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This is a list of exercises given as homework exercises or exam questions in classes taught by the first author
over the last decade (following, e.g., | , , 1), Most exercises are meant for graduate level courses
in Mathematics of Data Science, while some have have also appeared in Bachelor level courses in related topics
(see | ]). This list was prepared together with the other authors who have been TAs for these courses in
ETH Ziirich at various times and have came up with many of these exercises. Since the first author is often asked
for exercises around these topics, we thought it would be most useful to others to make a list available online.
We hope these are useful to educators, and for students to use as an additional practice ground. It is also a
good resource for readers of the text by the first author, Singer, and Strohmer | ], designed for a graduate
level course. There are several other excellent resources for exercises, you can find some within the references
of | , ]. For the readers looking for more challenging problems, we recommend [ )L

A couple of disclaimers: We found it essentially impossible to trace back the origin of each exercise. For
many of these exercises we were inspired by several other sources, including homework sets and exams that we
solved ourselves when we were students. Also, as you see below, we tried to mark the expected difficulty of
problems. We advise the reader to keep in mind that rating difficulty of problems tends to be unreliable.
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2 Curses, Blessings, and Surprises in High Dimensions

Problem 2.1 (e e |Drawing points in the unit ball). Let d > 2 and x1,...,, € R? are sampled uniformly at
random from the unit ball B¢, The goal of this exercise is to show that with high probability all points will
be contained in an annulus of width 2Inn/d (A events), and every pair of points will be nearly orthogonal (O
events). Namely, for any distinct numbers 4, j € [n] define the events

2lnn v6Ilnn
A; {”xln >1 d }7 Ozﬁj {<$laxj> = Ji=1 1}

Prove that there exists a constant C > 0 (independent of both n and d) such that

C
P (A; for all i,0; ; for all i # j) > 1 — —.
n
Problem 2.2 (e |Integral identity and Chebyshev’s inequality). Let X be a non-negative integrable random
variable.

(a) Prove the integral identity:
E[X] = / P(X > t) dt.
0

(b) Generalize it for an arbitrary integrable random variable Y (not necessarily non-negative).
(c¢) Assume that Y has a finite absolute moment E|Y|? for some p > 0. Find an integral expression for E|Y|P.

(d) Let X be any random variable with finite expected value and finite p-th central moment E |X — EX|”, for
some p > 1. Prove that for any ¢ > 0:

p(x —~Ex|> 1) < EX_EXE
Problem 2.3 (¢ | MGF). Let X be a real random variables. Recall the definition of the MGF":
Mx(X\) =E [e*Y].
(a) Show that Mxx/(A) = Mx(A)Mx/(A), where X’ is another random variable independent of X.
(b) Show that Mx(A) > exp (AE[X]).
(c) Let Z be a standard Gaussian random variable, i.e. the one having the probability density function

fa(z) = jg*

Show that My()) = e**/2.

Problem 2.4 (e o | Cantelli’s inequality). Let X be a real random variable with finite mean and finite variance
Var(X). Then for any ¢ > 0,

Var(X)
— >t) < —————.
PX-EX 21) < Var(X) + 12

Hint. n 2fiys Aunigiquo wof ‘n + YT — X = K 9]qDLIDA WOPUDL PIRIYS Y] Y1Mm YI0M

Problem 2.5 (e e | Paley—Zygmund inequality). Let X be a non-negative random variable with finite variance.
Prove that for any 0 < 0 < 1:

P(X >0E[X]) > (1- 9)2(]]?{?2)].

Hint. ; [, x| @ w91 oyp woiqo ouo ppoo mopy - [{IXI@o<x}y x| g+ [{IXIA0>X}p x| 51 = [x] o 220N

Problem 2.6 (e]|log-MGF and Cramér transform). Let X be a centered (i.e. E[X] = 0) random variable. We
define the logarithm of the moment generating function (log-MGF) for A € R as

Px(\) =1logE [e}].
Suppose that it exists in an open neighbourhood around zero. The Cramér transform of X is defined for ¢ € R:

Yy (t) = sup (Mt — ¥x(N)).

AER



(a) Prove that for any ¢ > 0, one has
P(X >t) <exp(—¢x(1)).

(b) Suppose that Xi,...,X,, are n i.i.d. copies of X, and let S,, = X7 + ...+ X,,. Prove that for any ¢t € R:
¥, (t) = nx (t/n).

Problem 2.7 (ee|Chernoff bound for polynomial vs. exponential moments). Let X be a non-negative real
random variable whose MGF is finite over R. Fix ¢t > 0. Show that

P E AX
inf E[X7] < inf [e ]
peNu{o} tP A>S0 et

Problem 2.8 (e e | Poisson tail bound). Let X be a Poisson random variable with parameter p € (0, 00). Prove
that for any ¢ > 0:
P(X > p+1t) <exp(—ph(t/p),

where h(z) = (14 z)log (1 + z) — x.

Problem 2.9 (ee|Weak bound for Komlés Conjecture). Let A € R™ ™ matrix whose columns ag,...,a,
satisfy |la;|]|l2 =1 for all 4 € {1,...,n}. Prove that there exists an absolute constant C' > 0 such that

min _ ||4e|| < Cv/n.
ee{—-1,+1}"

Hint. ©01p109dTa 940 pUD 3 UO SSIUULOPUDL DINPOLIUT
Problem 2.10 (e |Properties of subgaussian random variables). Recall | , Definition 2.9].

(a) Show that if X and X’ are independent mean-zero subgaussian random variables with variance parameters
o and ¢’ respectively, then X + X’ is a subgaussian random variable with variance parameter vo2 + ¢/2.

(b) Is this still true if we drop the independence assumption?

Var(X) < % <exp <A22‘72> - 1) .

(d) Using L’Hopital’s rule, or otherwise, taking A — 0 deduce that

(c¢) Show that for any A € R it holds

Var(X) < o

Hint. ",_2+ ;2 > ;2 + ¢ qnfasn aq pybuw figyonbous suy,

Problem 2.11 (e e |Hoeffding’s lemma). Let X be a random variables such that X € [a, ] a.s., for some real
numbers a < b. In the proof of Hoeffding’s theorem [ , Theorem 2.15] it was shown that X is (b —a)/2-
subgaussian. We will show here that this is optimal, and prove a slighly weaker version using symmetrization.

(a) Let X’ be an independent copy of X, and set Y = X — X’. This is usually called the symmetrization of
X. Show that for any A € R, the following inequality between MGFs holds:

E {ex(xfux)} <E [exy] .

(b) Show that
E [e*] = E [cosh(AY)].
(¢c) Using approximation cosh(z) < e”*/2 (no proof needed) conclude that X is (b — a)-subgaussian.

(d) Using Problem 2.10 (no proof needed) show that for any real numbers a < b, there is a random variable
X such that X € [a,b] a.s., and for any o < (b — a)/2, X is not subgaussian with parameter o.

Remark. Note that in [ , Definition 2.9] the subgaussianity condition is given in terms of X — u, where
w is the mean of X.

Problem 2.12 (e |Hoeffding’s inequality for subgaussians). Let Xi,...,X,, be independent random variables
such that X, is subgaussian with parameter o;, and let S,, = X; + ...+ X, be the sum. Fix ¢t > 0.



(a) Show that the Cramér transform of S, is lower bounded by

t2

2% 0

¥, () =
(b) Using Problem 2.6 deduce that

t2
P(|S, — ES,| > t) <2 = ).
152 =251 >0 =20 (<57 25

Problem 2.13 (e ee|Bernstein’s inequality - bounded moments). Let Xi,...,X,, be independent centered
random variables such that for all i € [n] and integers m > 2, one has

Ume_Q

E|X;|™ <
2

m!,

where R > 0 and o; > 0 are constants that may depend only on distribution of X;.

1@( >t> gzexp<—2(yfim)>,

(b) Deduce Bernstein’s inequality for bounded variables (Theorem 2.17 in lecture notes). Namely, show that
for independent centered random variables X, ..., X, satisfying |X;| < a a.s. and EX? < 02, it holds

t2
P >t <2exp| ————5—
( ) - p( 2n02+§at>

Hint. 'W =\ 250010 ‘punoq ffousayy) ayy burfiyddo 4o3fy

(a) Prove that, for all ¢ > 0,

n

>ox

i=1

where 12 = 31" | o2

n

> X

i=1

for any t > 0.



3 Singular Value Decomposition and Principal Component Analysis

Problem 3.1 (e |Equivalent definitions of spectral/operator norms). Given a matrix M € R™*" | prove that
all of the following quantities are equal:

(a) supy) =1 [[Mvll,, the operator norm of M, which is commonly denoted by || M|;

1ol
(b) sup,so Ty,

T 0 0
—1u Mu;

(c) SUPjul,= o], =
(d) o1(M), the largest singular value of M;
(e) /A (MMT), the square root of the largest eigenvalue of MM T;

f) /A1 (MT M), the square root of the largest eigenvalue of M " M.

Problem 3.2 (e| Maximal entry bound). Given a matrix X € R™*™ show that for any i € [n] and j € [m] we
have
— [IXIF < X5 < 1 X

Problem 3.3 (e|Symmetrization of matrices). We are going to explore three ways in which an m x n (with
m < n) real-valued matrix M can be symmetrized.

(a) Let A be an m x m matrix defined by
A=MM".

Check that A is symmetric, and show that its m eigenvalues are given by: o1 (M)?,02(M)?, ..., om(M)2.
(b) Show that A and B := M " M have the same non-zero eigenvalues, up to multiplicities.

(c) Let C be an (m + n) x (m + n) matrix defined by

. Omxm M
¢= < M7 Oen)
where 0, is an r X r all-zeros matrix. Check that C is symmetric, and show that its m + n eigenvalues
are given by:

(1) o1(M),...,0m(M); (2) —o1(M),...,—om(M); (3) n — m of them are zeros.

Problem 3.4 (e e|Gershgorin circle theorem). Let A € R™*™ be a symmetric matrix with entries (a;;); je[n]-
For i € [n] let R; be the sum of the absolute values of the non-diagonal entries in the i-th row:

Ri = Z |(Z,L'j| .
J#i
Prove that every eigenvalue of A lies within at least one of the Gershgorin discs D(a;;, R;), i.e. for any eigenvalue
A of A we can find i € [n] such that |\ — a;| < R;.

Problem 3.5 (e |Low rank approximation). Let A € R™*™ and k be an integer such that 1 < k < rank(A).
(a) Prove that there exists a matrix B € R™*™ of rank k such that

1Al
vk

(b) Does the statement (a) hold if the operator norm on the left hand side is replaced with the Frobenius
norm ||A — B||g?

A =Bl <

Problem 3.6 (ee|Quadratic form optimization). Let A € R™ ™ be a symmetric matrix with eigenvalues
A1 > ... >\, Given r € {1,2,...,n}, consider the following optimization problem:

T
max ZU;AUZ‘ s.t. viij =6; for 1 <4,5 <r,
i=1

where 9;; is the Kronecker delta defined as

1 1=y
b=
0 i#j.



(a) Show that Tr(A) is the solution of the problem when r = n.
(b) Determine the solution of the problem in terms of the eigenvalues of A when r < n.

Problem 3.7 (e |Inner product between matrices). For any two matrices A, B € R™"*"™ consider the map
(A,B) =Tr (ABT).
(a) Prove that (-,-) is an inner product on the space of n x n matrices.
(b) Show that [|A||% = (4, A).
(c) Deduce the matriz Cauchy-Schwarz inequality: (A, B) < ||A||z || B]| p-

Problem 3.8 (e | Rotation minimisation). Let A, B € R™*™ be two arbitrary matrices. Find the solution, in
terms of A and B, or their SVD decompositions, of the following optimization problem:

argmin [|QA — Bl 5.
QeO(m)

Here O(m) denotes the set of all m x m orthogonal matrices.

Problem 3.9 (e |Polar decomposition). Let A € R"*™. Prove that there exists a positive semi-definite matrix
P and an orthogonal matrix @ such that A = PQ.

Problem 3.10 (e e |Power method). Let A € R"*™ be a symmetric positive semi-definite matrix with eigen-
values A\ > ... > A, > 0 and associated eigenvectors vy, ...,v, € R™ (that form an orthonormal basis). In this
exercise, the goal is to show that the power method converges exponentially fast.

(a) Let yo € R™ be an initial vector that satisfies Ayy # 0. Define the power method iteration for k& > 0:

Yk+1 = Ay
+ —_— .
| Ayl

Prove that these iterations are well-definied, i.e. that ||Ayy|| # 0 for any k > 1.

(b) Define the Rayleigh quotient as &, =y, Ay, and its relative error by

A1 — &k
A

err(§y) =

If A is diagonal, i.e., A = diag(A1,...,\,) and A; = 1, show that we can represent the error as

i WA (1 — \)

3
2 n ook
wi + Do WA

err(§y) =

where w; = (yo,v;) for all i € [n].

(c) If A is diagonal with 1 = A1 > Ay > A3, and we start from yg such that wy # 0 and wq # 0, show that

err(§p+1) 2\
7(3”(&) — (/\1> as k — oo.

(d) Generalize the result in (c) for an arbitrary matrix (not necessarily diagonal) having A\; > A2 > As.

Problem 3.11 (e e | Moore-Penrose Pseudoinverse). Let A be an n x m real matrix. A pseudoinverse of A is
an m X n matrix AT such that the following three conditions are simultaneously met:

o AATA=A.

o ATAAT = AT,

e Both AAT and AT A are symmetric.

(a) Let ¥ be an n x m rectangular diagonal matrix (X;; = 0 for ¢ # j) with non-negative entries. Find an
m x n rectangular diagonal matrix X+ that is a pseudoinverse of X.

(b) Given a general n x m matrix A, consider the singular value decomposition of A = USV? with U and
V being orthogonal matrices, and ¥ being (rectangular) diagonal. Prove that the matrix A*, given by
AT =VEtUT, is a pseudoinverse of A.



(c) Prove that if A is an invertible n x n matrix, then A~! is a pseudoinverse of A.

(d) Prove that if A has full column rank (its columns are linearly independent) then its pseudoinverse is given

by
1

At = (ATA) AT

(e) Prove that the pseudoinverse is unique.

Definition. Given an integer n, a standard Gaussian Wigner matrix W € R"*" is a symmetric random matrix
whose diagonal and upper-diagonal entries are jointly independent Gaussian variables, such that Wi; ~ N(0,2)
and, fori < j, Wij = Wji ~ N(O, 1)

Problem 3.12 (eee|BBP for spiked Wigner model). In the lectures you learned about BBP transition for
the Wishart model, i.e., when we observe ¥ = %X X7, where X is an p X n matrix with columns drawn
independently from N (0, I, + Buu"). We will explore the similar type of phase transition for another model.

Let W be an n x n Wigner matrix, v be a unit-norm vector in R"” and & > 0. We define the spiked Wigner
model as observing Y = ﬁW—#fwT, with the aim of recovering the signal v. This model exhibits the following
phase transition (as n — oo) for

1. the largest eigenvalue A,y of Y:

2 if ¢ <1
/\max% 1 157 '
§+Z if&€>1;

2. the leading eigenvector vy, of Y:

0 ife<,

175 if € > 1.

|<UmaX7U>‘2 — {

To measure the quality of the recovery procedure we define the mean squared error of an estimate w € R™
as

2
mse(w) =E {wa—r - vaH } .
Find the asymptotic behaviour of the mean squared error for the PCA estimator, i.e., the value of

lim mse(vmax)
n— oo

as a function of &.

Remark. The mean square error defined as above might appear unnatural for this problem since ome can
measure the difference between two vectors using le norm (up to a sign). However, this type of MSE definition
can be more useful when the perturbation is not rank-one and non-symmetric (e.g., in low-rank matriz estimation
problems). Additionally, it addresses the issue of sign invariance in the model, where the observation remains
the same whether the signal is v or —v, and therefore, we can recover the vector only up to a sign.



4 Graphs, Networks, and Clustering

Definition (Irreducible matrix). A matriz A € R™*™ s called irreducible if there is no permutation matriz P

such that 4 4
T _ 11 12
prap= (t 4)

where A11 and Agy are square matrices (not necessarily of same dimensions). In other words, an irreducible
matriz cannot be transformed into block upper-triangular matriz by simultaneous row/column permutations.

Problem 4.1 (e e |Irreducibility and graphs). Let A € R"*" be a matrix with non-negative entries. We define
G(A), a directed graph associated to A, in the following way: there is a link from ¢ to j if and only if 4,; > 0.

(a) Prove that if A is irreducible, and x is its eigenvector with non-negative entries, then x has only positive
entries.

(b) Show that the statement above is false if we drop the assumption that A is irreducible.

(¢) Show that A is irreducible if and only if the associated graph G(A) is strongly connected, which means
that for every ordered pair of nodes (7, ) there is a path from ¢ to j (of any length).

Problem 4.2 (e e o | PageRank and Random Teleports). In the lectures, we considered the PageRank algorithm
designed for ranking pages based on their importance by analysing their ingoing and outgoing links. However,
there exist graphs such that PageRank fails to predict meaningful scores. We will consider a simple fix for this
problem which is often referred to as Random Teleports.

Let n > k > 1. Consider a directed graph on n + 1 vertices, labelled 0,1, ...,n, with the following links.
Vertex 0 links only to itself, and any other vertex j € [n] has k outgoing edges to its next k vertices: j+1,...,j+k
mod n, and an edge to vertex 0. See Figure 4.1 for an example of such a graph.

(a) Compute the rank of vertices according to the PageRank scheme described in Section 4.1 of Lecture Notes.

(b) We define PageRank with Random Teleports as follows: with probability 8 a random walker follows a
link at random, and with probability 1 — /3, jumps to a random vertex (link or vertex is chosen uniformly
at random). We form a new random walk matrix M € R"+)X(+1) whose entries m;; equal to the
probability of going from vertex j to vertex i. The ranking is then defined as the leading eigenvector of
the constructed matrix M. For k = 1 and fixed 0 < 8 < 1 compute the PageRank scores for nodes with
the teleport probability 1 — 3.

Remark. Have you recognized the connection with the notion of irreducibility in this exercise?

Figure 4.1: Example of the directed graph from Problem 4.2 with n = 8 and k = 2.

Problem 4.3 (e | Lloyd’s algorithm - monotonicity). Recall the problem of k-means clustering: given x1,...,z, €
R? (with n > k), we want to minimize the following objective function

k
Co8ta(S1, -+ Sks s i) = D Y [lwi = pull (4.1)

=1 €S,



that depends on the clusters Sy, ..., S with centers p1,..., ur € RP. Denote the minimum value by

opty, :=  min costa(S1, -+, Sk 1, - - -, fk)
partition Sq,...,Sk
centers fi1,...,Mk

Prove the following two properties.

(a) Given a choice for the partition Sy, ..., Sk (of non-empty sets), the centers that minimize (4.1) are given
by
1
= o
|Sl| 1€S]
iven the centers pq,...,p; € e partition that minimizes (4.1) assigns each point z; to the cluster
b) Given the centers {1 € R? the partition that minimizes (4.1) assi h point z; to the clust

I =argmin ||z; — |, -
I=1,....k

Problem 4.4 (e|k-means objective - equivalent problem). Consider the same setting of Problem 4.3. Show
that

k
1 2
opt, = min E — E T; — x5, 4.2
Pta St St |Sz\ijesl” ‘ illz (4.2)

Hint. -1z '55v7¢ “Ii‘ = I suaquad fo 20102 puizzdo 2y 10 (g'F) i auwnbs ay3 pundrg

Problem 4.5 (e | Lloyd’s algorithm - convergence). Given any set of n points in R?, prove that Lloyd’s algorithm
stops after a finite number of iterations, in other words, that the objective eventually stops decreasing.

Hint. ‘sjuzod u fo suogund fiuvw fippgiurf oun 249,

Problem 4.6 (ee|Lloyd’s algorithm - different objective). Let n € N be odd, k& < n, and z1,...,z, € RP.
Instead of minimizing sum-of-squares of £5 norms (4.1), suppose we want to minimize an objective function with
{1 norms:

k
costy (S1, .-, Sk bty - -y i) = Z Z s — ;- (4.3)
1=114€eS;
Denote the minimum value by
t, = i t1(S1, ..., Sk 1, .- - .
centers pi1,...,M4k
(a) Given a choice for the partition Si,..., Sk (of non-empty sets), which centers do minimize the alternative

objective function (4.3)? A proof of minimality needs to be provided.
(b) Develop an algorithm analogous to Lloyd’s algorithm using the alternative objective function (4.3).
(c) Prove that it is always the case that opt, < opt3.

Problem 4.7 (e]|Laplacian and connectivity). Given an undirected graph G, with the associated Laplacian
L, show that Aa(Lg) > 0 if and only if G is connected.

Problem 4.8 (e|Normalized Laplacian). Given an undirected weighted graph G = (V, E, W), we define the
normalized Laplacian matrix L5 = D~Y/2LsD~1/2 where D is the degree matrix and L is the graph Laplacian.

(a) Show that Lg is symmetric and PSD (positive semi-definite).
(b) Show that all the eigenvalues of L are real numbers, between 0 and 2.

Problem 4.9 (ee|Tightness of the upper bound in Cheeger’s inequality). Let n be an even number greater
than 2. Let C be a cycle graph on n vertices, labelled 1 to n. As usual, we set w;; = 1[{4,j} € E], so that
W = A.

(a) Prove that for every cut S, with § C .S C [n], its Cheeger’s cut is lower bounded as

h(S) >

SERN



(b) Denote by A2(C') the second smallest eigenvalue of the Laplacian of the graph C. Prove that
c
)‘Q(C) < ﬁv
where c is an absolute constant.
(c) Conclude that the upper bound in Cheeger’s inequality is tight up to an absolute constant.

Hint. -7 — |% — z| = 'x fig uaaph [ > X 407990 2y} 40f TOT | T Wof 21DIPOND Y} 4IPISUO))

Problem 4.10 (e o | Tightness of the lower bound in Cheeger’s inequality). Let d > 2 be an integer, G = (V, E)
be the d-dimensional hypercube, and Lg its normalized Laplacian. We index the n = 2¢ vertices of the
hypercube by d-dimensional {0, 1}-vectors, i.e. V = {0, 1}d, and given any z,y € V, we have {z,y} € F if and
only if x and y differ in exactly one coordinate. The example for d = 3 is given in Figure 4.2.

(0,1,0) (1,1,0)

(0,1,1) (1,1,1)

(0,0,0) (1,0,0)

(0,0,1) (1,0,1)

Figure 4.2: 3-dimensional hypercube.

Given a (possibly empty) subset T' C [d] let v € R™ be a vector, whose coordinates are indexed by n = 29
vertices of the hypercube and defined by

vr(w) = (~1) e,
where z; is the i-th coordinate of the vertex x € {0,1}%. Also, let S C V be the subset of vertices given by
Sr={zxeV:vp(z)=1}.
[When T = (), we interpret the empty sum as zero, i.e. Y, ox; =0.]
(a) Compute h(S(1}), the Cheeger’s cut of the subset Styy.
(b) Show that for any T C [d], vr is an eigenvector of Lo with eigenvalue @.
(¢) Show that if 77 C [d] is distinct from T', then vy and vy are orthogonal.
(d) Conclude that for any 0 < k < d, the eigenspace corresponding to the eigenvalue % has dimension (Z)
)

(e) Compute h¢, the Cheeger’s constant of G.

10



5 Nonlinear Dimension Reduction and Diffusion Maps

Problem 5.1 (e | Random walks: eigenvalues). Let G = (V, E, W) be an undirected weighted graph.

(a) Suppose that A, B € R™™ ™ are similar matrices, which means that there exists an invertible matrix
P ¢ R™ " such that B = P~'AP. Prove that they have the same eigenvalues, with equal geometric
multiplicities.

(b) Show that the transition probability matrix M := D~'W is similar to the matrix S :== D~Y/2WD~1/2,
(¢) Deduce that all eigenvalues of M are real.
(d) Prove that every eigenvalue of M belongs to the interval [—1, 1], and show that 1 is an eigenvalue.

Problem 5.2 (ee|Random walks: connectivity). Let G = (V, E, W) be an undirected weighted graph. Show
that the largest eigenvalue of M = D~'W has multiplicity one if and only if the graph is connected. Here, two
vertices are connected if and only if there exists a path from one to another along which all edges have positive
weights.

Problem 5.3 (eee|Lazy walk). Let G = (V, E, W) be an undirected weighted graph.

(a) Let M’ = (M +1I) be the transition probability matrix of the associated lazy walk. Show that M’ is not
necessarily symmetric, but it is always positive semi-definite metrix.

(b) Prove that the lazy random walk is aperiodic, which means that for any vertex ¢ € V' there is no (period)
integer k > 1 such that for any (time) ¢ > 1:

(M), >0 = k|t

(c) Suppose that W is an irreducible matrix. Prove that there exists T € N such that for every ¢t > T, all
entries of (M')! are positive. (This means that the associated Markov Chain is regular.)

Problem 5.4 (e |Equilibrium distribution). Let G = (V, E, W) be an undirected weighted graph. Suppose
that there is an equilibrium distribution 7 on V', which means that starting from any i € V:

P(X(t)=j]|X(0)=14) —m as t = o0,
holds for any j € V. Prove that Ao(M) < 1.

Hint. 0+ (=) x | {=0OXxX)d— (=(0)X | = @) X)d 220y am ‘A > [T Ty fiun uof 10y3 suvow s1yJ,

Problem 5.5 (e o | Truncated diffusion map of a cycle graph). Let C be a cycle graph of length n, where n > 3.
Find the diffusion map truncated to 2 dimensions.

Problem 5.6 (e e |Diffusion map of a complete graph). Let K, be complete graph on n nodes, where n > 3.
Find the diffusion map. (Since there are more bases of real-valued eigenvectors, it is sufficient to pick one.)

Problem 5.7 (ee|Diffusion map of a lazy walk). Let G = (V, E,W) be an undirected weighted graph with
the associated transition probability matrix M. Let ¢,: V — R™~! be the diffusion map made from M. Now
let M’ = %(M + 1) be the transition probability matrix of the associated lazy walk, and ¢}: V — R"~! be the
diffusion map made from M’. Prove that for any ¢ > 1:

t
_ t
=Y (e
u=0

Problem 5.8 (e o | Hitting times and semi-supervised learning). Let G = (V, E, W) be an undirected, connected
graph with non-negative weights w;;. The vertex set is partitiond as V = V. UV_ U V*, where V are labeled
as 1, V_ are labeled as 0 and V* are unlabeled. Suppose that every unlabelled vertex (V) is connected to at
least one labelled vertex (V. UV_) by an edge.

To predict the label of the unlabeled vertices, you wish to find a function f*: V' — R which agrees on the
labeled vertices and predicts the values of the unlabeled vertices as values in R as smoothly as possible:

fri=arg min Y w(f(i) - ()% (5.1)

fV—oR: et
f)=lievt I
F(i)=0,5€V -
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Now, consider a random walk X on V given by the following transition probabilities:
Wi

" deg(i)’

PX(t+1)=7|X()=1)
Given a node i € V, let ¢g(i) be the probability that a random walker starting at i reaches a node in V. before
reaching one in V_. Le. if Ty =inf{t > 0: X(¢t) € Vi } and T_ =inf {t > 0: X(¢) € V_}, then
g(t) =P (Ty <T- | X(0) =1).

(a) Show that for any i € Vand ¢t >0, > ., P(X(t+1) =7 | X(¢t) =4) =1, so that X is a random walk.

jEV
(b) Show that g satisfies constraints of the optimization problem: g(i) =1 for i € V4, and g(i) =0 fori e V_.
(c) Prove that g satisfies the following equality for any unlabelled i € V*:

90) = Gy 2 5+ gy 2 W9 (52)

JeEVL JEV™*

(d) By analyzing first-order optimality conditions (it is enough to state the formula from the notes, without
proving) of the optimization problem (5.1), show that f* also satisfies (5.2), and conclude that f* = g.

12



6

Linear Dimension Reduction via Random Projections

Problem 6.1 (e e|Johnson-Lindenstrauss Lemma: Alternative Version). The goal of this exercise is to prove
the random projection lemma and then to use this result to prove another version of the Johnson-Lindenstrauss
lemma.

(a)

Let P be the coordinate projection, which maps a vector in R™ onto its first m coordinates in R™. Let
z € S" ! be a random vector sampled uniformly on the sphere S®~!. Show that

m
E||Pz3 = —I=13-

Prove the following statement using the result in Problem 8.5: There exists an absolute constant ¢ > 0,
such that for any e > 0 with probability at least 1 — 2 exp(—ce?m) it holds

1=y 2 el < P2l < 1+ )y 2 e (6.0

Note that the result in (b) is stated for a random vector, while in dimension reduction we wish to find a
randomized projection such that it preserves geometry for a fixed set of points. However, it can be shown
that the same result (6.1) holds when z € R™ is a fixed vector, and P is a orthogonal projection onto an
m-~dimensional subspace chosen uniformly at random from all m-dimensional subspaces in R™. In fact,
these two models are equivalent.

You can use the mentioned fact without proof. Using (b), show the following result: Let X be a set of
n points in R™ and let € > 0. Suppose that

C
m > —Qlogn.
€

Consider a random subspace F of dimension m chosen uniformly from all m-dimensional subspaces in R",
and let P be an orthogonal projection on this set. Then with probability at least 1 — 2 exp(—ce?m), the
scaled projection @Q = /- P is an e-approximate isometry for &', i.e., for all z,y € X,

(I=9gllz -yl < IQz — Qyl < (L + &)z —yl.

Here C, ¢ > 0 are universal constants.

Problem 6.2 (eee|Optimality of the Johnson-Lindenstrauss Lemma). Recall that Johnson-Lindenstrauss
lemma states that the geometry of the data is well preserved when we choose a random subspace of dimension
m < logn. In this problem, we will show that this dependency is optimal.

Find an example of a set of n points in R™, for which it is not possible construct an e-isometry for e = 1,/2025
onto a subspace of dimension m such that m/logn — 0 as n goes to infinity. You are expected to use results
from other Problem sections (for instance section 8).

13



7 Community Detection and the Power of Convex Relaxation

Problem 7.1 (e e | Random MaxCut and Boosting). We consider the following naive (but surprisingly effective)
procedure to find a large cut in a graph G with an even number of vertices: choose a set S of n/2 vertices
uniformly at random in G. We want to show that the partition (S, .5¢) cuts a large number of edges with some
(small but positive) probability. Then we boost the procedure to increase the probability of finding a large cut.

P <cut(5') > (; — 5) |E|> > e,

where |E| is the number of edges in graph G.

(a) Show that for any fixed ¢ € (0, 1)

Hint. o buwaq [ON 24 10y3 sobpo fo 195 oy fipngs 07 421509 2q fivws 32 (D) 40

(b) The result of the previous subproblem is rather unsatisfying, since if we want to find a cut with 0.49|E)|
edges, the probability of success may be as low as 0.01. For this reason we will modify our procedure,
namely to improve our accuracy we sample S several times.

Suppose we run the procedure k times and get sets Sy, ..., S,. We want to construct a set S* from these
outputs such that for any § € (0,1),

P (m(s*) > (; _ 5) |E> >1-4

Find such cut and give an estimate on the required number of trials k(d,€) depending on probability
parameter ¢ and approximation parameter e.

Remark: observe that the same technique can be applied to other randomized algorithms as well.

Problem 7.2 (e |Dual SDP). To find the solution to the community detection problem in SBM, in the course
we introduce convex relaxation of the problem and subsequently use convex duality to certify the optimality.
In this problem, we will find the dual problem using the Lagrangian function.

Recall the definition of a semidefinite program (SDP).

Definition. A semidefinite program (SDP) is an optimization problem of the following type:

ex (A, X) subject to X = 0,(B;, X)=0b;, i=1,...,m, (7.1)
e nxXn

where A, By, ..., B,, € R"™™ and b; € R are given.

In SDPs, one of the constraints is positive semidefiniteness of a matrix. This constraint can be incorporated
in the Lagrangian function as follows:

L Y) = (AX) + 3 valbs — (B X)) + (¥, X),
i=1

where Y € R™*"™ is positive semidefinite matrix, and v € R™. Using this Lagrangian, we can easily check that
p" = max Iggl L(X,v,Y)
Y0
coincides with the optimal value of the original SDP (7.1).

(a) Using the expression for the Lagrangian function, find the dual function

Y,v) = L(X,v,Y
g(¥,v) = max L(X,vY)

defined for PSD matrices Y € R"*™ and v € R™ (note that the dual function may be infinite for certain
values of Y'). Then write the dual program of the SDP (7.1) (the dual program just minimizes the dual
function and contains the constraints that prevent the dual function from being infinite).

(b) Using (a), find the dual of the following semidefinite program:

max tr(BX)
st. X;; =1 for each 4
X >0

14



Problem 7.3 (e e e | Connectedness of the Erd6s-Rényi graph). We define the Erdds-Rényi graph as a random
graph G ~ G(n,p) with n vertices generated by placing each possible edge independently at random with
probability p. The Erdés-Rényi graph is a popular model to study the performance of several optimization
algorithms on graphs. Many of these algorithms rely on the graphs being connected and in this problem we
study when this is the case for the Erdés-Rényi model.

We define p := ’\10% for some constant A > 0.

(a) Prove that if A <1 —¢, where ¢ > 0 is an absolute constant, then the graph G has an isolated vertex with
probability 1 — o(1). (We use the standard asymptotic notation, f(n) = o(1) if lim,_, f(n) =0.)

Hint. "s2012.400 pagp)osi [0 LoQuinu 9y SJUN0D DY) 2]QDILDA WOPUDL Y] APISU0D (D) L0

Hint. "¢’ wWa]qold 25[]

(b) Now observe the following: A graph is disconnected if and only if there exits a set of k nodes such that

k< L%J and there is no edge connecting the set of k nodes with the complement set of n — k nodes.

Use this fact to prove that if A > 1 + ¢ for an absolute constant ¢ > 0, then the graph is connected with
probability 1 — o(1).
Problem 7.4 (e |Sum of Squares Proof). Let x,y be real numbers, prove
4, .4
o +y  +4xy+2>0.

Hint. prwouow 290tudosddy un povigqns pun ppy

Problem 7.5 (| Smallest Eigenvalue Program). Let A € R4*9 be a symmetric matrix. Prove that the following
optimization problem has the smallest eigenvalue of A as optimal value:

min  Tr(AX)
st. Tr(X)=1
X > 0.

(Recall that X > 0 means that X is PSD.)

Problem 7.6 (ee|Discrepancy Relaxation). Let A € R4*™ be a matrix. We define its discrepancy as the
optimal value of the following minimization problem:

disc(4) = {m}nl} | Ael| . -
56 -1, m

The vector discrepancy of A is the minimal value of the problem

Uyt €SM—1 1<i<d

m
vecdisc(A) = min max E A, jug|
=1 )

where S™~! C R™ denotes the euclidean unit sphere, so luilly = 1 for all 1 <4 < m. The goal of this exercise is
to show that vector discrepancy is a convex relaxation of discrepancy, which can be solved using a semidefinite
program.

(a) Prove the inequality
vecdisc(A)? < disc(A)?%.

(b) Prove that the quantity vecdisc(A4)? is the optimal value of the following semidefinite program:

min DeR
st. (AXA"),, <D Vi<i<d
and X;; =1 V1I<i<m

X =0eR™™,

Hint. ‘s107000 1un 4nofi 3on43su0d 07 Y T4pwW 243 [0 1004-940NbS 2Y] 28/)
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Problem 7.7 (e ee|Minimum Bisection and Community Detection). The goal of this exercise is to relate the
minimum bisection problem with exact recovery in the community detection problem. Assume that n is even
and consider the graph with n vertices drawn from the stochastic block model with two balanced communities,
i.e, each community has size n/2, moreover, the two communities are chosen uniformly at random. Let p be
the probability that an edge is placed inside the communities and ¢ across the communities with p > ¢.

Our goal is to estimate the partition €2 induced by the communities with an estimator Q(G) that depends
only on one sample of the random graph G. Prove that the estimator that minimizes the probability of error
is equivalent to solve the minimum bisection of the observed graph G (the minimum bisection is a partition
into two equally-sized subsets, such that the number of edges being cut by such a partition is minimal). The
probability of error P, is given by

Po:=PQ#Q)= ZP G) # Q|G = g)P(G = g).

Here the sum is taken over all possible realizations of the random graph G.

Hint. ‘O U0 puadap jou op 1Y) swidg asouby uvd nofi yoyy agou puv fifyydwis oy apn.  safivg 2sy)

Problem 7.8 (¢ |PSD Set Convexity). Show that the set S;7 = {A € R"*" : A > 0} is convex and that it is
invariant under multiplication with a positive scalar.

Problem 7.9 (ee|Spectral Algorithm for Planted Clique). We want to analyze parts of a spectral algorithm,
which is used to find the largest clique in a graph G on n vertices. This algorithm is often analyzed for the
planted clique model, where G ~ G(n,1/2) is random Erd8s-Rényi graph and then k vertices of G are randomly
uniformly selected and then edges will be added to G until these k vertices become a clique (fully connected
amongst each other). We call the graph we get after this procedure G. The goal is to find this planted clique
with the so called "AKS spectral algorithm”, which relies on computing the top eigenvector of the matrix
M:=A- 1), where A is the adjacency matrix of G and 1,, € R" is the all-ones vector. The idea behind
this algorithm is that the matrix M is typically close to the matrix 2151 5, where 1g is the indicator vector
of the planted clique S, and if the matrices are close, then their top eigenvectors should in some sense also be
close. This is the part that you will prove in this exercise:

(a) Let 0 < ¢ < 1, and suppose there exists a symmetric matrix M € R™*™ and a subset S C [n] with the
property |S| > 2(1+¢71) HM — 211l is the indicator vector of S (so 1 whenever the
coordinate is in S and 0 otherwise). If v is an eigenvector corresponding to the largest eigenvalue of M
with norm Hv||2 |S|, prove that the following inequality holds:

min{||v — Ls]l3, | v - 1s][3} < 2|S| >
You may use the following Theorem without proof:
Theorem. Let M € R" ™ be a symmetric matriz and let v be an eigenvector corresponding to the largest
eigenvalue of M. Let y € R™ be any vector and let 8 be the angle between y and v, then
M — T
sin(@)) < —M
lyy "Il = (1M —yy |

Hint. 's10709a 25y} usamiaq 2j6up 2y3 uo spuadop o puv ST fo 1onposd 10p ay1 10y3 190f 9y} 957

Problem 7.10 (ee|Little Grothendieck Problem). Let C' = 0 (C € R™*" is positive semidefinite). In this
problem you will show an approximation ratio of % to the problem
n
mIP:aj):(l Cijxixj.
ij=1
Similarly to Max-Cut, we consider

max Cyjviv;.
v; ER
losf?=1 7=

The goal is to show that, for g ~ N (0, I,x»), taking z; = sign(v] g) a randomized rounding,
n 2 n
T
Z C’ijxixj 2 ; Z Cijvi Uj (72)
3,7=1 4,j=1

The difficulty lies in the fact that E[z;z;] is not easy to compute, which is why we divide this exercise into two
parts.
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(a) Compute the quantity E[sign(vy g)(v;, g)].

Hint. %o puv ‘a usamgaq onposd wouur oy3 uo puadap fipuo pnoys soquinu SwyJL

(b) Define the matrix S € R™*™ with entries S;; = ((vi,g) — \/7/2sign(v] 9))({vy, ) — \/7/2sign(v] g)).
Show that
Tr(CS) >0

holds, and use this fact to prove the inequality (7.2).

17



8 Concentration of Measure and Gaussian Analysis

Problem 8.1 (e | Moments of Gaussians). Let Z be a standard gaussian random variable. Recall that Gaussian
integration by parts states the following: given any differentiable function f: R — R whose derivative is
absolutely integrable with respect to the standard normal measure, we have

E[Zf(Z2)]=E[f'(2)].
Let p > 1 be an integer and Z be a standard gaussian random variable. Show that

E[77] = (p— 1! if pis even;
o if p is odd.

Here, !! denotes the double factorial, defined as n!l =n-(n —2)---3-1 for an odd natural number n.
Note. There are (p — 1)!! possible pairings of p elements (when p even), and this is not a coincidence!

Problem 8.2 (ee|Maximum of Gaussians). Let g1,...,gq4 be a collection of (not necessarily independent)
Gaussian random variables with zero mean and variance o2.

(a) Prove that the following bound holds
E max_g; < o+/2logd.

(If you do not manage to prove the inequality with sharp constant 2 in the square root, you can replace it
by an absolute constant C > 0.)

(b) Prove that the bound in the previous item is sharp up to an absolute constant if we assume that all the
Gaussian random variables are independent, i.e. there exists a universal constant ¢ > 0 such that

E max g; > co+/logd.

i=1,...,

(c) Show that the conclusion of (b) is false if we drop the assumption that g1,. .., gq are independent.

Problem 8.3 (eee|Application of Slepian’s lemma). Let W be a d x d Gaussian Wigner matrix | ,
§3.3.2].

(a) Prove that
E sup (g,v) =El|gl2 < Vd,

veSd—1

where g € R? is a standard Gaussian random vector.

(b) Apply Slepian’s lemma to prove that
Emax(W) < 2Vd.

(c¢) Show that the upper bound above is tight up to an absolute constant.
Hint. ‘uoyviboyus fiq pAd> > 8\\6)| @ moys 1s.41f “(2) 40 {a‘b)g =: K $s990.4d 2195DYD01S Y} LIPISU0D ‘() 4O

1

3, we have

Lemma (Gamma Function Bound). Let x >
I'(z) = / t* teTtdt < 32",
0

Problem 8.4 (e |Moments of Subgaussian Variables). Let Y be a o2-subgaussian random variable, so for all
t > 0 it holds )
P(Y| > ot) <2 7.

Prove that for all p > 1 we have
1
E[|Y["]? < Coy/p,

where C' > 0 is a universal constant.

Hint. -uoounf vwwnb ayy uo spunoq puv (v)g g wajqoig as.)
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Theorem (Gaussian Lipschitz concentration). Let g1,..., g, be i.i.d standard Gaussian random variables. Let
f:R™ = R be a L-Lipschitz function with respect to the Euclidean norm. Then, for allt > 0,

P(|f(g1,- -2 90) = Ef (g1, gn)| > Lt) < 2e7172, (8.1)

Theorem (Lipschitz Concentration on the Sphere). Let f:/nS"~! — R be a L-Lipschitz function and let X
be a random vector uniformly distributed on the sphere \/nS™~1. Then, for all t > 0,

P(|f(X) — Ef(X)| > Lt) < 2e~°". (8.2)
Here ¢ > 0 is an absolute constant.

Problem 8.5 (ee|Lipschitz Concentration around L, norms). In this problem we will extend the Lipschitz
concentration on the sphere to concentration around L, norms for p > 1, i.e., we will prove that under the same
assumptions as in (8.2) and additionally assuming that f is non-negative,

P\ f(X) = |f(X)|z,| > Lt) < 26~ (8.3)

where ¢, > 0 is a constant only depending on p and || Z||1,, = (E|Z|P)'/? for a random variable Z such that its
p-th absolute moment is well-defined.
We will split the proof into several steps.

(a) Let Y be an L%-subgaussian random variable in the sense of Problem 8.4. Prove that for any A > 0 there
exists a constant c4 only depending on A, such that

P(|Y — LA| > Lt) < 2e¢At
holds for some constant ¢4 > 0 only depending on A.
(b) Show that for any non-negative random variable Z,
|EZ — (EZP)'/?| < (E|Z — EZ|P)Y/.
You can assume that all the moments are well-defined. Use Problem 8.4 and (8.2) to conclude
[E[f(X)] — E[f(X)"]'/?] < CL\/p
for some universal constant C' > 0.

(¢c) Now we have all the ingredients to prove the theorem. Using (a), (b), and (8.2), complete the proof of
inequality (8.3).

Problem 8.6 (e e e |Duality and Covering Numbers). We will present the principle of duality in a completely
different context. Suppose you have a set T' C R™ and some number € > 0. We call a subset S C T" an e-covering
of T, if for every t € T there exists an s € S, such that ||s —t||, < e. We call a subset S C T an e-separated
set, if for every s # s’ € S we have ||s — t||, > . We define the following optimal values:

N(T,¢) = min |S] D(T,e) = max |[9]
scr SCT
Se—covering of 7 s e—separated

(a) Show that these two optimization problems are duals in the following sense:

N(T,e) <D(T,e) < N(T,e/2)

(b) Use part (a) to show that for the euclidean ball in d-dimensions one has the following covering number

estimates for every 0 < e < 1:
1\? 3\*
-] <NBie) < (=
() =wesa<(2)

Problem 8.7 (e | Norm of a Gaussian Vector). Given a standard Gaussian vector g € R, we saw in Problem 8.3
that E||g||2 < v/d. The goal of this exercise is to give a simple proof that this is sharp using Gaussian Lipschitz
concentration inequality (8.1).

(a) Prove that the variance of ||g||2 is at most an absolute constant.

(b) Show that E| g||2/v/d converges to one as d goes to infinity.
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Problem 8.8 (e | Gaussian Width of the Simplex). The gaussian width of a set S C R? is defined as

o(8) = E [sup (5,9)].

ses

where g € R? is a standard gaussian vector, so all coordinates of g are independent and N(0, 1)-distributed.
Consider the d — 1-dimensional simplex

d
Sd:{meRdmgxigl,inl}

i=1
Our goal is to show that there exist universal constants ¢, C > 0, such that
cy/log(d) < w(Sq) < C/log(d).
(a) For any subset T C R? we define its convex hull conv(T) as follows:
k
conv(T) = {inti |k € Nsg, x; € Sk, t; € T}
i=1

Prove the equality
w(conv(T)) = w(T).

(b) Find a finite set T C R%, such that Sq = conv(T). Use the result of another problem in this section to
deduce the desired inequalities.
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9 DMatrix Concentration Inequalities

Problem 9.1 (e | Constructing Wigner). Let Z be a d x d random matrix whose entries are all independent

standard gaussians (in total d? of them). Show that % (Z+Z7) is a Gaussian Wigner matrix | , §3.3.2].

Problem 9.2 (e|Computing the o parameter). Let W be a d x d Gaussian Wigner matrix and let D be a
1
d x d diagonal matrix with independent standard gaussians on the diagonal. Show that ||]EW2|| 2 =g(W) =

vd+1 and ||IED2||% = o(D) =1, and upper bound E |W|| and E || D|| using the Non-commutative Khintchine
inequality.

Problem 9.3 (ee|Intrinsically free Non-commutative Khintchine Inequality). In fact, a stronger version of
the Non-commutative Khintchine inequality is known. Let Aj,..., A, € R%¥? by symmetric matrices and
G1s---,9n € N(0,1) i.i.d. The gaussian series X =Y " | g A; satisfies

E||X|| <20+ Cuv(logd)?,
where C' > 0 is an absolute constant, 02 = |37 | A?||, and v is given by
v? = ||Cov(X)]|.

Here, matrix covariance Cov(X) is a d? x d? matrix, whose row and column coordinates are indexed by pairs
of indices, and entries are given by

COV(X)Z-]-VM =K [Xinkl} for i,j,k,l € [d]

Compute Cov(W) and Cov(D), where W and D are as in Problem 9.2, and deduce using the intrinsically free
Non-commutative Khintchine Inequality that there is an absolute constant C’ > 0, such that

E|W| < C'Vd.

Hint. -F[i] 2] 15177 = 1401 x) a0 1oyp moys “4amgs o sy

Problem 9.4 (e |Hermitian dilation). In order to extend the matrix Bernstein inequality in the book | ,
Theorem 9.13] from symmetric to general rectangular matrices, we will use Hermitian dilation. For a matrix
S € R¥1*42 the Hermitian dilation #(S) is defined as

— {Odyxd, S (d1+d2) x (d1+d2)
H(S) — ( ST 0d2><d2 eR :

In Problem 3.3(c) we showed that #H(S) is symmetric and that ||[H(S)|| = [|S]|.
Let Si,...,8, € R91%9 he random rectangular matrices satisfying I [S;] = 0 for every i € [n]. Show that

D5
i=1
where d = dy + dg, C(d) =4+ 8 [logd] and

02max{

Problem 9.5 (e e |Bernstein’s inequality - expectation bound). Let {Xj};_, be a sequence of independent
random symmetric d X d matrices. Assume that each X satisfies:

E < /C(d)o+C(d) L,

n

ZE (55 ]

i=1

n

>_E[sTSi]

=1

)

}, L2 = Emax |S,]]°.

EX) =0 and || Xk|| < R almost surely.

In this exercise, the goal is to show that
n

> X

k=1

To get a bound on expectation from the tail bound in the book [ , Theorem 7.9], we will use an integral
identity for the expectation (see Problem 2.2(a)).

E

<C ((m/log (d+1)+ Rlog(d + 1)) . (9.1)
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(a) Show that for any a,b >0

oo (i) o (L) e ()} 2o () 0 ()

Apply it to the exponent in the right-hand side of matrix Bernstein’s inequality so that you get integrals
that are easier to compute.

(b) For very small ¢, the tail bound is loose since the exponent is close to 1. Think how we can isolate the
case of ¢ close to 0.

(c) Once you split the integral, it remains only to compute the individual parts and choose the right constants
in your argument. To find it, you can closely examine the final bound (9.1).

Problem 9.6 (ee|Randomized matrix multiplication). Let A € R"*™ be a real-valued matrix with unit
spectral norm ||A|| = 1. The cost of computing AAT, using the standard matrix multiplication method, is of
the order of n?m, which can be prohibitive when n and m are very large. In some cases, it is sufficient to obtain
only an approximate solution which allows us to reduce the costs significantly. In this problem you will show
that by using randomness we can get an approximation of the product more efficiently.

1

Denote a,...,a, € R"™ columns of matrix A. Define a random matrix X such that P (X =m- akaz) =

(a) Suppose we draw s independent copies of X, denoted by Xji,...,Xs, and then average them X, =
% > %—1 Xk. Prove that X in an unbiased estimator of AAT, meaning that EX, = AAT.

(b) Define the coherence statistic as pu(A4) =m - , nax lax||?. Show that:

X

and

nax | Xr — EXk|| <2u(A), almost surely.

(¢) Use Problem 9.5 (proof not needed) to show that, for an absolute constant C, if the number of samples s
satisfies

11
s > C'max {E, 52} wlogn
then the procedure achieves e-accuracy, i.e., E HXS —AAT H <e.

Problem 9.7 (e | Commuting vs. simultaneously diagonalizable). Let A, B € R?*¢ be two symmetric matrices.
(a) If A and B are simultaneously diagonalizable, show that they commute.
(b) If A and B commute, and B has all eigenvalues distinct, show that they are simultaneously diagonalizable.
(c) Generalize (a) and (b) for n symmetric matrices Ay, ..., A, € R4

Hint. (ay)Y = (ay)g woyj ¥ 3 Y puv 3 3 a 2wos .of ax = ag fr 10y) moys (q) 4oq

Problem 9.8 (e e |NCK for commuting matrices). In the book we discussed the role of commutativity of the
matrices for the upper bound of the expected value of the spectral norm of a random matrix. Recall that for

X =" A, where Ay,..., A, € R¥? are symmetric matrices and g1, ..., gn i N(0,1), it holds

o SE|X| S oy/logd,
where 02 = ||Z:l:1 A12H

(a) Suppose that Ay,..., A, € R4 are symmetric commuting matrices. This means that they are simulta-
neously diagonalizable (well known fact, no proof needed), so there is an orthogonal matrix @ € R4*? so

that D; :== QA;Q ™" is a diagonal matrix for any i € [n]. Let )\y), N )\((ii) be the entries that appear, in
that order, on the diagonal of D;. Show that

E|X||=E max
k=1,...,d

i 91')\;(3)
i=1
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(b) Deduce using Problem 8.2(a) that

E|X| < o+/logd.

(c¢) Find an example of commuting matrices Aq,..., A, such that Problem 8.2(b) implies
E || X| Z oy/logd.

Problem 9.9 (ee|Trace Commutativity Inequality). The goal of this exercise is to show the following key
inequality that proves why commuting matrices perform worse than non-commuting matrices in trace moment
estimations. One can actually follow a slightly different approach than the one shown in the book if one follows
the hint in (b).

Let X, A € R¥? be symmetric matrices and let &, be nonnegative integers with k 4 [ being even, then

Tr(AXFAXY) < Tr(A2XFHY).
(a) Let X = Z?Zl Aiuju; be the the eigenvalue decomposition of X, prove
d
Te(AXFAXY) < 37 I IV (o] Auy)?.
i,j=1

(b) Finish the proof by showing
d
>IN I (u Auy)” < To(A2X ).

1,j=1

Hint. ‘sonjpausbio fo j1onpoud ay) uo figyypnbouy s,bunof as
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10 Compressive Sensing and Sparsity

Problem 10.1 (ee|Sparse vector approximation in ¢2). Let N > s > 1 be integers and = € CV be a vector.
Show that there exists an s-sparse vector y € C such that

1
lz —yll, < ENG ] -

Problem 10.2 (e | {p-Minimization Recovery). Let A € C™*P be a matrix. Suppose that every s-sparse vector
x can be uniquely recovered by A via ||.||o minimization, i.e, we choose z* that minimizes ||z||o subject to the
constraint Az = Az and z is the unique minimum of this problem if z has at most s nonzero entries. Here ||.||o
is the £y "norm”, it counts the number of nonzero entries of the input vector.

(a) Prove that every 2s columns of A are linearly independent.
(b) Prove that m > 2s.

(¢) Prove that if a matrix B € C™*P satisfies the condition that every 2s columns are linearly independent,
then every s-sparse vector = can be uniquely recovered by B via ||.||o minimization.

Problem 10.3 (e e|Stable Nullspace Property). A fundamental fact in compressed sensing is that in order to
recover an s-sparse vector € RN by minimizing the ¢; norm, the measurement matrix ® € R**Y needs to
satisfy the null space property: For every non-trivial vector v in the kernel of ® and all sets S such that |\S| < s,
it holds that [jvg|l1 < |lvse|l1 [ , Definition 10.3]. Here vg denotes the vector in RIS corresponding to the
restriction of v to the index set S. The goal of this exercise is to study the compressed sensing problem when
x is approximately sparse.

We say that a matrix ® € R4 satisfies the (s, p)-stable null space property if for every non-zero vector
v € ker(®) and all sets S such that |S| < s, the following holds

[vslly < pllosells-
Prove the following facts

(a) Given a set S C {1,...,N} and vectors z,z € RV,

(@ = 2)sells <zl = [zl + 2flzse [l + [|(z = 2)s]l1-
(b) Prove that if ® € R4*N satisfies the (s, p)-stable nullspace property with p € (0,1), then the solution of
the optimization program
& := argmin ||z]|; subject to @z = Pz
satisfies 1+
I = 2l < 205(2) 1,

where o, () is the s-best term approximation error of x, given by os(z) = inf_. .| <s |z — 2|1

(¢) Show that the stable nullspace property with p < 1 is sufficient for exact recovery when the vector z is
s-sparse.
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