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October 11, 2025

This is a list of exercises given as homework exercises or exam questions in classes taught by the first author
over the last decade (following, e.g., [Ban16, BSS25, Ban25]), Most exercises are meant for graduate level courses
in Mathematics of Data Science, while some have have also appeared in Bachelor level courses in related topics
(see [Ban25]). This list was prepared together with the other authors who have been TAs for these courses in
ETH Zürich at various times and have came up with many of these exercises. Since the first author is often asked
for exercises around these topics, we thought it would be most useful to others to make a list available online.
We hope these are useful to educators, and for students to use as an additional practice ground. It is also a
good resource for readers of the text by the first author, Singer, and Strohmer [BSS25], designed for a graduate
level course. There are several other excellent resources for exercises, you can find some within the references
of [BSS25, Ban25]. For the readers looking for more challenging problems, we recommend [BKMR25].1

A couple of disclaimers: We found it essentially impossible to trace back the origin of each exercise. For
many of these exercises we were inspired by several other sources, including homework sets and exams that we
solved ourselves when we were students. Also, as you see below, we tried to mark the expected difficulty of
problems. We advise the reader to keep in mind that rating difficulty of problems tends to be unreliable.
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2 Curses, Blessings, and Surprises in High Dimensions
Problem 2.1 (• • | Drawing points in the unit ball). Let d ≥ 2 and x1, . . . , xn ∈ Rd are sampled uniformly at
random from the unit ball Bd. The goal of this exercise is to show that with high probability all points will
be contained in an annulus of width 2 lnn/d (A events), and every pair of points will be nearly orthogonal (O
events). Namely, for any distinct numbers i, j ∈ [n] define the events

Ai =
{

∥xi∥ ≥ 1 − 2 lnn
d

}
, Oi,j =

{
|⟨xi, xj⟩| ≤

√
6 lnn√
d− 1

}
.

Prove that there exists a constant C > 0 (independent of both n and d) such that

P (Ai for all i, Oi,j for all i ̸= j) ≥ 1 − C

n
.

Problem 2.2 (• | Integral identity and Chebyshev’s inequality). Let X be a non-negative integrable random
variable.

(a) Prove the integral identity:
E[X] =

∫ ∞

0
P(X > t) dt.

(b) Generalize it for an arbitrary integrable random variable Y (not necessarily non-negative).

(c) Assume that Y has a finite absolute moment E|Y |p for some p > 0. Find an integral expression for E|Y |p.

(d) Let X be any random variable with finite expected value and finite p-th central moment E |X − EX|p, for
some p ≥ 1. Prove that for any t > 0:

P (|X − EX| ≥ t) ≤ E |X − EX|p

tp
.

Problem 2.3 (• | MGF). Let X be a real random variables. Recall the definition of the MGF:

MX(λ) = E
[
eλX

]
.

(a) Show that MX+X′(λ) = MX(λ)MX′(λ), where X ′ is another random variable independent of X.

(b) Show that MX(λ) ≥ exp (λE[X]).

(c) Let Z be a standard Gaussian random variable, i.e. the one having the probability density function

fZ(z) = 1√
2π
e− z2

2 .

Show that MZ(λ) = eλ2/2.

Problem 2.4 (• • | Cantelli’s inequality). Let X be a real random variable with finite mean and finite variance
Var(X). Then for any t > 0,

P(X − EX ≥ t) ≤ Var(X)
Var(X) + t2

.

Hint. WorkwiththeshiftedrandomvariableY=X−EX+u,forarbitraryshiftu.

Problem 2.5 (• • | Paley–Zygmund inequality). Let X be a non-negative random variable with finite variance.
Prove that for any 0 ≤ θ ≤ 1:

P (X > θE [X]) ≥ (1 − θ)2 (E [X])2

E [X2] .

Hint. NoteE[X]=E[X1{X≤θE[X]}]+E[X1{X>θE[X]}].HowcouldoneobtainthetermE[X2]?

Problem 2.6 (• | log-MGF and Cramér transform). Let X be a centered (i.e. E [X] = 0) random variable. We
define the logarithm of the moment generating function (log-MGF) for λ ∈ R as

ψX(λ) = logE
[
eλX

]
.

Suppose that it exists in an open neighbourhood around zero. The Cramér transform of X is defined for t ∈ R:

ψ∗
X(t) = sup

λ∈R
(λt− ψX(λ)) .
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(a) Prove that for any t ≥ 0, one has
P (X ≥ t) ≤ exp (−ψ∗

X(t)) .

(b) Suppose that X1, . . . , Xn are n i.i.d. copies of X, and let Sn = X1 + . . .+Xn. Prove that for any t ∈ R:

ψ∗
Sn

(t) = nψ∗
X(t/n).

Problem 2.7 (• • | Chernoff bound for polynomial vs. exponential moments). Let X be a non-negative real
random variable whose MGF is finite over R. Fix t > 0. Show that

inf
p∈N∪{0}

E [Xp]
tp

≤ inf
λ>0

E
[
eλX

]
eλt

.

Problem 2.8 (• • | Poisson tail bound). Let X be a Poisson random variable with parameter µ ∈ (0,∞). Prove
that for any t > 0:

P (X > µ+ t) ≤ exp (−µh(t/µ)) ,
where h(x) = (1 + x) log (1 + x) − x.

Problem 2.9 (• • | Weak bound for Komlós Conjecture). Let A ∈ Rn×n matrix whose columns a1, . . . , an

satisfy ∥ai∥2 = 1 for all i ∈ {1, . . . , n}. Prove that there exists an absolute constant C > 0 such that

min
ε∈{−1,+1}n

∥Aε∥∞ ≤ C
√
n.

Hint. Introducerandomnessonεandtakeexpectation.

Problem 2.10 (• | Properties of subgaussian random variables). Recall [BSS25, Definition 2.9].

(a) Show that if X and X ′ are independent mean-zero subgaussian random variables with variance parameters
σ and σ′ respectively, then X +X ′ is a subgaussian random variable with variance parameter

√
σ2 + σ′2.

(b) Is this still true if we drop the independence assumption?

(c) Show that for any λ ∈ R it holds

Var(X) ≤ 2
λ2

(
exp

(
λ2σ2

2

)
− 1
)
.

(d) Using L’Hôpital’s rule, or otherwise, taking λ → 0 deduce that

Var(X) ≤ σ2.

Hint. Thisinequalitymightbeuseful:2+t2≤e
t

+e−t
.

Problem 2.11 (• • | Hoeffding’s lemma). Let X be a random variables such that X ∈ [a, b] a.s., for some real
numbers a ≤ b. In the proof of Hoeffding’s theorem [BSS25, Theorem 2.15] it was shown that X is (b − a)/2-
subgaussian. We will show here that this is optimal, and prove a slighly weaker version using symmetrization.

(a) Let X ′ be an independent copy of X, and set Y = X −X ′. This is usually called the symmetrization of
X. Show that for any λ ∈ R, the following inequality between MGFs holds:

E
[
eλ(X−EX)

]
≤ E

[
eλY

]
.

(b) Show that
E
[
eλY

]
= E [cosh(λY )] .

(c) Using approximation cosh(x) ≤ ex2/2 (no proof needed) conclude that X is (b− a)-subgaussian.

(d) Using Problem 2.10 (no proof needed) show that for any real numbers a ≤ b, there is a random variable
X such that X ∈ [a, b] a.s., and for any σ < (b− a)/2, X is not subgaussian with parameter σ.

Remark. Note that in [BSS25, Definition 2.9] the subgaussianity condition is given in terms of X − µ, where
µ is the mean of X.

Problem 2.12 (• | Hoeffding’s inequality for subgaussians). Let X1, . . . , Xn be independent random variables
such that Xi is subgaussian with parameter σi, and let Sn = X1 + . . .+Xn be the sum. Fix t > 0.
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(a) Show that the Cramér transform of Sn is lower bounded by

ψ∗
Sn

(t) ≥ t2

2
∑
σ2

i

.

(b) Using Problem 2.6 deduce that

P (|Sn − ESn| > t) ≤ 2 exp
(

− t2

2
∑n

i=1 σ
2
i

)
.

Problem 2.13 (• • • | Bernstein’s inequality - bounded moments). Let X1, . . . , Xn be independent centered
random variables such that for all i ∈ [n] and integers m ≥ 2, one has

E |Xi|m ≤ σ2
iR

m−2

2 m!,

where R > 0 and σi > 0 are constants that may depend only on distribution of Xi.

(a) Prove that, for all t > 0,

P

(∣∣∣∣∣
n∑

i=1
Xi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2(ν2 +Rt)

)
,

where ν2 =
∑n

i=1 σ
2
i .

(b) Deduce Bernstein’s inequality for bounded variables (Theorem 2.17 in lecture notes). Namely, show that
for independent centered random variables X1, . . . , Xn satisfying |Xi| ≤ a a.s. and EX2

i ≤ σ2, it holds

P

(∣∣∣∣∣
n∑

i=1
Xi

∣∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2nσ2 + 2
3at

)
for any t > 0.

Hint. AfterapplyingtheChernoffbound,chooseλ=
t

ν2+Rt.
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3 Singular Value Decomposition and Principal Component Analysis
Problem 3.1 (• | Equivalent definitions of spectral/operator norms). Given a matrix M ∈ Rm×n, prove that
all of the following quantities are equal:

(a) sup∥v∥2=1 ∥Mv∥2, the operator norm of M , which is commonly denoted by ∥M∥;

(b) supv ̸=0
∥Mv∥2

∥v∥2
;

(c) sup∥u∥2=∥v∥2=1 u
⊤Mv;

(d) σ1(M), the largest singular value of M ;

(e)
√
λ1(MM⊤), the square root of the largest eigenvalue of MM⊤;

(f)
√
λ1(M⊤M), the square root of the largest eigenvalue of M⊤M .

Problem 3.2 (• | Maximal entry bound). Given a matrix X ∈ Rn×m, show that for any i ∈ [n] and j ∈ [m] we
have

− ∥X∥ ≤ |Xij | ≤ ∥X∥ .

Problem 3.3 (• | Symmetrization of matrices). We are going to explore three ways in which an m × n (with
m ≤ n) real-valued matrix M can be symmetrized.

(a) Let A be an m×m matrix defined by
A := MM⊤.

Check that A is symmetric, and show that its m eigenvalues are given by: σ1(M)2, σ2(M)2, . . . , σm(M)2.

(b) Show that A and B := M⊤M have the same non-zero eigenvalues, up to multiplicities.

(c) Let C be an (m+ n) × (m+ n) matrix defined by

C :=
(

0m×m M
M⊤ 0n×n

)
,

where 0r×r is an r × r all-zeros matrix. Check that C is symmetric, and show that its m+ n eigenvalues
are given by:

(1) σ1(M), . . . , σm(M); (2) −σ1(M), . . . ,−σm(M); (3) n−m of them are zeros.

Problem 3.4 (• • | Gershgorin circle theorem). Let A ∈ Rn×n be a symmetric matrix with entries (aij)i,j∈[n].
For i ∈ [n] let Ri be the sum of the absolute values of the non-diagonal entries in the i-th row:

Ri =
∑
j ̸=i

|aij | .

Prove that every eigenvalue of A lies within at least one of the Gershgorin discs D(aii, Ri), i.e. for any eigenvalue
λ of A we can find i ∈ [n] such that |λ− aii| ≤ Ri.

Problem 3.5 (• | Low rank approximation). Let A ∈ Rm×n and k be an integer such that 1 ≤ k ≤ rank(A).

(a) Prove that there exists a matrix B ∈ Rm×n of rank k such that

∥A−B∥ ≤
∥A∥F√

k
.

(b) Does the statement (a) hold if the operator norm on the left hand side is replaced with the Frobenius
norm ∥A−B∥F ?

Problem 3.6 (• • | Quadratic form optimization). Let A ∈ Rn×n be a symmetric matrix with eigenvalues
λ1 ≥ . . . ≥ λn. Given r ∈ {1, 2, . . . , n}, consider the following optimization problem:

max
v1,...,vr∈Rn

r∑
i=1

v⊤
i Avi s.t. v⊤

i vj = δij for 1 ≤ i, j ≤ r,

where δij is the Kronecker delta defined as

δij =
{

1 i = j,

0 i ̸= j.
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(a) Show that Tr(A) is the solution of the problem when r = n.

(b) Determine the solution of the problem in terms of the eigenvalues of A when r < n.

Problem 3.7 (• | Inner product between matrices). For any two matrices A,B ∈ Rn×n, consider the map

⟨A,B⟩ := Tr
(
AB⊤) .

(a) Prove that ⟨·, ·⟩ is an inner product on the space of n× n matrices.

(b) Show that ∥A∥2
F = ⟨A,A⟩.

(c) Deduce the matrix Cauchy-Schwarz inequality: ⟨A,B⟩ ≤ ∥A∥F ∥B∥F .

Problem 3.8 (• • | Rotation minimisation). Let A,B ∈ Rm×n be two arbitrary matrices. Find the solution, in
terms of A and B, or their SVD decompositions, of the following optimization problem:

arg min
Ω∈O(m)

∥ΩA−B∥F .

Here O(m) denotes the set of all m×m orthogonal matrices.

Problem 3.9 (• | Polar decomposition). Let A ∈ Rn×n. Prove that there exists a positive semi-definite matrix
P and an orthogonal matrix Q such that A = PQ.

Problem 3.10 (• • | Power method). Let A ∈ Rn×n be a symmetric positive semi-definite matrix with eigen-
values λ1 ≥ . . . ≥ λn ≥ 0 and associated eigenvectors v1, . . . , vn ∈ Rn (that form an orthonormal basis). In this
exercise, the goal is to show that the power method converges exponentially fast.

(a) Let y0 ∈ Rn be an initial vector that satisfies Ay0 ̸= 0. Define the power method iteration for k ≥ 0:

yk+1 = Ayk

∥Ayk∥
.

Prove that these iterations are well-definied, i.e. that ∥Ayk∥ ̸= 0 for any k ≥ 1.

(b) Define the Rayleigh quotient as ξk = y⊤
k Ayk and its relative error by

err(ξk) = λ1 − ξk

λ1
.

If A is diagonal, i.e., A = diag(λ1, . . . , λn) and λ1 = 1, show that we can represent the error as

err(ξk) =
∑n

i=2 w
2
i λ

2k
i (1 − λi)

w2
1 +

∑n
i=2 w

2
i λ

2k
i

,

where wi = ⟨y0, vi⟩ for all i ∈ [n].

(c) If A is diagonal with 1 = λ1 > λ2 > λ3, and we start from y0 such that w1 ̸= 0 and w2 ̸= 0, show that

err(ξk+1)
err(ξk) →

(
λ2

λ1

)2
as k → ∞.

(d) Generalize the result in (c) for an arbitrary matrix (not necessarily diagonal) having λ1 > λ2 > λ3.

Problem 3.11 (• • | Moore-Penrose Pseudoinverse). Let A be an n × m real matrix. A pseudoinverse of A is
an m× n matrix A+ such that the following three conditions are simultaneously met:

• AA+A = A.
• A+AA+ = A+.
• Both AA+ and A+A are symmetric.

(a) Let Σ be an n × m rectangular diagonal matrix (Σij = 0 for i ̸= j) with non-negative entries. Find an
m× n rectangular diagonal matrix Σ+ that is a pseudoinverse of Σ.

(b) Given a general n × m matrix A, consider the singular value decomposition of A = UΣV T with U and
V being orthogonal matrices, and Σ being (rectangular) diagonal. Prove that the matrix A+, given by
A+ = V Σ+UT , is a pseudoinverse of A.
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(c) Prove that if A is an invertible n× n matrix, then A−1 is a pseudoinverse of A.

(d) Prove that if A has full column rank (its columns are linearly independent) then its pseudoinverse is given
by

A+ =
(
A⊤A

)−1
A⊤.

(e) Prove that the pseudoinverse is unique.

Definition. Given an integer n, a standard Gaussian Wigner matrix W ∈ Rn×n is a symmetric random matrix
whose diagonal and upper-diagonal entries are jointly independent Gaussian variables, such that Wii ∼ N (0, 2)
and, for i < j,Wij = Wji ∼ N (0, 1).

Problem 3.12 (• • • | BBP for spiked Wigner model). In the lectures you learned about BBP transition for
the Wishart model, i.e., when we observe Y = 1

nXX
⊤, where X is an p × n matrix with columns drawn

independently from N (0, Ip + βuu⊤). We will explore the similar type of phase transition for another model.
Let W be an n× n Wigner matrix, v be a unit-norm vector in Rn and ξ ≥ 0. We define the spiked Wigner

model as observing Y = 1√
n
W+ξvv⊤, with the aim of recovering the signal v. This model exhibits the following

phase transition (as n → ∞) for

1. the largest eigenvalue λmax of Y :

λmax →

{
2 if ξ ≤ 1,
ξ + 1

ξ if ξ > 1;

2. the leading eigenvector vmax of Y :

|⟨vmax, v⟩|2 →

{
0 if ξ ≤ 1,
1 − 1

ξ2 if ξ > 1.

To measure the quality of the recovery procedure we define the mean squared error of an estimate w ∈ Rn

as
mse(w) = E

[∥∥ww⊤ − vv⊤∥∥2]
.

Find the asymptotic behaviour of the mean squared error for the PCA estimator, i.e., the value of

lim
n→∞

mse(vmax)

as a function of ξ.

Remark. The mean square error defined as above might appear unnatural for this problem since one can
measure the difference between two vectors using ℓ2 norm (up to a sign). However, this type of MSE definition
can be more useful when the perturbation is not rank-one and non-symmetric (e.g., in low-rank matrix estimation
problems). Additionally, it addresses the issue of sign invariance in the model, where the observation remains
the same whether the signal is v or −v, and therefore, we can recover the vector only up to a sign.
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4 Graphs, Networks, and Clustering
Definition (Irreducible matrix). A matrix A ∈ Rn×n is called irreducible if there is no permutation matrix P
such that

P⊤AP =
(
A11 A12
0 A22

)
,

where A11 and A22 are square matrices (not necessarily of same dimensions). In other words, an irreducible
matrix cannot be transformed into block upper-triangular matrix by simultaneous row/column permutations.

Problem 4.1 (• • | Irreducibility and graphs). Let A ∈ Rn×n be a matrix with non-negative entries. We define
G(A), a directed graph associated to A, in the following way: there is a link from i to j if and only if Aij > 0.

(a) Prove that if A is irreducible, and x is its eigenvector with non-negative entries, then x has only positive
entries.

(b) Show that the statement above is false if we drop the assumption that A is irreducible.

(c) Show that A is irreducible if and only if the associated graph G(A) is strongly connected, which means
that for every ordered pair of nodes (i, j) there is a path from i to j (of any length).

Problem 4.2 (• • • | PageRank and Random Teleports). In the lectures, we considered the PageRank algorithm
designed for ranking pages based on their importance by analysing their ingoing and outgoing links. However,
there exist graphs such that PageRank fails to predict meaningful scores. We will consider a simple fix for this
problem which is often referred to as Random Teleports.

Let n > k > 1. Consider a directed graph on n + 1 vertices, labelled 0, 1, . . . , n, with the following links.
Vertex 0 links only to itself, and any other vertex j ∈ [n] has k outgoing edges to its next k vertices: j+1, . . . , j+k
mod n, and an edge to vertex 0. See Figure 4.1 for an example of such a graph.

(a) Compute the rank of vertices according to the PageRank scheme described in Section 4.1 of Lecture Notes.

(b) We define PageRank with Random Teleports as follows: with probability β a random walker follows a
link at random, and with probability 1 − β, jumps to a random vertex (link or vertex is chosen uniformly
at random). We form a new random walk matrix M ∈ R(n+1)×(n+1) whose entries mij equal to the
probability of going from vertex j to vertex i. The ranking is then defined as the leading eigenvector of
the constructed matrix M . For k = 1 and fixed 0 < β < 1 compute the PageRank scores for nodes with
the teleport probability 1 − β.

Remark. Have you recognized the connection with the notion of irreducibility in this exercise?

0 1

2

3

4

5

6

7

8

Figure 4.1: Example of the directed graph from Problem 4.2 with n = 8 and k = 2.

Problem 4.3 (• | Lloyd’s algorithm - monotonicity). Recall the problem of k-means clustering: given x1, . . . , xn ∈
Rp (with n ≥ k), we want to minimize the following objective function

cost2(S1, . . . , Sk;µ1, . . . , µk) :=
k∑

l=1

∑
i∈Sl

∥xi − µl∥2
2 (4.1)
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that depends on the clusters S1, . . . , Sk with centers µ1, . . . , µk ∈ Rp. Denote the minimum value by

opt2 := min
partition S1,...,Sk
centers µ1,...,µk

cost2(S1, . . . , Sk;µ1, . . . , µk)

Prove the following two properties.

(a) Given a choice for the partition S1, . . . , Sk (of non-empty sets), the centers that minimize (4.1) are given
by

µl = 1
|Sl|

∑
i∈Sl

xi.

(b) Given the centers µ1, . . . , µk ∈ Rp the partition that minimizes (4.1) assigns each point xi to the cluster

l = arg min
l=1,...,k

∥xi − µl∥2 .

Problem 4.4 (• | k-means objective - equivalent problem). Consider the same setting of Problem 4.3. Show
that

opt2 = min
S1,...,Sk

k∑
l=1

1
|Sl|

∑
i,j∈Sl

∥xi − xj∥2
2. (4.2)

Hint. Expandthesquarein(4.2)attheoptimalchoiceofcentersµl=1
|Sl|∑i∈Slxi.

Problem 4.5 (• | Lloyd’s algorithm - convergence). Given any set of n points in Rp, prove that Lloyd’s algorithm
stops after a finite number of iterations, in other words, that the objective eventually stops decreasing.

Hint. Therearefinitelymanypartitionsofnpoints.

Problem 4.6 (• • | Lloyd’s algorithm - different objective). Let n ∈ N be odd, k ≤ n, and x1, . . . , xn ∈ Rp.
Instead of minimizing sum-of-squares of ℓ2 norms (4.1), suppose we want to minimize an objective function with
ℓ1 norms:

cost1(S1, . . . , Sk;µ1, . . . , µk) :=
k∑

l=1

∑
i∈Sl

∥xi − µl∥1 . (4.3)

Denote the minimum value by

opt1 := min
partition S1,...,Sk
centers µ1,...,µk

cost1(S1, . . . , Sk;µ1, . . . , µk).

(a) Given a choice for the partition S1, . . . , Sk (of non-empty sets), which centers do minimize the alternative
objective function (4.3)? A proof of minimality needs to be provided.

(b) Develop an algorithm analogous to Lloyd’s algorithm using the alternative objective function (4.3).

(c) Prove that it is always the case that opt2 ≤ opt2
1.

Problem 4.7 (• | Laplacian and connectivity). Given an undirected graph G, with the associated Laplacian
LG, show that λ2(LG) > 0 if and only if G is connected.

Problem 4.8 (• | Normalized Laplacian). Given an undirected weighted graph G = (V,E,W ), we define the
normalized Laplacian matrix LG = D−1/2LGD

−1/2, whereD is the degree matrix and LG is the graph Laplacian.

(a) Show that LG is symmetric and PSD (positive semi-definite).

(b) Show that all the eigenvalues of LG are real numbers, between 0 and 2.

Problem 4.9 (• • | Tightness of the upper bound in Cheeger’s inequality). Let n be an even number greater
than 2. Let C be a cycle graph on n vertices, labelled 1 to n. As usual, we set wij = 1 [{i, j} ∈ E], so that
W = A.

(a) Prove that for every cut S, with ∅ ⊊ S ⊊ [n], its Cheeger’s cut is lower bounded as

h(S) ≥ 2
n
.
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(b) Denote by λ2(C) the second smallest eigenvalue of the Laplacian of the graph C. Prove that

λ2(C) ≤ c

n2 ,

where c is an absolute constant.

(c) Conclude that the upper bound in Cheeger’s inequality is tight up to an absolute constant.

Hint. Considerthequadraticformx⊤L
Cxforthevectorx∈R

n
givenbyxi=∣∣i−

n
2∣∣−

n
4.

Problem 4.10 (• • | Tightness of the lower bound in Cheeger’s inequality). Let d ≥ 2 be an integer, G = (V,E)
be the d-dimensional hypercube, and LG its normalized Laplacian. We index the n = 2d vertices of the
hypercube by d-dimensional {0, 1}-vectors, i.e. V = {0, 1}d, and given any x, y ∈ V , we have {x, y} ∈ E if and
only if x and y differ in exactly one coordinate. The example for d = 3 is given in Figure 4.2.

(0,0,0) (1,0,0)

(1,1,0)(0,1,0)

(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

Figure 4.2: 3-dimensional hypercube.

Given a (possibly empty) subset T ⊆ [d] let vT ∈ Rn be a vector, whose coordinates are indexed by n = 2d

vertices of the hypercube and defined by

vT (x) = (−1)
∑

i∈T
xi ,

where xi is the i-th coordinate of the vertex x ∈ {0, 1}d. Also, let ST ⊆ V be the subset of vertices given by

ST = {x ∈ V : vT (x) = 1} .

[When T = ∅, we interpret the empty sum as zero, i.e.
∑

i∈∅ xi = 0.]

(a) Compute h(S{1}), the Cheeger’s cut of the subset S{1}.

(b) Show that for any T ⊆ [d], vT is an eigenvector of LG with eigenvalue 2|T |
d .

(c) Show that if T ′ ⊆ [d] is distinct from T , then vT and vT ′ are orthogonal.

(d) Conclude that for any 0 ≤ k ≤ d, the eigenspace corresponding to the eigenvalue 2k
d has dimension

(
d
k

)
.

(e) Compute hG, the Cheeger’s constant of G.

10



5 Nonlinear Dimension Reduction and Diffusion Maps
Problem 5.1 (• | Random walks: eigenvalues). Let G = (V,E,W ) be an undirected weighted graph.

(a) Suppose that A,B ∈ Rn×n are similar matrices, which means that there exists an invertible matrix
P ∈ Rn×n such that B = P−1AP . Prove that they have the same eigenvalues, with equal geometric
multiplicities.

(b) Show that the transition probability matrix M := D−1W is similar to the matrix S := D−1/2WD−1/2.

(c) Deduce that all eigenvalues of M are real.

(d) Prove that every eigenvalue of M belongs to the interval [−1, 1], and show that 1 is an eigenvalue.

Problem 5.2 (• • | Random walks: connectivity). Let G = (V,E,W ) be an undirected weighted graph. Show
that the largest eigenvalue of M = D−1W has multiplicity one if and only if the graph is connected. Here, two
vertices are connected if and only if there exists a path from one to another along which all edges have positive
weights.

Problem 5.3 (• • • | Lazy walk). Let G = (V,E,W ) be an undirected weighted graph.

(a) Let M ′ = 1
2 (M + I) be the transition probability matrix of the associated lazy walk. Show that M ′ is not

necessarily symmetric, but it is always positive semi-definite metrix.

(b) Prove that the lazy random walk is aperiodic, which means that for any vertex i ∈ V there is no (period)
integer k > 1 such that for any (time) t ≥ 1:(

(M ′)t
)

ii
> 0 =⇒ k | t.

(c) Suppose that W is an irreducible matrix. Prove that there exists T ∈ N such that for every t ≥ T , all
entries of (M ′)t are positive. (This means that the associated Markov Chain is regular.)

Problem 5.4 (• | Equilibrium distribution). Let G = (V,E,W ) be an undirected weighted graph. Suppose
that there is an equilibrium distribution π on V , which means that starting from any i ∈ V :

P (X(t) = j | X(0) = i) → πj as t → ∞,

holds for any j ∈ V . Prove that λ2(M) < 1.

Hint. Thismeansthatforanyi1,i2,j∈V,wehaveP(X(t)=j|X(0)=i1)−P(X(t)=j|X(0)=i2)→0.

Problem 5.5 (• • | Truncated diffusion map of a cycle graph). Let C be a cycle graph of length n, where n ≥ 3.
Find the diffusion map truncated to 2 dimensions.

Problem 5.6 (• • | Diffusion map of a complete graph). Let Kn be complete graph on n nodes, where n ≥ 3.
Find the diffusion map. (Since there are more bases of real-valued eigenvectors, it is sufficient to pick one.)

Problem 5.7 (• • | Diffusion map of a lazy walk). Let G = (V,E,W ) be an undirected weighted graph with
the associated transition probability matrix M . Let φt : V → Rn−1 be the diffusion map made from M . Now
let M ′ = 1

2 (M + I) be the transition probability matrix of the associated lazy walk, and φ′
t : V → Rn−1 be the

diffusion map made from M ′. Prove that for any t ≥ 1:

φ′
t = 2−t

t∑
u=0

(
t

u

)
φu.

Problem 5.8 (• • | Hitting times and semi-supervised learning). Let G = (V,E,W ) be an undirected, connected
graph with non-negative weights wij . The vertex set is partitiond as V = V+ ∪ V− ∪ V ⋆, where V+ are labeled
as 1, V− are labeled as 0 and V ⋆ are unlabeled. Suppose that every unlabelled vertex (V⋆) is connected to at
least one labelled vertex (V+ ∪ V−) by an edge.

To predict the label of the unlabeled vertices, you wish to find a function f⋆ : V → R which agrees on the
labeled vertices and predicts the values of the unlabeled vertices as values in R as smoothly as possible:

f⋆ := arg min
f :V →R:

f(i)=1,i∈V +

f(i)=0,i∈V −

∑
i<j

wij(f(i) − f(j))2. (5.1)
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Now, consider a random walk X on V given by the following transition probabilities:

P (X(t+ 1) = j | X(t) = i) = wij

deg(i) .

Given a node i ∈ V , let g(i) be the probability that a random walker starting at i reaches a node in V+ before
reaching one in V−. I.e. if T+ = inf {t ≥ 0: X(t) ∈ V+} and T− = inf {t ≥ 0: X(t) ∈ V−}, then

g(i) := P (T+ < T− | X(0) = i) .

(a) Show that for any i ∈ V and t ≥ 0,
∑

j∈V P (X(t+ 1) = j | X(t) = i) = 1, so that X is a random walk.

(b) Show that g satisfies constraints of the optimization problem: g(i) = 1 for i ∈ V+, and g(i) = 0 for i ∈ V−.

(c) Prove that g satisfies the following equality for any unlabelled i ∈ V ⋆:

g(i) = 1
deg(i)

∑
j∈V+

wij + 1
deg(i)

∑
j∈V ⋆

wijg(j). (5.2)

(d) By analyzing first-order optimality conditions (it is enough to state the formula from the notes, without
proving) of the optimization problem (5.1), show that f⋆ also satisfies (5.2), and conclude that f⋆ = g.
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6 Linear Dimension Reduction via Random Projections
Problem 6.1 (• • | Johnson-Lindenstrauss Lemma: Alternative Version). The goal of this exercise is to prove
the random projection lemma and then to use this result to prove another version of the Johnson-Lindenstrauss
lemma.

(a) Let P be the coordinate projection, which maps a vector in Rn onto its first m coordinates in Rm. Let
z ∈ Sn−1 be a random vector sampled uniformly on the sphere Sn−1. Show that

E∥Pz∥2
2 = m

n
∥z∥2

2.

(b) Prove the following statement using the result in Problem 8.5: There exists an absolute constant c > 0,
such that for any ε > 0 with probability at least 1 − 2 exp(−cε2m) it holds

(1 − ε)
√
m

n
∥z∥2 ≤ ∥Pz∥2 ≤ (1 + ε)

√
m

n
∥z∥2. (6.1)

(c) Note that the result in (b) is stated for a random vector, while in dimension reduction we wish to find a
randomized projection such that it preserves geometry for a fixed set of points. However, it can be shown
that the same result (6.1) holds when z ∈ Rn is a fixed vector, and P is a orthogonal projection onto an
m-dimensional subspace chosen uniformly at random from all m-dimensional subspaces in Rn. In fact,
these two models are equivalent.
You can use the mentioned fact without proof. Using (b), show the following result: Let X be a set of
n points in Rn and let ε > 0. Suppose that

m ≥ C

ε2 logn.

Consider a random subspace E of dimension m chosen uniformly from all m-dimensional subspaces in Rn,
and let P be an orthogonal projection on this set. Then with probability at least 1 − 2 exp(−cε2m), the
scaled projection Q =

√
n
mP is an ε-approximate isometry for X , i.e., for all x, y ∈ X ,

(1 − ε)∥x− y∥ ≤ ∥Qx−Qy∥ ≤ (1 + ε)∥x− y∥.

Here C, c > 0 are universal constants.

Problem 6.2 (• • • | Optimality of the Johnson-Lindenstrauss Lemma). Recall that Johnson-Lindenstrauss
lemma states that the geometry of the data is well preserved when we choose a random subspace of dimension
m ≍ logn. In this problem, we will show that this dependency is optimal.

Find an example of a set of n points in Rn, for which it is not possible construct an ε-isometry for ε = 1/2025
onto a subspace of dimension m such that m/ logn → 0 as n goes to infinity. You are expected to use results
from other Problem sections (for instance section 8).
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7 Community Detection and the Power of Convex Relaxation
Problem 7.1 (• • | Random MaxCut and Boosting). We consider the following naive (but surprisingly effective)
procedure to find a large cut in a graph G with an even number of vertices: choose a set S of n/2 vertices
uniformly at random in G. We want to show that the partition (S, Sc) cuts a large number of edges with some
(small but positive) probability. Then we boost the procedure to increase the probability of finding a large cut.

(a) Show that for any fixed ε ∈ (0, 1
2 )

P
(

cut(S) >
(

1
2 − ε

)
|E|
)

≥ ε,

where |E| is the number of edges in graph G.

Hint. For(a)itmaybeeasiertostudythesetofedgesthatareNOTbeingcut.

(b) The result of the previous subproblem is rather unsatisfying, since if we want to find a cut with 0.49|E|
edges, the probability of success may be as low as 0.01. For this reason we will modify our procedure,
namely to improve our accuracy we sample S several times.
Suppose we run the procedure k times and get sets S1, . . . , Sk. We want to construct a set S∗ from these
outputs such that for any δ ∈ (0, 1),

P
(

cut(S∗) >
(

1
2 − ε

)
|E|
)

≥ 1 − δ

Find such cut and give an estimate on the required number of trials k(δ, ϵ) depending on probability
parameter δ and approximation parameter ϵ.

Remark: observe that the same technique can be applied to other randomized algorithms as well.

Problem 7.2 (• | Dual SDP). To find the solution to the community detection problem in SBM, in the course
we introduce convex relaxation of the problem and subsequently use convex duality to certify the optimality.
In this problem, we will find the dual problem using the Lagrangian function.

Recall the definition of a semidefinite program (SDP).

Definition. A semidefinite program (SDP) is an optimization problem of the following type:

max
X∈Rn×n

⟨A,X⟩ subject to X ⪰ 0, ⟨Bi, X⟩ = bi, i = 1, . . . ,m, (7.1)

where A,B1, . . . , Bm ∈ Rn×n and bi ∈ R are given.

In SDPs, one of the constraints is positive semidefiniteness of a matrix. This constraint can be incorporated
in the Lagrangian function as follows:

L(X, ν, Y ) = ⟨A,X⟩ +
m∑

i=1
νi(bi − ⟨Bi, X⟩) + ⟨Y,X⟩,

where Y ∈ Rn×n is positive semidefinite matrix, and ν ∈ Rm. Using this Lagrangian, we can easily check that

p∗ = max
X

min
ν,Y
Y ⪰0

L(X, ν, Y )

coincides with the optimal value of the original SDP (7.1).

(a) Using the expression for the Lagrangian function, find the dual function

g(Y, ν) = max
X∈Rn×n

L(X, ν, Y )

defined for PSD matrices Y ∈ Rn×n and ν ∈ Rm (note that the dual function may be infinite for certain
values of Y ). Then write the dual program of the SDP (7.1) (the dual program just minimizes the dual
function and contains the constraints that prevent the dual function from being infinite).

(b) Using (a), find the dual of the following semidefinite program:

max tr(BX)
s.t. Xii = 1 for each i

X ⪰ 0.
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Problem 7.3 (• • • | Connectedness of the Erdős-Rényi graph). We define the Erdős-Rényi graph as a random
graph G ∼ G(n, p) with n vertices generated by placing each possible edge independently at random with
probability p. The Erdős-Rényi graph is a popular model to study the performance of several optimization
algorithms on graphs. Many of these algorithms rely on the graphs being connected and in this problem we
study when this is the case for the Erdős-Rényi model.

We define p := λ log n
n for some constant λ > 0.

(a) Prove that if λ ≤ 1 − c, where c > 0 is an absolute constant, then the graph G has an isolated vertex with
probability 1 − o(1). (We use the standard asymptotic notation, f(n) = o(1) if limn→∞ f(n) = 0.)

Hint. For(a)considertherandomvariablethatcountsthenumberofisolatedvertices.

Hint.

UseProblem2.5.

(b) Now observe the following: A graph is disconnected if and only if there exits a set of k nodes such that
k ≤

⌊
n
2
⌋

and there is no edge connecting the set of k nodes with the complement set of n − k nodes.
Use this fact to prove that if λ ≥ 1 + c for an absolute constant c > 0, then the graph is connected with
probability 1 − o(1).

Problem 7.4 (• | Sum of Squares Proof). Let x, y be real numbers, prove

x4 + y4 + 4xy + 2 ≥ 0.

Hint. Addandsubtractanappropriatemonomial.

Problem 7.5 (• | Smallest Eigenvalue Program). Let A ∈ Rd×d be a symmetric matrix. Prove that the following
optimization problem has the smallest eigenvalue of A as optimal value:

min Tr(AX)
s.t. Tr(X) = 1

X ⪰ 0.

(Recall that X ⪰ 0 means that X is PSD.)

Problem 7.6 (• • | Discrepancy Relaxation). Let A ∈ Rd×m be a matrix. We define its discrepancy as the
optimal value of the following minimization problem:

disc(A) = min
ε∈{−1,1}m

∥Aε∥∞ .

The vector discrepancy of A is the minimal value of the problem

vecdisc(A) = min
u1,...,um∈Sm−1

max
1≤i≤d

∥∥∥∥∥∥
m∑

j=1
Ai,juj

∥∥∥∥∥∥
2

,

where Sm−1 ⊂ Rm denotes the euclidean unit sphere, so ∥ui∥2 = 1 for all 1 ≤ i ≤ m. The goal of this exercise is
to show that vector discrepancy is a convex relaxation of discrepancy, which can be solved using a semidefinite
program.

(a) Prove the inequality
vecdisc(A)2 ≤ disc(A)2.

(b) Prove that the quantity vecdisc(A)2 is the optimal value of the following semidefinite program:

min D ∈ R
s.t. (AXA⊤)i,i ≤ D ∀1 ≤ i ≤ d

and Xi,i = 1 ∀1 ≤ i ≤ m

X ⪰ 0 ∈ Rm×m.

Hint. Usethesquare-rootofthematrixXtoconstructyourunitvectors.
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Problem 7.7 (• • • | Minimum Bisection and Community Detection). The goal of this exercise is to relate the
minimum bisection problem with exact recovery in the community detection problem. Assume that n is even
and consider the graph with n vertices drawn from the stochastic block model with two balanced communities,
i.e, each community has size n/2, moreover, the two communities are chosen uniformly at random. Let p be
the probability that an edge is placed inside the communities and q across the communities with p > q.

Our goal is to estimate the partition Ω induced by the communities with an estimator Ω̂(G) that depends
only on one sample of the random graph G. Prove that the estimator that minimizes the probability of error
is equivalent to solve the minimum bisection of the observed graph G (the minimum bisection is a partition
into two equally-sized subsets, such that the number of edges being cut by such a partition is minimal). The
probability of error Pe is given by

Pe := P(Ω̂ ̸= Ω) =
∑

g

P(Ω̂(G) ̸= Ω|G = g)P(G = g).

Here the sum is taken over all possible realizations of the random graph G.

Hint.

UseBayes’ruletosimplifyandnotethatyoucanignoretermsthatdonotdependonΩ̂.

Problem 7.8 (• | PSD Set Convexity). Show that the set S+
n = {A ∈ Rn×n : A ⪰ 0} is convex and that it is

invariant under multiplication with a positive scalar.

Problem 7.9 (• • | Spectral Algorithm for Planted Clique). We want to analyze parts of a spectral algorithm,
which is used to find the largest clique in a graph G on n vertices. This algorithm is often analyzed for the
planted clique model, where G ∼ G(n, 1/2) is random Erdős-Rényi graph and then k vertices of G are randomly
uniformly selected and then edges will be added to G until these k vertices become a clique (fully connected
amongst each other). We call the graph we get after this procedure G̃. The goal is to find this planted clique
with the so called ”AKS spectral algorithm”, which relies on computing the top eigenvector of the matrix
M := A − 1

2 1n1⊤
n , where A is the adjacency matrix of G̃ and 1n ∈ Rn is the all-ones vector. The idea behind

this algorithm is that the matrix M is typically close to the matrix 1
2 1S1T

S , where 1S is the indicator vector
of the planted clique S, and if the matrices are close, then their top eigenvectors should in some sense also be
close. This is the part that you will prove in this exercise:

(a) Let 0 < ε < 1, and suppose there exists a symmetric matrix M ∈ Rn×n and a subset S ⊂ [n] with the
property |S| > 2(1 + ε−1)

∥∥M − 1
2 1S1⊤

S

∥∥, where 1S ∈ Rn is the indicator vector of S (so 1 whenever the
coordinate is in S and 0 otherwise). If v is an eigenvector corresponding to the largest eigenvalue of M
with norm ∥v∥2

2 = |S|, prove that the following inequality holds:

min{∥v − 1S∥2
2 , ∥−v − 1S∥2

2} ≤ 2 |S| ε2.

You may use the following Theorem without proof:

Theorem. Let M ∈ Rn×n be a symmetric matrix and let v be an eigenvector corresponding to the largest
eigenvalue of M . Let y ∈ Rn be any vector and let θ be the angle between y and v, then

|sin(θ)| ≤
∥∥M − yy⊤

∥∥
∥yy⊤∥ − ∥M − yy⊤∥

Hint. Usethefactthatthedotproductof1Sandvdependsontheanglebetweenthesevectors.

Problem 7.10 (• • | Little Grothendieck Problem). Let C ⪰ 0 (C ∈ Rn×n is positive semidefinite). In this
problem you will show an approximation ratio of 2

π to the problem

max
xi=±1

n∑
i,j=1

Cijxixj .

Similarly to Max-Cut, we consider

max
vi∈Rn

∥vi∥2=1

n∑
i,j=1

Cijv
T
i vj .

The goal is to show that, for g ∼ N (0, In×n), taking xi = sign(vT
i g) a randomized rounding,

E

 n∑
i,j=1

Cijxixj

 ≥ 2
π

n∑
i,j=1

Cijv
T
i vj (7.2)

The difficulty lies in the fact that E[xixj ] is not easy to compute, which is why we divide this exercise into two
parts.
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(a) Compute the quantity E[sign(vT
i g)⟨vj , g⟩].

Hint. Thisnumbershouldonlydependontheinnerproductbetweenvjandvi.

(b) Define the matrix S ∈ Rn×n with entries Si,j = (⟨vi, g⟩ −
√
π/2 sign(vT

i g))(⟨vj , g⟩ −
√
π/2 sign(vT

j g)).
Show that

Tr(CS) ≥ 0

holds, and use this fact to prove the inequality (7.2).
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8 Concentration of Measure and Gaussian Analysis
Problem 8.1 (• | Moments of Gaussians). Let Z be a standard gaussian random variable. Recall that Gaussian
integration by parts states the following: given any differentiable function f : R → R whose derivative is
absolutely integrable with respect to the standard normal measure, we have

E [Zf(Z)] = E [f ′(Z)] .

Let p ≥ 1 be an integer and Z be a standard gaussian random variable. Show that

E [Zp] =
{

(p− 1)!! if p is even;
0 if p is odd.

Here, !! denotes the double factorial, defined as n!! = n · (n− 2) · · · 3 · 1 for an odd natural number n.

Note. There are (p− 1)!! possible pairings of p elements (when p even), and this is not a coincidence!

Problem 8.2 (• • | Maximum of Gaussians). Let g1, . . . , gd be a collection of (not necessarily independent)
Gaussian random variables with zero mean and variance σ2.

(a) Prove that the following bound holds

E max
i=1,...,d

gi ≤ σ
√

2 log d.

(If you do not manage to prove the inequality with sharp constant 2 in the square root, you can replace it
by an absolute constant C > 0.)

(b) Prove that the bound in the previous item is sharp up to an absolute constant if we assume that all the
Gaussian random variables are independent, i.e. there exists a universal constant c > 0 such that

E max
i=1,...,d

gi ≥ c σ
√

log d.

(c) Show that the conclusion of (b) is false if we drop the assumption that g1, . . . , gd are independent.

Problem 8.3 (• • • | Application of Slepian’s lemma). Let W be a d × d Gaussian Wigner matrix [BSS25,
§3.3.2].

(a) Prove that
E sup

v∈Sd−1
⟨g, v⟩ = E∥g∥2 ≤

√
d,

where g ∈ Rd is a standard Gaussian random vector.

(b) Apply Slepian’s lemma to prove that
Eλmax(W ) ≤ 2

√
d.

(c) Show that the upper bound above is tight up to an absolute constant.

Hint. For(b),considerthestochasticprocessYv:=2⟨g,v⟩.For(c),firstshowE∥g∥2≤c
√
dbyintegration.

Lemma (Gamma Function Bound). Let x ≥ 1
2 , we have

Γ(x) =
∫ ∞

0
tx−1e−t dt ≤ 3xx.

Problem 8.4 (• | Moments of Subgaussian Variables). Let Y be a σ2-subgaussian random variable, so for all
t ≥ 0 it holds

P(|Y | ≥ σt) ≤ 2e− t2
2 .

Prove that for all p ≥ 1 we have
E[|Y |p]

1
p ≤ Cσ

√
p,

where C > 0 is a universal constant.

Hint. UseProblem2.2(a)andboundsonthegammafunction.
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Theorem (Gaussian Lipschitz concentration). Let g1, . . . , gn be i.i.d standard Gaussian random variables. Let
f : Rn → R be a L-Lipschitz function with respect to the Euclidean norm. Then, for all t > 0,

P(|f(g1, . . . , gn) − Ef(g1, . . . , gn)| ≥ Lt) ≤ 2e−t2/2. (8.1)

Theorem (Lipschitz Concentration on the Sphere). Let f :
√
nSn−1 → R be a L-Lipschitz function and let X

be a random vector uniformly distributed on the sphere
√
nSn−1. Then, for all t > 0,

P(|f(X) − Ef(X)| ≥ Lt) ≤ 2e−ct2
. (8.2)

Here c > 0 is an absolute constant.

Problem 8.5 (• • | Lipschitz Concentration around Lp norms). In this problem we will extend the Lipschitz
concentration on the sphere to concentration around Lp norms for p ≥ 1, i.e., we will prove that under the same
assumptions as in (8.2) and additionally assuming that f is non-negative,

P(|f(X) − ∥f(X)∥Lp | ≥ Lt) ≤ 2e−cpt2
, (8.3)

where cp > 0 is a constant only depending on p and ∥Z∥Lp := (E|Z|p)1/p for a random variable Z such that its
p-th absolute moment is well-defined.

We will split the proof into several steps.

(a) Let Y be an L2-subgaussian random variable in the sense of Problem 8.4. Prove that for any A ≥ 0 there
exists a constant cA only depending on A, such that

P(|Y − LA| ≥ Lt) ≤ 2e−cAt2

holds for some constant cA > 0 only depending on A.

(b) Show that for any non-negative random variable Z,

|EZ − (EZp)1/p| ≤ (E |Z − EZ|p)1/p.

You can assume that all the moments are well-defined. Use Problem 8.4 and (8.2) to conclude

|E[f(X)] − E[f(X)p]1/p| ≤ CL
√
p

for some universal constant C > 0.

(c) Now we have all the ingredients to prove the theorem. Using (a), (b), and (8.2), complete the proof of
inequality (8.3).

Problem 8.6 (• • • | Duality and Covering Numbers). We will present the principle of duality in a completely
different context. Suppose you have a set T ⊆ Rn and some number ε > 0. We call a subset S ⊆ T an ε-covering
of T , if for every t ∈ T there exists an s ∈ S, such that ∥s− t∥2 ≤ ε. We call a subset S ⊆ T an ε-separated
set, if for every s ̸= s′ ∈ S we have ∥s− t∥2 > ε. We define the following optimal values:

N (T, ε) := min
S⊆T

S ε−covering of T

|S| D(T, ε) := max
S⊆T

S ε−separated
|S|

(a) Show that these two optimization problems are duals in the following sense:

N (T, ε) ≤ D(T, ε) ≤ N (T, ε/2)

(b) Use part (a) to show that for the euclidean ball in d-dimensions one has the following covering number
estimates for every 0 < ε < 1: (

1
ε

)d

≤ N (Bd
2, ε) ≤

(
3
ε

)d

Problem 8.7 (• | Norm of a Gaussian Vector). Given a standard Gaussian vector g ∈ Rd, we saw in Problem 8.3
that E∥g∥2 ≤

√
d. The goal of this exercise is to give a simple proof that this is sharp using Gaussian Lipschitz

concentration inequality (8.1).

(a) Prove that the variance of ∥g∥2 is at most an absolute constant.

(b) Show that E∥g∥2/
√
d converges to one as d goes to infinity.
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Problem 8.8 (• | Gaussian Width of the Simplex). The gaussian width of a set S ⊆ Rd is defined as

ω(S) := E
[
sup
s∈S

⟨s, g⟩
]
,

where g ∈ Rd is a standard gaussian vector, so all coordinates of g are independent and N (0, 1)-distributed.
Consider the d− 1-dimensional simplex

Sd :=
{
x ∈ Rd | 0 ≤ xi ≤ 1,

d∑
i=1

xi = 1
}

Our goal is to show that there exist universal constants c, C > 0, such that

c
√

log(d) ≤ ω(Sd) ≤ C
√

log(d).

(a) For any subset T ⊆ Rd we define its convex hull conv(T ) as follows:

conv(T ) =
{

k∑
i=1

xiti | k ∈ N>0, xi ∈ Sk, ti ∈ T

}

Prove the equality
ω(conv(T )) = ω(T ).

(b) Find a finite set T ⊆ Rd, such that Sd = conv(T ). Use the result of another problem in this section to
deduce the desired inequalities.
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9 Matrix Concentration Inequalities
Problem 9.1 (• | Constructing Wigner). Let Z be a d × d random matrix whose entries are all independent
standard gaussians (in total d2 of them). Show that 1√

2

(
Z + Z⊤) is a Gaussian Wigner matrix [BSS25, §3.3.2].

Problem 9.2 (• | Computing the σ parameter). Let W be a d × d Gaussian Wigner matrix and let D be a
d × d diagonal matrix with independent standard gaussians on the diagonal. Show that

∥∥EW 2
∥∥ 1

2 = σ(W ) =
√
d+ 1 and

∥∥ED2
∥∥ 1

2 = σ(D) = 1, and upper bound E ∥W∥ and E ∥D∥ using the Non-commutative Khintchine
inequality.

Problem 9.3 (• • | Intrinsically free Non-commutative Khintchine Inequality). In fact, a stronger version of
the Non-commutative Khintchine inequality is known. Let A1, . . . , An ∈ Rd×d by symmetric matrices and
g1, . . . , gn ∈ N (0, 1) i.i.d. The gaussian series X =

∑n
t=1 gtAt satisfies

E ∥X∥ ≤ 2σ + C v (log d) 3
2 ,

where C > 0 is an absolute constant, σ2 =
∥∥∑n

i=1 A
2
i

∥∥, and v is given by

v2 = ∥Cov(X)∥ .

Here, matrix covariance Cov(X) is a d2 × d2 matrix, whose row and column coordinates are indexed by pairs
of indices, and entries are given by

Cov(X)ij,kl = E [XijXkl] for i, j, k, l ∈ [d].

Compute Cov(W ) and Cov(D), where W and D are as in Problem 9.2, and deduce using the intrinsically free
Non-commutative Khintchine Inequality that there is an absolute constant C ′ > 0, such that

E ∥W∥ ≤ C ′
√
d.

Hint. Asastart,showthatCov(X)ij,kl=∑n
t=1[At]ij[At]kl.

Problem 9.4 (• | Hermitian dilation). In order to extend the matrix Bernstein inequality in the book [BSS25,
Theorem 9.13] from symmetric to general rectangular matrices, we will use Hermitian dilation. For a matrix
S ∈ Rd1×d2 , the Hermitian dilation H(S) is defined as

H(S) :=
(

0d1×d1 S
S⊤ 0d2×d2

)
∈ R(d1+d2)×(d1+d2).

In Problem 3.3(c) we showed that H(S) is symmetric and that ∥H(S)∥ = ∥S∥.
Let S1, . . . , Sn ∈ Rd1×d2 be random rectangular matrices satisfying E [Si] = 0 for every i ∈ [n]. Show that

E

∥∥∥∥∥
n∑

i=1
Si

∥∥∥∥∥ ≤
√
C(d)σ + C(d)L,

where d = d1 + d2, C(d) = 4 + 8 ⌈log d⌉ and

σ2 = max
{∥∥∥∥∥

n∑
i=1

E
[
SiS

⊤
i

]∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

E
[
S⊤

i Si

]∥∥∥∥∥
}
, L2 = Emax

i
∥Si∥2

.

Problem 9.5 (• • • | Bernstein’s inequality - expectation bound). Let {Xk}n
k=1 be a sequence of independent

random symmetric d× d matrices. Assume that each Xk satisfies:

EXk = 0 and ∥Xk∥ ≤ R almost surely.

In this exercise, the goal is to show that

E

∥∥∥∥∥
n∑

k=1
Xk

∥∥∥∥∥ ≤ C
(
σ
√

log (d+ 1) +R log(d+ 1)
)
. (9.1)

To get a bound on expectation from the tail bound in the book [BSS25, Theorem 7.9], we will use an integral
identity for the expectation (see Problem 2.2(a)).
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(a) Show that for any a, b > 0

exp
(

− 2
a+ b

)
≤ max

{
exp

(
−1
a

)
, exp

(
−1
b

)}
≤ exp

(
−1
a

)
+ exp

(
−1
b

)
.

Apply it to the exponent in the right-hand side of matrix Bernstein’s inequality so that you get integrals
that are easier to compute.

(b) For very small t, the tail bound is loose since the exponent is close to 1. Think how we can isolate the
case of t close to 0.

(c) Once you split the integral, it remains only to compute the individual parts and choose the right constants
in your argument. To find it, you can closely examine the final bound (9.1).

Problem 9.6 (• • | Randomized matrix multiplication). Let A ∈ Rn×m be a real-valued matrix with unit
spectral norm ∥A∥ = 1. The cost of computing AA⊤, using the standard matrix multiplication method, is of
the order of n2m, which can be prohibitive when n and m are very large. In some cases, it is sufficient to obtain
only an approximate solution which allows us to reduce the costs significantly. In this problem you will show
that by using randomness we can get an approximation of the product more efficiently.

Denote a1, . . . , am ∈ Rn columns of matrix A. Define a random matrix X such that P
(
X = m · aka

⊤
k

)
= 1

m .

(a) Suppose we draw s independent copies of X, denoted by X1, . . . , Xs, and then average them X̂s =
1
s

∑s
k=1 Xk. Prove that X̂s in an unbiased estimator of AA⊤, meaning that EX̂s = AA⊤.

(b) Define the coherence statistic as µ(A) = m · max
k=1,...,m

∥ak∥2. Show that:

max
k=1,...,s

∥∥E [(Xk − EXk)2]∥∥ ≤ 2µ(A)

and
max

k=1,...,s
∥Xk − EXk∥ ≤ 2µ(A), almost surely.

(c) Use Problem 9.5 (proof not needed) to show that, for an absolute constant C, if the number of samples s
satisfies

s ≥ C max
{

1
ε
,

1
ε2

}
µ logn

then the procedure achieves ε-accuracy, i.e., E
∥∥∥X̂s −AA⊤

∥∥∥ ≤ ε.

Problem 9.7 (• | Commuting vs. simultaneously diagonalizable). Let A,B ∈ Rd×d be two symmetric matrices.

(a) If A and B are simultaneously diagonalizable, show that they commute.

(b) If A and B commute, and B has all eigenvalues distinct, show that they are simultaneously diagonalizable.

(c) Generalize (a) and (b) for n symmetric matrices A1, . . . , An ∈ Rd×d.

Hint. For(b)showthatifBv=λvforsomev∈R
n

andλ∈RthenB(Av)=λ(Av).

Problem 9.8 (• • | NCK for commuting matrices). In the book we discussed the role of commutativity of the
matrices for the upper bound of the expected value of the spectral norm of a random matrix. Recall that for
X :=

∑n
i=1 giAi, where A1, . . . , An ∈ Rd×d are symmetric matrices and g1, . . . , gn

iid∼ N (0, 1), it holds

σ ≲ E ∥X∥ ≲ σ
√

log d,

where σ2 :=
∥∥∑n

i=1 A
2
i

∥∥.

(a) Suppose that A1, . . . , An ∈ Rd×d are symmetric commuting matrices. This means that they are simulta-
neously diagonalizable (well known fact, no proof needed), so there is an orthogonal matrix Q ∈ Rd×d so
that Di := QAiQ

−1 is a diagonal matrix for any i ∈ [n]. Let λ(i)
1 , . . . , λ

(i)
d be the entries that appear, in

that order, on the diagonal of Di. Show that

E ∥X∥ = E max
k=1,...,d

∣∣∣∣∣
n∑

i=1
giλ

(i)
k

∣∣∣∣∣ .
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(b) Deduce using Problem 8.2(a) that
E ∥X∥ ≲ σ

√
log d.

(c) Find an example of commuting matrices A1, . . . , An such that Problem 8.2(b) implies

E ∥X∥ ≳ σ
√

log d.

Problem 9.9 (• • | Trace Commutativity Inequality). The goal of this exercise is to show the following key
inequality that proves why commuting matrices perform worse than non-commuting matrices in trace moment
estimations. One can actually follow a slightly different approach than the one shown in the book if one follows
the hint in (b).
Let X,A ∈ Rd×d be symmetric matrices and let k, l be nonnegative integers with k + l being even, then

Tr(AXkAX l) ≤ Tr(A2Xk+l).

(a) Let X =
∑d

i=1 λiuiu
⊤
i be the the eigenvalue decomposition of X, prove

Tr(AXkAX l) ≤
d∑

i,j=1
|λi|k |λj |l (u⊤

i Auj)2.

(b) Finish the proof by showing
d∑

i,j=1
|λi|k |λj |l (u⊤

i Auj)2 ≤ Tr(A2Xk+l).

Hint. UseYoung’sInequalityontheproductofeigenvalues.
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10 Compressive Sensing and Sparsity
Problem 10.1 (• • | Sparse vector approximation in ℓ2). Let N ≥ s ≥ 1 be integers and x ∈ CN be a vector.
Show that there exists an s-sparse vector y ∈ CN such that

∥x− y∥2 ≤ 1
2
√
s

∥x∥1 .

Problem 10.2 (• | ℓ0-Minimization Recovery). Let A ∈ Cm×p be a matrix. Suppose that every s-sparse vector
x can be uniquely recovered by A via ∥.∥0 minimization, i.e, we choose x∗ that minimizes ∥z∥0 subject to the
constraint Ax = Az and x is the unique minimum of this problem if x has at most s nonzero entries. Here ∥.∥0
is the ℓ0 ”norm”, it counts the number of nonzero entries of the input vector.

(a) Prove that every 2s columns of A are linearly independent.

(b) Prove that m ≥ 2s.

(c) Prove that if a matrix B ∈ Cm×p satisfies the condition that every 2s columns are linearly independent,
then every s-sparse vector x can be uniquely recovered by B via ∥.∥0 minimization.

Problem 10.3 (• • | Stable Nullspace Property). A fundamental fact in compressed sensing is that in order to
recover an s-sparse vector x ∈ RN by minimizing the ℓ1 norm, the measurement matrix Φ ∈ Rd×N needs to
satisfy the null space property: For every non-trivial vector v in the kernel of Φ and all sets S such that |S| ≤ s,
it holds that ∥vS∥1 < ∥vSc∥1 [BSS25, Definition 10.3]. Here vS denotes the vector in R|S| corresponding to the
restriction of v to the index set S. The goal of this exercise is to study the compressed sensing problem when
x is approximately sparse.

We say that a matrix Φ ∈ Rd×N satisfies the (s, ρ)-stable null space property if for every non-zero vector
v ∈ ker(Φ) and all sets S such that |S| ≤ s, the following holds

∥vS∥1 ≤ ρ∥vSc∥1.

Prove the following facts

(a) Given a set S ⊂ {1, . . . , N} and vectors x, z ∈ RN ,

∥(x− z)Sc∥1 ≤ ∥z∥1 − ∥x∥1 + 2∥xSc∥1 + ∥(x− z)S∥1.

(b) Prove that if Φ ∈ Rd×N satisfies the (s, ρ)-stable nullspace property with ρ ∈ (0, 1), then the solution of
the optimization program

x̂ := argmin ∥z∥1 subject to Φz = Φx

satisfies
∥x̂− x∥1 ≤ 2σs(x)1 + ρ

1 − ρ
,

where σs(x) is the s-best term approximation error of x, given by σs(x) := infz:∥z∥0≤s ∥x− z∥1.

(c) Show that the stable nullspace property with ρ < 1 is sufficient for exact recovery when the vector x is
s-sparse.
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