary
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data. Indeed, under this assumption, the Coulomb gauge representatives of
a minimizing sequence of connections satisfy the W 1,2-norm control (I.3).
One can then extract converging subsequences in W 1,2 and – using the lower
semi continuity of the L2-norm – one gets the existence of a minimizer. The
global existence of minimizers for a given bundle P over a 4-dimensional
Riemannian manifold M requires a covering procedure by balls where the
condition (I.2) is satisfied (see [Se]). However, this could sometimes fail due
to the possibility of pointwise concentration of the Yang-Mills energy which is
the famous concentration-compactness phenomenon first discovered in [SaU]
for the harmonic map setting and extended to Yang-Mills in [Uh1], [Uh2],
[Uh3], [DK] (see also [FrU]).

A further important contribution of Theorem I.1 to the calculus of vari-
ations of the Yang-Mills functional in dimensions less or equal to 4 is the
following fact: The existence of the Coulomb gauge Acoul is fundamental for
looking at critical points of YM since it “gives” it’s elliptic nature to the
Yang-Mills equation. More precisely, the intrinsic Yang-Mills equation suf-
fers from a too large symmetry group whereas – once the Coulomb gauge is
fixed – it reads

∆Acoul = d∗[Acoul, Acoul] − ∗

[

Acoul, ∗

(

dAcoul +
1

2
[Acoul, Acoul]

)]

, (I.5)

which clearly is a non-linear elliptic equation critical in dimension 4 for the
W 1,2-norm of A.

In recent years, there has been an increasing interest for pursuing calcu-
lus of variations of the Yang-Mills functional in dimensions larger than the
critical dimension 4. Geometric motivations for looking at the analysis of
Yang-Mills fields and, more generally, at the analysis of gauge theories in
higher dimensions can be found for instance in [DT] and [Ti]. However, The-
orem I.1 does not hold for the Yang-Mills energy in dimensions larger than
4, it is easy to construct counter examples to it. There have been several
attempts for finding higher dimensional versions of the Uhlenbeck result (for
instance in [MR], [TT]). These attempts could only be successful through re-
quiring the curvature to be small in an ad-hoc Morrey space. Although such
assumptions “naturally” extend hypothesis (I.2) from a “functional analy-
sis” point of view, they are far too strong for looking at critical points of the
Yang-Mills Lagrangian with bounded energy in its full generality.

Another difficulty for doing calculus of variations of the Yang-Mills func-
tional in dimensions larger than 4 comes from the fact that there is a need
of enlarging the class of connections and bundles beyond the W 1,2-
connections on smooth bundles. In order to motivate this, we shall make
a digression to the framework of harmonic maps.
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I.2 The topological singular set of W 1,2-Sobolev maps
into S2.

Since the middle of the 20th century, for doing calculus of variations of the
Dirichlet energy

E(u) =

∫

Bn

|∇u|2 dxn

for maps u from the unit ball Bn ⊂ Rn into the unit 2-sphere S2, it has
become natural to extend the class of smooth maps to the class of W 1,2-
Sobolev maps defined by

W 1,2(Bn, S2) :=
{

u ∈W 1,2(Bn,R3) s.t. |u|(x) = 1 for a.e. x ∈ Bn
}

.

This class of maps is suitable due to the coercivity and the lower semiconti-
nuity of E on W 1,2(Bn, S2). Critical points of E are called harmonic maps
and satisfy the equation

∆u+ u|∇u|2 = 0 in D′(Bn) . (I.6)

The dimension 2 for E corresponds to the dimension 4 for YM . It is indeed
this critical dimension for which E is conformally invariant and for which the
corresponding Euler-Lagrange equation (I.6) is critical for the W 1,2-norm (in
the non-linear elliptic PDE terminology). On the other hand, the dimension
2 is also a critical dimension for W 1,2(Bn, S2) due to the following result:

Theorem I.2 [Wh],[ScU2] Smooth maps are dense in W 1,2(Bn, S2) if and
only if n ≤ 2. �

The map v(x) = x/|x| is an example of a map which cannot be approx-
imated strongly by smooth maps in W 1,2(B3, S2). It has a singularity at
the origin of “topological nature”. More precisely, the restriction of v to
any 2-sphere containing the origin is a map between 2-spheres which is not
homotopic to a constant and has topological degree equal to +1. Using the
integral representation of the degree this reads

∫

∂B

v∗ω = +1 , (I.7)

where B is any ball containing the origin 0 and ω is an arbitrary two-form
on S2 whose integral is equal to one. The last equation can also be written
in the form

d(v∗ω) = δ0 in D′(B3) . (I.8)
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The realization of non-zero homotopic maps on a “full measure” of 2-spheres
in B3 is in fact the obstruction for a map in W 1,2(B3, S2) to be strongly
approximable by smooth maps in the W 1,2-norm. Precisely, the following
theorem holds:

Theorem I.3 [Be2], [BCDH] A map u in W 1,2(B3, S2) is in the closure of
C∞(B3, S2) for the strong W 1,2-topology if and only if

d(u∗ω) = 0 in D′(B3) , (I.9)

where ω is an arbitrary two-form on S2 satisfying
∫

S2 ω 6= 0. �

In the attempt to approximate an arbitrary map in W 1,2(B3, S2) by maps
being “as regular as possible” F. Bethuel introduced the following space:

R∞
1,2(B

3, S2) =







u ∈W 1,2(B3, S2) s.t. ∃ a1, . . . , aN ∈ B3 with

u ∈ C∞(B3 \ {a1, . . . , aN}, S
2) and deg(u, ai) = ±1







,

where deg(u, ai) is the topological degree of small spheres in B3 bounding
balls containing the point ai and no other aj . In other words R∞

1,2(B
3, S2)

is the subspace of maps in W 1,2(B3, S2) smooth away from finitely many
singular points around which the map has topological degree ±1. The next
result motivates the definition of this space.

Theorem I.4 [Be1] The space R∞
1,2(B

3, S2) is dense in W 1,2(B3, S2) for the
strong W 1,2-topology. �

Now we consider the regularity theory of the critical points to the Dirichlet
energy E in the Sobolev space W 1,2(Bn, S2). In dimension 2, for which E
is conformally invariant and for which the harmonic map equation (I.6) is
critical, it was proved by F. Hélein that W 1,2-solutions of (I.6) are smooth
and even analytic (see [He]). In contrast to this, it was proved by the second
author in [Ri1] that – in dimension 3 – there exist solutions to (I.6) which
are everywhere discontinuous. The counter examples constructed in this
work used the possibility for solutions of (I.6) to realize non-trivial homotopy
groups in a dense class of 2-spheres in B3. Precisely, the support of d(u∗ω)
is the whole ball B3.

When restricting ourselves to solutions of (I.6) which are minimizing E
for some given smooth boundary data φ, the singular set of u is made of
isolated points with degree ±1. This is the content of the next theorem.

Theorem I.5 [ScU] Let φ be in C∞(∂B3, S2). The minimizers of E among
the maps in W 1,2(B3, S2) equal to φ on ∂B3 are in R∞

1,2(B
3, S2) . �
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The result is optimal in the following sense: For any N ∈ N there exists
boundary data φN of degree zero and a minimizer of E among the maps
in W 1,2(B3, S2) equal to φN on ∂B3 which has at least N distinct singular
points of degree ±1 (see [HL]).

I.3 Beyond W 1,2-connections on smooth bundles.

It is now time to make the link between our digression on S2-valued maps
and connections. For smooth connections this link is given by a theorem of
M.S. Narasimhan and S. Ramanan [NR1] and [NR2]. This theorem states
that given a connection on a principal U(k)-bundle P over a manifold M
there exists a smooth map u from M into the complex Grassmannian mani-
fold G(m, k) (for some m depending of k and the dimension of M) such that
the given connection is the pull-back under u of the universal canonical con-
nection of the Stiefel bundle V (m, k). (To the knowledge of the authors, no
weak version of the Narasimhan-Ramanan theorem is known in the frame-
work of Sobolev connections on smooth bundles which is certainly an interest-
ing open problem). Motivated by the situation in the Narasimhan-Ramanan
theorem, we consider first the case k = 1 of Abelian principal U(1)-bundles
over B3. In this setting, the corresponding complex Grassmannian manifold
becomes CP 1 and the Stiefel bundle is given by the so-called tautological
Hopf fibration S3 → CP 1 with universal canonical curvature form given by
the volume form ωS2 of S2. Without appealing to Narasimhan-Ramanan re-
sult itself but getting inspired by it, we can follow our intuition guided by the
examples given by the pull-back curvatures of the form F := 2 u∗ωS2 where
u is a map from B3 into S2. Note that if u is smooth F is an exact form on
B3.

In trying to minimize

YM1(F ) =

∫

B3

|F | dx3

among smooth curvatures F = dA of the Abelian trivial bundle over B3 for
a fixed boundary condition ι∗

∂B3F = ξ on ∂B3 (ι∂B3 denotes the inclusion
map of ∂B3 into R

3) one encounters the following difficulties:

i) It is not clear whether this infimum is achieved by a smooth curvature.

ii) For some boundary data ξ there is an energy gap between this infimum
and the infimum of YM1 among curvatures of singular bundles over
B3.
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The first remark i) is clear from a PDE point of view. Minima of YM1

satisfy the equation d∗(dA/|dA|) = 0 possibly coupled with the Coulomb
gauge condition d∗A = 0. It is well known that solutions to such PDE can
have singularities.

The second remark ii) is motivated by our previous digression on maps.
It could be energetically more favorable to include point singularities in the
bundle. In order to see this, we consider the pull-back of 2ωS2 by a map
u in R∞

1,2(B
3, S2) with singular set {a1, . . . , aN}. Then 2u∗ωS2 is a smooth

curvature of the smooth U(1)-bundle Pu over B3 \ {a1, . . . , aN} with first
Chern class given by the degree of the map u on small spheres surrounding
the ai























c1(Pu) =

[

1

4π
u∗ωS2

]

in H2(B3 \ {a1, . . . , aN},R)

and d

(

1

4π
u∗ωS2

)

=
N

∑

i=1

deg(u, ai) δai
in D′(B3) .

(I.10)

Now take ξn to be a sequence of smooth 2-forms converging in measure to
(δN − δS) ωS2 where δN (resp. δS) denotes the Dirac masses at the north
(resp. south) pole of ∂B3 = S2. It is not difficult to see that

lim
n→+∞

inf











∫

B3

|F | dx3 ; F ∈ C∞(∧2(B3))

dF = 0 in D′(B3) and ι∗∂B3F = ξn











= |N − S| . (I.11)

However, by allowing the bundle to have point singularities around which
some Chern class is realized, without too much effort one can prove that

lim
n→+∞

inf







































∫

B3

|F | dx3 ; ∃ a1, · · · , aN ∈ B3 , d1, . . . , dN ∈ {−1,+1}

with F ∈ C∞(∧2(B3 \ {a1, . . . , aN})) ,

∗ dF = 4π

N
∑

i=1

di δai
in D′(B3) and ι∗∂B3F = ξn







































= 0 .

(I.12)
Comparing (I.11) with (I.12) we obtain the desired energy gap and conclude
remark ii).

The corresponding problem for the Yang-Mills 2-energy (I.1) and a non-
Abelian structure group G is even more severe. It arises first in dimension
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n = 5. To simplify the presentation we take the simplest non-Abelian setting
with G = SU(2). In trying to minimize

YM2(F ) =

∫

B5

|F |2 dx5

among smooth curvatures F = dA+ A ∧ A of the trivial SU(2)-bundle over
B5 – i.e. A is a 1-form with values in su(2) – for a fixed boundary condition
ι∗
∂B5F = Ξ on ∂B5 (ι∂B5 denotes the inclusion map of ∂B5 into R5) one again

encounters the following two difficulties:

i) It is not clear whether this infimum is achieved by a smooth curvature.

ii) For some boundary data Ξ there is an energy gap between this infimum
and the infimum of YM2 among curvatures of singular bundles over
B5.

The first remark i) is far more problematic in this non-Abelian setting
than in the previously described Abelian case. Indeed, in the Abelian situa-
tion the Lagrangians YMp are coercive for all p ≥ 1. This is because of an
“Abelian” Coulomb gauge extraction which is a simple linear problem that
can be solved for any amount of YMp-energy and in arbitrary dimension.
However, in the present non-Abelian case – as we already saw in Section
I.1 – due to the fact that even for small YM2-energy Uhlenbeck’s Coulomb
gauge extraction result fails in dimensions larger than 4, coercivity is miss-
ing. Therefore we cannot immediately conclude the existence of a minimizer
– regular or not – of YM2.

The second remark ii) can be illustrated by an example similar to the one
we saw in the Abelian case above. Taking a sequence of smooth boundary
data Ξn ∈ C∞(∧2(∂B5) ⊗ su(2)) converging in Radon measure on ∂B5 and
in Ck

loc(∂B
5 \ {N, S}) to

Ξ∞ := 2 [(dx1 dx2 + dx3 dx4)σ1 + (dx1 dx3 − dx2 dx4)σ2

+(dx1 dx4 + dx2 dx3)σ3] ,

where σ1, σ2 and σ3 are the Pauli matrices forming an orthonormal basis
of su(2) and N and S respectively denote the north and the south pole of
the 4-sphere ∂B5. Restricting to the smooth trivial bundle over B5 and
W 1,2-connections, it is then not difficult to see that

lim
n→+∞

inf



























∫

B5

|dA+ A ∧ A|2 dx5 ;

A ∈W 1,2(∧1(B5) ⊗ su(2)) ,

ι∗∂B5(dA+ A ∧ A) = Ξn



























= |N − S| . (I.13)
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On the other hand by allowing the bundle to be singular one can save energy
in such a way that

lim
n→+∞

inf























































∫

B5

|FD|
2 dx5 ; ∃ a1, . . . , aN ∈ B5 , d1, . . . , dN ∈ {−1,+1}

and D is a C∞-connection

on the SU(2)-bundle over B5 \ {a1, . . . , aN} given by

∗ d (tr(FD ∧ FD)) = 8π2
N

∑

i=1

di δai
in D′(B5)























































= 0 .

(I.14)
At this stage it is important to observe that a connection D on a smooth
bundle over B5 \ {0} with some non-zero second Chern class around the
origin does not admit a gauge A in W 1,2(∧1B5, su(2)). Indeed, if such a
gauge would exist, one would have

∗d [tr (FA ∧ FA)] = 0 ,

where FA = dA+A∧A, contradicting the assumption on the topology of the
SU(2)-bundle. This last fact is a consequence of a density result of smooth
connections over S4 for which we refer to Proposition III.1.

Conclusion to the Introduction: The calculus of variations of the
Dirichlet energy naturally leads to the class of Sobolev maps W 1,2(Bn, S2).
In dimensions larger than the critical dimension 2, maps in this class can
have “topological-type” singularities even when considering the minimizers
to E which are expected to have the highest regularity. The parallel be-
tween smooth maps and smooth connections on smooth bundles given by
the Narasimhan-Ramanan result – which possibly also works in a non-smooth
framework – suggests to extend the class of smooth (or even Sobolev) con-
nections on smooth bundles to an enlarged class of connections on singular
bundles. Up to now we introduced singular bundles in critical+1 dimensions
– 2 + 1 for U(1)-bundles and YM1 and 4 + 1 for SU(2)-bundles and YM2

– which are smooth apart from finitely many points in the base. When do-
ing calculus of variations of YM1 or YM2, the position and the number of
these points have to be arbitrary. Therefore the question of describing the
“boundary” of this space of singular bundles, meaning that the number of
singular points tends to infinity, arises naturally. Furthermore, one needs to
formulate the corresponding Yang-Mills YM1 and YM2 variational problems
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for singular connections on singular bundles and the Euler-Lagrange
equations corresponding to their critical points.1

II Singular Abelian bundles with bounded L1-

curvatures.

II.1 L1-curvatures of singular U(1)-bundles and an ap-

proximation result.

In this section we introduce a “closure” for the L1-norm of the space of
smooth curvatures of U(1)-bundles over B3 \ {isolated points}.

Definition II.1 [L1-curvatures of singular U(1)-bundles] An L1-curvature
of a singular U(1)-bundle over B3 is a measurable real-valued 2-form F sat-
isfying

i)
∫

B3

|F | dx3 < +∞ . (II.1)

ii) For all x ∈ B3 and for almost every 0 < r < dist(x, ∂B3) we have

1

4π

∫

∂Br(x)

ι∗∂Br(x)F ∈ Z , (II.2)

where ι∂Br(x) is the inclusion map of the boundary of Br(x) into B3.

�

Observe that a real-valued 2-form F in L1 satisfying
∫

∂Br(x)

ι∗∂Br(x)F = 0

for every x in B3 and almost every 0 < r < dist(x, ∂B3) is exact, since there
exists an L1-1-form A such that F = dA in distributional sense. This then
implies that F can be interpreted as an L1-curvature of a smooth trivial
U(1)-bundle over B3. Also note that L1-curvatures of smooth U(1)-bundles
over B3 \ I, where I is a discrete subset of B3, are examples of L1-curvatures
of singular U(1)-bundles over B3.

In analogy with the situation of R∞
1,2(B

3, S2) in W 1,2(B3, S2), one can
prove the following density result (see [KR]) which also motivates Definition
II.1.

1An interesting parallel between smooth harmonic maps and smooth Yang-Mills fields,
also inspired by the Narasimhan-Ramanan result, can be found in [DV].
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Theorem II.1 Let F be an L1-curvature of a singular U(1)-bundle over B3.
Then there exists a sequence of finite families of points, Ik = {ak

1, . . . , a
k
Nk},

a sequence of finite families of ±1, Dk = {dk
1, . . . , d

k
Nk} and a sequence of

smooth curvatures F k of the smooth U(1)-bundles over B3 \ Ik given by

∗ dF k = 4π

Nk
∑

i=1

dk
i δak

i
in D′(B3) , (II.3)

such that
F k −→ F strongly in L1(B3) . (II.4)

�

Sketch of the proof of Theorem II.1. Its structure is modelled after
the proofs of approximation results for maps between manifolds similar to
Theorem I.4 given by F. Bethuel in [Be1]. Precisely, we proceed as follows:

i) Choice of an ǫ−ball covering : We choose a covering of B3 by N0 regular
famillies of disjoint balls of radius ε, where N0 is an universal number
. This covering is chosen by the mean of the mean value and Fubini
theorems in such a way that the L1-difference between F and the two
form F on B3, which on each ε-ball is equal to the average of F , tends
to zero on the boundary of the corresponding ε-balls as ε goes to zero.

ii) Good and bad balls: For each of the N0 famillies the good ε-balls are the
ones for which the L1-norm of the restriction of F to the boundary is
below a certain universal quantity. In particular, this quantity is small
enough to ensure the triviality of the bundle over the boundary of the
good cubes for which the restriction of F to this boundary is a weak
curvature (due to condition (II.2)). The bad balls are the remaining
balls and for energy reasons the total volume of their union tends to
zero as ε tends to zero.

iii) Smoothing on the boundary: On the two-dimensional submanifold given
by the union of the boundaries of the ε-balls the L1-norm of F is critical
and we can hence approximate F by smooth curvatures F̃ applying a
density result corresponding to Theorem I.2 for maps.

iv) Gauge fixing: On the boundary of each good ε-ball of the first family we
consider the “linear Coulomb gauge” for the approximation F̃ of ι∗∂ballF
given by the previous step, i.e. F̃ = dAcoul and d∗Acoul = 0 on ∂cube.
At this stage it is important to observe that in the present Abelian
situation, changing the gauge does not change the 2-form defining the
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curvature. This will no longer be the case in the next section and
hence will be the main source of new difficulties in the approximation
procedure of non-Abelian-type singular curvatures.

v) Extensions: On the good ball in the first family we replace F by the
exterior derivative of the harmonic extension of the linear Coulomb
gauge of the approximation F̃ . On the bad balls we take a radial
extension of F̃ which gives rise to a topological point singularity in the
bundle.

vi) Iteration we repeat the procedure for the further families one after the
other.

vii) Smoothing We have obtained in this way a family of curvatures of
smooth bundles over B3 minus finitely many points (the centers of
the bad balls). We take locally, away from this finite familly of centers
of bad balls, a gauge for these curvatures that we smooth by taking
convolutions with a smooth approximation of the Dirac mass.

vii) Passing to the limit as ε tends to zero: The last step is the checking-
test step where we collect the estimates in the previous steps and prove
that the constructed sequence strongly converges to F in L1 as ε tends
to zero.

II.2 Connecting the topological singularities of L1-cur-

vatures of singular U(1)-bundles.

The purpose of this subsection is to give a better description of the num-
bers of topological singularities that a singular U(1)-bundle with bounded
L1-curvature could have. To that aim we should again mimic the situation
for maps in W 1,2(B3, S2).

First recall that a finite mass integer rectifiable 1-dimensional current L in
Rn is a linear form on smooth compactly supported 1-forms of Rn satisfying
the following two conditions:

i)

∀ψ ∈ Ω1
0(R

n) 〈L, ψ〉 =

+∞
∑

k=1

∫

Γk

θ ψ ,

where Γk are disjoint measurable subsets of oriented C1-curves in Rn

with respect to the 1-dimensional Hausdorff measure H1 and θ is a
measurable map on the union of the Γk taking values into Z.

12



ii)

M(L) =

+∞
∑

k=1

∫

Γk

|θ| dH1 < +∞ ,

where M(L) is called the mass of L.

For any 1-dimensional current T in R
n, the boundary of T is the distribution

in D′(Rn) defined by

∀ϕ ∈ C∞

0 (Rn) 〈∂T, ϕ〉 := 〈T, dϕ〉 .

Moreover, we shall use the following notation. For any 2-form F in L1(∧2(B3))
we denote by [F ] the 1-dimensional current given by

∀ψ ∈ Ω1
0(R

n) 〈[F ], ψ〉 :=

∫

Rn

F ∧ ψ .

In trying to control the number of possible topological singularities for
maps in W 1,2(B3, S2), M. Giaquinta, G. Modica and G. Souček obtained the
following result:

Theorem II.2 [GMS] Let u be a map in W 1,2(B3, S2) and let ω be a 2-form
on S2 satisfying

∫

S2 ω = 1. Then there exists a finite mass integer rectifiable
current L in B3 such that

∂ [u∗ω] = ∂ L in D′(B3) . (II.5)

�

The minimal mass L(u) among all rectifiable currents L satisfying (II.5) was
first introduced under the name of minimal connections for maps in R∞

1,2 in
[BCL] and, for arbitrary u in W 1,2(B3, S2), is given by the following formula:

L(u) = sup

{
∫

B3

dξ ∧ u∗ω −

∫

∂B3

ξ u∗ω ; ξ ∈ Lip(B3) , ‖dξ‖∞ ≤ 1

}

.

This quantity is the “energy defect” for strongly approximating u in W 1,2

by smooth maps in the sense described below. For any smooth map φ from
∂B3 into S2 with degree 0, we denote by C1

φ(B
3, S2) (resp. W 1,2

φ (B3, S2))
the maps in C1(B3, S2) (resp. in W 1,2(B3, S2)) equal to φ on the boundary.
Then it is shown in [BBC] that

inf
u∈C1

φ
(B3,S2)

∫

B3

|∇u|2 dx3 = inf
u∈W

1,2
φ

(B3,S2)

∫

B3

|∇u|2 dx3 + 2L(u) . (II.6)

Going back to the framework of singular U(1)-bundles with bounded L1-
curvature, we have the subsequent result (see the proof in [KR]):
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Theorem II.3 Let F be an L1-curvature of a singular U(1)-bundle over B3.
Then there exists a finite mass integer rectifiable current L in B3 such that

1

4π
∂ [F ] = ∂ L in D′(B3) . (II.7)

�

Let Φ be a smooth 2-form on S2 such that
∫

S2 Φ ∈ Z. Denote by F∞(B3)
the space of smooth L1-bounded curvatures on smooth bundles over B3 \ I,
where I is a discrete subset of B3, and by F∞

Φ (B3) the subspace of 2-forms
F in F∞(B3) whose restriction to ∂B3 equals Φ. Finally, denote by F∞

Φ (B3)
the closure of F∞

Φ (B3) for the L1-norm. Because of Theorem II.1 this closure
coincides with the space of L1-curvatures of singular U(1)-bundles on any
open subset U ⊂⊂ B3.

Similarly to the case of maps, for an L1-curvature F in F∞
Φ , the minimal

mass among the 1-dimensional integer rectifiable currents satisfying (II.7) is
given by

L(F ) =
1

4π
sup

{
∫

B3

dξ ∧ F −

∫

∂B3

ξ Φ ; ξ ∈ Lip(B3) , ‖dξ‖∞ ≤ 1

}

.

(II.8)
Moreover, assuming

∫

S2 Φ = 0 and denoting by C∞
d,Φ(∧2B3) the space of

smooth closed 2-forms in B3 whose restriction to ∂B3 equals to Φ, we have
the next result proved in [KR]:

Theorem II.4 In the above setting we have

inf
F∈C∞

d,Φ(∧2B3)

∫

B3

|F | dx3 = inf
F∈F∞

Φ

∫

B3

|F | dx3 + 4πL(F ) . (II.9)

�

III Singular SU(2)-bundles with bounded L2-

curvatures.

III.1 Definition and approximation problems.

In trying to extend the previous section to the situation of non-Abelian
SU(2)-bundles over B5 one again meets similar difficulties. In the Abelian
case of singular U(1)-bundles over B3 there was no global representation
of a connection by a 1-form A such that dA = F . Likewise, in the non-
Abelian case, the presence of topological-type singularities in the base B5

14



for the SU(2)-bundles, i.e. d(tr(FD ∧ FD)) 6= 0, prevents the existence of
a global representative A ∈ Ω1(B5, su(2)) for a connection D such that
FD = dA + A ∧ A. However, the main difficulty in the non-Abelian case
comes from the fact that the adjoint action of the Lie group SU(2) on the
2-forms representing the curvature, given by

adg(FD) = g−1 FD g ,

is non-trivial.

Definition III.2 [L2-curvatures of singular SU(2)-bundles] A repre-
sentative of an L2-curvature of a singular SU(2)-bundle over B5 is a mea-
surable 2-form F with values in su(2) satisfying

i)
∫

B5

|F |2 dx5 < +∞ . (III.1)

ii) For all x ∈ B5 and for almost every 0 < r < dist(x, ∂B5) the restric-
tion of F to ∂Br(x) ≃ S4 coincides – modulo the adjoint action of
measurable maps into SU(2) – with the curvature of a W 1,2-connection
on a smooth SU(2)-bundle over ∂Br(x).

An L2-curvature of a singular SU(2)-bundle over B5 is an equivalence class
[F ] in the space of 2-forms F ∈ L2(∧2(B5) ⊗ su(2)) satisfying i) and ii) for
the equivalence relation given by the adjoint action of measurable maps g in
L∞(B5, SU(2)). �

The second condition ii) can also be stated as follows: For all x ∈ B5 and
for almost every 0 < r < dist(x, ∂B5) there exists a smooth bundle over
∂Br(x) and a W 1,2-connection D on this bundle such that for any smooth
local trivialisation of the bundle over some contractible open set U of ∂Br(x)
there exists a measurable map g from U into SU(2) such that

g−1 F g = dA+ A ∧A in U ,

where A is the 1-form in W 1,2(∧1(U) ⊗ su(2)) representing D in this trivial-
ization.

Observe that our assumption ii) corresponds to condition (II.2) in the
definition of L1-curvatures of U(1)-bundles, since it implies that for all x ∈ B5

and for almost every 0 < r < dist(x, ∂B5) we have

1

8π2

∫

∂Br(x)

ι∗∂Br(x)tr(F ∧ F ) ∈ Z . (III.2)
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Because of the non-trivial adjoint action of the gauge group on forms
representing singular L2-curvatures, we have to adjust the topology on the
space of these curvatures. One possibility would be to consider the topology
induced by the metric for L2-curvatures of singular SU(2)-bundles defined
by

d([F1], [F2]) := inf
g∈L∞(B5,SU(2))

[
∫

B5

|F1 − g−1 F2 g|
2 dx5

]
1
2

. (III.3)

An alternative is to construct a distance function based on intrinsic quanti-
ties. At a point x the norm of the curvature |F |2(x) ∈ R+ and the Chern
form tr(F ∧ F )(x) ∈ ∧4R5 are the most commonly used gauge invariant
quantities. However, these two objects do not uniquely characterize F (x) –
modulo the adjoint action of SU(2). A more complete gauge invariant object
is given by

tr(F ⊗ F )(x) ∈ ∧2(R5) ⊗ ∧2(R5) . (III.4)

This tensor product does characterize F (x) – modulo the adjoint action of
SU(2) – in a unique way. Moreover, it encodes the full information about
the curvature at x which is a consequence of the next elementary lemma (see
[KR]).

Lemma III.1 Let F and G be two elements of L2(∧2(S4) ⊗ su(2)) and as-
sume that

for a. e. x ∈ S4 tr(F ⊗ F )(x) = tr(G⊗G)(x) . (III.5)

Then there exists g ∈ L∞(S4, SU(2)) such that

for a. e. x ∈ S4 g−1(x) F (x) g(x) = G(x) . (III.6)

�

From this result we obtain that an L2-curvature of a weak SU(2)-bundle is
uniquely determined by the tensor field tr(F ⊗ F ). Then, instead of the
metric topology given by (III.3), we could also consider the metric defined
by

δ([F1], [F2]) :=

∫

B5

|tr(F1 ⊗ F1) − tr(F2 ⊗ F2)| dx
5 . (III.7)

One can show that the two metrics d and δ generate equivalent topologies
(see [KR]), yet δ is more explicit and thus more convenient to handle.

Because of the above considerations, an element in L1(∧2(R5) ⊗ ∧2(R5))
for a given 2-form F in L2(∧2(R5)⊗ su(2)) satisfying condition ii) of Defini-
tion III.2 can also be called an L2-curvature of a singular SU(2)-bundle over
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B5.

The following question is still open and represents the approximation
property in Theorem II.1 for the non-Abelian case.

Open problem 1 Let tr(F ⊗F ) ∈ L1(∧2(B5)⊗∧2(B5)) be an L2-curvature
of a singular SU(2)-bundle over B5. Does there exist a sequence of finite
families of points, Ik = {ak

1, . . . , a
k
Nk}, a sequence of finite families of ±1,

Dk = {dk
1, . . . , d

k
Nk}, and a sequence of smooth connections Dk over the

smooth SU(2)-bundles over B5 \ Ik given by

∗ d [tr(FDk ∧ FDk)] = 8π2
Nk
∑

i=1

dk
i δak

i
in D′(B5) , (III.8)

such that

tr(FDk ⊗ FDk) −→ tr(F ⊗ F ) strongly in L1(B5) ? (III.9)

A proof of this open problem should follow steps i) to vi) of our proof of
Theorem II.1. For instance, step iii) is a consequence of a proposition proved
in [KR].

Proposition III.1 Let P be a principal SU(2)-bundle over a compact 4-
dimensional Riemannian manifold M . Let D be a W 1,2-connection on P .
Then there exists a sequence of smooth connections Dk on P such that

Dk −→ D strongly in W 1,2(Γ(T ∗M ⊗ ad(P ))) . (III.10)

�

Let ε0 be a positive constant smaller than ε(4) in Theorem I.1 so that for any
connection satisfying the small Yang-Mills energy condition YM(FD) < ε0,
there exists a unique Coulomb gauge with estimate (I.3) - see a proof of this
fact in [KR].The next question is strongly related to the complete solution of
Open problem 1 and it is related to the fact that on the space of curvature
of W 1,2 connections over S4 × SU(2) satisfying the small energy assumption
YM(FD) < ε0 the topology given by the W 1,2−distance between the
Coulomb gauges is not equivalent to the topology generated by
δ. Understanding the difference between these two topologies is, in itself,
an interesting analysis problem that should have interesting consequences.
Precisely we raise the following question :
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Open problem 2 Identify those W 1,2-1-forms A on S4 with values in su(2)
which on the one hand satisfy the small energy condition

∫

S4

|FA|
2 ≤ ε0 , (III.11)

where FA = dA + A ∧ A, and on the other hand have the property that for
any sequence Ak in W 1,2(∧1(S4) ⊗ su(2)) the convergence

tr [FAk ⊗ FAk ] −→ tr [FA ⊗ FA] in L1(S4) , (III.12)

also implies
Ak

coul −→ Acoul in W 1,2 , (III.13)

where Ak
coul and Acoul are the Coulomb gauges of the connections given by Ak

and A respectively. Does there exist a dense family of such A for the W 1,2-
norm in the space of 1-forms merely satisfying the small energy condition
(III.11)? �

Next denote by F∞

SU(2)(B
5) the space of curvatures of smooth connections

with finite Yang-Mills energy on smooth bundles over B5 \ I, where I is a
discrete subset of B5. Let η be a smooth 1-form on S4 with values in su(2).
Denote by F∞

SU(2),η(B
5) the space of curvatures in F∞

SU(2)(B
5) whose restric-

tion to ∂B5 is gauge equivalent to dη+η∧η. Finally, denote by F
∞

SU(2),η(B
5)

the closure of F∞
SU(2),η(B

5) for the topology induced by the metric d or equiv-

alently by δ. It is not difficult to show that an element F in F
∞

SU(2),η(B
5)

is an L2-bounded curvature of a singular SU(2)-bundle. In this setting, it is
natural to study the following question:

Open problem 3 Is the infimum given by

inf
F∈F

∞

SU(2),η(B5)

∫

B5

|F |2 dx5 (III.14)

attained? If so, does the singular set of any minimum consist of isolated
points, i.e. are the minima in F∞

SU(2),η(B
5)?

III.2 The topological singular set of singular SU(2)-
bundles with bounded L2-curvatures.

The topological singular set of a singular SU(2)-bundle over B5 with a
bounded L2-curvature F is the distribution given by

∗ d(tr(F ∧ F )) ∈ D′(B5) . (III.15)
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Though the strong approximation property for L2-bounded curvatures of
singular bundles is still an open problem, we can prove the approximability
of the topological singular set of L2-bounded curvatures by the topological
singular set of smooth SU(2)-bundles over B5 \ {singular points}. Precisely,
the following result is proved in [KR].

Theorem III.1 Let tr(F ⊗ F ) ∈ L1(∧2(B5) ⊗ ∧2(B5)) be an L2-curvature
of a singular SU(2)-bundle over B5. Then there exists a sequence of fi-
nite families of points, Ik = {ak

1, . . . , a
k
Nk}, a sequence of finite families of

±1, Dk = {dk
1, . . . , d

k
Nk}, and a sequence of smooth connections Dk over the

smooth SU(2)-bundles over B5 \ Ik given by

∗ d [tr(FDk ∧ FDk)] = 8π2
Nk
∑

i=1

dk
i δak

i
in D′(B5) , (III.16)

such that

lim sup
k→+∞

∫

B5

|tr(FDk ⊗ FDk)| dx5 ≤

∫

B5

|tr(F ⊗ F )| dx5 (III.17)

and
tr(FDk ∧ FDk) −→ tr(F ∧ F ) in D′(∧1(B5)) . (III.18)

�

This approximation result allows us to describe the topological singular
set of singular SU(2)-bundles corresponding to Theorem II.3 for the Abelian
ones.

Theorem III.2 Let F be an L2-curvature of a singular SU(2)-bundle over
B5. Then there exists a finite mass integer rectifiable current L in B5 such
that

1

8π2
∂ [tr(F ∧ F )] = ∂ L in D′(B5) . (III.19)

�

Similarly to the Abelian case and the L1-energy, for a given L2-bounded
curvature F in F

∞

SU(2),η(B
5), the minimal mass among all 1-dimensional in-

teger rectifiable currents L satisfying (III.19) is given by

L(F ) =
1

8π2
sup











∫

B5

dξ ∧ tr(F ∧ F ) −

∫

∂B5

ξ tr(Fη ∧ Fη)

s. t. ξ ∈ Lip(B3) , ‖dξ‖∞ ≤ 1











. (III.20)

Denote by W 1,2
η (∧1(B5)⊗su(2)) the space of W 1,2-1-forms in B5 with values

in su(2) whose restriction to ∂B5 is equal to the boundary data η.
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Theorem III.3 In the above setting we have

inf
A∈W

1,2
η (∧1B5⊗su(2))

∫

B5

|dA+A∧A|2 dx5 = inf
F∈F

∞

SU(2),η

∫

B5

|F |2 dx5 +8π2 L(F ) .

(III.21)
�

Note that in this result the condition A ∈W 1,2
η (∧1(B5)⊗su(2)) can of course

be replaced by A ∈ C∞
η (∧1(B5) ⊗ su(2)).

The relaxed energy defined by

Z(F ) =

∫

B5

|F |2 dx5 + 8π2 L(F ) , (III.22)

was already considered by T. Isobe in [Is1] and [Is2] for connections on smooth
SU(2)-bundles over B5 \ I, where I is a discrete subset of B5.

Open problem 4 Is the infimum given by

inf
F∈F

∞

SU(2),η

∫

B5

|F |2 dx5 + 8π2L(F ) (III.23)

attained?

More generally, one can ask about the existence of minima in F
∞

SU(2),η of
functionals of the form

ZG(F ) =

∫

B5

|F |2 dx5 + 8π2 L(F,G) , (III.24)

where G is a fixed arbitrary element in F
∞

SU(2),η and where we use the notation

L(F,G) =
1

8π2
sup











∫

B5

dξ ∧ tr(F ∧ F ) −

∫

B5

dξ ∧ tr(G ∧G)

s. t. ξ ∈ Lip(B3) , ‖dξ‖∞ ≤ 1











.

(III.25)
A positive answer to Open problem 4 and the generalization following it,
would open the door to the possibility of constructing everywhere discon-
tinuous Yang-Mills fields on B5 with a dense topological singular set in
B5, i.e. supp(d(tr(F ∧ F ))) = B5, as it was done by the second author in
[Ri1] for harmonic maps.
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ical criterion for density of smooth maps in Sobolev spaces between two
manifolds. Nematic (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, (1991), 15-23.

[BBC] F. Bethuel, H. Brezis and J.-M. Coron, Relaxed energies for harmonic
maps. Variational methods (Paris, 1988), 37–52, Progr. Nonlinear Dif-
ferential Equations Appl., 4, Birkäuser Boston, Boston, MA, 1990.
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