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Abstract : In this work we present new tools for studying the variations of the Willmore functional of
immersed surfaces into R™. This approach gives for instance a new proof of the existence of a Willmore
minimizing embedding of an arbitrary closed surface in arbitrary codimension. We explain how the same
approach can solve constraint minimization problems for the Willmore functional. We show in particular
that, for a given closed surface and a given conformal class for this surface, there is an immersion
in R™, away possibly from isolated branched points, which minimizes the Willmore energy among all
possible Lipschitz immersions in R™ having an L?—bounded second fundamental form and realizing this
conformal class. This branched immersion is either a smooth Conformal Willmore branched immersion
or an isothermic branched immersion. We show that branched points do not exist whenever the minimal
energy in the conformal class is less than 8w and that these immersions extend to smooth conformal
Willmore embeddings or global isothermic embeddings of the surface in that case. Finally, as a by-product
of our analysis, we establish that inside a compact subspace of the moduli space the following holds : weak
limit of Palais Smale Willmore sequences are Conformal Willmore, that weak limits of Palais Smale
sequences of Conformal Willmore are either Conformal Willmore or Global Isothermic and finally we
observe also that weakly converging Palais Smale sequences of Global Isothermic Immersions are Global
Isothermic. The analysis developped along the paper - in particular these last results - opens the door
to the possibility of constructing new critical saddle points of the Willmore functional without or with
constraints using min max methods.
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I Introduction

The goal of the present paper is to present a suitable framework to proceed to the calculus of variation
of the Willmore functional for immersions.

Let ® be a smooth immersion (rank dd is equal to two at every point) from a closed oriented smooth
2-manifold X into an euclidian space R™. The first fundamental form gg defined by this immersion on ¥

is the pull-back by ® of the metric induced by the restriction of the canonical metric of R™, ggm, to the
tangent planes ®, 7Y of the immersed surface :

9z = @ grm

If there is no ambiguity we simply write g instead of ggz. We shall denote by 7ig the Gauss map of the
immersion ® which to a point p € ¥ assigns the oriented orthonormal (m —2)—plane to the tangent plane
<I_5*Tp§] of the immersed surface at <I_5(p) fig will be seen as a map into the Grassmanian Gm—_2(R™) (or
equivalently Ga(R™)) of oriented m — 2—planes (resp. 2—planes) of R, g is also a map into the unit
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simple ! 2-vectors in R™ : Mg € A2R™. We also denote by 7 the orthonormal projections of vectors in
R™ onto the m — 2-plane given by 7iz. With these notations the second fundamental form

-

VX,Y € T,2 L(X,Y) :=my
2 The mean curvature vector of the immersion at p is given by

H = —ﬁ?“g(ﬂ) = — H(El,&'l) +]I(€2,52) s

- 1 - 1[—' -
2 2

where (g1, €2) is an orthonormal basis of 7),% for the metric gg.

In the present paper we are mainly interested with the Lagrangian given by the L? norm of the second
fundamental form :

E() ::/E|]T|§ dvol,

where dvol, is the volume form induced by the metric gz. An elementary computation gives

B(3) ;:/Emg dvolgz/z|dﬁq;|§ dvol,

This energy I can be hence seen as being the Dirichlet Energy of the Gauss map 7ig with respect to the
induced metric gg. The Gauss Bonnet theorem implies that

E(®) ::/ T2 dvol, = 4 / |H|? dvol, — 47 x(2) (L1)
b b
where x(X) is the Euler characteristic of the surface 3. The energy
W(®) := / |H|? dvol,
b

is the so called Willmore energy and has been extensively studied since the early 20th century due in
one hand to it’s rich mathematical signification but also to it’s importance in other area of science (in
general relativity, mechanics, biology, optics...etc). Probably the main property it satisfies which makes
this lagrangian so universal is the conformal invariance : For any conformal diffeomorphism U of R™ one
has (see [Bla])

W(B) =W od) . (1.2)

For a fixed surface X , because of (I.1) studying the variations of the L2—norm of the second fundamental
form or the variations of Willmore energy is identical.

Since the lower bound to W(CE) among all possible immersions of closed surfaces is non zero and equal
to 4w (see for instance [Wi]) it is natural to look at the existence of optimal immersions which minimize
W for a given surface ¥. When ¥ is a sphere it is well known that W(CIS) achieves it’s minimal value
47 for the standard unit S? in R?* C R™ and only for this submanifold. When X is a genus 1 surfaces
the existence of a smooth immersion into R™ minimizing W was established by L.Simon in [Si]. It has
been conjectured by T.J.Willmore that the minimizing configuration should be achieved by the torus of
revolution in R? obtained by rotating around the z—axis the vertical circle included in the Ozz plane, of
center (\/5, 0,0) and radius 1 and the minimal energy would then be 272. This conjecture is still open at

1= —
ng A ng = 0. .
2In order to define d2®(X,Y) one has to extend locally the vector X or Y by a vectorfield but it is not difficult to check
that w7 d2®(X,Y) is independent of this extension.



this stage. The existence result of L.Simon has been extended to surfaces of arbitrary genus by M.Bauer
and E.Kuwert in [BK] : they proved that for an arbitrary given closed oriented surface ¥ there is an
immersion into R™ that minimizes the Willmore energy among all smooth immersions of that surface.
The result of Bauer and Kuwert was using the result of L.Simon whose proof is quite involved. One of
the characteristic of this proof is not to work directly with the immersions ® but mostly instead with its
image <I_5(E) 3.

In the present paper we first present a new proof of Simon-Bauer-Kuwert’s result that will based on
the analysis of the immersions themselves . This new proof will be ”transposable” to the minimization
of the Willmore functional under various constraints, as it arises in several applications, ( prescribed
effective volume, prescribed conformal class...etc ) without having to change the main lines of the proof.
Moreover the arguments and tools that we will develop in this work should be sufficiently generic in
order to generate new critical points of the Willmore functional under various constraints by applying
fundamental principle of the calculus of variation such as the mountain pass lemma...etc as we shall
present it in a forthcoming work [Ri3].

The first difficulty encountered while working with immersions $ instead of working with their image
®(%) is the huge invariance group of the functional : the space of diffeomorphisms of ¥, Diff(X). Taking
for instance a minimizing sequence &, of the Willmore functional (without or with constraints) one
can always compose &), with diffeomorphisms that makes the sequence degenerate completely and not
reaching an immersion at all ! There is then a ” choice of gauge” to be made. By pulling back the standard
metric ggm of R™ onto 3, & defines then a metric gg on X and hence a conformal structure on 3. There
exists then a constant scalar curvature metric h on ¥ and a conformal diffeomorphism ¥ from (X, h) into
(X, gz) such that the immersion & o W is conformal. The space of constant scalar curvature metrics on 3
identifies (modulo dilations) to the space of conformal structures on ¥ and hence is finite dimensional see
[Jo]. We have then broken the ”gauge degeneracy” by replacing 3 by ® o U which satisfies the Coulomb
gauge condition :

div(e1,Veéy) =0 where € =e Oz, (BoW) |,

and e =0, (P 0 V)| = |8, (P o V)|

and the operator div and V are the standard operators : divX = 0, X1 + 0, X2 and V- := (0y, -, Ouy-)
taken in arbitrary complex coordinates z = x7 + ixs with respect to the conformal structure given by
(3, h).

At this stage however the possible perplexity of the reader regarding this choice of gauge is totally
justified because what we have gained by fixing the gauge that way is not clear at all at this stage. Indeed,
looking again at a minimizing sequence &, of the Willmore functional (without or with constraints) and
composing by Uy in order to have a conformal immersion, first one does not have a-priori a control of
the conformal class defined by @) : (X, hy) may degenerate to the boundary of the moduli space. A
first task in our proof is to exclude this eventuality. More seriously, as k goes to infinity we have a-priori
no control at all of the conformal factor e** that could either go to +o0o or 0 at some points and then
we would be out of the class of immersions at the limit. This cannot be excluded easily. The problem
is that the control of the L? norm of the second fundamental form does not provide a global pointwise
control of the conformal factor e* - counter-examples are easy to manufacture. This is just critical : an
L?*¢—control of the second fundamental form would have done it. However, below a certain threshold
this control exists. This phenomenon has been discovered in a series of works by T.Toro [Tol] [To2],
S.Miiller-V.Sverak [MS] and F.Hélein [Hel]. Precisely one has

30r more precisely with the rectifiable current 5*[2} : the push forward by & of the integration current over %



Theorem 1.1 [Control of local isothermal coordinates] Let & be a conformal immersion of the
disc D? such that

/ |Viig|* < 8m/3 and M(®,[D?)) = / e* dry dry < +oo (L.3)
D? Dy

where M(®,[D?]) is the mass * of the current ®,[D?]. Then for any 0 < p < 1 there exists a constant
C), independent of ® such that

sup e*(p) < C, {M(i’)*[DQ])} v exp </D2 |Vﬁq;|2) . (1.4)

2
peD?

Moreover, for two given distinct points py and po in the interior of D? and again for 0 < p < 1 there
ezists a constant C' > 0 independent of ® such that

Mleen < G, / Vit + C, log|B(py) — B(ps)| "
D2 (L5)

+C, log M(®.[D?))
O

Remark 1.1 The existence of two distinct points p1 and ps such that, in the minimization process,
|<I5k(p1) — <f)k(p2)| is not converging to zero - ie the maintenance of the non-collapsing condition -
will be obtained -see the 3-point mormalization lemma A.4 - by the composition with an ad-hoc Mdbius
transformation of R™ which does not affect the Willmore energy - see (1.2) - and hence the minimizing
nature of the sequence. ]

This Theorem is only implicit in the above mentioned works and therefore we give a proof of it in
section III. The main ingredients for proving theorem I.1 are the following. First, under the energy
assumption (I.3), one constructs a controlled energy orthonormal frame ”lifting” the Gauss map 7ig.
Precisely one has

vii € Wh2(D?,Go(R™))  s.t. / |Vii|*> < 87/3
D2

Y — — —

3(fi,f)e(S™ N st fi-fa=0  ,  dg=fiAf (L6)

and / |V€1|2+|v€2|2§0/ Vil
D2 D2

where C' > 0 is some universall constant. Next one observes that the logarithm of the conformal factor
,\, satisfies the following equation® :

The main estimate to exploit this equation and its Jacobian structure in the r.hs. is given by the
following theorem of H.Wente which has shown to play a central role in the analysis of 2-dimensional
conformally invariant problems (see [Ril]).

M ($,[D?]) := sup{ [ P*w ; ||lwllos < 1}

5In fact equation (1.7) is satisfied by any such a lifting and in particular by (€1, &2) = e~ (02, ®, 8z, B). We have indeed
Oy, @1 - Oy @ — Dyp @1 - Opy @2 = Oy f1 - Ouy f2 — Ouy f1 - Oz, f2 however in the present equation the advantage of (fi, f2) over
(€1, &2) comes from the fact that we control it’s W12 —energy by the L? norm of the second fundamental form which is not
the case a-priori for (€1, €2).



Theorem 1.2 [We/ [Regularity by compensation] Let a and b be two functions in W12(D?) and ¢
be the solution to the following equation

—Ap = 03,0 0y,b — 0,00y, b in D?

(1.8)
=0 on OD?
then the following estimates holds
lellLo(p2y + IVellL2(p2y < C IVallLz(p2) VBl L2(p2) - (1.9)
where C is some universal constant. O

A is then the sum of solutions to equations of the form (I.8) and some harmonic rest. Combining this
decomposition, Wente theorem, and Harnack inequalities for the harmonic rest are the main arguments
in the proof of theorem I.1. The operation of finding a lifting of the Gauss map ”<1>v (fl, f2) whose energy
is controlled by the L? norm of the second fundamental form (as in (I.6) is the main limitation for having
to restrict to energy below 87/3. This construction was proved in [Hel] lemma 5.1.4. It is not difficult to
construct a counter-example to the statement (I.6) when 87 /3 is replaced by any number strictly larger
than 8r. F.Hélein conjectured however that 87/3 should be replaced by 87 and this would make the
statement (I.6) necessarily optimal.

The previous discussion explains how, while minimizing the Willmore functional (without or with
constraints), the problem of the indeterminacy due to the huge invariance group Diff(D?) is locally
solved and, as a consequence of theorem 1.1, beside possibly at most isolated points where the second
fundamental form is concentrating at least 87/3 energy, the conformal factor cannot degenerate in the
minimization process. However the assumption of having a smooth immersion (beside these isolated
points) at the limit could be lost a-priori since locally the L?—norm of the second fundamental form
cannot control more than the L> norm of the conformal factorS. It is then necessary, following a
classical approach in calculus of variations, to ”embed” the problem in a weak class of immersions.

Let go be a reference smooth metric on . One defines the Sobolev spaces W#? (% R™) of measurable
maps from ¥ into R™ in the following way

WhP(S,R™) = {f meas. ¥ — R™ s.t. Z/ |V flb, dvolg, <+oo}

Since ¥ is assumed to be compact it is not difficult to see that this space is independent of the choice we
have made of gg.

First we need to have a weak first fundamental form that is we need §*ng to define an L metric
with a bounded inverse. The last requirement is satisfied if we assume that ® is in W*°(¥) and if d®
has maximal rank 2 at every point with some uniform quantitative control of "how far” dd is from being
degenerate : there exists ¢y > 0 s.t.

A A dD|,y > co>0 . (1.10)

where dd /\_'dfl_ﬁ is a 2-form on ¥ taking values into 2-vectors from R™ and given in local coordinates by
20,® A 0y® dx A dy. The condition (I.10) is again independent of the choice of the metric go . For a
Lipschitz immersion satisfying (I.10) we can define the Gauss map as being the following measurable map
in L (%)

—

6(1)/\6(1)
qu;:* = =
0, % A 0,9

Sunless our limit is known to satisfy some special equation of course but we will come to that later.



We then introduce the space £s; of Lipschitz immersions of ¥ with bounded second fundamental form as
follows :

d e WHe(2,R™)  s.t. & satisfies (1.10) for some cq
Es =
and / |dﬁ|§ dvoly < +00
)

Any Lipschitz immersion ® in &, defines a smooth conformal structure on ¥. This comes again from the
works of T.Toro [Tol] [To2], S.Miiller-V.Sverak [MS] and F.Hélein [Hel] :

Theorem 1.3 ([To1],[To2],[MS],[Hel] theorem 5.1.1) [Existence of local isothermal coordinates]
Let ® € Ep2 satisfying

8
/ \ditg|? dvoly < — (L11)
D2 3
then there exists a bilipschitz homeomorphism of the disk ( € W1°°(D?, D?) such that

080 Q) = 10,(Bo P =0 in D
(1.12)
0:(30)-9,(F0¢) =0

O

Hence for any lipschitz immersion ® in & one takes a finite covering of ¥ by disks (U;) such that
ij |dﬁq;|§ dvoly < 8m/3, one gets bilipschitz homeomorphisms ¢; for which ®o(; satisfies (I.12) and hence

the transition functions ¢, ! o(; are holomorphic. (Uj, ;) defines then a smooth conformal structure on X.
Let h be a constant scalar curvature associated to this conformal structure and the smooth diffeomorphism
U of ¥ such that the maps §Jflo\Il are conformal from (X, h) into D?, then we have that oV is a conformal
Wheo N W22 immersion of (X, k). Using theorem 1.1 we can construct local isothermal coordinates for
(X, 95.y) Wwith estimates -i.e. satisfying (I.4) and (I.5) - and work with maps in s like with smooth
embeddings.

The next main difficulty encountered while working with the immersion & instead of it’s image in
the minimization process of Willmore equation comes from the Euler Lagrange equation as it has been
written originally in the early 20th century in the works of W.Blaschke[Bla], G.Thomsen [Tho] (in codim
1, i.e. m = 3) and J. Weiner [Wei] (arbitrary m). A smooth immersion d is a critical point to Willmore

functional :
d

Ve C®(S,R™) EW(<f> + t€)4—0 = 0
if and only if 3 satisfy the Willmore equation
AH — 2|H?PH + A(H) = 0, (1.13)

where A | is the negative covariant Laplacian for the connection” D in the normal bundle N, §(X) derived
from the ambient scalar product in R” and where flp(f) =i ]_fp(é}, €5) ]Tp(ei, €j) - L for L € R™.

In [Ri2] we explained why the Euler Lagrange written in the form (I.13) seems not compatible from
the lagrangian it is coming from in the sense that W (®) only controls the L?—norm of the mean curvature
whereas in order to give a distributional meaning to the non linearities in the equation like |H|>H one

"Namely, for every section ¢ of Ng(X), one has Dxo := Tiig (04 X)



needs more information on the regularity of 3 (I:f € L3 for instance for this term). 8 One of the main
achievement in [Ri2] was to find a new formulation of the Willmore equation as a conservation law which
makes sense for immersions in Es:.

Theorem 1.4 [Ri2] [The conservative Willmore Equation] The Willmore equation (1.18) is equiv-
alent to

d vy Al = 3y mry (a)) — d (diig AHT) = 0, (1.14)
where *, is the Hodge operator on ¥ associated with the induced metric gz, and * is the usual Hodge
operator on forms.

In particular, a conformal immersion 3 from the flat unit-disc D? into R™ is Willmore if and only if
AH = 3 div(mag (VH)) + divs (Vg AT = 0, (1.15)

where the operators V, V+, A, and div are understood with respect to the flat metric on D*. Namely,
V = (02y,02,), V& = (=01,,04,), A = 552 . +6§2, and div X = 0y, X1 + 0z, Xo.

This conservative form of the Willmore equation and more conservation laws attached to it permits to
pass to the limit in local Palais Smale sequences to the Willmore Lagrangian. The following result is
established in [BR]

Theorem 1.5 [BR] [Convergence of Willmore Palais Smale sequences.] Let & be a sequence of
conformal immersions in Ep2. Assume

i)
/DZ \Viig | <87/3
i)
®,(D?) c B(0)

iii)
Ip1, pp € D st liminf [y (p1) — Pr(pa)] > 0

Under these assumptions if

L

Afiy = 3 div(msg (V) + dive (VEiig, AT
(1.16)
—0 in (W22NWheo(D?))*

then® there exists a subsequence o converges weakly in Wﬁof to an analytic immersion Poo of the disc
satisfying the Conformal Willmore equation

AHo — 3 div(my (VHu)) + divx (vLﬁq;w A ﬁm) s [ £(2) ﬁom} (L.17)
where f(2) is an holomorphic function of the disc D* and ﬁom is the Weingarten map of the immersion
P given by

Hooo 1= =271 e |0,715 L0, 8o — 0,5 _L0,8uc +2i Ouiig_L0,Bu]

8This is a bit like writting the Euler Lagrange of the Dirichlet energy sz |Vu|? - that is the Laplace equation Au = 0
- in the form Au? — |V2u|? = 0 which requires u to have at least two derivatives in L? though the lagrangian gives only
a-priori a W12 —control !

gﬁk denotes the mean-curvature vector of the immersion ‘ik



where e = |8,Bu| = |8y<f)oo| and L is the standard contraction operator in R™ between a multi-vector
and a vector. O

The Conformal Willmore equation also called Constrained Willmore is obtained by considering critical
points of the Willmore functional among immersions realizing a fixed conformal class and assuming the
critical point is not isothermic - we shall see this notion a bit below - (see [BPP]). f(z) is just the
expression in the conformal chart of an holomorphic quadratic differential ¢ := f(z) dz ® dz of the
Riemann surface whose conformal structure is generated by 3.

The analyticity of the weak limits to local Palais-Smale sequences described in the theorem 1.5 above
was obtained by proving that the Constrained Willmore equation (1.17) is equivalent to the the existence
of S € WH2(D? R) and R € WH2(D?  A\’2R™) satisfying

~AS = —(Vxiiz) V'R

—

~AR = (-1)""' % (Viig e V1R) + (Vxiig) V1S (L18)

~A® = VR eVLd + VSV,

We call this system the Conservative Conformal Willmore System. Observe that the right-hand-sides
of this system is only made of linear combinations of jacobians of functions which are at least W12
Using Wente theorem 1.2 one easily bootstrap in the equation and obtain the smoothness of $. This
conservative form of the Conformal Willmore equation is also the key tool for passing to the limit in
Palais-Smale sequences of Willmore Lagrangian (see [BR]).

We have then understood how to control isothermal coordinates locally and the local convergence of
”almost Willmore surfaces” towards analytic conformal Willmore surfaces Moreover these two operations
can be extended to the framework of weak immersions : to the space & of lipschitz immersions with
L2 —bounded second fundamental forms. Our task now is to collect these local procedures in order to
be able to deal with the minimization procedure itself. To that aim we introduce a distance d - or
more precisely a family of equivalent distances on &s - for which the space (€s,d) will be complete.
The details of the construction of this distance are given in section II. As explained in section III,
under the assumption that there is a minimizing sequence of Willmore functional with conformal class
not diverging in the Moduli space of ¥ we can make use of Ekeland Variational Principle in order to
produce sequences of immersions that will be Palais Smale - satisfying (I.16) - in the controlled isothermal
coordinates constructed in theorem 1.1 and that will converge to an analytic immersion in these charts. A
consequence of theorem 1.1 is that an extraction of subsequence is possible in order to cover any compact
part of the surface minus finitely many fixed points by controlled isothermal charts. Hence we obtain at
the limit an element in & which is minimizing W and which is analytic away at most from finitely many
points. These points are removable due in one hand to the fact that the total Willmore energy of this
immersion has to be less than 87 - for minimality reason - and in the other hand to the fact that the with
Li-Yau inequality excludes the possibility of having a branched point below 87 (see lemma A.5 and the
argument at the end of section III). Finally we exclude the possibility of the conformal class to degenerate
to the "boundary of the moduli space” for energetic reasons (this is explained in proposition II1.2) and
we have not only given a new proof of the following theorem originally due to L.Simon and M.Bauer-
E.Kuwert for the space of smooth immersions (see [Si] and [BK]) but we have been able moreover to
extend it to the space & of Lipschitz immersions with L?—bounded second fundamental form.

Theorem 1.6 [Existence of a minimizer of W in &s]. Let m be an arbitrary dimension larger
than 2, let ¥ be a smooth compact orientable surface without boundary. Then there exists a smooth
Willmore embedding of ¥ into R™ minimizing the Willmore energy among all Lipschitz immersions with
L?—bounded second fundamental form (i.e. elements in Ex). O



In section IV of the paper we explain how to adapt the argument for proving the previous theorem
to a minimization problem under constraint. Before to state the result we recall a definition.

Definition 1.1 [Local isothermic immersions.] A C? immersion of a surface X is called local isother-
mic if, away from the umbilic points, the curvature lines define conformal coordinates. O

Local isothermic immersions realizes very particular surfaces that have been studied since the XIXth
century. A survey on the classical geometry of local isothermic immersions as well as their role in
integrable system theory can be found in [Bul], [Bu2] and [Toj]. There are some characterization of local
isothermic immersions that we recall in the 3 following propositions for which we prove in section V.

Proposition I.1 A C? immersion 3 of a surface ¥ is local isothermic if and only if there exists an
holomorphic quadratic differential q (locally in some complex coordinates ¢ = f(z) dz®dz) of the Riemann

surface Y, obtained by equiping ¥ with the complex structure generated by ® and by removing the umbilic
points of the immersion ®, such that

(@ ho)yp == %(f(,@ ﬁo) dzAdz =0 (1.19)
where ﬁo is the conjugate of the Weingarten map in local coordinates
fy = =271 e [0,715L0,8 — 9,7ig L0, + 20 071510,
and hg is the Weingarten Operator given locally by
ho = 8zﬁ(5l_az<l_5 dz®@dz=2""1e* HTO dz @ dz

and (-, ")y p is the Weil-Peterson pointwise product'’ O

Since an element in &5 defines a smooth conformal structure and since it defines an L? Weingarten
operator one easily extend the notion of isothermic immersions to elements in €. There is a last
characterisation of isothermic immersions that we recall and which also permits to define isothermic
immersions for an element in £ and which coincide with the previous characterization also for element
in 52;

Proposition 1.2 A Lipschitz immersion & in &, is local isothermic if and only if, away from umbilic
points, there exists local complex coordinates for the structure defined by ® and a Lipschitz map L on this
coordinate domain such that

e 20,8 =0.L . (1.20)
where €2* = |9,3[2 = |8y<f)|2 and z = x + iy. O
This proposition is also proved in section V.

Finally we give a last characterization of local isothermic immersion which we will meet in our proof,
this is the following proposition which is also proved in the section V.

Proposition 1.3 A Lipschitz immersion & in &, is local isothermic if and only if, away from umbilic
points, there exists in local conformal coordinates a Lipschitz map L from these coordinates into R™ such
that

(L21)

O

100ne verifyies easily that the two form f(z) Ho dzdz is independent of the local choice of complex coordinates and
defines a complex valued 2-form on ¥ which is the pointwise Hermitian Weil Peterson product.




Remark 1.2 The Isothermic equation in the form (1.21) has to be compared with the Conformal Willmore
equation written in [BR] : there exists L such that

VL - V® =0
(1.22)
VILAVS =2 (~1)mvt (*(ﬁq; I_ﬁ)) LV

There is an apparent strong similarity between the two equations, the isothermic equation (1.21) ”corre-
sponds” to the Conformal Willmore equation (1.22) when its right-hand-side of (1.22) is replaced by zero.
There is however a major difference between these two equations. Equation (1.22) is elliptic and this can
be seen by showing that (S, ﬁ) given by

VR =VOAL+2VtdAH

solves the elliptic system (1.18) (see [Ri2]), whereas (1.21) is hyperbolic (see [Ril]), which is confirmed
by the next remark. O

Remark 1.3 [t is an interesting question to ask how regular lipschitz local isothermic immersions with
L?— bounded fundamental form can be. They are not necessarily analytic since azially symmetric surfaces
are automatically isothermic immersions. Hence an arbitrary azially symmetric surface with L?—bounded
second fundamental form is isothermic but not necessarily C? - it is however CYY/2 and it would be
interesting either to try to find less reqular examples in Ex or to prove that isothermic surfaces are
necessarily C1/2. O

Finally we need the following more restrictive notion of isothermic immersions that we call global isother-
mic. Because of the lack of regularity of the most elementary examples of isothermic immersions such as
rotationally invariant surfaces the definition of global isothermic immersions requires a framework that
includes non C? immersions but which, however, define a smooth complex structure on ¥. The framework
of Lipschitz immersions with L?—bounded second fundamental form € seems to be the most suitable
for that and comes also naturally in the minimization procedure of Willmore surfaces inside a conformal
class as we will describe below.

Definition 1.2 [Global Isothermic Immersions.] An immersion ® in Ex, is called global isothermic
if there exists an holomorphic quadratic differential q of the Riemann surface defined by ® such that

(¢, ho)yp =0
O

A characteristic of global isothermic immersions is to be the degenerate points for the map which to an
immersion assigns its conformal class (see lemma V.1 in section V). This is why it is not so surprising to
see them appearing as singular points in the minimization process under constrained conformal class -
and will appear also as singular points in min-max procedures (see [Ri3]). Adapting the method we used
to prove theorem 1.6 to the constrained case we establish the following result which is the main result of
the present work.

Theorem 1.7 [Existence of a minimizer of W in a conformal class]. Let m be an arbitrary integer
larger than 2, let ¥ be a smooth compact orientable surface without boundary and ¢ a conformal class for
this surface. Then there exists an immersion, away from possibly isolated branched points, minimizing
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the Willmore energy in the sub-space of lipschitz immersions with L?—bounded second fundamental form,
Es, realizing the conformal class c¢. Such a minimal immersion is either a smooth Conformal Willmore
immersion of X in R™ satisfying

AH — 2|HPH + A(H) =S(q, ho)wp

where q is an holomorphic quadratic differential of (X,c), ho the Weingarten Operator and (-,-) is the
pointwise Weil-Peterson product't or'? it is a global isothermic immersion. If the minimal Willmore
energy in this conformal class is less than 8w then there the immersion has no branched points and it
extends to an embedding of 3. O

Remark 1.4 The ezistence of either a Conformal Willmore surface or an Isothermic surfaces
minimizing Willmore energy is already a severe restriction about the nature of the immersion miminizing
Willmore energy in it’s conformal class. This could however be further explored and it would be interest-
ing to know if there really exists conformal classes with a minimizer which is Isothermic without being
Conformal Willmore. O

Partial existence results of minimizers of the Willmore energy in a given conformal class for the
dimensions m = 3 and m = 4 have been announced in [Scm] and in [Sct]. Moreover, in a recent preprint,
[KuLi], the existence of a Minimizer of W within a fixed conformal class in s is proved. However no
information such as the equation that it solves...etc is given about these minimizers in this work. The
existence result in [KuLi] is a direct consequence of our normalization lemma A.4 and the lemma III.1.
The description of the minimizers we give in section IV and the deduction of the equations they solved
and their regularity requires substantial additional work and goes through the use of the new approach
of the variations for Willmore functional we aim to present in this work . In a recent preprint [KS] E.
Kuwert and R.Schétzle have developed a more thorough analysis than in [KuLi] for the dimensions m = 3
and m = 4 and under some energy constraint assumption. In this work they were able to rule out the
degeneracy case and prove that the conformal Willmore equation is satisfied for any minimizer satisfying
this energy constraint.

As a byproduct of our analysis we observe that in a compact subset of the moduli space of the
surface X the following holds : weak limit of Palais Smale Willmore are Conformal Willmore, that
Weak Limits of Palais Smale sequences of Conformal Willmore are either Conformal Willmore or
Global Isothermic and finally we observe also that weakly converging Palais Smale sequences of Global
Isothermic Immersions are Global Isothermic. This notion of global Palais smale will be presented
and used in a forthcoming paper [Ri3] to present the Mountain Pass Lemma for Willmore energy in order
to produce saddle points for this lagrangian with or without constraints.

Our paper is organized as follows : in section II we define the metric space of Lipschitz conformal
immersions with L?—bounded second fundamental forms. In section III we give a proof of the existence
of a minimizer of the Willmore energy for an arbitrary closed surface ¥ and an arbitrary codimension (i.e.
proof of the theorem 1.6). In section IV we show how the proof in section III can be adapted to prove
the existence of a minimizer of the Willmore energy in a conformal class (i.e. proof of the theorem 1.7).
In section V we present isothermic immersion and explain why they are the degenerate points of the
conformal class mapping. In the appendix we give the proof of several lemmas and propositions used in
the previous sections.

'Tn local complex coordinates (g, ho)wp = e~ 2* f(2) Ho where q=f(z) dz® d=z.
12The ”or” is not exclusive, there are isothermic immersions which are Conformal Willmore.
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II The metric space of lipschitz immersions with L?—bounded
second fundamental form.

I1.1 Definitions and notations.

Let ® € & and ¥ be a Lipschitz homeomorphism from D? into ¥. For a.e. (x,y) € D? we denote
H(D(® o ¥)) the Hopf differential of ® o ¥ :

[HV@OW»;:Mh@o@ﬂszﬂioWW}72M%@OW)8A®OW)

Similarly for a metric g = Z?j:l gij dr; ® dz; on the disc D? we define

H(g) := [g11 — g22) — 2ig12 .2?

Remark that if H(V(® o ¥)) = 0 then, due to the conformal invariance of the Dirichlet energy one has

(/ W%@m%=/|w%WW@mmw , (11.23)
W (D?) D2

where V is the usual gradient operator on the disk D? for the flat metric : V := (0,-,9,).

For ¥ € W1(D2, D?) such that log|V¥| € L°(D?) we denote by Dis(® o U)(x,y) the complex
distortion at (x,y) € D? given by

-

H(V(®oT))

D@S(‘ﬁ P = |V<§ o U2

(z,9)

Similarly also we define for a metric g = Z?jzl gij dr; ® dz; on the disc D? the complex distortion of

this metric to be )
H(g) _ 911 —g22 — 24912 14

Dis =
(9) trg gi1 + g22
Observe that det
. €tg
D To14—2 <1 . 11.24
|Dis(g)| e (11.24)

Definition I1.3 An admissible measurable complex structure on ¥ is a measurable section'® J of the
endomorphism bundle of ¥ satisfying J> = —Id and such that

<400 (I1.25)

Hl | X A JTX|g,
L>=((T%)o)

n -
|X /\JX|go

where j is an arbitrary smooth complex structure on X, the metric | -|g, on TE ANTY is induced from an
arbitrary reference metrict® go on TS and (TX)g is the tangent bundle minus the zero section. (]

13Observe that for any immersion & of D? into R™ with our notations H(V®) = H(®*ggm ).

1 Once again for any immersion & of D? into R™ Dis(VCB) = Dis(@*ng).

15ie. J is a measurable map from ¥ into End(TX) such that for a.e. p € ¥ J(p) is an endomorphism of T3, the tangent
space to ¥ at p such that J(p) o J(p) is minus the identity map of T, ¥ into itself.

XAJX . .
16 Observe that In IXATXgo independent of the choice of gg
0
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Remark I1.5 Observe that for d € &, the complez structure induced by <f)*ng is admissible. Indeed
condition(I.10) together with the fact that ® € W1°°(X) implies that there exists C1 > 0 such that

VpeX VX eT,X\{0} Cl_l [ X g < |1X|g < Cr | Xy,
from which one easily deduce the existence of Co such that at every point in 2
C;l volg, < volg < Cy volg,

and we deduce (I11.25) by combining the previous equivalences of the metrics and their volume form with

the identity .
X Algl- X =1[d® - X|* vol,

where [g]- is the action of the complex structure associated to g. O

Now given a measurable admissible complex structure J on ¥, we define the complex Distortion with
respect to J of an immersion ¥ € W1°°(D? %) to be the function Dis’ (V) € L*°(D?,C) given by

10, W% — |0,V [2 — 2 (8,V,0,V),

Dis” (0) := , (11.26)
|0:%(3 + 10, %7

where ¢ is an arbitrary metric compatible!” with the complex structure .J. It is also not difficult to check
that |Dis? (U)] < 1.

II.2 The distance functions d”.

For any measurable admissible complex structure J and non-negative integer k, we shall consider the
following space of quasi-conformal lipschitz parametrization into X :

U eWwhe(D2 %), log|V¥|e L>(D?)
and ||DisJ(\If)||Lw(D2) <1-27% ae inD?
On &s, x & we introduce the following non negative function

AL(B1,B2) := sup A(Dy, s, T)
veQy

where

2

A(By, By, U) = U V(i) — it2)|? da dy}
D2

+ H]Og |V((I_51 o W)| —log |V(‘£2 ° ‘I’)|H

L>°(D?)
+HV((I;10‘II—(I;20\I/)‘
L2(D?)
where we made use of the following notation
0:(B; 0 W) N Dy (P 0T .
M 1= Tig g = * (_,O ) y(_, i) , fori=1,2
: |05 (®; 0 ¥) A Oy (D; 0 T)|

179(J'7 J) = g('7 )
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Proposition I1.4 Let J be an admissible measurable complex structure on X, we define d’ to be the
following nonnegative function on Ex X Ex

4’ (8, B,) : 22 BAL(®1, Bs) + || In | X, — In | X g, | oo (7))
keN

where g; 1= @ngm, and (TX)o is equal to the tangent bundle to ¥ minus the zero section. d’ defines a
distance-function on Eyx. O

Proof of proposition II1.4. First we have to _prove that d” is a well defined function. There is indeed
a sup operatlon and we have to show that d” (<I>1, <I>2) < 400 for any pair (<I)1, <I>2) € Ex X Es.

Since &, and @, are in Es,, because of (I1.10) - see also remark IL.5 - the two metrics g1 := o 1grm and
go = @gng are equivalent to a reference metric gy that we assume to be compatible with g¢ : i.e. there
exists Cy, 4, such that

VX € (TE)O |X|gz < |X|go < Cg“go |X|gz . (11-27)

990

Hence
[In[X g, —In|X|g, || Lo (7)) < +00

Let k € Nand let ¥ € Q',g. Let gy, g, and g, be the 3 following metrics on D? given by g, := ¥*go and
g, := ¥*g; where go is a reference metric compatible with J. We have

|Dis(go)| = |Dis” (¥)] < 1 - 274

Hence we deduce from lemma A.1 the following inequalities

1 X X
[ |2 <! fr(g0) ok gup XT3, (I1.28)
2 Xxe TE)U | XT3, — tr(g:) xe(rs), 1 X3,
From which, together with (I1.27), we deduce that
g B oW
o) o1 ge1 UG) V@ WP o (11.29)

92,90 ~ 91,90 — tT(g ) |V(‘I)20‘I’)|
Let now a = oy dx + as dy be a 1-form on D?. Denote Gy := (§07ij) and A := (a1, a2). we have
|04|%U dvolg, = AGy" AT \/det(Gy) dx dy
We have also

AGHY AT \/det(Go) > A AT (det(Go)~1) /2 inf A
AeSpec((Go) 1)

where Spec((Go)™!) denotes the spectrum of the inverse of Gy. Hence we have

AGyT AT \/det(Go) > u A AT

mfd AL 22
'=1n —i\
H VAW

where A1 and Ao are the two eigenvalues of Go_l. Clearly 0 < p < 1. From (I1.24) we have

where

11
)

1 — (Dis(go))?
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Hence we deduce, since |Dis(g,)| = |Dis” (¥)| <1 —-27F <1,

We deduce from the previous identities that for ¢ = 1,2
/ |diig |2, dvoly, > 27172 / |Vilg ol dxdy
U (D?2) ‘ D2 ‘
Using now the equivalence of the norms mentioned in remark I1.5 we obtain that
9l+k/2 / |dﬁq;i|§i dvolg, > / |Vﬁ<i>’ioq,|2 dz dy
b D?
In a similar way we deduce also that
Q1+k/2 / |d®; |2, dvoly, 2/ |V(®; 0 W)[? da dy
b D2
We hence deduce from (I1.29) (I1.30) and (I1.31) that

A}g(‘fbég) = supJ A((th_;%q/) < 0517(132(2k/4 k)
Vi €Q;

(I1.30)

(IL31)

(I1.32)

- -

Combining this fact together with (I1.28) we obtain that dJ(<I_51,<132) < +oo for any pair (Pq,Ps) in

52 X 52.
We prove now that d” is a distance function.
Symmetry. It is clear by definition.
Triangular inequality. Observe first that ¥V (B, ®5) € (£x)2 V ¥ € QY
V(B1,82) € (Ex)2 VU € Q] AP, P2, 0) = A(B2, 81, )

and moreover (&, By, 3) € (£x) and ¥ € QF

A(@1, B, ) < A(P1, B3, W) + A(P3, s, V)
Let € > 0, there exists ¥ € &, such that V ¥ € Qi

Ai(q_:;la (52) S A((fl) (52) \II) +¢€

Combining (I1.34) and (I1.35) we obtain for any € > 0

AL(D1,B2) < AL (D1, D) + A (D5, D5) + &

which implies the triangular inequality for d”’

discernibility. Assume d” (51, 52) = 0. Then for any quasi-conformal map ¥
<f)1 oW = 52 o . This clearly implies that <f)1 = <f)2.

(I1.33)

(IL.34)

(IL.35)

D? — ¥ we have

This concludes the proof of the fact that d” is a distance function on Esx; and proposition II.4 is proved.

O
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Proposition IL.5 Let J and J' be two admissible measurable complex structures on X, then d’ and a7’
are equivalent distances on Ex, and there holds

V (B, By) € (Ex)?

(I1.36)
871 e 0T @ (B, By) < a7 (B, Bo) <8 5D AT (81, 8,)
where §(J,J') is the following distance between the two complex structures :
XANJX
5(J,J) = Hln XA TX]gy /\JI oo
[ X AT Xl go || oo ((752)0)
(for an arbitrary metric go ).
O

Proof of proposition IL.5. Let ¥ be a quasi-conformal map from the disc D? into ¥. (I1.26) implies
0,9 A0, W|2

1 — |Dis” (¥)|? = 4 2
[1029]3 + 10, ¥|]

where g is an arbitrary metric compatible with .J. We have hence for instance |9, ¥|2 = [0, ¥ A JO, V|
and |9, 9|2 = |9,V A JO,¥|. Let J be the complex structure such that 3o, ¥ = 9,¥. We have

—1
|- Dis (D)2 =4 [Ww‘“«f@w‘l’lg Iay\I/AJay\mg}

0.0 A 30, %], " [0, A 30,1V,

. [|az\1: AJO g 10,0 A OV, ] !
0,0 A3V, 10,0 AJI0,T,,

where go is an arbitrary reference metric on ¥. Using an elementary algebraic inequality'® we obtain
that for any quasi-conformal map ¥ from D? into ¥

1 [Dis" (W2 _ Pamxp N0 Wgy | |0,% N J'ay\mgo}

1-— |DiSJ/(\If)|2 |8$\II A\ Jaz\I/L% |5y\I/ A\ Jay\Il|g0 (1137)
< 26527
Hence we have ) )
1 — |Dis”(0)] <4 7D [1 - |Dis” (0)] (I1.38)
let ko = [6(J,J")/log2] + 1. We have that
Dis” (V)| <1—-27% = |Dis” (¥)] <1—2 ko2
Hence o ) oL
VEeN 278 Al(®y, @p) < 2M0f2 27k ko2 AT (@1, 00)
from which we deduce ,
a7 (®q, @) < 2772 @7 (B, @y)
This last inequality implies proposition II.5. U
18
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I1.3 Completeness of the metric spaces (Ex,d”’).
In this subsection we prove the following result.

Proposition I1.6 For any admissible measurable complex structure J on X, the metric space (Es,d”)
s complete. O

Proof of proposition I1.6. Because of the equivalence of the d’/ we can choose an arbitrary .J that we
will assume to be smooth. We first choose a finite covering of ¥ by open sets U; such that each U; is
diffeomorphic to a disc and we denote by ¥; diffeomorphisms from D? into U; such that Dis” (T;) =0.
Let now @), € & such that d(<f)k,1, Cfsk) < 27%=1 Denotes gj := ézng- The assumption implies that
$p o0, converges strongly in W12 to a limit & : D? — R™. Hence |V}, o ¥;| converges a.e. to |V
and hence log |V<I>;c o ;| converges a.e. to log |V§Z| € RU {400} U{—0o0}. From the Cauchy sequence
assumptlon for @k w.r.t. d’ we have that log|V<I>;C o ¥;| is Cauchy in L and this limit can only be
log |V&;| which is then in L (D?). We have moreover

Vi l=1,2  Wigi=0,(BroW;) 8, (S oW;) — 0,6 -0 i ace.

Since

Vk €N [log | X g, —log |X|g, | Lo ((rm)e) <27 (11.39)

we have that

2 2
VX ER? 0 log | Y WguX X'\ —log | > 0,,& 0,6 X X! ae.

J,l=1 =1
and hence
2
VX eR?#0 log [ Y 0a,& - 00, & X7 X' | <log|X]g, +27" . (I1.40)
J,l=1

We deduce from the previous inequality that 5_; is an immersion from D? into R™ and there exists ¢; > 0
such that
|d€l A d§1| >c; >0 onU; . (1141)

Hence the 5_; are lipschitz immersions. We have, for any pair ¢, 7, 5_;._1 o 5_; = \Ill._1 o ¥, hence there exists
5& Lipschitz immersion from ¥ into R™ such that f_; = go U, for all i. Let
az( k ©

S S <I>
Nk = nq; = % p—
®

oW, |ax( L O

\Ifi) AN ay((i?;k o \Ifi)
W) A By (Br 0 y)|

From the Cauchy sequence assumption for <I_5k we deduce that 7; j, converges strongly in WLQ(DQ) to a
limit that we denote 7;, moreover, from the above we have that

O (Br 0 W) A Dy (B 0 ;) 8&/\61,&
b $), 0

* a.e
|02 (Pr 0 Wi) A Oy (Pr 0 ¥y) Ia & N 0,&|
Hence we have that
SIGNDE o yrapey (IL.42)
0.6 N D,&|

Hence 5 is a Lipschitz immersion inducing a metric comparable to the smooth reference metric gg whose
Gauss map is in W2 with respect to this metric. This implies that & € £s; and it can be proved with
moderate efforts that d’(®x, &) — 0. This concludes the proof of proposition I1.6. O
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I1.4 Control of d9(®, & +ti) for conformal & and for W20 W perturbations
w.

Lemma II.1 There exists eg > 0 such that for any conformal immersion 3 of the disc D? into R™ in
W22 Whe satisfying

4
/ \Vitg|? do dy < — (IL.43)
e 3
Let @ € WH nW?22(D? R™) compactly supported in Df/Q such that
HV’LE”Loo(Dz) + HV2U7HL2(D2) <1 (I1.44)

Denote &, := ®+t1. Then there exists C > 0 independent of ® and & such that, for |t| < [info/2 |V[)/4,

> o c
d9(®r, @) < = [t] [ V]2
infp [V
. B (I1.45)
C V| ||Vitllz + [V
+- _ |1+ ” ” : ” ||2 _’H H2 |t| vaHoo
mef/z |V me?/Z |V
where g := §*ng. O

Proof of lemma II.1. B
We denote the conformal factor as usual as follows : e* := |9, ®| = |9,®|. Denote e* = ||[V®||o, and
et = infD?/2 e*. Consider t such that 4|t| < e. Since w is supported in D%/2 and since |[Vw|le < 1, we

have . . . .
10:.P¢ A0y Py > €2 — |t] 10,8 A 9y ®| — |t] [0:P A Oy

12|05 A O,

7 7. = >
262’\—2|t|e’\—t221—662)‘zﬁ 10,® A 0,9

A straightforward but a bit lengthy computation shows that
V(g —ig)| < C It e™ |IVad] e V28] + V23| (I1.46)

where C' is independent of all the datas <f), w and t. Since
AD =22 H

where H is the mean curvature vector of the immersion of D? which is pointwisely controled by |V,
standard elliptic estimates imply

/ VB2 < ¢ P / VAl? 4+ C / N

D2, D2 D2

Integrating hence (I1.46) on D?, since |V(iz — iz, )| is supported on D7 ,, we obtain
C

infpe | V|

[V@lloo [[VTll2 + [Vl

IV(7ig —7ig,)l2 < [1t] [V

(IL.47)
4

[t]1/V725| o ]
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We have the pointwise identity
VO, — V| < [t| |V

and hence
/ V&, — Vo2 < C |t |Va|% . (11.48)
D2

We have also .
|V, |?

log —=
Vo

= ’10g {1 +2e" Pt V- VP + e 2 2 |Vu7|2} ’

Hence for 4 |t| < e* we deduce

. . C
H10§;|V‘I’t| —10g|v‘1’|HL D2 = . V3| [t Voo (I1.49)
~(D? inf 2
1/2

Combining (11.47), (11.48) and (I1.49), we obtain
C

A(®, By, idp2) < - = [t] | V]2
1nfo/2 V|
. . (IL50)
¢ [VOloo [[Viillz + [Vl
+: = |1 ; > [t [Vl -
1nfD?/2 |V me?/2 |V

Let now ¥ be an arbitrary map in Qf (<f)) Since ® is conformal U is a quasiconformal map satisfying
|Dis?(0)| = |Dis(®o W) <1—27F

This implies

28 —1)719,9)? < 10,02 < (2" —1) ]9,V )* (IL.51)
and )
0, ¥ 9,V e
: 1-2 . 11.52
‘wm 0,91 < (IL.52)

After some short computation, we deduce from the previous line
275/2973k/2 |17 ¥|2 < det VU = 9, x 9,¥ < |VU|?/2 . (I1.53)

Hence we have
/D2 |V(ﬁ§o‘1’ - ﬁq;toq,”? dxdy

< / V(iig —iig )|> o ¥ |VU|* dody
D‘Z
< 95/2 93K/2 / V(g —7ig )l o U det VU dady (IL.54)
D2

S 25/2 23k/2 / |v(,r—i(is o ﬁ,i;t)|2 dx dy

D2

< 25/293K/2 N2(B By, idpe)
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Similarly we have
/ V(P oW — &0 W) dady
D2

< 25/2 93K/2 / V(B — B)2 oW det VU dady (IL.55)

D2
< 2529362 N\2(B By, idy2)
We have moreover, since |V(® o U)| = ¢ VU],

=

3, 0 1)J?
|10 V(@0 W)* = |log [1+2¢72 V|2 V(5o w) - V(F 0 W)

V(@0 W)
+e 2 2 VU2 Vi o U7 |

Using the fact that |V (@ o ¥)| < |V| [V¥], we then have for [¢]| < [info/2 |V[]/4
c

log | V(&1 0 ¥)| ~ log | V(& o w)| S
o8 9@, 0 ) —tog V@ wylf s 7

[t] [VW]|oo - (11.56)

Hence combining (I1.54), (IL55) and (IL.56) we have obtained the existence of C' > 0 independent of &
and @ such that for [¢t| < [info/2 |V®|]/4, for any ¥ € QLQ]

. 23k/4 C .
M@ B0 < 2 C v,
me?/2 |V
(IL57)
2%/ IVeloo [Villz + V]2 -
+- = |1 ; = [t] [Vl oo
me?/Z V| me?/Z V|
where C' is independent of ¥. Hence we deduce
— C
> o2 A (E ) < - = [t] V7]
ken me?/Z V|
) ) (IL58)
C VO o ||[Vil]|2 + ||V s
. O P
me?/Z V| me?/Z V|
at a point p € D? we have for X = X 9,, + X2 s, denoting | X |2 = X? + X3,
X g X - X X
L=142e Pt Vil - VO + e 2 2 | Vi = |2
| X1gg 1XTo 1XTo [ XTo
Hence for [t| < e we have that
C -
[og [ Xy, —1og | Xlggll Lo (1)) < 8] (| V]| oo (I1.59)

1nfo/2 V|

where we are using the fact that, for such ¢ and w, e~ |t| |[Vi| < 1. Inequality (IL.58) together with
inequality (I1.59) imply (I1.45) and Lemma II.1 is proved. O
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III Existence of Minimizers of the Willmore Energy.
In this section we prove the following result

Theorem IIL.1 Let X be an abstract closed two dimensional smooth manifolds. Assume that there exists
a minimizing sequence ®i € Es; of the Willmore energy such that the conformal class induced by @} grm
stays in the compact subset of the Riemann Moduli Space of ¥ and assume that

lim sup W (®},) :/ |ﬁk|§k dvolg, < 8w
k—+4o00 b

where gy, := ®{grm and Hj, is the mean-curvature vector of the immersion ®, then

inf W((I;)
dely

s achieved by a smooth embedding. O

Before to prove theorem III.1 we first state the following proposition which is a direct application of
Ekeland’s Variational Principle (see theorem 5.1 in [St]).

Proposition ITI.1 Let J be an arbitrary smooth complex structure on ¥ and let dy be a minimizing
sequence such that B B
W(®g) < inf W(®)+27% |
Pees

then there exists Ek € Es, such that

i) f;C minimizes in Ex, the following functional

W(&) = inf W(®)+27%2d/(8,&) | (IIL1)
Pely
ii) )
W (k) < W(®x) (IIL.2)
iii)
d’ (&, @) <2747 (I11.3)
O

Proof of theorem III.1. We can assume that 3 is not S? since a classical result implies that

inf W(®) = 4r
@6552

and is achieved by the unit sphere of R3 ¢ R™ (see for instance [Wi]). Let ®; be a minimizing sequence
of the Willmore energy W in the space & satisfying

W(dy) < inf W(B)+27% . (I11.4)
dely

A straightforward molification argument allows to work under the assumption that <I_5k € C®(X,R™).

=

The assumption of the theorem is telling us that the conformal class of the induced metric ®}gr= is
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contained in a compact subset of the Moduli space of 3. Therefore, modulo extraction of a subsequence,
we can find a sequence of complex structure Ji and diffeomorphisms fj, of ¥ such that

Bpofr (3,Jg) — R™ is conformal

and, if hx denotes
Jp — Joo  wart. § . (I11.5)

dy 0 fx satisfies of course still (II1.4). Denote by hg, resp. heo, the smooth constant scalar curvature
metric compatible with Jg resp. J having a fixed volume 1 on ¥, we may also ensure that

[1og [X|n, —log |[X|n.llLee(rs)) — 0 - (I11.6)

We are now using lemma A.4 in order to "normalize” the embeddings d; 0 S
For the minimizing sequence ®j o fi, modulo extraction of a subsequence, we can find a sequence of
geodesic balls Ba,, (pr) such that 7, — rec > 0, pp — pPoo € ¥ and

/ |diig, |2, dvolg, <6
Bz"‘k(pk)

For each k we consider the ”Normalization Moebius Transformations” Zj, given by lemma A.4 for the
ball Ba,, (pr), and we replace our minimizing sequence &y 0 frx by Eg o (I)k o fi.

In order to simplify the notations we then write @k instead of = o (I)k o f.

To each z € ¥ we assign p, > 0 such that

/ |di|;, dvoly, :/ |dﬁ|§k dvolg, =8r/3

pu (2) By, (z)

where B, (z) is the geodesic ball in (X, hy) of center x and radius p, and g := fg@Zng. We extract
a finite Besicovitch covering : each point in ¥ is covered by at most N of such balls where N only
depends on (¥, goo). Let (Bp;ﬂ (z%))ier be this finite covering. We can extract a subsequence such that [

is independent of k, such that each x}v converges to a limit 22 and each p}€ converges to a limit pl_. Let
Iy:={icl st p' =0}

Let I; := I\ Iy. It is clear that the union of the closures of the balls Uie[lgpix (x%,) covers 3. Because
of the strict convexity of the balls with respect either to the euclidian distance (X = T?) or the hyper-
bolic distance (genus(X) > 1) the points in ¥ which are not contained in the union of the open balls
Uier Byi (x%.) cannot accumulate and therefore are isolated and hence finite. Denote

{a1---an} =%\ Uier, By (zl,) . (IIL.7)
Hence from now on we have a sequence of complex structures Ji on X such that
Jp — Js wart. d
with associated constant scalar curvature metrics hy of volume 1 and satisfying
[1og [X|n, —log [X|n. L (15)0) — 0

and we have a sequence of smooth immersions @, of ¥ into R™ satisfying (II1.4) and the following five
conditions
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=

Dy is conformal from (¥, J;) into R™ . (I11.8)

ii) There exists finitely many points a1 ---ay in ¥ and a fixed finite covering (B,;_(x%,))ier, of ¥\
{a1---an} such that for any ¢ € I, 0 < p < ps and k large enough

/ |ditg, |, dvoly, <8/3 . (IT1.9)
BP(IL)

where gy, := @Zng.

iii) There exists a positive real R > 0 such that

$(%) c Br(0) . (I11.10)
iv) There exists a constant C' > 0 such that

HA(Dp(R)) < C . (IIL.11)
v) There exist an index ¢ € I; and positive real number 1 > ¢ > 0, independent of k such that

()P h<gs <l (B h (I1L12)
Using now proposition IT1.1 we construct &, satisfying (IIL.1), (IIL2) and (IIL3).
We claim now the following

Lemma III.1 For any compact K C X\ {a1---an} there exists Cx > 0 and kx € N such that

sup || log|d<I_5k|hk||Loo(K) <Cg <400 . (II1.13)
k>kx

O

Proof of the lemma III.1. For any compact subset K of 3\ {a1---ax} there exists 6 > 0 such that
K C ¥\ UY,Bs(as). Since X\ U, Bs(a;) C User, Byi_(xh,), there exist pi, > r; > 0 such that

2\ Ui]\;1B§(ai) C User, By (wéo) (T11.14)

and for k large enough one has for any i € Iy B,.i(zk,) C By (2},). Let s' = (r’ + p)/2. We consider k
large enough in such a way that By (z%,) C By (2},) for any i € I;. On the ball By:(2%,) for the index ig
such that (II1.12) holds, one has

- <
ksglkrl ” 10g|dq)k|hk‘”L°°(Bsi0 (z19)) = C < +o0

Considering now any other ball B,.(z% ) which intersection with B, (2% ) is non empty. Since (II1.9)

holds, there exists a moving frame (€1, €3) satisfying (A.45)...(A.48). Using the same arguments as in the
beginning of the proof of lemma A.4 we have that for any radius r* < r < s*

1Mk = All oo (B, (L)) < Cr
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where gg = €M hy and Ay, is the average of Ay over B, (a%,). Since B,(z') intersects By (¢12) for some
r we deduce that, for such a r

sup H 1Og|d¢k|hk|‘Lw(Br(zéo)) <C <4
k>kr
We iterate this procedure until having reached every ball B,.(z%,) for i € I since ¥ is assumed to be

connected. Hence the claim (II1.13) is proved and this finishes the proof of lemma III.1. O

Proof of theorem III.1 continued . Since , from (IIL.3), d'](ik,gk) < 27K/2 by taking on each
B,i(2%,), Ui to be the canonical coordinate map (x,y) of the Poincaré half plane H once B,.:(z’_ ) has
been identified with a connected part of a fundamental domain associated to (X, Ji) we have

[ log [d® [, — log[d€k|n, || L= (5, (x1_)
< | log|V(®k 0 ¥)| — log [V (& 0 T)||| o< (p2) (IIL.15)

< A% (By, &) < C 27R/2

Where we have used proposition IL.5 and the fact that 6(Jg, J) is uniformly bounded since Jj converges
to a limit J.. Hence we deduce that for any compact K C X\ {a1---ay} there exists Cx > 0 and
kx € N such that .
sup ||log|d&k|n, |lL=x) < Cx < +oo . (II1.16)
k>ki

Moreover, since for the same ¥é on B, (2, ), B o U is conformal from D? into R™, combining the fact
that N
log | X1y, —1og |Xlgy llLe(rsyo) < d”(Er, ®1) < C 27H/2

together with inequality (ITI.15) and identitiy (A.2), we obtain

ngc [1+ Dis(é o w)] Hwaz) <o7k/2 (IIL.17)

This implies that for any compact K C ¥\ {a; ---an} there exists Cx > 0 for any k € N

dgy, - X A d€y, - kX
Hlo Jdes - X N Sy JuX] <Cyx 2782 (IT1.18)
|d§k X|2 L>(TK)
We have proved that B _ _
sup ||log |V®y 0 W[ o (p (i )) < C" < 400 . (II1.19)
K>k
Moreover
471 sup / IA(Br 0 U [Pe™ 2 dady = sup / |ﬁ|§k dvolg,
k>kx J D2 k>kr J B (2i,) (III1.20)
< 8n/3
Hence, combining (II1.19) and (II1.20) we deduce that
sup / |Ap, Br|? dvolp, < +oo . (I11.21)
k>kre JUsery B (o)
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Combining this fact and the fact that

sup / |d®y |7, dvoly, = sup / |d®y|2, dvoly,
k>kk U»Le]lBTi(Iioo) k>kk UiEhBri(mioo)

< sup HA(Dp(D)) < 400
k>kx

(I11.22)

we have that, modulo extraction of a subsequence, d®;, converges strongly in LP(K) (Vp < +00) w.r.t.
hy (which itself converges t0 hoo in every norm). This implies that V(® o \I/’) converges strongly in
LP(K N B,i(z:,)) for all p < +00 . From (IIL.15) and (I11.17) we deduce that déj, converges also strongly
in LP(K) to a limit dé. where £ is a Lipschitz conformal immersion of (K, Js) into R™. We have then,
using also (II1.16), for all p < +o0

&y, A dgy dése A dén
i, = S 1AL VAL S fie_ in LP(K) (II1.23)
|d€k A dEn, |doo A dooha °°

From the definition of d’ have for any i € I

/D2 |V(rig, o - fig, o U dedy < d’*(&, D)

(IIL.24)
< C d? (&, @) <C 2702
Hence we have
limsup/ |ditg, 7, dvolp, < hmsup/ |ditg, |, dvolp,
k—-+o00 k—-+o00
(I11.25)
= limsup/ |diig |§k dvolg, < 400
k—+oco JK k
Combining (I11.23) and (II1.25) we deduce that
/ \ditg | dvoly., = / |ditg |3 dvolg,,
K o K o
(I11.26)

< lim sup |dﬁ5k|§k dvolg, < inf AW (D) — 4mx(B)

k—+oco JK 2255}

where g, 1= {;O grm. Hence, by iterating the previous facts for a sequence of compacts K; of ¥\ {a; - - an}

500 such that U K; = ¥\ {a1 - - - an} one obtains that EOO realizes a conformal, locally lipschitz, immersion
of ¥\ {ay---an} such that

/ |diiz_[2_ dvoly, < inf 4W(®) —drx(T) . (I11.27)
E\{ax } degs
We claim now that
Lemma III.2 .

¢ 18 a Conformal Willmore immersion of ¥\ {a1---an} (TII.28)
and hence is analytic on ¥\ {a1---an} (see [BR]). O
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Proof of the lemma III.2. Denote 7, the metric v, = ngRm. Because of (II1.17) We have that
||DiSJk (g_l;)llLoo(Bri (1100)) S C 2_k/2 — 0

We can then apply lemma A.3 in order to obtain the existence of a diffeomorphism ¢ from D? into D?
such that =} := §k o Wi o (}, is conformal and satisfy

limsup HCkHC“’“(D% + HC];lHC“’“(Dz) < 400 (11129)

— 400

and for any p < 1, (A.13) implies

limsup || log |[VEx||| L (p2) + [ELIw22(p2) < +00 . (I11.30)
k—+oo

Combining this with (II1.15) and (III.17) we also obtain

lim sup || log |V il| 1= (p2) < +00 (I11.31)

—+00

Let p < 1 and @ € WH> nW?*2(D?,R™) such that @ € C3°(D2,R™) and
V|| oo (p2y + | VW] 2(p2) < 1

Denote v, the metric vy, = E;ng. Because of (IT1.16) and (IT1.17) we have, because of proposition II.5,
A~ d9% ~ d7 indep. of k . (I11.32)

Since &, minimizes W (-) + 2752 d’(-, &), we have that for any such @ and for |¢| small enough, inde-
pendent of k, say |t| < to, denoting

€ =&+t X(B,.(aiy) Wo (o (W) ey

where X (p . (2i_)) is the characteristic function of the ball B, (x%),

W(&) <W(EL)+27%2 d’(&,&)
(I11.33)
<SW(E) +C 2772 gre(él &)

Using now lemma II.1, we deduce the existence of a constant C' > 0 independent of k, @ and ¢ such that
W (&) < W(EL) +C 2772 |t] [||[Vid]| oo + [|VZd]|2] (I11.34)
We have
W (&) — W(EL) :4—1/B o )|dn 2, dvol,,, — |diig |2, dvol,,
where 7}, := (f;tc)* grm. A straightforward but a bit lengthy argument shows that
|diig, |5; dvoly = |diig,[3, dvoly, -+t Wo o (W) Fg dvolg,
(II1.35)

+2G (&, 0, ) dvolg,
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where

limsup sup / |G (&, 0, 1) dvolg < +oo . (II1.36)
B,i(xl.) '

k—-+oo |t|<to
Now a classical computation from Blashke [Bla] for m = 3 and [Wei] for arbitrary m gives for a regular

immersion £ from B, (z ) into R™ that

A7 Fe= Ay He+ A(Hg) — 2|Hg” He (I11.37)

where A is the negative covariant laplacian on the normal bundle of the immersion 5, moreover for any
LeR™ A(L) := Z?jzl B(€;, €;) B(€;,€;) - L where B is the second fundamental form of the immersion
5. At this stage it is very important to observe that we are computing ﬁg for a smooth immersion £. It

does not make sense for an immersion in £, such as £. One of the main computation in [Ri2] establishes
that in conformal coordinates ¥ from D? into B,:(x% ) one has

div [vﬁg — 3 (VH) + %(Viig A ﬁg)}

(IT1.38)
_ 2 _'_‘ A _'q _ _'_‘2 _'q
——2¢ {ALH§+A( o) —2|H] HJ

where e is the conformal factor of the immersion in conformal coordinates w.r.t. these coordinates
(z,y) and Tiie is the orthogonal projection onto the normal space to the immersion £. One observe that

e [da? + dy?) = dvolz. Hence (II1.38) implies that for any function fin Cg°(D?,R™), for any smooth

immersion ¢ from B,.:(x%,) into R™ and for any conformal coordinates ¥ one has

/ Vf- [Vﬁg— 37rﬁ,(Vﬁ§) +*(VLﬁ§/\ﬁg)} d dy
D2 €
(II1.39)
— - -1 —*_‘ ~ —;_‘ _ _’_‘2 _’q
_Q/Bi(mi Foutt |ALHe+ Ay - 2| fig| dvol,

where v = £*grm. As observed in [Ri2], The projection it Can be expressed using the Gauss m — 2-vector
ﬁg and the interior multiplication L_ between multivectors

Hence we have in particular
L Hg) + iigL((Vitg) L He) + gL (7L VHp) (I11.40)
Taking now ¢ € C§°(D?) such that [,.¢ = 1 and denote ¢.(z) := e 2p(e~'z). We also denote

Eok = o x &, and _
€= Qe &t X(B i) WOy o (W)

We have that £, — & strongly in W22(B,.(z%_),R™) and for ¢ small enough || log |VE. &||ls remains
uniformly bounded. Hence we deduce that, as € goes to zero

fig —— g strongly in WH(Bya(al,),R™) (I11.41)

and .
- — Hz strongly in L*(B,:(z’,),R™) . (I11.42)
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Hence, combining (I11.40), (II1.41) and (II1.42) we obtain that, for any f € W1 N W22(D2 R™), as ¢
goes to zero

Lo - . . .
/D2 \ {VHgEYk — 37Tﬁ55,1c (VHgEk) +x(V ng N Hggk)} dx dy
l (I11.43)
/ i [vﬁa 37t (VHg ) +*(V*iig A Hg )} dax dy
D2

One verifies easily moreover that G(&;,k, w,t) — G(gk, w,t) in L'. Hence applying (II1.35) and (II1.38)
to 5:: f;k and passing to the limit as e goes to zero using again (I11.41)

W(&) - W(E)

_ - e 1 - yd
=-27"¢ /D Vi - [VHgk — 3, (VHg ) + (Vi AHg )| dady (I11.44)

—8 42 / G(Ek, W, 1)
B, i(zi,)

Thus, combining (I11.34) and (II1.44), dividing by |¢| taking respectively the limit as ¢t — 0% and ¢t — 0~
one obtains for any @ in W N W?22(D? R™) supported in a strict open subset to D?

. 3 (111.45)

< C 272 [||Vid|o + || V2452

This implies that
div [VH~ — 8, (VHe,) ++(V4iig, A Hg )}
(I11.46)
—0 in (Whenw?>?)*

Using theorem IL1 and theorem IL2 of [BR] we deduce that £ is conformal willmore on B, (z%,) but

since & is conformal from (B,:(7%,), Joo) into R™, using again theorem II.2 of [BR] we obtain that e

is analytic on B,.(z%,). This holds for any i in I; and hence we have proved lemma I11.2. O

Proof of theorem III.1 continued.
The goal now is to extend {, as a smooth embedding through the points a;.

Let a; be such a point. Let ¥, be a positive conformal diffeomorphism from D?, equipped with the
canonical complex structure, into a neighborhood U; of a; in (3, Jo) and such that ¥;(0) = a; We keep

denoting foo the composition goo oW,

£+ is conformal from D2\ {0} into R™ and we have that H2 (£, (D?\ {0})) < 00 moreover &x (D2 \
{0}) € Br(0). Hence &4 is in L= N W1H2(D?\ {0},R™). Since the 2-capacity of a point in 2 dimension
is zero we deduce that .
€oo cL>®nN W1’2(D2, Rm)
Similarly, 7iz_ realizes a map in Wh2(D?\ {0}, Gry—o(R™)). For the same reason as before, g

extends to a map in W2(D?, Gr,,_2(R™)).We now use the lemma A.5 which is already implicitly present
in [Hub], [MS] and [Hel] but for which we thought that it could have been useful for the reader to have
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the details of a proof of it presented in the appendix. We can deduce from this lemma that f_;o extends
to a Lipshitz map through 0 and that there exists an integer n such that

(C —o(1)) |2|"71 < < (CHo(1)) |z™t . (I11.47)

Do
0z

We claim that n 1. Because of this estimate, for any ¢ > 0 there exists 5 > 0 such that, for
any 7 < 15, &no(Br(0)) C B,(£x0(0)) and [0péne| = [0uno] = €} > C(1 = 6)/V2 |21, where p =
C(V2)™! n=1 (1 +6) ™. We have then that the mass of £ (3) present in Bp(f_;o(O)) can be estimated
from below as follows

g & 2 (1 — 6)2 2n—2
M(E@LBEW) 20t B [

(I11.48)

oo (L1=6 S

n|{——| =«

=" \ivs) "7

This implies that the lower 2-density 02((€o)x[E], £n0(0)) of (€00)+[X] at €oo(0) is larger or equal to n.

The Li-Yau inequality (see [LY]) which also holds for varifolds with weak L?—bounded mean curvature
which are smooth outside one point (as proved in [KS2]) implies

_ W(Es(®)

n < 02((6x)[3] £ (0)) < i (ITL.49)

Because of the lower semi-continuity of W and the assumption that W (£,()) < 8 — § for some 8 > 0,
we deduce that n = 1.

We have then proved that E_;o is a W22 — lipschitz immersion, that is an element from Es;, which is
smooth on ¥\ {ay ---an} and satisfying

W (én) < inf W(®)
Pely

Because of the minimality of {, for any ¢ and any @ € C§°(B,(a;)) for some r, we have that, for ¢ small
enough B .
W(loo) < W (oo +tw) . (I11.50)

Arguing like above we have the asymptotic expansion

W (&) = W (oo + tab)
:—2_1t/ Vi - [v He —3ma. (VHg ) +x(V'iiz_ A Hg )} dx dy (ITL.51)
D2 = - = .

—871 2 / G(Ene, W, 1)
Br(ai)

where we are using some holomorphic chart on B, (a;) which identifies B,.(a;) with D? and where
fBr(ai)G(Em,w, t) is uniformly bounded w.r.t. t as before. Combining (II1.50) and (II1.51) we de-

duce that £, realizes a weak Willmore W22 N W1 immersion and from [Ri2] we deduce that & is an
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analytic immersion. Since W(f_;o) < 81 we deduce that EOO realizes an embedding which concludes the
proof of theorem III.1. O

In order to complete the proof of theorem 1.6 we have to exclude the possibility for the conformal
class to degenerate while considering a minimizing sequence. This is a consequence of the following result
obtained in [Ri4] (see also [Ril]) which has also been proved in [Kulil.

Theorem IIL.2 Let (X, ck) be a sequence of closed riemann surface of fized topology but with degenerating
conformal class cy, diverging to the boundary of the Moduli Space of 2. Let @ be a sequence of conformal
immersions in s, then

. . 7 2 . =g
%gilcg/zJH‘BJ dvolq;zgmm ><f>lélsfz w(®) . (II1.52)

O

IV Existence of Minimizers of the Willmore Energy in a Con-
formal Class.

IV.1 The completeness of the metric space of W?? lipschitz immersions of ¥
in a given conformal class.

We assume in this section that ¥ is a connected closed smooth two dimensional manifold of genus larger
or equal to 1. Let ¢ be a conformal class ¥ which is represented by a smooth complex structure J on X.
Denote g be an arbitrary smooth metric on g that we can choose to be compatible with J. We introduce
the subspace space of s of lipschitz immersions realizing a complex structure equivalent to J :

dely st IVeW22(L,E) st
&5 = U is a bilipschitz diffeomorphism

$o¥ : (%,J)— R™ is conformal
We are now proving the following proposition

Proposition IV.1 The metric space (£&,d”) is complete. O

Proof of proposition IV.1. Let ®;, be a Cauchy sequence for d’. From proposition 11.6 there exists
a limit <f)oo in &. Denote by W a lipschitz diffeomorphism such that (f)k o ¥, is conformal. Denote
by g = 5Zng and J; the associated complex structure. Wy realizes then a bilipschitz conformal
diffeomorphism between (%, J) and (X, Ji). Because of the d’ convergence Jj converges in L> N W2
norm to Jo the complex structure associated to go, := §;ng. Denote by (U%);c; a finite covering by
balls of ¥ chosen in such a way that [, [diig_|* dvoly < 4m/3. Denote by (%, D* : — (U’, J) the
conformal parametrization given by lemma 5.1.4 of [Hel] combined with the moving frame technic of the
proof of theorem 5.4.3 that we exposed also in the proofs of lemma A.3 and lemma A.5 below. For each
i in I we use lemma A.3 in order to construct ¢y : D? — D? such that ¢} := (% o px D* : — (Ui, Ji)
is conformal and ¢} is uniformly bounded in W*? and log|V(}| is also uniformly bounded in L> (by
taking possibly U’ a bit smaller but still realizing a covering of ¥). Denote by fi(z) := (¥)~' o (i the
maps from D? into (X, .J). These sequences realize sequences of conformal maps which are harmonic if
one equips (X, J) with a corresponding constant scalar curvature metric h and denote the corresponding
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volume form. Observe that since ¥y, is a conformal diffeomorphism one has

T 1 _
/w:/(\l/kl) w = 5/ |d\11k1|,2l,gk dvolg,
) ) )

1 .
> L3 drid
_Ca””iezf/w IV filn dz1 das

Hence \11;1 is a uniformly bounded sequence in W2(X, %) (the metric g remains comparable to an
arbitrary smooth fixed metric on ¥ because of the d’ convergence) and the fi are uniformly bounded
sequences of conformal maps in W?(D? ¥). Hence the f; are uniformly bounded energy harmonic
maps. Since the constant scalar curvature of the metric h is non-positive (genus(3);0) the sequences
converge strongly in C'—norm in the interiors of U; (see for instance [Jo]). Since the (! are uniformly
bounded in W22, since log |V(!| is also uniformly bounded in L> and since || Dis’><((})||cc — 0, we
deduce that \I!,;1 converges to a bilipschitz diffeomorphism W ! which is conformal between (¥, J ) and
(,J). This implies that the d’ limit P is in &5, and this concludes the proof of proposition IV.1. [

IV.2 Minimizing Willmore energy in a conformal class.

In this section we prove the following theorem

Theorem IV.1 Let ¥ be a closed surface let ¢ be a conformal class on ¥ and m an integer larger or
equal to 8. Assume that B
inf W(®) <8
deeg,
Then the infimum is achieved by either
i) a C°° Conformally Willmore embedding of ¥ into R™
ii) or a global isothermic embedding of (X, c).

If infq?esg W(ff) > 8w the results is the same modulo the possible existence of isolated branched points. [

Proof of theorem IV.1. Let & be a minimizing sequence of W in £5. Applying the 3-points renor-
malization lemma and arguing exactly like in the beginning of the proof of theorem III.1 we can assume
that

i) .

Dy, is conformal from (X,J) into R™ . (IV.1)

ii) There exists finitely many points a1 ---ay in ¥ and a fixed finite covering (B,;_(x%,))ier, of ¥\
{a1---an} such that for any i € I, 0 < p < pso and k large enough

/ |ditg, |5, dvoly, <8/3 . (IV.2)
By (zi,)

where gj := <f),*€ng.

iii) There exists a positive real R > 0 such that

3,(X) C Br(0) . (IV.3)
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iv) There exists a constant C' > 0 such that
HA(Bp(D) < C . (IV.4)

v) There exist a positive real number r > 0, independent of k and three distinct points P, P» and Ps,
independent of k too, in the interior of one ball B (%) such that

Vi B (Pr) — Bp(P)| =7 >0 . (IV.5)

The following proposition is a direct application of Ekeland’s Variational Principle since (£%,d”) is a
complete metric space as we showed in the previous subsection.

Proposition IV.2 Let J be an arbitrary smooth complex structure on ¥ and c¢ be the conformal class of
(2,J). Let ®y be a minimizing sequence for W in E& such that

W(®;) < inf W(d)+27F |
Q&S

then there exists Ek € &, such that

i) f;C minimizes in Es, the following functional

W(&) = inf W(d)+27%2a7(8,6,) (IV.6)
Feeg
i) )
W (&) < W(®y) (IV.7)
i)
d? (&, By) < 27F/2 (IV.8)
O

As in the prfvious section we prove that d, converges strongly in LY (E\{ai---an}) to alimiting W2
immersion &, of ¥\ {a1 - --an} and moreover we have that

/ |ditg |5 dvoly, < inf 4W(®) —dmx(Z) . (IV.9)
S\{ai-an} de&g

We claim now that

Lemma IV.1 Under the previous notations we have that either

¢oo 18 a Conformal Willmore immersion of ¥\ {a1---an} (IV.10)

and hence is analytic on X\ {a1---an} (see [BR]) or

€ is an isothermic immersion of (2,J)
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Proof of the lemma IV.1.
First case : there exists a subsequence £, which is not made of isothermic surfaces.

Let U’ be a local conformal chart on B,i(z%,) for the complex structure J. We have that &, o U
is conformal on D?. From lemma V.1 we know that a perturbation @ € W1 N W22 of f_;c keeps
infinitesimally the conformal class ¢ if and only if for any holomorphic quadratic differential ¢ of (X, J)
which is an holomorphic section of K ® K, where K is the canonical bundle 71 of (1-0)-forms over
(3, J), one has

(0. - 0,&, dz @ dz, q)wp =0 (IV.11)
where (+,-)wp is the Weil-Petersson Hermitian product given locally (assuming «f is supported in a

ball B,:(x% ) on which we have holomorphic chart given by ¥ that we simply denote by z), writing
q = f(z) dz®dz,

(0. - 0.& dz @ dz, Q)wp = %/ e 95 0.8 f(z) dz Adz
D2

where e2 = |9,6,|2 = |0, 2.
Consider hence @ € W1 N W22(D? R™) supported in the interior of D?, satisfying (IV.11) and
such that
||VU7|‘LW(D2) + ||V2U7||L2(D2) <1

Using Lemma V.1 and the implicit function theorem there exists a family f;tc in &5 such that
E_]t = é;g +t X(B,;(zi,)) W o (\I/i)il + O(t)

From now on we shall omit to write explicitly the composition with (¥*)~! and write simply @ instead
of o (UH)~L,

Arguing exactly like in the previous section this implies that there exists a constant C' > 0 such that,
for all @ supported in a strict open subset of D? and satisfying (IV.11) one has

/ Vi - [vﬁk — 3, (VHy) 4+ +(VEidg A ﬁk)} dx dy‘
D2 (IV.12)

< C 272 ||V o + | V]

where H k= H £, and 7l 1= ﬁfk' Using the notations and computations in appendix V.1 the constraints
(IV.11) on & becomes

Vi=1---Q fi(z)ﬁo,k.w%dmdz:o . (IV.13)
D2

where we recall that f7(z) dz ® dz is the expression in the ¥* conformal chart of the different element
¢’ of a fixed basis of the —dimensional complex space of holomorphic quadratic differentials Q(J) of
(2,J) and where Hy . is the Weingarten operator associated to the immersion &. . Combining (IV.12)
and (IV.13) we then obtain the existence of a sequence pj, = (Mi)jzl...N € C@ such that

div |V Hy — 317, (VHy) +*(V i A ﬁk)} +S [ Ful(2) ﬁoyk}

(IV.14)
—0 in  (WhHeenw22)*
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where
Q . .
fe(z) =3 1 F(2)
j=1
Using the computations in [BR] section II1.2.2 we have
2k [ALﬁk + 23%((ﬁ0,k . Hk) HO,k):| — %(fk(z) Hk,o) .

— 0 in  (Whenw?)r
The covariant laplacian in conformal coordinates is given by
e ALﬁk = Tq, (div Tt (Vﬁk)) = 4%[2’ T, Oz, azﬁk}
Combining (IV.15) and (IV.16) we obtain that

44 Ti), agﬂ'ﬁk azﬁk + 21 62/\’“ (ﬁo,k . ﬁk) ﬁO,k — fk(z) Hk,o}

— 0 in  (WhenWw??)*
It is convenient to introduce Ay € C given by
A = e M f(z) — 2ie % - Hy,
With this notation we have in particular

Oz(eM Ap) = —2i0z (62% Hoy - ﬁk)

Using the general equation dz(e *ez) = 271 Hj (see again [BR] section I11.2.2), we have

et

= o k .
Gg(Ak eg) = — 22'67)\’6 6; (62/\k HO,k 'Hk) ez + T Ak H07k

We recall at this stage the Codazzi-Mainardi equation !?
e” 2 9z (2 Hoy - ﬁk) — Hy-0.Hy + Hoy - 0zHy, .
Combining (IV.18), (IV.20) and (IV.21) we obtain that

e

. . = — k —
O=(Ap &) = —2ieM [Hk -0;Hp + Ho - (%Hk:| €z + - A Ho

—

i i = i 1
= —2jeM [Hk -0, Hp + Ho,k . ang:| e + §fk(z) Ho,k

—i e (ﬁo,k : ﬁk) Hox
Another computation in section I11.2.2 of [BR] gives

—2i0sm5, 0, Hy = —2i 75, Oz, 0. Hy,

+24 e [(H}c . 8Zﬁk) és + (ﬁo,k . 8Zﬁk) €Z:|

19See [BR] lemma A.3 for a proof.
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(IV.18)

(IV.19)

(IV.20)
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Combining (IV.22) and (IV.23) we obtain

6;(Ak 53) — Qiagﬂ'ﬁkazﬁk = -0 Fﬁkazﬂ'ﬁkazﬁk
—2i e [(ﬁo,k - 0zHy) & — (Ho g - 0-Hy,) 62} (IV.24)

1 - . - _,
+§ fr(z) Hoy —ie*M (Ho,k ‘ Hk) Ho i,

Observe that _ B . B
Sy (—% e [(HM - O=Hy) & — (Ho - 0. Hy) é’D =0 (IV.25)

Combining (IV.17), (IV.24) and (IV.25) we obtain
Sy (ag [Ak & — 2 wﬁkazﬁk}) —0 i (WheAWw2 (IV.26)
or in other words

S (aZ [ew ful2) @ — 2ieM Hyy - Hy & —2i wﬁkazﬁk})

(IV.27)
—0 in  (WhHeenw22)*
Let Fy = FR +iF3 € L2°°(D? R™ @ C) be the unique solution of
8Zﬁk = e Mk fk(z) s — 2i ek HO,k . ﬁk €, — 2iﬂﬁkazﬁk in D?
(IV.28)
8,FS =0 on 9D?
Hence combining (IV.27) and (IV.28) we have
AES —0 in  (WhenWw2)*
(IV.29)
&,ﬁ,? =0 on 6D?
This implies in particular that
VES —0 strongly in (W?(D?))* Vg>2 . (IV.30)

Let @C = ij + z@? = —4 etk ﬁo,k . ﬁk e, —4 Wﬁkazﬁk € R™ @ C. Tt is proved in [Ri2] that for any
conformal immersion g;c, Cj = (@%, @S) satisfies
Qr -V = QF - 0,6 + G - 9,6, =0
(IV.31)
Qr A Vi = QF A .G+ G A 0y =2 (~1)™ T+ (x(Fk L i) ) L V&,
We rewrite (IV.28) in the form
L R (2) ubic = fR(2) 9,6
VEER + VES = Qg + e (IV.32)
[ (2) Ol — ) () Oy
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Combining (IV.31 and (IV.32) gives finally

(V4R +VES) - Vé =0
(IV.33)
(VLF;R + vﬁ,?) AVE, = 2(—1)" V* (*(ﬁkl_ﬁk)) LVE,
As in the proof of theorem III.1 we can extract a subsequence to f_;c that weakly converges to a limiting
conformal immersion &, in W1 N W22 and i), weakly converges in W12 to the Gauss map 7o of {uo.
Because of (IV.29) and (IV.30) we have
VES -V = div(VES - &) — AFY & — 0  inD'(D?), (IV.34)

and
VES AVE, = div(VES A &) — AFS AE, — 0 in D'(D?),. (IV.35)

Assume first there exists a subsequence - that we still denote f;C - such that |ug| is uniformly bounded
and hence a subsequence such that i, — fioo = (42, )j=1...¢. This implies that

fre(2) — foolz Z o (= in CY(D?*) VieN . (IV.36)

Standard elliptic estimates applied to the system (IV. 28) imply that, modulo extraction of a subsequence
F}, converges weakly in LP for any p<2 20t6 a map Fs which is real because of (IV.30). By Rellich

Kondrachov compact embedding V«Ek strongly converges to V«Eoo in L? for any ¢ < +00. Hence using the
Jacobian structures we have

VLER . VE, = —div [F?f : vifk}
VLER A VE, = —div {ﬁ;ﬁ A VLE;C}
(IV.37)
— —div [ﬁoo A VL&O} — VIR AVE
vi (*(ﬁkl_ﬁk)) L Vé, = —div [(*(ﬁkl_ﬁk)) Lviaﬂ
s —div [(*(ﬁooLﬁoo)) Lvléoo} = vt (*(ﬁool_ﬁoo)) L Vés .
Hence we have proved that E_:,O satisfies the following system : Hﬁoo S LQ"X’(DQ, R™) such that

V4LFE, Vi =0
VIEL A Ve =2 (~1)mVE (*(ﬁool_ﬁoo)) L Ve .

This is equivalent to the fact that f_;o satisfies the Conformal Willmore equation and f_;o is analytic.

20 Also weakly™* in L2,
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Assume now that
li =
Then we consider Fy /|| and dividing by || equation (IV.28) and passing to the limit in the Jacobian
expressions as above we get the existence of a map L., and a non zero holomorphic function ge(2)
contained in the span of f7 such that

0:Loc = e goo(z) Ot (IV.38)

This could have been done on all the balls B,.:(x% ) simultaneously 2! and hence, like in the proof of
lemma V.1, since 8;(6’2)“’0 0z800) = 2’1H07OO, (IV.37) implies the existence of a non trivial holomorphic
form ¢ of Q(J) such that

(< g, ho,00 >wp) =0

where locally in holomophic coordinates hg := ﬁo dz ® dz. This is equivalent to the fact tha_xp f_;o is
isothermic. We have then proved lemma IV.1 in the first case : when there exists a subsequence & which
is not made of isothermic surfaces.

Second case : all the E_;C are isothermic conformal immersion of (%, J).

This would mean that there exists a sequence of holomorphic quadratic differentials g; # 0 such that
S(< gy hok >wp) =0, (IV.39)

We can normalize g in such a way that < gx,gx >wp= 1 and since Q(J) is finite dimensional we can
extract a subsequence such that g, converges strongly in any C! norm (for any [ € N) to a non zero limiting
holomorphic quadratic differential go.. We have seen that d¢;, converges strongly in LI (X\ {a1---an})

loc
to a limiting W22 immersion &, of ¥\ {a;---an} and since the second fundamental form of & is
uniformly bounded in L2, hg x converges weakly in L? to the Weingarten Operator ho o of £x. We can
then pass in the limit in the identity (IV.39). This implies that

(< oo, o, >wp) =0, (IV.40)

from which we deduce that 500 is an isothermic immersion of ¥\ {ay,---ay} into R™. This concludes
the proof of lemma IV.1 in all cases. O

The proof theorem IV.1 can be finished exactly like in the proof of theorem III.1 in order to exploit

-

the assumption infgz_.. W(®) < 87 and "remove” the singularity points a;. O
p}

V The conformal constraint and isothermic immersions.

We first describe the immersions which are the singular points for the map which assigns to an immersion
it’s conformal class as we will prove in lemma V.1 : the isothermic immersions.

Proof of proposition I.1.

Isothermic immersions have been defined in definition I.1. First let consider an isothermic immersion.
There are locally, away from umbilic points, conformal coordinates in which the second fundamental form
is diagonal. Hence this means that the Weingarten map is real in such charts. Take two such complex

21 Either gy := Z;V:1 ui F7(2) dz ® dz is bounded in the space Q(J) of holomorphic quadratic forms of (3, J) or goes to
infinity in norm (for the Weil-Peterson hermitian product).
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charts z = x1 +1x9 and £ = & +1i&2 overlaping on some open set. The Weingarten operator is independent
of the complex chart and we have

ho = 8.7z 0,® dz @ dz = O¢iigl 0c® dE ® dE

Our assumption reads S(@Zﬁqgl_azcﬁ) = %(8§ﬁ5L8§<f)) = 0, moreover, since we are away from umbilic
points hg # 0 that is then 3‘%(8zﬁqgl_82<f) # 0. Thus we have that

This implies that the imaginary part of the holomorphic function (z/(£))? is zero which implies that 2’(£)
is constant and (2/(£))? is a real constant. Thus dz ® dz and dé ® d¢ are proportional to eachother by
a real non zero constant and this implies that the form dz ® dz extends to an holomorpthic quadratic
differential ¢ of the riemann surface 3 obtained by withdrawing to ¥ the umbilic points of the immersion
® and we have by construction < ¢, hg >wp= 0.

We are now proving the reciproque. Let ¢ be an holomorphic quadratic differential of . Away from
the isolated zeros of ¢ we can choose complex coordinate z such that ¢(z) = dz ® dz (indeed in arbitrary
complex coordinates ¢(§) = (&) d€ ® d¢ where f is holomorphic and just choose z(§) = 1/ f(§). In these
coordinates the condition (1.19) implies $(Hg) = 0 which means that the second fundamental form is
diagonal in these complex coordinates and hence d is local isothermic. ([l

Proof of proposition 1.2.
Let ® be an immersion. From computations in section II1.2.2 of [BR] we have in complex coordinales

o (e—% ag(f)) —2 ' f, . (V.41)

Assume @ is local isothermic, because of the previous proposition there exists complex coordinates in
which $[Hy] = 0. Hence in these coordinates

) [&Z (e*” &5)} -0  inD?. (V.42)
Let L = Eg% +iLg € R™ ® C be the unique solution to the following elliptic system
821_: = 2 6;&5 in D?
Eg =0 on OD?

Then, because of (V.42), Lg solves

Ls=0 on D>

This implies that L = Ly € R™. Hence we have proved (L.20). Assuming now that (I.20) holds, we
obtain the existence of complex coordinates such that (V.42) is satisfied which implies from (V.41) that
$(Hp) = 0 and from which we deduce that ® is isothermic. This finishes the proof of proposition 1.2. O

Proof of proposition I.3.
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An elementary computation gives for any pair ® and L from D? into R™
15 (0:L-0.8) =VL-V*&  and 45 (0:Ln0.8) = VLAV'E

Hence (1.20) clearly implies (I.21).
Assuming now that (I.21) holds, we have then the existence of L € R™ such that

€1 /\6yL =€y N0, L
& -0,L =& 0,L

A short computation shows that this implies the existence of (a,b) € R? such that

o b a 51
VL =
a —b 52

or in other words, introducing f := e*(a + ib), one has
.L=fe 20:0 . (V.43)

Since the components of L are real, and by consequence the components of AL are real as well, we have
that

3 [0z (f e 20:8)] =0
Using (V.41) this gives
A
e
2
Since Hy is orthogonal to the tangent plane of the immersion and since €, and €5 are in the complexified
space to the tangent space and are linearly independent we deduce

O=f &~ 0.F & = =5 |f Ho—T Ho

9zf =0
Take now w = /f equation (V.43) becomes
Ol = e 2 | f| O

and one observes that e* |f|~/2 is the new conformal factor of ® in the coordinate w, which means

that ® satisfies (1.20) in these coordinates and hence, from the previous proposition, $ is an isothermic
immersion. O

Finally we prove that the global isothermic immersions are the degenerate points for the conformal
class mapping. Precisely we prove the following result.

Lemma V.1 Let ® be a conformal W20 WL immersion of a closed Riemann surface (,J) of genus
larger or equal to one. Consider in a neighborhood of 0 the map

C: wew?nwh>* — C(w) e Ty

)

where Ty, is the Teichmiiller Space associated to the surface ¥ and C(W) is the Teichmiiller class issued
from the immersion ® 4 10 with fired generators of the w1 on . The map C is C! in a neighborhood of
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0. Identifying T, with the space Q(J) of holomorphic quadratic differentials®® on (X, J), its differential
at 0 is given by

Q
dc(0) -7 =8 Zlqj (4,0.7-0.8 dz @ dz>WP , (V.44)
]:
where < -, >wp is the Weil Peterson Hermitian product and (q;);j=1...q is an orthonormal basis of Q(J)

for this product. Moreover, zf<I_5 is not an isothermic surface, dC(0) is a submersion onto the space of
holomorphic quadratic differentials of (X, J). O

Proof of lemma V.1. Let ® be a conformal W22 N W immersion of (£,.J) and @ be a map in
W22 N Whee(x, R™), small enough in this space, in such a way that ® + & still defines an immersion.
Denote by J% the W12 complex structure defined by (5 + @)*grm. Using lemma A.3 there exists a
covering of by disks (U;)se; and W NW22 diffeomorphisms 1% from D? into U; such that (+17)o);
is conformal. Considering now ¥ together with the covering U; and the holomorphic transition maps

hi(2) = @) Loy

which satisfy of course the cocycle condition A o h]“?k ) hfl(z) = z, we have defined a new smooth complex

structure on %, J¥ which is equivalent to (2, J7) : there exist smooth conformal diffeomorphisms, ¢
from D? into (U;, J ) and an homeomorphism?® W% of 3 isotopic to the identity which is conformal
from (2, J%) into (£, J%) and such that ¥° = idy; and J° = J. Hence U7 is bilipschitz and both ¥%
and (¥7)~! are W22, By replacing now @ by (® + @) o (¥¥)~1, if one shows that that C is C* at 0 one
has shown that C is C! in a neighborhood of the origin.

In order to show that C is C*! at 0 it suffices to show that the mappings wich to w0 assigns the family
of holomorphic transition functions h;‘; is C1 from W1>° N W22 into C° (which implies that it is C* from
W N W22 into C! for an arbitrary [ on a slightly small covering). In order to show that it suffices to
show that the mappings which to @ assigns 1 and (%) ~! are C! from W N W22 into W2? for some
p > 1. This can be done following carefully the construction of conformal coordinates in lemma A.3. We
leave the details to the reader.

We compute now the differential of C at the origin. As above h denotes the metric of constant scalar
curvature compatible with (X, J ) and we denote simply by h the constant scalar curvature compatible
with (X,J). Let u” be the harmonic map from (X,.J) into (¥,.J%) isotopic to the identity given by
corollary 3.10.1 in [Jo]. The map C(w) is given explicitly by

Q
C)=> AT q;
j=1

where

Ajw = <qj, [<8zu“7,8zu“7>hm — <8yulﬁ,8yum>hu7 — 24 <8zu“7,8yu“7>hﬁ] (dz)2>WP

Denote v? := (U%¥)~! oy and en’ g = (U¥)*h%. Hence we have in particular

A}E = <qj,62“ﬁ {<8z1)1ﬁ,8zvm>gu7 — <8yvm,8yvm>gu7 — 2 <8zvm,8yvm>gﬁ} (dz)2>WP

22See for instance theorem 4.2.2 in [Jo].

23% together with the charts (U;, ;) defines a smooth complex manifold since w.fl o 1), are holomorphic, the smooth
complex structure being given by the multiplication by ¢ in the charts. It admits then a constant scalar curvature metric
h® and ¥? is the harmonic diffeomorphism from (3, g%) into (2, h™) isotopic to the identity, see [Jo].
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Let X7 := dv”(0) - v. Since v° = ids;, we have, writing locally ¢; = q;(z) dz ® dz in complex coordinates
24 gatisfying in particular |9,®| = |9,®| = ¢ and then in which h = e2#(©) g = 2#(0)+2X [dz2 4 dy?]

g

dAf(O)-y:/Ee’Q’\’Q“(O) q: (z) e [2 (0:X7,85ids)  —2(0,X",0yids),
+2i (0, X7, 0yids) |+ 2i (0,X7, 0yidy),

—l—dgﬁ(O) v — dgé";(O) v+ 2i dg’1‘72(0) . u} %dz ANdzZ

Decomposing the vector-field X7 as follows : X7 = X7 9, + XZ 9= (where 0, := 279, — i9,) ) and
observing that dg”(0) - v = (8zj<f) Oy, 7+ 0, B - Oz;V)ij gives

dAY(0) v =2i /qu(z) 0=X. dzNdz
(V.45)
+4i / e q; (2) 8:® - 07 dz A dz
b

Observe that ) . .

qj(z) 0zX. dz NdZ = qj(z) dzNd(XY)=d [XZ qu(z) dz]
Let & be another complex coordinates. We have that ¢; = ¢7(2) dz ® dz = (£)7? ¢;(2) d§ ® d¢. Then
¢5(€) = (€)% ¢3(2). We also have X = X7 9, + X7 8 = € X7 0 + € X7 9. Hence & X¥ = X7 and

a=X7qi(z) dz = XZ(€) 7 ¢5(&) (€)* & dE = X7 q5(¢) d¢

is an intrinsic 1-form globally defined on . Thus

/qj(z) angdz/\dE:/da:0
) )

and (V.45) implies (V.44). It remains to prove that dC(0) is a submersion onto the space of holomorphic
quadratic differentials of (X, .J).

In local conformal coordinates for ® we denote & = e~ *8,,® where e* = [0, B|. Let (fg)az1..m—2
be a local orthonormal frame of the normal bundle to 5(2) We denote h; = —e g - Og,7o. The
Weingarten map is given by

m—2
HO = E Hoa ﬁoz =

a=1

N =

m—2
Z( 11— hgy + 21 hiy) iia
a=1
Denote €, := e 9, d = 27161 —iéy) and €5 = e 0P = 271(€1 +1ié,). Some elementary computations
give (see for instance [BR] section I11.2.2)
Os(e &) =271 Hy . (V.46)

Let 7 be a map supported in the domain of definition for the local conformal charts that we identify with
D2, We assume 7 to be in Wg> N W1>°(D?). Denote by f;(z) dz ® dz the expression of the basis ¢; in

24 As usual the Weil-Peterson metric is expressed using local complex coordinates bearing in mind that the expression of
the integrand is independent of this local choice
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this conformal charts in such a way that f;(z) are holomorphic functions on D?. The expression (V.44)
of dC(0) - v gives
Q

c0)-7 =8 g / Fi(2) e e 00 ~dz N dZ
j:1 D2 2
o i
=-8 qu / fi(2) O=(e™réx) - 7 §dz Ndz (V.47)
=1 7D
@ = )
:—8;(]]- /sz](z) 0 ﬁidz/\dz

If _
l/—>< fi(2) ﬁ0~171dz/\d2>
D2 2 j=1-Q
does not have a complex N dimensional Range then it would mean that the real 2N linear forms on
W22 Wh given by

V—><§R[ fi(2) o - 7
D2

N =
IS

dz/\dz},%[ fi(z) Ho -0 dzAdzD
D2 J=1--Q

are linearly dependent. This is equivalent to the existence of a non trivial family of real numbers
(17,67)j=1..¢ € R*? such that
Vi e W22 nwhee

Q —
;uja%[/[ﬂfj(z)ﬂo-ﬁ

or in other words there would exist (§; + iu;) € C¥, being not all equal to zero, such that

D | =
| =

dz/\dz} +5j%[/ fi(2) Hy -7 dz/\dz} =0
DZ

N

S| (05 +ing) f(2) Ho

j=1

Il
o

In other words again, this would mean that there exist a non zero holomorphic quadratic form ¢ in Qs
such that
%(< q7h0 >WP) =0 ,

where locally hg := e?* HTO dz ® dz. This is equivalent to the fact that ® is isothermic. Hence if we make
the assumption that ® is not isothermic the dimension of the range of dC(0) is @ = dim(Q(J)), which
concludes the proof of lemma V.1. O

A Appendix

Lemma A.1 Let g and h be two metrics at a point p € D? such that
|Dis(g)| < 1—27"
where k € N. Then the following inequality holds

1 X2 ¢ X|?
— inf | |g < r(g) 2F  sup | |g
2 xer\{o} | X|; ~ tr(h) xer2\{0} | X[}

IN

(A.1)

42



Proof of Lemma A.1. Observe that

i = [ RI]] i) - RG))

—S[H(g9)] X1 X2

Hence, denoting also X = X + X5

X2 =R [(M x 4 o) 7) X]

We deduce that ) . v
| X7 _tr(g) 1+R [Dzs(g) e }

X2~ tr(h) 1+ R Dis(h) e%9]

where X = | X|e??.
Since |Dis(g)| <1 —27%, using (A.2) we have that
t 2~k X
r(g) ' ' g < sup | |g
t?"(h) Hlfg |1 + r [Dzs(h) e ]| X eR2\{0} |X|h

Hence in particular infg |1+ R [Dis(h) €**?]| > 0 and by taking e** := Dis(h)/|Dis(h)| (in the case
when Dis(h) # 0) we see that there is 6 such that 14 R [Dis(h) €**?] > 0, by continuity this implies
that

VoeR 1+ R[Dis(h)e*?] >0
This implies that infy |1 4+ R [Dis(h) e**?]| = 1 — [Dis(h)| < 1 from which we deduce the upper bound
in (A.1). Take now again X = |X|e% in such a way that ¢?? := Dis(h)/|Dis(h)| (still in the cas when
Dis(h) # 0). For this X we have

2 Di 20 2
tr(h) _ |X|}21 +R 15.(9) e*’] <2 sup |X|}21
tr(g) XI5 14 [Dis(h)] x0 | X3
which gives the lower bound in (A.1). O

Lemma A.2 There exists eg > 0 such that for any EE W22 Whee (D2 R™) satisfying
|Dis(§)| < eo (A.3)

and
47

S 2
/D2|Vn5|g dvoly < 7

where g := E*ng, there exists € and € in WH2(D? S™~1) such that

51 . 52 =0 5 715: 51 A 52 5 (A4)
/D2 [IVerl2 + |Véa|2] dvoly < 2/132 |Vitel; dvol, (A.5)
and
d(*g(gl, dgg)) =0 y
(A.6)
LgDQ *g (51,(152) =0
where tgp2 is the canonical inclusion of 0D? in R2. g
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Proof of lemma A.2. This lemma is proved in [Hel] lemma 5.1.4 for E conformal - which implies that
g = & gpm = e* da? 4+ dy® and hence, in that case, for any function f

/ |df |2 dvolg:/ |Vf|? dxdy
D2 D2

We now explain how the strategy in [Hel] adapts to the case when Dis(¢) = 0 is replaced by (A.3). The
assumption (A.3) implies that

V(x,y) e D? VX ¢ T(z,y)D2
(A7)
(1—et) |X[5, < (detg)™" |X[5 < (1+¢f) [X[5,

where go is the flat metric daz? + dy?. We can first assume that nz is a smooth map from D? into the

Grassman Space of oriented 2-planes in Gra(R™) - which are dense in W12(D?, Gra(R™)) see step 6 of
the proof of lemma 5.1.4 of [Hel]. Let é := (€1,€é2) be a smooth orthonormal 2-frame?> in R™ realizing
(A.4). For each r € (0, 1] we minimize

FT(O):/DQ|(61,CZ62)|§ dvol,

among 0 € W12(D2 R) and e; + iey = € (€1 + ié3). Since (e}, de}) = df + (€1, déz) F) is convex and the
minimum is achieved by a unique e” satisfying
d(xg(ef,des)) =0 in D}
(A.8)
Loz *g (e1,de3) =0

where typ2 is the canonical embedding of D7 in R?. Hence there exists a unique function f" €
W, (D2, R) such that ,(ef,dey) = df” and f* satisfies

Ago f" = Oze] - Oyel — Ogely - Dyel + %g,d((xg, — %) df") in D}
(A.9)
fr=0 on 0D?
where A, is the Laplace operator for the flat metric Ay, = —[92 + 9;]. Because of (A.7) we have that

Va one-form on D? |(x, — x4,) @] < &g |a|. Hence Wente estimates together with more standard elliptic
estimates gives the bound

3
/ IV ? dedy SF/ |Ver |? d:cdy/ |Ves|* dx dy
D2 T JD2 D2

+C’€0/ IV£7|? dx dy
D2

T

(A.10)

for some universal C' > 0. Thus for €9 chosen small enough we obtain the existence of C' > 0 independent
of r and the data of the lemma such that

3
/ IVf1? dedy < —(1+2Cey) / |Vel|? da dy / |Veb|? da dy (A.11)
D3 167 D3 D2

Once this estimate is established, the rest of the arguments of F. Hélein carries over and we obtain
lemma A.2. O

25this trivialization exists since we are now working with a smooth ii¢ and the pull-back over D2 by fie of the tautological
bundle SO(m)/SO(m — 2) over Gr2(R™) is trivial since D? is contractible
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Lemma A.3 There exists eg > 0 and 0 < o < 1 such that for any 56 W22 nWhee (D2 R™) satisfying
|Dis(€)] < eo
and 4
T
Viig? dvoly < —
/[)2 |Viigly dvoly 3
where g := E*ng there exists € VVllocOo N WZQO’CQ(DQ, D?) such that go ¢ is conformal,

I¢llconps) + 1 leoape < C [exp(C || 10g [ Véllz=(pn)]| (A.12)

where C' > 0 is independent of«f and
V1i>r>0 3C. >0 st
(A.13)
10 [V(£'0 Ol (pg) + €0 Cllwa2(p) < Cr [1 + exp(]| 1og V€] o)]
where C. > 0 only depends on r and not on { O

Proof of lemma A.3. Let (€1, €2) be the orthonormal 2-framing given by lemma A.2 such that iz =
€1 A& and let f such that f =0 on dD? and df = #4(€1, dés). Hence it solves

Ay f = (V4Eeéi,Veéy) on D?

=0 on 0D?
writing as in the proof of lemma A.2

Agy f = 0.€1 - 0y€a — 0p€s - 0y€1 + %, d((¥gy — *4) df") in D?

(A.14)
f=0 on 0D?
Using integrability compensation result Theorem 3.4.1 we get the a-priori estimate
IV fllz2a(p2) < C ([VeéillL2(pey IVellLz(p2) + C eo |V fllL21(p2) (A.15)

where we have used the fact that Vo one-form on D? |(x, — %4 )a| < ¢ |a|. Hence by density of
smooth maps, for £y small enough, we convert the a-priori estimate (A.15) into an estimate and by
Lorentz-Sobolev embedding one has

HfHLoc(DZ) S C ||VfHL2,1(D2) S C /D2 |Vﬁ5|2 d’UOlg (AIG)

Let €; := dé '€, and let e} be the dual unit frame for the g = & grm metric of (€1,€2). We have that

df Nel = (xgdf ) A (x4e7) = —(€1,dE2) Nesy

(A.17)
df Ney = (xgdf ) A (x4e5) = (€1,dE2) Nel
Moreover Cartan formula gives
dei (€1,62) = d(ej(€2)) - €2 — d(ej(€1)) - &2 — &7 ([en, €a])
(A.18)
= 76;‘([515 52]) - 752{(D€1€2 - Dézgl)
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where D is the Levi-Civita connection associated to the induced metric g. Using the immersion E we
have that Dxé = Pg(d€; - X) where Pz is the orthonormal projection in R™ onto T&¢(D?). Hence

Dxé; = (€1,dé; - X) €1 + (€2,dé; - X) €. Combining this later fact with (A.18) gives

de] = —(€1,dé>) Nel
(A.19)
dE; = *ET AN (51, d€2)
Combining (A.17) and (A.19) gives,
de Ter) =0 and dle fe5)=0 . (A.20)
Hence there exists o := (01, 02) € W22 N W1 (D% R?) such that
do; =e 1 & and o;(0)=0 . (A.21)

Vo has maximal rank equal to 2 at every point, therefore it realizes a lipschitz diffeomorphism from D?
into  := o(D?). Let 61 be the dual basis to do;. Since d§ = Zle d§ - €; €}, one has d¢ - % =ef g

o i
1

Hence E oo~ ! is a conformal immersion. For every one-form a: on D? one has
(1= ¢f) lafg, < (detg) [alg < (1+¢p) |alg, (A.22)
Hence, since |do|2 = €/, since detg = 0, x 8,€]? and since 1/2 — Dis(€)2/2 < |VE|72 0,€ x 9,€]? <
1/2 + Dis(€)?/2, we deduce from (A.22) and (A.16) the following estimate
I10g Vol (o) < C 1108 VElleiomy +C [ Vitg? dvol, (4.23)

Moreover from the above remark?® we have that |Dis(c)| < 2 9. Hence we deduce

|Dis(o™1)| < 2¢0 and

(A.24)
110g | Vo™ gl Lo () < C [[10g [VE|[| Lo (p2) + C /2 Vit dvol,
D

Let h be the solution to the Riemann Mapping Theorem for 2 :

h : Q — D? is holomorphic

h0)=0 and HK(0)€R with #'(0)>0

The Riemann Mapping Theorem asserts that h is bi-holomorphic and we will denote k it’s holomorphic
inverse from D? into §2. Finally let ¢ := 0~ ! o k. (We shall often see ¢ as a C—valued map). ¢ satisfies

0=¢ =v(2) 0:C (A.25)
where vo h:=0.07/0,071 = H(Vo1)/[|[Vo™1|? + 2 detVo~1]. Since detVo~—t > 0, we obtain

||V||Loo(D2) S 250 . (A26)

26We use that |doy A doalg = |do|Z/2 and (A.22).
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Let 0 := dist(0,092). Integrating do~! on a segment S connecting 0 to one of it’s nearest point P on 99
gives 1 = | [ do™'| <6 |[Vo~ || and integrating now do on a ray R issued from zero and connecting
o1 (P) gives § = |P — 0| = | [, do| < ||V0]lo. Hence we have

1

oo e <5<Vl - (A.27)
Combining (A.23), (A.24) and (A.27) gives
|log 8] < C ||log |VE][| L (p2) + C /D |Vitg)? dvol, (A.28)
Since h is holomorphic and k() = D? we have
W imisymon < S Ihlleo < (A.29)

This implies that h(B2(0)) C BélT/é(O) and hence for instance k(0B1,4(0)) C Q\ Bs/ac, (0) Hence

[og €Ml (08, ,4(0)) < [10g [4C1[[Vollo] | + [1og 4]

(A.30)
<C 1+ 10 VElliwipn] +C [ Vi dvol,
D
We have
IE | oo (B, 2000) < 2C1 Nkl =2 C1[ Vol (A.31)
This implies that
V¢l (B, 00y <2 C1 Vo™ s VOl
(A.32)

<2C; exp C||10g|V5|HL°°(D2>+C/ |Vﬁ5|2] ’
D2

In B1(0) \ By/4(0) we write (i = e’ where A is a real-valued function and where 1 takes value into
R/277Z. Using this notation (A.25) becomes

[1—v e 2K

[ ez 02 =710
which implies
0 oA
R|5 [aemg|] =0 . (A.33)

where 3 := 1 +iB2 = —2v e 2% [1 + v 2]~ Hence \ satisfies

2
> Ouilai; 9:,A =0 in BY(0)\ BY4(0)
ij=1

A=0 on AB3(0) (A.34)

A=log|¢|  on @B%,(0)
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where a11 = age = 1+ 1 and a12 = —ag; = —f2. From (A.26) we have that |3| < 4e¢. Hence for g9 > 0
small enough De Giorgi-Nash result (see for instance [TA3]) gives the existence of 0 < a < 1 such that

[Allco.az\B2,,) < C [[log[Clllwr.= @8, ,.(0))

1/4

Using (A.32) we then obtain

o s2\B2,,) <2 C1 exp [C I log |VE]|| oo (p2) + C /D2 |Vﬁg|2} : (A.35)
Since 5 5
~ 11 -9 _ A.
%{82 [( + ) az” 0, (A.36)

we get a similar control to (A.35) for arg¥ on B?\ Bf/4. Hence combining these last estimates together
with (A.32) again, we finally obtain

||<||CO,Q(D2) S 2 Cl exp |:C H 1og|Va|\Lx(Dz) + C / |Vﬁ{|2:| , (A37)
DZ

which finishes the proof of lemma A.3. |

Lemma A.4 [Normalization Lemma] Let (3, h) be a riemman surface where h denotes the hyperbolic
metric of volume 1 associated to the conformal class c. Assume c is contained in a compact class IC of the
Moduli space of . For any A > 0 there exists R >0, 1 >r >0 and § > 0 such that, for any conformal
embedding o of ¥ into R™ satisfying

/ |dﬁq;|§ dvoly < A, (A.38)
b
where g := §*ng, and for any choice of a geodesic disc Ba,(p) for the metric h satisfying

/ |dﬁq;|§ dvoly < 6
B2T(p)

then there exists a Moebius transformation = of R™ such that

i

20 (%) C BR(0) (A.39)

i)
H*(Eo®(X)) <3 R*A (A.40)

iii)
cr2h < I=0g < clr 2 p on Br(p) (A.41)

i)
/ |dii z|? dvoly < 87/3 (A.42)

B (p)

O
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Proof of lemma A.4. Let X be the function given by e?* h = (f)*ng. A satisfies
7Ah)\ = Kg 62/\ + K,

where K, = 4n(1 — genus(X)) is the scalar curvature of the metric h and K, the scalar curvature of the
metric g := ®*ggm. Since the L' norm of K, €2* is bounded by A, standard elliptic estimates gives the
existence of a constant C'(X, h) such that

JdN 2wy < C(5,h) (A2 +1) (A43)

where the L>* norm is taken w.r.t h. Since h is assumed to be contained in a compact subpart of the
moduli space of ¥ we have that C(3, h) is uniformly bounded. On the disc Bs,(p) we take conformal
coordinates in such a way that the flat metric in these coordinates is comparable to h (i.e. h = e”[dx?+dz3]
and e” is comparable to Cr? where C is universal) and we identify Ba,(p) with the flat unit disc D?. Let
f such that e?/[dz? + dz3] = g (i.e. f=\+v). We have

IVfllee <CA2+1] . (A.44)

We assume § < 87/3 and then using lemma 5.1.4 of [Hel] there exists a W12 orthonormal frame (€, )
on Bs,.(p) such that
fig =& A (A.45)

which is in W2(D?,8™~1 x §m~1) such that

€1-€=0 , ng: €L Ney (A46)

/ [[Vér” + Ve ?] dxdy§2/ |Vitel® dx dy (A.47)
D2 D2

and
div(€1,Vez)) =0 in D? |

. (A.48)
<€1, %) -0  ondD?
v
With this frame, as in [Hel], we can express Af and we have
Af = (Ve Ve . (A.49)
Let u be the solution of
Ap = (V+é1,Vey) on D?
(A.50)
uw=20 on dD?
Wente inequality gives
2
I~ + Vil <€ 3 [ Vel <o (4.51)
i=1
Combining (A.44) and (A.51) we obtain, since f — p is harmonic that
If— ?HLOC(DfN) <C5+C[A*+1] . (A.52)

where f is the average of f on the 2 disc of radius 1/2, Df/2.
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We translate the surface ®(X) in such a way that ®(p) = 0. Denote by A(x) = e’z the dilation of
rate e’. Observe that

g = Ty,08
‘We corg;ider now the new immersion A; o ® that we denote <f)t and f; := f +t. We are going to fix t
such that f + t will be comparable to 1 but will be relatively small.
From (A.6) in [KS2] for any 29 € R™ and 0 < 0 << 400

072 HA(B4(2) N By(z0)) <3 |72 H2(B,(2) N B, (a0)) +/

|H|? dvolg] : (A.53)
&, (Br(x0))
We claim that there exists po depending only on A > W(®) and z; € Bi(0) such that ®¢(X) N
By, (z1) = 0. For y € ®(X) one has
lim o2 H2(®(X) N Bo(y)) =7 . (A.54)

o—0

For 0 < p < 1/2 we consider a regular covering of B;i(0) by balls B,(z;) in such a way that any
point in B;(0) is contained in at most C(m) balls of the form Bs,(%) . The number of | such that
féfl(sz(zl)) |H|* dvol, > C~' 7/2is bounded by 2 A C C(m). For an [ such that fcfrl(sz(zl)) |H|?* dvol, <
C~!7/2 and such that there exists y € B,(2;) N X # (), combining (A.53) and (A.54) one obtains that

(2p)"2 H2(B() N Bap(z1)) > C 17 /2

the number of such [ is then bounded by p~2 times a number depending only on m and A - where we are
using again (A.53) but for o =0, ¢ = 1 and r — +o00. The total number of ball B,(z;) is proportional
to p~™. Since m > 2, for p = pg chosen small enough, depending only on m and A we deduce the claim.

Let 21 and pg given by the claim. Let I(x) := x — x1/|x — x1|? to be the inversion with respect to z;.
We will choose =; = I o A; for some suitable ¢t. We have then

E(B()) C By (0) (A.55)

Because of (A.52)
Ay o ®(D3)y) C B, 17(0) (A.56)

for a being the exponential of the r.h.s. of (A.52) o := e“9+C¢ [A’+1]  Moreover, still because of (A.52),
we have

ma~2e2(H) < H2(As o é(Df/Q)) = / 2HF) < o220t (A.57)

D),

Choosing already ¢ such that ave!t/ < 1, (A.57) implies that

NI < 29 oG A58
do2 © —gEtoé—pge (A.58)

from which we deduce _ . . _
47 o e <HA(Z, 0 (ID(Dfp)) < ?a2e2(t+f) . (A.59)

0
An exact computation gives
- 3, —
iz o = g — 20 (B, — 21)) A ———
|y — 1



where we see 77 as a 2-vector. Hence we obtain that
~ ~ —1 2
|Viig, gl <4 |Viig| +4py~ [V

This implies, using (A.59),
/ |Viiz, gl <45+4—a 2(t+7) (A.60)
D?, Po
We choose now ¢ such that 40 44 7 2¢2(t+1) = 87/3 and collecting (A.55), (A.58) and (A.60) gives the

result. Indeed it remains only to check (A 40). We first observe that inequality (A.53) (which holds also
for ® replaced by = o <I)) implies that , for any r > pgl

H2(Z 0 B(%)) < Cpy*r 2 HA(Z o B(S)) + 5> A

Letting p converge to +o0o yields the desired estimate (A.40). Hence lemma A.4 is proved. (]

Lemma A.5 Let £ be a conformal immersion of D*\ {0} into R™ in VV?J(D2 \ {0}, R™) and such that
log | V€] € Lpe (D?\ {0}). Assume € extends to a map in Wb 2(D2) and that the corresponding Gauss
map nE also extends to a map in WH2(D?, Gry,—2(R™)). Then «E realizes a lipshitz conformal immersion
of the whole disc D? and there exits a positive integer n and a constant C' such that

3

(C=o(V) |o"" < |52 < (C+o(1) 271 (A.61)

O
Proof of Lemma A.5. We can always localize in order to ensure that
8T
|ViiH? dedy < —
17 3

Using lemma 5.1.4 of [Hel] we deduce the existence of a framing € := (€}, &) which is in W2(D?, §m~1 x
S™=1) such that

€1 . 52 =0 5 ngi €1 A 52 5 (A62)
/ [|[VéL]? +|Veér|?] dedy < 2/ |Vitel® da dy (A.63)
D2 D2
and
div(e1,Veéy)) =0 in D? |
~ (A.64)
0
(a, ﬁ) -0  ondD?
v
Similarly as in the proof of lemma A.3, we introduce ¢; := dg_léi and €} to be the dual framing.

Denoting [0,€]? = |0y €]2 = €2 we have that the metric goo := £ grm is given by g = €2 [da? + dy?].
Hence with respect to the flat metric g : [dz + dy ] one has

€ilgy = 90(€is€i) = € 77 gool€ir€i) = €7
il (€i,€) A gooleires) 2

and since < e, >= d;; we have that [}|2 = e**. Thus we deduce that the 1-forms &} are in L?(D?).
Since € is in Wh° N W22 (D2\ {0}, R™) and log | V€] € Lg2 (D2 {0}) we have that the framing given by

loc

o1



—

fii=e > 8,,Eisin L. nWLE2(D2\ {0}, R™). Since £ is conformal the unit framing (fi, f) is Coulomb?7

loc loc

div(f1,Vf2) =0  in D*\ {0}
Denoting ¢? the rotation which passes® from (f1, f2) to (€1,&). The Coulomb condition satisfied by
the two framings implies that df := (ie??, d(e"’)) is an harmonic 1-form on D?\ {0} and hence analytic
on this domain. This implies that
ef e LS, N W22 (D?\ {0})

loc loc

Like again in lemma A.3 we introduce® f € C° N W12(D?) to be the solution of

Af = (V1é,Vey) on D?

=0 on 0D?
As in lemma A.3, the computations give in D?\ {0}
Vi=1,2 dle™7e] =0 a.e. in D?\ {0}

By schwartz lemma the distribution d[e~/¢] is a finite linear combination of successive derivatives of
the Dirac Mass at the origin but since e~/&} € L?(D?), this linear combination can only be 0. Hence we
have
Vi=1,2 dle '] =0 in D'(D?)

Hence, by Poincaré Lemma, there exists (o1,09) € W2(D? R?) such that do; = e fef. The dual
basis (0/001,0/002) = e/ (e1,e2) is positive, orthogonal on D? \ {0} and integrable by nature. hence
0 = 01 +i09 is an holomorphic function on D?\ {0} which extends to a W2 —map on D?. The classical
point removability theorem for holomorphic map implies that o extends to an holomorphic function on
D?2. We can choose it in such a way that o(0) = 0. The holomorphicity of ¢ implies in particular that
|do|y, = €*~f is uniformly bounded and, since f € L>(D?), we deduce that A is bounded from above
on D2, This later fact implies that £ extends to a Lipshitz map on D2. Though |do|,, = e*~ has no
zero on D?\ {0}, o’ might have a zero at the origin : there exists an holomorphic function h(z) on D?
satisfying h(0) = 0, a complex number ¢y and an integer n such that

o(z) =co 2" (14 h(z)) . (A.65)
We have that locally
Y - .o -
a—‘s = 0y, € — 04,6 = d€ efe} —idE el e = ef[6) — idy)]
o
Hence, since f is continuous, we have that
oF
9| _ /300 (140(1) . (A.66)
do
Combining (A.65) and (A.66) gives
oE| o€ |9a| 0 |l
=1 =152 |35 =< V2 el 2771 (14 0(1)) . (A.67)
This last identity implies the lemma A.5. 0

27This follows from a straightforward computation presented in [Hel] chapter 5.
2810 (f) +ifa) = (&1 + ié2)
29By virtue of Wente’s theorem (see theorem 3.1.2 of [Hel]).
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