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Abstract : We prove that the critical points of various energies such as the area, the Willmore
enerqgy, the frame energy for tori...etc among possibly branched immersions constrained to evolve within
a smooth sub-manifold of the Teichmiiller space satisfy the corresponding constrained FEuler Lagrange
equation. We deduce that critical points of the Willmore energy or the frame energy for tori are smooth
analytic surfaces, away possibly from isolated branched points, under the condition that either the genus
is at most 2 or if the sub-manifold does mot intersect the subspace of hyper-elliptic points. Using a
compactness result from [Ri3] we can conclude that each closed sub-manifold of the Teichmiiller space,
including points, under the previous assumptions, posses a possibly branched smooth Willmore minimizer
satisfying the conformal-constrained Willmore equation.

Math. Class. 49Q10, 53A05, 53A30, 35J35

I Introduction

The purpose of the present work is to derive constrained Euler Lagrange equations for weak immersions
which are critical points of geometric energies such as the area, the Willmore energy, the frame energy
for tori...etc under the constraint that the metrics defined by the variation of this immersions stay within
a given sub-manifold of the Teichmiiller Space.

The study of the variations of Willmore energy has been initiated by Leon Simon in a seminal work
[Si] in which he was proving the existence of an embedded torus into R™ minimizing the L? norm of the
second fundamental form. This problem was an analytical challenge at the time in particular due to the
fact that this norm clearly does not provided any control the C' norm of the surface which is needed in
order to speak about immersion. The need of weakening the strict geometric notion of immersion was
answered in this work by considering ”measure theoretic version” of sub-manifold known as wvarifold and
by using local approximation of these weak objects by bi-harmonic graphs. In the following decade, after
this analytical breakthrough, a series of works ([BK], [KS1], [KS2], [KS3]...) took over successfully this
approach to solve important questions related to Willmore surfaces such as the existence of the flow, point
removability property for Willmore surfaces, existence of Willmore minimizers within a given conformal
class...

In [Ri2], [Ri2] the author introduced a parametric approach to the study of Willmore lagrangian and
the notion of weak immersions. In these works one study surfaces in R™ from the point of view of the
immersion, the map which is generating them, while the Leon Simon’s approach is mostly considering
the immersed surface as a subset of the ambient space R™ and is called the ambiant approach to the
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Willmore problem.

We now recall the notion of weak immersion with L?—bounded second fundamental form introduced
in [Ri3).
A closed abstract surface ¥ being given, we observe that any smooth riemannian metric is equivalent to
any other one. One can then define the Sobolev Spaces ngo’p(Z,Rm) from ¥ into R™, for k € N and
p € [1,00] with respect to any smooth reference metric go and all these spaces are independent of the
chosen metric go and we can simply denote them W*» (3, R™).

A weak immersion of ¥ into R™ is a map $ from ¥ into R™ such that

i)
d e Whe(D,R™)

ii) there exists a constant Cz > 1 such that
VeeX VX eT,S  Cp'go(X) < |dB(X)]” < Cg go(X)

i.e. in other words the metric on X equal to the pull back by & of the canonical metric of R™ is
equivalent to any reference metric on 3,

iif)
ity € W2 (X, A2 R™)

where 77z is the Gauss map associated to ® and given in any local chart (x1,z2) by

Oy, ® A 0y, ®
IR 55—
|0z, @ A Oy, |

—

TL(P.

where *gm is the hodge operator on multi-vector associated to the canonical scalar product on R™.

The space of weak immersion is denoted & and a result whose proof goes back to the works of
S.Miiller and V.Sverék, [MS], and F.Hélein, [He], asserts that any map in & defines a unique conformal
class. Precisely we have

Proposition L.1. (see [Ri3] and [Ril]) Let ® be a weak immersion in Es, then there exists a smooth
constant scalar curvature metric h of volume 1 on X and a bi-lipschitz homeomorphism VU of ¥ such that

dol : (3,h) — R™ is weakly conformal

more precisely there exists a € L°°(X,R) N WH2(,R) such that

=

(®oW)*grm = €** h almost everywhere

The space Es, defines a Banach manifold modeled on W12 N W?22(S,R™). A family of generators of
m1(X) being fized, the mapping
T E — Tx

which to every d in s assigns the corresponding Teichmiiller class in the Teichmiiller Space Ts; is smooth.
O

The interest of introducing the class of weak immersions & is motivated by the following almost
closure theorem.



Theorem I.1. [Ri3] Let 3. be a sequence of weak immersions in Es, such that

limsup/Z |dﬁ(§k|§$k dvol%k < 400

k—+oo

Assume that T(ék) converges in the Teichmiiller Space Ts, (i.e. the associated constant scalar curvature
metric hy of volume 1 converges to a limiting metric ho,) then there exists a subsequence <f)k/, a subse-
quence of bi-lipschitz homeomorphism Wi, a sequence Zg of conformal transformations of R™ U {oo}
and a finite number of points {a1 ---an} such that

Ep = EpoBp oW — & weakly in W**(S\ {a1---ayn},R™)
where Ek/ (resp. Eoo) is weakly conformal from (X, hy) (resp. (X, hoo)) into R™. Moreover

lim sup || log |d€k/ |hk’ HijC(E\{al---aN}) < 400
k! =400

and
liminf/2|dﬁ5k|§$k dvol%k Z/E|dﬁgoo|§€w dvolg,.

k—+oo

Let N be a sub-manifold to the Teichmiiller Space .
We denote by £Y the subspace of weak immersions @ in Es such that 7(®) € N.

The goal of the present paper is to study within &Y the variations of Lagrangians such as
i) The area
A(®) = / dvoly
b

ii) The Willmore energy

-

- q 1
W(B) = [ 15 dvoly, = 11(8) + 7 ()

where H & is the mean curvature vector of the weak immersion 3, X(‘i) is the Euler characteristic
of ¥ and

I(®) = /E |diiglz. dvoly,

iii) the frame energy for tori
F(®,¢):= /T2 |de|3 dvoly,

where ¥ is the torus 72 and € = (€1, &%) is a frame of orthonormal vectors on the tangent bundle
@, (TT?) : in other words ng := *zmé; A € where € € S™ ! and € - & = 0.

As explained in [MR3], a pair v = (71,72) of two generators of the 71 of X being given and an im-
mersion & being also fixed, there exists a unique frame € critical point of F' (<I_5, €) such that the degree of
the frame along the generators =y is zero and it is minimizing F(tf, €) in this class. We denote by Fv(tf)
the F' energy for this particular frame.



These energy are just examples in order to illustrate our main result. In order to state this main
result we need to introduce the notions of Weingarten form, holomorphic quadratic differential and Weil
Peterson hermitian product for a weak immersion ® of a 2-manifold .

Considering a smooth immersion $ of an arbitrary 2-dimensional manifold ¥ into R™ one can then
introduce the corresponding bundle of 1 — 0 forms over 3 denoted A'~0T*X.

One defines the Weingarten form using local conformal charts given by proposition 1.1 as being the
following global section of R™ @ A1=9T*Y @ AY0T*Y

—

ho = 2e~2> 7Tﬁ(632 <I_5) dz ® dz

N (L1)
m (028 — 02,8 — 20 02,,,8) dzwd:

172

e
2

where 75 is the orthogonal projection onto the plane orthogonal to 3, TY.
Holomorphic quadratic forms associated to ® are holomorphic sections of A'=0T*% @ A170T*,

The class T(<I_5) in the Teichmiiller space Ty, of ¥ associated to the immersion d is said to be hyperelliptic
if the tensor products of holomorphic 1-forms do not generate the vector space of holomorphic quadratic
form. We recall that for g > 3 the subset H, of hyper-elliptic classes is a complex analytic sub-manifold
of Tx, of complex co-dimension g — 2 (see [Na] 4.1.5).

Let ® be a weak immersion of X. We express this immersion in a conformal chart from the 2-disc D?
and we keep denoting @ this mapping. We introduce on the space A'™9D2 @ A1D2 of 1 —0® 1 — 0
form on D? the following hermitian product depending on the conformal immersion 3

(Y1 dz @ dz, vy dz @ d2)wp = e~ ¥1(2) ¥a(2)

where e* := |0,,®| = |0,,8|. We observe that for a conformal change of coordinate w(z) (i.e. w is
holomorphic in z) and for ] satisfying

Piow dw @ dw = 1); dz ® dz
one has, using the conformal immersion & o w in the Lh.s.
(Y1 dw @ dw, Yy dw @ dw)wp = (Y1 dz @ dz, s dz @ dz)wp

Hence this hermitian product is independent of the conformal chart and only depends on the conformal
structure defined by ®. The scalar product given by the imaginary part of < -,- >y p is denoted

<. >wpi=SG)we
Integrated on X it defines the so called Weil Peterson product.

Theorem 1.2. Let X be a closed two dimensional manifold. Let N be a sub-manifold of the Teichmiiller
space Ts. Let 19 € Ty, and assume that either g < 2 or 1y is not hyper-elliptic. Let & be a weak immersion
in & from X into R™ such that T(<f>) =19. Assume ® is a critical point of the area, resp. the Willmore
enerqgy, resp. the frame energy for all C' perturbations included in N then there exists an holomorphic
quadratic form q of (X,79) (i.e. an holomorphic section of ALOT*Y @ ALOT*Y) such that

i)

H=< q,ﬁo >wp (1.2)



d*s {dﬁ - Sﬂﬁ(dﬁ) + *Rm(*gdﬁ&; A ﬁ) =<q, Eo >wp (13)
where x4 is the Hodge operator on A\PT*Y issued by g.

iii)
d*s [dﬁ — 3 (A ) + g (#gdiig N H) — Ty (8, - déy)

+[€2 -dé] ® éy - dé] — 271|é’2 . d51|2] l—g d(I; =<q, Eo >wp (I4>

d*(€y-dé1) =0
where Ly is the standard contraction operator between a p—vectors and a q—wvectors (p > q) given
by
Yae APR™ | Vbe ANIR™, Ve APTIR™ <alb,¢>4=<d,bAC>,
O

This result has been established when @ is a non-degenerate critical point of 7 and when NV is a point
in [BPP] for smooth immersions and in [Ri3] for weak immersions. Being a degenerate critical point of
the constraint T((f)) = 79 is equivalent to the fact that there exists a non-zero holomorphic quadratic form
q such that .

<4q, ho >wp=0 in DI(E)
Such a weak immersion is called global isothermic (see [Ri5]). In [KS4], using quite involved calculations,
the authors have been able to treat the degenerate case when ® is a smooth isothermic immersion when
the constraint is reduced to a point in the Teichmiiller space. The main achievement of the present
work is to present a general argument for dealing with perturbations of C! energies at arbitrary global
isothermic surfaces in arbitrary co-dimension and within an arbitrary sub-manifold of the Teichmiiller
space avoiding the hyper-elliptic points in case when the genus of ¥ is larger than 2.

Using the regularity theory for weak immersions satisfying (I.3) and (I.4) respectively in [Ri2], [Ri3]
and [MR3] we deduce the following

Theorem 1.3. Let X be a closed two dimensional manifold. Let N be a sub—mani]&)ld of the Teichmiiller
space Ts. Let 19 € Ty, and assume that either g < 2 or Ty 15 not hyper-elliptic. Let ® be a weak immersion

=

in Es from ¥ into R™ such that 7(®) = 79. Assume ® is a critical point of the Willmore energy, resp.
the frame energy for all C' perturbations included in N then ® is analytic. O

For variational purposes it is convenient to extend a bit the class of weak immersion allowing isolated
branched points singularities. For a given riemann surface (X, h) equipped with a compatible constant
gauss curvature metric h we define respectively

d e WHe(Z,R™) s.t. 3by---b, €%
Fh =4 3aeLi(S\{bi---ba)}) . Fgam =€ h

e c LY(%,h) and dilg € L*(X,h)
and the space of weak branched immersion Fx
$ e Whoo($,R™) s.t. 3 W bi-lipschitz homeo. of ¥

Fr=

and 3 h metric of constant curvature s.t. ®o W € f{;"hf)



The following theorem holds

Theorem 1.4. ([Ri2],[MR2] see also [Ril]) Fx is weakly sequentially complete under uniform L* control
of the second fundamental form and control of the Teichmiiller class. In other words, let @i be a sequence
of branched weak immersions in Fx such that

limsup/E |dﬁ<f>k|§5k dvol%k < 400

k—+oo

Assume that T(ék) converges in the Teichmiiller Space Tx, (i.e. the associated constant scalar curvature
metric hy of volume 1 converges to a limiting metric hoo) then there exists a subsequence <I_5k/, a subse-
quence of bi-lipschitz homeomorphism Wi, a sequence Zi of conformal transformations of R™ U {oo}
and a finite number of points {a1---an} such that

Ep = EpoBp oW — & weakly in W**($\ {a1---an},R™)

where Ek/ € f(cgnhf ) Moreover

lim sup || log |d€k/ |hk’ HijC(E\{al---aN}) < 400
k! =400

and
.. S 2 - 2
%gir(g/gdn% ss, dvolg, Z/E|dn§w|g€w dvoly,.
O

The map 7 into the Teichmiiller space Ty is naturally extended to Fx. Similarly as in the case of
weak immersions in £, a sub-manifold N of the Teichmiiller space 7Ty being given, we denote by F&' the
subspace of Fx, made of branched weak immersions ® such that T(CIS) € N. Combining now the previous
completeness result, the regularity result theorem 1.3, together with the Frechet differentiability of I and
F proved in [Ri3] and [MR2], we obtain the following theorem which one of the consequences of the main
result, theorem 1.2 of the present work.

Theorem 1.5. Let X be a closed two dimensional manifold. Let N be a closed (compact without boundary)
sub-manifold of the Teichmiiller space Ts.. Then there is an absolute minimizer of I within N in the space
of branched weak immersions FY , it satisfies the Willmore conformally constrained equation (1.8) and is
analytic away from possibly finitely many branched points. Similarly, taking two generators v = (v1,72)
of m(X), The frame energy for frames € which have zero degrees along these curves admits an analytic
MINIMIzZIng 1mmersion in Eg and it satisfies the frame constrained equation (1.4) O

Existing result of minimizers of I within a conformal class has been obtained in [Ri3]. Here it has been
proved that either the minimizer is analytic away from possibly finitely many branched points and satis-
fies the Willmore conformally constrained equation (I.3) or is isothermic. Independently, the existence of
a minimizer in the space of weak immersions within a conformal class, under some energy bound assump-
tion, has been obtained in [KL]. In [KS4] the authors have been able to prove, in codimension 1 and 2,
under some energy bound assumption, that the minimizer is always satisfying the conformal constrained
equation (I.3) away from branched points (recall the result from [Ric] saying that, in 3-dimension, isother-
mic smooth immersions satisfying the conformal constrained equation (1.3) are constant mean curvature
surfaces in a space form).



ITI Notations - Preliminary results.

II.1 The Period Matrix II(h).

Let ¥ be a closed 2-dimensional orientable manifold. Let g be the genus of 3. We assume g > 1.

Let aj---ag,by -+ by be a canonical basis for the homology H'(X) : it satisfies for any j,k=1---g

aj -bk = (Sjk
(IL.1)
aj-akij-kaO

Let ho be a metric on . Denote by af a family of harmonic 1-forms on (X, ko) (see proposition I11.2.8

page 63 of [FK]) such that
/ af =0, and / xoak =0 | (IL.2)

3 J

where xg is the Hodge operator associated to hy and such that

</ a§> is symmetric (IL.3)
b 4
jrk=1--g

J

and
</ *0a§> is symmetric positive definite . (I1.4)
bs Jk=1-g
We consider metrics h in the L neighborhood of hg and we denote
o (h) == af + do"(h) (IL.5)
where " (g) is the solution to
At (h) = —d*ak . (IL.6)

and Ay, is the Laplace Beltrami operator on (X, k) and d** is the adjoint operator to d for the metric h.
Denote by *; the Hodge operator associated to h - we have then *o = %, - and by

wk(h) ::ozk(h)Jrz'*hak(h) k=1---g

the basis of holomorphic 1-forms (abelian differential of first kind) associated to a®(h). We denote by

II(Rh) the period map
/ w'%h)) , ( / w(h))
@ jk=1.-g \"Vi Gk=1g

J

and

19 (h) == / w®(h) and I} (h) == /b wk(h)
So that we have
H?k(ho) = 0jk and H}k(ho) = ¢k + 1 djk
where D := (d;); k=1...¢ is invertible. Observe that the choice we are making of the variation of basis of
holomorphic 1-form around hg imposes

ROG,(h) =65 and  RAL(R) = cjre - (IL.7)
We also denote by 7(h) the Teichmiiller class induced by h for the choice of basis we have made in Hy(X).

A theorem by Torelli asserts the following (see for instance [Na])



Theorem II.1. Let ¥ be a two dimensional closed orientable manifold, let ay ---ag, by ---by be a canon-
ical basis for Hi(X). Let 7 and 7' be two Teichmiiller classes on ¥ and let w = (w1---wy) and
W' = (wy---wy) be the two basis of holomorphic 1-forms - see proposition III.2.8 page 63 of [FK]) -
such that the corresponding period matriz satisfying respectively

I = (I,,11") and I = (I, (1))
where TI* and (1Y) are symmetric matrices with positive-definite imaginary parts, then

I = (Hl)/ = =1

For h in an L> neighborhood of hy the matrix II° is invertible and if we choose

g

W (h) == Z ejr(h)wji(h)

j=1

where E(g) = (ejx(h))jr=1..¢ = (IN°)~!, the corresponding period function for the canonical basis
ay---ag, by ---by is given by

[1(h) = (Idg, 11" (h)) = (Idg, E(h) IT* ()
For two metrics h and A’ in the neighborhood of hg we have
I(h) =1I(K) = EMm)I'Y(r)=ER)O4W) = HO'Y(h)=1IW0) = 1) =r1(l)
We assume now that 7(h) = 7(h').

Let 74, (h) and m, (h) be the harmonic 1-form for h representing the Poincaré dual of respectively a;
and b;. We have in particular (see for instance [FK] chapter III)

Lo ) = [ ) == [ )= a b= 5

aj bk

Lo 0 = [ o) == [ o, ) = a5 =0

aj Qg

/b. "bk(m/bknbj(h)bj.bko

J

[0 2 1)
b))
Taking ﬂk(h) = Tk, (h) + Z?:l Clk Na, (h) we have
Vk,j=1---g / oa®(h) —pF(h) =0 and / af(h) —pF(h) =0 (IL.8)
a; bj

Thus o (k) — 8¥(h) are zero cohomologic and harmonic, this implies that o (h) = 8¥(h) and in particular

WF(h) =y, (R) + i % Mo, (B) + Y ik [Ma (h) + i 55 7ay ()] (IL.9)
=1

Since 7(h) = 7(h’), there exists a conformal diffeomorphism homotopic to the identity ¢ from (X, h’) into
(X, h). Since ¥ is homotopic to the identity, ¥~! induced the identity on in H;(X) i.e. ¥ 'a; = a; and



Uh; = b;. Thus we have

J

J

vt = [ wmm = [ mm=o .

Thus the cohomology class of the closed forms ¥*n,, (k) (resp. ¥ *np, (h)) are the Poincaré duals of ay
(resp. by). Since ng, (h) is harmonic in (3, k), %5 1g, (h) is closed and the 1 forms U* x;, 1, (h) are closed
as well (idem for U* %, m, (h)). Moreover since ¥ is conformal we have

U s, 0y, (h) = *p U nq, (h) and U s, gy, (R) = 55 Wy, (R)

Thus x5 U*n,, (h) are closed (idem for *p, U*n, (h)) which implies that U*n,, (h) (resp. U*n, (h)) is the
harmonic representative for h’ of the Poincaré dual to ag (resp. bx). In other words we have proved

U Na, (h) = Nay, (hl) and U n,, (h) =, (hl) . (I1.10)

Because of (I1.9) we have
Tk (h) = W* () (IL.11)

This implies finally that II(h) = II(h’). We have then established the following proposition.

Proposition I1.1. In an L*° neighborhood of the metric hg, under the notation above, two different
metrics h and h' define the same Teichmdiller class T = 7(h) = 7(h') if and only if

IM(h) =11(R') (I1.12)
Thus 11 can be seen as a function of T for the Teichmiiller classes in a neighborhood of T(h°). O

A classical result by Ahlfors (see [Ahl]) asserts that there exists a complex structure on the Teichmiiller
space T'(X) - equiped with he Teichmiiller topology - of ¥ such that the period map I - viewed as a map
from T'(X) into Symg +(C, g), the space of complex symmetric matrices with definite positive imaginary
part - is holomorphic moreover if hq is not defining an hyperelliptic riemann surface' or if g = 2,1 one
has that the complex rank to df[l)T(hO) is maximal and equals the complex dimension of T'(X)

=39-3 g=>2
Tank’(c(dnl),r(ho) (I1.13)

Whereas, if 7(hg) corresponds to an hyperelliptic riemann surface one has

Tank’(c(dﬁl),r(ho) =29g—-1 . (I1.14)

IWe recall that a riemann surface is hyperelliptic if the squares of holomorphic 1-forms do not generate the space of
holomorphic quadratic forms of the surface. For g > 1 the subspace of hyperelliptic surfaces is an holomorphic submanifold
of T'(X) with countably many components - see again [Ahl].



Since IT = I° IT = T1° (Id,, TT*) = (I1°, IT') we have that for any variation 7 in the Teichmiiller space
A-TI(r (")) = (A0 (r(R)), d, 11 ((h0)) T (7(h)) + T (r (k%)) d- 1 (7(1%)) )
Assume 7 € KerdIl(7(h°)) then we must have
d11°(r(h°)) = 0 and d I (7(RO)) I (7(hY)) + d.IT* (7 (h°)) = 0

where we have used the fact that TI°(r(h°)) = Id,. This implies that d,IT*(7(h°)) = 0. Thus we deduce
that in the non hyperelliptic case

Tank’(c(dn),r(ho) (I1.15)

Whereas, if 7(hg) corresponds to an hyperelliptic riemann surface one has

ranke(dIl) ey =29 —1 . (I1.16)

I1.2 Computation of dII(h) and d*TI(h) at the origin h°

we shall consider only variations of the metric supported in a single chart that we choose to be complex
for the complex structure induced by h°. In this chart we write

no = e (dac% + dx%)

and we will look at h = h® 4 v where v = 6h is an arbitrary map compactly supported in the chart taking
values into symmetric 2 x 2 matrices. In this chart we write

a®(h) = X7 (h) dy + X5 (h) daz = (X7 (h°) + 02, 0" (h)) day + (X5(h°) + 0uy 0" () dz

and
Na, = A day + AL day and ny, = B} dzy + Bl dxy

We also denote

2
s day =Y T (h) da; and J(h) = (J () j=1.
=1

Since the coordinates are complex for h?, we have
J(ho) = JO =

With these notations we have )

sp af(h) =Y I (h) XJ(h) dz;

i,j=1

and

2
Ny () A, oF(h) = (AL day + Al dag) A | Y T5(h) XF(R) da; | = (AD' J§J(h) X*(h) da?

ij=1

10



where dz? denotes the canonical 2-form dz? = dz; A dze. We have that

O (h) =i /zn‘” A #3,d (9, 0" (h)) + i /D (AYY JE 0, J(h) X*(h) dx® (I1.17)
and
Oy (h) =i /Enbl A d(0, 0" (h)) + i /D (BY! JL8,J(h) X*(h) da?® (I1.18)
In particular, at h = hg, since *gn,, and *on, are closed we have
o1 (h°) =i /D (AY JE 0, J(h°) XE dx? | (11.19)
and
ML (R0) =i /D ] (BY J§ 0, J(h°) Xk da? . (I1.20)
For the same reason the second derivatives of I at h° are given by
O%TI0, (W) =i /Dz(Al)t JE0%J(h0) XY dx? + 2i /D (AY JE 0, J(h°)V(0,0%(h0)) dz? ,  (I1.21)
and
02114, (h°) :i/DZ(Bl)t JE0% J(h0) XY dx? + 2i /D (BY JL 0, J(h0) V(8,¢"(h°)) dz?* . (11.22)

We are now going to express J¢d, J(h?) and J§02%,J(h°) in terms of h° and v. Let
G(h) = (hij)ij=1.2 = (€% 8ij + vij)ij=12

be the expression of h in the coordinates. The classical definition for #; says that for any pair of 1-forms
a and
a A xpfB = h(a, B) dvoly

Writing o = X1 dx1 + Xsdxe and 8 = Y) dxy + Y3 dxe, the previous identity becomes

XPJET(R)G(R)Y = XY +/det(G(h)) . (I1.23)
Thus we have
J§ 0, J(h) G(h) 4+ J§ J(R) 0,G(h) = I O,\/det(G(h)) (I1.24)
and
A JEO% T(h0) + 2050, T (W) v = I, 8%\/det(G)(R°) (I1.25)

where we have used the fact that 8%,G(h) = 0. From (I1.24) we obtain

e JEO,T(H0) + v = I O,\/det(G)(h) . (I1.26)
We have 8,/ 2T TG = ydet(G(h)) (I11.27)
v 2\/det(G(R)) .
and
52 /TG = 2 detC(R)  (D,det( G2 (I1.28)

2 Jdet(G(h)) 4 (det(G(R)))*)?

11



For 2 x 2 matrices one has
det(G(hg) + v) = det(G(hg)) + det(v) + trG(ho) trv — tr(G(ho) v) (I1.29)
Combining (I1.27), (I1.28) and (II.29) gives in one hand

tr(v)

Oy/det(G)(hg) = 5 , (I1.30)
and in the other hand
0%/ det(G)(h°) = e~ P det(v) — 471 e (tr(v))? (I1.31)
Combining now (I11.26) and (I1.30) gives in one hand
JE0,J(h°) = —e2* 10 (I1.32)
where 1 is the trace free part of v
WO=v— tr;u) I,
and in the other hand
tr(v)\
JE0%LI(hY) =2 e LO0u et | det(v) — ( 5 ) I . (I1.33)
Observe that
tr(v) 2
det(V°) = det(v) — (T) (I1.34)
This yields
JE02% T =2 e V0u 4+ e det(V0) I . (I1.35)
Inserting these expressions in (I1.19)...(I1.22) gives
o1 (h°) = —i / e M (AY WO X da? (11.36)
DZ
and
O, 10}, (h°) = —i / e M (BY WO XE dx? (I1.37)
D‘Z

Using intrinsic notations with v = v;; dz; ® dzj and vy = v — 27 trpor hY and the fact that < dz; @

dxj,dx; ® dx; >po= e we get
o1 (h°) = —i / <Ny @ v =27 trpor B >p0 dvolpe (I1.38)
b
and
O, I}, (h°) = —i / < @ak v =27 trpor hY >0 dvolyo (I1.39)
b

For the same reason the second derivatives of II at h° are given by

9%1Y, (h%) = 2i / e~ (AY O v XE da?
D2

(IL.40)
+i / e det(vY) (A XE da® — 2i / e A (AH OV (0,08 (R0)) da? |
D? D2
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and
0210}, (hY) = 21/ e~ (BY WO v XE da?

D2

(IL.41)
+i / e~ det(v?) (BY XE da® — 2i / e 2 (BYH OV (0, ¢"(h0)) da?
D2 D2

I1.3 The first and second derivatives of the Periods at an isothermic surface.
I1.3.1 Weak isothermic immersions.

We consider ® to be a weak, possibly branched, immersion in Fyx. As explained in the introduction such
a weak, possibly branched, immersion defined a unique smooth Teichmiiller class 7(®*ggm) that we will
simply denote 7. In the computation below we will assume that ® is a global, possibly branched, weak

isothermic immersion (see [Ri3] and [Ri5]), that is to say there exists a non zero holomorphic quadratic
differential? ¢ = f(z) dz ® dz such that

S3(q,50)up =0 . (11.42)

where 60 is the Weingarten form of ® defined as being the section of R™ ® A'79% @ A0 whose
expression in an arbitrary choice of complex coordinates is given by:

—

o := 2#5(852&5) dz ® dz
(I1.43)

Tr1T2

where 7 is the orthogonal projection onto the plane orthogonal to <f)*TE, z = x1 + ixg and 9, :=
271 [0, —i0,,], moreover (-, )y is the following pointwise hermitian product depending on the conformal

immersion

(U1 dz @ dz, g dz @ d2)yp = e~ Y1(2) 12(2)
where e* := |9, ®| = |9,,P|. For 2 sections ¥y, ¥y of A% @ ALY we finally denote
(‘I’l, \I/Q)Wp = / (\Ill, \Ifg)wp d’UOlho (1144)
b
and (W, Ua)yy p realizes a scalar product on A%1Y @ A%LY.
Choosing complex coordinates in which f(z) = 1 (this is possible away from the zeros of ¢) identity
(I1.42) becomes (see [Ri3] and [Ri5])
S (fo) =25 (0. [ 0.8]) =0 (IL.45)
where . .
ho = €*) Hy dz @ dz
which is equivalent to the existence of L € W1, oo(D? R™) such that

-

0y, L = e 229, ®
(11.46)
Oy, L = —e=220,, &

2This is an holomorphic section of A1=0L @ A1=0%,
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If there would exists two real linearly independent holomorphic quadratic forms on ¥ such that (I11.42)
holds then we would have away from isolated points

R (Ho) = 2% (0. [ 0.8]) =0

from which we would deduce .

hO =0 )
which is equivalent for (2, $*ggm) to be umbilic that would contradicts the fact genus(X) > 0. Hence
we have the following proposition

Proposition I1.2. Let ¥ be a closed two-manifold with positive genus. Let d bea global possibly branched
weak isothermic immersion of Fx. Assume we have two distinct holomorphic quadratic form q1 and qo
solving (I1.42) then they are real linearly dependent : there exist a non trivial pair of real numbers
(tl,tg) 7é (0,0) s.t.

t1g1 +1t2q2 =0

|

In [Ri3] we proved that the map C from &, viewed as a Banach manifold over W22 N W into
T () which to ® assigns it’s Teichmiiller class 7(®*ggm) is C! and it’s differential is given by

G@C(@) = Z q; / %(qj‘, Ho)wp - d’UOlgqf) = Z q; g(q]‘, HO ’lI;)WP (1147)
j=1--N x j=1--N

where (g;)j=1...¢ is an orthonormal basis for the Weil-Peterson hermitian product on the space of Holo-
morphic quadratic form which identifies with the tangent space to the Teichmiiller space T(X) (i.e Q@ =1
for g =1 and Q = 3g — 3 otherwise).

On Fx, we have that C is Frechet differentiable for perturbations @ supported on compact set which

do not contain the branch points and the Frechet differential is also given by (I1.47).

We now interpret the space of holomorphic quadratic differentials as being a real vector space generated
by ((¢j)j=1.--q, (1 g;)j=1...¢). Assuming ® is isothermic we have (II.42) or in other words there is 2Q —tuple
of reals (t1---tg,s1---sq) # (0---0) such that

Q
>t g+ s iq5,ho =0 (11.48)
7=l WP

This implies

Q B Q B
Vi e W2 AWwhe N /ZS(qj,ho)wp <0 dvolg, + Y s i /ES(qj,ho)wp - dvoly, =0 (I1.49)
j=1 j=1

or in other words OC is included in the hyperplane of T(X) with normal vector (¢1---tg,s1---Sg) in
the orthonormal basis ((g;);j=1..Q, (1¢;)j=1...¢). If the range of dC would be included in a strict sub-
space to this hyperplane there would be another linearly independent family of R2¥, non parallel to
(t1---tg,s1---sq) satisfying (I1.49) and hence (I1.48) but this would contradict proposition II.2. Thus
we have proved the following proposition.

Proposition I1.3. Let X be a closed two-manifold with positive genus. Let d bea global possibly branched
weak isothermic immersion of Fx then the real rank of the differential of the map which to ® assigns its
Teichmiiller class is exactly equal to dimgT (%) — 1. O
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I1.3.2 Computation of d;11(®)

We consider a weak, possibly branched, conformal isothermic immersion ® and perturbations @ € W1 N
W22 supported in a disc in ¥ that avoid the branched points of 6, as well as the zeros of any non-trivial
holomorphic quadratic form satisfying (I1.42). Moreover we choose the complex coordinates in this disc
in such a way that ¢ = dz ® dz therefore (I1.45) and (I1.46) hold.

The perturbed metric obtained by adding ' to @ is in these coordinates given by

M@ + @) = h° + v(® + &) = e I + (V&) (VB)! + (V) (VD) + (V) (Vi)

Thus B . -
Ogv(®) = (VI) (V®)! + (V) (V'
(I1.50)
92:v(0) = 2(Vw) (V)
and .
- - 5 P
051°(8) = dgv(®) — 75””(2”)( )1,
O, @ - Dy 10 — Oy @ - Dpytll Dy B - Dy + gy ® - Dy, (IL.51)

Oy, ® - Oy, 10+ Oy ® - 01 — 0y, D - g, T + 0y, ® - Oy, W

We can assume for the first derivative that the perturbation @ is normal to the surface. Then we have

2
Z amuo(q;)ij dz; ® dx; = Ogh — 21 trpoO0gh

ij=1

=—- [65%@; — 6555} [dmf — dxg] —2%-0% & [dx1 ® dzg + dxs @ diq] (I1.52)

Tr1x2

:43%(60-13)

Combining this identity with (II.38) and (11.39)

DTy, (B) = 24 /Ew. R < N, @, B > G gem AUOlG. (I11.53)
and
alnglk((I;) =21 /E’u_f R < Ny, @ Oék, 60 >q;*gwm dUOlq;*ng (11.54)

where we are denoting I19, (®) or IT}, (®) for (II% o h)(®) and for resp. (IT}, o h)(®).

I1.3.3 Free families of periods and isothermic surfaces.

Definition I1.1. A sub-familly of periods (113, Hzlaq)(k,l)eK . (p,q)ep where K and P are subsets of {1---g}
is said to be R—free at a metric R® if the corresponding differentials

2

(&/Hgl, avnéq)(k,l)eK , (p.q)EP

are independent for the R-vector space structure- i.e. realizes a free family. The definition extends
naturally to free families of linear combinations of periods. O
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Let 7, be the harmonic 1 form representing the Poincaré dual of a; and let o be the family of
harmonic 1-form on (X, hg) satisfying (I1.2), (IL.3) and (I1.4). Recall the notations w* = a¥ + i ¢ oF for
the corresponding basis of holomorphic 1-forms and introduce o' = i (14, +17 %o 74, ) to be the holomorphic
1-forms associated to 7,,. We have already denoted o* = XFdz; + X5 dvy and n,, = A} dzy + Al dxs.
Observe that we have locally in conformal charts for xq

Wb = (XF —ix¥)dz and ol =i (A} —iAL)dz

Hence
Wwr@ot =i [(XFAL ¢ X5 ALY — i (XT AL+ X5 AL)] d2?
Let v be a variation of the metric : h = h® 4+ tv. v is an arbitrary symmetric tensor of T*¥ @ T*X.
Denotes locally in a given conformal charts v := ZZQ j=1Vij dr' ® da’. A short computation gives
O =v— 27 v WY = €2 R(W° d2?)

where 00 = vOER + iv% and vOER = 27172 (1) — 19y) and v% = e 2 v15. Denote also pu° = €2 v0 dz2.

Observe that p° is an arbitrary section of the bundle of 1 —0® 1 — 0 forms as v describes a neighborhood
of metrics around h°. Locally in these coordinates, we have in one hand

S(W* @ o', 10 )up = 7 R ([(XF A} + X5 Ay) +i (XT Ay + X5 AV [ofy +i08])

(I1.55)
= g (0 AL+ XE AL o8 (X A+ X AL
In the other hand we have
< Ny @k V0 > G gm = R < Ny @ T > G gum
2
= Z e xF Aé— [v% R < dv;dr;,dz* > -8 S < da; daj, d2? > (IL56)
ij=1
= e Mo (X7 A} + XJAY) — 0§ (XT A + X5 A7)
So we have proved that
(W @ ot 1) wp =< Nay @ "0 >0 (I1.57)
Similarly, denoting 7! := i (ny, +1i *o My, ), we have
(W @7 1) wp =<y, @ "0 >0 (I1.58)
Now, using (II.2), we obtain that
N, = *a
and then we have that o! = w!. Moreover using (II.1)...(II.7) we have that
g
My, = ap + chj *0 Qi
j=1
which gives
9 9 ‘
= i(al +1 *q al) —I—chj (al + 1 *xq al) =iwt +chj w’
j=1 j=1
Hence we deduce
< Moy @ aF 10 > 0= (WP @ W, 10)wp (I1.59)
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and .
<y, @ aF 10 >po= RwWF @ W, 1)wp + chj I(w” @ w?, 1®)wp (I1.60)
j=1

Combining (I1.59) and (I1.60) with (I1.38) and (I1.39)

B (h%) = =i S @ ', 1k)wp (I.61)
and
g .
AL (R0) = —i S | iwf @ W + Z e wh @ wl, . (11.62)
=1 WP

Again, since by varying v, u® describes the full space of sections of (1 —0)2—forms we obtain the following
proposition

Proposition II.4. A sub-familly of periods (H%l,Héq)(k,l)eK,(pﬂ)ep where K and P are subsets of
{1---g}? is R—free if and only if the following family of holomorphic quadratic forms are R—independent

g
gy = wh @w' where (k,1) € K together with L= iwP Quwl+ chq WP @w!  where (p,q) € P

qpq
j=1
O
Applying (I1.59) and (I1.60) to u° = b? for i = 1---m we have using (I1.53) and (I1.54)

A1) (B) = 21 / W - S @ w! Bo)uwp dvolg., . =2i (g, h0)wp (I1.63)

D)

and
O} (®) = 21 / @S WP @ W ho)wp dvolg., .

>

, (IL64)
+2i Z le/ @ - (W @ W ho)up dvolg., = 2i (g, ho)wr
j=1

We Deduce then from these expressions the following proposition

Proposition IL1.5. Let ® be a weak immersion from Fx. Let (Hgl,Hzl)q)(k7l)eK7(p,q)ep where K and P
are subsets of {1---g}? be a R—free sub-familly of periods at h® = §*ng. Assume

(119, 0 h)(®), O(ILL, 0 h)(®))(kiyekc , (payep s not free

as pure imaginary one forms on W22 N Wh (X R™) then
rk (0(115; 0 )(®), (11}, 0 (@) pexc payer) = K|+ P~ 1 (IL.65)

and ® is isothermic. This proposition extends naturally to a free family of linear combinations of periods.
O

Proof of proposition II.5. Under the assumption of the proposition, because of (I1.63) and (I1.64),
there exists a non zero holomorphic quadratic differential ¢ such that

3(q,5°)

0, (IL.66)
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which is equivalent to the fact that d is isothermic. Because of proposition I1.2 the number of independent
holomorphic quadratic differential such that (II1.66) is at most 1 hence the decrease of the dimension

0 (0 1 (p0 0 i 1 ;
between (OIIY, (h°), 0111 (h ))(k,l)eK (pgyep 20d (Q(Hkl o h)(®),d(IT,, o h)((I))) BDEK  (rayer is at most
1. This concludes the proof of proposition II.5. a

A classical theorem of M.Noether asserts that if the genus of ¥ satisfies ¢ < 2 or if the conformal
class on ¥ defined by §*ng is non hyper-elliptic? then the family w* ® w! is of real dimension 6g —
6 and generates the space of holomorphic quadratic differentials. Then the real space generated by
Zl,k dIl; Wk ® w! is equal to the real space underlying the complex space generated by OC in the
tangent space to the Teichmiiller space at §*ng. Hence we have the following partial reciproque of
proposition I1.4

Proposition I1.6. Let ® be a weak immersion from Fx. Assume either g < 2 or assume that (E,if))

is not hyper-elliptic if g > 2. Then d is isothermic if and only if there exists a free family of periods
(Hgl,ﬂéq)(kﬁl)eKﬁ(%q)ep such that (9(I1Y, o h)(®), G(H;q o h)(®))kyek , (pg)ep 15 not free. O

I1.3.4 The computation of the second derivative of the period matrix at an isothermic
surface.

We are now assuming that d is isothermic and we are working in local conformal coordinates such that
(I1.46) holds. Rewriting (11.51) in terms of L gives

VL-V& Vii-VAL
D’ () = e =P V- VL Sy 4 € Vi - VAL S, (IL.67)
Vi - VYL —VL- Vi

where
1 0 0 1
S = and S :=
0 —1 10
This implies that
B (19, 0 h) (®) = fi/ VL -V (A S, X} sz—i/ VAL -V (AY Sy XE da? ,  (IL68)
D2 D2
and
O (M oh) (B) =—i | VL-V& (BY S1 XE da? —i | VAL -V (B So X§ da® ,  (IL69)
D2 D2
We have .
O (I}, © ) (@) = Ofy,)2 1My (h%) + B2, 1T}, (%) (I1.70)

3Recall that a conformal structure (X, ¢) is hyper-elliptic if the subspace of tensor products of holomorphic 1-forms in
the space of holomorphic quadratic differentials is of real dimension 4g — 2 and, for g > 2 this subspace is a complex analytic
submanifold of dimension 2g — 1 to the Teichmiiller space (see for instance [Na] theorem 4.1.4).
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Combining (I1.36), (IL40), (IL50), (IL67) and (IL.70) gives

0% (I, 0 h) (B) =2i [ e * (AY! 9g° Dgv X§ da?

D2

+i / e det(0g1°) (AN XE da? — 2i / e 2 (AY VOV (s, 0" (h0)) da?
D2 D2

/ —2A Al SV XO dz?
D2
We have 5
(AY 010 Ogv XE = (A1) 0,500 0g0° XE + M (AY o XE
and (8
( 2*”) —Vd. Vi
Thus

/ e~ (Al)t Oa° Ogv ng dz? :/ e~ (Al)t Agv® Og1° X(’f dz?
D2 D2

+/ VL V& VL -V (A S, XE d:c2+/ VL V& VL -V (AN Sy XE da? |
D2 D2

where we denote

Vf

We have also

e 910 010 = |:((V’LE' VL) +

We have moreover using (I1.67)

e~ det(9g5°) =

Oy [
( _amf )

(Vi - VLEV] I

—(V@ - VL)? — (V@ - VI L)?

Hence, combining (I1.50), (I1.71)...(11.76) we obtain

0%, (1% o h) (B) =i / [((vw VL) + (Vi - VLI:)Q} (ALY XE da?
D2

+2i/ VL V& VL -V (A S XE da? +2z'/
D2 D

2

VL V& VL - Vi (AY! Sy XE da?

2 / (AN [V - VL Sy + Vi - VL 5] V(0o,9"(h)) da?
D2

fi/ 22 (AN 92,00 Xk da?
D2
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Denoting a¥ := 9,,¢0"(h°) — Oa,9* (h0) where Dy, 0% (hO0) is the average of dy,,¢"(h°) on ¥ for h°,

we have
= /D (AYE Va5 - VL 8y + Vi - VL So] V(9,0 " (h0)) da®
— 9 / (AYV 0y, b, da? + 2i / (AN 'V Oy, aly da?
D2 D2
=2 /D aks [02, (AN V — 05, (AN V] da® + 2i /D aks (AN 05,V — 05, V] da?
where

Vi VL v B v
V.= and V*t:.=
V& - VL Vi - VL
Thus we have

922 (I, o h) (B) =i /

D2

[((vw VL) + (Vi - v%)ﬂ (A XE do?

+2i/ VL V@ VL- Vi (A) S X da? +2¢/ VLV VIL- Vi (A" Sy X da?
D? D

2

+2i / ak [0z, (AD'V — 05, (AN V] da® + 2 / ak (AN [0,V — 0, V] da®
D2

w e
fi/ e 2 (AN 9200 X da?
D2

From (I1.6) we have, since ¢*(h%) =0

An(pk(h)) = snd(xnaf) = #nd [ Y T (h)XF(RY) da;

ij=1
: k(p0Yy — : kY _ 4
Since ¢"(h") = 0 and since d(xx0ag) = 0 we have
2
— A" (h0)) = 0, | Y 0TI (WO)XE(RO) | = Ouy | D 0 JH (W)X F(R)
j=1 j=1

Hence for any f € C*°(X) one has®

/ Vf-Va da* :/ (V) Jod,J(h°) X da? :/ e PN (VH VO XE da?
) D2 D2
where we have used (I1.32). Using now (I.67), we obtain

/EVfVag dz? :/ [axlfvfamfvﬂt Xk dx?

D2

(I.78)

(IL.79)

(I1.80)

(IL.81)

(IL.82)

(I1.83)

4Recall that Ao is the positive Laplace Beltrami operator for the metric h9 given in the local complex charts by

Apof =—e* Af = —e™2 [0, f + 025 f]

50Observe that the integrand Vf - Va dz? is independant of the complex coordinate we locally choose.
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or in other words

Aajy = 00, (V' X§) = Oy (V) XE) (T1.84)
Let bg be the function of average 0 on X for h¥ given by
AV =V 0, X§ — (V) 0,, X (I1.85)
We have then
Ak = AbE + [0,V — 0,,V*H]" X

(I1.86)
=AU+ A7 [0,V = 0.,V XE) =29 (A7 [0,V = 0,,VH]") - VXD
where we have used the fact that AX} = 0. Denote
by =t — 2871 (29 (A7 [0,V - 8., V*]") - V)
so that we have .
ak =ck+ ATV]0,,V -0, V] X§ . (11.87)
We have
0% (I, o 1) (&) = i / (V- VD2 + (V- VD] (A) x§ dr?
D2
+2i | VL -V& VL V@ (AY' Sy XE da? +2i | VL -V VL -V (AN Sy XE da?
D2 D2
+2i/ (AN 05,V = 05, V] ATH[0,,V — amvﬂt Xk da? (11.88)
D2
+2i / ak [04, (AN V — 0., (AN V4] da? +2i / ke (AN [0,,V — 05, V] da?
D2 D2
—1i / e 2 (Al 02,10 Xg da?
DZ
We write Y = (y1,92) = [0,V — 02, V1] = (0r,v1 + Oupv2, 0z, va — Ozyv1). Observe that
2Y AT = (1 ATy + 2 AT ye) L+ (11 A7y — 2 A Mye) S
(I1.89)
i A + 2 A7) So 4+ (—yn ANy F 2 AT y) o
Denoting y = y1 + iy2 and v = vy + ive we have y = 2 J,v, we have moreover
2V AW =Ry AT L +S(y A7) Jo + Ry A~ 1y) S + Sy A~ 1y) S, (I1.90)

and hence

2[0,,V = 00, V] AT [0,V = 05, V] = —[oP I — 4R (0 A1 0%0) Sy — 4 (A1 0%0) Sy
+AR (9. (vATIOD)) I + 4 (0. (vATI07)) Jo

+4 R (82 (v Aflazv)) S1+4S (82 (v Aflazv)) So
(I1.91)
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Observe that, because of (I1.50), we have

Vi - Vi 20y, W+ Oy, W
02,10 = =V - Vi Sy + 20y, - 0y S . (I1.92)
20y, W - Op, W —V0 - V0
Combining (I1.88), (I11.91) and (I1.92) gives

0o (Hlok oh) (‘f)) =
/ v Vi@ VL -V© - 2R (vA™0%v) — 471 [VL? vw.ﬁa} (AY! Sy XF da?

+21/ Vi VAL - Vi - 28 (v AT %) — 2—1|VE|2azlw-az2w} (AY! Sy XE da?
D2

(I11.93)

/ R (9. (v A0.7)) (A )X§+4i/ 3 (0. (v A10.7)) (A JoXE do?
D2 D2
/ R (9. (vA~'.v)) (A1) 51X§+4i/ 3 (0. (vAT9)) (A S X da?

D2

+41
D2
+2i /D aks [0z, (AN V — 0,, (AN V] da® + 2i /D i (AN 05,V — 05, V] da?
where we have used the fact that |VI_:|2 = 2e~2) and we recall that
v =V (VL +iV*L) =4 85 -0.L
I1.3.5 Some special directions in the closure of the range of 9*(Il o h) for isothermic im-

mersions.

The goal of this subsection is to establish the following theorem that will be deduced from the computa-
tions in the previous sections.

Proposition I1.7. Let ® be an isothermic immersion of the surface ¥.. Under the above notations, for
any real function ¢ on C, and for almost every x° in ¥ there exists a sequence of directions W, such that
suppi. C Be(x®), such that ||V.||12 is uniformly bounded and for all (I,k) € {1---g}?

O, (M), 0 h) (B) = O(e)  and Dy, (I}, 0 h) (B) = O(e) (I1.94)
and such that
limy 92, (19, o h) (B) = —4i S (wl ® Wk (20), / 06 ® a¢) . (I1.95)
e— € C wp
and
— g .
lim 0% (I o h) (®) = —4iS [iw' @ wF(2%) + > oxj ! ®w](x0),/8¢®0¢ . (I1.96)
e—0 € . c
j=1 wp
O
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Proof of proposition I1.7.
In the coordinates chart let

fe(x) = ¢ (‘"” :”O)

€
where the point 20 = (29,29) is a Lebesgue point for VL and ¢(x) is a smooth function compactly
supported in the unit ball B1(0). Let 77 a constant unit vector perpendicular to the surface at 2°. Since

20 is chosen to be a Lebesgue point for VL - which is tangent to the surface almost everywhere - we have

e—=0¢

1 .
lim —2/ VL7 dz® =0 . (I1.97)
Dz
Let @, := ¢. V. We have, using (I11.97)

O (T, 0 h) (D) = —i / 7-VLV¢e (AN S, XF da?

D2
: (I1.98)
—i / 7-VILVe. (AH Sy XE da? = O(e) |
D2
and similarly we have .
da. (I, o h) (@) = O(e) . (I1.99)

Observe also that v, = Vuw; - (Vf + iVLI_:) =4 0z¢. V- 6ZE converges strongly to 0 in L? norm due to
(I1.97) again. Hence we have in particular

lim/||chE % + [ve AT V20 =0 . (I1.100)
e—0 €

We have also

VL Vi. VL - V.| dr?
I }

<C 5—2/ VL -v? de® = o(1) (I1.101)
D2
and similarly

/ [Vi-vwg v%-vwg] dz?
e

<C 5*2/ VL v da® = o(1) (I1.102)
bz
Hence, combining (I1.100), (I1.101) and (I1.102) we obtain that

922 (119, o h) (B) = —2—11/ IVL|? V¢V (A Sy XE da?
€ D2

(I1.103)
—z'/ IVL|? Oy, e - Ouype (A')! So X da® + o(1)
D2
Since from Wente theorem the conformal factor [VL|2 = 2e~2* is continuous we have
O (W 0 1) (B) = —i e (A) 5, XE () / 021817 = 10:,0" da®
€ 2
. (I1.104)

—2i e 24l g, X(’f(zo)/ Oy & Oy dz® + 0(1)
]RZ
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Let v := 2 e22\=") (faz Ou,0s, ¢ da?) dz* @ da?, we have
9% (I, 0 ) (B) = —i e (AN (2%) »° X (2°) + (1) (11.105)

Following the computations in previous subsections this gives
lim 02, (MY, o h) (P) = —4i S (wl ® wk(xo),/ 0% @ a¢> : (I1.106)
e— e C wp

And similarly we have

g
lim 02, (I}, 0 h) (®) = —4i S [iw' @ Wk (@) + ) e o ®wj(:v0),/8q§®8q§ : (I1.107)
e—0 € = C
wp

This closes the proof of proposition II.7. O

I1.3.6 The infinitesimal subjectivity of the 2-jets of linear combinations of II9,0h and H1 oh
in the corresponding span of 9119, and 81’[1 at an isothermic immersion.

For any vector space V we denote by S(V ® V) the subspace of vectors in the tensor product V@ V
which are symmetric i.e. generated by v ® vo + v ® v1 for any (vi,v2) € V2. The goal of this subsection
is to prove the following result

Proposition IL.8. Let & be a weak branched immersion of Fs. Let (til) and (s3,,) for (k,1) € {1---g}?
for (p,q) € {1---g}2 and j = 1---n be two families of real numbers such that the family of n one forms
on the space of sections of the bundle S(T*E @ T*X) given by

g9
= t,0,00 + Z s, 0,10, € iR
k=1

p,q=1

is a free family at @*ng. Assume that the family of corresponding n one forms on W20 W12 (3 R™)

given by
g

g
= > 05 0h)+ Y s),05(I1), 0h) € iR

k,l=1 p,q=1

at ® is not free anymore. Then, the rank of the span of (L£7)j=1...q is n — 1. Moreover introducing the
following quadratic forms on VV2 2nwhee (s, R™)

—2_1Zt Hgloh)+2lzqu 02, (1L, o h) € iR
k=1 p,q=1

there exists a neighborhood U of 0 in R™ such that, for any v = (u1---u,) € U there exists @ €
W2’2 N Wl’m(Z,Rm)
Vi=1---n —ﬁj( 7))+ Q7 (W) . (I1.108)

d

Proof of proposition I1.8. The first statement is a generalization of proposition II.4 to general families
of linear combination of frequencies. Each drop in the rank of the span of (L7);=1..., and the rank of the
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span of (£7);—1..., corresponds to the existence of an independent holomorphic quadratic differential ¢
satisfying

—,

(4,6%)wp =0 (I1.109)

and hence, ® has to be isothermic and, because of proposition II.2, there can be at most one such
independent ¢ satisfying (I1.110) and by consequence almost one drop. Thus we have

rank(ﬁj)jzl...n >n—1

If rank (£7);=1..., = n this implies that (£7);=1..., is a submersion into i R” and (IL.108) is clear.

We shall assume from now on that rank(£7);—;..,, = n — 1 and, without loss of generalities, we can
assume that _
L=0 and rank(£)j=0.n =n—1 . (I1.110)

Hence in order to prove (I1.108) it suffices to find two directions @y such that
+ i QN wy) >0 and Vi=2--n LI(bg)+ (W) =0 . (IT.111)

Because of formulas (I1.61) and (I1.62), since L! is assumed to be non zero we have that the following
holomorphic quadratic form is non zero

g g9 g9
¢ =)t e+ D sl @i+ Y ket @w #£0 (I1.112)
kl

p,q=1 p,q,r=1

Using proposition I1.7 we know that for any function ¢ on C there exists a sequence w,. such that for any
0
' ey

e—0 e—0

lim £L(.) =0  and lim Q' (w.) = — 2i (ql(xo),/ 0® ® aé) : (I1.113)
C wp

Since ¢! is non zero ¢! (x°) is non-zero almost everywhere and since the expression above is invariant under
rotations we can assume that we are chosing local conformal coordinates such that ¢'(z°) = ¢f (2°) d2?
where ¢} (z") € R\ {0}. Hence we have

e—0

lim Q'(w,) = — 2i e~ @) ¢l (20) / |00, 6|2 — [0, 0|* da? (I1.114)
C

Let a be a compactly supported smooth non zero function on R. Choose first ¢(z1,z2) := a(2x1) a(z2)
we get

[ 1008 = oo e =3 [ @@ [ w0
C 2 Jr R

whereas by choosing instead ¢(x1,x2) := a(x1) a(2x2) we obtain

/|aacl¢l2*|3m<z5|2 d$2:*§/a2(t>dt /aQ(t)dt<0
C 2 Jr R

Hence, since a is arbitrary in the class of compactly supported smooth non zero function on R, we can
find two sequences W such that

lim £(WE) =0  and lim Q' (W) = +i . (I1.115)

e—0 e—0

Let (¥ - - - ¥,) be n independent elements of W1 NW?22(3, R™) such that £(#;) forms a basis of vectors
of LW NnW22(X,R™)) = 370 | LI(Wh NW(X,R™)) e = iR"™" C i R™ where ¢; denotes the
canonical basis of R™ .
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For each j = 1---n we denote by B7 the symmetric bilinear form associated to Q7. Clearly

lim sup |B (0, ¥)| < +o0 (I1.116)

e—0

Denote respectively £ := Z?:z LI g, 0 = Z?:z QJ ¢; and Q0 = 2?22 Q7 ¢;. For any § > 0 there
exists €5 > 0 such that
Ve < g5 |L(wE)| <6

Consider now the mapping from R"~! into i R"~! given by

N2 2 (o9, 00) — Y 0 L(T) +6 Y 02Q(0,) + 6 QUiiE) + L(WE) +26 Y 0w B(wE, i)
s=2

s=2 s=2
Since the linear map

(02, 0m) — > _ oo L(T,)
s=2

is an isomorphism, for § small enough, § < §y and for any € < &5 the local inversion theorem gives the
existence of (7a,- -7, ) such that

N (Fg,---Tn) =0  and (@2, ---Tn) = O() (IL.117)

Hence we have in one hand

Vji=2--n LI+ (5235 55+5w§>0 (I1.118)
s=2
and in the other hand
o' (5255 s + 5@3) =402 (1+0()) (I1.119)
s=2

The two assertions (I1.118) and (II1.119) imply (II.111) for ¢ small enough, which concludes the proof of
proposition II.8. O

I1.4 Writing arbitrary tangent directions in W1~ N W?2%(X R™) to the pre-
image in &y of a sub-manifold of the Teichmiiller space as a combination
of derivatives of paths of weak immersions within the sub-manifold.

Combining now proposition II.8 together with lemma A.2 we are going to obtain theorem II.2 which is
one of the main achievement of the present work.

Theorem I1.2. Let N be a non degenerate smooth R™ valued function on the Teichmiiller space of X,
closed 2-manifold - i.e. N=1{0} is a submanifold of Ts. Let 7o be a point in N =1{0} such that there exist
n independent linear combinations of periods whose derivative are generating Tr(N~1{0}). Let ® be a
weak immersion of X into R™ such that T(@*ng) = 79 and let i be an element of WH>° NW22(3, R™)
tangent to 7=1 (N71{0}) :

LN (B + 1) grn)(0) = 0
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then there exist two paths in W1 N W22(S,R™), &1(t) and Dy(t) for t € (—1,41), continuous and
differentiable at t = 0 such that

- Lod,. =
(I1.120)
and Vi€ (~1,+1) N(r($1(t)"grn)) = N(7(2(t)"gz)) = 0

O

Proof of theorem II.2.
Let (t],) and (s},) for (k,1) € {1---g}* for (p,q) € {1---g}*> and j = 1---n be two families of real
numbers such that the family of n one forms on the space of sections of the bundle S(T*¥ ® T*X) given

by

g9 g9
L) :=> 0+ Y s, 0, iR
k,l=1 p,q=1

is a free family generating the tangent space to N ~1{0} :
() Ker(L) = Tio(W o 1)~ {0})
j=1

Let
g

g
L () = Z th, O (I o h) + Z $g (L © h)
k=1

p,q=1

be the corresponding family at the level of the immersion ®. If the rank of (L£7)j=1..., is also n then we
easily construct by local inversion theorem a smooth path <I_5(t) such that

B0)=d @W=—00) and N(r(B(t)*grm)) =0

and the conclusion of the theorem are obtained by taking ®1(t) := ®(t) and $y(t) := ®.

Assume now that rank(£7) < n hence we know from proposition that rank(£7) = n — 1 and & has to
be a weak isothermic immersion of . The given direction @ € W22 N W1 (3 R™) satisfies

) )
Vi=1--n  L@):= > t,0:[y0h)+ > s, 01, 0h) =0
k=1 p,q=1

We are then in a position to apply lemma A.2 to the smooth map given by
el — Noroh(F) =N(r(Fggnm)) € R

Indeed the Banach manifold s, is in fact an open set of W*2NW1>°(3$, R™). From the lemma A.2 there
exist two elements w1, wWe in W22 N WH (X R™) and two paths ®1(t), ®2(t) in W22 N W (3, R™)
which are continuous and differentiable at 0 such that for ¢ = 1,2 one has

- . dd,
®,(0)=92 7 (0) = w; W= Wy + Wa (I1.121)
and N R
Vte (—1,+41) N(T(@1(t)*grm)) = N(7(®1(¢) " grm)) =0 . (I1.122)
This concludes the proof of theorem II.2. O
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IITI Variations of various energies, Area, Willmore, framed Will-
more energies... for weak immersions evolving within a sub-
manifold of the Teichmiiller Space.

IT1I.1 Proof of theorem 1.2.

We present the theorem in the case of the Willmore energy only since the proof is identical for any other
smooth lagrangian. It is proved in [Ri3], [MR2] that W is Frechet differentiable at any point in the
Banach manifold £, and that for any C! path ®; in s

AW (3) - & = / d*s [dﬁ — 3ma(dH) + g (xgdiig A ﬁ)} - dvol, (II1.123)
b
where d®/dt(0) = . Let (L7)j=1..., be a free family of linear combination of periods

Li(v) =

g9
th 0 + > s, 0,00, €iR

M

k=1 p,g=1

1L

generating the tangent space to N at 7(®) : i.e. T, N = Ni K erL7. Assume first that the corresponding
family of n one-forms on W22 N Who(%). Let

g g
L) =Y 1, 05(I5 0h) + > s, (1T}, o h)

k=1 P,q=1

be the corresponding family at the level of the immersion ®. If the rank of (L£7)j=1..., is also n then the
constraint is not degenerate and for any w satisfying

LI(W)=0 Yj=1---n (I11.124)
we easily construct by local inversion theorem a smooth path <I_5(t) such that

FO)=& @— %5(0) and T(B(E)eN W
Hence, combining (I1.63), (I1.64) and (II1.123) we obtain (I.3) and the theorem is proved in the non
degenerate case.
Assuming now that the rank of (£7);_1...,, is less than n, then we use theorem I1.2 and we deduce
that for any o satisfying (I11.124) there exist two paths in N, @, and s, differentiable at ¢ = 0 and
satisfying

- - od . =
(1)1(0) = (1)2(0) and w = %OI)l + @2)(0)

. Hence (I11.123) holds for such an arbitrary « satisfying (I11.124) and we deduce (1.3) in the degenerate

case which closes the proof of theorem 1.2. O

I11.2 Proof of theorem 1.3 and theorem 1.5.

Once the PDE’s (I1.3) and (I.4) are derived, their weak solutions in Fy, are known to be smooth away
from the branched points (see [Ri2], [Ri3] and [MR3]). Hence theorem 1.3 is proved. Now theorem 1.5
follows from theorem 1.3 and theorem 1.4 (see such an argument in a similar context in [Ri3] and [MR2]
or in [Ril]). O
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A Appendix

We shall need the following elementary analysis lemma which is well known but that we recall with a
proof for the convenience of the reader.

Lemma A.1. Let N = (N,---N"™) be a C°° map from a Banach space E into R". Denote N =
(NZ,---N™) and assume

i) N(0)=0
i) The linear map ON(0) on E is a submersion into R"~1,
i) The linear form ON* is equal to zero.

iv) There exist 2 vectors Wy € E such that

O N'(0)=%1  and 5. N(0) = 0.

Let w € E such that .
%N (0) =0 and OzN(0) =0
Then there exists a path W(t) € E for t in a neighborhood of zero, continuous and differentiable at the
origin, such that
di
@0)=0 |, %(0) =@ and Yt N(@() =0
Proof of lemma A.1. Let ¥, - - - ¥,, be family of n—1 independent vectors of E such that (8175./(/'(0))5:2...”
realizes a basis of the image of E by OA(0). Denote by F' the sub-vector space in E generated by the ;.
We shall look for a path w(t) of the form

W(t) =t + Y ou(t) Us + o (t) @y + 0 (t) w-
s=2

with 3, |os(t)] + |o4 ()] + |o_(t)] = o(t). Denotes by L~ to be the inverse of £ the restriction to
F = Span{@,---¥,} into R"™1. For t, 07 and o~ given and small enough we denote by o,(t, Ay, )
the unique solution obtained by fixed point method of

n

n n
Zos(t,mr,o,){;'s =L <./\7 <tu7+205(t,0+,o_) Ts+ ot Wy +o~ 117) - Zos(t, Ag,Al) 175>
s=2 s=2

5=2

where we are using that 9z, N (0) = 0 and dgN(0) = 0. The fixed point argument - local inversion
theorem - gives a solution which is smooth w.r.t. (t,04,0_) and satisfying

N(tw—i—Zas(t,aJr,a_)Us—l—aJr Wy + 0~ u"i_> =0 , (A1)
s=2
and
los(t,oT,07)| = O0* + o> + | |*) . (A.2)

It remains to adjust ¢ and ¢~ depending on ¢t in such a way that

N <m + Zn: oyt ot (t), 07 (1) Ts + 0T (t) Wy + 0 (t) w) =) (A.3)

s=2

29



and such that
loF ()] + o~ ()] = oft) . (A.4)

Let S(t,ot,07) == 3", 04(t,0, 07 ) T. Because of (A.2) we have |S(t,0, 07 )| = Ot +|o > 4|0~ |?).
With the help of this notation we have

n
Nt (ttBJr Zos(t,oJr,J*) Ts+ ot Wy +0~ 13)
5=2 (A5)
=Q'(twW+ ot Wy +o” W_)+2 B! (tu_)'+ ot Wy +o u_)',,g(t,oJr,J*)) +RYt, 0%, 07)
where Q! is the quadratic form given by Q! := 27192N1(0) and B! is the associated bilinear form. We

have moreover
IRY(t, 0%, 07 )| < CtP +[oF P + o™ 7]

Consider now
T(t,ot,07) =28 (tu‘;’—i—aJr Wy +0” w_,g(t,aJ“,a_)) +RYt, 0T, 07)
We have
T(tot,07) =T(t0,0)+ Y ax(t)o* + Y brr(t)oro™ +U(t,0t,07)
+ +
where

IT(0,0)+ > tlaz®)]+Y_ £ br+(®)|=O0(t*) and |[UEto",07) <C o™ +]o "] (A6)
+ +

We have then
N tad+ Y0, ost,ot,07) Us+ot Wy +o~ W) =QY o™ Wy +0 W)
(A7)
423 oF B (wW,0) + T(4,0,0) +2 > ar(t)o + > by i(t)oto +U(t,oT,07)
+ + +

In order to chose o (t) such that (A.3) and (A.4) hold we are going to consider two alternatives separartly.
1st case : either B (), ) # 0 or B (w,w_) # 0.

Assume for instance a% = 2 B (@, @) # 0. In this case we choose o~ (t) = 0. and in order to ensure
(A.3) we are looking for o (t) satisfying

0= (L4 byt ())(0h)? + (tal +2a4(t)) o™ (t) + T(£,0,0) +U(t,0*,0)
or in other words

ot =—(a% + 2t rar ()" I T(£,0,0)

—(af +2¢7 ap ()70 [T+ byt (D) (@) + U(E 0T, 0)]

Since
[(a% + 2t ay (8) " 71T (£,0,0)| = O(?)

and since
[(a% +2a: ()7 [t (L4 bis (D)) + U T, 0)]| = Ot (07)?)
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There is a unique solution to (A.8) satisfying o (¢) = O(t?) and by taking this o7 (t) we just constructed
and 0~ (t) =0, (A.3) and (A.4) is satisfied and the lemma A.1 is proved in this case.

2nd case : B! (w,w,) = B (w,%_) = 0.

For any ¢ such that 7(¢,0,0) = 0 we take o7 (¢t) = 0~ (t) = 0. For ¢ such that 7(¢,0,0) > 0 we take
oT(t) = 0 and we look for ¢~ solution to

0=—(1—-b_—(t) = (") 2U(t,0,07)) (67)*+2a_(t) o~ +T(t0,0) (A.9)

Since (07)2U(t,0,07) = O(0~), a straightforward argument gives a unique solution to (A.10) as being
1+ o(t) times

o= (t) = (1+o0()) [a(t) + s(t)\/a%(t) + (1 =b__(&)T(0,0)| 1 —b__()"" =0O(Jt]*/?)

where e(t) = sign(a—(t)) if a_(t) # 0 or £(¢) = 1 otherwise, which is one of the 2 solutions of
0=—(1—-b__(t) (¢67)*+2a_(t) o~ +T(t,0,0) . (A.10)

If 7(t,0,0) < 0 we exchange the roles of ¢~ and 0. Observe that the path w(¢) constructed in this way
can have discontinuities at the non zero t such that ay(¢) vanish. However it fulfills all the conclusions
of lemma A.1 in this second and last case g

Form lemma A.1 we deduce the following

Lemma A.2. Let N = (N',---N™) be a C map from a Banach space E into R™. Denote N' =
(NZ,---N™) and assume

i) N(0)=0
i) The linear map ON(0) on E is a submersion into R"~1,
iii) The linear form ON* is equal to zero.

iv) There exist 2 vectors Wy € E such that

O N'(0) = %1 and s, N(0) = 0.

Let w € E such that R
OgN(0) =0
Then there exists two vectors Wy and wWe such that
s N(0) = 05, N(0) =0 , 9ZNYN0)=02N(0)=0 , and & =10 + s (A.11)
furthermore there exists 2 paths W;(t) € E for t in a neighborhood of zero, continuous and differentiable
at the origin, such that fori=1,2
dw;

w;(0) =0 o (0) = w; and VYt N(Wi(t)=0

Proof of lemma A.2. Assume 612172/\/1 (0) = 0 the we take Wy = @ and we apply lemma A.1 to this
vector. wWs(t) is then chosen to be the trivial path wa(t) = 0.

Assume now 92, N'(0) # 0 and consider for instance the case 9%, N (0) > 0. Consider then the
2-dimensional vector space given by Span{w,@_} C Ker(dN) - the two vectors @ and @_ cannot be
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parallel to each other since 9%, N'(0) and 02, N''(0) have opposite sign. The quadratic form on this
2—plane given by 9?2A1(0) has signature (+,—) and therefore Span{w,w_} is generated by a basis
of two isotropic vectors €; and €5 satisfying then 863;N1 (0) = 0. There exist wy,ws € R such that
W = wi €1 + wa €. Then Wy := wy &) and Wy := ws €3 satisfy (A.11). We then apply lemma A.1 to each
of the two w; and lemma A.2 is proved in this case.

The last case 812172N 1(0) < 0 is solved identically to the previous one after having replaced w_ by ..
This concludes the proof of the lemma A.2. |
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